Science.gov

Sample records for cyclooxygenase-2 generates anti-inflammatory

  1. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    PubMed

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  2. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids.

    PubMed

    Cho, Hongsik; Walker, Andrew; Williams, Jeb; Hasty, Karen A

    2015-01-01

    Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  3. Cyclooxygenase-2 inhibitors and most traditional nonsteroidal anti-inflammatory drugs cause similar moderately increased risks of cardiovascular disease.

    PubMed

    Hennekens, Charles H; Borzak, Steven

    2008-03-01

    Cyclooxygenase-2 inhibitors relieve pain from inflammatory conditions by decreasing the gastrointestinal side effects from traditional nonsteroidal anti-inflammatory drugs. Basic research provided plausible mechanisms and some observational epidemiological studies, case-control and cohort, indicated that patients prescribed with cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory drugs had increased risks for myocardial infarction and stroke. Because patients prescribed with cyclooxygenase-2 inhibitors were systematically different, uncontrolled and uncontrollable confounding by indication was as large as the observed risks. Thus, epidemiological studies or their meta-analyses could not discern whether, and if so, how much, the risks were real. A comprehensive meta-analysis of randomized trials indicated that cyclooxygenase-2 inhibitors increased the risk of vascular events by 42%, almost exclusively myocardial infarction, as did high-dose regimens of ibuprofen and diclofenac, but not naproxen. Individual clinical judgments and policy decisions should include cardiovascular disease and noncardiovascular disease risks including gastrointestinal side effects and clinical benefits including improved quality of life from less pain and disability.

  4. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats.

    PubMed

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Jung, Eui-Man; Kang, Hong-Seok; Choi, In-Gyu; Park, Mi-Jin; Jeung, Eui-Bae

    2013-07-01

    Essential oils are concentrated hydrophobic liquids containing volatile aromatic compounds from plants. In the present study, the essential oil of Chamaecyparis obtusa (C. obtusa), which is commercially used in soap, toothpaste and cosmetics, was extracted. Essential oil extracted from C. obtusa contains several types of terpenes, which have been shown to have anti-oxidative and anti-inflammatory effects. In the present study, we examined the anti-inflammatory effects of C. obtusa essential oil in vivo and in vitro following the induction of inflammation by lipopolysaccharides (LPS) in rats. While LPS induced an inflammatory response through the production of prostaglandin E2 (PGE2) in the blood and peripheral blood mononuclear cells (PMNCs), these levels were reduced when essential oil was pre-administered. Additionally, the mechanism of action underlying the anti-inflammatory effects of C. obtusa essential oil was investigated by measuring the mRNA expression of inflammation‑associated genes. LPS treatment significantly induced the expression of transforming growth factor α (TNFα) and cyclooxygenase-2 (COX-2) in rats, while C. obtusa essential oil inhibited this effect. Taken together, our results demonstrate that C. obtusa essential oil exerts anti‑inflammatory effects by regulating the production of PGE2 and TNFα gene expression through the COX-2 pathway. These findings suggest that C. obtusa essential oil may constitute a novel source of anti-inflammatory drugs.

  5. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  6. Anti-inflammatory action of legume isoflavonoid sophoricoside through inhibition on cyclooxygenase-2 activity.

    PubMed

    Kim, Byung Hak; Chung, Eun Yong; Min, Bo-Kyung; Lee, Seung Ho; Kim, Mi-Kyeong; Min, Kyung Rak; Kim, Youngsoo

    2003-05-01

    Soy is a main source of isoflavonoids which are of high dietary intake for the oriental population. In this study, the anti-inflammatory action of sophoricoside, an isoflavone glycoside isolated from immature fruits of Sophora japonica L. (Leguminosae), has been demonstrated. When administered orally at > 100 mg/kg or injected intravenously at > 10 mg/kg, sophoricoside showed significant reduction of carrageenin-induced paw edema in mice. Sophoricoside has been identified as a selective inhibitor of cyclooxygenase (COX)-2 activity with an IC50 value of 3.3 microM. PMID:12802736

  7. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  8. Anti-inflammatory effect and low ulcerogenic activity of etodolac, a cyclooxygenase-2 selective non-steroidal anti-inflammatory drug, on adjuvant-induced arthritis in rats.

    PubMed

    Tachibana, Masaki; Inoue, Naoki; Yoshida, Eri; Matsui, Masami; Ukai, Yojiro; Yano, Junichi

    2003-06-01

    Adjuvant arthritic rats are known to be more susceptible to gastric damage induced by non-steroidal anti-inflammatory drugs (NSAIDs) than are normal rats. We compared the relative gastric safety profile of etodolac with those of meloxicam, diclofenac sodium and indometacin in adjuvant arthritic rats and normal rats or mice. As a measure of the safety profiles of NSAIDs, we used the safety index, the ratio of the dose that elicits gastric mucosal lesions to the effective dose as an anti-inflammatory or analgesic compound. The anti-inflammatory or analgesic effects of NSAIDs were assessed by paw swelling in adjuvant arthritic rats, and either carrageenin-induced paw edema or brewer's yeast-induced hyperalgesia, as well as acetic acid-induced writhing, in normal rats or mice. In addition, we also investigated the effects of these NSAIDs on human COX-1 and COX-2 activity. Etodolac and other NSAIDs inhibited paw swelling and caused gastric mucosal lesions in adjuvant arthritic rats in a dose-dependent manner. Etodolac showed the highest UD(50) value and safety index among these NSAIDs in arthritic rats. In normal rats, etodolac also showed the highest UD(50) value and safety index, except when its effects were assessed by acetic acid-induced writhing. Etodolac and meloxicam showed selectivity for human COX-2 over COX-1. In contrast, diclofenac sodium and indometacin were selective for COX-1. These results suggest that etodolac, a COX-2 selective NSAID, has anti-inflammatory effects with a better safety profile for the stomach than do non-selective NSAIDs, including diclofenac sodium and indometacin, in adjuvant arthritic as well as normal rats.

  9. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    PubMed

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  10. Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs.

    PubMed

    Gerstenfeld, Louis C; Thiede, Mark; Seibert, Karen; Mielke, Cindy; Phippard, Deborah; Svagr, Bohus; Cullinane, Dennis; Einhorn, Thomas A

    2003-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) specifically inhibit cyclooxygenase (COX) activity and are widely used as anti-arthritics, post-surgical analgesics, and for the relief of acute musculoskeletal pain. Recent studies suggest that non-specific NSAIDs, which inhibit both COX-1 and COX-2 isoforms, delay bone healing. The objectives of this study were 2-fold; first, to measure the relative changes in the normal expression of COX-1 and COX-2 mRNAs over a 42 day period of fracture healing and second, to compare the effects of a commonly used non-specific NSAID, ketorolac, with a COX-2 specific NSAID, Parecoxib (a pro-drug of valdecoxib), on this process. Simple, closed, transverse fractures were generated in femora of male Sprague-Dawley rats weighing approximately 450 g each. Total RNA was prepared from the calluses obtained prior to fracture and at 1, 3, 5, 7, 10, 14, 21, 35 and 42 days post-fracture and levels of COX-1 and COX-2 mRNA were measured using real time PCR. While the relative levels of COX-1 mRNA remained constant over a 21-day period, COX-2 mRNA levels showed peak expression during the first 14 days of healing and returned to basal levels by day 21. Mechanical properties of the calluses were then assessed at 21 and 35 days post-fracture in untreated animals and animals treated with either ketorolac or high or low dose parecoxib. At both 21 and 35 days after fracture, calluses in the group treated with the ketorolac showed a significant reduction in mechanical strength and stiffness when compared with controls (p<0.05). At the 21-day time point, calluses of the parecoxib treated animals showed a lower mean mechanical strength than controls, but the inhibition was not statistically significant. Based on physical analysis of the bones, 3 of 12 (25%) of the ketorolac-treated and 1 of 12 (8%) of the high dose parecoxib-treated animals showed failure to unite their fractures by 21 days, while all fractures in both groups showed union by 35 days

  11. Anti-inflammatory mode of isoflavone glycoside sophoricoside by inhibition of interleukin-6 and cyclooxygenase-2 in inflammatory response.

    PubMed

    Kim, Byung Hak; Chung, Eun Yong; Ryu, Jae-Chun; Jung, Sang-Hun; Min, Kyung Rak; Kim, Youngsoo

    2003-04-01

    Soy, high dietary intake for the oriental population, is a main source of isoflavonoids. Sophoricoside (SOP) an isoflavone glycoside was isolated from immature fruits of Sophora japonica (Leguminosae family) and its inhibitory effect on chemical mediators involved in inflammatory response was investigated in this study. SOP inhibited the interleukin (IL)-6 bioactivity with an IC50 value of 6.1 microM whereas it had no effects on IL-1beta and TNF-alpha bioactivities. SOP was identified as a selective inhibitor of cyclooxygenase (COX)-2 activity with an IC50 value of 4.4 microM, but did not show inhibitory effect on the synthesis of COX-2. However, SOP had no effect on the production of reactive oxygen species including superoxide anions and nitric oxide. These results revealed that in vitro anti-inflammatory action of SOP is significantly different from that of genistein known as a phytoestrogen of soy products. This experimental study has documented an importance of dietary soy isoflavonoids as multifunctional agents beneficial to human health, and will help to clarify protective mechanisms of SOP against inflammatory conditions. PMID:12735689

  12. Non-steroidal anti-inflammatory drugs and the risk of cardiovascular diseases: are we going to see the revival of cyclooxygenase-2 selective inhibitors?

    PubMed

    Głuszko, Piotr; Bielińska, Aneta

    2009-04-01

    The use of non-steroidal anti-inflammatory drugs (NSAID) is associated with a number of gastrointestinal and other adverse effects. Introduction of selective cyclooxygenase-2 (COX-2) inhibitors at the end of the 20th century raised hopes for a substantial reduction in the rate of serious events such as upper gastrointestinal ulcers, bleeding and perforations. In 2004 and 2005, predictions of some pharmacologists were confirmed when the Adenomatous Polyp Prevention on VIOXX trial (APPROVE) and other randomized, double-blind, placebo-controlled trials with COX-2 inhibitors showed an increased rate of thrombotic vascular events, including myocardial infarction, in patients treated with coxibs. So far, only limited long-term data on cardiovascular risk associated with non-selective NSAID have been available; however, some studies have suggested that both selective COX-2 inhibitors and traditional NSAID increase the risk of cardiovascular events. For patients at high cardiovascular risk, contradictory warnings and recommendations have been published recently by the American Heart Association, Food and Drug Administration, and by independent experts. The current paper reviews these recommendations and discusses the therapeutic challenge to minimize the risk of serious adverse events associated with the use of NSAID.

  13. Cyclooxygenase-2 expression in lipopolysaccharide-stimulated human monocytes is modulated by cyclic AMP, prostaglandin E(2), and nonsteroidal anti-inflammatory drugs.

    PubMed

    Hinz, B; Brune, K; Pahl, A

    2000-11-30

    Using human blood monocytes (for determination of cyclooxygenase-2 (COX-2) mRNA by RT-PCR) and human whole blood (for prostanoid determination), the present study investigates the influence of the second messenger cAMP on lipopolysaccharide (LPS)-induced COX-2 expression with particular emphasis on the role of prostaglandin E(2) (PGE(2)) in this process. Elevation of intracellular cAMP with a cell-permeable cAMP analogue (dibutyryl cAMP), an adenylyl cyclase activator (cholera toxin), or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) substantially enhanced LPS-induced PGE(2) formation and COX-2 mRNA expression, but did not modify COX-2 enzyme activity. Moreover, up-regulation of LPS-induced COX-2 expression was caused by PGE(2), butaprost (selective agonist of the adenylyl cyclase-coupled EP(2) receptor) and 11-deoxy PGE(1) (EP(2)/EP(4) agonist), whereas sulprostone (EP(3)/EP(1) agonist) left COX-2 expression unaltered. Abrogation of LPS-induced PGE(2) synthesis with the selective COX-2 inhibitor NS-398 caused a decrease in COX-2 mRNA levels that was restored by exogenous PGE(2) and mimicked by S(+)-flurbiprofen and ketoprofen. Overall, these results indicate a modulatory role of cAMP in the regulation of COX-2 expression. PGE(2), a cAMP-elevating final product of the COX-2 pathway, may autoregulate COX-2 expression in human monocytes via a positive feedback mechanism.

  14. Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives

    PubMed Central

    Cipollina, Chiara; Salvatore, Sonia R.; Muldoon, Matthew F.; Freeman, Bruce A.; Schopfer, Francisco J.

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the

  15. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling

    PubMed Central

    Fleming, Bryan D.; Chandrasekaran, Prabha; Dillon, Laura A. L.; Dalby, Elizabeth; Suresh, Rahul; Sarkar, Arup; El-Sayed, Najib M.; Mosser, David M.

    2015-01-01

    Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1β, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4. PMID:26048978

  16. Anti-inflammatory Diets.

    PubMed

    Sears, Barry

    2015-01-01

    Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-κB (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology. PMID:26400429

  17. Cardiovascular effects of selective cyclooxygenase-2 inhibitors.

    PubMed

    Krum, Henry; Liew, Danny; Aw, Juan; Haas, Steven

    2004-03-01

    Selective cyclooxygenase-2 inhibitors represent a significant advance in the management of inflammatory disorders. They have similar efficacy to nonselective 'conventional' nonsteroidal anti-inflammatory drugs, but a superior gastrointestinal safety profile. However, a significant caveat is the perceived potential of cyclooxygenase-2 inhibitors to cause adverse cardiovascular effects, an issue first raised by the Vioxx Gastrointestinal Outcomes Research (VIGOR) study of rofecoxib (Vioxx, Merck & Co. Inc.). Mechanisms by which cyclooxygenase-2 inhibitors may increase cardiovascular risk are selective inhibition of prostaglandin I2 over thromboxane A2 within the eicosanoid pathway, which promotes thrombosis, and inhibition of prostaglandins E2 and I2 within the kidney, which leads to sodium and water retention and blood pressure elevation. In spite of this, the cardiovascular findings from VIGOR are not firmly supported by observations from large cohort studies and other clinical trials of selective cyclooxygenase-2 inhibitors, including the Celecoxib Long-term Arthritis Safety Study. The two main theories that explain the VIGOR findings are that the comparator used (naproxen; Naprosyn, Roche) is cardioprotective and that very high doses of rofecoxib were used, but at present neither is backed by firm evidence. Indeed, there is now early evidence that selective cyclooxygenase-2 inhibition with celecoxib may even protect against the progression of cardiovascular disease, on the basis that cyclooxygenase-2 mediates key processes in atherothrombosis. Currently, it is not clear what the net cardiovascular effects of cyclooxygenase-2 inhibitors are. The data are inconsistent and at best, speculative. It may be also that celecoxib and rofecoxib differ in their cardiovascular effects. Clarification of these issues is of vital importance given the vast number of patients presently taking both types of cyclooxygenase-2 inhibitors. Therefore, what is clear in this situation is

  18. Synthesis and anti-inflammatory activity of chalcone derivatives.

    PubMed

    Herencia, F; Ferrándiz, M L; Ubeda, A; Domínguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1998-05-19

    Chalcones and their derivatives were synthesized and evaluated for their anti-inflammatory activity. In vitro, chalcones 2, 4, 8, 10 and 13 inhibited degranulation and 5-lipoxygenase in human neutrophils, whereas 11 behaved as scavenger of superoxide. Only four compounds (4-7) inhibited cyclo-oxygenase-2 activity. The majority of these samples showed anti-inflammatory effects in the mouse air pouch model.

  19. Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action.

    PubMed

    Kim, Hyun Pyo; Park, Haeil; Son, Kun Ho; Chang, Hyeun Wook; Kang, Sam Sik

    2008-03-01

    Biflavonoids belong to a subclass of the plant flavonoid family. Distribution of biflavonoids in the plant kingdom is limited to several species. Previously, some pharmacological activities of biflavonoids were described such as inhibition of histamine release from mast cells and inhibition of lymphocyte proliferation, suggesting the anti-inflammatory/antiallergic potential of the biflavonoids. Furthermore, several natural biflavonoids including ochnaflavone and ginkgetin inhibit phospholipase A2. Most importantly, certain biflavonoids exhibit anti-inflammatory activity through the regulation of proinflammatory gene expression in vitro and in vivo. Recently, several synthetic approaches yielded new biflavonoid molecules with anti-inflammatory potential. These molecules also exhibit phospholipase A2 and cyclooxygenase-2 inhibitory activity. Although the bioavailability needs be improved, certain biflavonoids may have potential as new anti-inflammatory agents. This is the first review of biflavonoid pharmacology to date.

  20. [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].

    PubMed

    Páramo, José A; Beloqui, Oscar; Orbe, Josune

    2006-05-27

    It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.

  1. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts.

    PubMed

    Jeong, Yi Yeong; Ryu, Ji Hyeon; Shin, Jung-Hye; Kang, Min Jung; Kang, Jae Ran; Han, Jaehee; Kang, Dawon

    2016-01-01

    Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE₂, NO, IL-6, IL-1β, LTD₄, and LTE₄ production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS. PMID:27043510

  2. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts.

    PubMed

    Jeong, Yi Yeong; Ryu, Ji Hyeon; Shin, Jung-Hye; Kang, Min Jung; Kang, Jae Ran; Han, Jaehee; Kang, Dawon

    2016-01-01

    Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE₂, NO, IL-6, IL-1β, LTD₄, and LTE₄ production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS.

  3. Quercinol, an anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill).

    PubMed

    Gebhardt, P; Dornberger, K; Gollmick, F A; Gräfe, U; Härtl, A; Görls, H; Schlegel, B; Hertweck, C

    2007-05-01

    The fungus Daedalea quercina (oak mazegill) was examined for its capability of producing antioxidative and anti-inflammatory compounds. Bioactivity guided fractionation of the extract from a mycelial culture led to the isolation of quercinol, which was identified as (-)-(2S)-2-hydroxymethyl-2-methyl-6-hydroxychromene 1 by NMR and X-ray analyses. The cryptic hydroquinone 1 shows a broad anti-inflammatory activity against cyclooxygenase 2 (COX-2), xanthine oxidase (XO), and horseradish peroxidase (HRP) at micromolar concentrations.

  4. Pulsed Dipolar Spectroscopy Reveals That Tyrosyl Radicals Are Generated in Both Monomers of the Cyclooxygenase-2 Dimer.

    PubMed

    Orlando, Benjamin J; Borbat, Peter P; Georgieva, Elka R; Freed, Jack H; Malkowski, Michael G

    2015-12-22

    Cyclooxygenases (COXs) are heme-containing sequence homodimers that utilize tyrosyl radical-based catalysis to oxygenate substrates. Tyrosyl radicals are formed from a single turnover of substrate in the peroxidase active site generating an oxy-ferryl porphyrin cation radical intermediate that subsequently gives rise to a Tyr-385 radical in the cyclooxygenase active site and a Tyr-504 radical nearby. We have utilized double-quantum coherence (DQC) spectroscopy to determine the distance distributions between Tyr-385 and Tyr-504 radicals in COX-2. The distances obtained with DQC confirm that Tyr-385 and Tyr-504 radicals were generated in each monomer and accurately match the distances measured in COX-2 crystal structures. PMID:26636181

  5. Role of cyclo-oxygenase-2 induction in interleukin-1β induced attenuation of cultured human airway smooth muscle cell cyclic AMP generation in response to isoprenaline

    PubMed Central

    Pang, Linhua; Holland, Elaine; Knox, Alan J

    1998-01-01

    Airway smooth muscle (ASM) in human asthma shows reduced relaxation and cyclic AMP generation in response to β-adrenoceptor agonists. IL-β attenuates cyclic AMP generation but the underlying mechanism is unclear. We have reported that IL-1β induces cyclo-oxygenase-2 (COX-2) in human ASM cells and results in a marked increase in prostanoid generation with PGE2 and PGI2 as the major products.We investigated the role of COX-2 induction and prostanoid release (measured as PGE2) in IL-1β induced attenuation of cyclic AMP generation in response to the β-adrenoceptor agonist isoprenaline (ISO).Pre-treatment of human ASM cells with IL-1β significantly attenuated cyclic AMP generation in response to high concentrations of ISO (1.0–10.0 μM) in a time- and concentration-dependent manner. The effect was accompanied by a high concentration of PGE2 release. The non-selective COX inhibitor indomethacin (Ind), the selective COX-2 inhibitor NS-398, the protein synthesis inhibitors cycloheximide (CHX) and actinomycin D and the steroid dexamethasone (Dex) all abolished the PGE2 release and prevented the attenuated cyclic AMP generation.COX substrate arachidonic acid time- and concentration-dependently mimicked IL-1β induced attenuation and the effect was prevented by the non-selective COX inhibitors Ind and flurbiprofen, but not by NS-398, CHX and Dex.In contrast to IL-1β, TNFα and IFNγ, which are ineffective in inducing COX-2 and releasing PGE2 from human ASM cells, did not affect the cyclic AMP formation.Our study demonstrates that COX-2 induction and the consequent release of prostanoids plays a crucial role in IL-1β induced attenuation of human ASM cell cyclic AMP response to ISO. PMID:9863663

  6. Cyclooxygenase-2 Generates the Endogenous Mutagen trans-4-Hydroxy-2-nonenal in Enterococcus faecalis-infected Macrophages

    PubMed Central

    Wang, Xingmin; Allen, Toby D.; Yang, Yonghong; Moore, Danny R.; Huycke, Mark M.

    2013-01-01

    Infection of macrophages by the human intestinal commensal Enterococcus faecalis generates DNA damage and chromosomal instability in mammalian cells through bystander effects. These effects are characterized by clastogenesis and damage to mitotic spindles in target cells and are mediated, in part, by trans-4-hydroxy-2-nonenal (4-HNE). In this study we investigated the role of cyclooxygenase (COX) and lipoxygenase (LOX) in producing this reactive aldehyde using E. faecalis-infected macrophages and interleukin-10 knockout mice colonized with this commensal. 4-HNE production by E. faecalis-infected macrophages was significantly reduced by COX and LOX inhibitors. The infection of macrophages led to decreased Cox1 and Alox5 expression while COX-2 and 4-HNE increased. Silencing Alox5 and Cox1 with gene-specific siRNAs had no effect on 4-HNE production. In contrast, silencing Cox2 significantly decreased 4-HNE production by E. faecalis-infected macrophages. Depleting intracellular glutathione increased 4-HNE production by these cells. Next, to confirm COX-2 as a source for 4-HNE, we assayed the products generated by recombinant human COX-2 and found 4-HNE in a concentration-dependent manner using arachidonic acid as a substrate. Finally, tissue macrophages in colon biopsies from interleukin-10 knockout mice colonized with E. faecalis were positive for COX-2 by immunohistochemical staining. This was associated with increased staining for 4-HNE-protein adducts in surrounding stroma. These data show that E. faecalis, a human intestinal commensal, can trigger macrophages to produce 4-HNE through COX-2. Importantly, it reinforces the concept of COX-2 as a procarcinogenic enzyme capable of damaging DNA in target cells through bystander effects that contribute to colorectal carcinogenesis. PMID:23321929

  7. Anti-inflammatory activity of constituents isolated from Terminalia chebula ***waiting for publication date

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was aimed at the evaluation of the anti-inflammatory activity of twelve compounds isolated from the methanolic extract of fruits of Terminalia chebula. The activity was determined in terms of their ability to inhibit inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in L...

  8. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes.

    PubMed

    Boodram, Janine N; Mcgregor, Iain J; Bruno, Peter M; Cressey, Paul B; Hemann, Michael T; Suntharalingam, Kogularamanan

    2016-02-18

    The breast cancer stem cell (CSC) potency of a series of copper(II)-phenanthroline complexes containing the nonsteroidal anti-inflammatory drug (NSAID), indomethacin, is reported. The most effective copper(II) complex in this series, 4, selectivity kills breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Furthermore, 4 reduces the formation, size, and viability of mammospheres, to a greater extent than salinomycin, a potassium ionophore known to selectively inhibit CSCs. Mechanistic studies revealed that the CSC-specificity observed for 4 arises from its ability to generate intracellular reactive oxygen species (ROS) and inhibit cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in breast CSCs. The former induces DNA damage, activates JNK and p38 pathways, and leads to apoptosis.

  9. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking.

  10. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  11. Naturally occurring biflavonoid, ochnaflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells.

    PubMed

    Son, Min Jung; Moon, Tae Chul; Lee, Eun Kyung; Son, Kun Ho; Kim, Hyun Pyo; Kang, Sam Sik; Son, Jong Keun; Lee, Seung Ho; Chang, Hyeun Wook

    2006-04-01

    Ochnaflavone is a medicinal herbal product isolated from Lonicera japonica that inhibits cyclooxygenase-2 (COX-2) dependent phases of prostaglandin D2 (PGD2) generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner with IC50 values of 0.6 microM. Western blotting probed with specific anti-COX-2 antibodies showed that the decrease in quantity of the PGD2 product was accompanied by a decrease in the COX-2 protein level. In addition, this compound consistently inhibited the production of leukotriene C4 (LTC4) in a dose dependent manner, with an IC50 value of 6.56 microM. These results demonstrate that ochnaflavone has a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity. Furthermore, this compound strongly inhibited degranulation reaction in a dose dependent manner, with an IC50 value of 3.01 microM. Therefore, this compound might provide a basis for novel anti-inflammatory drugs.

  12. Generation of the First TCR Transgenic Mouse with CD4(+) T Cells Recognizing an Anti-inflammatory Regulatory T Cell-Inducing Hsp70 Peptide.

    PubMed

    Jansen, Manon A A; van Herwijnen, Martijn J C; van Kooten, Peter J S; Hoek, Aad; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2016-01-01

    Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such -antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen--specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4(+) T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4(+) T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4(+)CD25(+) Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis. PMID:27014269

  13. Generation of the First TCR Transgenic Mouse with CD4+ T Cells Recognizing an Anti-inflammatory Regulatory T Cell-Inducing Hsp70 Peptide

    PubMed Central

    Jansen, Manon A. A.; van Herwijnen, Martijn J. C.; van Kooten, Peter J. S.; Hoek, Aad; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2016-01-01

    Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such ­antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen-­specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4+ T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4+ T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4+CD25+ Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis. PMID:27014269

  14. Anti-inflammatory activity of traditional Chinese medicinal herbs

    PubMed Central

    Pan, Min-Hsiung; Chiou, Yi-Shiou; Tsai, Mei-Ling; Ho, Chi-Tang

    2011-01-01

    Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM) have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB)), pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α), chemokines (for example, chemokine (C-C motif) ligand (CCL)-24), intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)). However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology. PMID:24716101

  15. Chronic inhibition of cyclooxygenase-2 attenuates antibody responses against vaccinia infection.

    PubMed

    Bernard, Matthew P; Bancos, Simona; Chapman, Timothy J; Ryan, Elizabeth P; Treanor, John J; Rose, Robert C; Topham, David J; Phipps, Richard P

    2010-02-01

    Generation of optimal humoral immunity to vaccination is essential to protect against devastating infectious agents such as the variola virus that causes smallpox. Vaccinia virus (VV), employed as a vaccine against smallpox, provides an important model of infection. Herein, we evaluated the importance cyclooxygenase-2 (Cox-2) in immunity to VV using Cox-2 deficient mice and Cox-2 selective inhibitory drugs. The effects of Cox-2 inhibition on antibody responses to live viruses such as vaccinia have not been previously described. Here, we used VV infection in Cox-2 deficient mice and in mice chronically treated with Cox-2 selective inhibitors and show that the frequency of VV-specific B cells was reduced, as well as the production of neutralizing IgG. VV titers were approximately 70 times higher in mice treated with a Cox-2 selective inhibitor. Interestingly, Cox-2 inhibition also reduced the frequency of IFN-gamma producing CD4(+) T helper cells, important for class switching. The significance of these results is that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs), and other drugs that inhibit Cox-2 activity or expression, blunt the ability of B cells to produce anti-viral antibodies, thereby making vaccines less effective and possibly increasing susceptibility to viral infection. These new findings support an essential role for Cox-2 in regulating humoral immunity.

  16. Anti-Inflammatory, Antioxidant, Anti-Angiogenic and Skin Whitening Activities of Phryma leptostachya var. asiatica Hara Extract

    PubMed Central

    Jung, Hyun-Joo; Cho, Young-Wook; Lim, Hye-Won; Choi, Hojin; Ji, Dam-Jung; Lim, Chang-Jin

    2013-01-01

    This work aimed to assess some pharmacological activities of P. leptostachya var. asiatica Hara. The dried roots of P. leptostachya var. asiatica Hara were extracted with 70% ethanol to generate the powdered extract, named PLE. Anti-angiogenic activity was detected using chick chorioallantoic membrane (CAM) assay. In vitro anti-inflammatory activity was evaluated via analyzing nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and reactive oxygen species (ROS) level in the stimulated macrophage cells. Matrix metalloproteinase-9 (MMP-9) and -2 (MMP-2) activities in the culture media were detected using zymography. PLE exhibits an anti-angiogenic activity in the CAM assay, and displays an inhibitory action on the generation of NO in the LPS-stimulated macrophage cells. In the stimulated macrophage cells, it is able to diminish the enhanced ROS level. It can potently scavenge the stable DPPH free radical. It suppresses the induction of iNOS and COX-2 and the enhanced MMP-9 activity in the stimulated macrophage cells. Both monooxygenase and oxidase activities of tyrosinase were strongly inhibited by PLE. Taken together, the dried roots of P. leptostachya var. asiatica Hara possess anti-angiogenic, anti-inflammatory, antioxidant and skin whitening activities, which might partly provide its therapeutic efficacy in traditional medicine. PMID:24009862

  17. Antibacterial and Anti-Inflammatory Activities of Physalis Alkekengi var. franchetii and Its Main Constituents

    PubMed Central

    Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue

    2016-01-01

    This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196

  18. Anti-inflammatory effects of the chloroform extract of Pulicaria guestii ameliorated the neutrophil infiltration and nitric oxide generation in rats.

    PubMed

    Alghaithy, A A; El-Beshbishy, H A; Abdel-Naim, A B; Nagy, A A; Abdel-Sattar, E M

    2011-11-01

    Pulicaria guestii Rech.f. & Rawi is a fragrant, perennial herb, which grows wild, west of Al-Madinah, Saudi Arabia. Several reports were published on the anti-inflammatory activity of the sesquiterpene lactones, phenolics and flavonoids, which constitute the main active constituents of the members of the genus Pulicaria. The present study was designed to explore the potential anti-inflammatory effect of P. guestii in several experimental models. The methanol extract of the dried aerial parts of P. guestii was extracted with petroleum ether, chloroform and n-butanol. The chloroform extract was analysed on TLC and examined under UV and visible light in presence of AlCl(3) spray. The free radical scavenging activity and the total phenolic content in the CHCl(3) extract were estimated. The crude methanol extract and the CHCl(3) fraction were examined against carrageenin-induced paw edema and ear edema induced by croton oil application. The crude methanolic extract significantly reduced carrageenin-induced rat paw edema. After fractionation, the chloroform fraction caused significant reduction in carrageenin-induced rat paw edema in addition to diminishing prostaglandin E(2) (PGE(2)) in the inflammatory exudates. Topical application of chloroform fraction significantly reduced rat ear edema induced by croton oil application. In the same model, chloroform fraction reduced neutrophil infiltration, as indicated by the significant decrease in myeloperoxidase activity, and ameliorated histopathological changes induced by croton oil application. In lipopolysaccharide-induced inflammation in rat air pouch, chloroform fraction significantly reduced the nitric oxide level and tumor necrosis factor-α release. In conclusion, the chloroform fraction of P. guestii extract possesses anti-inflammatory activity in several experimental models. Further investigations are needed to identify the active constituents responsible for this anti-inflammatory activity.

  19. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer.

    PubMed

    Janakiram, Naveena B; Rao, Chinthalapally V

    2009-06-01

    Recently, lipoxins (LXs) and resolvins (Rvs) have become the topic of intense interest because of expanding views of their action, particularly in chronic disorders where unresolved inflammation is a key factor leading to colon carcinogenesis. Rvs are biosynthesized from omega-3 fatty acids eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) via cyclooxygenase-2/lipoxygenase (COX-2/LOX) pathways; Rvs are shown to dramatically reduce dermal inflammation, peritonitis, dendritic cell migration, and interleukin production. This explains that dietary supplementation of omega-3 fatty acids generates potent local endogenous mediators that control inflammation. LXs are biosynthesized from COX-2/LOX pathways. Metabolites of 15-LOX-1 and 2 are anti-tumorigenic; similarly, 15-epi-LXA(4) synthesized during COX-2 acetylation by low doses of aspirin too possesses anti-tumorigenic effects. Acetylating nonsteroidal anti-inflammatory drugs (NSAIDs), like aspirin, switches COX-2 from forming PGE(2) (promoting tumorigenesis) to 15-epi-LXA(4) (antitumorigenesis). LXs and Rvs are endogenously generated during the spontaneous resolution phase. These newly identified LXs and Rvs have proved to be potent regulators of both leukocytes and cytokine productions, thereby regulating the events of interest in inflammation and resolution. In light of existing knowledge on interconnected pathways of pro-inflammatory mediators (leukotrienes, chemokines (IL8, SDF-1 alpha, MIP-1 alpha, MCP-1,2 etc), and cytokines (IL3, IL6, IL12, IL-1 beta, GM-CSF, B94, TNF-alpha etc)), the anti-inflammatory properties of pro-resolving mediators in preventing chronic inflammation which leads to carcinogenesis needs further understanding. In this review, we explore the mechanisms that trigger formation of LXs and Rvs, to highlight the relative importance of LXs and Rvs in carcinogenesis in relation to pro-inflammatory mediators. PMID:19601807

  20. Computational Structure-Based De Novo Design of Hypothetical Inhibitors against the Anti- Inflammatory Target COX-2

    PubMed Central

    Bafna, Khushboo; Katiyar, Shashank Prakash; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai

    2015-01-01

    Cyclooxygenase-2 (COX-2) produces prostaglandins in inflamed tissues and hence has been considered as an important target for the development of anti-inflammatory drugs since long. Administration of traditional non-steroidal anti-inflammatory drugs (NSAIDs) and other COX-2 selective inhibitors (COXIBS) for the treat of inflammation has been found to be associated with side effects, which mainly includes gastro-intestinal (GI) toxicity. The present study involves developing a virtual library of novel molecules with high druglikeliness using structure-based de novo drug designing and 2D fingerprinting approach. A library of 2657 drug like molecules was generated. 2D fingerprinting based screening of the designed library gave a unique set of compounds. Molecular docking approach was then used to identify two compounds highly specific for COX-2 isoform. Molecular dynamics simulations of protein-ligand complexes revealed that the candidate ligands were dynamically stable within the cyclooxygenase binding site of COX-2. The ligands were further analyzed for their druglikeliness, ADMET properties and synthetic accessibility using knowledge based set of rules. The results revealed that the molecules are predicted to selectively bind to COX-2 enzyme thereby potentially overcoming the limitations posed by the drugs in clinical use. PMID:26241744

  1. Meso-dihydroguaiaretic acid isolated from Saururus chinensis inhibits cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells.

    PubMed

    Moon, Tae Chul; Seo, Chang Seob; Haa, Kyungmi; Kim, Jin Cheul; Hwang, Nam Kyung; Hong, Tae Gyun; Kim, Jee Hyeun; Kim, Do Hun; Son, Jong Keun; Chang, Hyeun Wook

    2008-05-01

    Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the aerial parts of Saururus chinensis that inhibits the cyclooxygenase-2 (COX-2)-dependent phase of prostaglandin D(2) (PGD(2)) generation in bone marrow-derived mast cells (BMMC) (IC(50) 9.8 microM). However, this compound did not inhibit COX-2 protein expression in BMMC at concentrations up to 30 microM, indicating that MDGA directly inhibits COX-2 activity. In addition, this compound consistently inhibited the production of leukotriene C(4) (IC(50) 1.3 microM). These results demonstrate that MDGA inhibits both COX-2 and 5-lipoxygenase. Furthermore, this compound strongly inhibited the degranulation reaction in BMMC (IC(50) 11.4 microM). Therefore, this compound might provide a basis for novel anti-inflammatory drug development.

  2. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  3. In vivo and In vitro Anti-Inflammatory Activity of Indazole and Its Derivatives

    PubMed Central

    Muniappan, M.

    2016-01-01

    Introduction The inflammatory response is closely intertwined with the process of repair. However in some diseases the inflammatory response may be exaggerated and sustained without apparent benefit and even with severe adverse complications. For decades, we have been primarily relying upon Nonsteroidal (NSAID) and Steroidal Anti-Inflammatory agents for management of various inflammatory conditions. However, adverse effects of these drugs are severe which often leads to patient’s non-compliance with inadequate relief. Therefore, there has been a constant pursuit to develop newer anti - inflammatory treatment with fewer side effects. Aim The study was designed to investigate the possible anti- inflammatory activity of indazole, its derivatives and to further investigate the possible cellular mechanisms underlying the anti-inflammatory effect. Materials and Methods Carrageenan induced hind paw oedema in rats was employed to study the acute anti-inflammatory activity of indazole and its derivatives. Further, the role of cyclooxygenase – 2, pro-inflammatory cytokines like Tumour Necrosis Factor – α, Interleukin – 1β and free radical scavenging activity (LPO, DPPH and NO) in the action of indazole and its derivatives was investigated using in vitro assays. Results SPSS version 16.0 software was used for analyse the anti-inflamatory data. The IC50 values of indazole and its derivatives obtained in in vitro experiments were calculated by linear regression analysis. Indazole and its derivatives significantly, dose dependently and time dependently inhibited carrageenan induced hind paw oedema. In addition, the test compounds inhibited cyclooxygenase–2, pro-inflammatory cytokines and free radicals in a concentration dependent manner. Conclusion The results of the present study revealed the potential anti-inflammatory action of investigated indazoles. The inhibition of cyclooxygenase -2, cytokines and free radicals may contribute to the anti-inflammatory effect of

  4. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells.

    PubMed

    Lu, Yue; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.

  5. Intracellular secretory leukoprotease inhibitor modulates inositol 1,4,5-triphosphate generation and exerts an anti-inflammatory effect on neutrophils of individuals with cystic fibrosis and chronic obstructive pulmonary disease.

    PubMed

    Reeves, Emer P; Banville, Nessa; Ryan, Dorothy M; O'Reilly, Niamh; Bergin, David A; Pohl, Kerstin; Molloy, Kevin; McElvaney, Oliver J; Alsaleh, Khalifah; Aljorfi, Ahmed; Kandalaft, Osama; O'Flynn, Eimear; Geraghty, Patrick; O'Neill, Shane J; McElvaney, Noel G

    2013-01-01

    Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca(2+)) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n = 10), individuals with cystic fibrosis (CF) (n = 5) or chronic obstructive pulmonary disease (COPD) (n = 5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P < 0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P < 0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca(2+) flux. The described attenuation of Ca(2+) flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca(2+) flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD.

  6. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model.

    PubMed

    Kim, Dajeong; Park, Dongsun; Kyung, Jangbeen; Yang, Yun-Hui; Choi, Ehn-Kyoung; Lee, Yoon-Bok; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Yun-Bae

    2012-06-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE(2). The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE(2) pathways. PMID:22787488

  7. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  8. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages.

    PubMed

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF- α ) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  9. Analgesic and Anti-Inflammatory Activities of Rosa taiwanensis Nakai in Mice.

    PubMed

    Tsai, Der-Shiang; Huang, Mei-Hsuen; Tsai, Jen-Chieh; Chang, Yuan-Shuang; Chiu, Yung-Jia; Lin, Yen-Chang; Wu, Lung-Yuan; Peng, Wen-Huang

    2015-05-01

    In this study, we evaluated the analgesic and anti-inflammatory activities of a 70% ethanol extract from Rosa taiwanensis Nakai (RTEtOH). The analgesic effect was determined using acetic acid-induced writhing response and formalin test. The anti-inflammatory activity was evaluated by λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of RTEtOH was examined by measuring the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) in the paw edema tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in the liver tissue. The betulinic acid and oleanolic acid contents of RTEtOH were assayed by HPLC. The results showed that RTEtOH decreased the acetic acid-induced writhing responses (1.0 g/kg) and the late phase of the formalin-induced licking time (0.5 and 1.0 g/kg). In the anti-inflammatory models, RTEtOH (0.5 and 1.0 g/kg) reduced the paw edema at 3, 4, and 5 h after λ-carrageenan administration. Moreover, the anti-inflammatory mechanisms might be due to the decreased levels of COX-2, TNF-α, IL-1β, and IL-6, as well as the inhibition of NO and MDA levels through increasing the activities of SOD, GPx, and GRd. The contents of two active compounds, betulinic acid and oleanolic acid, were quantitatively determined. This study demonstrated the analgesic and anti-inflammatory activities of RTEtOH and provided evidence to support its therapeutic use in inflammatory diseases.

  10. Analgesic and Anti-Inflammatory Activities of Rosa taiwanensis Nakai in Mice

    PubMed Central

    Tsai, Der-Shiang; Huang, Mei-Hsuen; Tsai, Jen-Chieh; Chang, Yuan-Shuang; Chiu, Yung-Jia; Lin, Yen-Chang

    2015-01-01

    Abstract In this study, we evaluated the analgesic and anti-inflammatory activities of a 70% ethanol extract from Rosa taiwanensis Nakai (RTEtOH). The analgesic effect was determined using acetic acid-induced writhing response and formalin test. The anti-inflammatory activity was evaluated by λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of RTEtOH was examined by measuring the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) in the paw edema tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in the liver tissue. The betulinic acid and oleanolic acid contents of RTEtOH were assayed by HPLC. The results showed that RTEtOH decreased the acetic acid-induced writhing responses (1.0 g/kg) and the late phase of the formalin-induced licking time (0.5 and 1.0 g/kg). In the anti-inflammatory models, RTEtOH (0.5 and 1.0 g/kg) reduced the paw edema at 3, 4, and 5 h after λ-carrageenan administration. Moreover, the anti-inflammatory mechanisms might be due to the decreased levels of COX-2, TNF-α, IL-1β, and IL-6, as well as the inhibition of NO and MDA levels through increasing the activities of SOD, GPx, and GRd. The contents of two active compounds, betulinic acid and oleanolic acid, were quantitatively determined. This study demonstrated the analgesic and anti-inflammatory activities of RTEtOH and provided evidence to support its therapeutic use in inflammatory diseases. PMID:25494361

  11. Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies

    PubMed Central

    Shahbazi, Sajad; Sahrawat, Tammanna R.; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha

    2016-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084

  12. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention.

    PubMed

    Fajardo, Alexandra M; Piazza, Gary A

    2015-07-15

    Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. PMID:26021807

  13. Membrane stabilisation: a possible anti-inflammatory mechanism for the extracts and compounds from Spathodea campanulata.

    PubMed

    Boniface, Pone Kamdem; Verma, Surjeet; Shukla, Aparna; Khan, Feroz; Srivastava, Santosh Kumar; Pal, Anirban

    2014-01-01

    This study was undertaken to evaluate the efficiency of extract, fractions and pure molecules from Spathodea campanulata (SC) towards inflammation. Polarity-based extracts of SC were found active in stabilising red blood cell (RBC) membrane indicating anti-inflammatory potential. Bioactivity-guided isolation of SC produced 1-O-(E)-caffeoyl-β-gentiobiose and (2S)-1,2-di-O-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]-3-O-[α-d-galctopyranosyl-(1″ → 6')-O-β-d-galactopyranosyl] glycerol as the active constituents with 65.91% and 67.41% of membrane stability, respectively. Activity of the third compound (verminoside) could not be ascertained owing to extremely low recoverability. Furthermore, the isolated compounds were subjected to in silico studies. The compounds showed good binding affinity towards cyclooxygenase-2. Absorption, distribution, metabolism & excretion (ADME)-toxicity studies illustrated that the isolated compounds are free of toxicity. These observations help us to conclude that SC might exert its anti-inflammatory activity by soothing the RBC membrane as it is the case for non-steroidal anti-inflammatory drugs towards lysozomal membranes. Therefore, SC might be considered as a potential candidate for development of anti-inflammatory drugs.

  14. Anti-Inflammatory and Antiarthritic Activity of Anthraquinone Derivatives in Rodents

    PubMed Central

    Kshirsagar, Ajay D.; Panchal, Prashant V.; Harle, Uday N.; Nanda, Rabindra K.; Shaikh, Haidarali M.

    2014-01-01

    Aloe emodin is isolated compound of aloe vera which is used traditionally as an anti-inflammatory agent. In vitro pharmacokinetic data suggest that glucuronosyl or sulfated forms of aloe emodin may provide some limitations in its absorption capacity. Aloe emodin was reported to have in vitro anti-inflammatory activity due to inhibition of inducible nitric oxide (iNO) and prostaglandin E2, via its action on murine macrophages. However, present work evidenced that molecular docking of aloe emodin modulates the anti-inflammatory activity, as well as expression of COX-2 (cyclooxygenase-2) in rodent. The AEC (4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2 carboxylic acid) was synthesized using aloe emodin as starting material. The study was planned for evaluation of possible anti-inflammatory and antiarthritic activity in carrageenan rat induced paw oedema and complete Freund's adjuvant induced arthritis in rats. The AE (aloe emodin) and AEC significantly (P < 0.001) reduced carrageenan induced paw edema at 50 and 75 mg/kg. Complete Freund's adjuvant induced arthritis model showed significant (P < 0.001) decrease in injected and noninjected paw volume, arthritic score. AE and AEC showed significant effect on various biochemical, antioxidant, and hematological parameters. Diclofenac sodium 10 mg/kg showed significant (P < 0.001) inhibition in inflammation and arthritis. PMID:25610704

  15. Nurr1 and PPARγ protect PC12 cells against MPP(+) toxicity: involvement of selective genes, anti-inflammatory, ROS generation, and antimitochondrial impairment.

    PubMed

    Jodeiri Farshbaf, Mohammad; Forouzanfar, Mahboobeh; Ghaedi, Kamran; Kiani-Esfahani, Abbas; Peymani, Maryam; Shoaraye Nejati, Alireza; Izadi, Tayebeh; Karbalaie, Khadijeh; Noorbakhshnia, Maryam; Rahgozar, Soheila; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2016-09-01

    Parkinson's disease (PD) can degenerate dopaminergic (DA) neurons in midbrain, substantia-nigra pars compacta. Alleviation of its symptoms and protection of normal neurons against degeneration are the main aspects of researches to establish novel therapeutic strategies. PPARγ as a member of PPARs have shown neuroprotection in a number of neurodegenerative disorders such as Alzheimer's disease and PD. Nuclear receptor related 1 protein (Nurr1) is, respectively, member of NR4A family and has received great attentions as potential target for development, maintenance, and survival of DA neurons. Based on neuroprotective effects of PPARγ and dual role of Nurr1 in anti-inflammatory pathways and development of DA neurons, we hypothesize that PPARγ and Nurr1 agonists alone and in combined form can be targets for neuroprotective therapeutic development for PD in vitro model. 1-Methyl-4-phenylpyridinium (MPP(+)) induced neurotoxicity in PC12 cells as an in vitro model for PD studies. Treatment/cotreatment with PPARγ and Nurr1 agonists 24 h prior to MPP(+) induction enhanced the viability of PC12 cell. The viability of PC12 cells was determined by MTS test. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were detected by flow cytometry. In addition, the relative expression of four genes including TH (the marker of DA neurons), Ephrin A1, Nurr1, and Ferritin light chain were assessed by RT-qPCR. In the MPP(+)-pretreated PC12 cells, PPARγ and Nurr1 agonists and their combined form resulted in a decrease in the cell death rate. Moreover, production of intracellular ROS and MMP modulated by MPP(+) was decreased by PPARγ and Nurr1 agonists' treatment alone and in the combined form. PMID:27435855

  16. Anti-inflammatory effects of enzymatic hydrolysates of velvet antler in RAW 264.7 cells in vitro and zebrafish model

    PubMed Central

    Lee, Seung-Hong; Yang, Hye-Won; Ding, Yuling; Wang, Yanmei; Jeon, You-Jin; Moon, Sang-Ho; Jeon, Byong-Tae; Sung, Si-Heung

    2015-01-01

    Enzymatic hydrolysis has been successfully used for the extraction of numerous biologically active components from a wide variety of natural sources. In the present study, velvet antler was subjected to the extraction process using Alcalase protease. We analyzed bioactive components, such as uronic acid, sulfated-glycosaminoglycans (sulfated-GAGs), and sialic acid, present in the velvet antler Alcalase hydrolysate (VAAH) and assessed their anti-inflammatory effects in zebrafish as well as in vitro using cell lines. VAAH mainly contained uronic acid (78.22 mg/g) and sulfated-GAGs (50.47 mg/g), while the amount of sialic acid was negligible (5.55 mg/g). VAAH inhibited the production of nitric oxide (NO) by lipopolysaccharide (LPS)-induced cells in a dose-dependent manner and the inhibitory effect of VAAH on NO production was higher than that of hot water extracts. VAAH treatment also reduced the expression of inflammatory mediators such as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, we evaluated anti-inflammatory effects of VAAH using LPS-stimulated zebrafish. Treatment with LPS significantly increased cell death, NO, and reactive oxygen species (ROS) levels in zebrafish. Notably, VAAH significantly inhibited the extent of LPS-stimulated cell death and generation of NO and ROS in zebrafish. These results suggest that VAAH alleviated inflammation and cell death by inhibiting the generation of ROS induced by LPS treatment. Thus, VAAH could be used as a potential natural remedy with a strong anti-inflammatory effect. Taken together, we believe that based on our present results, enzymatic hydrolysis of velvet antler may be an effective process to make antler products acceptable as elements of health foods and nutraceutical components with increased biological activity. PMID:27152107

  17. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    PubMed Central

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  18. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  19. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  20. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  1. Anti-Inflammatory Agents for Cancer Therapy

    PubMed Central

    Rayburn, Elizabeth R.; Ezell, Scharri J.; Zhang, Ruiwen

    2010-01-01

    Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents. PMID:20333321

  2. Isolation and characterization of anti-inflammatory peptides derived from whey protein.

    PubMed

    Ma, Ye; Liu, Jie; Shi, Haiming; Yu, Liangli Lucy

    2016-09-01

    The present study was conducted to isolate and characterize anti-inflammatory peptides from whey protein hydrolysates using alcalase. Nine subfractions were obtained after sequential purification by ultrafiltration, Sephadex G-25 gel (GE Healthcare, Uppsala, Sweden) filtration chromatography, and preparative HPLC. Among them, subfraction F4e showed the strongest inhibitory activity on interleukin-1β (IL-1β), cyclooxygenase-2, and tumor necrosis factor-α (TNF-α) mRNA expression in lipopolysaccharide-induced RAW 264.7 mouse macrophages. Eight peptides, including 2 new peptides-Asp-Tyr-Lys-Lys-Tyr (DYKKY) and Asp-Gln-Trp-Leu (DQWL)-were identified from subfractions F4c and F4e, respectively, using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Peptide DQWL showed the strongest inhibitory ability on IL-1β, cyclooxygenase-2, and TNF-α mRNA expression and production of IL-1β and TNF-α proteins at concentrations of 10 and 100μg/mL, respectively. Additionally, DQWL treatment significantly inhibited nuclear factor-κB activation by suppressing nuclear translocation of nuclear factor-κB p65 and blocking inhibitor κB kinase phosphorylation and inhibitor κB degradation together with p38 mitogen-activated protein kinase activation. Our study suggests that peptide DQWL has anti-inflammatory potential; further confirmation using an in vivo model is needed. PMID:27394940

  3. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate

    PubMed Central

    du Souich, Patrick; García, Antonio G; Vergés, Josep; Montell, Eulàlia

    2009-01-01

    Chondroitin sulphate (CS) is a natural glycosaminoglycan present in the extracellular matrix and is formed by the 1–3 linkage of D-glucuronic acid to N-acetylgalactosamine. In chondrocytes, CS diminishes interleukin-1 p (IL-1p)-induced increases in p38 mitogen-activated protein kinase (p38MAPK) and signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and decreases nuclear factor-KB (NF-kB) nuclear translocation and as a consequence, reduces the formation of pro-inflammatory cytokines, IL-1 p and TNF-a, and pro-inflammatory enzymes, such as phospholipase A2 (PLA2), cyclooxygenase 2 (COX-2) and nitric oxide synthase-2 (NOS-2). The mechanism of action of CS explains its beneficial effect on the cartilage, synovial membrane and subchondral bone. On the other hand, in vivo, CS given orally prevents hepatic NF-κB nuclear translocation, suggesting that systemic CS may elicit an anti-inflammatory effect in many tissues besides the articulation. There is preliminary evidence showing that in human beings, CS may be of benefit in other diseases where inflammation is an essential marker, such as psoriasis and atherosclerosis. The review of the literature suggest that CS might also be of interest for the treatment of other diseases with an inflammatory and/or autoimmune character, such as inflammatory bowel disease, degenerative diseases of the central nervous system and stroke, multiple sclerosis and other autoimmune diseases. PMID:19522843

  4. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  5. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages.

    PubMed

    Kim, Ji Young; Jung, Kyung Sik; Jeong, Hye Gwang

    2004-07-01

    Inducible cyclooxygenase-2 (COX-2) has been suggested to play a role in the processes of inflammation and carcinogenesis. Recent studies have shown the chemoprotective effects of kahweol and cafestol, which are coffee-specific diterpenes. This study investigated the effects of kahweol and cafestol on the expression of COX-2 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Kahweol and cafestol significantly suppressed the LPS-induced production of prostaglandin E(2), COX-2 protein and mRNA expression, and COX-2 promoter activity in a dose-dependent manner. Furthermore, kahweol blocked the LPS-induced activation of NF-kappaB by preventing IkappaB degradation and inhibiting IkappaB kinase activity. These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of kahweol and cafestol. PMID:15225655

  6. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity.

    PubMed

    Kim, Ju Sun; Kim, Jin Cheul; Shim, Sang Hee; Lee, Eun Ju; Jin, WenYi; Bae, KiHwan; Son, Kun Ho; Kim, Hyun Pyo; Kang, Sam Sik; Chang, Hyeun Wook

    2006-08-01

    In our ongoing search for bioactive compounds originating from the endemic species in Korea, we found that the hexane and EtOAc fractions of the MeOH extract from the root of Dystaenia takeshimana (Nakai) Kitagawa (Umbelliferae) showed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin D2 (PGD2) and leukotriene C4 (LTC4) in mouse bone marrow-derived mast cells. By activity-guided fractionation, five coumarins, viz. psoralen (2), xanthotoxin (3), scopoletin (4), umbelliferone (5), and (+)-marmesin (6), together with beta-sitosterol (1), were isolated from the hexane fraction, and two phenethyl alcohol derivatives, viz. 2-methoxy-2-(4'-hydroxyphenyl)ethanol (7) and 2-hydroxy-2-(4'-hydroxyphenyl)ethanol (8), three flavonoids, viz. apigenin (9), luteolin (10), and cynaroside (11), as well as daucosterol (12) were isolated from the EtOAc fraction using silica gel column chromatography. In addition, D-mannitol (13) was isolated from the BuOH fraction by recrystallization. Two of the coumarins, scopoletin (4) and (+)-marmesin (6), the two phenethyl alcohol derivatives (7, 8) and the three flavonoids (9-11) were isolated for the first time from this plant. Among the compounds isolated from this plant, the five coumarins as well as the three flavonoids showed COX-2/5-LOX dual inhibitory activity. These results suggest that the anti-inflammatory activity of D. takeshimana might in part occur via the inhibition of the generation of eicosanoids. PMID:16964755

  7. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  8. [The anti-inflammatory effect of auranofin].

    PubMed

    Hiroi, J; Ohara, K; Fujitsu, T; Hirai, O; Satoh, S; Ochi, T; Senoh, H; Mori, J; Kikuchi, H

    1985-12-01

    The anti-inflammatory effects of auranofin were studied and compared with those of indomethacin, gold sodium thiomalate (GST) and D-penicillamine. Auranofin was active as indomethacin in inhibiting carrageenan induced paw edema in rats, but was less potent than indomethacin in inhibiting UV-induced erythema in guinea pigs. Auranofin inhibited Arthus type paw edema and reverse PCA reaction in rats, on which indomethacin was ineffective. The inhibitory activity of auranofin on adjuvant arthritis was weaker than that of indomethacin. In in vitro experiments, auranofin did not show any suppression of cyclooxygenase activity, but was capable of suppression of lysosomal enzyme release and chemotaxis of neutrophils and macrophages. In addition to these anti-inflammatory activities, auranofin had almost equal anti-analgesic and anti-pyretic activity to that of indomethacin. The above results indicated that the anti-inflammatory profiles of auranofin and indomethacin differ, so we can expect new therapeutic activities of auranofin. GST had similar anti-inflammatory and anti-analgesic profiles to those of auranofin; however, the activities were less potent than auranofin and devoid of anti-pyretic activity. D-penicillamine did not show any anti-inflammatory, anti-analgesic or anti-pyretic activity. PMID:3937805

  9. A Revised Mechanism for Human Cyclooxygenase-2.

    PubMed

    Liu, Yi; Roth, Justine P

    2016-01-01

    The mechanism of ω-6 polyunsaturated fatty acid oxidation by wild-type cyclooxygenase 2 and the Y334F variant, lacking a conserved hydrogen bond to the catalytic tyrosyl radical/tyrosine, was examined for the first time under physiologically relevant conditions. The enzymes show apparent bimolecular rate constants and deuterium kinetic isotope effects that increase in proportion to co-substrate concentrations before converging to limiting values. The trends exclude multiple dioxygenase mechanisms as well as the proposal that initial hydrogen atom abstraction from the fatty acid is the first irreversible step in catalysis. Temperature dependent kinetic studies reinforce the novel finding that hydrogen transfer from the reduced catalytic tyrosine to a terminal peroxyl radical is the first irreversible step that controls regio- and stereospecific product formation. PMID:26565028

  10. Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower

    PubMed Central

    Kim, Min-Jin; Yang, Kyong-Wol; Kim, Sang Suk; Park, Suk Man; Park, Kyung Jin; Kim, Kwang Sik; Choi, Young Hun; Cho, Kwang Keun; Lee, Nam Ho; Hyun, Chang-Gu

    2013-01-01

    A number of essential oils derived from plants are claimed to have several medicinal functions, including anti-cancer and anti-inflammation effects. However, the chemical composition and biological activities of flower-derived components have not been sufficiently characterized. Therefore, we investigated the composition of essential oils from Hallabong flower [(Citrus unshiu Marcov × Citrus sinensis Osbeck) × Citrus reticulata Blanco] and their anti-inflammatory effects. Hydro-distilled essential oils (HEOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). In total, 21 components were identified, representing more than 98 % of the oils, with sabinene (34.75 %), linalool (14.77 %), β-ocimene (11.07 %), 4-terpineol (9.63 %), l-limonene (5.88 %), and γ-terpinene (4.67 %) as the main components. In the present study, we also investigated the anti-inflammatory effects of HEOs on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. HEOs were found to inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production and to suppress the LPS-induced expression of cyclooxygenase-2 (COX-2) protein. In addition, HEOs downregulated the production of the inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β (IC50 values are 0.05 %, 0.02 %, and 0.01 %, respectively). On the basis of these results, we suggest that HEOs can be considered potential anti-inflammatory candidates for therapeutic use in humans. PMID:27366141

  11. In vitro anti-inflammatory and immunomodulatory properties of umbelliprenin and methyl galbanate.

    PubMed

    Zamani Taghizadeh Rabe, Shahrzad; Iranshahi, Mehrdad; Mahmoudi, Mahmoud

    2016-01-01

    Ferula species (Apiaceae) are considered important medicinal plants. The present in vitro study sought to investigate the immunomodulatory and anti-inflammatory properties of terpenoid coumarins isolated from Ferula szowitsiana on immune cells isolated from naïve mice and to elucidate possible underlying mechanisms of action. With splenocytes, effects of the agents on PHA-induced proliferation and interleukin (IL)-4 and interferon (IFN)-γ release were assessed. With peritoneal macrophages, anti-inflammatory potentials were evaluated in lipopolysaccharide (LPS)/IFNγ-stimulated cells via measures of changes in nitric oxide (NO) and PGE(2) secretion. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was also determined via Western blot analysis. The results indicated that umbelliprenin (UMB) and methyl galbanate (MG) reduced remarkably PHA-induced splenocyte proliferation and both preferentially induced T(H)2 IL-4 and suppressed T(H)1 IFNγ secretion. Each also significantly suppressed LPS-induced production of NO and PGE(2) apparently and also led to reductions in inducible iNOS and COX-expression. To the authors' knowledge, the present study is the first to report on anti-inflammatory and immunomodulatory effects of UMB and MG in vitro. The present results suggest that each could potentially be exploited as a natural immunosuppressant against inflammatory and autoimmune diseases once substantial further toxicological analyses have been done to confirm overall safety in vivo.

  12. Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower.

    PubMed

    Kim, Min-Jin; Yang, Kyong-Wol; Kim, Sang Suk; Park, Suk Man; Park, Kyung Jin; Kim, Kwang Sik; Choi, Young Hun; Cho, Kwang Keun; Lee, Nam Ho; Hyun, Chang-Gu

    2013-01-01

    A number of essential oils derived from plants are claimed to have several medicinal functions, including anti-cancer and anti-inflammation effects. However, the chemical composition and biological activities of flower-derived components have not been sufficiently characterized. Therefore, we investigated the composition of essential oils from Hallabong flower [(Citrus unshiu Marcov × Citrus sinensis Osbeck) × Citrus reticulata Blanco] and their anti-inflammatory effects. Hydro-distilled essential oils (HEOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). In total, 21 components were identified, representing more than 98 % of the oils, with sabinene (34.75 %), linalool (14.77 %), β-ocimene (11.07 %), 4-terpineol (9.63 %), l-limonene (5.88 %), and γ-terpinene (4.67 %) as the main components. In the present study, we also investigated the anti-inflammatory effects of HEOs on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. HEOs were found to inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production and to suppress the LPS-induced expression of cyclooxygenase-2 (COX-2) protein. In addition, HEOs downregulated the production of the inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β (IC50 values are 0.05 %, 0.02 %, and 0.01 %, respectively). On the basis of these results, we suggest that HEOs can be considered potential anti-inflammatory candidates for therapeutic use in humans. PMID:27366141

  13. Anti-inflammatory effects of a triple-bond resveratrol analog: structure and function relationship.

    PubMed

    Antus, Csenge; Radnai, Balazs; Dombovari, Peter; Fonai, Fruzsina; Avar, Peter; Matyus, Peter; Racz, Boglarka; Sumegi, Balazs; Veres, Balazs

    2015-02-01

    Resveratrol is a polyphenol found in grapes and red wine, showing well-characterized anti-inflammatory and antiproliferative activities. In order to exceed resveratrol׳s biological effects and to reveal the structural determinants of the molecule׳s activity, numerous derivatives were synthesized recently. Most of these resveratrol analogs vary from the original molecule in the number, position or identity of the phenolic functional groups. Investigation of the analogs provided important data regarding structure-activity relationship of the molecule. With the exception of cis- and trans-resveratrol and the reduced form dihydroresveratrol, little is known about the molecular effects of the stilbene backbone. In the present study we investigated the anti-inflammatory properties of a new, triple-bond resveratrol analog, 3,4',5-trihydroxy-diphenylacetylene (TDPA) on lipopolysaccharide-stimulated RAW macrophages. We found that the analog had weaker antioxidant activity and stronger inhibitory effect on nuclear factor-kappaB activation, and on cyclooxygenase-2, tumor necrosis factor α and interleukin-6 production. It also prevented lipopolysaccharide-induced depolarization of the mitochondrial membrane. In contrast to resveratrol, TDPA increased the phosphorylation of c-Jun N-terminal and p38 mitogen activated protein kinases. In summary, we identified a novel compound with better anti-inflammatory properties than resveratrol. Our results contributed to a better understanding of the structural determinants of resveratrol׳s biological activities. PMID:25528327

  14. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.

    PubMed

    Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin

    2008-06-25

    Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders.

  15. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  16. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.

    PubMed

    Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin

    2008-06-25

    Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders. PMID:18500810

  17. Analgesic and anti-inflammatory property of the methanol extract from Ligustrum morrisonense leaves in rodents.

    PubMed

    Wu, Chi-Rei; Lin, Wen-Hsin; Lin, Yung-Ta; Wen, Chi-Luan; Ching, Hui; Lin, Li-Wei

    2011-01-01

    Ligustrum morrisonense Kaneh and Sasaki (abbreviated as LM), an endemic Ligustrum plant in Taiwan, is similar to Ligustrum lucidum, which is usually used for curing hepatic and inflammatory disorders. The aim of this study was to evaluate the analgesic and anti-inflammatory properties of LM by chemical-induced algesia and carrageenan-induced inflammation in rodents. Its triterpenoid contents were measured by using high performance liquid chromatography-photodiode array detector. LM leaf extracts effectively inhibited writhing responses induced by 1% acetic acid and biphasic-licking responses caused by 1% formalin. LM leaf extract also reduced the edema induced by 1% carrageenan. Furthermore, LM leaf extract reduced the abdominal Evan's blue extravasations caused by lipopolysaccharide (LPS), serotonin, histamine and bradykinin. LM leaf extract has higher contents of amyrin and lupeol among six assayed triterpenoid compounds. In conclusion, LM is a potential analgesic and anti-inflammatory Ligustrum plant, and its anti-inflammatory effects are partially related to decreasing microvascular permeability via inflammatory mediators and inhibiting cyclooxygenase-2 activity. PMID:21476210

  18. Aminocarbonyl arylvinylbenzamides as gastric sparing anti-inflammatory agents.

    PubMed

    Khadse, Saurabh C; Talele, Gokul S; Agrawal, Surendra S

    2011-05-01

    Some (E/Z)-aminocarbonyl arylvinylbenzamides (B1-B15) were synthesized, evaluated for anti-inflammatory activity and ulcerogenic tendency, and their effect on gastro-intestinal motility in the rats was studied. These benzamides comprising of aliphatic unsaturated region situated between two amide linkages were synthesized by nucleophilic ring opening of appropriate azlactones (AZ1-AZ4) by suitable amines. The characterization of newly synthesized benzamides was performed by IR, (1)H- and (13)C-NMR, mass and elemental analysis. Amongst the tested compounds, benzamide B1, B2, B4, B5, and B13 were able to produce comparable or superior anti-inflammatory activity at 10 and 20 mg/kg p.o. dose with respect to standard diclofenac in carrageenan induced rat paw edema model with lessened propensity to cause gastro-intestinal hypermotility and were found to have nil tendencies to generate gastric ulcers.

  19. Constituents from Vigna vexillata and Their Anti-Inflammatory Activity

    PubMed Central

    Leu, Yann-Lii; Hwang, Tsong-Long; Kuo, Ping-Chung; Liou, Kun-Pei; Huang, Bow-Shin; Chen, Guo-Feng

    2012-01-01

    The seeds of Vigna genus are important food resources and there have already been many reports regarding their bioactivities. In our preliminary bioassay, the chloroform layer of methanol extracts of V. vexillata demonstrated significant anti-inflammatory bioactivity. Therefore, the present research is aimed to purify and identify the anti-inflammatory principles of V. vexillata. One new sterol (1) and two new isoflavones (2,3) were reported from the natural sources for the first time and their chemical structures were determined by the spectroscopic and mass spectrometric analyses. In addition, 37 known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. Among the isolates, daidzein (23), abscisic acid (25), and quercetin (40) displayed the most significant inhibition of superoxide anion generation and elastase release. PMID:22949828

  20. Specific cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Rubin, B R

    1999-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are currently among the most widely prescribed drugs worldwide. Their therapeutic benefits and their side effects in the gastrointestinal tract and kidney, as well as in hemostasis, are of great importance in modern medicine. Within the past decade, new insights into how NSAIDs produce both their therapeutic benefits and their serious side effects have been discovered. It is now known that there are two froms of the cyclooxygenase (COX) enzyme that metabolize arachidonic acid into prostaglandins. Drugs that specifically inhibit the COX-2 enzyme were formulated and put into clinical trials during the past 5 years. These drugs are now available to treat patients in the United States. Specific COX-2 inhibitors offer the benefit of being able to treat the pain and inflammation of arthritis with potentially little risk of serious gastrointestinal injury.

  1. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  2. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  3. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells.

    PubMed

    Kim, Sun Suk; Oh, O-Jin; Min, Hye-Young; Park, Eun-Jung; Kim, Youngleem; Park, Hyen Joo; Nam Han, Yong; Lee, Sang Kook

    2003-06-01

    Inducible cyclooxygenase (COX-2) has been implicated in the processes of inflammation and carcinogenesis. Thus, the potential COX-2 inhibitors have been considered as anti-inflammatory or cancer chemopreventive agents. In this study, the methanolic extract of the cortex of Eugenia caryophyllata Thunberg (Myrtaceae) was found to potently inhibit the prostaglandin E(2) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells (98.3% inhibition at the test concentration of 10 microg/ml). Further, hexane-soluble layer was the most active partition compared to ethyl acetate, n-butanol, and water-soluble parts. By bioassay-guided fractionation of hexane-soluble partition, eugenol was isolated and exhibited a significant inhibition of PGE(2) production (IC(50) = 0.37 microM). In addition, eugenol suppressed the cyclooxygenase-2 (COX-2) gene expression in LPS-stimulated mouse macrophage cells. On the line of COX-2 playing an important role in colon carcinogenesis further study was designed to investigate the effect of eugenol on the growth and COX-2 expression in HT-29 human colon cancer cells. Eugenol inhibited the proliferation of HT-29 cells and the mRNA expression of COX-2, but not COX-1. This result suggests that eugenol might be a plausible lead candidate for further developing the COX-2 inhibitor as an anti-inflammatory or cancer chemopreventive agent.

  4. Selective cyclooxygenase-2 (COX-2) inhibitors reduce anti-Mycobacterium antibodies in adjuvant arthritic rats.

    PubMed

    Turull, A; Queralt, J

    2000-01-01

    Adjuvant arthritis, induced by Mycobacterium butyricum, is an experimental immunopathy that shares many features of human rheumatoid arthritis and, as such, is one of the most widely used models for studying the anti-inflammatory activity of compounds. In rats with adjuvant induced arthritis, IgG antibodies to M. butyricum have been detected and autoantigens that cross react with mycobacteria may be involved in the pathogenesis of adjuvant arthritis. In this study, the anti-inflammatory and immunosuppressive activities of two cyclooxygenase-2 selective inhibitors, flosulide and L-745,337, at doses of 0.1, 1 and 5 mg/kg/day, were examined in adjuvant arthritic rats. After 14 days of treatment, a clear dose-dependent inhibition of plantar edema was seen for both flosulide (ID50 lower than 0.1 mg/kg) and L-745,337 (ID50 = 0.4 mg/kg). Plasma levels of IgG anti-M. butyricum antibodies were also decreased by both drugs. In each case the maximal immunosuppressive effect was observed at doses lower than 5 mg/kg. The non-selective COX-2 inhibitor, indomethacin (1 mg/kg) decreased paw edema by 65% and the levels of IgG anti-M. butyricum by 45%. Neither cyclooxygenase selective inhibitors nor indomethacin decreased the delayed hypersensitivity reaction induced by M. butyricum. Thus, in vivo inhibition of COX-2 inhibited articular swelling and also the humoral immune response to Mycobacterium.

  5. The anti-inflammatory effect of opioids.

    PubMed

    Gavalas, A; Victoratos, P; Yiangou, M; Hadjipetrou-Kourounakis, L; Rekka, E; Kourounakis, P

    1994-01-01

    The anti-inflammatory activity of two novel opioids PM and PO as well as of pethidine was studied. The mouse paw edema, induced by various phlogistic agents, was significantly inhibited after the administration of opioids, fact that was independent of their antioxidant properties. The anti-inflammatory action of the above opioids was not reversed by naloxone. These results suggest that a variety of complex regulatory activities may be performed by opioid agonists via naloxone-sensitive or naloxone insensitive receptors on inflammatory cells, directly or indirectly by the inhibition of cytokines and mediators involved in inflammation.

  6. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    PubMed

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 μg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

  7. Chemical Constituents from the Fruiting Bodies of Hexagonia apiaria and Their Anti-inflammatory Activity.

    PubMed

    Thang, Tran Dinh; Kuo, Ping-Chung; Ngoc, Nguyen Thi Bich; Hwang, Tsong-Long; Yang, Mei-Lin; Ta, Shih-Huang; Lee, E-Jian; Kuo, Dai-Huang; Hung, Nguyen Huy; Tuan, Nguyen Ngoc; Wu, Tian-Shung

    2015-11-25

    A chemical investigation of the fruiting bodies of Hexagonia apiaria resulted in the identification of nine compounds including five new triterpenoids, hexagonins A-E (1-5), along with four known compounds. The purified constituents were examined for their anti-inflammatory activity. Among the tested compounds, hexatenuin A displayed the most significant inhibition of superoxide anion generation and elastase release. These triterpenoids may have potentials as anti-inflammatory agents. PMID:26575215

  8. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo.

  9. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  10. Anti-inflammatory therapies for cardiovascular disease

    PubMed Central

    Ridker, Paul M.; Lüscher, Thomas F.

    2014-01-01

    Atherothrombosis is no longer considered solely a disorder of lipoprotein accumulation in the arterial wall. Rather, the initiation and progression of atherosclerotic lesions is currently understood to have major inflammatory influences that encompass components of both the innate and acquired immune systems. Promising clinical data for ‘upstream’ biomarkers of inflammation such as interleukin-6 (IL-6) as well as ‘downstream’ biomarkers such as C-reactive protein, observations regarding cholesterol crystals as an activator of the IL-1β generating inflammasome, and recent Mendelian randomization data for the IL-6 receptor support the hypothesis that inflammatory mediators of atherosclerosis may converge on the central IL-1, tumour necrosis factor (TNF-α), IL-6 signalling pathway. On this basis, emerging anti-inflammatory approaches to vascular protection can be categorized into two broad groups, those that target the central IL-6 inflammatory signalling pathway and those that do not. Large-scale Phase III trials are now underway with agents that lead to marked reductions in IL-6 and C-reactive protein (such as canakinumab and methotrexate) as well as with agents that impact on diverse non-IL-6-dependent pathways (such as varespladib and darapladib). Both approaches have the potential to benefit patients and reduce vascular events. However, care should be taken when interpreting these trials as outcomes for agents that target IL-6 signalling are unlikely to be informative for therapies that target alternative pathways, and vice versa. As the inflammatory system is redundant, compensatory, and crucial for survival, evaluation of risks as well as benefits must drive the development of agents in this class. PMID:24864079

  11. Understanding the mode of action of a pterostilbene derivative as anti-inflammatory agent.

    PubMed

    Nikhil, Kumar; Sharan, Shruti; Palla, Srinivasa Rao; Sondhi, Sham M; Peddinti, Rama Krishna; Roy, Partha

    2015-09-01

    Inflammatory response plays an important role not only in the normal physiology, but also in the pathology of certain diseases such as cancers. In our previous study, we found a novel derivative of pterostilbene (PTER), to be an effective inducer of apoptosis in human breast and prostate cancer cells affecting various cellular targets. Herein, we further attempted to investigate its anti-inflammatory potential followed by its probable mode of action. The newly developed compound was tested for its anti-inflammatory actions in lipopolysaccharide (LPS) stimulated RAW264.7 macrophages and carrageenan induced rat paw edema models. Our data showed that the derivative inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the downstream products like nitric oxide (NO) and PGE2, at much lower doses as compared to PTER. This effect was found to be associated with the inhibition of phosphorylation/degradation of IκB-α and nuclear translocation of the p-NFκB p65. Moreover, inhibition of mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1) was also observed. In addition, the newly developed compound also reduced the paw edema, the tissue content of NO, PGE2 and expression of iNOS and COX-2 proteins within the tissues after λ-carrageenan stimulation. Taken together, our findings provide the possibility that the PTER derivative might have enhanced cancer chemopreventive potential based on its stronger anti-NFκB and anti-inflammatory activities as compared to its natural counterpart, i.e., PTER. Thus, this compound can be used towards the development of an effective anti-inflammatory agent.

  12. Anti-inflammatory activity studies on the stems and roots of Jasminum lanceolarium Roxb.

    PubMed

    Yan, Wen-xia; Zhang, Jian-hua; Zhang, Yi; Meng, Da-li; Yan, Dan

    2015-08-01

    Jasminum lanceolarium Roxb is an important traditional Chinese medicine. Its stems and roots have been used for the treatment of rheumatism and fever while the leaves are used as an anti-inflammatory agent to relieve pain. In order to support its traditional Chinese medicinal uses, five animal models were designed and the anti-inflammatory and analgesic properties of the 70% EtOH-H2O extracts of J. lanceolarium (EJL) were investigated. Meanwhile, biochemical parameters such as cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) in blood serum of rats exposed to acute (carrageenan) inflammation model were evaluated. At doses of 400 mg/kg, EJL exhibited higher anti-inflammation effect than that of indomethacin and better analgesic activity than that of aspirin (P<0.001). Furthermore, eleven isolated compounds including six lignanoids (1, 2, 6, 7, 8, and 11) and five iridoids (3, 4, 5, 9, and 10) were isolated from the active extracts and showed significant anti-inflammatory activities with the IC50 values of 1.76-5.22 mg/mL, respectively, when testing their inhibitory effects on phospholipase A2 in vitro. The results demonstrated that the possible anti-inflammatory mechanisms might be attributed to inhibit the hydrolysis of membrane phospholipids, production on both COX-2 and 5-LOX, and then finally inhibit the release of prostaglandins (PGs), which suggested that EJL had a non-selective inhibitory effect on the release or actions of these mediators, and might be a dual LOX-COX inhibitor for the treatment of inflammation from the natural resource. The studies on the animals and the inflammatory mediators, along with the bioactive compounds presumed that the existences of iridoids and lignanoids could be response for their bioactivities of the whole plants.

  13. [Cyclooxygenase 2 inhibitors and colorectal cancer].

    PubMed

    Bernardeau-Mozer, Marianne; Chaussade, Stanislas

    2004-05-01

    Cyclooxygenase-2 (Cox2) is an inductible isoenzyme of cyclooxygenase undetectable in normal colonic mucosa and overexpressed in 80% colonic tumor. Several works in vitro and in vivo showed that Cox2 plays a key role in the multistep process of colorectal tumorigenesis such apoptosis inhibition of cellular proliferation and angiogenesis induction. So that Cox2 represent a potential molecular target in colorectal management and specific Cox2 inhibitors may be useful as chemopreventive as well as therapeutic agent in humans. In animals study Cox2 inhibitors was shown to be effective and in humans Cox2 inhibitors are approved by the Food and Drug Administration as an adjunct to endoscopic surveillance and surgery in patients with Familial Adenomatous Polyposis (FAP). The purpose of this article is to review the relationship between Cox2/Cox2 inhibitors and differents signaling pathways of colorectal carcinogenesis and to precise their possible molecular mechanisms of action. This work although review clinicals data of their efficacy as chemopreventive agent as well as therapeutic in the differents group at risk for colorectal cancer. PMID:15239336

  14. Anti-Inflammatory Activity Comparison among Scropoliosides-Catalpol Derivatives with 6-O-Substituted Cinnamyl Moieties.

    PubMed

    Zhu, Tiantian; Zhang, Liuqiang; Ling, Shuang; Qian, Fei; Li, Yiming; Xu, Jin-Wen

    2015-11-03

    We have previously shown that scropolioside B has higher anti-inflammatory activity than catalpol does after the inhibition of nuclear factor (NF)-κB activity and IL-1β expression, maturation, and secretion. Various scropoliosides were extracted, isolated, and purified from Scrophularia dentata Royle ex Benth. We then compared their anti-inflammatory activities against LPS-induced NF-κB activity, cytokines mRNA expression, IL-1β secretion, and cyclooxygenase-2 activity. The inhibitory effects of the scropoliosides varied depending on whether the 6-O-substituted cinnamyl moiety was linked to C'' 2-OH, C''3-OH, or C''4-OH, and on the number of moieties linked, which is closely related to the enhancement of antiinflammatory activity. Among these compounds, scropolioside B had the strongest antiinflammatory effects.

  15. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    PubMed

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  16. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review.

    PubMed

    Surh, Young-Joon

    2002-08-01

    A wide variety of phenolic substances derived from spice possess potent antimutagenic and anticarcinogenic activities. Examples are curcumin, a yellow colouring agent, contained in turmeric (Curcuma longa L., Zingiberaceae), [6]-gingerol, a pungent ingredient present in ginger (Zingiber officinale Roscoe, Zingiberaceae) and capsaicin, a principal pungent principle of hot chili pepper (Capsicum annuum L, Solanaceae). The chemopreventive effects exerted by these phytochemicals are often associated with their antioxidative and anti-inflammatory activities. Cyclo-oxygenase-2 (COX-2) has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. Recent studies have shown that COX-2 is regulated by the eukaryotic transcription factor NF-kappaB. This short review summarizes the molecular mechanisms underlying chemopreventive effects of the aforementioned spice ingredients in terms of their effects on intracellular signaling cascades, particularly those involving NF-kappaB and mitogen-activated protein kinases. PMID:12067569

  17. Anti-inflammatory effects of orally administered glucosamine oligomer in an experimental model of inflammatory bowel disease.

    PubMed

    Azuma, Kazuo; Osaki, Tomohiro; Kurozumi, Seiji; Kiyose, Masatoshi; Tsuka, Takeshi; Murahata, Yusuke; Imagawa, Tomohiro; Itoh, Norihiko; Minami, Saburo; Sato, Kimihiko; Okamoto, Yoshiharu

    2015-01-22

    Anti-inflammatory effects of oral administration of the glucosamine oligomers (chito-oligosaccharides: COS) were evaluated in an experimental model of inflammatory bowel disease (IBD). Oral administration of COS improved shortening of colon length and tissue injury (as assessed by histology) in mice. Oral administration of COS inhibited inflammation in the colonic mucosa by suppression of myeloperoxidase activation in inflammatory cells, as well as activation of nuclear factor-kappa B, cyclooxygenase-2, and inducible nitric oxide synthase. Oral administration of COS also reduced serum levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6). Moreover, it prolonged survival time in mice. These data suggest that COS have anti-inflammatory effects in an experimental model of IBD, and could be new functional foods for IBD patients.

  18. Dietary supplementation with ethyl ester concentrates of fish oil (n-3) and borage oil (n-6) polyunsaturated fatty acids induces epidermal generation of local putative anti-inflammatory metabolites.

    PubMed

    Miller, C C; Tang, W; Ziboh, V A; Fletcher, M P

    1991-01-01

    Clinical reports have attributed the amelioration of chronic inflammatory skin disorders to the presence of certain polyunsaturated fatty acids (PUFA) in dietary oils. To test the hypothesis of a local modulatory effect of these PUFA in the epidermis, the basal diet of normal guinea pigs was supplemented with ethyl esters of either fish oil [rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] or borage oil [rich in gamma-linolenic acid (GLA)]. Our data demonstrated that dietary oils influence the distribution of PUFA in epidermal phospholipids and the epidermal levels of PUFA-derived hydroxy fatty acids. Specifically, animals supplemented with ethyl esters of fish oil markedly incorporated EPA and DHA into epidermal phospholipids, which paralleled the epidermal accumulation of 15-hydroxyeicosapentaenoic acid (15-HEPE) and 17-hydroxydocosahexaenoic acid (17-HDoHE). Similarly, animals supplemented with esters of borage oil preferentially incorporated dihomogammalinolenic acid (DGLA), the epidermal elongase product of GLA, into the epidermal phospholipids, which also was accompanied by epidermal accumulation of 15-hydroxyeicosatrienoic acid (15-HETrE). By factoring the epidermal levels of the 15-lipoxygenase products and their relative inhibitory potencies, we evolved a measure of the overall potential of dietary oils to exert local anti-inflammatory effect. For example, the leukotriene inhibition potentials (LIP) of both fish oil and borage oil were greatly enhanced when compared to controls. Thus, the altered profiles of epidermal 15-lipoxygenase products generated from particular dietary oils may be responsible, at least in part, for reported ameliorative effects of oils on chronic inflammatory skin disorders.

  19. Cyclooxygenase-2 in newborn hyperoxic lung injury.

    PubMed

    Britt, Rodney D; Velten, Markus; Tipple, Trent E; Nelin, Leif D; Rogers, Lynette K

    2013-08-01

    Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2(+/+)), heterozygous (COX-2(+/-)), and homozygous (COX-2(-/-)) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2(-/-) pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD. PMID:23624331

  20. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions.

  1. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  2. Anti-inflammatory actions of acupuncture.

    PubMed Central

    Zijlstra, Freek J; van den Berg-de Lange, Ineke; Huygen, Frank J P M; Klein, Jan

    2003-01-01

    Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of beta-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-alpha and interleukin-10 are discussed. PMID:12775355

  3. Anti-Inflammatory Effect of Selected Dihydroxyflavones

    PubMed Central

    Sangeetha, K.S.Sridevi

    2015-01-01

    Background The mechanism of inflammation is attributed, to release of reactive oxygen species from activated neutrophils and macrophages. Over production of reactive oxygen species may result in tissue injury by damaging macromolecules. Flavones are the polyphenolic compounds with antioxidant property. This antioxidant property of flavones may have beneficial effect against inflammation. Aim To study the anti-inflammatory effect of selected dihydroxyflavones (DHF) in albino rats. The prime objective of the present study is to identify safe and effective agents to treat inflammation from among the selected DHF group of compounds. Materials and Methods The present study was designed to investigate the anti-inflammatory action of four selected dihydroxyflavone derivatives; 2’,3’- dihydroxyflavone and 2’, 4’ -dihydroxyflavones, 5, 3’- dihydroxyflavone and 7, 3’ dihydroxyflavone. The anti-inflammatory activity of selected DHF was studied in rats by carrageenan induced hind paw oedema method. Results All the selected dihydroxyflavone derivatives showed dose and time dependent inhibition of carrageenan induced paw oedema. PMID:26155493

  4. Three Novel Alkaloids from Portulaca oleracea L. and Their Anti-inflammatory Effects.

    PubMed

    Li, Cui-Yu; Meng, Yi-Han; Ying, Zhe-Ming; Xu, Nan; Hao, Dong; Gao, Ming-Zhe; Zhang, Wen-Jie; Xu, Liang; Gao, Yu-Cong; Ying, Xi-Xiang

    2016-07-27

    Three novel carbon skeleton alkaloids, named oleracimine (1), oleracimine A (2), and oleracone A (3), with one novel azulene carbon skeleton compound, oleracone B (4), and one known compound, β-carboline (5), were first isolated from Portulaca oleracea L. The structures were determined using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance and high-resolution electrospray ionization time-of-flight mass spectrometry techniques. In addition, oleracimine (1) was used to investigate the anti-inflammatory effects on lipopolysaccharide-stimulated macrophages. The results of enzyme-linked immunosorbent assay, western blot, and real-time polymerase chain reaction showed that oleracimine (1) remarkably inhibited nitric oxide production and could dose-dependently decrease the secretions of interleukin 6, tumor necrosis factor α, nitric oxide, and prostaglandin E2 in cell culture supernatants as well as the mRNA of cyclooxygenase-2 and inducible nitric oxide synthase. PMID:27396870

  5. Synthesis and anti-inflammatory activity of some benzofuran and benzopyran-4-one derivatives.

    PubMed

    Ragab, Fatma Abd El-Fattah; Eid, Nahed Mahmoud; Hassan, Ghaneya Sayed; Nissan, Yassin Mohammed

    2012-01-01

    New series of furosalicylic acids 3a-c, furosalicylanilides 6a-n, furobenzoxazines 8a-f, 1-benzofuran-3-arylprop-2-en-1-ones 12a,b, 6-(aryl-3-oxoprop-1-enyl)-4H-chromen-4-ones 16a-c and 6-[6-aryl-2-thioxo-2,5-dihydropyrimidin-4-yl]-4H-chromen-4-ones 17a-c were synthesized. Anti-inflammatory activity evaluation was performed using carrageenan-induced paw edema model in rats and prostaglandin E(2) (PGE(2)) synthesis inhibition activity. Some of the tested compounds revealed comparable activity with less ulcerogenic effect than Diclofenac at a dose 100 mg/kg. All the synthesized compounds were docked on the active site of cyclooxygenase-2 (COX-2) enzyme and most of them showed good interactions with the amino acids of the active site comparable to the interactions exhibited by Diclofenac.

  6. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway.

    PubMed

    Qi, Tianjie; Xu, Fei; Yan, Xixin; Li, Shuai; Li, Haitao

    2016-01-01

    Sulforaphane (1-isothiocyanate-4-methyl sulfonyl butane) is a plant extract (obtained from cruciferous vegetables, such as broccoli and cabbage) and is known to exert anticancer, antioxidant and anti-inflammatory effects. It stimulates the generation of human or animal cells, which is beneficial to the body. The aim of the current study was to determine whether sulforaphane protects against lipopolysaccharide (LPS)‑induced acute lung injury (ALI) through its anti-inflammatory effects, and to investigate the signaling pathways involved. For this purpose, male BALB/c mice were treated with sulforaphane (50 mg/kg) and 3 days later, ALI was induced by the administration of LPS (5 mg/kg) and we thus established the model of ALI. Our results revealed that sulforaphane significantly decreased lactate dehydrogenase (LDH) activity (as shown by LDH assay), the wet-to-dry ratio of the lungs and the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (measured by ELISA), as well as nuclear factor-κB protein expression in mice with LPS-induced ALI. Moreover, treatment with sulforaphane significantly inhibited prostaglandin E2 (PGE2) production, and cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9) protein expression (as shown by western blot analysis), as well as inducible nitric oxide synthase (iNOS) activity in mice with LPS-induced ALI. Lastly, we noted that pre-treatment with sulforaphane activated the nuclear factor-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in the mice with LPS-induced ALI. These findings demonstrate that sulforaphane exerts protective effects against LPS-induced ALI through the Nrf2/ARE pathway. Thus, sulforaphane may be a potential a candidate for use in the treatment of ALI.

  7. Therapeutic Potential of a Non-Steroidal Bifunctional Anti-Inflammatory and Anti-Cholinergic Agent against Skin Injury Induced by Sulfur Mustard

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-01-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551

  8. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells.

    PubMed

    Dias, Manoela Maciel dos Santos; Martino, Hércia Stampini Duarte; Noratto, Giuliana; Roque-Andrade, Andrea; Stringheta, Paulo César; Talcott, Stephen; Ramos, Afonso Mota; Mertens-Talcott, Susanne U

    2015-10-01

    The demand for tropical fruits high in polyphenolics including açai (Euterpe oleracea Mart.) has been increasing based on ascribed health benefits and antioxidant properties. This study evaluated the anti-inflammatory activities of açai polyphenolics in human colon myofibroblastic CCD-18Co cells to investigate the suppression of reactive oxygen species (ROS), and mRNA and protein expression of inflammatory proteins. Non-cytotoxic concentrations of açai extract, 1-5 mg gallic acid equivalent L(-1), were selected. The generation of ROS was induced by lipopolysaccharide (LPS) and açai extract partially reversed this effect to 0.53-fold of the LPS-control. Açai extract (5 mg GAE L(-1)) down-regulated LPS-induced mRNA-expression of tumor necrosis factor alpha, TNF-α (to 0.42-fold), cyclooxygenase 2, COX-2 (to 0.61-fold), toll-like receptor-4, TLR-4 (to 0.52-fold), TNF receptor-associated factor 6, TRAF-6 (to 0.64-fold), nuclear factor kappa-B, NF-κB (to 0.76-fold), vascular cell adhesion molecule 1, VCAM-1 (to 0.71-fold) and intercellular adhesion molecule 1, ICAM-1 (to 0.68-fold). The protein levels of COX-2, TLR-4, p-NF-κB and ICAM-1 were induced by LPS and the açai extract partially reversed this effect in a dose-dependent manner. These results suggest the anti-inflammatory effect of açai polyphenolic extract in intestinal cells are at least in part mediated through the inhibition of ROS and the expression of TLR-4 and NF-κB. Results indicate the potential for açai polyphenolics in the prevention of intestinal inflammation. PMID:26243669

  9. Anti-inflammatory triterpenoids from the stems of Microtropis fokienensis.

    PubMed

    Chen, I-Hsiao; Du, Ying-Chi; Hwang, Tsong-Long; Chen, I-Fen; Lan, Yu-Hsuan; Yen, Hsin-Fu; Chang, Fang-Rong; Wu, Yang-Chang

    2014-01-01

    Three new ursane- and four new oleanane- type triterpenoids 1-7 were isolated, along with six known compounds 8-13, from the methanolic extract of Microtropis fokienensis. All structures were elucidated by mass and NMR spectroscopic methods. The isolates 4-10 and known compounds 14-17 that were previously isolated from this material were evaluated for anti-inflammatory activity based on effects against superoxide anion generation and elastase release by neutrophils in response to fMLP/CB. 11α,30-Dihydroxy-2,3-seco-olean-12-en-2,3-dioic anhydride (7) was the first triterpene anhydride from the genus of Microtropis to have the ring A expanded to a seven-membered ring; it showed significant anti-inflammatory activity against superoxide anion generation and elastase release. Unexpectedly, 30-hydroxy-2,3-seco-lup-20(29)-ene-2,3-dioic acid (17) showed the best effect against superoxide anion generation and elastase release with IC50 values of 0.06±0.01 and 1.03±0.35 µg/mL, respectively. Compound 17 had a dioic acid function, and compound 7 had an anhydride function modification in ring A; both showed promising activity in the target assays.

  10. Anti-inflammatory activity of sulfur-containing compounds from garlic.

    PubMed

    Lee, Da Yeon; Li, Hua; Lim, Hyo Jin; Lee, Hwa Jin; Jeon, Raok; Ryu, Jae-Ha

    2012-11-01

    We identified four anti-inflammatory sulfur-containing compounds from garlic, and their chemical structures were identified as Z- and E-ajoene and oxidized sulfonyl derivatives of ajoene. The sulfur compounds inhibited the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) and the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in lipopolysaccharide (LPS)-activated macrophages. Western blotting and reverse transcription-polymerase chain reaction analysis demonstrated that these sulfur compounds attenuated the LPS-induced expression of the inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA. Moreover, these sulfur-containing compounds suppressed the nuclear factor-κB (NF-κB) transcriptional activity and the degradation of inhibitory-κBα in LPS-activated macrophages. Furthermore, we observed that they markedly inhibited the LPS-induced phosphorylations of p38 mitogen-activated protein kinases and extracellular signal-regulated kinases (ERK) at 20 μM. These data demonstrate that the sulfur compounds from garlic, (Z, E)-ajoene and their sulfonyl analogs, can suppress the LPS-induced production of NO/PGE(2) and the expression of iNOS/COX-2 genes by inhibiting the NF-κB activation and the phosphorylations of p38 and ERK. Taken together, these data show that Z- and E-ajoene and their sulfonyl analogs from garlic might have anti-inflammatory therapeutic potential.

  11. Triterpene glycosides from red ginseng marc and their anti-inflammatory activities.

    PubMed

    Chung, Ill-Min; Kim, Young-Ock; Ali, Mohammed; Kim, Seung-Hyun; Park, Inmyoung; Kim, Eun-Hye; Yang, Ye-Sul; Park, Hye-Ran; Son, Eun-Suk; Ahmad, Ateeque

    2014-09-01

    Three new triterpene glycosides ursan-3β,19α,22β-triol-3-O-β-D-glucopyranosyl (2'→1″)-β-D-glucopyranoside (1), ursan-3α,11β-diol-3-O-α-D-glucopyranosyl-(6'→1″)-α-D-glucopyranosyl-(6″→1‴)-α-D-glucopyranosyl-(6‴→1‴')-α-D-glucopyranoside (2) and lanost-5,24-dien-3β-ol-3-O-β-D-glucopyranosyl-(6'→1″)-β-D-glucopyranosyl-(6″→1‴)-β-D-glucopyranoside (3), together with one known compound were isolated and identified from the marc of red ginseng. Their structures were elucidated by spectroscopic data analysis. Compounds (1-3) were investigated for anti-inflammatory effects using the RAW 264.7 macrophage cell line. In the cell proliferation assay, lipopolysaccharide stimulation decreased cell proliferation of RAW 264.7 macrophage cells, but the suppression of cell proliferation was significantly protected by treatment with compounds 2 and 3. Compounds 2 and 3 had a suppressive effect on the production of nitric oxide (NO), and they inhibited mRNA expression of proinflammatory mediators such as inducible nitric oxide synthase, and cyclooxygenase-2, and proinflammatory cytokines such as two interleukins and tumor necrosis factor-α. These findings suggest that compounds 2 and 3 have potential anti-inflammatory activities.

  12. Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract

    PubMed Central

    2015-01-01

    The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633

  13. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  14. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  15. Analgesic and Anti-Inflammatory Activities of the Methanol Extract from Pogostemon cablin

    PubMed Central

    Lu, Tsung-Chun; Liao, Jung-Chun; Huang, Tai-Hung; Lin, Ying-Chih; Liu, Chia-Yu; Chiu, Yung-jia; Peng, Wen-Huang

    2011-01-01

    Pogostemon cablin (PC) is a herbal medicine traditionally applied to treat not only common cold, nausea and diarrhea but also headache and fever. The aim of this study was to investigate the analgesic and anti-inflammatory properties of standardized PC methanol extract (PCMeOH) in vivo. Investigations were performed in mice with two analgesic models. One was acetic acid-induced writhing response and the other formalin-induced paw licking. The anti-inflammatory effect was tested by λ-carrageenan (Carr)-induced mice paw edema. These analgesic experimental results indicated that PCMeOH (1.0 g/kg) decreased the acetic acid-induced writhing responses and PCMeOH (0.5 and 1.0 g/kg) decreased the licking time in the second phase of the formalin test. Moreover, Carr-induced paw edema inflammation was significantly reduced in a dose-dependent manner when PCMeOH (0.5 and 1.0 g/kg) was administered 3 and 4 h after the Carr injection. Mechanistic studies showed that PCMeOH decreased the levels of malondialdehyde in the edema paw by increasing the activities of anti-oxidant enzymes, such as superoxide dismutase, glutathione peroxidase and glutathione reductase, in the liver and decreasing the cyclooxygenase 2 and tumor necrosis factor-α activities in the edema paw. This study has demonstrated the analgesic and anti-inflammatory effects of PCMeOH, thus verifying its popular use in traditional medicine. PMID:19933324

  16. Antinociceptive and anti-inflammatory effects of essential oil extracted from Chamaecyparis obtusa in mice.

    PubMed

    Park, Yujin; Jung, Seung Min; Yoo, Seung-Ah; Kim, Wan-Uk; Cho, Chul-Soo; Park, Bum-Jin; Woo, Jong-Min; Yoon, Chong-Hyeon

    2015-12-01

    Essential oil extracted from Chamaecyparis obtusa (EOCO) consists of several monoterpenes with anti-inflammatory effects. Monoterpenes are expected to have an analgesic effect through inhibition of pro-inflammatory mediators. The present study investigated the anti-nociceptive and anti-inflammatory effects of EOCO in animal models of pain. Intraperitoneal injection with EOCO (5 or 10mg/kg), aspirin (positive control, 300mg/kg), or DMSO (negative control) was performed 1h before the nociception tests: acetic acid-induced writhing response, formalin test, and hot plate test in mice, and acidic saline-induced allodynia in rats. The expression of pro-inflammatory cytokines and pro-inflammatory enzymes in formalin-injected paws was determined by ELISA and western blotting, respectively. Treatment with EOCO significantly reduced acetic acid-induced writhing and paw-licking time in late response of the formalin tests. The anti-nociceptive effect was comparable with aspirin. However, EOCO did not affect the reaction time of licking of the hind paws or jumping in hot plate test and the mechanical withdrawal thresholds in acidic saline-induced allodynia model. Formalin-injected paws of mice treated with EOCO revealed the down-regulated expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2, as compared with those of control mice. These data showed the anti-nociceptive and anti-inflammatory effects of EOCO. The pain-relieving effect might be attributed to inhibition of peripheral pain in association with inflammatory response. EOCO could be a useful therapeutic strategy to manage pain and inflammatory diseases.

  17. Intestinal anti-inflammatory activity of red wine extract: unveiling the mechanisms in colonic epithelial cells.

    PubMed

    Nunes, Carla; Ferreira, Elisabete; Freitas, Víctor; Almeida, Leonor; Barbosa, Rui M; Laranjinha, João

    2013-02-26

    The development of new therapeutic approaches, combining efficacy and safety against intestinal inflammation, notably inflammatory bowel disease (IBD), has emerged as an important goal due to the significant side effects and the lack of effectiveness of standard current therapies. Recently, several studies described the health-promoting effects of red wine, including anti-inflammatory properties, but the molecular mechanisms underlying its beneficial role remain largely unknown. Red wine is rich in phenolic compounds and it has been suggested that the positive effect of red wine intake might be attributed not only to the antioxidant properties of these compounds but also to the modulation of signalling cascades in connection with physiological and pathophysiological conditions such as inflammatory processes. This study assesses the potential anti-inflammatory action of a red wine extract (RWE) enriched in polyphenols in a cellular model of intestinal inflammation using cytokines-stimulated HT-29 colon epithelial cells. RWE suppressed cytokines-induced IκB degradation and interleukin-8 production in a dose-dependent manner. Coherently, key inflammatory mediators downstream NF-κB activation; notably cyclooxygenase-2 and inducible nitric oxide synthase were maintained at low levels by RWE in the presence of the cytokines. Additionally, RWE inhibited both the increase of nitric oxide derived from iNOS and of protein tyrosine nitration, a biomarker of nitrosative stress that typically requires the reaction of nitric oxide with the superoxide radical. Taken together, the anti-inflammatory action of RWE, mechanistically supported by the modulation of cascades orchestrated by NF-κB and involving nitric oxide, suggests that RWE (a readily straightforward preparation when compared with the purification of specific compounds) may represent a simple and inexpensive therapeutic strategy in the context of intestinal inflammation.

  18. Anti-inflammatory effect of three iridoids in human neutrophils.

    PubMed

    Wei, Shihu; Chi, Haidong; Kodama, Hiroyuki; Chen, Guang

    2013-01-01

    To verify the anti-inflammatory potency of iridoids, three iridoids (two natural, loganic acid: LA; geniposide: GE; and an artefact, 7(S)-n-butyl morroniside: BM) were investigated in vitro on the inhibition of superoxide generation in human neutrophils. All compounds showed inhibitory effect on fMLP-induced superoxide generation in a concentration-dependent manner with the following order: BM>LA>GE. BM exhibits potent inhibitory activity on superoxide anion induced by PMA, while LA and GE showed weak effect. When AA was used as stimulus, the generation of superoxide anion was suppressed by BM in a concentration-dependent manner. LA and GE exhibit both sides effect on superoxide generation.

  19. Neuroprotective and anti-inflammatory effects of flavonoids isolated from Rhus verniciflua in neuronal HT22 and microglial BV2 cell lines.

    PubMed

    Cho, Namki; Choi, Ji Hoon; Yang, Heejung; Jeong, Eun Ju; Lee, Ki Yong; Kim, Young Choong; Sung, Sang Hyun

    2012-06-01

    The neuroprotective and anti-inflammatory activities of the methanolic extract of Rhus verniciflua Stokes (Anacardiaceae) were investigated with mouse hippocampal and microglial cells. Bioactivity-guided isolation yielded 10 flavonoids including fustin (1), fisetin (2), sulfuretin (3), butein (4), butin (5), eriodictyol (6), morin hydrate (7), quercetin (8), kaempferol (9) and isoliquiritigenin (10). Among the isolated flavonoids, compounds 2-5 significantly protected the murine hippocampal HT22 cells against glutamate-induced neurotoxicity and attenuated reactive oxygen species (ROS) generations. In addition, these flavonoids significantly maintained antioxidative defense systems preserving the activities of superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GSH-Px) and the content of glutathione (GSH) decreased by glutamate insult. These compounds also showed significant inhibitory effects on LPS-induced nitric oxide (NO) production in BV2 cells. Especially, compound 4 dose-dependently suppressed the expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results suggest that these flavonoids possess therapeutic potentials as a multipotent agent against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.

  20. Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus Cerasus cv. Maraska).

    PubMed

    Sarić, Ana; Sobocanec, Sandra; Balog, Tihomir; Kusić, Borka; Sverko, Visnja; Dragović-Uzelac, Verica; Levaj, Branka; Cosić, Zrinka; Macak Safranko, Zeljka; Marotti, Tatjana

    2009-12-01

    The present investigation tested the in vivo antioxidant efficacy (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase; Gpx), lipid peroxidation (LPO) and anti-inflammatory properties (cyclooxygenase-2; COX-2) of sour cherry juices obtained from an autochthonous cultivar (Prunus cerasus cv. Maraska) that is grown in coastal parts of Croatia. Antioxidant potential was tested in mouse tissue (blood, liver, and brain), LPO (liver, brain) and anti-inflammatory properties in glycogen elicited macrophages. Additionally, the concentration of cyanidin-3-glucoside, cyanidin-3-rutinoside, pelargonidin-3-glucoside, pelargonidin-3-rutinoside and total anthocyanins present in Prunus cerasus cv. Maraska cherry juice was determined. Mice were randomly divided into a control group (fed with commercial food pellets) and 2 experimental groups (fed with commercial food pellets with 10% or 50% of cherry juice added). Among the anthocyanins, the cyanidin-3-glucoside was present in the highest concentration. These results show antioxidant action of cherry juice through increased SOD (liver, blood) and Gpx (liver) activity and decreased LPO concentration. The study highlights cherry juice as a potent COX-2 inhibitor and antioxidant in the liver and blood of mice, but not in the brain. Thus, according to our study, Prunus cerasus cv. Maraska cherry juice might potentially be used as an antioxidant and anti-inflammatory product with beneficial health-promoting properties. PMID:19763832

  1. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo.

    PubMed

    Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Lim, Chiyeon; Kim, Jung-Hoon; Kim, Hyungwoo; Cho, Su-In

    2016-01-01

    The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues. PMID:27647952

  2. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo

    PubMed Central

    Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Cho, Su-In

    2016-01-01

    The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues.

  3. Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action.

    PubMed

    Preethi, Korengath Chandran; Kuttan, Girija; Kuttan, Ramadasan

    2009-02-01

    Calendula officinalis flower extract possessed significant anti-inflammatory activity against carrageenan and dextran-induced acute paw edema. Oral administration of 250 and 500 mg/kg body weight Calendula extract produced significant inhibition (50.6 and 65.9% respectively) in paw edema of animals induced by carrageenan and 41.9 and 42.4% respectively with inflammation produced by dextran. In chronic anti-inflammatory model using formalin, administration of 250 and 500 mg/kg body weight Calendula extract produced an inhibition of 32.9 and 62.3% respectively compared to controls. TNF-alpha production by macrophage culture treated with lipopolysaccharide (LPS) was found to be significantly inhibited by Calendula extract. Moreover, increased levels of proinflammatory cytokines IL- 1beta, IL-6, TNF-alpha and IFN-gamma and acute phase protein, C- reactive protein (CRP) in mice produced by LPS injection were inhibited significantly by the extract. LPS induced cyclooxygenase-2 (Cox-2) levels in mice spleen were also found to be inhibited by extract treatment. The results showed that potent anti-inflammatory response of C. officinalis extract may be mediated by the inhibition of proinflammatory cytokines and Cox-2 and subsequent prostaglandin synthesis. PMID:19374166

  4. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo

    PubMed Central

    Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Cho, Su-In

    2016-01-01

    The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues. PMID:27647952

  5. Gaseous mediator-based anti-inflammatory drugs.

    PubMed

    Sulaieva, Oksana; Wallace, John L

    2015-12-01

    Among the most commonly used drugs, nonsteroidal anti-inflammatory drugs (NSAIDs) remain problematic because of their propensity to cause serious adverse events, principally affecting the gastrointestinal tract. In recent years, the discovery of potent anti-inflammatory and cytoprotective effects of endogenous gaseous mediators (nitric oxide, hydrogen sulfide, carbon monoxide) stimulated efforts to develop novel, combination NSAIDs that suppress prostaglandin synthesis (producing anti-inflammatory and analgesic effects) and release one or more of the cytoprotective gaseous mediators. Gaseous mediator-based anti-inflammatory drugs have reached the human clinical trial stage and show considerable promise as a safer option for treating chronic inflammatory diseases.

  6. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    PubMed Central

    Hannan, Thomas J.; Roberts, Pacita L.; Riehl, Terrence E.; van der Post, Sjoerd; Binkley, Jana M.; Schwartz, Drew J.; Miyoshi, Hiroyuki; Mack, Matthias; Schwendener, Reto A.; Hooton, Thomas M.; Stappenbeck, Thaddeus S.; Hansson, Gunnar C.; Stenson, William F.; Colonna, Marco; Stapleton, Ann E.; Hultgren, Scott J.

    2014-01-01

    The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs). Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI. PMID:26125048

  7. Paeoniflorin ameliorates rheumatoid arthritis in rat models through oxidative stress, inflammation and cyclooxygenase 2

    PubMed Central

    JIA, ZHILIN; HE, JIAO

    2016-01-01

    Paeoniflorin has anti-inflammatory, anti-allergy, immune regulatory and pain-relieving effects, amongst other roles. However, the mechanisms underlying the protective effects of paeoniflorin on rheumatoid arthritis (RA) remain under investigation; the objective of the current study was to evaluate these protective effects in the context of an RA model. Rats were randomly divided into 5 groups, as follows: The control group, the RA rat model group, and the paeoniflorin groups, in which paeoniflorin was administered at concentrations of 5, 10 and 20 mg/kg for 3 weeks. The pain thresholds and arthritic symptoms of the RA rats were measured. Oxidative stress and inflammatory cytokines were also analyzed and western blot analysis was used to evaluate cyclooxygenase-2 (COX-2) protein expression levels. Paeoniflorin significantly increased the pain threshold and decreased the arthritic symptoms in the RA rat model. Notably, paeoniflorin reduced the malondialdehyde concentration and increased the activity of superoxide dismutase, catalase and glutathione peroxidase. Furthermore, paeoniflorin attenuated the activity of nuclear factor-κB p65 unit, tumor necrosis factor-α, interleukin (IL)-1β and IL-6, and reduced the COX-2 protein expression level. The present study indicates that paeoniflorin ameliorates disease in rat models of RA through oxidative stress, inflammation and alterations to COX-2 expression. PMID:26893662

  8. Selective cyclooxygenase-2 (COX-2) inhibitors used for preventing or regressing cancer.

    PubMed

    de Souza Pereira, Ricardo

    2009-06-01

    The current use of antineoplastic drugs in human therapy causes a substancial number of toxic or side effects which consequently lead to a reduction of the amount of drug to be administered, and in some cases to discontinuation of the therapy. A reduction of the amount of drug to be administered or discontinuation of the therapy causes an increase in primary tumour growth and/or the occurrence of tumour metastases. For this reason, the development of new anti-cancer drugs with lower side effects is necessary. This review gives a general idea about the origins of cancer and the importance of cyclooxygenase-2 (COX-2) in oncogenesis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumour cell invasion and metastasis. The recent anti-tumour drugs are based on tests of known selective COX-2 inhibitors and on the drawing and synthesis of new potent derivatives. Maybe, this can be the way to obtain new anti-tumour drugs with very low collateral effects. Selective COX-2 inhibitors are being mixtured with new anti-cancer drugs in order to obtain better results in the regression of cancers. Some natural products are selective COX-2 inhibitors and have anti-inflammatory and anti-cancer properties. The relevant patents are discussed.

  9. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification.

    PubMed

    Welting, T J M; Caron, M M J; Emans, P J; Janssen, M P F; Sanen, K; Coolsen, M M E; Voss, L; Surtel, D A M; Cremers, A; Voncken, J W; van Rhijn, L W

    2011-01-01

    Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2) in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs) were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2) during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib) decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development. PMID:22183916

  10. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  11. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  12. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  13. A selective inhibitor of cyclooxygenase-2 reverses endotoxin-induced pyretic responses in non-human primates.

    PubMed

    Chan, C C; Panneton, M; Taylor, A M; Therien, M; Rodger, I W

    1997-05-30

    The anti-pyretic effect of a selective cyclooxygenase-2 inhibitor, DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulfonyl)phenyl-2(5H)-furano ne), was examined in conscious, un-restrained squirrel monkeys (Saimiri sciureus) using a radio telemetric system. Injection of bacterial endotoxin (lipopolysaccharide, 6 microg kg(-1), i.v.) in squirrel monkeys caused a gradual increase in core body temperature reaching a plateau of 2.07 +/- 0.17 degrees C above baseline at 2 h post-injection. Oral administration of DFU (1 mg kg(-1)) reduced, and DFU (3 mg kg(-1)) completely reversed the lipopolysaccharide-induced pyretic responses. The onset of action of DFU (about 30 min) is in good agreement with the pharmacokinetic profile of this compound in squirrel monkeys. The effect of DFU is comparable to that of a conventional non-selective non-steroidal anti-inflammatory drug (NSAID), diclofenac (3 mg kg(-1)). Since the plasma levels achieved for DFU at the dose employed in the present study are below the threshold required for inhibition of cyclooxygenase-1, it is concluded that the anti-pyretic effect of DFU can be attributed predominantly to an inhibitory action on cyclooxygenase-2. Thus, lipopolysaccharide-induced pyresis in squirrel monkeys can be used as a model for evaluation of anti-pyretic activity of cyclooxygenase inhibitors. PMID:9200563

  14. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects

    PubMed Central

    Chen, Chun-Hong; Chen, Nan-Fu; Feng, Chien-Wei; Cheng, Shu-Yu; Hung, Han-Chun; Tsui, Kuan-Hao; Hsu, Chi-Hsin; Sung, Ping-Jyun; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this

  15. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  16. Antidepressant augmentation with anti-inflammatory agents.

    PubMed

    Andrade, Chittaranjan

    2014-09-01

    Antidepressant augmentation strategies are commonly employed to treat depressed patients who do not respond to antidepressant monotherapy. Neuroinflammatory mechanisms have been implicated in depression, and nonsteroidal anti-inflammatory drugs (NSAIDs) have been found effective in animal models of depression both in monotherapy and when used to augment antidepressant drugs. However, results with NSAIDs have been mixed in human observational studies, with both better and worse depression outcomes reported. Four small (pooled N = 160) randomized controlled trials suggest that celecoxib (200-400 mg/d) augmentation of antidepressant medication improves 4-6 week outcomes in major depressive disorder. There are no data, however, to support the use of celecoxib or other NSAIDs in antidepressant-resistant depression. There are also concerns about adverse events associated with NSAID treatment, and about pharmacodynamic drug interactions between these drugs and serotonin reuptake inhibitors. A reasonable conclusion for the present is that NSAID augmentation of antidepressants is, at best, a tentative approach in nonrefractory major depression.

  17. Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin.

    PubMed

    Buret, André G

    2010-01-01

    Exaggerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects.

  18. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy

    PubMed Central

    Silva Miranda, Mayra; Rodríguez, Kendy Wek; Martínez Cordero, Erasmo; Rojas-Espinosa, Oscar

    2006-01-01

    Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression. PMID:17222216

  19. Anti-Inflammatory Activity of Sulfur-Containing Compounds from Garlic

    PubMed Central

    Lee, Da Yeon; Li, Hua; Lim, Hyo Jin; Lee, Hwa Jin; Jeon, Raok

    2012-01-01

    Abstract We identified four anti-inflammatory sulfur-containing compounds from garlic, and their chemical structures were identified as Z- and E-ajoene and oxidized sulfonyl derivatives of ajoene. The sulfur compounds inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in lipopolysaccharide (LPS)-activated macrophages. Western blotting and reverse transcription–polymerase chain reaction analysis demonstrated that these sulfur compounds attenuated the LPS-induced expression of the inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA. Moreover, these sulfur-containing compounds suppressed the nuclear factor-κB (NF-κB) transcriptional activity and the degradation of inhibitory-κBα in LPS-activated macrophages. Furthermore, we observed that they markedly inhibited the LPS-induced phosphorylations of p38 mitogen-activated protein kinases and extracellular signal-regulated kinases (ERK) at 20 μM. These data demonstrate that the sulfur compounds from garlic, (Z, E)-ajoene and their sulfonyl analogs, can suppress the LPS-induced production of NO/PGE2 and the expression of iNOS/COX-2 genes by inhibiting the NF-κB activation and the phosphorylations of p38 and ERK. Taken together, these data show that Z- and E-ajoene and their sulfonyl analogs from garlic might have anti-inflammatory therapeutic potential. PMID:23057778

  20. Geranyl flavonoid derivatives from the fresh leaves of Artocarpus communis and their anti-inflammatory activity.

    PubMed

    Hsu, Chin-Lin; Chang, Fang-Rong; Tseng, Pei-Yu; Chen, Yi-Fen; El-Shazly, Mohamed; Du, Ying-Chi; Fang, Song-Chwan

    2012-06-01

    Breadfruit (Artocarpus communis) is a widely distributed crop in tropical and subtropical regions of the world. It is used in Southeast Asia and India to treat several inflammatory disorders. The aim of this study was to investigate the presence of anti-inflammatory flavonoids in A. communis leaves. Three new geranyl flavonoids, arcommunol C (1), arcommunol D (3), and 5'-geranyl-3,4,2',4'-tetrahydroxychalcone (5), together with four known compounds, prostratol (2), arcommunol E (4), 3'-geranyl-3,4,2',4'-tetrahydroxydihydrochalcone (6), and 3'-geranyl-3,4,2',4'-tetrahydroxychalcone (7), were isolated from the leaves of A. communis. Compound 4 was isolated for the first time from natural sources. The anti-inflammatory activity of the isolated compounds (1-7) was evaluated by determining their inhibitory activity on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. Compounds 2, 3, and 4 suppressed the LPS-induced production of nitric oxide (NO) in RAW 264.7 cells with IC50 values of 8.13 ± 0.17, 18.45 ± 2.15, and 22.74 ± 1.74 µM, respectively. Furthermore, 2 decreased lipopolysaccharide (LPS)-mediated induction of protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW 264.7 cells. It was also found that 2 suppressed LPS-induced phosphorylation of JNK and p38 mitogen-activated protein kinase (MAPK) signaling.

  1. Anti-Angiogenic and Anti-Inflammatory Properties of Kahweol, a Coffee Diterpene

    PubMed Central

    Cárdenas, Casimiro; Quesada, Ana R.; Medina, Miguel A.

    2011-01-01

    Background Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. This study aims to identify the effects of kahweol, an antioxidant diterpene contained in unfiltered coffee, on angiogenesis and key inflammatory molecules. Methodology/Principal Findings The experimental procedures included in vivo angiogenesis assays (both the chicken and quail choriallantoic membrane assay and the angiogenesis assay with fluorescent zebrafish), the ex vivo mouse aortic ring assay and the in vitro analysis of the effects of treatment of human endothelial cells with kahweol in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Additionally, two inflammation markers were determined, namely, the expression levels of cyclooxygenase 2 and the levels of secreted monocyte chemoattractant protein-1. We show for the first time that kahweol is an anti-angiogenic compound with inhibitory effects in two in vivo and one ex vivo angiogenesis models, with effects on specific steps of the angiogenic process: endothelial cell proliferation, migration, invasion and tube formation on Matrigel. We also demonstrate the inhibitory effect of kahweol on the endothelial cell potential to remodel extracellular matrix by targeting two key molecules involved in the process, MMP-2 and uPA. Finally, the anti-inflammatory potential of this compound is demonstrated by its inhibition of both COX-2 expression and MCP-1 secretion in endothelial cells. Conclusion/Significance Taken together, our data indicate that, indeed, kahweol behaves as an anti-inflammatory and anti-angiogenic compound with potential use in antitumoral therapies. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers. PMID:21858104

  2. Anti-Inflammatory Effects of Agrimoniin-Enriched Fractions of Potentilla erecta.

    PubMed

    Hoffmann, Julia; Casetti, Federica; Bullerkotte, Ute; Haarhaus, Birgit; Vagedes, Jan; Schempp, Christoph M; Wölfle, Ute

    2016-01-01

    Potentilla erecta (PE) is a small herbaceous plant with four yellow petals belonging to the Rosaceae family. The rhizome of PE has traditionally been used as an antidiarrheal, hemostatic and antihemorrhoidal remedy. PE contains up to 20% tannins and 5% ellagitannins, mainly agrimoniin. Agrimoniin is a hydrolyzable tannin that is a potent radical scavenger. In this study we tested the anti-inflammatory effect of four PE fractions with increasing amounts of agrimoniin obtained by Sephadex column separation. First, we analyzed in HaCaT keratinocytes the expression of cyclooxygenase-2 (COX-2) induced by ultraviolet-B (UVB) irradiation. As COX-2 catalyzes the metabolism of arachidonic acid to prostanoids such as PGE₂, we also measured the PGE₂ concentration in cell culture supernatants. PE inhibited UVB-induced COX-2 expression in HaCaT cells and dose-dependently reduced PGE₂. The PE fraction with the highest agrimoniin amount (PE4) was the most effective in this experiment, whereas fraction PE1 containing mainly sugars had no effect. PE4 also dose dependently inhibited the phosphorylation of the epidermal growth factor receptor (EGFR) which plays a crucial role in UVB-mediated COX-2 upregulation. A placebo-controlled UV-erythema study with increasing concentrations of PE4 demonstrated a dose dependent inhibition of UVB-induced inflammation in vivo. Similarly, PE4 significantly reduced UVB-induced PGE₂ production in suction blister fluid in vivo. In summary, PE fractions with a high agrimoniin content display anti-inflammatory effects in vitro and in vivo in models of UVB-induced inflammation. PMID:27322232

  3. Anti-inflammatory effect of Columbianetin on activated human mast cells.

    PubMed

    Jeong, Hyun-Ja; Na, Ho-Jeong; Kim, Su-Jin; Rim, Hong-Kun; Myung, Noh-Yil; Moon, Phil-Dong; Han, Na-Ra; Seo, Jae-Uk; Kang, Tae-Hee; Kim, Jae-Joong; Choi, Youngjin; Kang, In-Cheol; Hong, Seung-Heon; Kim, You-Ah; Seo, Young-Wan; Kim, Hyung-Min; Um, Jae-Young

    2009-06-01

    In the present study, we extracted Corydalis heterocarpa with various solvents in order to find the bioactive constituents that demonstrated anti-inflammatory effects. We isolated the active compound, Columbianetin. Anti-inflammatory effect of Columbianetin has been reported but the precise effects of Columbianetin in experimental models have remained unknown. In the present study, we investigate the effect of Columbianetin on the production of histamine, interleukin (IL)-1beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha and expression of cyclooxygenase-2 (COX-2) by using the human mast cell line (HMC-1). Various concentrations of Columbianetin were treated before the activation of HMC-1 cells with phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore, A23187. PMA plus A23187 significantly increased IL-1beta, IL-6, IL-8, and TNF-alpha production compared with media control (p<0.05). We also show that the increased cytokines IL-1beta, IL-6, IL-8, and TNF-alpha level was significantly inhibited by Columbianetin in a dose-dependent manner (p<0.05). Maximal inhibition rates of IL-1beta, IL-6, IL-8, and TNF-alpha production by Columbianetin were about 102.6%, 101.1%, 95.8%, and 103.9%, respectively. Columbianetin inhibited expression of COX-2. In addition, the effect of Columbianetin was investigated on the histamine release from HMC-1 stimulated by substance P, which promotes histamine release. Columbianetin also inhibited the histamine release by substance P. In conclusion, these results indicate that Columbianetin may be helpful in regulating mast cell-mediated allergic inflammatory responses.

  4. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury.

    PubMed

    Magalhães, Clarissa B; Riva, Douglas R; DePaula, Leonardo J; Brando-Lima, Aline; Koatz, Vera Lúcia G; Leal-Cardoso, José Henrique; Zin, Walter A; Faffe, Débora S

    2010-04-01

    Eugenol, a methoxyphenol component of clove oil, suppresses cyclooxygenase-2 expression, while eugenol dimers prevent nuclear factor-kappaB (NF-kappaB) activation and inflammatory cytokine expression in lipopolysaccharide-stimulated macrophages. Our aim was to examine the in vivo anti-inflammatory effects of eugenol. BALB/c mice were divided into four groups. Mice received saline [0.05 ml intratracheally (it), control (Ctrl) and eugenol (Eug) groups] or Escherichia coli LPS (10 microg it, LPS and LPSEug groups). After 6 h, mice received saline (0.2 ml ip, Ctrl and LPS groups) or eugenol (160 mg/kg ip, Eug and LPSEug groups). Twenty-four hours after LPS injection, pulmonary resistive (DeltaP1) and viscoelastic (DeltaP2) pressures, static elastance (E(st)), and viscoelastic component of elastance (DeltaE) were measured. Lungs were prepared for histology. In parallel mice, bronchoalveolar lavage fluid was collected 24 h after LPS injection. TNF-alpha was determined by ELISA. Lung tissue expression of NF-kappaB was determined by EMSA. DeltaP1, DeltaP2, E(st), and DeltaE were significantly higher in the LPS group than in the other groups. LPS mice also showed significantly more alveolar collapse, collagen fibers, and neutrophil influx and higher TNF-alpha levels and NF-kappaB expression than the other groups. Eugenol treatment reduced LPS-induced lung inflammation, improving lung function. Our results suggest that eugenol exhibits in vivo anti-inflammatory action in LPS-induced lung injury.

  5. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin

    PubMed Central

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-01-01

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin’s anti-inflammatory activities in the body. PMID:26610561

  6. Anti-inflammatory activity of Bacopa monniera in rodents.

    PubMed

    Channa, Shabana; Dar, Ahsana; Anjum, Shazia; Yaqoob, Muhammad; Atta-Ur-Rahman

    2006-03-01

    The ethanol extract of Bacopa monniera (Scrophulariaceae) exhibited marked anti-inflammatory activity against carrageenan-induced paw edema in mice and rats, an acute inflammatory model. To assess the possible mechanism of anti-inflammatory action against carrageenan, the ethanol extract was treated with chemical mediators (histamine, serotonin, bradykinin, prostaglandin E(2) and arachidonic acid)-induced edema in rats. The extract selectively inhibited prostaglandin E(2)-induced inflammation. Thus, it may be inferred that B. monniera possesses significant anti-inflammatory activity that may well be relevant for its effectiveness in the healing of various inflammatory conditions in traditional medicine.

  7. The anti-inflammatory action of nepitrin, a flavonoid.

    PubMed

    Agarwal, O P

    1982-07-01

    The anti-inflammatory efficacy of nepitrin (5,3',4'-trihydroxy-6-methoxy flavone), a flavonoid, was investigated in both acute and chronic models of inflammation in rats. Nepitrin was found to possess significant anti-inflammatory activity in the exudative and proliferative phases of inflammation. This action of nepitrin could be due to its anti-bradykinin and anti-angiotensin action. Nepitrin also possessed anti-pyretic and weak analgesic activity. The study reveals that nepitrin may be useful as an anti-inflammatory and anti-arthritic agent. PMID:6982607

  8. Group V Secretory Phospholipase A2 Amplifies the Induction of Cyclooxygenase 2 and Delayed Prostaglandin D2 Generation in Mouse Bone Marrow Culture-Derived Mast Cells in a Strain-Dependent Manner.

    PubMed Central

    Diaz, Bruno L.; Satake, Yoshiyuki; Kikawada, Eriya; Balestrieri, Barbara; Arm, Jonathan P.

    2006-01-01

    Activation of bone marrow-derived mast cells (BMMC) with stem cell factor (SCF) or IgE and antigen elicits exocytosis and an immediate phase of prostaglandin (PG) D2 and leukotriene (LT) C4 generation. Activation of BMMC by SCF, IL-1β and IL-10 elicits a delayed phase of PGD2 generation dependent on cyclooxygenase (COX) 2 induction. Cytosolic phospholipase A2 α provides arachidonic acid in both phases and amplifies COX-2 induction. Pharmacological experiments implicate an amplifying role for secretory (s) PLA2. We used mice lacking the gene encoding group V sPLA2 (Pla2g5 −/−) to definitively test its role in eicosanoid generation by BMMC. Pla2g5 −/− BMMC on a C57BL/6 genetic background showed a modest reduction in exocytosis and immediate PGD2 generation after activation with SCF or with IgE and antigen, while LTC4 generation was not modified. Delayed-phase PGD2 generation and COX-2 induction were reduced ~35% in C57BL/6 Pla2g5 −/− BMMC and were restored by exogenous PGE2. There was no deficit in either phase of eicosanoid generation by Pla2g5 −/− BMMC on a BALB/c background. Thus, group V sPLA2 amplifies COX-2 expression and delayed phase PGD2 generation in a strain-dependent manner; it has at best a limited role in immediate eicosanoid generation by BMMC. PMID:17064958

  9. 2-(2-Arylphenyl)benzoxazole As a Novel Anti-Inflammatory Scaffold: Synthesis and Biological Evaluation

    PubMed Central

    2014-01-01

    The 2-(2-arylphenyl)benzoxazole moiety has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The 2-(2-arylphenyl)benzoxazoles 3a–m have been synthesized by Suzuki reaction of 2-(2-bromophenyl)benzoxazole. Further synthetic manipulation of 3f and 3i led to 3o and 3n, respectively. The compounds 3g, 3n, and 3o selectively inhibited COX-2 with selectivity index of 3n much better than that of the COX-2 selective NSAID celecoxib. The in vivo anti-inflammatory potency of 3g and 3n is comparable to that of celecoxib and the nonselective NSAID diclofenac at two different doses, and 3o showed better potency compared to these clinically used NSAIDs. PMID:24900871

  10. Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives.

    PubMed

    Dermond, O; Rüegg, C

    2001-10-01

    Chronic intake of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of developing gastrointestinal tumors, in particular colon cancer. Increasing evidence indicates that NSAID exert tumor-suppressive activity on pre-malignant lesions (polyps) in humans and on established experimental tumors in mice. Some of the tumor-suppressive effects of NSAIDs depend on the inhibition of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxane, which is highly expressed in inflammation and cancer. Recent findings indicate that NSAIDs exert their anti-tumor effects by suppressing tumor angiogenesis. The availability of COX-2-specific NSAIDs opens the possibility of using this drug class as anti-angiogenic agents in combination with chemotheapy or radiotherapy for the treatment of human cancer. Here we will briefly review recent advances in the understanding of the mechanism by which NSAIDs suppress tumor angiogenesis and discuss their potential clinical application as anti-cancer agents.

  11. 2-(2-Arylphenyl)benzoxazole As a Novel Anti-Inflammatory Scaffold: Synthesis and Biological Evaluation.

    PubMed

    Seth, Kapileswar; Garg, Sanjeev K; Kumar, Raj; Purohit, Priyank; Meena, Vachan S; Goyal, Rohit; Banerjee, Uttam C; Chakraborti, Asit K

    2014-05-01

    The 2-(2-arylphenyl)benzoxazole moiety has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The 2-(2-arylphenyl)benzoxazoles 3a-m have been synthesized by Suzuki reaction of 2-(2-bromophenyl)benzoxazole. Further synthetic manipulation of 3f and 3i led to 3o and 3n, respectively. The compounds 3g, 3n, and 3o selectively inhibited COX-2 with selectivity index of 3n much better than that of the COX-2 selective NSAID celecoxib. The in vivo anti-inflammatory potency of 3g and 3n is comparable to that of celecoxib and the nonselective NSAID diclofenac at two different doses, and 3o showed better potency compared to these clinically used NSAIDs.

  12. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.

    PubMed

    García-Lafuente, Ana; Guillamón, Eva; Villares, Ana; Rostagno, Mauricio A; Martínez, José Alfredo

    2009-09-01

    Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease.

  13. Guava pomace: a new source of anti-inflammatory and analgesic bioactives

    PubMed Central

    2013-01-01

    Background Guava pomace is an example of the processing waste generated after the manufacturing process from the juice industry that could be a source of bioactives. Thus, the present investigation was carried out in order to evaluate the anti-inflammatory and antinociceptive potential and determinate the main phenolic compounds of a guava pomace extract (GPE). Methods The anti-inflammatory activity was evaluated by carrageenan, dextran, serotonin, histamine-induced paw edema and neutrophils migration in the peritoneal cavity models. Acetic acid-induced abdominal writhing and formalin test were performed to investigate the antinociceptive effects. In addition, the content of total phenolic and of individual phenolic compounds was determined by GC/MS. Results GPE showed anti-inflammatory activity by carrageenan, dextran, serotonin, histamine-induced paw edema and neutrophils migration in the peritoneal cavity models (p < 0.05). GPE also demonstrated antinociceptive activity by acetic acid-induced abdominal writhing and formalin test (p < 0.05). The total phenolic value was 3.40 ± 0.09 mg GAE/g and epicatechin, quercetin, myricetin, isovanilic and gallic acids were identified by GC/MS analysis. Conclusions The presence of bioactive phenolic compounds as well as important effects demonstrated in animal models suggest that guava pomace could be an interesting source of anti-inflammatory and analgesic substances. PMID:24063346

  14. Anti-inflammatory glucocorticoids: changing concepts.

    PubMed

    Newton, Robert

    2014-02-01

    Despite being the most effective anti-inflammatory treatment for chronic inflammatory diseases, the mechanisms by which glucocorticoids (corticosteroids) effect repression of inflammatory gene expression remain incompletely understood. Direct interaction of the glucocorticoid receptor (NR3C1) with inflammatory transcription factors to repress transcriptional activity, i.e. transrepression, represents one mechanism of action. However, transcriptional activation, or transactivation, by NR3C1 also represents an important mechanism of glucocorticoid action. Glucocorticoids rapidly and profoundly increase expression of multiple genes, many with properties consistent with the repression of inflammatory gene expression. For example: the dual specificity phosphatase, DUSP1, reduces activation of mitogen-activated protein kinases; glucocorticoid-induced leucine zipper (TSC22D3) represses nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) transcriptional responses; inhibitor of κBα (NFKBIA) inhibits NF-κB; tristraprolin (ZFP36) destabilises and translationally represses inflammatory mRNAs; CDKN1C, a cell cycle regulator, may attenuate JUN N-terminal kinase signalling; and regulator of G-protein signalling 2 (RGS2), by reducing signalling from Gαq-linked G protein-coupled receptors (GPCRs), is bronchoprotective. While glucocorticoid-dependent transrepression can co-exist with transactivation, transactivation may account for the greatest level and most potent repression of inflammatory genes. Equally, NR3C1 transactivation is enhanced by β2-adrenoceptor agonists and may explain the enhanced clinical efficacy of β2-adrenoceptor/glucocorticoid combination therapies in asthma and chronic obstructive pulmonary disease. Finally, NR3C1 transactivation is reduced by inflammatory stimuli, including respiratory syncytial virus and human rhinovirus. This provides an explanation for glucocorticoid resistance. Continuing efforts to understand roles for glucocorticoid

  15. Cannabinoids as novel anti-inflammatory drugs

    PubMed Central

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-01-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components. PMID:20191092

  16. Anti-inflammatory properties of bioactive titanium metals.

    PubMed

    Yang, Bangcheng; Gan, Lu; Qu, Yang; Yue, Chongxia

    2010-09-01

    Anti-inflammatory properties of bioactive titanium metals prepared by anodic oxidation (AO-Ti) and alkali-heat (AH-Ti) treatments were studied by bacterial adhesion test and myeloperoxidase (MPO) activity assay methods. The bioactivities of the metals were also evaluated by apatite formation ability and osteoblasts culture experiments. Both metals could induce apatite formation and support osteoblasts proliferation. At the condition with normal incandescent light shine, both bioactive titanium metals had antibacterial adhesion properties compared with the titanium metal without treatment. The MPO activity assay proved that they both showed anti-inflammatory properties in vivo. The bioactive AO-Ti had better anti-inflammatory properties than the AH-Ti. It indicated that it is possible to optimize the anti-inflammatory properties of the bioactive titanium metals by different preparation methods.

  17. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  18. Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi's sarcoma cells.

    PubMed

    Marginean, Alexandru; Sharma-Walia, Neelam

    2015-08-01

    Lipoxin A4 (LXA4) is an endogenously produced host molecule with anti-inflammatory resolution effects. Previous studies demonstrated it to be involved in anti-vascular endothelial growth factor (VEGF)-mediated angiogenesis and in a possible anticancer role via interaction with its receptor, lipoxin A 4 receptor (ALXR). Here, we examined the effects of LXA4 and its epimer 15-epi-LXA4 in inhibiting proinflammatory and angiogenic functions in a human Kaposi's sarcoma tumor-derived cell line (KS-IMM). KS-IMM cells expressed increased levels of inflammatory cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LO) pathway enzymes when compared with human microvascular dermal endothelial cells (HMVEC-d). KS-IMM cells secreted high levels of prostaglandin E2 (PGE2) and chemotactic leukotriene B4 (LTB4). Treatment with LXA4 or 15-epi-LXA4 effectively reduced the levels of COX-2, 5-LO proteins, and secretion of PGE2 and LTB4 in KS-IMM cells. LXA4 or 15-epi-LXA4 treatment also decreased secretion of proinflammatory interleukin 6 (IL-6) and IL-8 cytokines but induced the secretion of anti-inflammatory IL-10. LXA4 treatment reduced the phosphorylation of VEGF receptor (VEGFR) and ephrin family receptor tyrosine kinases. LXA4 treatment effectively induced dephosphorylation of multiple cellular kinases such as Focal Adhesion Kinase, Protein kinase B, nuclear factor kappa-light-chain-enhancer of activated B cells, and Extracellular signal-regulated kinases (ERK)1/2, and reduced angiogenic factor VEGF-C secretion in KS cells. LX treatment drastically induced the Src-homology 2 domain-containing phosphatase tyrosine (Y542) phosphatase and reduced VEGFR-2 phosphorylation at sites Y1059, Y1175, and Y1212. Treatment of KS-IMM cells with LXA4 resulted in selective localization of VEGFR-2 in nonlipid raft (non-LR) and ALXR to LR fractions. These results demonstrated that LXA4 or 15-epi-LXA4 induce anti-inflammatory and antiangiogenic effects in KS cells and suggest that treatment with LXs is

  19. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  20. [Anti-inflammatory effects of methylprednisolone aceponate in animals].

    PubMed

    Ikoma, Y; Yamashita, M; Kamitani, K; Nakagawa, H

    1991-11-01

    In the case of dermal application of the drugs to croton oil-induced ear edema in rats and picryl chloride-induced delayed type hypersensitivity in mice, the anti-inflammatory effect of methylprednisolone aceponate (MPA) was slightly weaker than those of clobetasol 17-propionate and diflucortolone 21-valerate, but stronger than those of hydrocortisone 17-butyrate and hydrocortisone 17-butyrate 21-propionate. Betamethasone 17-valerate applied dermally was less and more effective than MPA to ear edema in rats and delayed type hypersensitivity in mice, respectively. The anti-inflammatory effect of MPA was weaker in subcutaneous administration than in topical application to the two inflammatory models. It was suggested that MPA has strong anti-inflammatory effects and weak systemic effects by topical application. Methylprednisolone 17-propionate (MP-17P) and methylprednisolone (MP), unesterified in only the C-21 position and in both the C-17 and 21 positions of MPA, respectively, showed weaker anti-inflammatory activities than MPA by topical application to croton oil-induced ear edema. The ratio of the anti-inflammatory effects by topical application to subcutaneous administration of MPA was higher than those of MP-17P and MP. The excellent characteristics of MPA as a dermal anti-inflammatory drug are suggested to be derived from di-esterification of MP, which has a weak activity intrinsically. PMID:1813371

  1. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  2. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    SciTech Connect

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  3. Apparent tolerance of turkey vultures (Cathartes aura) to the non-steroidal anti-inflammatory drug diclofenac

    USGS Publications Warehouse

    Rattner, B.A.; Whitehead, M.A.; Gasper, G.; Meteyer, C.U.; Link, W.A.; Taggart, M.A.; Meharg, A.A.; Pattee, O.H.; Pain, D.J.

    2008-01-01

    The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose 0.1?0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.

  4. Apparent tolerance of turkey vultures (Cathartes aura) to the non-steroidal anti-inflammatory drug diclofenac.

    PubMed

    Rattner, Barnett A; Whitehead, Maria A; Gasper, Grace; Meteyer, Carol U; Link, William A; Taggart, Mark A; Meharg, Andrew A; Pattee, Oliver H; Pain, Deborah J

    2008-11-01

    The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose -0.1-0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.

  5. Anti-Inflammatory Effects of Bangpungtongsung-San, a Traditional Herbal Prescription

    PubMed Central

    Lee, Chul Won; Kim, Sang Chan; Kwak, Tae Won; Lee, Jong Rok; Jo, Mi Jeong; Ahn, Yong-Tae; Kim, Jong Myoung; An, Won G.

    2012-01-01

    Bangpungtongsung-san (BPTS), a traditional oriental herbal prescription, is widely used for expelling wind, draining heat, and providing general improvement to the immune system. In this study, we investigated the effects of BPTS on induction of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), proinflammatory cytokines, nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide- (LPS- ) stimulated Raw 264.7 cells, and on paw edema in rats. At concentrations of 0.5, 0.75, and 1 mg/mL, treatment with BPTS inhibited levels of expression of LPS-induced NF-κB and MAPKs (ERK, JNK, and p38) as well as production of proinflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) by LPS. These results suggest that BPTS may exert anti-inflammatory effects via reduction of proinflammatory mediators, including NO, PGE2, TNF-α, and IL-6 through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophages. In addition, using the carrageenan-induced paw edema assay, an antiedema effect of BPTS was observed in rats. These findings may provide scientific evidence validating the use of BPTS in treatment of patients with heat syndrome in Korean oriental medicine. PMID:22899961

  6. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.

    PubMed

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.

  7. Nonsteroidal anti-inflammatory drugs for wounds: pain relief or excessive scar formation?

    PubMed

    Su, Wen-Hsiang; Cheng, Ming-Huei; Lee, Wen-Ling; Tsou, Tsung-Shan; Chang, Wen-Hsun; Chen, Chien-Sheng; Wang, Peng-Hui

    2010-01-01

    The inflammatory process has direct effects on normal and abnormal wound healing. Hypertrophic scar formation is an aberrant form of wound healing and is an indication of an exaggerated function of fibroblasts and excess accumulation of extracellular matrix during wound healing. Two cytokines--transforming growth factor-beta (TGF-beta) and prostaglandin E2 (PGE2)--are lipid mediators of inflammation involving wound healing. Overproduction of TGF-beta and suppression of PGE2 are found in excessive wound scarring compared with normal wound healing. Nonsteroidal anti-inflammatory drugs (NSAIDs) or their selective cyclooxygenase-2 (COX-2) inhibitors are frequently used as a pain-killer. However, both NSAIDs and COX-2 inhibitors inhibit PGE2 production, which might exacerbate excessive scar formation, especially when used during the later proliferative phase. Therefore, a balance between cytokines and medication in the pathogenesis of wound healing is needed. This report is a literature review pertaining to wound healing and is focused on TGF-beta and PGE2. PMID:20671960

  8. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    PubMed Central

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  9. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen)

    PubMed Central

    Gao, Hongwei; Sun, Wen; Zhao, Jianping; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping; Xu, Qiong-ming; Khan, Ikhlas A.; Yang, Shilin

    2016-01-01

    Four novel compounds (1–4) as well as fourteen reported compounds (5–18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-κB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role. PMID:27666387

  10. Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

    PubMed Central

    Tursun, Xirali; Zhao, Yongxin; Talat, Zulfiya; Xin, Xuelei; AdilaTursun; Abdulla, Rahima; AkberAisa, Haji

    2016-01-01

    Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-a, interleukin (IL)-6, and interleukin 1β (IL-1β), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-κB) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders. PMID:26797110

  11. Anti-inflammatory effects of an ethanolic extract of guava (Psidium guajava L.) leaves in vitro and in vivo.

    PubMed

    Jang, Mi; Jeong, Seung-Weon; Cho, Somi K; Ahn, Kwang Seok; Lee, Jong Hyun; Yang, Deok Chun; Kim, Jong-Chan

    2014-06-01

    Plant extracts have been used as a source of medicines for a wide variety of human ailments. Among the numerous traditional medicinal herbs, Psidium guajava L. (Myrtaceae), commonly known as guava, has long been used in folk medicines as a therapeutic agent for the treatment of numerous diseases in East Asian and other countries. The aim of this study was to investigate the anti-inflammatory activity of an ethanolic leaf extract of P. guajava (guava) in vitro and in vivo. Our results demonstrated that guava leaf extract (GLE) significantly inhibited lipopolysaccharide (LPS)-induced production of nitric oxide and prostaglandin E2 in a dose-dependent manner. GLE suppressed the expression and activity of both inducible nitric oxide synthase and cyclooxygenase-2 in part through the downregulation of ERK1/2 activation in RAW264.7 macrophages. Furthermore, GLE exhibited significant anti-inflammatory activity in 2 different animal models-Freund's complete adjuvant-induced hyperalgesia in the rat and LPS-induced endotoxic shock in mice. PMID:24738717

  12. Anti-inflammatory effects of an ethanolic extract of guava (Psidium guajava L.) leaves in vitro and in vivo.

    PubMed

    Jang, Mi; Jeong, Seung-Weon; Cho, Somi K; Ahn, Kwang Seok; Lee, Jong Hyun; Yang, Deok Chun; Kim, Jong-Chan

    2014-06-01

    Plant extracts have been used as a source of medicines for a wide variety of human ailments. Among the numerous traditional medicinal herbs, Psidium guajava L. (Myrtaceae), commonly known as guava, has long been used in folk medicines as a therapeutic agent for the treatment of numerous diseases in East Asian and other countries. The aim of this study was to investigate the anti-inflammatory activity of an ethanolic leaf extract of P. guajava (guava) in vitro and in vivo. Our results demonstrated that guava leaf extract (GLE) significantly inhibited lipopolysaccharide (LPS)-induced production of nitric oxide and prostaglandin E2 in a dose-dependent manner. GLE suppressed the expression and activity of both inducible nitric oxide synthase and cyclooxygenase-2 in part through the downregulation of ERK1/2 activation in RAW264.7 macrophages. Furthermore, GLE exhibited significant anti-inflammatory activity in 2 different animal models-Freund's complete adjuvant-induced hyperalgesia in the rat and LPS-induced endotoxic shock in mice.

  13. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen)

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei; Sun, Wen; Zhao, Jianping; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping; Xu, Qiong-Ming; Khan, Ikhlas A.; Yang, Shilin

    2016-09-01

    Four novel compounds (1–4) as well as fourteen reported compounds (5–18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-κB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role.

  14. Synthesis and biological evaluation of boswellic acid-NSAID hybrid molecules as anti-inflammatory and anti-arthritic agents.

    PubMed

    Shenvi, Suvarna; Kiran, K R; Kumar, Krishna; Diwakar, Latha; Reddy, G Chandrasekara

    2015-06-15

    Methyl esters of the β-boswellic acid (BA) and 11-keto-β-boswellic acid (KBA) obtained from Boswellia serrata resin were subjected to Steglich esterification with the different non-steroidal anti-inflammatory drugs (NSAID) viz., ibuprofen, naproxen, diclophenac and indomethacin. The novel hybrids of methyl boswellate (5-8) and that of methyl 11-keto boswellate (9-12) were evaluated for anti-inflammatory activity by carrageenan-induced rat hind paw edema model and anti-arthritic activity by Complete Freund's Adjuvant (CFA) induced arthritis in Wister albino rat. Significant inhibition on carrageenan-induced paw edema has been observed with 5, 6 and 10 where as in CFA induced rats, hybrids 5, 8, 9 and 12 exhibited pronounced antiarthritic activity. Hybrid molecules 5 and 9 have been found to be more effective in inhibiting in-vivo COX-2 than ibuprofen by itself, thus showing the synergistic effect. Hybrid 5 and 9 tested for in-vitro lipoxygenase and cyclooxygenase-2 (LOX/COX-2) inhibitory activity. The studies revealed that both 5 and 9 inhibited COX-2 relatively better than LOX enzyme. PMID:26010018

  15. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells.

    PubMed

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE2, butyl lucidenateD2 (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum.

  16. Anti-inflammatory effects of glaucocalyxin B in microglia cells.

    PubMed

    Gan, Ping; Zhang, Li; Chen, Yanke; Zhang, Yu; Zhang, Fali; Zhou, Xiang; Zhang, Xiaohu; Gao, Bo; Zhen, Xuechu; Zhang, Jian; Zheng, Long Tai

    2015-05-01

    Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and generation of reactive oxygen species (ROS) in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO)-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases. PMID:26003084

  17. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells.

    PubMed

    Hooshmand, Shirin; Kumar, Ajay; Zhang, Ji Yao; Johnson, Sarah A; Chai, Sheau C; Arjmandi, Bahram H

    2015-05-01

    This study presents the anti-inflammatory and antioxidative properties of dried plum (Prunus domestica L.) polyphenols in macrophage RAW 264.7 cells. We hypothesized that dried plum polyphenols have strong anti-inflammatory and antioxidant properties against lipopolysaccharide (LPS)-induced production of the pro-inflammatory markers, nitric oxide (NO) and cyclooxygenase-2 (COX-2), and the lipid peroxidation product, malondialdehyde, in activated macrophage RAW 264.7 cells. To test this hypothesis, macrophage RAW 264.7 cells were stimulated with either 1 μg ml(-1) (for measurement of NO production) or 1 ng ml(-1) (for measurement of COX-2 expression) of LPS to induce inflammation and were treated with different doses of dried plum polyphenols (0.0, 0.1, 1, 10, 100 and 1000 μg ml(-1)). Dried plum polyphenols at a dose of 1000 μg ml(-1) was able to significantly (P < 0.05) reduce NO production by 43%. Additionally, LPS-induced expression of COX-2 was significantly (P < 0.05) reduced by 100 and 1000 μg ml(-1) dried plum polyphenols. To investigate the antioxidant activity of dried plum polyphenols, macrophage RAW 264.7 cells were stimulated with 100 μg ml(-1) of FeSO4 + 1 mM ml(-1) of H2O2 to induce lipid peroxidation. Dried plum polyphenols at a dose of 1000 μg ml(-1) showed a 32% reduction in malondialdehyde production. These findings indicate that dried plum polyphenols are potent anti-inflammatory and antioxidative agents in vitro.

  18. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation

    PubMed Central

    Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender

    2016-01-01

    Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638

  19. Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice.

    PubMed

    Jantzen, Paul T; Connor, Karen E; DiCarlo, Giovanni; Wenk, Gary L; Wallace, John L; Rojiani, Amyn M; Coppola, Domenico; Morgan, Dave; Gordon, Marcia N

    2002-03-15

    3-4-(2-Fluoro-alpha-methyl-[1,1'-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester (NCX-2216), a nitric oxide (NO)-releasing derivative of the cyclooxygenase-1-preferring nonsteroidal anti-inflammatory drug (NSAID) flurbiprofen, dramatically reduced both beta-amyloid (Abeta) loads and Congo red staining in doubly transgenic (Tg) amyloid precursor protein plus presenilin-1 mice when administered at 375 ppm in diet between 7 and 12 months of age. This reduction was associated with a dramatic increase in the number of microglia expressing major histocompatibility complex-II antigen, a marker for microglial activation. In contrast, ibuprofen at 375 ppm in diet caused modest reductions in Abeta load but not Congo red staining, suggesting that the effects of this nonselective NSAID were restricted primarily to nonfibrillar deposits. We detected no effects of the cyclooxygenase-2-selective NSAID celecoxib at 175 ppm on amyloid deposition. In short-term studies of 12-month-old Tg mice, we found that the microglia-activating properties of NCX-2216 (7.5 mg small middle dot kg(-1) small middle dot d(-1), s.c.) were present after 2 weeks of treatment. Microglia were not activated by NCX-2216 in non-Tg mice lacking Abeta deposits, nor were microglia activated in Tg animals by flurbiprofen (5 mg small middle dot kg(-1) small middle dot d(-1)) alone. These data are consistent with the argument that activated microglia can clear Abeta deposits. We conclude that the NO-generating component of NCX-2216 confers biological actions that go beyond those of typical NSAIDs. In conclusion, NCX-2216 is more efficacious than ibuprofen or celecoxib in clearing Abeta deposits from the brains of Tg mice, implying potential benefit in the treatment of Alzheimer's dementia.

  20. Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.

    PubMed

    Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-03-01

    Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action.

  1. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  2. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  3. Anti-Inflammatory Effect of 1,3,5,7-Tetrahydroxy-8-isoprenylxanthone Isolated from Twigs of Garcinia esculenta on Stimulated Macrophage

    PubMed Central

    Zhang, Dan-Dan; Zhang, Hong; Lao, Yuan-zhi; Wu, Rong; Xu, Jin-wen; Murad, Ferid; Bian, Ka; Xu, Hong-Xi

    2015-01-01

    Garcinia Linn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS/IFNγ-stimulated RAW264.7 cells. In further study, we showed that TIE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), two key molecules responsible for the production of NO and PGE2 during inflammation progress. Additionally, TIE also suppressed the expression of inflammatory cytokines IL-6, IL-12, and TNF-α. TIE-led suppression in iNOS, COX-2, and cytokines production were probably the consequence of TIE's capability to block ERK and p38MAPK signaling pathway. Moreover, TIE blocked activation of nuclear factor-kappa B (NF-κB) as well as NF-κB regulation of miR155 expression. Our study suggests that TIE may represent as a potential therapeutic agent for the treatment of inflammatory diseases. PMID:26538826

  4. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner.

  5. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  6. Anti-inflammatory Flavonoids Isolated from Passiflora foetida.

    PubMed

    Nguyen, Thi Yen; To, Dao Cuong; Tran, Manh Hung; Lee, Joo Sang; Lee, Jeong Hyung; Kim, Jeong Ah; Woo, Mi Hee; Min, Byung Sun

    2015-06-01

    In this study, we evaluated the anti-inflammatory activity of the soluble ethyl acetate fraction and chemical components of the stem bark of Passiflora foetida (Passifloraceae). Ten flavonoids (1-10) were isolated by various chromatographic techniques, and their structures were determined based on spectroscopic analyses by using nuclear magnetic resonance (NMR). Luteolin (2) and chrysoeriol (3) showed the most potent inhibition of nitric oxide (NO) production in macrophage cell line, RAW264.7, with half maximal inhibitor concentration (IC50) values of 1.2 and 3.1 μM, respectively. These compounds suppressed lipopolysaccharide (LPS)-induced inducible NO synthase (iNOS) expression at the transcription level. Our research indicates that the stem bark of P. foetida has significant anti-inflammatory properties, suggesting that its flavonoids may have anti-inflammatory benefits. PMID:26197519

  7. Modifying anti-inflammatory effect of Diclofenac with Murraya koenigii.

    PubMed

    Kaur, Ginpreet; Daftardar, Saloni; Barve, Kalyani H

    2014-01-01

    Murraya koenigii (Curry leaves) has been widely used in Asian countries for the treatment of some ailments such as diabetes and hypertension. In the present study, leaves of Murraya koenigii were extracted with ethanol and evaluated for anti-inflammatory activity in rats using carrageenan induced paw edema method. Ethanolic extract showed a potent anti-inflammatory activity at third hour after carrageenan administration when compared with the standard drug, Diclofenac. The percent inhibition of paw volume was found to be 84.75% for 50 mg/kg of extract whereas it was found to be 80.86% for 50 mg/kg extract in combination with Diclofenac 10 mg/kg. Thus, the present study suggests that the combination therapy potentiates the anti-inflammatory effect of diclofenac and may help in reducing the dose of the synthetic drug. Some relevant patents are also outlined in this article.

  8. Anti-inflammatory activity of Syzygium cumini bark.

    PubMed

    Muruganandan, S; Srinivasan, K; Chandra, S; Tandan, S K; Lal, J; Raviprakash, V

    2001-05-01

    The ethanolic extract of the bark of Syzygium cumini was investigated for its anti-inflammatory activity in animal models. The extract did not show any sign of toxicity up to a dose of 10.125 g/kg, p.o. in mice. Significant anti-inflammatory activity was observed in carrageenin (acute), kaolin-carrageenin (subacute), formaldehyde (subacute)-induced paw oedema and cotton pellet granuloma (chronic) tests in rats. The extract did not induce any gastric lesion in both acute and chronic ulcerogenic tests in rats. Thus, the present study demonstrated that S. cumini bark extract has a potent anti-inflammatory action against different phases of inflammation without any side effect on gastric mucosa. PMID:11395258

  9. Increased temperature and entropy production in cancer: the role of anti-inflammatory drugs.

    PubMed

    Pitt, Michael A

    2015-02-01

    Some cancers have been shown to have a higher temperature than surrounding normal tissue. This higher temperature is due to heat generated internally in the cancer. The higher temperature of cancer (compared to surrounding tissue) enables a thermodynamic analysis to be carried out. Here I show that there is increased entropy production in cancer compared with surrounding tissue. This is termed excess entropy production. The excess entropy production is expressed in terms of heat flow from the cancer to surrounding tissue and enzymic reactions in the cancer and surrounding tissue. The excess entropy production in cancer drives it away from the stationary state that is characterised by minimum entropy production. Treatments that reduce inflammation (and therefore temperature) should drive a cancer towards the stationary state. Anti-inflammatory agents, such as aspirin, other non-steroidal anti-inflammatory drugs, corticosteroids and also thyroxine analogues have been shown (using various criteria) to reduce the progress of cancer.

  10. IL-35 is a novel responsive anti-inflammatory cytokine--a new system of categorizing anti-inflammatory cytokines.

    PubMed

    Li, Xinyuan; Mai, Jietang; Virtue, Anthony; Yin, Ying; Gong, Ren; Sha, Xiaojin; Gutchigian, Stefanie; Frisch, Andrew; Hodge, Imani; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies.

  11. Cyclooxygenase-2 (COX-2) expression in canine intracranial meningiomas.

    PubMed

    Rossmeisl, J H; Robertson, J L; Zimmerman, K L; Higgins, M A; Geiger, D A

    2009-09-01

    Meningiomas are the most common canine intracranial tumour. Neurologic disability and death from treatment failure remain problematic despite current surgical and radiotherapeutic treatments for canine intracranial meningiomas. Cyclooxygenase-2 (COX-2) over-expression has been demonstrated in multiple canine malignancies, and COX-2 inhibitory treatment strategies have been shown to have both preventative and therapeutic effects in spontaneous and experimental models of cancer. The purpose of this study was to evaluate COX-2 expression in canine intracranial meningiomas. Immunohistochemical and Western blot (WB) analyses showed COX-2 expression in multiple tissues of the normal canine brain, and 87% (21/24) of intracranial meningiomas studied were immunoreactive to COX-2. No significant associations between COX-2 immunoreactivity and tumour grade were identified. Further studies are required to elucidate the physiologic roles of constitutive COX-2 expression in the central nervous system as well as its participation in meningioma tumourigenesis. PMID:19691646

  12. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology.

    PubMed

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. PMID:27162170

  13. Targeting Cyclooxygenase-2 in Hematological Malignancies: Rationale and Promise

    PubMed Central

    Bernard, M. P.; Bancos, S.; Sime, P. J.; Phipps, R. P.

    2009-01-01

    There is much interest in the potential use of Cox-2 selective inhibitors in combination with other cancer therapeutics. Malignancies of hematopoietic and non-hematopoietic origin often have increased expression of cyclooxygenase-2 (Cox-2), a key modulator of inflammation. For example, hematological malignancies such as chronic lymphocytic leukemia, chronic myeloid leukemia, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma and multiple myeloma often highly express Cox-2, which correlates with poor patient prognosis. Expression of Cox-2 enhances survival and proliferation of malignant cells, while negatively influencing anti-tumor immunity. Hematological malignancies expressing elevated levels of Cox-2 potentially avoid immune responses by producing factors that enhance angiogenesis and metastases. Cellular immune responses regulated by natural killer cells, cytotoxic T lymphocytes, and T regulatory cells are also influenced by Cox-2 expression. Therefore, Cox-2 selective inhibitors have promising therapeutic potential in patients suffering from certain hematological malignancies. PMID:18691115

  14. Targeting cyclooxygenase-2 in hematological malignancies: rationale and promise.

    PubMed

    Bernard, M P; Bancos, S; Sime, P J; Phipps, R P

    2008-01-01

    There is much interest in the potential use of Cox-2 selective inhibitors in combination with other cancer therapeutics. Malignancies of hematopoietic and non-hematopoietic origin often have increased expression of cyclooxygenase-2 (Cox-2), a key modulator of inflammation. For example, hematological malignancies such as chronic lymphocytic leukemia, chronic myeloid leukemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma and multiple myeloma often highly express Cox-2, which correlates with poor patient prognosis. Expression of Cox-2 enhances survival and proliferation of malignant cells, while negatively influencing anti-tumor immunity. Hematological malignancies expressing elevated levels of Cox-2 potentially avoid immune responses by producing factors that enhance angiogenesis and metastasis. Cellular immune responses regulated by natural killer cells, cytotoxic T lymphocytes, and T regulatory cells are also influenced by Cox-2 expression. Therefore, Cox-2 selective inhibitors have promising therapeutic potential in patients suffering from certain hematological malignancies.

  15. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    PubMed Central

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  16. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: a mechanism for anti-inflammatory activity.

    PubMed

    Gonçalves, Cristina; Dinis, Teresa; Batista, Maria Teresa

    2005-01-01

    Decoctions prepared from the bark of Uncaria tomentosa (cat's claw) are widely used in the traditional Peruvian medicine for the treatment of several diseases, in particular as a potent anti-inflammatory agent. Therefore, the main purpose of this study was to determine if the well-known anti-inflammatory activity of cat's claw decoction was related with its reactivity with the oxidant species generated in the inflammatory process and to establish a relationship between such antioxidant ability and its phenolic composition. We observed that the decoction prepared according to the traditional Peruvian medicine presented a potent radical scavenger activity, as suggested by its high capacity to reduce the free radical diphenylpicrylhydrazyl, and by its reaction with superoxide anion, peroxyl and hydroxyl radicals as well as with the oxidant species, hydrogen peroxide and hypochlorous acid. It also protected membrane lipids against peroxidation induced by the iron/ascorbate system, as evaluated by the formation of thiobarbituric acid-reactive substances (TBARs). The decoction phenolic profile was established by chromatographic analysis (HPLC/DAD and TLC) revealing essentially the presence of proanthocyanidins (oligomeric procyanidins) and phenolic acids, mainly caffeic acid. Thus, our results provide evidence for an antioxidant mechanism underlying the anti-inflammatory activity of cat's claw and support some of the biological effects of proanthocyanidins, more exactly its antioxidant and radical scavenging activities.

  17. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  18. Anti-inflammatory defense mechanisms of Entamoeba histolytica.

    PubMed

    Silva-García, Raúl; Rico-Rosillo, Guadalupe

    2011-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures, may contribute to the delayed inflammation observed in amoebic hepatic abscess. This factor was isolated by ultra-filtration and high powered liquid chromatography, obtaining a primary Met-Gln-Cys-Asn-Ser structure, identified afterwards as the carboxyl-terminal (…Cys-Asn-Ser) active site. The selective anti-inflammatory effects of the pentapeptide have been observed in both in vitro and in vivo models, using a synthetic pentapeptide to maintain the same anti-inflammatory conditions during the experimental assays. Anti-inflammatory effects observed include inhibition of human monocyte locomotion and the respiratory burst in monocytes and neutrophils, increasing expression of anti-inflammatory cytokines and inhibiting expression of the adhesion molecules VLA-4 and VCAM, among others. In this review, we will describe the effects of MLIF detected so far and how it might be used as a therapeutical agent against inflammatory diseases.

  19. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  20. The Use of Nonsteroidal Anti-Inflammatory Drugs in Sports.

    ERIC Educational Resources Information Center

    Calabrese, Leonard H.; Rooney, Theodore W.

    1986-01-01

    Recent advances in the understanding of the mechanism of action and clinical pharmacology of the new nonsteroidal anti-inflammatory drugs (NSAIDs) can help practitioners decide which to use and how to administer them. Indications for and effects of NSAIDs are described. (MT)

  1. Analgesic and anti-inflammatory activity of Leonurus sibiricus.

    PubMed

    Islam, M Amirul; Ahmed, Firoj; Das, A K; Bachar, S C

    2005-06-01

    The methanolic extract of Leonurus sibiricus aerial parts injected intraperitoneally at dose of 250 and 500 mg/kg showed a significant analgesic effect in acetic acid-induced writhing in mice. Moreover, when given orally to rats at dose of 200 and 400 mg/kg, it showed a significant anti-inflammatory activity against carrageenin induced rat paw edema in rats.

  2. Anti-inflammatory activity of some traditional medicinal plants.

    PubMed

    Singh, R K; Joshi, V K; Gambhir, S S

    1998-10-01

    The ethanol extract of roots, fruits and roots of solanum indicum and saccharum munja respectively and water soluble resin of commiphora myrrha were studied for antiinflammatory activity against carrageenin induced oedema in rats, the significant antiinflammatory activity were found in former two plants will slight anti inflammatory activity was observed in latter plant.

  3. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    PubMed

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.

  4. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2

    PubMed Central

    Maioli, N.A.; Zarpelon, A.C.; Mizokami, S.S.; Calixto-Campos, C.; Guazelli, C.F.S.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Carvalho, T.T.; Manchope, M.F.; Ferraz, C.R.; Casagrande, R.; Verri, W.A.

    2015-01-01

    It is currently accepted that superoxide anion (O2 •−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment. PMID:25714890

  5. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  6. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  7. Comparison of analgesic and anti-inflammatory activity of meloxicam gel with diclofenac and piroxicam gels in animal models: pharmacokinetic parameters after topical application.

    PubMed

    Gupta, S K; Bansal, P; Bhardwaj, R K; Jaiswal, J; Velpandian, T

    2002-01-01

    Meloxicam, a non-steroidal anti-inflammatory drug, is a preferential inhibitor of cyclooxygenase-2 and has demonstrated potent analgesic and anti-inflammatory activity after oral administration. The present work was carried out to elucidate the anti-inflammatory and analgesic activity of a newer topical gel formulation of meloxicam (1% w/w gel) and compare it with 0.5% w/w piroxicam and 1% w/w diclofenac gels in experimental animal models. The study was also extended to determine the pharmacokinetic profile of a newer formulation of meloxicam gel after topical application on depilated skin of rats. The anti-inflammatory activities of meloxicam, piroxicam and diclofenac gels were compared using carrageenan-induced acute paw oedema and complete Freund's adjuvant-induced chronic paw oedema in rats. Meloxicam gel showed increased protection against inflammation as compared to piroxicam and diclofenac gels. Acetic acid-induced writhing and formalin-induced phase I and phase II pain models were used to compare their analgesic activity. Meloxicam gel showed significant protection in formalin-induced phase II pain whereas its analgesic activity was less as compared to diclofenac and piroxicam gels in writhing test and formalin-induced phase I pain. The pharmacokinetic studies showed peak plasma drug concentration (C(max)) of 48.48 +/- 6.57 microg/ml at 2 h (T(max)) after topical application of 500 mg of meloxicam gel formulation. The area under the curve as calculated from 0 to 6 h was found to be 114.18 +/- 4.23 and 194.13 +/- 3.78 microg x h/ml for 0 to infinity. The results indicate that topical preparation of meloxicam could be an effective alternative to diclofenac and piroxicam gels in inflammatory conditions and its associated pain with the possibility of less systemic side-effects.

  8. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  9. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.

    PubMed

    Kennedy-Lydon, Teresa; Crawford, Carol; Wildman, Scott S; Peppiatt-Wildman, Claire M

    2015-10-01

    We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage. PMID:26202223

  10. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells.

    PubMed

    Raghav, S K; Gupta, B; Agrawal, C; Goswami, K; Das, H R

    2006-03-01

    Ruta graveolens L. (Rutaceae) is used for several therapeutic purposes worldwide. The present study is designed to investigate the effect of plant extract of Ruta graveolens on murine macrophage cells (J-774) challenged with lipopolysaccharide (LPS). LPS induces inflammatory response by stimulating the production of nitric oxide and other mediators. Significant inhibition (p=0.01 to p<0.002) of the LPS-induced nitric oxide production was observed in cells treated with plant extract in a concentration dependent manner. The inhibition observed for the extract was significantly higher than that observed for rutin, a flavonoid constituent of the plant. At 40 microM rutin, a comparable concentration of this flavonoid in the highest concentration (500 microg/ml) of plant extract was used in this study; a 20% inhibition (p=0.058) was observed. Inhibition in inducible nitric oxide synthase (inos) gene expression in the cells treated with the plant extract suggests an inhibition at the transcription level. Interestingly, a concomitant decrease in transcription of cyclooxygenase-2 (COX-2) gene has also been observed in cells treated with the plant extract and this inhibition is significantly higher than that observed with the highest concentration of rutin (80 microM) used in the study. As an inflammatory response, upregulation of nitric oxide synthase (iNOS) and COX-2 enzymes leads to production of pro-inflammatory mediators, namely nitric oxide and prostaglandins, respectively. Hence, the significant inhibitory effects on both of these inflammatory mediators unravel a novel anti-inflammatory action of this plant.

  11. Nonsteroidal anti-inflammatory drugs in the treatment of low back pain.

    PubMed

    Kuritzky, Louis; Samraj, George P

    2012-01-01

    Low back pain (LBP) is amongst the top ten most common conditions presenting to primary care clinicians in the ambulatory setting. Further, it accounts for a significant amount of health care expenditure; indeed, over one third of all disability dollars spent in the United States is attributable to low back pain. In most cases, acute low back pain is a self-limiting disease. There are many evidence-based guidelines for the management of LBP. The most common risk factor for development of LBP is previous LBP, heavy physical work, and psychosocial risk factors. Management of LBP includes identification of red flags, exclusion of specific secondary causes, and comprehensive musculoskeletal/neurological examination of the lower extremities. In uncomplicated LBP, imaging is unnecessary unless symptoms become protracted. Reassurance that LBP will likely resolve and advice to maintain an active lifestyle despite LBP are the cornerstones of management. Medications are provided not because they change the natural history of the disorder, but rather because they enhance the ability of the patient to become more active, and in some cases, to sleep better. The most commonly prescribed medications include nonsteroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants. Although NSAIDs are a chemically diverse class, their similarities, efficacy, tolerability, and adverse effect profile have more similarities than differences. The most common side effects of NSAIDs are gastrointestinal. Agents with cyclo-oxygenase 2 selectivity are associated with reduced gastrointestinal bleeding, but problematic increases in adverse cardiovascular outcomes continue to spark concern. Fortunately, short-term use of NSAIDs for LBP is generally both safe and effective. This review will focus on the role of NSAIDs in the management of LBP. PMID:23271922

  12. Nonsteroidal anti-inflammatory drugs in the treatment of low back pain

    PubMed Central

    Kuritzky, Louis; Samraj, George P

    2012-01-01

    Low back pain (LBP) is amongst the top ten most common conditions presenting to primary care clinicians in the ambulatory setting. Further, it accounts for a significant amount of health care expenditure; indeed, over one third of all disability dollars spent in the United States is attributable to low back pain. In most cases, acute low back pain is a self-limiting disease. There are many evidence-based guidelines for the management of LBP. The most common risk factor for development of LBP is previous LBP, heavy physical work, and psychosocial risk factors. Management of LBP includes identification of red flags, exclusion of specific secondary causes, and comprehensive musculoskeletal/neurological examination of the lower extremities. In uncomplicated LBP, imaging is unnecessary unless symptoms become protracted. Reassurance that LBP will likely resolve and advice to maintain an active lifestyle despite LBP are the cornerstones of management. Medications are provided not because they change the natural history of the disorder, but rather because they enhance the ability of the patient to become more active, and in some cases, to sleep better. The most commonly prescribed medications include nonsteroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants. Although NSAIDs are a chemically diverse class, their similarities, efficacy, tolerability, and adverse effect profile have more similarities than differences. The most common side effects of NSAIDs are gastrointestinal. Agents with cyclo-oxygenase 2 selectivity are associated with reduced gastrointestinal bleeding, but problematic increases in adverse cardiovascular outcomes continue to spark concern. Fortunately, short-term use of NSAIDs for LBP is generally both safe and effective. This review will focus on the role of NSAIDs in the management of LBP. PMID:23271922

  13. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  14. Competition and allostery govern substrate selectivity of cyclooxygenase-2.

    PubMed

    Mitchener, Michelle M; Hermanson, Daniel J; Shockley, Erin M; Brown, H Alex; Lindsley, Craig W; Reese, Jeff; Rouzer, Carol A; Lopez, Carlos F; Marnett, Lawrence J

    2015-10-01

    Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and its ester analog, 2-arachidonoylglycerol (2-AG), to prostaglandins (PGs) and prostaglandin glyceryl esters (PG-Gs), respectively. Although the efficiency of oxygenation of these substrates by COX-2 in vitro is similar, cellular biosynthesis of PGs far exceeds that of PG-Gs. Evidence that the COX enzymes are functional heterodimers suggests that competitive interaction of AA and 2-AG at the allosteric site of COX-2 might result in differential regulation of the oxygenation of the two substrates when both are present. Modulation of AA levels in RAW264.7 macrophages uncovered an inverse correlation between cellular AA levels and PG-G biosynthesis. In vitro kinetic analysis using purified protein demonstrated that the inhibition of 2-AG oxygenation by high concentrations of AA far exceeded the inhibition of AA oxygenation by high concentrations of 2-AG. An unbiased systems-based mechanistic model of the kinetic data revealed that binding of AA or 2-AG at the allosteric site of COX-2 results in a decreased catalytic efficiency of the enzyme toward 2-AG, whereas 2-AG binding at the allosteric site increases COX-2's efficiency toward AA. The results suggest that substrates interact with COX-2 via multiple potential complexes involving binding to both the catalytic and allosteric sites. Competition between AA and 2-AG for these sites, combined with differential allosteric modulation, gives rise to a complex interplay between the substrates, leading to preferential oxygenation of AA.

  15. Cyclooxygenase-2 expression in the hereditary mixed polyposis syndrome.

    PubMed

    Brazowski, Eli; Misonzhnick-Bedny, Faina; Rozen, Paul

    2004-01-01

    Hereditary mixed polyposis syndrome (HMPS), characterized by hyperplastic, juvenile, admixed, serrated adenomas and eventually colorectal cancer, is managed by repeated polypectomy and surgery. We determined if HMPS polyps express cyclooxygenase-2 (COX-2). Nineteen recent HMPS polyps, from five family members, were stained for COX-2. Polyps' epithelium and stroma and comparison tissues (normal colonic mucosa [9], sporadic juvenile polyps [18], colorectal cancers [3]) were quantified for COX-2 by: area of staining (0-3) x intensity (0-3). Epithelial, stromal, and total scores were evaluated in relationship to histology and dysplasia. HMPS polyps COX-2 mean epithelial (5.0+/-3.0), stromal (6.9+/-1.9), and total (11.8+/-4.6) scores were significantly higher (P < 0.01) than sporadic juvenile polyps (0.6+/-0.7, 3.1+/-2.2, and 3.6+/- 2.2 respectively), while colorectal cancer scored 9, 9, and 18. There was a positive association (P < 0.01) among histology, degree of dysplasia, and COX-2 expression. COX-2 expression in HMPS polyps and its association with dysplasia suggest that chemoprevention might be a useful adjunct therapy.

  16. Anti-inflammatory and antipyretic effects of boldine.

    PubMed

    Backhouse, N; Delporte, C; Givernau, M; Cassels, B K; Valenzuela, A; Speisky, H

    1994-10-01

    Boldine, an antioxidant alkaloid isolated from Peumus boldus, exhibits a dose-dependent anti-inflammatory activity in the carrageenan-induced guinea pig paw edema test with an oral ED50 of 34 mg/kg. Boldine also reduces bacterial pyrogen-induced hyperthermia in rabbits to an extent which varied between 51% and 98% at a dose of 60 mg/kg p.o. In vitro studies carried out in rat aortal rings revealed that boldine is an effective inhibitor of prostaglandin biosynthesis, promoting 53% inhibition at 75 microM. The latter in vitro effect may be mechanistically linked to the anti-inflammatory and antipyretic effects of boldine exerted in vivo. PMID:7879695

  17. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  18. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    PubMed Central

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  19. Anti-inflammatory effects of praseodymium, gadolinium and ytterbium chlorides.

    PubMed

    Basile, A C; Hanada, S; Sertié, J A; Oga, S

    1984-02-01

    Anti-inflammatory effects of chloride salts of praseodymium, gadolinium and ytterbium were investigated, using various experimental inflammatory models in rats. The lanthanide salts administered by oral route showed no significant effect, but when injected intraperitoneally they significantly inhibited the carrageenin-induced oedema, proportional to their doses ranging from 15 to 75 mg/kg. They also reduced nystatin-induced oedema and vascular permeability response to histamine and serotonin. Pronounced inhibitory effect of lanthanide salts at the dose of 50 mg/kg, i.p., was observed in histamine- and serotonin-induced changes in vascular permeability. Repeated administration of lanthanide salts in the dose of 20 mg/kg for 13 d significantly inhibited arthritis development. The same dose of these salts for a 6-d period similarly reduced granuloma formation. However, praseodymium, gadolinium and ytterbium chlorides showed no significant difference among themselves and their anti-inflammatory effects were smaller than those from phenylbutazone.

  20. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    PubMed

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  1. Anti-inflammatory and Antinociceptive Activity of Ouabain in Mice

    PubMed Central

    de Vasconcelos, Danielle Ingrid Bezerra; Leite, Jacqueline Alves; Carneiro, Luciana Teles; Piuvezam, Márcia Regina; de Lima, Maria Raquel Vitorino; de Morais, Liana Clébia Lima; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2011-01-01

    Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects. PMID:21772669

  2. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs. PMID:16001907

  3. Anti-inflammatory effects of a Houttuynia cordata supercritical extract.

    PubMed

    Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min Jung; Kim, Tae Ook; Kim, Hyun Kyu; Hwang, Bang Yeon; Kim, Ki Yon; Kim, Yun Bae

    2010-09-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-alpha and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-alpha and NO, while indomethacin decreased TNF-alpha and PGE(2). The suppressive activity of HSE on NO and PGE(2) production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-alpha-NO and cyclooxygenase II-PGE(2) pathways. PMID:20706037

  4. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  5. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach

    PubMed Central

    Bosquesi, Priscila Longhin; Melo, Thais Regina Ferreira; Vizioli, Ednir Oliveira; dos Santos, Jean Leandro; Chung, Man Chin

    2011-01-01

    The design of new drugs with better physiochemical properties, adequate absorption, distribution, metabolism, and excretion, effective pharmacologic potency and lacking toxicity remains is a challenge. Inflammation is the initial trigger of several different diseases, such as Alzheimer's disease, asthma, atherosclerosis, colitis, rheumatoid arthritis, depression, cancer; and disorders such as obesity and sexual dysfunction. Although inflammation is not the direct cause of these disorders, inflammatory processes often increase related pain and suffering. New anti-inflammatory drugs developed using molecular hybridization techniques to obtain multiple-ligand drugs can act at one or multiple targets, allowing for synergic action and minimizing toxicity. This work is a review of new anti-inflammatory drugs developed using the molecular modification approach.

  6. Antibiotic and anti-inflammatory therapies for cystic fibrosis.

    PubMed

    Chmiel, James F; Konstan, Michael W; Elborn, J Stuart

    2013-10-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed.

  7. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs.

  8. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    PubMed

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  9. Influence of seasonal variation on Thymus longicaulis C. Presl chemical composition and its antioxidant and anti-inflammatory properties.

    PubMed

    Galasso, Silvia; Pacifico, Severina; Kretschmer, Nadine; Pan, San-Po; Marciano, Sabina; Piccolella, Simona; Monaco, Pietro; Bauer, Rudolf

    2014-11-01

    Thymus longicaulis C. Presl. (Lamiaceae) is a small aromatic perennial herb typical of the Illyric-Mediterranean flora, traditionally used as remedy for cold, flu, cough, nephritis and abdominal pain. In order to carry out a thorough chemical and biological screening of the plant and to explore phenophases influence on its polyphenol content, samples of the plant were collected at different phases during its life cycle (July/October 2012 and January/April 2013). Each sample, previously extracted using a hydroalcoholic solution, was phytochemically analyzed for its metabolic constitution applying LC-DAD-ESI-MS/MS techniques. Although identified metabolites were differently concentrated at the various collection times, T. longicaulis leaf extracts were mainly constituted by low molecular weight phenols, and flavonoids. Rosmarinic acid was found as the main metabolite in Oct12 sample. Chemopreventive efficacy of the investigated extracts, by means of their anti-inflammatory, cytotoxic and antioxidant activities, was assessed. To this purpose, each extract underwent an extensive screening towards five human cell lines: CCRF-CEM (leukemia); U251 (glioblastoma); MDA-MB-231 (breast cancer); HCT-116 (colon cancer) and MRC-5 (lung fibroblasts) through XTT [2,3bis(2-metoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H tetrazolium hydroxide] test. The ability of the extracts to counteract cyclooxygenase-2 (COX-2) expression was also evaluated by COX-2 expression assay in human THP-1 monocyte-derived macrophages. COX-2 inhibition could represent a valuable anticancer strategy as it is associated with carcinogenesis and over-expressed in a variety of human malignancies. Oct12 extract, which was particularly rich in rosmarinic acid and methylapigenin, exhibited a strong antioxidant and anti-inflammatory effectiveness. PMID:25239551

  10. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    PubMed Central

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-01-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  11. Molecular mechanisms of topical anti-inflammatory effects of lipoxin A(4) in endotoxin-induced uveitis.

    PubMed

    Medeiros, Rodrigo; Rodrigues, Gustavo Büchele; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Menezes-de-Lima, Octavio; Passos, Giselle Fazzioni; Calixto, João Batista

    2008-07-01

    Lipoxin A(4) (LXA(4)) is a lipid mediator that plays an important role in inflammation resolution. We assessed the anti-inflammatory effect of LXA(4) on endotoxin-induced uveitis (EIU) in rats. The inflammatory cell number and levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), prostaglandin E(2) (PGE(2)), and protein, as well as expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF), in the anterior chamber of the eye were determined 24 h after lipopolysaccharide (LPS; 200 mug/paw) intradermal injection. The immunohistochemical reactivities of nuclear factor-kappaB (NF-kappaB) and c-Jun were also examined. Topical LXA(4) (1-10 ng/eye) pretreatment decreased the number of inflammatory cells and the protein leakage into the aqueous humor (AqH). In addition, topical LXA(4) (10 ng/eye) inhibited the LPS-induced production of IL-1beta, TNF-alpha, and PGE(2), and expression of COX-2 and VEGF. A decreased activation of NF-kappaB and c-Jun was also found in LXA(4)-treated eyes. It is very interesting that an anti-inflammatory effect was achieved even when LXA(4) (10 ng/eye) was applied topically after LPS challenge, as indicated by the reduction in the cellular and protein extravasations into the AqH. Moreover, topical treatment of corticosteroid prednisolone (200 mug/eye) beginning before or after LPS injection reduced all of the molecular and biochemical alterations promoted on EIU rats in an efficacy similar to that of LXA(4). Together, the present results provide clear evidence that pharmacological activation of LXA(4) signaling pathway potently reduces the EIU in rats. Therefore, LXA(4) stable analogs could represent promising agents for the management of ocular inflammatory diseases.

  12. Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells

    PubMed Central

    2014-01-01

    Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunesorbent assay. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunefluorescence and reporter gene assay, respectively. Results MME inhibited the expression of iNOS and COX-2 at mRNA and protein levels, resulting in reduction of NO and PGE2 production. As a result, pro-inflammatory cytokines were reduced by MME. MME also inhibited the activation and translocation of NF-κB by preventing inhibitor κB-α (IκB-α) degradation. Moreover, MME inhibited the phosphorylation of extracellular signal regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Main anti-inflammatory compound in MME was identified as sargachromenol by NMR spectroscopy. Conclusions These results indicate that the anti-inflammatory effect of sargachromenol-rich MME on LPS-stimulated microglia is mainly regulated by the inhibition of IκB-α/NF-κB and ERK/JNK pathways. PMID:25005778

  13. Anti-inflammatory activity of arctigenin from Forsythiae Fructus.

    PubMed

    Kang, Hyo Sook; Lee, Ji Yun; Kim, Chang Jong

    2008-03-01

    Oleaceae Forsythiae Fructus has been used for anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. Our previous screening of medicinal plants showed that methanol (MeOH) extract of Forsythiae Fructus had significant anti-inflammatory activity, but the active ingredients remain unclear. For isolation of active ingredient of MeOH extract of Forsythiae Fructus, it was partitioned with n-hexane and ethylacetate (EtOAc), and arctigenin was isolated from EtOAc fraction by column chromatography with anti-inflammatory activity-guided separation. Its activity was evaluated in the animal models of inflammation including myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities in the edematous tissues homogenate, and silica-induced reactive oxygen species (ROS) production in the RAW 264.7 cell line. It was shown that arctigenin (100 mg/kg) had significantly decreased not only carrageenan-induced paw edema 3 and 4h after injection of carrageenan, arachidonic acid (AA)-induced ear edema at a painting dose of 0.1-1.0mg/ear, and acetic acid-induced writhing response and acetic acid-induced capillary permeability accentuation at an oral dose of 25-100, and 100 mg/kg, respectively, but also MPO and EPO activities at a painting dose of 0.1-1.0mg/ear in the AA-induced edematous tissues homogenate as indicators of neutrophils and eosinophils recruitment into the inflamed tissue. Further, arctigenin (0.1-10 microM) also significantly inhibited the intracellular ROS production by silica. These results indicate that arctigenin is a bioactive agent of Forsythiae Fructus having significant anti-inflammatory action by inhibition of the exudation, and leukocytes recruitment into the inflamed tissues. The pharmacologic mechanism of action of arctigenin may be due to the inhibition of release/production of inflammatory mediators such as AA metabolites and free radicals.

  14. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention.

    PubMed

    Umar, Asad; Steele, Vernon E; Menter, David G; Hawk, Ernest T

    2016-02-01

    Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field. PMID:26970125

  15. Hepatoprotective and anti-inflammatory activities of Plantago major L

    PubMed Central

    Türel, Idris; Özbek, Hanefi; Erten, Remzi; Öner, Ahmet Cihat; Cengiz, Nureddin; Yilmaz, Orhan

    2009-01-01

    Objective: The aim of this study was to investigate anti-inflammatory and hepatoprotective activities of Plantago major L. (PM). Materials and Methods: Anti-inflammatory activity: Control and reference groups were administered isotonic saline solution (ISS) and indomethacin, respectively. Plantago major groups were injected PM in doses of 5 mg/kg (PM-I), 10 mg/kg (PM-II), 20 mg/kg (PM-III) and 25 mg/kg (PM-IV). Before and three hours after the injections, the volume of right hind-paw of rats was measured using a plethysmometer. Hepatoprotective Activity: The hepatotoxicity was induced by carbon tetrachloride (CCl4) administration. Control, CCl4 and reference groups received isotonic saline solution, CCl4 and silibinin, respectively. Plantago major groups received CCl4 (0.8 ml/kg) and PM in doses of 10, 20 and 25 mg/kg, respectively for seven days. Blood samples and liver were collected on the 8th day after the animals were killed. Results: Plantago major had an anti-inflammatory effect matching to that of control group at doses of 20 and 25 mg/kg. It was found that reduction in the inflammation was 90.01% with indomethacin, 3.10% with PM-I, 41.56% with PM-II, 45.87% with PM-III and 49.76% with PM-IV. Median effective dose (ED50) value of PM was found to be 7.507 mg/kg. Plantago major (25 mg/kg) significantly reduced the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels when compared to the CCl4 group. The histopathological findings showed a significant difference between the PM (25 mg/kg) and CCl4 groups. Conclusion: The results showed that PM had a considerable anti-inflammatory and hepatoprotective activities. PMID:20442819

  16. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  17. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    PubMed

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-01

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-α production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-α and NO. Analog 2 has a pronounced inhibitory effect on NF-κB-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself.

  18. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    PubMed

    González-Cortazar, Manasés; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca.

  19. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding.

  20. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  1. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding. PMID:27492193

  2. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics.

    PubMed

    Luz, John Gately; Antonysamy, Stephen; Kuklish, Steven L; Condon, Bradley; Lee, Matthew R; Allison, Dagart; Yu, Xiao-Peng; Chandrasekhar, Srinivasan; Backer, Ryan; Zhang, Aiping; Russell, Marijane; Chang, Shawn S; Harvey, Anita; Sloan, Ashley V; Fisher, Matthew J

    2015-06-11

    Microsomal prostaglandin E synthase 1 (mPGES-1) is an α-helical homotrimeric integral membrane inducible enzyme that catalyzes the formation of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2). Inhibition of mPGES-1 has been proposed as a therapeutic strategy for the treatment of pain, inflammation, and some cancers. Interest in mPGES-1 inhibition can, in part, be attributed to the potential circumvention of cardiovascular risks associated with anti-inflammatory cyclooxygenase 2 inhibitors (coxibs) by targeting the prostaglandin pathway downstream of PGH2 synthesis and avoiding suppression of antithrombotic prostacyclin production. We determined the crystal structure of mPGES-1 bound to four potent inhibitors in order to understand their structure-activity relationships and provide a framework for the rational design of improved molecules. In addition, we developed a light-scattering-based thermal stability assay to identify molecules for crystallographic studies. PMID:25961169

  3. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets

    PubMed Central

    Kim, Shi Hyoung; Park, Jae Gwang; Lee, Jongsung; Yang, Woo Seok; Park, Gye Won; Kim, Han Gyung; Baek, Kwang-Soo; Hossen, Muhammad Jahangir; Lee, Mi-nam; Kim, Jong-Hoon

    2015-01-01

    Even though a lot of reports have suggested the anti-inflammatory activity of kaempferol (KF) in macrophages, little is known about its exact anti-inflammatory mode of action and its immunopharmacological target molecules. In this study, we explored anti-inflammatory activity of KF in LPS-treated macrophages. In particular, molecular targets for KF action were identified by using biochemical and molecular biological analyses. KF suppressed the release of nitric oxide (NO) and prostaglandin E2 (PGE2), downregulated the cellular adhesion of U937 cells to fibronectin (FN), neutralized the generation of radicals, and diminished mRNA expression levels of inflammatory genes encoding inducible NO synthase (iNOS), TNF-α, and cyclooxygenase- (COX-) 2 in lipopolysaccharide- (LPS-) and sodium nitroprusside- (SNP-) treated RAW264.7 cells and peritoneal macrophages. KF reduced NF-κB (p65 and p50) and AP-1 (c-Jun and c-Fos) levels in the nucleus and their transcriptional activity. Interestingly, it was found that Src, Syk, IRAK1, and IRAK4 responsible for NF-κB and AP-1 activation were identified as the direct molecular targets of KF by kinase enzyme assays and by measuring their phosphorylation patterns. KF was revealed to have in vitro and in vivo anti-inflammatory activity by the direct suppression of Src, Syk, IRAK1, and IRAK4, involved in the activation of NF-κB and AP-1. PMID:25922567

  4. Total synthesis of cordatanine, structural reassignment of drymaritin, and anti-inflammatory activity of synthetic precursors.

    PubMed

    Fang, Hsin Wei; Liao, Yu-Ren; Hwang, Tsong-Long; Shieh, Po-Chuen; Lee, Kuo-Hsiung; Hung, Hsin-Yi; Wu, Tian-Shung

    2015-09-15

    In this study, cordatanine, with a canthin-6-one skeleton, was totally synthesized in four steps via a Pictet-Spengler reaction using tryptamine and methyl glyoxylate with a total yield of 8%. The NMR spectra of synthesized cordatanine compared well with those of drymaritin isolated by Hsieh et al., confirming the need to revise the original structural assignment. In addition, kumujian A, a synthetic intermediate, showed significant anti-inflammatory effects, inhibiting both superoxide anion generation (IC50 4.87 μg/mL) and elastase release (IC50 6.29 μg/mL). PMID:26248804

  5. Anti-inflammatory properties of diclofenac transition metalloelement complexes.

    PubMed

    Konstandinidou, M; Kourounakis, A; Yiangou, M; Hadjipetrou, L; Kovala-Demertzi, D; Hadjikakou, S; Demertzis, M

    1998-04-01

    As part of our research into understanding drug-metalloelement interactions, we have prepared complexes of Cu(II), Co(II), Ni(II), Mn(II), Fe(II), Fe(III), and Pd(II) with Diclofenac, in order to investigate their anti-inflammatory activity. Their inhibitory effects on rat or mouse paw edema induced by Carrageenan, Con-A, Nystatin, and Baker's yeast were compared with those of Diclofenac. Furthermore, the action of Diclofenac's metalloelement complexes on phagocytosis of yeast by rat peritoneal cells, as well as the capacity of some of the metalloelement complexes to inhibit lipid peroxidation of liver microsomal membranes was also investigated. These complexes exhibited a strong inhibitory effect on Carrageenan-, ConA-, and Nystatin-induced edemas (35-80% inhibition) comparable to the inhibition caused by Diclofenac (61-76% inhibition). Furthermore, complexes with Co(II), Ni(II), Pd(II), and Mn(II) were found to have an anti-inflammatory profile (35-50% inhibition) superior to diclofenac (17% inhibition) when inhibiting inflammations due to Baker's yeast, the mechanism of which involves mainly the activation of lipoxygenase and/or complement system. Complexes of Ni(II) and Pd(II), which showed significant inhibition of induced-edemas in rats, were also tested in mice at lower and higher doses and showed a significant dose-dependent inhibition of edemas in mice. Some of these complexes also interfere with in vitro phagocytosis. The most active anti-inflammatory complexes Co(II), Pd(II), and Ni(II), also offered significant protection against lipid peroxidation in vitro, acting as antioxidant compounds, properties that are not demonstrated by Diclofenac. Finally, it is noted that almost all metalloelement complexes of Diclofenac showed high anti-inflammatory activity at molecular concentrations much lower than that of Diclofenac. From the present study it is suggested that the anti-inflammatory activity of Diclofenac is enhanced by the formation of coordination

  6. Cyclooxygenase-2 and p53 expressions in endometrial cancer.

    PubMed

    Jeon, Yong-Tark; Kang, Sokbom; Kang, Dae-Hee; Yoo, Keun-Young; Park, In-Ae; Bang, Yung-Jue; Kim, Jae Weon; Park, Noh-Hyun; Kang, Soon-Beom; Lee, Hyo-Pyo; Song, Yong-Sang

    2004-09-01

    Cyclooxygenase-2 (COX-2) has been known to be related with various types of carcinoma, but we have insufficient knowledge about the association between COX-2 and endometrial cancer. Many have reported a close relationship between p53 expression and a poor prognosis in endometrial cancer, but it is unclear whether p53 is an independent prognostic factor. To clarify these uncertainties, we examined the expressions of COX-2 and p53 in endometrial cancer tissues. The study was carried on 152 endometrial cancer patients who had operation at Seoul National University Hospital. Paraffin-embedded tissue blocks were sectioned and immunostained using monoclonal anti-COX-2 and anti-p53 antibodies. Twenty-seven (17.8%) specimens stained as COX-2 positive. COX-2 positivity was more frequently observed in postmenopausal patients than in premenopausal patients (8.8% versus 25.0%; P = 0.009). However, COX-2 positivity did not show a statistically significant association with any other clinicopathologic characteristic (parity, body mass index, histotype, International Federation of Gynecology and Obstetrics stage, grade, lymph node metastasis, deep myometrial invasion, or p53 overexpression). Thirty-one (20.4%) specimens showed p53 overexpression and this was significantly correlated with an advanced stage (P = 0.001), poor differentiation (P < 0.001), lymph node metastasis (P = 0.012), and deep myometrial invasion (P < 0.001). Multivariate Cox regression analysis showed that advanced stage was an independent prognostic factor of survival, but p53 overexpression was not. COX-2 may be associated with endometrial cancer carcinogenesis during the postmenopausal period but not with tumor aggressiveness and p53 overexpression. The p53 overexpression was found to be strongly associated with endometrial cancer aggressiveness.

  7. Cyclooxygenase-2 Mediates Anandamide Metabolism in the Mouse Brain

    PubMed Central

    Kaczocha, Martin

    2010-01-01

    Cyclooxygenase-2 (COX-2) mediates inflammation and contributes to neurodegeneration. Best known for its pathological up-regulation, COX-2 is also constitutively expressed within the brain and mediates synaptic transmission through prostaglandin synthesis. Along with arachidonic acid, COX-2 oxygenates the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol in vitro. Inhibition of COX-2 enhances retrograde signaling in the hippocampus, suggesting COX-2 mediates endocannabinoid tone in healthy brain. The degree to which COX-2 may regulate endocannabinoid metabolism in vivo is currently unclear. Therefore, we explored the effect of COX-2 inhibition on [3H]AEA metabolism in mouse brain. Although AEA is hydrolyzed primarily by fatty acid amide hydrolase (FAAH), ex vivo autoradiography revealed that COX-2 inhibition by nimesulide redirected [3H]AEA substrate from COX-2 to FAAH in the cortex, hippocampus, thalamus, and periaqueductal gray. These data indicate that COX-2 possesses the capacity to metabolize AEA in vivo and can compete with FAAH for AEA in several brain regions. Temporal fluctuations in COX-2 expression were observed in the brain, with an increase in COX-2 protein and mRNA in the hippocampus at midnight compared with noon. COX-2 immunolocalization was robust in the hippocampus and several cortical regions. Although most regions exhibited no temporal changes in COX-2 immunolocalization, increased numbers of immunoreactive cells were detected at midnight in layers II and III of the somatosensory and visual cortices. These temporal variations in COX-2 distribution reduced the enzyme's contribution toward [3H]AEA metabolism in the somatosensory cortex at midnight. Taken together, our findings establish COX-2 as a mediator of regional AEA metabolism in mouse brain. PMID:20702753

  8. Competition and allostery govern substrate selectivity of cyclooxygenase-2

    PubMed Central

    Mitchener, Michelle M.; Hermanson, Daniel J.; Shockley, Erin M.; Brown, H. Alex; Lindsley, Craig W.; Reese, Jeff; Rouzer, Carol A.; Lopez, Carlos F.; Marnett, Lawrence J.

    2015-01-01

    Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and its ester analog, 2-arachidonoylglycerol (2-AG), to prostaglandins (PGs) and prostaglandin glyceryl esters (PG-Gs), respectively. Although the efficiency of oxygenation of these substrates by COX-2 in vitro is similar, cellular biosynthesis of PGs far exceeds that of PG-Gs. Evidence that the COX enzymes are functional heterodimers suggests that competitive interaction of AA and 2-AG at the allosteric site of COX-2 might result in differential regulation of the oxygenation of the two substrates when both are present. Modulation of AA levels in RAW264.7 macrophages uncovered an inverse correlation between cellular AA levels and PG-G biosynthesis. In vitro kinetic analysis using purified protein demonstrated that the inhibition of 2-AG oxygenation by high concentrations of AA far exceeded the inhibition of AA oxygenation by high concentrations of 2-AG. An unbiased systems-based mechanistic model of the kinetic data revealed that binding of AA or 2-AG at the allosteric site of COX-2 results in a decreased catalytic efficiency of the enzyme toward 2-AG, whereas 2-AG binding at the allosteric site increases COX-2’s efficiency toward AA. The results suggest that substrates interact with COX-2 via multiple potential complexes involving binding to both the catalytic and allosteric sites. Competition between AA and 2-AG for these sites, combined with differential allosteric modulation, gives rise to a complex interplay between the substrates, leading to preferential oxygenation of AA. PMID:26392530

  9. Cyclooxygenase 2-implications on maintenance of gastric mucosal integrity and ulcer healing: controversial issues and perspectives.

    PubMed

    Halter, F; Tarnawski, A S; Schmassmann, A; Peskar, B M

    2001-09-01

    Cyclooxygenase (COX), the key enzyme for synthesis of prostaglandins, exists in two isoforms (COX-1 and COX-2). COX-1 is constitutively expressed in the gastrointestinal tract in large quantities and has been suggested to maintain mucosal integrity through continuous generation of prostaglandins. COX-2 is induced predominantly during inflammation. On this premise selective COX-2 inhibitors not affecting COX-1 in the gastrointestinal tract mucosa have been developed as gastrointestinal sparing anti-inflammatory drugs. They appear to be well tolerated by experimental animals and humans following acute and chronic (three or more months) administration. However, there is increasing evidence that COX-2 has a greater physiological role than merely mediating pain and inflammation. Thus gastric and intestinal lesions do not develop when COX-1 is inhibited but only when the activity of both COX-1 and COX-2 is suppressed. Selective COX-2 inhibitors delay the healing of experimental gastric ulcers to the same extent as non-COX-2 specific non-steroidal anti-inflammatory drugs (NSAIDs). Moreover, when given chronically to experimental animals, they can activate experimental colitis and cause intestinal perforation. The direct involvement of COX-2 in ulcer healing has been supported by observations that expression of COX-2 mRNA and protein is upregulated at the ulcer margin in a temporal and spatial relation to enhanced epithelial cell proliferation and increased expression of growth factors. Moreover, there is increasing evidence that upregulation of COX-2 mRNA and protein occurs during exposure of the gastric mucosa to noxious agents or to ischaemia-reperfusion. These observations support the concept that COX-2 represents (in addition to COX-1) a further line of defence for the gastrointestinal mucosa necessary for maintenance of mucosal integrity and ulcer healing.

  10. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves

    PubMed Central

    Alam, Badrul; Akter, Fahima; Parvin, Nahida; Sharmin Pia, Rashna; Akter, Sharmin; Chowdhury, Jesmin; Sifath-E-Jahan, Kazi; Haque, Ekramul

    2013-01-01

    Objective: The present study was designed to evaluate the antioxidant, analgesic, and anti-inflammatory activities of the methanolic extract of Piper betle leaves (MPBL). Materials and Methods: MPBL was evaluated for anti-inflammatory activity using carrageenan-induced hind paw edema model. Analgesic activity of MPBL was evaluated by hot plate, writhing, and formalin tests. Total phenolic and flavonoids content, total antioxidant activity, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, peroxynitrate (ONOO) as well as inhibition of total ROS generation, and assessment of reducing power were used to evaluate antioxidant potential of MPBL. Results: The extract of MPBL, at the dose of 100 and 200 mg/kg, produced a significant (p<0.05) increase in pain threshold in hot plate method whereas significantly (p<0.05) reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose-dependent manner. The same ranges of doses of MPBL caused significant (p<0.05) inhibition of carrageenan-induced paw edema after 4 h in a dose-dependent manner. In DPPH, ONOO-, and total ROS scavenging method, MPBL showed good antioxidant potentiality with the IC50 value of 16.33±1.02, 25.16±0.61 , and 41.72±0.48 µg/ml, respectively with a significant (p<0.05) good reducing power. Conclusion: The findings of the study suggested that MPBL has strong analgesic, anti-inflammatory, and antioxidant effects, conforming the traditional use of this plant for inflammatory pain alleviation to its antioxidant potentiality. PMID:25050265

  11. Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis.

    PubMed

    Rosillo, María Ángeles; Alcaraz, María José; Sánchez-Hidalgo, Marina; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina; Ferrándiz, María Luisa

    2014-12-01

    The consumption of extra virgin olive oil (EVOO) in Mediterranean countries has shown beneficial effects. A wide range of evidence indicates that phenolic compounds present in EVOO are endowed with anti-inflammatory properties. In this work, we evaluated the effects of EVOO-polyphenol extract (PE) in a model of rheumatoid arthritis, the collagen-induced arthritis model in mice. On day 0, DBA-1/J mice were immunized with bovine type II collagen. On day 21, mice received a booster injection. PE (100 and 200 mg/kg) was orally administered once a day from days 29 to 41 to arthritic mice. We have demonstrated that PE decreases joint edema, cell migration, cartilage degradation and bone erosion. PE significantly reduced the levels of proinflammatory cytokines and prostaglandin E2 in the joint as well as the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. Our data indicate that PE inhibits c-Jun N-terminal kinase, p38 and signal transducer and activator of transcription-3. In addition, PE decreases nuclear factor κB translocation leading to the down-regulation of the arthritic process. These results support the interest of natural diet components in the development of therapeutic products for arthritic conditions.

  12. Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis.

    PubMed

    Rosillo, María Ángeles; Alcaraz, María José; Sánchez-Hidalgo, Marina; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina; Ferrándiz, María Luisa

    2014-12-01

    The consumption of extra virgin olive oil (EVOO) in Mediterranean countries has shown beneficial effects. A wide range of evidence indicates that phenolic compounds present in EVOO are endowed with anti-inflammatory properties. In this work, we evaluated the effects of EVOO-polyphenol extract (PE) in a model of rheumatoid arthritis, the collagen-induced arthritis model in mice. On day 0, DBA-1/J mice were immunized with bovine type II collagen. On day 21, mice received a booster injection. PE (100 and 200 mg/kg) was orally administered once a day from days 29 to 41 to arthritic mice. We have demonstrated that PE decreases joint edema, cell migration, cartilage degradation and bone erosion. PE significantly reduced the levels of proinflammatory cytokines and prostaglandin E2 in the joint as well as the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. Our data indicate that PE inhibits c-Jun N-terminal kinase, p38 and signal transducer and activator of transcription-3. In addition, PE decreases nuclear factor κB translocation leading to the down-regulation of the arthritic process. These results support the interest of natural diet components in the development of therapeutic products for arthritic conditions. PMID:25294776

  13. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity.

    PubMed

    Stebbins, Nicholas D; Yu, Weiling; Uhrich, Kathryn E

    2015-11-01

    Sugar alcohols, such as mannitol and xylitol, are biocompatible polyols that have been used to make highly cross-linked polyester elastomers and dendrimers for tissue engineering and drug delivery. However, research that utilizes the secondary hydroxyl groups as sites for pendant bioactive attachment and subsequent polymerization is limited. This work is the first report of a linear, completely biodegradable polymer with a sugar alcohol backbone and chemically incorporated pendant bioactives that exhibits sustained bioactive release and high bioactive loading (∼70%). With four pendant esters per repeat unit, this poly(anhydride-ester) has high loading and biodegrades into three biocompatible products: bioactive, sugar alcohol, and alkyl-based diacid. Ibuprofen serves as a representative bioactive, whereas mannitol is a representative polyol. Polymerization was achieved through reaction with (trimethylsilyl)ethoxyacetylene. Drug release via polymer degradation was quantified by high performance liquid chromatography. Additionally, a cytocompatibility study with fibroblast cells was performed to elucidate the polymer's suitability for in vivo use and a cyclooxygenase-2 (COX-2) assay was performed on the degradation media to ensure that released ibuprofen retained its anti-inflammatory activity. This work enables the future development of novel, biodegradable polymers exhibiting two key features: (i) polymer backbones with easily modified pendant groups, such as targeting moieties, and (ii) high drug loading using a multitude of bioactive classes.

  14. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide.

    PubMed

    Connelly, L; Palacios-Callender, M; Ameixa, C; Moncada, S; Hobbs, A J

    2001-03-15

    Expression of inducible NO synthase (iNOS) by macrophages is a prerequisite for the production of high output NO, which mediates many bactericidal and tumoricidal actions of these immune cells. The expression of iNOS in mammalian cells is governed predominantly by the transcription factor, NF-kappa B, which regulates the expression of many host defense proteins. In the present study, we characterize a novel, biphasic effect of NO on NF-kappa B activity in murine macrophages. This mechanism depends on the local concentration of NO and enables it both to up- and down-regulate the expression of host defense proteins including iNOS, cyclooxygenase-2, and IL-6. This biphasic activity of NO appears to play a pivotal role in the time course of activation of these immune cells and, by inference, in facilitating the initiation of a defense response against pathogenic stimuli and in its termination to limit tissue damage. This mechanism may explain at least in part the reported ability of NO to act in both a pro- and anti-inflammatory manner.

  15. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Mathew, Omana P.; Ranganna, Kasturi; Milton, Shirlette G.

    2014-01-01

    Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases. PMID:25390157

  16. Antipyretic and anti-inflammatory effects of asiaticoside in lipopolysaccharide-treated rat through up-regulation of heme oxygenase-1.

    PubMed

    Wan, JingYuan; Gong, Xia; Jiang, Rong; Zhang, Zhuo; Zhang, Li

    2013-08-01

    Asiaticoside (AS), a triterpenoid isolated from Centella asiatica, has been found to exhibit antioxidant and anti-inflammatory activities in several experimental animal models. However, the underlying mechanisms remain elusive. In this study, we provide experimental evidences that AS dose-dependently inhibited lipopolysaccharide (LPS)-induced fever and inflammatory response, including serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, liver myeloperoxidase (MPO) activity, brain cyclooxygenase-2 (COX-2) protein expression and prostaglandin E2 (PGE2 ) production. Interestingly, AS increased serum IL-10 level, liver heme oxygenase-1 (HO-1) protein expression and activity. Furthermore, we found that the suppressive effects of AS on LPS-induced fever and inflammation were reversed by pretreatment with ZnPPIX, a HO-1 activity inhibitor. In summary, our results suggest that AS has the antipyretic and anti-inflammatory effects in LPS-treated rat. These effects could be associated with the inhibition of pro-inflammatory mediators, including TNF-α and IL-6 levels, COX-2 expression and PGE2 production, as well as MPO activity, which might be mediated by the up-regulation of HO-1.

  17. The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-06-15

    In this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage. The results showed that GFPH suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently. The enzyme-linked immunosorbent assay (ELISA) kit clearly demonstrated that GFPH significantly reduced the production of pro-inflammatory cytokines such as, interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. Moreover, GFPH reduced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results indicate that the inhibitory effects of GFPH on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPKs signaling pathways. Therefore, these results suggest that flatfish byproducts are latent bioactive resources and GFPH may have potential as a therapeutic agent in the treatment of various inflammatory diseases.

  18. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells.

    PubMed

    Tan, Cong-ping; Hou, Yun-hua

    2014-04-01

    Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1β, TNF-α, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.

  19. Anti-Inflammatory Effect of Procyanidins from Wild Grape (Vitis amurensis) Seeds in LPS-Induced RAW 264.7 Cells

    PubMed Central

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1β. Moreover, WGP prevented nuclear translocation of nuclear factor-κB (NFκB) p65 subunit by reducing inhibitory κB-α (IκBα) and NFκB phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NFκB and p38 MAPK pathway. PMID:24260615

  20. Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Sohn, Sang-Hyun; Yun, Bong-Sik; Kim, So-Young; Choi, Wahn-Soo; Jeon, Hyun-Soo; Yoo, Jun-Sik; Kim, Si-Kwan

    2013-01-01

    We isolated a sesquiterpene lactone from the methanol extract of the roots of Cosmos bipinnatus, namely, MDI (a mixture of dihydrocallitrisin and isohelenin). The anti-inflammatory activity of MDI was evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. MDI significantly inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2. Consistent with these results, the production of NO and prostaglandin E2 (PGE2) was suggested to be suppressed by MDI in a concentration-dependent manner (IC50 value was 0.94 and 2.88 µg mL(-1) for NO and PGE2, respectively). In addition, MDI significantly inhibited the expressions of pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ and TNF-α. Furthermore, MDI attenuated DNA-binding activity of NF-κB by inhibiting the phosphorylation of IκB. These results indicate that MDI isolated from the roots of C. bipinnatus shows anti-inflammatory activity in LPS-stimulated murine macrophages by modulating the NF-κB pathway.

  1. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells.

    PubMed

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1 β . Moreover, WGP prevented nuclear translocation of nuclear factor- κ B (NF κ B) p65 subunit by reducing inhibitory κ B- α (I κ B α) and NF κ B phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NF κ B and p38 MAPK pathway.

  2. Anti-inflammatory ligustilides from Ligusticum chuanxiong Hort.

    PubMed

    Huang, Jian; Lu, Xiao-Qing; Zhang, Cui; Lu, Jin; Li, Guo-Yu; Lin, Rui-Chao; Wang, Jin-Hui

    2013-12-01

    Four new ligustilides chuanxiongnolide R1 (1), chuanxiongnolide R2 (2), chuanxiongdiolide R1 (3) and chuanxiongdiolide R2 (4) together with eight known derivatives (5-12) were isolated from the root of Ligusticum chuanxiong Hort. Their structures were elucidated by HR-ESI-MS, UV, IR, 1D and 2D NMR (HSQC, HMBC, (1)H-(1)H COSY, NOESY) methods. The absolute configurations were confirmed via the circular dichroism (CD) spectrum. The anti-inflammatory assay in LPS-triggered RAW 264.7 macrophages was carried out on the twelve compounds. 1, 3, 5 and 6 showed significant inhibitory effects against LPS-induced NO production. PMID:23973655

  3. Anti-inflammatory sesquiterpene lactones from Lourteigia ballotaefolia.

    PubMed

    Rosas-Romero, Alfredo; Manchado, Carlos Martinez; Crescente, Oscar; Acosta, Mercedes; Curini, Massimo; Epifano, Francesco; Marcotullio, Maria Carla; Rosati, Ornelio; Tubaro, Aurelia; Sosa, Silvio

    2002-09-01

    Three sesquiterpene lactones were isolated from Lourteigia ballotaefolia (H. B. K.). 9beta-hydroxy-atripliciolide-8- O-tiglate ( 1) was isolated for the first time from this plant and was previously reported in Conocliniopsis prasiifolia (DC) K. et R., 9beta-hydroxy-atripliciolide-8- O-(5'-acetoxytiglate) ( 2) had been already reported in this species. The minor component, 9beta-(tigloyloxy)-atripliciolide, is a new compound. The anti-inflammatory activity of compounds 1 and 2 was evaluated using the croton oil ear test in mice.

  4. Anti-inflammatory and immunosuppressive drugs and reproduction

    PubMed Central

    Østensen, Monika; Khamashta, Munther; Lockshin, Michael; Parke, Ann; Brucato, Antonio; Carp, Howard; Doria, Andrea; Rai, Raj; Meroni, Pierluigi; Cetin, Irene; Derksen, Ronald; Branch, Ware; Motta, Mario; Gordon, Caroline; Ruiz-Irastorza, Guillermo; Spinillo, Arsenio; Friedman, Deborah; Cimaz, Rolando; Czeizel, Andrew; Piette, Jean Charles; Cervera, Ricard; Levy, Roger A; Clementi, Maurizio; De Carolis, Sara; Petri, Michelle; Shoenfeld, Yehuda; Faden, David; Valesini, Guido; Tincani, Angela

    2006-01-01

    Rheumatic diseases in women of childbearing years may necessitate drug treatment during a pregnancy, to control maternal disease activity and to ensure a successful pregnancy outcome. This survey is based on a consensus workshop of international experts discussing effects of anti-inflammatory, immunosuppressive and biological drugs during pregnancy and lactation. In addition, effects of these drugs on male and female fertility and possible long-term effects on infants exposed to drugs antenatally are discussed where data were available. Recommendations for drug treatment during pregnancy and lactation are given. PMID:16712713

  5. Aerosolized Surfactants, Anti-Inflammatory Drugs, and Analgesics.

    PubMed

    Willson, Douglas F

    2015-06-01

    Drug delivery by aerosol may have several advantages over other modes, particularly if the lung is the target organ. Aerosol delivery may allow achievement of higher concentrations while minimizing systemic effects and offers convenience, rapid onset of action, and avoidance of the needles and sterile technique necessary with intravenous drug administration. Aerosol delivery may change the pharmacokinetics of many drugs, however, and an awareness of the caveats of aerosolized drug delivery is mandatory to ensure both safety and adequate drug delivery. This paper discusses the administration of surfactants, anti-inflammatory agents, and analgesics by the aerosol route.

  6. Nitro-fatty acids: novel anti-inflammatory lipid mediators

    PubMed Central

    Rubbo, H.

    2013-01-01

    Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases. PMID:24068188

  7. Anti-inflammatory activity of Abutilon indicum extract.

    PubMed

    Tripathi, Priyanka; Chauhan, N S; Patel, J R

    2012-01-01

    Abutilon indicum Linn. had been broadly used for its reported biological activities in indigenous system of medicine. The ethanolic extract of the whole plant of A. indicum Linn. was evaluated for its anti-inflammatory activity at doses 250, 500 and 750 mg kg⁻¹ using the carrageenan-induced paw oedema in healthy Wistar albino rats. Results of in vivo activity led to the conclusion that the ethanolic extract of A. indicum showed predominantly significant activity in a dose-dependent manner, which is comparable to the reference standard ibuprofen. The results prove the traditional use of plant in the treatment of inflammation. PMID:21999427

  8. Synthesis and anti-inflammatory activity of indole glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2014-01-15

    The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs. PMID:24360830

  9. Topical Nonsteroidal Anti-Inflammatory Drugs for Macular Edema

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; dell'Omo, Roberto

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are nowadays widely used in ophthalmology to reduce eye inflammation, pain, and cystoid macular edema associated with cataract surgery. Recently, new topical NSAIDs have been approved for topical ophthalmic use, allowing for greater drug penetration into the vitreous. Hence, new therapeutic effects can be achieved, such as reduction of exudation secondary to age-related macular degeneration or diabetic maculopathy. We provide an updated review on the clinical use of NSAIDs for retinal diseases, with a focus on the potential future applications. PMID:24227908

  10. Nonsteroidal Anti-Inflammatory Drugs for Retinal Disease

    PubMed Central

    Schoenberger, Scott D.; Kim, Stephen J.

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used extensively in ophthalmology for pain and photophobia after photorefractive surgery and to reduce miosis, inflammation, and cystoid macular edema following cataract surgery. In recent years, the US Food and Drug Administration has approved new topical NSAIDs and previously approved NSAIDs have been reformulated. These changes may allow for greater drug penetration into the retina and thereby offer additional therapeutic advantages. For example, therapeutic effects on diabetic retinopathy and age-related macular degeneration may now be achievable. We provide an updated review on the scientific rationale and clinical use of NSAIDs for retinal disease. PMID:23365785

  11. Natural anti-inflammatory agents for pain relief

    PubMed Central

    Maroon, Joseph C.; Bost, Jeffrey W.; Maroon, Adara

    2010-01-01

    The use of both over-the-counter and prescription nonsteroidal medications is frequently recommended in a typical neurosurgical practice. But persistent long-term use safety concerns must be considered when prescribing these medications for chronic and degenerative pain conditions. This article is a literature review of the biochemical pathways of inflammatory pain, the potentially serious side effects of nonsteroidal drugs and commonly used and clinically studied natural alternative anti-inflammatory supplements. Although nonsteroidal medications can be effective, herbs and dietary supplements may offer a safer, and often an effective, alternative treatment for pain relief, especially for long-term use. PMID:21206541

  12. Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice

    PubMed Central

    Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea

    2012-01-01

    Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374

  13. NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts.

    PubMed

    González-Sarrías, Antonio; Larrosa, Mar; Tomás-Barberán, Francisco Abraham; Dolara, Piero; Espín, Juan Carlos

    2010-08-01

    Previous studies have reported the anti-inflammatory properties of pomegranate extracts, suggesting that ellagitannins (ET) and ellagic acid (EA) are the main anti-inflammatory compounds. However, both ET and EA are metabolised in vivo by the gut microbiota to yield urolithins (Uro) which can be found in the gut and in systemic bloodstream. The present study was carried out to evaluate the individual effect of EA and their microbiota-derived metabolites Uro on colon fibroblasts upon IL-1beta treatment as an in vitro inflammation model. Uro-A and Uro-B (10 microm) inhibited PGE2 production (85 and 40 %, respectively) after IL-1beta stimulation, whereas EA did not show any effect. Uro-A, but not Uro-B, down-regulated cyclo-oxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) mRNA expression and protein levels. Both Uro inhibited NF-kappaB translocation to nucleus. Slight but significant effects were found in the activation of mitogen-activated protein kinase (MAPK) pathways. Uro-A lowered c-Jun N-terminal kinase phosphorylation state, and both Uro inhibited p38 activation. No metabolites derived from Uro or EA were found in the cell media upon incubation of EA or Uro with the cells, and only traces of the compounds were found inside the cells. The present results suggest that Uro, mainly Uro-A, are the main compounds that are responsible for the pomegranate anti-inflammatory properties. The mechanism of action implicated seems to be via the inhibition of activation of NF-kappaB and MAPK, down-regulation of COX-2 and mPGES-1 expressions, and consequently,via the reduction of PGE2 production. Taking into account that Uro did not enter the cells, a competitive binding for IL-1beta membrane receptor cannot be discarded.

  14. The Anti-inflammatory Effect of the CXCR4 Antagonist-N15P Peptide and Its Modulation on Inflammation-Associated Mediators in LPS-Induced PBMC.

    PubMed

    Mo, Xue-mei; Sun, Han-xiao

    2015-01-01

    Inflammation was the important pathological process of many disease developments, but current therapeutic means for inflammatory diseases are not satisfactory. Chemokines and their receptors represent valuable targets for anti-inflammatory drug discovery. The N15P polypeptide (sequence: LGASWHRPDKCCLGY) is independently developed by our research group, it is a new CXCR4 antagonist drug derived from viral macrophage inflammatory protein-II (vMIP-II). This study aims to clarify the anti-inflammatory potency of N15P polypeptide on the lipopolysaccharide (LPS)-induced inflammation in vitro. In this study, we evaluated the anti-inflammatory effects of N15P polypeptide by the LPS-induced peripheral blood mononuclear cell (PBMC) model and measured the level of inflammatory factors (tumor necrosis factor alpha (TNF-α), IL-6, IL-8, nuclear factor kappaB (NF-κB), cyclooxygenase-2 (COX-2), Toll-like receptor 4 (TLR4), MyD88, phosphoinositide 3-kinase (PI3K), and Akt). The messenger RNA (mRNA) expressions of inflammatory factors were analyzed by real-time PCR (RT-PCR) microarray analysis, and the production of inflammatory factors was measured further by enzyme-linked immunosorbent assay (ELISA) and Western blot. The results showed that the expression of inflammatory factors (TNF-α, IL-6, IL-8, NF-κB, COX-2, TLR4, MyD88, PI3K, and Akt) was downregulated by N15P peptide, suggesting that N15P peptide has a strong inhibitory effect on the inflammatory responses induced by LPS.

  15. Anti-inflammatory mechanisms of the annexin A1 protein and its mimetic peptide Ac2-26 in models of ocular inflammation in vivo and in vitro.

    PubMed

    Girol, Ana P; Mimura, Kallyne K O; Drewes, Carine C; Bolonheis, Simone M; Solito, Egle; Farsky, Sandra H P; Gil, Cristiane D; Oliani, Sonia M

    2013-06-01

    Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1(-/-) mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach.

  16. Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages.

    PubMed

    Kim, Kyoung-Su; Lee, Dong-Sung; Kim, Dong-Cheol; Yoon, Chi-Su; Ko, Wonmin; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA) and betulinic acid (BA), both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB) pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO)-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE₂, TNF-α, IL-1β, IL-6), by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki. PMID:27618005

  17. Anti-inflammatory effects of fangchinoline and tetrandrine.

    PubMed

    Choi, H S; Kim, H S; Min, K R; Kim, Y; Lim, H K; Chang, Y K; Chung, M W

    2000-02-01

    Fangchinoline and tetrandrine are the major alkaloids from Stephania tetrandrae S. Moore which has been used traditionally for the treatment of inflammatory diseases in oriental countries including Korea. Both fangchinoline and tetrandrine showed anti-inflammatory effects on mouse ear edema induced by croton oil. In addition, the effects of fangchinoline and tetrandrine on cyclooxygenase, murine interleukin-5 (mIL-5) and human interleukin-6 (hIL-6) were examined in vitro to investigate the anti-inflammatory action mechanisms. One hundred micromolar of fangchinoline showed 35% of inhibition on cyclooxygenase, but the same concentration of tetrandrine did not show any inhibition. On the other hand, 12.5 microM of tetrandrine exhibited 95% of inhibition on mIL-5 activity, while fangchinoline did not show any effects. However, 4 microM of fangchinoline and 6 microM of tetrandrine showed 63 and 86% of inhibitions on hIL-6 activity, respectively. These results suggest that biochemical mechanisms of fangchinoline and tetrandrine on anti-inflammation are significantly different even though they are similar in chemical structure. PMID:10687873

  18. Oncostatin M in the anti-inflammatory response

    PubMed Central

    Wahl, A; Wallace, P

    2001-01-01

    Oncostatin M (OM) is a pleiotropic cytokine of the interleukin 6 family, whose in vivo properties and physiological function remain in dispute and poorly defined. These in vivo studies strongly suggest that OM is anabolic, promoting wound healing and bone formation, and anti-inflammatory. In models of inflammation OM is produced late in the cytokine response and protects from lipopolysaccharide (LPS)-induced toxicities, promoting the re-establishment of homoeostasis by cooperating with proinflammatory cytokines and acute phase molecules to alter and attenuate the inflammatory response. Administration of OM inhibited bacterial LPS-induced production of tumour necrosis factor α and septic lethality in a dose dependent manner. Consistent with these findings, in animal models of chronic inflammatory disease OM potently suppressed inflammation and tissue destruction in murine models of rheumatoid arthritis and multiple sclerosis. T cell function and antibody production were not impaired by OM treatment. Taken together, these data indicate that the activities of this cytokine in vivo are anti-inflammatory without concordant immunosuppression.

 PMID:11890661

  19. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  20. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris.

    PubMed

    Chiu, Ching-Peng; Liu, Shan-Chi; Tang, Chih-Hsin; Chan, You; El-Shazly, Mohamed; Lee, Chia-Lin; Du, Ying-Chi; Wu, Tung-Ying; Chang, Fang-Rong; Wu, Yang-Chang

    2016-02-24

    Cordyceps militaris (bei-chong-chaw, northern worm grass) is a precious and edible entomopathogenic fungus, which is widely used in traditional Chinese medicine (TCM) as a general booster for the nervous system, metabolism, and immunity. Saccharides, nucleosides, mannitol, and sterols were isolated from this fungus. The biological activity of C. militaris was attributed to the saccharide and nucleoside contents. In this study, the aqueous methanolic fraction of C. militaris fruiting bodies exhibited a significant anti-inflammatory activity. Bioactivity-guided fractionation of the active fraction led to the isolation of eight compounds, including one new and two known cerebrosides (ceramide derivatives), two nucleosides, and three sterols. Cordycerebroside A (1), the new cerebroside, along with soyacerebroside I (2) and glucocerebroside (3) inhibited the accumulation of pro-inflammatory iNOS protein and reduced the expression of COX-2 protein in LPS-stimulated RAW264.7 macrophages. This is the first study on the isolation of cerebrosides with anti-inflammatory activity from this TCM. PMID:26853111

  1. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  2. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials

    PubMed Central

    Ilinskaya, A N; Dobrovolskaia, M A

    2014-01-01

    Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24724793

  3. Anti-inflammatory strategies in the treatment of schizophrenia.

    PubMed

    Andrade, Chittaranjan

    2016-01-01

    Schizophrenia is a major mental illness with a lifetime prevalence of about 1%. Antipsychotic drugs, with a primary mechanism of action that involves dopamine receptor blockade, are the mainstay in the treatment of the disorder. However, despite optimum antipsychotic treatment, few patients return to pre-morbid levels; the treatment deficit includes refractory positive symptoms, negative symptoms, mood impairments, cognitive impairments, social impairments, and/or a variety of medication-related adverse effects, including extrapyramidal symptoms, metabolic disturbances, hyperprolactinemia, and others. To address these, antipsychotic treatment has been augmented with psychosocial interventions, cognitive rehabilitation, different kinds of electrical and magnetic brain stimulation, and a large range of drugs from the neuropsychiatric as well as, surprise, the general medical pharmacopeia. The pleomorphic pathophysiology of schizophrenia includes abnormalities in immunological and inflammatory pathways, and so it is not surprising that anti-inflammatory drugs have also been trialed as augmentation agents in schizophrenia. This article critically examines the outcomes after augmentation with conventional anti-inflammatory interventions; results from randomized controlled trials do not encourage the use of either aspirin (1000 mg/day) or celecoxib (400 mg/day), both of which have been studied for this indication during the past decade and a half.

  4. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  5. AHR-5850: a potent anti-inflammatory compound.

    PubMed

    Sancilio, L F; Reese, D L; Cheung, S; Alphin, R S

    1977-03-01

    AHR-5850 is a non-steroidal anti-inflammatory compound possessing antipyretic and analgesic properties. AHR-5850 was 16.4 and 22.8 times more potent than phenylbutazone in suppressing acute (Evans blue-carrageenan pleural effusion) and chronic (adjuvant-induced arthritis) inflammation, respectively. The analgesic activity of AHR 5850 was 43 times that of acetylsalicylic acid in the Randall-Selitto assay, and 156 and 56.3 times more potent than phenylbutazone in the acetylcholine-induced abdominal constriction in mice and in the bradykinin-induced nociceptive response in dogs, respectively. Single-dose studies showed that AHR-5850 produced less gastric irritation than acetylsalicylic acid when applied topically to the exposed gastric mucosa of cats or when administered orally to rats and dogs. Upon subchronic oral administration to rats, the therapeutic ratio of AHR-5850 was twice that of phenylbutazone. This was based on the ratio of its potency relative to phenylbutazone in producing intestinal lesions to its anti-inflammatory potency relative to phenylbutazone in the adjuvant-induced arthritis.

  6. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  7. Anti-inflammatory and redox-protective activities of citronellal.

    PubMed

    Melo, Mônica S; Guimarães, Adriana G; Santana, Michele F; Siqueira, Rosana S; De Lima, Amanda Do Carmo B; Dias, Antonio S; Santos, Márcio Roberto V; Onofre, Alexandre S C; Quintans, Jullyana S S; De Sousa, Damião P; Almeida, Jackson R G S; Estevam, Charles S; Araujo, Brancilene S; Quintans-Júnior, Lucindo J

    2011-01-01

    The anti-inflammatory and redox protective effects of the citronellal (CT) were evaluated using in vivo and in vitro tests. Intraperitoneal (i.p.) administration of CT (50, 100, and 200 mg/kg) inhibited (p < 0.05) the carrageenan-induced leukocyte migration to the peritoneal cavity. Additionally, the carrageenan- and arachidonic acid-induced rat hind paw edema was significantly inhibited (p < 0.05) by i.p. administration of 100 and 200 mg/kg of the compound. When the redox activity was evaluated, CT (200 mg/kg) significantly reduced hepatic lipoperoxidation (p < 0.001), as well as oxidation of plasmatic (p < 0.05) and hepatic (p < 0.01) proteins. The results of the present study support the hypothesis that CT possesses anti-inflammatory and redox protective activities. It is suggested that its effects are associated with the inhibition of the enzymes in the arachidonic acid pathway, which prevent cell migration by inhibiting leukotriene production, edema formation and the increase of reactive oxygen species in tissues. Therefore, CT is of potential benefit to manage inflammatory disorders and correlated damages caused by oxidant agents.

  8. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine.

    PubMed

    Caiaffo, Vitor; Oliveira, Belisa D R; de Sá, Fabrício B; Evêncio Neto, Joaquim

    2016-06-01

    Fluoxetine is a selective serotonin uptake inhibitor that has been widely used to determine the neurotransmission of serotonin in the central nervous system. This substance has emerged as the drug of choice for the treatment of depression due to is safer profile, fewer side effects, and greater tolerability. Studies have found the following important functions of fluoxetine related to the central nervous system: neuroprotection; anti-inflammatory properties similar to standard drugs for the treatment of inflammatory conditions; antioxidant properties, contributing to its therapeutic action and an important intracellular mechanism underlying the protective pharmacological effects seen in clinical practice in the treatment of different stress-related adverse health conditions; and antiapoptotic properties, with greater neuron survival and a reduction in apoptosis mediators as well as oxidative substances, such as superoxide dismutase and hydrogen peroxide. The aim of this study was to perform a review of the literature on the important role of fluoxetine in anti-inflammatory, cell survival, and neuron trophicity mechanisms (antiapoptotic properties) as well as its role regarding enzymes of the antioxidant defense system. PMID:27433341

  9. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals.

    PubMed

    Afanas'eva, I B; Ostrakhovitch, E A; Mikhal'chik, E V; Ibragimova, G A; Korkina, L G

    2001-03-15

    The antioxidant and anti-inflammatory activities of two transition metal complexes of bioflavonoid rutin, Fe(rut)Cl(3) and Cu(rut)Cl(2), were studied. It was found that Cu(rut)Cl(2) was a highly efficient in vitro and ex vivo free radical scavenger that sharply decreased (by 2-30 times compared to the parent rutin): oxygen radical production by xanthine oxidase, rat liver microsomes, and rat peritoneal macrophages; the formation of thiobarbituric acid-reactive products in microsomal lipid peroxidation; and the generation of oxygen radicals by broncho-alveolar cells from bleomycin-treated rats. The copper-rutin complex was also a superior inhibitor of inflammatory and fibrotic processes (characterized by such parameters as macrophage/neutrophil ratio, wet lung weight, total protein content, and hydroxyproline concentration) in the bleomycin-treated rats. The antioxidant activity of Fe(rut)Cl(3) was much lower and in some cases approached that of rutin. Fe(rut)Cl(3) also stimulated to some degree spontaneous oxygen radical production by macrophages. We suggested that the superior antioxidant and anti-inflammatory activity of the copper-rutin complex is a consequence of its acquiring the additional superoxide-dismuting copper center. The inhibitory activity of Fe(rut)Cl(3) was lower, probably due to the partial reduction into Fe(rut)Cl(2) in the presence of biological reductants; however, similarly to the copper-rutin complex, this complex efficiently suppressed lung edema. PMID:11266652

  10. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Campos-Fernández, Linda; Alvarado-Salazar, Andres; Esquivel, Rodolfo O.

    2015-08-01

    Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys-Asn-Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  11. A Functional Variant of Elafin With Improved Anti-inflammatory Activity for Pulmonary Inflammation

    PubMed Central

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene MA; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  12. An aqueous extract of Ilex paraguariensis reduces carrageenan-induced edema and inhibits the expression of cyclooxygenase-2 and inducible nitric oxide synthase in animal models of inflammation.

    PubMed

    Schinella, Guillermo; Neyret, Elisa; Cónsole, Gloria; Tournier, Horacio; Prieto, José M; Ríos, José-Luis; Giner, Rosa María

    2014-08-01

    Mate (Ilex paraguariensis) is a highly popular herbal beverage in South America due to its high content of caffeine. Its hypolipidemic and antioxidant properties are of increasing interest in the treatment of cardiovascular disorders and for weight control. In the present study, we show for the first time both the local and systemic anti-inflammatory effects of an aqueous extract of mate in three classic in vivo models, namely acute and chronic 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema and acute carrageenan-induced mouse paw edema. Caffeine, rutin, chlorogenic acid, 3,5-dicafeoyl quinic acid, and 4,5-dicafeoyl quinic acid, accompanied by a complex mixture of other simple phenolic acids, were identified in the extract by HPLC-UV analyses. In the acute edema model, mate extract applied topically (1 mg/ear) halved the 12-O-tetradecanoylphorbol 13-acetate-induced acute edema (50 %) and almost suppressed neutrophil infiltration (93 %), while in the 12-O-tetradecanoylphorbol 13-acetate-induced subchronic inflammation, the edema was significantly reduced by 62 % (1 mg/ear/day × seven doses). The oral administration of the mate extract (250 mg/kg) significantly reduced the carrageenan-induced edema at all time points, an effect which was accompanied by a 43 % and 53 % reduction of the expression of cyclooxygenase-2 and inducible nitric oxide synthase, respectively. Histological analyses confirmed a reduction of epithelium thickness, dermis with mild inflammation, hair follicles with some secretory cells of sebaceous glands, and hypodermic adipocytes. In conclusion, mate is endowed with in vivo preventative or therapeutic anti-inflammatory effects in both local and systemic inflammatory processes.

  13. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    PubMed

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  14. Progestin treatment does not affect expression of cytokines, steroid receptors, oxytocin receptor, and cyclooxygenase 2 in fetal membranes and endometrium from pony mares at parturition.

    PubMed

    Palm, F; Walter, I; Nowotny, N; Budik, S; Helmreich, M; Aurich, C

    2013-01-01

    In most mammalian species, progestins have a major function in maintaining pregnancy. In humans, the physiologic initiation of parturition bears similarities with inflammatory processes and anti-inflammatory effects of progestins have been suggested to postpone birth until term. To examine if comparable effects exist in the horse, mares were treated with the synthetic progestin altrenogest from day 280 of gestation until parturition (N = 5) or were left untreated as controls (N = 7). Tissue from the amnion (AMN), allantochorion (AC), and endometrium (EM) was collected at foaling and mRNA expression of interleukin (IL)-6 and -8, cyclooxygenase 2 (COX2), estrogen receptor (ER) α, progesterone receptor, and oxytocin receptor (OTR) was analyzed. Leukocytes, steroid receptors, COX2, and OTR were also investigated by histology and immunohistochemistry. Expression of mRNA for IL-6 was higher in AMN and EM versus AC (P < 0.01). Expression of IL-8 was higher in AMN than AC and EM (P < 0.001). Steroid receptors and OTR were highly expressed in EM but not in AMN and AC (P < 0.001). Expression of COX2 was most pronounced in AC whereas IL expression was not upregulated in AC. No differences in mRNA expression existed between altrenogest-treated and control animals. Endometrial polymorphonuclear leukocytes were increased in altrenogest-treated mares. Epithelial cells of all tissues, except AC chorionic villi stained progesterone receptor-positive. Staining for ER was more pronounced in the amnion facing epithelium of the AC in altrenogest-treated versus control animals (P < 0.01). In conclusion, COX2 is highly expressed in the AC. The fetal membranes thus might play a role in the onset of labor in the horse. Altrenogest did not affect gene expression in the AMN, AC, and EM but had localized effects on inflammatory cells and ER expression. No anti-inflammatory effects of altrenogest in healthy, late pregnant pony mares could be detected.

  15. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function.

    PubMed

    Shouval, Dror S; Biswas, Amlan; Goettel, Jeremy A; McCann, Katelyn; Conaway, Evan; Redhu, Naresh S; Mascanfroni, Ivan D; Al Adham, Ziad; Lavoie, Sydney; Ibourk, Mouna; Nguyen, Deanna D; Samsom, Janneke N; Escher, Johanna C; Somech, Raz; Weiss, Batia; Beier, Rita; Conklin, Laurie S; Ebens, Christen L; Santos, Fernanda G M S; Ferreira, Alexandre R; Sherlock, Mary; Bhan, Atul K; Müller, Werner; Mora, J Rodrigo; Quintana, Francisco J; Klein, Christoph; Muise, Aleixo M; Horwitz, Bruce H; Snapper, Scott B

    2014-05-15

    Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.

  16. Anti-inflammatory and antifibrotic effects of methyl palmitate

    SciTech Connect

    El-Demerdash, Ebtehal

    2011-08-01

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

  17. New Anti-Inflammatory Metabolites by Microbial Transformation of Medrysone

    PubMed Central

    Bano, Saira; Wahab, Atia-tul-; Yousuf, Sammer; Jabeen, Almas; Mesaik, Mohammad Ahmed; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2016-01-01

    Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines. PMID:27104348

  18. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status

    PubMed Central

    Cameron, Amy R.; Morrison, Vicky L.; Levin, Daniel; Mohan, Mohapradeep; Forteath, Calum; Beall, Craig; McNeilly, Alison D.; Balfour, David J.K.; Savinko, Terhi; Wong, Aaron K.F.; Viollet, Benoit; Sakamoto, Kei; Fagerholm, Susanna C.; Foretz, Marc

    2016-01-01

    Rationale: The diabetes mellitus drug metformin is under investigation in cardiovascular disease, but the molecular mechanisms underlying possible benefits are poorly understood. Objective: Here, we have studied anti-inflammatory effects of the drug and their relationship to antihyperglycemic properties. Methods and Results: In primary hepatocytes from healthy animals, metformin and the IKKβ (inhibitor of kappa B kinase) inhibitor BI605906 both inhibited tumor necrosis factor-α–dependent IκB degradation and expression of proinflammatory mediators interleukin-6, interleukin-1β, and CXCL1/2 (C-X-C motif ligand 1/2). Metformin suppressed IKKα/β activation, an effect that could be separated from some metabolic actions, in that BI605906 did not mimic effects of metformin on lipogenic gene expression, glucose production, and AMP-activated protein kinase activation. Equally AMP-activated protein kinase was not required either for mitochondrial suppression of IκB degradation. Consistent with discrete anti-inflammatory actions, in macrophages, metformin specifically blunted secretion of proinflammatory cytokines, without inhibiting M1/M2 differentiation or activation. In a large treatment naive diabetes mellitus population cohort, we observed differences in the systemic inflammation marker, neutrophil to lymphocyte ratio, after incident treatment with either metformin or sulfonylurea monotherapy. Compared with sulfonylurea exposure, metformin reduced the mean log-transformed neutrophil to lymphocyte ratio after 8 to 16 months by 0.09 U (95% confidence interval, 0.02–0.17; P=0.013) and increased the likelihood that neutrophil to lymphocyte ratio would be lower than baseline after 8 to 16 months (odds ratio, 1.83; 95% confidence interval, 1.22–2.75; P=0.00364). Following up these findings in a double-blind placebo controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin suppressed plasma cytokines including the aging

  19. Nonsteroidal Anti-Inflammatory Drugs and the Kidney

    PubMed Central

    Hörl, Walter H.

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result. PMID:27713354

  20. A Review of Nonsteroidal Anti-inflammatory Drugs.

    PubMed

    Bozimowski, Gregory

    2015-12-01

    It is essential that nurse anesthetists are aware of the potential side effects and interaction of drugs that patients are taking before administering an anesthetic. Among the most commonly taken medications are nonsteroidal anti-inflammatory drugs (NSAIDs). Because these drugs have become almost ubiquitous, there is a risk underestimating potential effects, which may be harmful for the patient undergoing anesthesia and surgery. These effects can range from mild to severe and can be exacerbated by drug interactions with many commonly administered medications. This review of NSAID pharmacology a d interactions is intended to serve as an update and refresher for nurse anesthetists to increase their awareness of the potential untoward effects of postoperative bleeding, gastrointestinal bleeding, asthma, hepatic and renal toxicity and cardiovascular events. PMID:26742337

  1. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases.

  2. [Anti-inflammatory and anti-allergic oral vaccines?].

    PubMed

    Lomholt, H B; Kilian, M

    1996-09-16

    Recent data suggest clinical efficacy of specific antigens delivered at mucosal sites in the treatment of certain organ specific autoimmune diseases. This approach appears non-toxic and has no side effects. Phase I/II human trials on multiple sclerosis and rheumatoid arthritis show positive outcomes. Furthermore, animal studies point to beneficial effects on uveitis, diabetes mellitus, transplantation reactions and allergic diseases. The immunological mechanism is oral tolerance, a well known principle for induction of a systemic hyporesponse to specific antigens. The tolerance is most pronounced on delayed type hypersensibility and IgE-mediated reactions. At least three different mechanisms mediate the tolerance. Low doses of antigen induce active suppression, intermediate doses induce clonal T-cell anergy, and high doses induce clonal T-cell deletion. The recent improvements in the understanding of the mechanisms of oral tolerance have fueled an interest in manipulating this principle to develop anti-inflammatory vaccines. PMID:8966773

  3. Anti-inflammatory polyphenol constituents derived from Cissus pteroclada Hayata.

    PubMed

    Li, Yi-Jie; Xu, Cheng-Ting; Lin, Dan-Dan; Qin, Jiang-Ke; Ye, Gao-Jie; Deng, Qing-Hua

    2016-08-01

    A new bergenin derivative, bergenin-11-O-α-d-galactopyranoside (compound 1), together with seven known polyphenolic compounds, were isolated from the stem of Cissus pteroclada Hayata. The structures of the 8 compounds were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Moreover, the in vitro anti-inflammatory effects of compounds (1-8) in LPS-stimulated murine macrophage RAW 264.7 cells were also investigated. Our results revealed that compound 1 inhibited the production of pro-inflammatory mediators NO and PGE2 and the expression of NF-κB, TNF-α, IL-1β, iNOS and COX-2. PMID:27374242

  4. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains.

    PubMed

    Wu, Zhen; Pan, Daodong; Guo, Yuxing; Sun, Yangying; Zeng, Xiaoqun

    2015-09-01

    Lactobacillus species are potential probiotic bacteria for humans because of their capacity to improve certain biological functions in the host's immune system. In this study, we focused on three peptidoglycans (PGNs) derived from different Lactobacillus strains and investigated each PGN's anti-inflammatory capacity. Each PGN was analyzed using HPLC, MALDI-TOF/TOF MS and FTIR. All three PGNs displayed a β-1,4-linked N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) structure with some modifications in the polypeptides at the end of the MurNAc residue. In a new insight, we found that PGNs inhibit the release of inflammatory cytokines in LPS-induced RAW 264.7 cells; a capacity that may be related to the TLR-4 pathway. The goal for exploring PGN diversity in Lactobacillus strains is to better understand the potential use of Lactobacillus PGNs in food and pharmaceutical applications.

  5. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases. PMID:22414101

  6. [Anti-inflammatory modulators in traumatic brain injury].

    PubMed

    Lescot, T; Marchand-Verrecchia, C; Puybasset, L

    2006-07-01

    Traumatic brain injury leads to primary and secondary brain injuries. Primary brain injury results from mechanical forces applied to the head at the time of impact. Secondary brain injury occurs at some time after the primary impact. Numerous pathophysiological mechanisms have been postulated to explain the progressive tissue damage produced by secondary injuries. The endogenous neuroinflammatory response after traumatic brain injury contributes to the development of blood-brain barrier breakdown, cerebral oedema and neuronal cell death and this has led to various pharmacological therapies to try to limit this type of damage. Studies employing glutamate receptor antagonist for cerebral protection have yielded promising results in laboratory animals but failed to produce clinically significant improvements. The present review will summarize the mechanisms of post traumatic cerebral inflammation with a special focus on the anti-inflammatory drug targets.

  7. A Review of Nonsteroidal Anti-inflammatory Drugs.

    PubMed

    Bozimowski, Gregory

    2015-12-01

    It is essential that nurse anesthetists are aware of the potential side effects and interaction of drugs that patients are taking before administering an anesthetic. Among the most commonly taken medications are nonsteroidal anti-inflammatory drugs (NSAIDs). Because these drugs have become almost ubiquitous, there is a risk underestimating potential effects, which may be harmful for the patient undergoing anesthesia and surgery. These effects can range from mild to severe and can be exacerbated by drug interactions with many commonly administered medications. This review of NSAID pharmacology a d interactions is intended to serve as an update and refresher for nurse anesthetists to increase their awareness of the potential untoward effects of postoperative bleeding, gastrointestinal bleeding, asthma, hepatic and renal toxicity and cardiovascular events.

  8. Anti-inflammatory and antinociceptive activities of azadirachtin in mice.

    PubMed

    Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flávio A; Paulino, Tony P; Coelho, Márcio M; Machado, Renes R

    2014-06-01

    Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation

  9. Chronic Inhibition of Cyclooxygenase-2 Attenuates Antibody Responses against Vaccinia Infection

    PubMed Central

    Bernard, Matthew P.; Bancos, Simona; Chapman, Timothy J.; Ryan, Elizabeth P.; Treanor, John J.; Rose, Robert C.; Topham, David J.; Phipps, Richard P.

    2010-01-01

    Generation of optimal humoral immunity to vaccination is essential to protect against devastating infectious agents such as the variola virus that causes smallpox. Vaccinia virus (VV), employed as a vaccine against smallpox, provides an important model of infection. Herein, we evaluated the importance cyclooxygenase-2 (Cox-2) in immunity to VV using Cox-2 deficient mice and Cox-2 selective inhibitory drugs. The effects of Cox-2 inhibition on antibody responses to live viruses such as vaccinia have not been previously described. Here, we used VV infection in Cox-2 deficient mice and in mice chronically treated with Cox-2 selective inhibitors and show that the frequency of VV-specific B cells was reduced, as well as the production of neutralizing IgG. VV titers were approximately 70 times higher in mice treated with a Cox-2 selective inhibitor. Interestingly, Cox-2 inhibition also reduced the frequency of IFN-γ producing CD4+ T helper cells, important for class switching. The significance of these results is that the chronic use of NSAIDs, and other drugs that inhibit Cox-2 activity or expression, blunt the ability of B cells to produce anti-viral antibodies, thereby making vaccines less effective and possibly increasing susceptibility to viral infection. These new findings support an essential role for Cox-2 in regulating humoral immunity. PMID:19941994

  10. Progressive Metaplastic and Dysplastic Changes in Mouse Pancreas Induced by Cyclooxygenase-2 Overexpression1

    PubMed Central

    Colby, Jennifer KL; Klein, Russell D; McArthur, Mark J; Conti, Claudio J; Kiguchi, Kaoru; Kawamoto, Toru; Riggs, Penny K; Pavone, Amy I; Sawicki, Janet; Fischer, Susan M

    2008-01-01

    Cyclooxygenase-2 (COX-2) overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2) in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas. Histologic evaluation revealed a chronic pancreatitis-like state characterized by acinar-to-ductal metaplasia and a well-vascularized fibroinflammatory stroma that develops by 3 months. By 6 to 8 months, strongly dysplastic features suggestive of pancreatic ductal adenocarcinoma emerge in the metaplastic ducts. Increased proliferation, cellular atypia, and loss of normal cell/tissue organization are typical features in transgenic pancreata. Alterations in biomarkers associated with human inflammatory and neoplastic pancreatic disease were detected using immunohistochemistry. The abnormal pancreatic phenotype can be completely prevented by maintaining mice on a diet containing celecoxib, a well-characterized COX-2 inhibitor. Despite the high degree of atypia, only limited evidence of invasion to adjacent tissues was observed, with no evidence of distant metastases. However, cell lines derived from spontaneous lesions are aggressively tumorigenic when injected into syngeneic or nude mice. The progressive nature of the metaplastic/dysplastic changes observed in this model make it a valuable tool for examining the transition from chronic inflammation to neoplasia. PMID:18670639

  11. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. PMID:26729812

  12. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  13. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages.

    PubMed

    Kim, Hyung Gyun; Han, Eun Hee; Jang, Woo-Seok; Choi, Jae Ho; Khanal, Tilak; Park, Bong Hwan; Tran, Thu Phuong; Chung, Young Chul; Jeong, Hye Gwang

    2012-07-01

    Piperine is a major component of black (Piper nigrum Linn) and long (Piper longum Linn) peppers, and is widely used as a traditional food and medicine. It also exhibits a variety of biological activities, which include antioxidant, anti-tumor and anti-pyretic properties. In the present study, we investigated the inhibitory effects of piperine on phorbol 12-myristate 13-acetate (PMA)-induced cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Piperine dose-dependently decreased PMA-induced COX-2 expression and PGE(2) production, as well as COX-2 promoter-driven luciferase activity. Transient transfections utilizing COX-2 promoter deletion constructs and COX-2 promoter constructs, in which specific enhancer elements were mutagenized, revealed that the nuclear factor-κB (NF-κB), CCAAT/enhancer binding protein (C/EBP) and activator protein-1 (AP-1), were the predominant contributors to the effects of piperine. In addition, piperine inhibited PMA-induced NF-κB, C/EBP and c-Jun nuclear translocation. Furthermore, piperine significantly inhibited PMA-induced activation of the Akt and ERK. These findings demonstrate that piperine effectively attenuates COX-2 production, and provide further insight into the signal transduction pathways involved in the anti-inflammatory effects of piperine. PMID:22542552

  14. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng.

    PubMed

    Ravikumar, V R; Dhanamani, M; Sudhamani, T

    2009-04-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  15. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng

    PubMed Central

    Ravikumar, V.R.; Dhanamani, M.; Sudhamani, T.

    2009-01-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  16. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  17. Chemical Constituents of the Rhizomes of Bletilla formosana and Their Potential Anti-inflammatory Activity.

    PubMed

    Lin, Che-Wei; Hwang, Tsong-Long; Chen, Fu-An; Huang, Chia-Hsin; Hung, Hsin-Yi; Wu, Tian-Shung

    2016-08-26

    Nine new phenanthrenes (1-9) and a new benzyl glycoside (10) together with 45 known compounds were isolated from the rhizomes of Bletilla formosana. The structures of 1-10 were elucidated primarily on the basis of their 1D and 2D NMR spectroscopic data. Most of the isolated compounds were evaluated for their anti-inflammatory activities. The results showed that IC50 values for the inhibition of superoxide anion generation and elastase release ranged from 0.2 to 6.5 μM and 0.3 to 5.7 μM, respectively. Structure-activity relationships of the isolated compounds were also investigated. The inhibitory potencies were determined as phenanthrenes > bibenzyls > biphenanthrenes. PMID:27525452

  18. Anti-inflammatory drugs in the 21st century.

    PubMed

    Rainsford, K D

    2007-01-01

    Historically, anti-inflammatory drugs had their origins in the serendipitous discovery of certain plants and their extracts being applied for the relief of pain, fever and inflammation. When salicylates were discovered in the mid-19th century to be the active components of Willow Spp., this enabled these compounds to be synthesized and from this, acetyl-salicylic acid or Aspirin was developed. Likewise, the chemical advances of the 19th-20th centuries lead to development of the non-steroidal anti-inflammatory drugs (NSAIDs), most of which were initially organic acids, but later non-acidic compounds were discovered. There were two periods of NSAID drug discovery post-World War 2, the period up to the 1970's which was the pre-prostaglandin period and thereafter up to the latter part of the last century in which their effects on prostaglandin production formed part of the screening in the drug-discovery process. Those drugs developed up to the 1980-late 90's were largely discovered empirically following screening for anti-inflammatory, analgesic and antipyretic activities in laboratory animal models. Some were successfully developed that showed low incidence of gastro-intestinal (GI) side effects (the principal adverse reaction seen with NSAIDs) than seen with their predecessors (e.g. aspirin, indomethacin, phenylbutazone); the GI reactions being detected and screened out in animal assays. In the 1990's an important discovery was made from elegant molecular and cellular biological studies that there are two cyclo-oxygenase (COX) enzyme systems controlling the production of prostanoids [prostaglandins (PGs) and thromboxane (TxA2)]; COX-1 that produces PGs and TxA2 that regulate gastrointestinal, renal, vascular and other physiological functions, and COX-2 that regulates production of PGs involved in inflammation, pain and fever. The stage was set in the 1990's for the discovery and development of drugs to selectively control COX-2 and spare the COX-1 that is central to

  19. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review)

    PubMed Central

    ARMUTCU, FERAH; AKYOL, SUMEYYA; USTUNSOY, SEYFETTIN; TURAN, FATIME FILIZ

    2015-01-01

    Caffeic acid phenethyl ester (CAPE), a naturally occurring compound isolated from propolis extract, has been reported to have a number of biological and pharmacological properties, exerting antioxidant, anti-inflammatory, anticarcinogenic, antibacterial and immunomodulatory effects. Recent in vivo and in vitro study findings have provided novel insights into the molecular mechanisms involved in the anti-inflammatory and immunomodulatory activities of this natural compound. CAPE has been reported to have anti-inflammatory properties involving the inhibition of certain enzyme activities, such as xanthine oxidase, cyclooxygenase and nuclear factor-κB (NF-κB) activation. Since inflammation and immune mechanisms play a crucial role in the onset of several inflammatory diseases, the inhibition of NF-κB represents a rationale for the development of novel and safe anti-inflammatory agents. The primary goal of the present review is to highlight the anti-inflammatory and immunomodulatory activities of CAPE, and critically evaluate its potential therapeutic effects. PMID:26136862

  20. Yu Ping Feng San, an Ancient Chinese Herbal Decoction, Regulates the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 and the Activity of Intestinal Alkaline Phosphatase in Cultures

    PubMed Central

    Du, Crystal Y. Q.; Choi, Roy C. Y.; Dong, Tina T. X.; Lau, David T. W.; Tsim, Karl W. K.

    2014-01-01

    Yu Ping Feng San (YPFS), a Chinese herbal decoction comprising Astragali Radix (AR; Huangqi), Atractylodis Macrocephalae Rhizoma (AMR; Baizhu), and Saposhnikoviae Radix (SR; Fangfeng), has been used clinically to treat inflammatory bowel diseases (IBD). Previously, we demonstrated a dual role of YPFS in regulating cytokine release in cultured macrophages. In this study, we elucidated the anti-inflammatory effect of YPFS that is mediated through modulating the expression of three key enzymes involved in IBD: inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intestinal alkaline phosphatase (IALP). In a lipopolysaccharide (LPS)-induced chronic-inflammation model of cultured murine macrophages, YPFS treatment suppressed the activation of iNOS and COX-2 expression in a dose-dependent manner. Conversely, application of YPFS in cultured small intestinal enterocytes markedly induced the expression of IALP in a time-dependent manner, which might strengthen the intestinal detoxification system. A duality of YPFS in modulating the expression of iNOS and COX-2 was determined here. The expression of iNOS and COX-2 in macrophages was induced by YPFS, and this activation was partially blocked by the NF-κB-specific inhibitor BAY 11-7082, indicating a role of NF-κB signaling. These YPFS-induced changes in gene regulation strongly suggest that the anti-inflammatory effects of YPFS are mediated through the regulation of inflammatory enzymes. PMID:24967898

  1. Antioxidant and anti-inflammatory effects of Ruta chalepensis L. extracts on LPS-stimulated RAW 264.7 cells.

    PubMed

    Kacem, Mohamed; Simon, Gaëlle; Leschiera, Raphael; Misery, Laurent; ElFeki, Abdelfattah; Lebonvallet, Nicolas

    2015-02-01

    Ruta chalepensis L. is used in the traditional herbal treatment of various diseases. The aim of this work is to investigate the effect of different extracts of R. chalepensis L. on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions and their antioxidant capacity on murine RAW 264.7 macrophage challenged with lipopolysaccharide (LPS). In fact, this study shows that the ethanol and ethyl acetate extracts of R. chalepensis L. considerably decreased the nitric oxide (NO) production in murine RAW 264.7 macrophages stimulated with lipopolysaccharide. Thus, the treatment with both extracts significantly suppressed the levels of iNOS and COX-2 gene expressions through the inhibition of the nuclear factor-κB (NF-κB) activation. The preincubation of RAW 264.7 cells with various concentrations of ethanol and ethyl acetate extracts decreased the production of thiobarbituric acid-reactive substances (TBARS) in a dose-dependent manner. It also increased the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in LPS-stimulated macrophages, compared to those in the cells treated only with LPS. Besides, the (1)H NMR spectra of both extracts have demonstrated the presence of aromatic signals, thus confirming the existence of phenolic compounds such as flavonoids and polyphenols. So, the ethanol and ethyl acetate extracts of R. chalepensis L. have been shown to possess enough antioxidant and anti-inflammatory activities to prevent LPS-induced oxidative stress and inflammation in RAW 264.7 macrophages.

  2. Cholesterol affects flow-stimulated cyclooxygenase-2 expression and prostanoid secretion in the cortical collecting duct

    PubMed Central

    Liu, Yu; Flores, Daniel; Carrisoza-Gaytán, Rolando

    2015-01-01

    Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min−1·mm−1, and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml−1·mm−1) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml−1·mm−1; P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism. PMID:25761882

  3. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside.

    PubMed

    Sala, Araceli; Recio, M Carmen; Schinella, Guillermo R; Máñez, Salvador; Giner, Rosa M; Cerdá-Nicolás, Miguel; Rosí, José Luis

    2003-02-01

    Three flavonoids, gnaphaliin, pinocembrin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their antioxidant and/or scavenger properties and in vivo in different models of inflammation. In vitro tests included lipid peroxidation in rat liver microsomes, superoxide radical generation in the xanthine/xanthine oxidase system and the reduction of the stable radical 1,1-diphenyl-2-pycryl-hydrazyl (DPPH). Acute inflammation was induced by application of 12-O-tetradecanoylphorbol 13-acetate (TPA) to the mouse ear or by subcutaneous injection of phospholipase A(2) or serotonin in the mouse paw. Eczema provoked on the mouse ear by repeated administration of TPA was selected as a model of chronic inflammation. The flavonoids were assayed against sheep red blood cell-induced mouse paw oedema as a model of delayed-type hypersensitivity reaction. The most active compound, both in vitro and in vivo, was tiliroside. It significantly inhibited enzymatic and non-enzymatic lipid peroxidation (IC(50)=12.6 and 28 microM, respectively). It had scavenger properties (IC(50)=21.3 microM) and very potent antioxidant activity in the DPPH test (IC(50)=6 microM). In vivo, tiliroside significantly inhibited the mouse paw oedema induced by phospholipase A(2)(ED(50)=35.6 mg/kg) and the mouse ear inflammation induced by TPA (ED(50)=357 microg/ear). Pinocembrin was the only flavonoid that exhibited anti-inflammatory activity in the sheep red blood cell-induced delayed-type hypersensitivity reaction. However, only tiliroside significantly reduced the oedema and leukocyte infiltration induced by TPA. As in the case of other flavonoids, the anti-inflammatory activity of tiliroside could be based on its antioxidant properties, although other mechanisms are probably involved.

  4. Convergence of Nitric Oxide and Lipid Signaling: Anti-Inflammatory Nitro-Fatty Acids

    PubMed Central

    Baker, Paul R.S.; Schopfer, Francisco J.; O’Donnell, Valerie B.; Freeman, Bruce A.

    2009-01-01

    The signaling mediators nitric oxide (·NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator sythesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond co-regulation of ·NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO2-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO2-FA are diverse, with these species serving as a potential chemical reserve of ·NO, reacting with cellular nucleophiles to post-translationally modify protein structure, function and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator activated receptor γ. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes and relaxation of pre-constricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO2-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates. PMID:19200454

  5. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    PubMed

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-01

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.

  6. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    PubMed

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-01

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response. PMID:27075869

  7. A novel anti-inflammatory oligopeptide produced by Entamoeba histolytica.

    PubMed

    Kretschmer, R R; Rico, G; Giménez, J A

    2001-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures was isolated by ultra-filtration, gel-sieve chromatography and high powered liquid chromatography (HPLC), and its primary structure (Met-Gln-Cys-Asn-Ser) established by Edman sequencing and mass-spectrometry (MS). A synthetic peptide had the same selective anti-inflammatory features as the native material in comparable concentrations: in vitro inhibition of the locomotion in human peripheral blood monocytes, and of the respiratory burst in the same cells and in human neutrophil polymorphonuclear leucocytes; and in vivo depression of delayed hypersensitivity skin reactions to dinitrochlorobenzene in guinea pigs. This oligopeptide is apparently synthesized by the ameba as suggested by [(35)S]-Cys and Met incorporation, probably as part of a larger molecule, from which it is cleaved by proteolysis. The full sequence was not found in the 431 available E. histolytica protein sequences. The factor may contribute to the unexpected paucity of the late inflammatory reaction found in advanced invasive amebiasis and, perhaps in consequence, to the regeneration without scarring (restitutio ad integrum) of the affected organs that is observed following successful treatment of this disease

  8. Incorporation of anti-inflammatory agent into mesoporous silica

    NASA Astrophysics Data System (ADS)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  9. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum.

    PubMed

    Lin, Yuan; Wang, Fei; Yang, Li-Juan; Chun, Ze; Bao, Jin-Ku; Zhang, Guo-Lin

    2013-11-01

    Cultivated Dendrobium denneanum has been substituted for other endangered Dendrobium species in recent years, but there have been few studies regarding either its chemical constituents or pharmacological effects. In this study, three phenanthrene glycosides, three 9,10-dihydrophenanthrenes, two 9,10-dihydrophenanthrenes glycosides, and four known phenanthrene derivatives, were isolated from the stems of D. denneanum. Their structures were elucidated on the basis of MS and NMR spectroscopic data. Ten compounds were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells with IC50 values of 0.7-41.5 μM, and exhibited no cytotoxicity in RAW264.7, HeLa, or HepG2 cells. Additionally, it was found that 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-d-glucopyranoside, and 5-methoxy-2,4,7,9S-tetrahydroxy-9,10-dihydrophenanthrene suppressed LPS-induced expression of inducible NO synthase (iNOS) inhibited phosphorylation of p38, JNK as well as mitogen-activated protein kinase (MAPK), and inhibitory kappa B-α (IκBα). This indicated that both compounds exert anti-inflammatory effects by inhibiting MAPKs and nuclear factor κB (NF-κB) pathways. PMID:24042064

  10. Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis

    PubMed Central

    Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy

    2015-01-01

    Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Materials and Methods: Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Results: Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. Conclusions: The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment of peripheral painful or/and inflammatory and ulcer conditions. PMID:25767759

  11. Incorporation of anti-inflammatory agent into mesoporous silica

    NASA Astrophysics Data System (ADS)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol–gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol–gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  12. The neuroimmune basis of anti-inflammatory acupuncture.

    PubMed

    Kavoussi, Ben; Ross, B Evan

    2007-09-01

    This review article presents the evidence that the antiinflammatory actions of acupuncture are mediated via the reflexive central inhibition of the innate immune system. Both laboratory and clinical evidence have recently shown the existence of a negative feedback loop between the autonomic nervous system and the innate immunity. There is also experimental evidence that the electrical stimulation of the vagus nerve inhibits macrophage activation and the production of TNF, IL-1beta , IL-6, IL-18, and other proinflammatory cytokines. It is therefore conceivable that along with hypnosis, meditation, prayer, guided imagery, biofeedback, and the placebo effect, the systemic anti-inflammatory actions of traditional and electro-acupuncture are directly or indirectly mediated by the efferent vagus nerve activation and inflammatory macrophage deactivation. In view of this common physiological mediation, assessing the clinical efficacy of a specific acupuncture regimen using conventional double-blind placebo-controlled trials inherently lacks objectivity due to (1) the uncertainty of ancient rules for needle placement, (2) the diffuse noxious inhibitory control triggered by control-needling at irrelevant points, (3) the possibility of a dose-response relationship between stimulation and effects, and (4) the possibility of inadequate blinding using an inert sham procedure. A more objective assessment of its efficacy could perhaps consist of measuring its effects on the surrogate markers of autonomic tone and inflammation. The use of acupuncture as an adjunct therapy to conventional medical treatment for a number of chronic inflammatory and autoimmune diseases seems plausible and should be validated by confirming its cholinergicity.

  13. Cerebral analgesic response to nonsteroidal anti-inflammatory drug ibuprofen.

    PubMed

    Hodkinson, Duncan J; Khawaja, Nadine; OʼDaly, Owen; Thacker, Michael A; Zelaya, Fernando O; Wooldridge, Caroline L; Renton, Tara F; Williams, Steven C R; Howard, Matthew A

    2015-07-01

    Nonopioid agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are the most commonly used class of analgesics. Increasing evidence suggests that cyclooxygenase (COX) inhibition at both peripheral and central sites can contribute to the antihyperalgesic effects of NSAIDs, with the predominant clinical effect being mediated centrally. In this study, we examined the cerebral response to ibuprofen in presurgical and postsurgical states and looked at the analgesic interaction between surgical state and treatment. We used an established clinical pain model involving third molar extraction, and quantitative arterial spin labelling (ASL) imaging to measure changes in tonic/ongoing neural activity. Concurrent to the ASL scans, we presented visual analogue scales inside the scanner to evaluate the subjective experience of pain. This novel methodology was incorporated into a randomized double-blind placebo-controlled design, with an open method of drug administration. We found that independent of its antinociceptive action, ibuprofen has no effect on regional cerebral blood flow under pain-free conditions (presurgery). However, in the postsurgical state, we observed increased activation of top-down modulatory circuits, which was accompanied by decreases in the areas engaged because of ongoing pain. Our findings demonstrate that ibuprofen has a measurable analgesic response in the human brain, with the subjective effects of pain relief reflected in two distinct brain networks. The observed activation of descending modulatory circuits warrants further investigation, as this may provide new insights into the inhibitory mechanisms of analgesia that might be exploited to improve safety and efficacy in pain management.

  14. Nonsteroidal anti-inflammatory drug gastropathy: new avenues for safety

    PubMed Central

    Roth, Sanford H

    2011-01-01

    Chronic oral or systemic nonselective nonsteroidal anti-inflammatory drug (NSAID) therapy, ubiquitously used by physicians to treat osteoarthritis-associated pain, is associated with a wide range of symptomatic adverse events, the most frequent and serious of which is gastropathy. Although cardiovascular and renal problems are a very real concern, they are significantly less frequent. These complications can be life-threatening in at-risk populations such as older adults, who are common users of long-term oral systemic NSAID therapy. Topical NSAID formulations deliver effective doses of analgesics directly to the affected joints, thereby limiting systemic exposure and potentially the risk of systemic adverse events, such as gastropathy and serious cardiovascular events. There are currently two topical NSAIDs approved by the US Food and Drug Administration for osteoarthritis-associated pain, as well as for the signs and symptoms of osteoarthritis. This review discusses the relative safety, and the gastrointestinal, cardiovascular, and renal risks of chronic oral or systemic NSAID therapy and topical NSAID formulations in patients with osteoarthritis. PMID:21753867

  15. Non-steroidal Anti-inflammatory Drugs in Raptors

    USGS Publications Warehouse

    Oaks, J. Lindsay; Meteyer, Carol U.; Miller, R. Eric; Fowler, Murray E.

    2012-01-01

    The use of analgesia has become standard, and appropriate, practice in avian medicine. As in mammals, pain control in avian patients is usually accomplished with opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) used singly or in combination for a multimodal approach. Despite their usefulness, widespread use, and relative safety in clinical use, few controlled studies in birds have been conducted on efficacy, safety, and dosing. The guidelines for the use of NSAIDs in raptors and other birds have mainly been empirical. More recently, NSAIDs in free-living raptors have emerged as a major conservation issue with the discovery that diclofenac sodium was responsible for the population crash of three species of Gyps vultures in southern Asia. In this context, residues of veterinary NSAIDs in domestic animals are now considered environmental contaminants that can be significantly toxic to vultures and possibly other avian scavengers. Ironically, the disaster with Asian vultures has led to a considerable body of research on NSAIDs in raptors to the benefit of clinicians who now have scientific information available to help assess dosing, safety, toxicity, and pharmacokinetics of NSAIDs in their raptor patients.

  16. Anti-Inflammatory Dimethylfumarate: A Potential New Therapy for Asthma?

    PubMed Central

    Roth, Michael

    2013-01-01

    Asthma is a chronic inflammatory disease of the airways, which results from the deregulated interaction of inflammatory cells and tissue forming cells. Beside the derangement of the epithelial cell layer, the most prominent tissue pathology of the asthmatic lung is the hypertrophy and hyperplasia of the airway smooth muscle cell (ASMC) bundles, which actively contributes to airway inflammation and remodeling. ASMCs of asthma patients secrete proinflammatory chemokines CXCL10, CCL11, and RANTES which attract immune cells into the airways and may thereby initiate inflammation. None of the available asthma drugs cures the disease—only symptoms are controlled. Dimethylfumarate (DMF) is used as an anti-inflammatory drug in psoriasis and showed promising results in phase III clinical studies in multiple sclerosis patients. In regard to asthma therapy, DMF has been anecdotally reported to reduce asthma symptoms in patients with psoriasis and asthma. Here we discuss the potential use of DMF as a novel therapy in asthma on the basis of in vitro studies of its inhibitory effect on ASMC proliferation and cytokine secretion in ASMCs. PMID:23606796

  17. Anti-inflammatory tirucallane saponins from Paramignya scandens.

    PubMed

    Phan, Nguyen Huu Toan; Thuan, Nguyen Thi Dieu; Ngoc, Ninh Thi; Thao, Nguyen Phuong; Kim, Sohyun; Koh, Young Sang; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Kim, Young Ho; Minh, Chau Van

    2015-01-01

    Five new tirucallane saponins, paramignyosides A-E (1-5), were isolated from the water fraction of the Paramignya scandens stem and leaves. Their structures were elucidated on the basis of spectroscopic evidence including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and one dimensional (1D)- and 2D-NMR. The effects of isolated compounds on pro-inflammatory cytokines were evaluated by measuring the production of interleukin (IL)-12 p40, IL-6, and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs). Paramignyoside C (3) exhibited selective and potent inhibitory effect (IC50=5.03±0.19 µM) on the production of IL-12 p40 comparable to that of the positive control, SB203580 (IC50=5.00±0.16 µM). Further studies are required to confirm efficacy in vivo and the mechanism of anti-inflammatory effects. PMID:26133071

  18. Anti-inflammatory properties of drugs from saffron crocus.

    PubMed

    Poma, Anna; Fontecchio, Gabriella; Carlucci, Giuseppe; Chichiriccò, Giuseppe

    2012-01-01

    The medicinal uses of saffron (Crocus sativus Linnaeus) have a long history beginning in Asian countries since the Late Bronze Age. Recent studies have validated its potential to lower the risk of several diseases. Some metabolites derived from saffron stigmas exert numerous therapeutic effects due to hypolipidemic, antitussive, antioxidant, antidiabetic activities and many others. Water and ethanol extracts of Crocus sativus L. are cardioprotective and counteract neurodegenerative disorders. Many of these medicinal properties of saffron can be attributed to a number of its compounds such as crocetin, crocins and other substances having strong antioxidant and radical scavenger properties against a variety of radical oxygen species and pro-inflammatory cytokines. Botany, worldwide spreading of cultivars, biochemical pathways, active constituents and chemical detection methods are reviewed. Therapeutic uses of saffron principles with particular regard to those exhibiting antioxidant and thus anti-inflammatory features are discussed. To date, very few adverse health effects of saffron have been demonstrated. At high doses (more than 5 g/die day), it should be avoided in pregnancy owing to its uterine stimulation activity.

  19. Colonic anastomoses and non-steroidal anti-inflammatory drugs.

    PubMed

    Slim, K; Joris, J; Beloeil, H

    2016-08-01

    Nonsteroidal anti-inflammatory drugs (NSAID) play an important role in the treatment of post-operative pain, particularly in the context of enhanced recovery after colorectal surgery. Several recent articles have suggested that NSAID may have a deleterious effect on colo-colic or colo-rectal anastomoses. The aim of this review is to analyze the evidence based on meta-analyses and cohort studies in the literature. A systematic review of clinical studies identified twelve studies including two meta-analyses and ten comparative cohort studies that included a large number of patients. The data in these studies are heterogeneous, often biased, and do not permit a formal recommendation based on a high level of evidence. The main conclusion of this review is that the balance of benefit vs. risk (analgesic effect/risk of anastomotic disruption) is acceptable; it appears (with a low level of evidence) that a prescription of NSAID for 48h after surgery may be recommended for elective colon surgery. Nevertheless, it is important to respect the specific contra-indications of NSAID and avoid post-operative NSAID use if there are risk factors for anastomotic leakage: advanced age, malnutrition, severe co-morbidities, intra-operative difficulties. PMID:27480526

  20. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata.

    PubMed

    Liu, Jia-Bao; Ding, Ya-Si; Zhang, Ying; Chen, Jia-Bao; Cui, Bao-Song; Bai, Jin-Ye; Lin, Ming-Bao; Hou, Qi; Zhang, Pei-Cheng; Li, Shuai

    2015-05-22

    Twelve hydrolyzable tannins were obtained from the twigs of Myricaria bracteata, including two new hellinoyl-type dimers, bracteatinins D1 (1) and D2 (2); a new hellinoyl-type trimer, bracteatinin T1 (3); two known monomers, nilotinin M4 (4) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (5); six known dimers, tamarixinin A (6), nilotinin D8 (7), hirtellins A (10), B (9), and E (8), and isohirtellin C (11); and a known trimer, hirtellin T3 (12). The structures of the tannins were elucidated by spectroscopic data analysis and comparisons to known tannins. All compounds were evaluated as free radical scavengers using 1,1-diphenyl-2-picrylhydrazyl and hydroxy radicals and compared to the activity of BHT and Trolox. Compound 6 showed a significant anti-inflammatory effect on croton oil-induced ear edema in mice (200 mg/kg, inhibition rate 69.8%) and on collagen-induced arthritis in DBA/1 mice (20 mg/kg, inhibition rate 46.0% at day 57).

  1. Anti-inflammatory and side effects of cyclooxygenase inhibitors.

    PubMed

    Süleyman, Halis; Demircan, Berna; Karagöz, Yalçin

    2007-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs in inflammatory diseases, since they are effective in management of pain, fever, redness, edema arising as a consequence of inflammatory mediator release. Studies have shown that both therapeutic and side effects of NSAIDs are dependent on cyclooxygenase (COX) inhibition. COX isoforms have been named constitutive (COX-1) and inducible (COX-2). COX-1 catalyzes formation of cytoprotective prostaglandins in thrombocytes, vascular endothelium, stomach mucosa, kidneys, pancreas, Langerhans islets, seminal vesicles, and brain. Induction of COX-2 by various growth factors, proinflammatory agents, endotoxins, mitogens, and tumor agents indicates that this isoform may have a role in induction of pathological processes, such as inflammation. It is well known that therapy with COX inhibitors is associated with a number of side effects including gastrointestinal erosions, and renal and hepatic insufficiency. Such critical adverse reactions are mostly dependent on COX-1 inhibition. As a result of research focused on reduction of the adverse effects of NSAIDs, selective COX-2 inhibitors, such as celecoxib and rofecoxib have been developed. However, many data demonstrate that mechanisms of action of these drugs are multidirectional and complex. These drugs or their derivatives, which belong to the same group, have distinct pharmacological effects, side effects and potencies which implies that there may be more than two, five or even tens of COX isoforms.

  2. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis.

    PubMed

    Evans, Iona C; Barnes, Josephine L; Garner, Ian M; Pearce, David R; Maher, Toby M; Shiwen, Xu; Renzoni, Elisabetta A; Wells, Athol U; Denton, Christopher P; Laurent, Geoffrey J; Abraham, David J; McAnulty, Robin J

    2016-04-01

    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4.

  3. Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

    PubMed Central

    Ko, Seok-Chun

    2015-01-01

    BACKGROUND/OBJECTIVES In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources. PMID:26060532

  4. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  5. Anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa on murine models of inflammation and RAW 264.7 cells.

    PubMed

    Park, Yujin; Yoo, Seung-Ah; Kim, Wan-Uk; Cho, Chul-Soo; Woo, Jong-Min; Yoon, Chong-Hyeon

    2016-04-01

    Antimicrobial, antifungal and anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa (EOCO) have previously been reported. In the present study, the anti-inflammatory effects of EOCO were investigated in two murine models of inflammation: Carrageenan-induced paw edema and thioglycollate-induced peritonitis, and in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The expression levels of proinflammatory cytokines were analyzed by ELISA, the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were determined by western blotting, and nitrite concentration was measured using Griess reagent. In mice with carrageenan-induced edema, paw thickness and the expression levels of interleukin (IL)‑1β and IL-6 in paw homogenates were significantly decreased in the EOCO (5 and 10 mg/kg) group, as compared with the control group. In mice with thioglycollate-induced peritonitis, treatment with EOCO (5 and 10 mg/kg) reduced the number of total cells and suppressed tumor necrosis factor‑α (TNF‑α), IL‑1β and IL‑6 levels in peritoneal fluid. In addition, EOCO reduced nitric oxide, TNF‑α and IL‑6 production, and suppressed iNOS and COX‑2 expression in LPS‑stimulated RAW 264.7 cells. These results suggest that EOCO may exert anti‑inflammatory effects in vivo and in vitro, and that these effects may be associated with the inhibition of inflammatory mediators. Therefore, EOCO may be considered an effective therapeutic agent for the treatment of inflammatory diseases. PMID:26936418

  6. In Vivo and in Vitro Anti-Inflammatory Activity of Neorogioltriol, a New Diterpene Extracted from the Red Algae Laurencia glandulifera

    PubMed Central

    Chatter, Rim; Ben Othman, Rym; Rabhi, Sameh; Kladi, Maria; Tarhouni, Safa; Vagias, Constantinos; Roussis, Vassilios; Guizani-Tabbane, Lamia; Kharrat, Riadh

    2011-01-01

    Neorogioltriol is a tricyclic brominated diterpenoid isolated from the organic extract of the red algae Laurencia glandulifera. In the present study, the anti-inflammatory effects of neorogioltriol were evaluated both in vivo using carrageenan-induced paw edema and in vitro on lipopolysaccharide (LPS)-treated Raw264.7 macrophages. The in vivo study demonstrated that the administration of 1 mg/kg of neorogioltriol resulted in the significant reduction of carregeenan-induced rat edema. In vitro, our results show that neorogioltriol treatment decreased the luciferase activity in LPS-stimulated Raw264.7 cells, stably transfected with the NF-κB-dependent luciferase reporter. This effect on NF-κB activation is not mediated through MAPK pathways. The inhibition of NF-κB activity correlates with decreased levels of LPS-induced tumor necrosis factor-alpha (TNFα) present in neorogioltriol treated supernatant cell culture. Further analyses indicated that this product also significantly inhibited the release of nitric oxide and the expression of cyclooxygenase-2 (COX-2) in LPS-stimulated Raw264.7 cells. These latter effects could only be observed for neorogioltriol concentrations below 62.5 μM. To our knowledge, this is the first report describing a molecule derived from Laurencia glandulifera with anti-inflammatory activity both in vivo and in vitro. The effect demonstrated in vitro may be explained by the inhibition of the LPS-induced NF-κB activation and TNFα production. NO release and COX-2 expression may reinforce this effect. PMID:21822417

  7. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice

    PubMed Central

    2013-01-01

    Background Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Results Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations. PMID:23782872

  8. Antioxidant and Anti-Inflammatory Properties of an Aqueous Cyanophyta Extract Derived from Arthrospira Platensis: Contribution to Bioactivities by the Non-Phycocyanin Aqueous Fraction

    PubMed Central

    Jensen, Gitte S.; Attridge, Victoria L.; Beaman, Joni L.; Guthrie, Jesse; Ehmann, Axel; Benson, Kathleen F.

    2015-01-01

    Abstract The goal for this work was to characterize basic biological properties of a novel Arthrospira platensis-based aqueous cyanophyta extract (ACE), enriched in the known anti-inflammatory cyclooxygenase-2 (COX-2) inhibitor phycocyanin (PC), but also containing a high level of non-PC bioactive compounds. Antioxidant properties were tested in parallel in the Folin–Ciocalteu assay (chemical antioxidant capacity) and in the cellular antioxidant protection (CAP-e) bioassay, where both the PC and the non-PC fractions contributed to the antioxidant capacity and CAP of ACE. In contrast to the COX-2 inhibition seen in the presence of PC, the inhibition of enzymatic activity of the inflammatory mediator Lipoxygenase was associated specifically with the non-PC fraction of ACE. Inhibition of formation of reactive oxygen species (ROS) was evaluated using polymorphonuclear cells from healthy human donors. The inhibition of ROS formation was seen for both the PC and non-PC fractions, with ACE showing the most robust effect. The effects of PC, non-PC, and ACE on clotting and clot lysing was tested using a modified Euglobulin fibrinolytic assay in vitro. In the presence of PC, non-PC, and ACE, the time for clot formation and lysis was not affected; however, the clots were significantly more robust. This effect was statistically significant (p<.05) at doses between 125–500 μg/mL, and returned to baseline at lower doses. Both PC and the non-PC fraction contributed to the antioxidant properties and anti-inflammatory effects, without a negative impact on blood clotting in vitro. This suggests a potential benefit for the consumable ACE extract in assisting the reduction of inflammatory conditions. PMID:25764268

  9. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  10. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated.

  11. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3.

    PubMed

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-12-01

    Although inflammation acts as host defense mechanism against infection or injury and is primarily a self limiting process, inadequate resolution of inflammatory responses leads to various chronic disorders. This work aimed to elucidate the anti-inflammatory effects of 2-methoxy-4-vinylphenol (2M4VP) isolated from pine needles in LPS-stimulated RAW264.7 cells. Some key pro-inflammatory mediators including nitric oxide (NO), prostaglandins (PGE(2)), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) were studied by sandwich ELISA and western blot. In addition, suppression of NF-κB and MAPK activation, and histone acetylation was studied by western blot analysis and immunostaining. 2M4VP dosedependently inhibited NO and PGE(2) production and also blocked LPS-induced iNOS and COX-2 expression. In addition, 2M4VP potently inhibited the translocation of NF-κB p65 into the nucleus by IκB degradation following IκB-α phosphorylation and the phosphorylation of MAPKs such as p38, ERK1/2, and JNK. Also, 2M4VP inhibited hyper-acetylation of histone H3 (Lys9/Lys14) induced by LPS. Taken together, our results suggest that 2M4VP, a naturally occurring phenolic compound, exert potent anti-inflammatory effects by inhibiting LPS-induced NO, PGE(2), iNOS, and COX-2 in RAW264.7 cells. These effects are mediated by suppression of NF-κB and MAPK activation and histone acetylation.

  12. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from Arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction.

    PubMed

    Jensen, Gitte S; Attridge, Victoria L; Beaman, Joni L; Guthrie, Jesse; Ehmann, Axel; Benson, Kathleen F

    2015-05-01

    The goal for this work was to characterize basic biological properties of a novel Arthrospira platensis-based aqueous cyanophyta extract (ACE), enriched in the known anti-inflammatory cyclooxygenase-2 (COX-2) inhibitor phycocyanin (PC), but also containing a high level of non-PC bioactive compounds. Antioxidant properties were tested in parallel in the Folin-Ciocalteu assay (chemical antioxidant capacity) and in the cellular antioxidant protection (CAP-e) bioassay, where both the PC and the non-PC fractions contributed to the antioxidant capacity and CAP of ACE. In contrast to the COX-2 inhibition seen in the presence of PC, the inhibition of enzymatic activity of the inflammatory mediator Lipoxygenase was associated specifically with the non-PC fraction of ACE. Inhibition of formation of reactive oxygen species (ROS) was evaluated using polymorphonuclear cells from healthy human donors. The inhibition of ROS formation was seen for both the PC and non-PC fractions, with ACE showing the most robust effect. The effects of PC, non-PC, and ACE on clotting and clot lysing was tested using a modified Euglobulin fibrinolytic assay in vitro. In the presence of PC, non-PC, and ACE, the time for clot formation and lysis was not affected; however, the clots were significantly more robust. This effect was statistically significant (p<.05) at doses between 125-500 μg/mL, and returned to baseline at lower doses. Both PC and the non-PC fraction contributed to the antioxidant properties and anti-inflammatory effects, without a negative impact on blood clotting in vitro. This suggests a potential benefit for the consumable ACE extract in assisting the reduction of inflammatory conditions. PMID:25764268

  13. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    PubMed

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-16

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.

  14. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  15. Anti-inflammatory activity of root bark and stem bark of Shyonaka

    PubMed Central

    Doshi, Krunal; Ilanchezhian, R; Acharya, Rabinarayan; Patel, B. R.; Ravishankar, B.

    2012-01-01

    Background: Shyonaka (Oroxylum indicum Vent.; Bignoniaceae) root bark is one of the ingredients of dashamoola (a group of 10 roots), and is used for its anti-inflammatory and analgesic action in a number of compound formulations in Ayurveda. Aim: Ayurvedic Pharmacopoeia of India (API) recommends using the stem bark instead of root bark. Material and Methods: An attempt has been made to study the anti-inflammatory activity of both root bark and stem bark kashaya (decoction) experimentally. Conclusion Results showed significant anti-inflammatory activity of root bark and stem bark decoction. PMID:23326090

  16. ANTI-INFLAMMATORY AND MAST CELL PROTECTIVE EFFECT OF FICUS RELIGIOSA

    PubMed Central

    Viswanathan, S.; Thirugnanasambantham, P.; Reddy, M. Kannappa; Narasimhan, S.; Subramaniam, G. Anantha

    1990-01-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  17. Anti-inflammatory and mast cell protective effect of ficus religiosa.

    PubMed

    Viswanathan, S; Thirugnanasambantham, P; Reddy, M K; Narasimhan, S; Subramaniam, G A

    1990-10-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  18. Anti-inflammatory activity of lupeol and lupeol linoleate in rats.

    PubMed

    Geetha, T; Varalakshmi, P

    2001-06-01

    Two pentacyclic triterpenes, namely lupeol and lupeol linoleate, were investigated for their anti-inflammatory, antinociceptive, anti-pyretic and ulcerogenic properties in comparison with the commonly used non-steroidal anti-inflammatory drug, indomethacin in rats. Lupeol, lupeol linoleate and indomethacin showed a reduction in paw swelling by 39, 58 and 35%, respectively, in adjuvant arthritis. Triterpenes were devoid of any antinociceptive, anti-pyretic and ulcerogenic actions. However, indomethacin exhibited a positive response to these properties. These results suggest that the mechanism of action of triterpenes is different from the non-steroidal anti-inflammatory drug. PMID:11378285

  19. Nitric oxide-releasing NSAIDs: a novel class of GI-sparing anti-inflammatory drugs.

    PubMed

    Wallace, J L; Pittman, Q J; Cirino, G

    1995-01-01

    The addition of a nitric oxide-releasing moiety to a number of common nonsteroidal anti-inflammatory drugs markedly reduces their toxicity in the gastrointestinal tract without interfering with their ability to inhibit prostaglandin synthesis. Moreover, the anti-inflammatory and anti-pyretic activities of the nitric-oxide releasing NSAID were comparable to the parent compound, while the anti-thrombotic activity in vivo was significantly enhanced. Nitric oxide-releasing NSAIDs may represent an alternative to existing anti-inflammatory, anti-pyretic and anti-thrombotic agents with greatly reduced toxicity in the gastrointestinal tract. PMID:7610982

  20. To Extinguish the Fire from Outside the Cell or to Shutdown the Gas Valve Inside? Novel Trends in Anti-Inflammatory Therapies

    PubMed Central

    Marcuzzi, Annalisa; Piscianz, Elisa; Valencic, Erica; Monasta, Lorenzo; Vecchi Brumatti, Liza; Tommasini, Alberto

    2015-01-01

    Cytokines are the most important soluble mediators of inflammation. Rare pediatric diseases provided exemplar conditions to study the anti-inflammatory efficacy of new generation therapies (biologics/biopharmaceuticals) selectively targeting single cytokines. Monoclonal antibodies and recombinant proteins have revolutionized anti-inflammatory therapies in the last two decades, allowing the specific targeting of single cytokines. They are very effective in extinguishing inflammation from outside the cell, even with the risk of an excessive and prolonged immunosuppression. Small molecules can enter the cell and shutdown the valve of inflammation by directly targeting signal proteins involved in cytokine release or in response to cytokines. They are orally-administrable drugs whose dosage can be easily adjusted to obtain the desired anti-inflammatory effect. This could make these drugs more suitable for a wide range of diseases as stroke, gout, or neurological impairment, where inflammatory activation plays a pivotal role as trigger. Autoinflammatory diseases, which have previously put anti-cytokine proteins in the limelight, can again provide a valuable model to measure the real potential of small inhibitors as anti-inflammatory agents. PMID:26370962

  1. Anti-inflammatory effect of Momordica charantia in sepsis mice.

    PubMed

    Chao, Che-Yi; Sung, Ping-Jyun; Wang, Wei-Hsien; Kuo, Yueh-Hsiung

    2014-01-01

    Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis. PMID:25153878

  2. Determination of Teloschistes flavicans (sw) norm anti-inflammatory activity

    PubMed Central

    Pereira, Eugênia C.; da Silva, Nicácio H.; Santos, Renata Almeida; Sudário, Ana Patrícia Paiva; Rodrigues e Silva, Antonio Alfredo; de Sousa Maia, Maria Bernadete

    2010-01-01

    Background: Lichens produce a variety of substances that possesses pharmacological actions. However, rare products are submitted to rigorous scientific tests or have the risk potential or side effects evaluated. The lack of medical and sanitary control, absence of accurate botanical identification or purity certification, founded in diverse natural products, may represent great danger to population health. This work aimed to evaluate toxic effects and anti-inflammatory action in vivo of Teloschistes flavicans (Sw.) Norm. (TFN) unrefined extracts, as well as determinate its main constituents. Methods: The carrageenan induced paw edema and cotton pellet implant induced granuloma methods were utilized, besides a classic acute toxicity test. TFN acetone extract inhibited carrageenan paw edema on 60, 120, and 180 min (inhibition percentiles of 45.03%, 60.59% and 41.72%). Results: TFN ethereal (inhibition percentiles of 23.95% and 29.01%) and chloroform (inhibition percentiles of 28.8% and 22.04%) extracts inhibited edema on 120 and 180 min. None of the extract inhibited the granuloma development. None of the extract caused death or other acute toxicity signs. Vicanicine (60.26% in ethereal extract and 51.17% in acetone extract), parietine (9.60% in ethereal extract and 15.38% on second), falacinol (0.78% in ether and 14.95% in acetone) and very low concentration of falacinal (0.15% in ethereal extract and 3.32% in acetone extract) were detected in the medicine. Conclusions: The tested extracts have antiedematogenic activity, but are not effective on subchronic inflammation. The extracts do not present toxic effects in administered doses. PMID:21808568

  3. Anti-Inflammatory Effect of Taurine in Burned Patients

    PubMed Central

    Lak, Sima; Ostadrahimi, Alireza; Nagili, Behrooz; Asghari-Jafarabadi, Mohammad; Beigzali, Sanaz; Salehi, Feridoon; Djafarzadeh, Roxana

    2015-01-01

    Purpose: Burn induced inflammatory response can be mediated by reactive oxygen metabolites and accompanied by multiple organ dysfunction. Taurine has protective effects against various inflammatory conditions. The aim of this study was to determine the effect of Taurine supplement in thermal burn victims. Methods: Thirty patients with severe thermal burns were enrolled in this randomized double-blinded clinical trial. These patients were randomly divided into two equal groups (namely Control and Taurine groups), where both received isocaloric and isonitrogenous formula. One group was supplemented with 50 mg/kg of Taurine per day for a duration of 10 days. Blood samples were obtained to measure Interleukin-10 (IL-10), high-sensitivity C-reactive protein (hs-CRP), and Tumor Necrosis Factor alpha (TNF-α) levels at the beginning and the end of the study. Results: Change in serum level of IL-10 in Taurine group was more than Control group [-13.60(-31.40, -10.40) compared to -4.00(-20.00, -0.20) respectively; P = 0.030]. This change was significant in patients with more than 30% TBSA of burn [-14.20(-31.40, -10.40) compared to -2.40(-9.60, 0.40) respectively; P = 0.013]. As for the hs-CRP and TNF-α levels, the difference between the two groups were not significant. Conclusion: Based on the results obtained, Taurine supplement showed a positive outcome on anti-inflammatory cytokine IL-10 in all burn patients. This effect was even more significant in patients with higher percentage of burn area. Taurine had no significant effect on the inflammatory marker hs-CRP and the pro-inflammatory cytokine TNF-α level. For a more thorough verification, measurement of a wider range of inflammatory cytokines in more frequent time intervals are suggested. PMID:26819926

  4. Anti-inflammatory and antiviral effects of Glossogyne tenuifolia.

    PubMed

    Wu, Ming-Jiuan; Weng, Ching-Yi; Ding, Hsiou-Yu; Wu, Pei-Jong

    2005-01-21

    Glossogyne tenuifolia (Hsiang-Ju) is a traditional antipyretic and hepatoprotective herb used in Chinese medicine. The aim of this research is to investigate the pharmacological activities and potent components of the ethanol extract of Glossogyne tenuifolia (GT) in human primary cells and cell line. We found that GT (0.1 approximately 0.25 mg/ml) exerted dose-dependent inhibitions on the release of TNF-alpha and IL-6 in LPS-activated human whole blood and peripheral blood mononuclear cells (PBMC), and IFN-gamma in PHA-stimulated human whole blood. The lack of cytotoxicity indicated that the inhibitory effects of GT on cytokine production were not due to cell death. Luteolin, the deglycosylated derivative of one of the major compositions, luteolin-7-glucoside, exerted inhibitory effects on TNF-alpha, IL-6 and IFN-gamma production in activated human whole blood with estimated IC(50)s of 42.73 microM, 44.86 microM and 3.34 microM, respectively. Furthermore, GT had potent anti-hepatitis B virus (HBV) effects on the human hepatocellular carcinoma cell line, PLC/PRF/5. GT exhibited a dose-dependent inhibition on the release of hepatitis B surface antigen (HBsAg) by repressing the expression of HBsAg with IC(50) of 0.093 mg/ml. We concluded that GT exerted combinatorial anti-inflammatory and antiviral effects, and the multiple actions may underlie its traditional hepatoprotective function. PMID:15620577

  5. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

    PubMed Central

    Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2016-01-01

    BACKGROUND/OBJECTIVES Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS Pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B (NF-κB), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-α, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and NF-κB transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced NF-κB and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, NF-κB, and MAPKs pathways. PMID:27247720

  6. Phenolic composition, anitproliferative and anti-inflammatory properties of conventional and organic cinnamon and peppermint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional and organic cinnamon and peppermint were investigated for their phenolic profile, antiproliferative, anti-inflammatory, and antioxidant properties. Accelerated solvent extraction (ASE) with 75% acetone was a better method than Soxhlet and overnight extraction for phenolic content and a...

  7. Anti-inflammatory and gastroprotective properties of Hypericum richeri oil extracts.

    PubMed

    Zdunić, Gordana; Godevac, Dejan; Milenković, Marina; Savikin, Katarina; Menković, Nebojsa; Petrović, Silvana

    2010-08-01

    Oil extracts of flowering tops of Hypericum richeri Vill. prepared in three different ways were evaluated for chemical composition, and anti-inflammatory and gastroprotective activities. An HPLC method was developed for determination of two dominant flavonoids, quercetin and I3,II8-biapigenin. The carrageenan-induced rat paw edema test was used for screening the anti-inflammatory activity, while indomethacin-induced rat gastric mucosa damage test was used for evaluation of gastroprotective activity. The oil extract prepared by maceration with 96% ethanol, followed by extraction with sunflower oil by heating on a water bath, exhibited the highest anti-inflammatory (38.4%) and gastroprotective activities (gastric damage score of 0.9). The same oil extract had the highest content of quercetin (49 microg/mL) and I3,II8-biapigenin (60 microg/mL). These results approve the usage of oil extracts of H. richeri as an anti-inflammatory and gastroprotective agent.

  8. Evaluation of anti-inflammatory activity of Calotropis gigantea (AKANDA) in various biological system.

    PubMed

    Adak, Manoranjan; Gupta, Joyanta Kumar

    2006-09-01

    To evaluate the effect of Calotropis G in various experimental animal models. The anti-inflammatory activity was evaluated using carrageenin-induced kaolin -induced rat paw oedema for acute and cotton-pellet granuloma, adjuvant-induced arthritis model for chronic inflammation. Antipyretic activity was carried out using yeast induced pyresis method. Phenylquinone--induced writhing method in mice was used for analgesic activity. Test compounds exhibited variable anti-inflammatory activity and peak activity of the test compounds were reached at 2 h. Alkaloid fraction possesses comparatively high initial anti-inflammatory activity. The residual anti-inflammatory activity of alkaloid fraction of Calotropis G suggest either a greater protein binding nature of the compound there by providing a slow released pool of active drug molecule in the system or non available of possible bioactive metabolites to retain the activity profile relation.

  9. Experimental evaluation of analgesic and anti-inflammatory potential of Oyster mushroom Pleurotus florida

    PubMed Central

    Ganeshpurkar, Aditya; Rai, Gopal

    2013-01-01

    Background: Edible mushrooms have been used as flavorful foods and as health nutritional supplements for several centuries. A number of bioactive molecules have been identified in numerous mushroom species Objective: To evaluate the analgesic and anti-inflammatory potential of Oyster Mushroom Pleurotus florida using various experimental models in Wistar rats. Materials and Methods: Acute toxicity studies were performed whereby dose of 250 mg/ kg and 500 mg/kg was selected for present study, Analgesic activity was determined using hot plate method, tail flick method, acetic acid induced writhing and formalin induced pain in rats, while carrageenan was used to induce inflammation and anti-inflammatory studies were performed. Results: HEE showed significant (P < 0.01) analgesic and anti-inflammatory response against all experimental models. Conclusion: These studies conclude that Pleurotus florida possesses analgesic and anti- inflammatory potential which might be due to presence of myochemicals like flavonoids, phenolics and polysaccharides. PMID:23543896

  10. Rhododendrin, an analgesic/anti-inflammatory arylbutanoid glycoside, from the leaves of Rhododendron aureum.

    PubMed

    Kim, Myung-Hoe; Nugroho, Agung; Choi, Jongwon; Park, Jong Hee; Park, Hee-Juhn

    2011-06-01

    To identify an analgesic/anti-inflammatory component from the leaves of Rhododendron aureum (Ericaceae), phytochemical isolation and pharmacological assays (writhing assays and vascular permeability assay for analgesic action in mice; carrageenan-induced paw edemaand TPA-induced ear edema assays of anti-inflammatory action in rats) were performed. Four compounds were isolated from the active fraction (BuOH fraction) by silica gel column chromatography and identified as (-)-rhododendrol, (-)-rhododendrin, avicularin and hyperoside by spectroscopic methods. Rhododendrin, the main compound of the BuOH fraction, exhibited significant analgesic actions in mice and anti-inflammatory actions in rats. This compound accounted for 3.1% of the MeOH extract and 0.48% of dried leaves, respectively, on HPLC analysis. These results suggest that rhododendrin is the major biologically active substance in the leaves of R. aureum with analgesic/anti-inflammatory activity.

  11. Anti-inflammatory and related properties of 2-(2,4-dichlorophenoxy)phenylacetic acid (fenclofenac).

    PubMed

    Atkinson, D C; Leach, E C

    1976-09-01

    Fenclofenac was shown to possess anti-inflammatory, antinociceptive and antipyretic properties as measured by tests in rats that detect clinically active compounds. In a chronic test for assessing anti-inflammatory activity (established adjuvant arthritis), it was approximately equipotent to alclofenac, fenoprofen calcium and phenylbutazone, more potent than acetylsalicylic acid and ibuprofen, but was less potent than diclofenac sodium, indomethacin, ketoprofen and naproxen. In contrast, the potency of fenclofenac in acute tests for anti-inflammatory, antinociceptive and anti-pyretic activity was generally lower, the drug being approximately equipotent to acetylsalicylic acid in such tests. The anti-inflammatory activity of fenclofenac was not mediated via the pituitary-adrenal axis or a counter-irritant action. Fenclofenac was shown to have remarkably low gastric ulcerogenic potential, both acutely and chronically. PMID:970297

  12. [Anti-Inflammatory Activity of the Polypeptide of the Sea Anemone, Heteractis crispa].

    PubMed

    Sintsova, O V; Monastyrnaya, M M; Pislyagin, E A; Menchinskaya, E S; Leychenko, E V; Aminin, D L; Kozlovskaya, E P

    2015-01-01

    The anti-inflammatory effect of the recombinant polypeptide HCGS 1.20, a Kunitz-type serine protease inhibitor of the sea anemone Heteractis crispa, was investigated. It was shown that the polypeptide inhibits the increase of the concentration of calcium ions in mouse bone marrow derived macrophages elicited by histamine, and reduces the content of NO in lipopolysaccharide stimulated macrophages. A presumable mechanism of anti-inflammatory action of the polypeptide was being discussed. PMID:27125018

  13. Anti-inflammatory and Immunomodulatory Effects of Antibiotics and Their Use in Dermatology

    PubMed Central

    Pradhan, Swetalina; Madke, Bhushan; Kabra, Poonam; Singh, Adarsh Lata

    2016-01-01

    Antibiotics (antibacterial, antiviral, and antiparasitic) are class of drugs which result in either killing or inhibiting growth and multiplication of infectious organisms. Antibiotics are commonly prescribed by all specialties for treatment of infections. However, antibiotics have hitherto immunomodulatory and anti-inflammatory properties and can be exploited for various noninfectious dermatoses. Dermatologists routinely prescribe antibiotics in treatment of various noninfectious disorders. This study will review anti-inflammatory and immunomodulatory effects of antibiotics and their use in dermatology.

  14. Anti-inflammatory and Immunomodulatory Effects of Antibiotics and Their Use in Dermatology.

    PubMed

    Pradhan, Swetalina; Madke, Bhushan; Kabra, Poonam; Singh, Adarsh Lata

    2016-01-01

    Antibiotics (antibacterial, antiviral, and antiparasitic) are class of drugs which result in either killing or inhibiting growth and multiplication of infectious organisms. Antibiotics are commonly prescribed by all specialties for treatment of infections. However, antibiotics have hitherto immunomodulatory and anti-inflammatory properties and can be exploited for various noninfectious dermatoses. Dermatologists routinely prescribe antibiotics in treatment of various noninfectious disorders. This study will review anti-inflammatory and immunomodulatory effects of antibiotics and their use in dermatology. PMID:27688434

  15. Anti-inflammatory and Immunomodulatory Effects of Antibiotics and Their Use in Dermatology

    PubMed Central

    Pradhan, Swetalina; Madke, Bhushan; Kabra, Poonam; Singh, Adarsh Lata

    2016-01-01

    Antibiotics (antibacterial, antiviral, and antiparasitic) are class of drugs which result in either killing or inhibiting growth and multiplication of infectious organisms. Antibiotics are commonly prescribed by all specialties for treatment of infections. However, antibiotics have hitherto immunomodulatory and anti-inflammatory properties and can be exploited for various noninfectious dermatoses. Dermatologists routinely prescribe antibiotics in treatment of various noninfectious disorders. This study will review anti-inflammatory and immunomodulatory effects of antibiotics and their use in dermatology. PMID:27688434

  16. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease.

    PubMed

    Moreira, Daniel Medeiros; da Silva, Roberto Leo; Vieira, Jefferson Luís; Fattah, Tammuz; Lueneberg, Maria Emilia; Gottschall, Carlos Antonio Mascia

    2015-02-01

    Coronary artery disease (CAD) and acute myocardial infarction (AMI) are inflammatory pathologies, involving interleukins (ILs), such as IL-1β, IL-6 and tumor necrosis factor (TNF)-α, and acute phase proteins production, such as for C reactive protein (CRP). The process begins with retention of low-density lipoprotein (LDL) and its oxidation inside the intima, with the formation of the "foam cells." Toll-like receptors and inflamassomes participate in atherosclerosis formation, as well as in the activation of the complement system. In addition to innate immunity, adaptive immunity is also associated with atherosclerosis through antigen-presenting cells, T and B lymphocytes. AMI also increases the expression of some ILs and promotes macrophage and lymphocyte accumulation. Reperfusion increases the expression of anti-inflammatory ILs (such as IL-10) and generates oxygen free radicals. Although CAD and AMI are inflammatory disorders, the only drugs with anti-inflammatory effect so far widely used in ischemic heart disease are aspirin and statins. Some immunomodulatory or immunosuppressive promising therapies, such as cyclosporine and colchicine, may have benefits in CAD. Methotrexate also has potential cardioprotective anti-inflammatory effects, through increased adenosine levels. The TETHYS trial (The Effects of mETHotrexate Therapy on ST Segment Elevation MYocardial InfarctionS trial) will evaluate low-dose methotrexate in ST elevation AMI. The CIRT (Cardiovascular Inflammation Reduction Trial), in turn, will evaluate low-dose methotrexate in patients with a high prevalence of subclinical vascular inflammation. The CANTOS (The Canakinumab Antiinflammatory Thrombosis Outcomes Study) will evaluate canakinumab in patients with CAD and persistently elevated CRP. The blockage of other potential targets, such as the IL-6 receptor, CC2 chemokine receptor and CD20, could bring benefits in CAD.

  17. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats.

    PubMed

    Chu, Yi-Fang; Wise, Mitchell L; Gulvady, Apeksha A; Chang, Tony; Kendra, David F; Jan-Willem van Klinken, B; Shi, Yuhui; O'Shea, Marianne

    2013-08-15

    Oats are gaining increasing scientific and public interest for their purported antioxidant-associated health benefits. Most reported studies focused on specific oat extracts or particular oat components, such as β-glucans, tocols (vitamin E), or avenanthramides. Studies on whole oats with respect to antioxidant and anti-inflammatory activities are still lacking. Here the antioxidant and anti-inflammatory activities from whole oat groats of seven common varieties were evaluated. All oat varieties had very similar oxygen radical absorption capacity compared with other whole grains. In an anti-inflammatory assay, oat variety CDC Dancer inhibited tumor necrosis factor-α induced nuclear factor-kappa B activation by 27.5% at 2 mg/ml, whereas variety Deiter showed 13.7% inhibition at a comparable dose. Avenanthramide levels did not correlate with the observed antioxidant and anti-inflammatory activities. Further investigations are needed to pinpoint the specific antioxidant and anti-inflammatory compounds, and potential synergistic and/or matrix effects that may help explain the mechanisms of oat's anti-inflammatory actions.

  18. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    PubMed

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-06-18

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes.

  19. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    PubMed

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-01-01

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes. PMID:26096431

  20. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 µl of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  1. Anti-nociceptive and anti-inflammatory activities of the extracts of Stauntonia chinensis.

    PubMed

    Ying, Chen; Ning, Wu; Ying, Liu; Hao, Gao; Hua-Jin, Dong; Rui-Bin, Su; Xin-Sheng, Yao; Jin, Li

    2014-09-01

    The aim of this investigation was to study the anti-nociceptive and anti-inflammatory activities of Stauntonia chinensis (S. chinensis) and the possible action mechanisms of effective fractions. The anti-nociceptive and anti-inflammatory activities of S. chinensis extracts, including the 60% EtOH extract (YMG), the n-BuOH extract (YMGB) and the aqueous residue (YMGW) of YMG, and the fractions from YMGB (YMGB1~YMGB7) were investigated by using the mouse acetic acid-induced writhing test and the rat formalin test. The effect of these extracts on the PGE2 production was tested as well. In the mouse acetic acid-induced writhing test and the rat formalin test, YMGW and YMGB displayed anti-nociceptive and anti-inflammatory activities, suggesting that they were the active ingredients of YMG. Among the fractions isolated from YMGB, YMGB1, YMGB3, YMGB4 and YMGB6 were the main active ingredients producing anti-nociceptive activity and YMGB3, YMGB5, YMGB6 and YMGB7 were the main active ingredients producing anti-inflammatory activity. Additionally, YMGW, YMGB and its separations reduced the production of PGE2, which might be the mechanism of them producing anti-inflammatory activity. These results demonstrated the active ingredients of S. chinensis producing anti-nociceptive and anti-inflammatory activities, which is valuable to validate the substance basis of S. chinensis's pharmacological actions.

  2. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    PubMed Central

    Cruz Paredes, Carla; Bolívar Balbás, Paulina; Juárez, Zaida Nelly; Sánchez Arreola, Eugenio; Hernández, Luis Ricardo

    2013-01-01

    The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities. PMID:23843731

  3. Leaching potential of nonsteroidal anti-inflammatory drugs in soils.

    PubMed

    Xu, Jian; Wu, Laosheng; Chen, Weiping; Chang, Andrew C

    2010-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) in soils resulting from application of municipal wastewater or biosolids may migrate through soils intact or be transformed and reach groundwater. In the present study, the leaching potential of four NSAIDs (ibuprofen, naproxen, ketoprofen, and diclofenac sodium) in three U.S. cropland soils was evaluated, and the effect of CaCl(2) solution (as an index of salinity), dissolved organic matter (DOM), and polyacrylamide (PAM) amendment was investigated. The soils were spiked with selected NSAIDs, incubated for 24 h followed by 7-d storage in glass flasks, and then packed into stainless steel columns and leached with deionized water (DIW), 10 mM CaCl(2), DOM (DOC 34 mg/L), and PAM solution (1.0 mg/L) by gravity. Initial concentrations of ibuprofen, naproxen, ketoprofen, and diclofenac sodium in the three packed soils were 1.93 to 2.07, 1.74 to 2.27, 1.79 to 2.16, and 1.99 to 2.13 mg/kg, respectively. Maximum concentrations of the above NSAIDs in column effluents were 1.23, 0.92, 0.69, and 1.12 mg/L, respectively, when the soil was leached with 10 pore volumes of water, which occupied 17.4, 11.1, 9.6, and 15.2% of the total chemicals in each soil column. Dissolved organic matter or PAM solution did not facilitate the NSAIDs release from soils. The CaCl(2) solution, however, reduced the amounts of NSAIDs leached from all three soils. Leaching of NSAIDs differed among the three tested soils. The results suggest that the leaching of NSAIDs through soil to water is significant, and the mobility of NSAIDs in soil is related to their chemicals' characteristics (such as pK(a) values) and soil properties (such as soil organic matter and clay content). Amending soil with DOM or PAM does not significantly affect the leaching behavior of NSAIDs in soil, whereas increasing the salinity of the irrigation water may decrease the extent of contamination of groundwater posed by NSAIDs.

  4. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs.

    PubMed

    Lapponi, María José; Carestia, Agostina; Landoni, Verónica Inés; Rivadeneyra, Leonardo; Etulain, Julia; Negrotto, Soledad; Pozner, Roberto Gabriel; Schattner, Mirta

    2013-06-01

    The formation of neutrophil extracellular traps (NETs) is a newly described phenomenon that increases the bacteria-killing ability and the inflammatory response of neutrophils. Because NET generation occurs in an inflammatory microenvironment, we examined its regulation by anti-inflammatory drugs. Treatment of neutrophils with dexamethasone had no effect, but acetylsalicylic acid (ASA) treatment prevented NET formation. NETosis was also abrogated by the presence of BAY 11-7082 [(E)-3-[4-methylphenylsulfonyl]-2-propenenitrile] and Ro 106-9920 [6-(phenylsulfinyl)tetrazolo[1,5-b]pyridazine], two structurally unrelated nuclear factor-κB (NF-κB) inhibitors. The decrease in NET formation mediated by ASA, BAY-11-7082, and Ro 106-9920 was correlated with a significant reduction in the phosphorylation of NF-κB p65 subunit, indicating that the activation of this transcription factor is a relevant signaling pathway involved in the generation of DNA traps. The inhibitory effect of these drugs was also observed when NET generation was induced under acidic or hyperthermic conditions, two stress signals of the inflammatory microenvironment. In a mouse peritonitis model, while pretreatment of animals with ASA or BAY 11-7082 resulted in a marked suppression of NET formation along with increased bacteremia, dexamethasone had no effect. Our results show that NETs have an important role in the local control of infection and that ASA and NF-κB blockade could be useful therapies to avoid undesired effect of persistent neutrophil activation. PMID:23536315

  5. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs.

    PubMed

    Lapponi, María José; Carestia, Agostina; Landoni, Verónica Inés; Rivadeneyra, Leonardo; Etulain, Julia; Negrotto, Soledad; Pozner, Roberto Gabriel; Schattner, Mirta

    2013-06-01

    The formation of neutrophil extracellular traps (NETs) is a newly described phenomenon that increases the bacteria-killing ability and the inflammatory response of neutrophils. Because NET generation occurs in an inflammatory microenvironment, we examined its regulation by anti-inflammatory drugs. Treatment of neutrophils with dexamethasone had no effect, but acetylsalicylic acid (ASA) treatment prevented NET formation. NETosis was also abrogated by the presence of BAY 11-7082 [(E)-3-[4-methylphenylsulfonyl]-2-propenenitrile] and Ro 106-9920 [6-(phenylsulfinyl)tetrazolo[1,5-b]pyridazine], two structurally unrelated nuclear factor-κB (NF-κB) inhibitors. The decrease in NET formation mediated by ASA, BAY-11-7082, and Ro 106-9920 was correlated with a significant reduction in the phosphorylation of NF-κB p65 subunit, indicating that the activation of this transcription factor is a relevant signaling pathway involved in the generation of DNA traps. The inhibitory effect of these drugs was also observed when NET generation was induced under acidic or hyperthermic conditions, two stress signals of the inflammatory microenvironment. In a mouse peritonitis model, while pretreatment of animals with ASA or BAY 11-7082 resulted in a marked suppression of NET formation along with increased bacteremia, dexamethasone had no effect. Our results show that NETs have an important role in the local control of infection and that ASA and NF-κB blockade could be useful therapies to avoid undesired effect of persistent neutrophil activation.

  6. High anti-inflammatory activity of harpagoside-enriched extracts obtained from solvent-modified super- and subcritical carbon dioxide extractions of the roots of Harpagophytum procumbens.

    PubMed

    Günther, M; Laufer, S; Schmidt, P C

    2006-01-01

    Solvent-modified carbon dioxide extractions of the roots of Harpagophytum procumbens have been investigated with respect to extraction efficiency and content of harpagoside, and compared with a conventional extract. The effects of pressure, temperature, type and concentration of the modifier have been examined. Two extraction steps were necessary in order to achievehigh anti-inflammatory harpagoside-enriched extracts. The first extraction step was carried out in the supercritical state using carbon dioxide modified with n-propanol to remove undesired lipophilic substances. The main extraction was performed either in the supercritical or in the subcritical state with carbon dioxide modified with ethanol. The supercritical fluid extraction resulted in extracts containing up to 30% harpagoside. The subcritical extracts showed a harpagoside content of ca. 20%, but the extraction yield was nearly three times greater compared with supercritical conditions. The total harpagoside recovery resulting from the sum of the extract and the crude drug residue was greater than 99% in all experiments. The conventional extract and two carbon dioxide extracts were tested for in-vitro inhibition of 5-lipoxygenase or cyclooxygenase-2 biosynthesis. Both carbon dioxide extracts showed total inhibition on 5-lipoxygenase biosynthesis at a concentration of 51.8 mg/L. In contrast, the conventional extract failed to show any inhibition of 5-lipoxygenase biosynthesis. PMID:16454469

  7. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling.

    PubMed

    Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young

    2013-01-01

    Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling.

  8. Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice.

    PubMed

    Shi, Qiong; Song, Xiufang; Fu, Juanli; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-12-01

    The present study evaluated the protective effect of artificial sweetener neohesperidin dihydrochalcone (NHDC) against paraquat (PQ)-induced acute liver injury in mice. A single dose of PQ (75mg/kg body weight, i.p.) induced acute liver toxicity with the evidences of increased liver damage biomarkers, aspartate transaminase (AST) and alanine transaminase (ALT) activities in serum. Consistently, PQ decreased the antioxidant capacity by reducing glutathione peroxidase (GP-X), glutathione-S-transferase (GST) and catalase (CAT) activities, glutathione (GSH) level and total antioxidant capacity (T-AOC), as well as increasing reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels. Histopathological examination revealed that PQ induced numerous changes in the liver tissues. Immunochemical staining assay indicated the upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. However, NHDC ameliorates PQ-induced hepatic toxicity in mice by reversing these parameters. Additionally, NHDC significantly inhibited PQ-induced nuclear factor-kappa B (NF-κB) expression and mitochondrial-driven apoptotic signaling. TUNEL assay confirmed that PQ-induced apoptosis was relieved by NHDC. In conclusion, these findings suggested that NHDC showed potent antioxidant, anti-inflammatory and anti-apoptotic effects against PQ-induced acute liver damage. PMID:26362205

  9. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells.

    PubMed

    Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul

    2012-01-01

    KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Consistent with the inhibitory effect on PGE(2), KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  10. Impact of cooking and digestion, in vitro, on the antioxidant capacity and anti-inflammatory activity of cinnamon, clove and nutmeg.

    PubMed

    Baker, Iona; Chohan, Magali; Opara, Elizabeth I

    2013-12-01

    The impact of cooking and digestion on the antioxidant capacity (AC), estimated total phenolic content (TPC) and anti-inflammatory activity (AA) of culinary spices was determined to investigate their significance as dietary contributors to these properties. Extracts of uncooked (U), cooked (C) and cooked and digested, in vitro, (D) cinnamon, clove and nutmeg were prepared and the TPC, AC and AA, specifically the inhibition of cyclo-oxygenase 2 (COX-2) and the amount of prostaglandin (PG) synthesized, were determined. Compared to their uncooked (U) counterparts, the following changes were statistically significant: the AC and TPC for (C) clove, and the TPC for (D) clove decreased, the TPC for (D) clove increased, the TPC for (C) nutmeg increased, and the AC and TPC for (D) nutmeg increased, and the TPC for (C) and (D) nutmeg increased. All the spices achieved near 100 % inhibition of COX-2 which was associated with the inhibition of the amount of PG synthesized. Based on estimated levels of ingestion, cinnamon possesses a much higher AC than clove and nutmeg because it is typically used in larger quantities. For AA, (U, C and D) cinnamon and clove maintain near 100 % inhibition of COX-2 but only the inhibitory potential of (D) nutmeg could be ascertained (70 %). Cooking and digestion alter the TPC and AC of these spices although the changes are not consistent between spices or across treatments. In contrast to AC, significant AA is likely to be present in these spices at amounts used in cooking.

  11. Anti-inflammatory effects of the Zingiber officinale roscoe constituent 12-dehydrogingerdione in lipopolysaccharide-stimulated Raw 264.7 cells.

    PubMed

    Han, Young Ah; Song, Chang Woo; Koh, Woo Suk; Yon, Gyu Hwan; Kim, Young Sup; Ryu, Shi Yong; Kwon, Hoon Jeong; Lee, Kyu Hong

    2013-08-01

    Ginger has long been used worldwide as a spice, seasoning, and wine and is also used as a traditional medicine. There have been no previous studies of the potential beneficial effects of the ginger constituent 12-dehydrogingerdione (12-DHGD). We investigated the anti-inflammatory effect of 12-DHGD on lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. The cytotoxicity of 12-DHGD was measured using the MTT assay, and production of prostaglandin E2 (PGE2 ) and the inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was measured by ELISA. Production of nitric oxide (NO) was measured using Griess reagent and expression of cyclooxygenase-2 (COX-2) and inducible NO (iNOS) enzymes was assessed by reverse transcriptase-polymerase chain reaction. Treatment of Raw 264.7 cells with 12-DHGD significantly inhibited LPS-stimulated production of NO (at 12-DHGD concentrations of 150 and 200 ng/ml), IL-6 (at 50, 100, 150, and 200 ng/ml), and PGE2 (at 200 ng/ml). Consistent with the effects on NO and PGE2 production, 12-DHGD treatment also inhibited the LPS-stimulated increase in iNOS and COX-2 mRNA levels. However, 12-DHGD did not affect production of IL-1β or TNF-α in response to LPS. 12-DHGD, a constituent of ginger, is a potent inhibitor of proinflammatory mediator production in Raw 264.7 macrophage cells. PMID:23027684

  12. Does the Preemptive Use of Oral Nonsteroidal Anti-inflammatory Drugs Reduce Postoperative Pain in Surgical Removal of Third Molars? A Meta-analysis of Randomized Clinical Trials

    PubMed Central

    Costa, Fábio Wildson Gurgel; Esses, Diego Felipe Silveira; de Barros Silva, Paulo Goberlânio; Carvalho, Francisco Samuel Rodrigues; Sá, Carlos Diego Lopes; Albuquerque, Assis Filipe Medeiros; Bezerra, Tácio Pinheiro; Ribeiro, Thyciana Rodrigues; Fonteles, Cristiane Sá Roriz; Soares, Eduardo Costa Studart

    2015-01-01

    The purpose of this study was to investigate the effectiveness of preemptive analgesia with nonsteroidal anti-inflammatory drugs (NSAIDs) in third-molar surgery. A PubMed literature search was conducted for articles restricted to the English language using the following terms (DeCS/MeSH) or combinations: analgesia, third molar, and preemptive. From a total of 704 articles, 6 (n = 420 subjects) were selected. All studies presented a low risk of bias (Cochrane criteria) but exhibited high heterogeneity of methods. Two studies were excluded from the meta-analysis because they did not have adequate numeric values (dichotomous data) for the calculations. Preemptive analgesia showed no significant benefit (n = 298, P = .2227, odds ratio: 2.30, 0.60–8.73) in reducing postoperative pain after removal of lower impacted third molars. However, there was a probable direct relationship between the effectiveness of NSAIDs in preemptive analgesia for removal of third molars and its selectivity for the cyclooxygenase-2 (COX-2). Preemptive analgesia did not have a significant effect in reducing postoperative pain after removal of lower impacted third molars. More homogeneous and well-delineated clinical studies are necessary to determine a possible association between NSAIDs' selectivity for COX-2 and treatment effectiveness. PMID:26061574

  13. Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

    PubMed Central

    Son, In Suk; Lee, Jeong Soon; Lee, Ju Yeon; Kwon, Chong Suk

    2014-01-01

    Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators. PMID:25054106

  14. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IκBα/MAPK/ERK signaling pathways

    PubMed Central

    Chen, Haixia; Sohn, Johann; Zhang, Likang; Tian, Jingge; Chen, Shuhan; Bjeldanes, Leonard F.

    2014-01-01

    Schisandra chinensis Baill is a Chinese traditional medicine with multiple pharmacological activities. In this study, chicanine, one of the major lignan compounds of Schiandra chinesis, was investigated for suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (RAW 264.7 cells). Chicanine was found to have anti-infammatory properties with the inhibition of nitric oxide (NO) and Prostaglandin E (2) (PGE2) production and nuclear factor-κB (NF-κB) signaling in LPS-stimulated RAW 264.7 cells with no cytotoxic effects. Treatment of RAW 264.7 cells with chicanine down-regulated LPS-induced expression of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, G-CSF, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). These inhibitory effects were found with the blockage of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and also IκB-α phosphorylation. These results indicated that anti-inflammatory actions of chicanine in macrophages involved inhibition of LPS-induced TLR4-IκBα/MAPK/ERK signaling pathways. PMID:24361309

  15. Co-administration of 3-Acetyl-11-Keto-Beta-Boswellic Acid Potentiates the Protective Effect of Celecoxib in Lipopolysaccharide-Induced Cognitive Impairment in Mice: Possible Implication of Anti-inflammatory and Antiglutamatergic Pathways.

    PubMed

    Sayed, Aya Shoukry; El Sayed, Nesrine Salah El Dine

    2016-05-01

    Neuro-inflammation is known to initiate the underlying pathogenesis of several neurodegenerative disorders which may progress to cognitive, behavioral, and functional impairment. Boswellia serrata is a well-known powerful anti-inflammatory agent used to treat several inflammatory diseases. The aim of the current study is to investigate the effect of the combination therapy of 3-acetyl-11-keto-β-boswellic acid (AKBA), a 5-lipoxygenase (5-LOX) inhibitor and celecoxib, and a selective cyclooxygenase-2 (COX-2) inhibitor as dual enzyme inhibitors compared to monotherapies with celecoxib and AKBA. Cognitive dysfunction is induced by intraperational injection of lipopolysaccharide (LPS) in mice. Radial maze, Y maze, and novel object recognition (NOR) were performed to evaluate the possible behavioral changes. Moreover, estimation of glutamate and tumor necrosis factor-alpha (TNF-α), as well as an immunohistochemical investigation of amyloid beta peptide (Aβ) was performed to evaluate the molecular changes that followed the LPS or drug treatment. The results showed that the combination therapy of AKBA and celecoxib reversed the behavioral and molecular changes caused by LPS cognitive dysfunction model that predispose cognitive dysfunction in mice. This study showed the effectiveness of the dual therapy with AKBA and celecoxib as anti-inflammatory, antiglutamatergic, and anti-amyloidogenic agents in the management of cognitive dysfunction. PMID:26984336

  16. In vitro anti-inflammatory effects of diterpenoids and sesquiterpenoids from traditional Chinese medicine Siegesbeckia pubescens.

    PubMed

    Wang, Rui; Liu, Ying-Qian; Ha, Wei; Shi, Yan-Ping; Hwang, Tsong-Long; Huang, Guan-Jhong; Wu, Tian-Shung; Lee, Kuo-Hsiung

    2014-08-15

    Oxidative stress imposed by reactive oxygen species plays a crucial role in pathophysiology of inflammatory diseases. In the present study, sesquiterpenoids and diterpenoids isolated from Siegesbeckia pubescens, a Chinese traditional medicine used to treat arthritis, were evaluated for inhibition of NO production in activated RAW 264.7 macrophages and FMLP/CB induced O2(·-) generation and elastase release in human neutrophils. In the former assay, sesquiterpenoids were more potent than diterpenoids. The C-4 carbonyl group in the carabrane-type sesquiterpenoid 3 and the C-9 ether linkage in the germacrane sesquiterpene 7 were associated with the enhanced potency. Also, for the active ent-kaurane type diterpenoids, esterification of 17-OH with isobutyric acid and acetylation of 18-OH affected the inhibition of O2(·-) generation and elastase release. This report is the first to describe the inhibitory effects on oxidative stress of secondary metabolites from S. pubescens. Its findings suggest that active terpenoids from the herb could be used as lead anti-inflammatory agents.

  17. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis

    PubMed Central

    Boilard, Eric; Lai, Ying; Larabee, Katherine; Balestrieri, Barbara; Ghomashchi, Farideh; Fujioka, Daisuke; Gobezie, Reuben; Coblyn, Jonathan S; Weinblatt, Michael E; Massarotti, Elena M; Thornhill, Thomas S; Divangahi, Maziar; Remold, Heinz; Lambeau, Gérard; Gelb, Michael H; Arm, Jonathan P; Lee, David M

    2010-01-01

    Phospholipase A2 (PLA2) catalyses the release of arachidonic acid for generation of lipid mediators of inflammation and is crucial in diverse inflammatory processes. The functions of the secretory PLA2 enzymes (sPLA2), numbering nine members in humans, are poorly understood, though they have been shown to participate in lipid mediator generation and the associated inflammation. To further understand the roles of sPLA2 in disease, we quantified the expression of these enzymes in the synovial fluid in rheumatoid arthritis and used gene-deleted mice to examine their contribution in a mouse model of autoimmune erosive inflammatory arthritis. Contrary to expectation, we find that the group V sPLA2 isoform plays a novel anti-inflammatory role that opposes the pro-inflammatory activity of group IIA sPLA2. Mechanistically, group V sPLA2 counter-regulation includes promotion of immune complex clearance by regulating cysteinyl leukotriene synthesis. These observations identify a novel anti-inflammatory function for a PLA2 and identify group V sPLA2 as a potential biotherapeutic for treatment of immune-complex-mediated inflammation. PMID:20432503

  18. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo.

    PubMed

    Kerola, Markku; Vuolteenaho, Katriina; Kosonen, Outi; Kankaanranta, Hannu; Sarna, Seppo; Moilanen, Eeva

    2009-01-01

    : The beneficial actions of non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with inhibition of cyclooxygenase-2 (COX-2), whereas some of their adverse effects are associated mainly with inhibition of COX-1. Selective COX-2 inhibitors reduce the risk of gastrointestinal adverse events, but increase the risk of thromboembolic events pointing to importance of optimal COX-1/COX-2 inhibition in drug safety. We compared the effects of acetylsalicylic acid, ibuprofen, nabumetone and nimesulide on COX-1 and COX-2 pathways in healthy volunteers in an ex vivo set-up using single oral doses commonly used to treat acute pain. In a randomized, double-blind four-phase cross-over study, 15 healthy volunteers were given orally a single dose of either acetylsalicylic acid 500 mg, ibuprofen 400 mg, nabumetone 1 g or nimesulide 100 mg. Blood samples were drawn before and 1, 3, 6, 24 and 48 hr after the drug for the assessment of COX-1 and COX-2 activity. COX-1 activity was measured as thromboxane(2) production during blood clotting and COX-2 activity as endotoxin-induced prostaglandin E(2) synthesis in blood leucocytes. The data show that after a single oral dose these four NSAIDs have different profiles of action on COX-1 and COX-2. As expected, acetylsalicylic acid appeared to be COX-1-selective and ibuprofen effectively inhibited both COX-1 and COX-2. Nabumetone showed only a slight inhibitory effect on COX-1 and COX-2. Nimesulide caused almost complete suppression of COX-2 activity and a partial reduction of COX-1 activity. This confirms the relative COX-2 selectivity of nimesulide.

  19. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  20. Cyclooxygenase-2 inhibition improves amyloid-β-mediated suppression of memory and synaptic plasticity

    PubMed Central

    Kotilinek, Linda A.; Westerman, Marcus A.; Wang, Qinwen; Panizzon, Kimberly; Lim, Giselle P.; Simonyi, Agnes; Lesne, Sylvain; Falinska, Agnieszka; Younkin, Linda H.; Younkin, Steven G.; Rowan, Michael; Cleary, James; Wallis, Roi Ann; Sun, GraceY.; Cole, Greg; Frautschy, Sally; Anwyl, Roger; Ashe, Karen H.

    2008-01-01

    Non-steroidal anti-inflammatory agents (NSAIDs) are associated with a marked reduction in the risk of developing Alzheimer’s disease, a form of dementia characterized by the accumulation of amyloid plaques containing the amyloid-β protein (Aβ). Studies of the effects of NSAIDs upon the inflammatory response surrounding amyloid plaques and upon the generation of Aβ from the amyloid precursor protein (APP) have led to two proposed mechanisms by which NSAIDs may protect against Alzheimer’s disease: one, the selective lowering of Aβ42 by a subset of NSAIDs; and two, the reduction of inflammation. Although Alzheimer’s disease is a disorder of brain and synaptic function, the effects of NSAIDs on Aβ-mediated suppression of synaptic plasticity and memory function have never been reported. We therefore investigated how three different NSAIDs, chosen for their distinct effects on Aβ42 production and the inhibition of the cyclooxygenase (COX) isoenzymes, COX-1 and COX-2, affect memory function and synaptic plasticity. By focusing upon brain and synapse function, we made novel observations about the effects of NSAIDs on Aβ-mediated neural processes. Here we report that the selective inhibition of COX-2, but not COX-1, acutely prevented the suppression of hippocampal long-term plasticity (LTP) by Aβ. The non-selective NSAIDs, ibuprofen and naproxen, and a selective COX-2 inhibitor, MF-tricyclic, each restored memory function in Tg2576 mice over-expressing APP, and also blocked Aβ-mediated inhibition of LTP. There was no advantage of ibuprofen, a selective Aβ42-lowering agent (SALA), over the non-SALAs, naproxen and MF-tricyclic. The beneficial effects on memory did not depend upon lowered levels of Aβ42 or the inflammatory cytokines, tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Intriguingly, improved memory function was inversely related to prostaglandin E2 (PGE2) levels. Conversely, exogenous PGE2 prevented the restorative effects of COX-2

  1. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome.

    PubMed

    Juliana, Christine; Fernandes-Alnemri, Teresa; Wu, Jianghong; Datta, Pinaki; Solorzano, Leobaldo; Yu, Je-Wook; Meng, Rong; Quong, Andrew A; Latz, Eicke; Scott, Charles P; Alnemri, Emad S

    2010-03-26

    Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.

  2. IL-35, an anti-inflammatory cytokine which expands CD4+CD25+ Treg Cells.

    PubMed

    Castellani, Maria Luisa; Anogeianaki, A; Felaco, P; Toniato, E; De Lutiis, M A; Shaik, B; Fulcheri, M; Vecchiet, J; Tetè, S; Salini, V; Theoharides, T C; Caraffa, A; Antinolfi, P; Frydas, I; Conti, P; Cuccurullo, C; Ciampoli, C; Cerulli, G; Kempuraj, D

    2010-01-01

    Interleukin 12 (IL 12) p35/p40 is a heterodimeric cytokine which plays a critical role in inflammation, immunity and tissue proliferation, and also plays a relevant function in T helper (Th) cell polarization and Th1 T-cell differentiation. IL-12 family members, IL-12p70, IL-23, IL-27 and IL-35, play an important role in influencing helper T-cell differentiation. EBV-induced gene 3 can be associated with the p35 subunit of IL-12 to form the EBI3/p35 heterodimer, also called IL-35. It has been shown that IL-35 has biological activity and able to expand CD4+CD25+ Treg cells, suppress the proliferation of CD4+CD25- effector cells and inhibit Th17 cell polarization. IL-35 has been shown to be constitutively expressed by regulatory T (Treg) cells CD4(+)CD25(+)Foxp3(+) and suggested to contribute to their suppressive activity. IL-35 is a crucial mediator which provokes CD4+CD25+ T cell proliferation and IL-10 generation, another well-known anti-inflammatory cytokine, along with TGFbeta cytokine. These studies suggest that IL-35, together with other successfully discovered cytokine inhibitors, represents a new potential therapeutic cytokine for chronic inflammation, autoimmunity and other immunological disorders.

  3. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents.

    PubMed

    Boukhary, Rima; Raafat, Karim; Ghoneim, Asser I; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs.

  4. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    PubMed

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  5. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species

    PubMed Central

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  6. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    PubMed

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  7. [Non-steroid anti-inflammatory drugs and adverse gastrointestinal effects. An unresolved problem].

    PubMed

    López, A

    1999-01-01

    Non-steroid anti-inflammatory drugs are a class of medicine widely used throughout the world. This is a pharmacological group in continuous growth, to which some new molecules have been added in recent years. The great drawback of non-steroid anti-inflammatory drugs are their adverse effects, outstanding of which due to their frequency and importance being those that occur in the gastrointestinal tract. By means of a search in Medline and other databases, this work reviews the latest data published on the incidence of dyspepsia, gastroduodenal lesions, gastrointestinal complications and mortality associated with consumption of non-steroid anti-inflammatory drugs. Similarly, a brief description is made of the mechanism of lesions to the stomach of the non-steroid anti-inflammatory drugs and the different risk factors that condition the appearance of adverse effects at the gastrointestinal level. Finally, an analysis is made of the preventive strategy and the different medicines that can be used to this end and a contrast is made of the evidence extracted from the different published studies and the reality of the use of the different "gastroprotectors". This review concludes with a series of questions that still remain unresolved concerning treatment with non-steroid anti-inflammatory drugs and their lesions to the stomach.

  8. Systems pharmacology dissection of the anti-inflammatory mechanism for the medicinal herb Folium eriobotryae.

    PubMed

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-28

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations.

  9. Systems Pharmacology Dissection of the Anti-Inflammatory Mechanism for the Medicinal Herb Folium Eriobotryae

    PubMed Central

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  10. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  11. A Systematic Review for Anti-Inflammatory Property of Clusiaceae Family: A Preclinical Approach

    PubMed Central

    de Melo, Mônica Santos; Quintans, Jullyana de Souza Siqueira; Araújo, Adriano Antunes de Souza; Duarte, Marcelo Cavalcante; Bonjardim, Leonardo Rigoldi; Moraes, Valéria Regina de Souza; de Araújo-Júnior, João Xavier

    2014-01-01

    Background. Clusiaceae family (sensu lato) is extensively used in ethnomedicine for treating a number of disease conditions which include cancer, inflammation, and infection. The aim of this review is to report the pharmacological potential of plants of Clusiaceae family with the anti-inflammatory activity in animal experiments. Methods. A systematic review about experiments investigating anti-inflammatory activity of Clusiaceae family was carried out by searching bibliographic databases such as Medline, Scopus and Embase. In this update, the search terms were “anti-inflammatory agents,” “Clusiaceae,” and “animals, laboratory.” Results. A total of 255 publications with plants this family were identified. From the initial 255 studies, a total of 21 studies were selected for the final analysis. Studies with genera Allanblackia, Clusia, Garcinia or Rheedia, and Hypericum showed significant anti-inflammatory activity. The findings include a decrease of total leukocytes, a number of neutrophils, total protein concentration, granuloma formation, and paw or ear edema formation. Other interesting findings included decreased of the MPO activity, and inflammatory mediators such as NF-κB and iNOS expression, PGE2 and Il-1β levels and a decrease in chronic inflammation. Conclusion. The data reported suggests the anti-inflammatory effect potential of Clusiaceae family in animal experiments. PMID:24976853

  12. Design, synthesis and pharmacological evaluation of omeprazole-like agents with anti-inflammatory activity.

    PubMed

    El-Nezhawy, Ahmed O H; Biuomy, Ayman R; Hassan, Fatma S; Ismaiel, Ayman K; Omar, Hany A

    2013-04-01

    A new series of novel benzimidazole derivatives containing substituted pyrid-2-yl moiety and polyhydroxy sugar conjugated to the N-benzimidazole moiety has been synthesized and evaluated as orally bioavailable anti-inflammatory agents with anti-ulcerogenic activity. The anti-inflammatory and anti-ulcerogenic activities of these compounds were compared to diclofenac and omeprazole, respectively. In carrageenan-induced paw oedema assay, 2-methyl-N-((3,4-dimethoxypyridin-2-yl)methyl)-1H-benzimidazol-5-amine (12d) and 1-(1,2,3,5-tetrahydroxy-α-D-mannofuranose)-5-(((3,4-dimethoxypyridin-2yl)methyl)amino)-2-methyl-1H-benzimidazole (15d) displayed dose-dependent anti-inflammatory activities by decreasing the inflammation by 62% and 72%, respectively which is comparable to that of diclofenac (73%). In contrast to diclofenac, the anti-inflammatory activity of these compounds was not only free from any side effects on the gastric mucosa but also showed significant anti-ulcerogenic activity in rat pyloric ligation and ethanol-induced gastric ulcer models similar to that of omeprazole. Together, these findings suggest that 12d and 15d are potent anti-inflammatory agents with concurrent anti-ulcerogenic activity and support its clinical promise as a component of therapeutic strategies for inflammation, for which the gastric side effects are always a major limitation.

  13. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents

    PubMed Central

    Boukhary, Rima; Ghoneim, Asser I.; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  14. Chemical composition and anti-inflammatory activity of the leaves of Byrsonima verbascifolia.

    PubMed

    Saldanha, Aline Aparecida; do Carmo, Lucas Fernandes; do Nascimento, Sara Batista; de Matos, Natália Alves; de Carvalho Veloso, Clarice; Castro, Ana Hortência Fonsêca; De Vos, Ric C H; Klein, André; de Siqueira, João Máximo; Carollo, Carlos Alexandre; do Nascimento, Thalita Vieira; Toffoli-Kadri, Mônica Cristina; Soares, Adriana Cristina

    2016-10-01

    An ethnopharmacological survey indicates that the genus Byrsonima has some medicinal species that are commonly found in the Brazilian Cerrado and has been used as an anti-inflammatory and for gastroduodenal disorders. The aim of this study was to evaluate the anti-inflammatory and antioxidant activity along with qualitative chemical characterization of the methanolic extract of the leaves of Byrsonima verbascifolia (BvME) obtained by exhaustive percolation. The data from the chemical analyses by liquid chromatography-mass spectrometry led to tentative identification of 42 compounds belonging to proanthocyanidins, galloyl quinic acid derivatives, flavonoids, and triterpene glycoside derivatives. BvME contain flavonoids and show an antioxidative activity. The methanolic extract administered intraperitoneally at doses of 50, 100, or 300 mg/kg showed a significant reduction in paw edema and modulated the neutrophil influx in a mouse model. Furthermore, the anti-edematogenic activity of the extract provided in smaller doses (12.5 and 25 mg/kg) was also demonstrated in a mouse paw edema model. The extract inhibited NO production by macrophages induced by lipopolysaccharide. We presume that the anti-inflammatory effects of BvME are due to a combination of compounds present in B. verbascifolia, including catechins (procyanidins), flavonoids, and triterpene glycosides and that these anti-inflammatory actions should be mediated, at least partly, through the inhibition of NO production. This study supports and validates the ethnopharmacological uses of B. verbascifolia as an anti-inflammatory.

  15. Evaluation of anti-inflammatory activity of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae) fruit extract in rats.

    PubMed

    Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-01-01

    Several species of the family Bromeliaceae are characterized by the production of proteases in unusual amounts, especially in fruits. Bromelain, an extract rich in cysteine endopeptidases obtained from Ananas comosus L., and a few other proteases have been used as anti-inflammatory agents for some years, but bromelain is still mainly being used as alternative and/or complementary therapy to the treatment with glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. In this study, the anti-inflammatory action of a partially purified extract from Pseudananas macrodontes (Morr.) Harms fruits (PPE(Pm)) is presented, whose main components are cysteine endopeptidases. The effect of PPE(Pm) was assessed in carrageenan-induced and serotonin-induced rat paw edema, as well as in the cotton pellet granuloma model. Doses with equal proteolytic activity of PPE(Pm) and bromelain produced significantly similar anti-inflammatory responses in the acute inflammatory models assayed, supporting the hypothesis that proteolytic activity could be responsible for the anti-inflammatory action. On the contrary, comparable anti-inflammatory effects of PPE(Pm) and bromelain in the chronic inflammatory assay required a much lower proteolytic activity content of PPE(Pm), which could be due to a differential affinity for the protein target involved in this process. PMID:24601082

  16. Paraoxonase 2 Induces a Phenotypic Switch in Macrophage Polarization Favoring an M2 Anti-Inflammatory State

    PubMed Central

    Koren-Gluzer, Marie; Rosenblat, Mira; Hayek, Tony

    2015-01-01

    Inflammatory processes are involved in atherosclerosis development. Macrophages play a major role in the early atherogenesis, and they are present in the atherosclerotic lesion in two phenotypes: proinflammatory (M1) or anti-inflammatory (M2). Paraoxonase 2 (PON2) is expressed in macrophages, and it was shown to protect against atherosclerosis. Thus, the aim of our study was to analyze the direct effect of PON2 on macrophage inflammatory phenotypes. Ex vivo studies were performed with murine peritoneal macrophages (MPM) harvested from control C57BL/6 and PON2-deficient (PON2KO) mice. PON2KO MPM showed an enhanced proinflammatory phenotype compared to the control, both in the basal state and following M1 activation by IFNγ and lipopolysaccharide (LPS). In parallel, PON2KO MPM also showed reduced anti-inflammatory responses in the basal state and also following M2 activation by IL-4. Moreover, the PON2-null MPM demonstrated enhanced phagocytosis and reactive oxygen species (ROS) production in the basal state and following M1 activation. The direct effect of PON2 was shown by transfecting human PON2 (hPON2) into PON2KO MPM. PON2 transfection attenuated the macrophages' response to M1 activation and enhanced M2 response. These PON2 effects were associated with attenuation of macrophages' abilities to phagocyte and to generate ROS. We conclude that PON2 promotes an M1 to M2 switch in macrophage phenotypes. PMID:26779262

  17. Intestinal anti-inflammatory effects of oligosaccharides derived from lactulose in the trinitrobenzenesulfonic acid model of rat colitis.

    PubMed

    Algieri, Francesca; Rodríguez-Nogales, Alba; Garrido-Mesa, Natividad; Vezza, Teresa; Garrido-Mesa, José; Utrilla, M Pilar; Montilla, Antonia; Cardelle-Cobas, Alejandra; Olano, Agustín; Corzo, Nieves; Guerra-Hernández, Eduardo; Zarzuelo, Antonio; Rodriguez-Cabezas, M Elena; Galvez, Julio

    2014-05-14

    Intestinal microbiota modulation is becoming an interesting approach to manage inflammatory bowel disease and can be achieved by the administration of prebiotics. Previous studies showed the intestinal anti-inflammatory effects of the prebiotic lactulose. The aim of the present study was to test the preventative effects of oligosaccharides derived from lactulose with prebiotic properties (OsLu) in the trinitrobenzenesulfonic acid model of rat colitis and compare them with those of lactulose. Both treatments modified bacterial profile in intestinal contents, increasing the bifidobacteria and lactobacilli counts and up-regulating the production of short-chain fatty acids, although OsLu generated a larger amount. OsLu also inhibited to a greater extent different pro-inflammatory markers such as interleukins (IL) 1, 6, 12, and 23 and chemokines (MCP-1 and CINC-1). However, both prebiotics equally restored colonic epithelial integrity, evaluated both with a histological score (OsLu, 9.8 ± 2.2; and lactulose, 12.1 ± 2.1, vs colitic control, 27.3 ± 3.3) and by measuring several key proteins of the mucosal barrier (MUC-2, MUC-3, and TTF-3). OsLu effect was also associated with an inhibition of iNOS expression and a reduction of Th17 cell activity in the inflamed tissue that facilitated the intestinal mucosa barrier recovery. In conclusion, OsLu showed a better anti-inflammatory profile than lactulose in this model of experimental colitis.

  18. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    SciTech Connect

    Huang, Bor-Ren; Tsai, Cheng-Fang; Lin, Hsiao-Yun; Tseng, Wen-Pei; Huang, Shiang-Suo; Wu, Chi-Rei; Lin, Chingju; Yeh, Wei-Lan; Lu, Dah-Yuu

    2013-05-15

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.

  19. Anti-inflammatory properties of new bioisosteres of indomethacin synthesized from safrole which are sulindac analogues.

    PubMed

    Pereira, E F; Pereira, N A; Lima, M E; Coelho, F A; Barreiro, E J

    1989-01-01

    The anti-inflammatory activities of new compounds (I, II, III and IV) synthesized in 30% overall yield from the abundant natural product safrole, the principal chemical constituent of the oil of sassafras (Ocotea pretiosa, Lauraceae), were determined in mice. The synthesis of these new indenyl-acetic acids (I and II) and indenyl-propionic acids (III and IV) was based on the minimal structural features of non-steroid anti-inflammatory agents of the aryl- or heteroarylcarboxylic acid group. The compounds exhibited potencies 4- to 10-fold less than that of indomethacin in inhibiting carrageenan-induced hindpaw edema. In contrast, like sulindac, all the new compounds were more potent than indomethacin in antagonizing writhing pain and increased vascular permeability caused by acetic acid. The results confirm the anticipated bioisosteric relationship between these synthetic derivatives, designed as sulindac analogues, and the classical non-steroidal anti-inflammatory agent, indomethacin.

  20. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    PubMed

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.

  1. Synthesis and anti-inflammatory activity of 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives.

    PubMed

    Labanauskas, L; Brukstus, A; Udrenaite, E; Bucinskaite, V; Susvilo, I; Urbelis, G

    2005-03-01

    New 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives 17-31 were synthesized by the acylation of amines 9-16 with acyl chlorides. Amines 9-16 were obtained from aryl ketones 1-8. Aryl ketones 1-8 were synthesized by the acylation of corresponding aromatic compounds. As it was preliminary predicted by PASS (Prediction of Activity Spectra for Substance) program, all 1-acylaminoalkyl-3,4-dimethoxy- and 3,4-diethoxybenzene derivatives possess anti-inflammatory activity. Activity of compounds 18, 19, 21, 24, 26, 27, 28, 29 was similar to that of acetylsalicylic acid or ibuprofen however their acute toxicity was less than that of mentioned anti-inflammatory drugs. A series of 1-acylaminoalkyl-3,4-dimethoxybenzene, 1-acylaminoalkyl-3,4-diethoxybenzene and 6-acylaminoalkyl-2,3-dihydro-1,4-benzodioxine derivatives have been synthesized. These compounds possess moderate or strong anti-inflammatory activity and low toxicity.

  2. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    PubMed

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO. PMID:20645831

  3. Nonsteroidal anti-inflammatory drug administration in children with history of wheeze

    PubMed Central

    Sih, Kendra; Goldman, Ran D.

    2016-01-01

    Question A child in my clinic who recently sprained his ankle is experiencing pain and having trouble bearing weight on the affected leg. His mother has been giving him acetaminophen, as she was told never to use nonsteroidal anti-inflammatory drugs (NSAIDs) because of his pharmacologically controlled asthma. Is asthma in children a contraindication to giving NSAIDs? Is NSAID-exacerbated respiratory disease (NERD) a real entity? Answer Nonsteroidal anti-inflammatory drugs are effective analgesic and antipyretic medications. While described in adults with some predisposing conditions, NERD has not been clearly described in a large number of children. Nonsteroidal anti-inflammatory drugs can be recommended to children with known wheeze who do not have a history of NERD reaction. PMID:27521389

  4. The impact of anti-inflammatory cytokines on the pancreatic β-cell

    PubMed Central

    Russell, M A; Morgan, N G

    2014-01-01

    Considerable efforts have been invested to understand the mechanisms by which pro-inflammatory cytokines mediate the demise of β-cells in type 1 diabetes but much less attention has been paid to the role of anti-inflammatory cytokines as potential cytoprotective agents in these cells. Despite this, there is increasing evidence that anti-inflammatory molecules such as interleukin (IL)-4, IL-10 and IL-13 can exert a direct influence of β-cell function and viability and that the circulating levels of these cytokines may be reduced in type 1 diabetes. Thus, it seems possible that targeting of anti-inflammatory pathways might offer therapeutic potential in this disease. In the present review, we consider the evidence implicating IL-4, IL-10 and IL-13 as cytoprotective agents in the β-cell and discuss the receptor components and downstream signaling pathways that mediate these effects. PMID:25322830

  5. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans.

    PubMed

    García-Lafuente, Ana; Moro, Carlos; Manchón, Noelia; Gonzalo-Ruiz, Alicia; Villares, Ana; Guillamón, Eva; Rostagno, Mauricio; Mateo-Vivaracho, Laura

    2014-10-15

    According to epidemiological evidence, diets rich in fruits and vegetables can reduce the incidence of several chronic diseases that share an inflammatory component. These protective effects are attributed, in part, to the occurrence of different antioxidant components, mainly phenolic compounds. Our aim was to characterise phenolic composition, and to determine antioxidant and anti-inflammatory activities of phenolic rich extracts obtained from two kinds of common beans, white kidney beans (WKB) and round purple beans (RPB). Phenolic acids were the predominant component in WKB extracts, whereas RPB extracts presented higher concentrations of phenolic compounds, mainly catechin derivatives, proanthocyanidins and catechin glucoside. In addition, RPB extracts showed higher antioxidant capacity and higher anti-inflammatory activity by the reduction of NO production and cytokine mRNA expression of LPS stimulated macrophages. These results suggest that common bean extracts may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion. PMID:24837943

  6. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  7. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana.

    PubMed

    Toro, Reina M; Aragón, Diana M; Ospina, Luis F; Ramos, Freddy A; Castellanos, Leonardo

    2014-11-01

    Physalis peruviana calyces are used extensively in folk medicine. The crude ethanolic extract and some fractions of calyces were evaluated in order to explore antioxidant and anti-inflammatory activities. The anti-inflammatory activity was evaluated by the TPA-induced ear edema model. The antioxidant in vitro activity was measured by means of the superoxide and nitric oxide scavenging activity of the extracts and fractions. The butanolic fraction was found to be promising due to its anti-inflammatory and antioxidant activities. Therefore, a bio-assay guided approach was employed to isolate and identify rutin (1) and nicotoflorin (2) from their NMR spectroscopic and MS data. The identification of rutin in calyces of P. peruviana supports the possible use of this waste material for phytotherapeutic, nutraceutical and cosmetic preparations.

  8. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control

    PubMed Central

    Lee, Young-Sun; Jun, Hee-Sook

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action. PMID:27110066

  9. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans.

    PubMed

    García-Lafuente, Ana; Moro, Carlos; Manchón, Noelia; Gonzalo-Ruiz, Alicia; Villares, Ana; Guillamón, Eva; Rostagno, Mauricio; Mateo-Vivaracho, Laura

    2014-10-15

    According to epidemiological evidence, diets rich in fruits and vegetables can reduce the incidence of several chronic diseases that share an inflammatory component. These protective effects are attributed, in part, to the occurrence of different antioxidant components, mainly phenolic compounds. Our aim was to characterise phenolic composition, and to determine antioxidant and anti-inflammatory activities of phenolic rich extracts obtained from two kinds of common beans, white kidney beans (WKB) and round purple beans (RPB). Phenolic acids were the predominant component in WKB extracts, whereas RPB extracts presented higher concentrations of phenolic compounds, mainly catechin derivatives, proanthocyanidins and catechin glucoside. In addition, RPB extracts showed higher antioxidant capacity and higher anti-inflammatory activity by the reduction of NO production and cytokine mRNA expression of LPS stimulated macrophages. These results suggest that common bean extracts may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion.

  10. Simple synthesis of modafinil derivatives and their anti-inflammatory activity.

    PubMed

    Jung, Jae-Chul; Lee, Yeonju; Son, Jee-Young; Lim, Eunyoung; Jung, Mankil; Oh, Seikwan

    2012-09-03

    Simple synthesis of modafinil derivatives and their biological activity are described. The key synthetic strategies involve substitution and coupling reactions. We determined the anti-inflammatory effects of modafinil derivatives in cultured BV2 cells by measuring the inhibition of nitrite production and expression of iNOS and COX-2 after LPS stimulation. It was found that for sulfide analogues introduction of aliphatic groups on the amide part (compounds 11a–d) resulted in lower anti-inflammatory activity compared with cyclic or aromatic moieties (compounds 11e–k). However, for the sulfoxide analogues, introduction of aliphatic moieties (compounds 12a–d) showed higher anti-inflammatory activity than cyclic or aromatic fragments (compounds 12e–k) in BV-2 microglia cells.

  11. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L.

    PubMed Central

    Kim, Wan-Su; Choi, Woo Jin; Lee, Sunwoo; Kim, Woo Joong; Lee, Dong Chae; Sohn, Uy Dong; Shin, Hyoung-Shik

    2015-01-01

    The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases. PMID:25605993

  12. Analgesic and Anti-inflammatory action of Opuntia elatior Mill fruits

    PubMed Central

    Chauhan, Sanjay P.; Sheth, Navin R.; Suhagia, Bhanubhai N.

    2015-01-01

    Background: Opuntia elatio Mill is a xerophytic plant with potentially active nutrients. It is traditionally appreciated for its pharmacological properties; however, the scientific information on this plant is insufficient. Objective: The present study evaluates the antinociceptive and anti-inflammatory action of prickly pear. Materials and Methods: Writhing and tail-immersion tests were carried out to evaluate analgesic action, while the carrageenan-induced paw edema and neutrophil adhesion tests were conducted in Albino wistar rats to assess anti-inflammatory action. Results: ED50 values of the fruit juice in writhing, tail immersion, and paw edema test were 0.919, 2.77, and 9.282 ml/kg, respectively. The fruits of Opuntia produced analgesic and anti-inflammatory action in a dose-dependent manner. Conclusion: The results establish the folklore use of prickly pear may be due to the presence of betacyanin and/or other phenolic compounds. PMID:26166996

  13. Renal papillary necrosis following regular consumption of non-steroidal anti-inflammatory drugs.

    PubMed

    Munn, E; Lynn, K L; Bailey, R R

    1982-04-14

    Since phenacetin was removed from the Drug Tariff in New Zealand in 1974 there has been a decrease in the number of patients with analgesic nephropathy entering dialysis-transplant programmes. Since then there has been an increase in the consumption of non-steroidal anti-inflammatory agents. Experimental work in animals has shown that these drugs can cause renal papillary necrosis. We report two men with sever osteoarthritis who regularly ingested anti-inflammatory agents and developed papillary necrosis with renal insufficiency and hypertension. One patient consumed 0.5 kg of indomethacin over 10 years and the other 3.5 kg of ibuprofen, 200 g of naproxen and an uncertain amount of ketoprofen over 13 years. The increased chronic usage of non-steroidal anti-inflammatory drugs could bring about an upsurge in the incidence of papillary necrosis.

  14. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications.

    PubMed

    Elsayed, Elsayed A; El Enshasy, Hesham; Wadaan, Mohammad A M; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.

  15. Anti-inflammatory, antinociceptive, and antipyretic effects of Lantana trifolia Linnaeus in experimental animals.

    PubMed

    Uzcátegui, Bercy; Avila, Dinorah; Suárez-Roca, Heberto; Quintero, Luis; Ortega, José; González, Beatriz

    2004-12-01

    Lantana trifolia L. (Verbenaceae) is traditionally used as an anti-inflammatory medicinal plant in Venezuela. The methanol extract of the aerial parts of L. trifolia were assessed for the anti-inflammatory, anti-nociceptive and anti-pyretic properties. The extract produced an inhibition of carrageenan-induced edema in the rat paw over a dose range of 10-300 mg/kg i.p.; the dose-response curve was bell-shaped with a maximal effect at 100 mg/kg. The extract also produced a small but significant increase in the response latency of rats subjected to the hot plate, a thermal pain test that only detects analgesia by high-efficacy agents. The extract did not exhibit antipyretic activity. Thus, the L. trifolia extract could have therapeutically relevant anti-inflammatory and analgesic properties in humans. PMID:15602898

  16. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders.

  17. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  18. Synthesis, Photophysical, and Biological Evaluation of Sulfated Polyglycerol Dendronized Perylenebisimides (PBIs)--A Promising Platform for Anti-Inflammatory Theranostic Agents?

    PubMed

    Heek, T; Kühne, C; Depner, H; Achazi, K; Dernedde, J; Haag, R

    2016-03-16

    A set of four water-soluble perylene bisimides (PBI) based on sulfated polyglycerol (PGS) dendrons were developed, their photophysical properties determined via UV/vis and fluorescence spectroscopy, and their performance as possible anti-inflammatory agents evaluated via biological in vitro studies. It could be shown that in contrast to charge neutral PG-PBIs the introduction of the additional electrostatic repulsion forces leads to a decrease in the dendron generation necessary for aggregation suppression, allowing the preparation of PBIs with fluorescence quantum yields of >95% with a considerable decreased synthetic effort. Furthermore, the values determined for L-selectin binding down to the nanomolar range, their limited impact on blood coagulation, and their minor activation of the complement system renders these systems ideal for anti-inflammatory purposes. PMID:26890394

  19. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-α (TNF-α) was developed using multiple linear regression method (MLR) with good internal prediction (r2 = 0.8779) and external prediction (r2pred = 0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-α. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  20. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  1. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae)

    PubMed Central

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Background: Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. Objective: This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. Materials and Methods: The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. Results: The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. Conclusion: J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. SUMMARY Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine. PMID:27034606

  2. Variation in antibacterial and anti-inflammatory activity of different growth forms of Malva parviflora and evidence for synergism of the anti-inflammatory compounds.

    PubMed

    Shale, T L; Stirk, W A; van Staden, J

    2005-01-01

    Malva parviflora leaves and roots were collected from five sites within the Qacha's Nek District in Lesotho. These plants had two distinct growth forms--upright and prostrate. Hexane, methanol and water extracts were made from the plant material and tested for antibacterial and anti-inflammatory activity using the disc diffusion and cyclooxygenase-1 (Cox-1) bioassays, respectively. Hexane, methanol and water extracts made from Malva parviflora with a prostrate growth form inhibited the growth of Gram-positive and Gram-negative bacteria, while extracts made from plants with an upright growth form inhibited the growth of Gram-positive bacteria only. Cox-1 anti-inflammatory activity of hexane, methanol and water extracts did not show any variation between the two growth forms. The hexane extracts of both the leaves and roots were the most inhibitory. The water extracts had the least inhibitory activity. Bioassay-guided fractionation of the root dichloromethane extract showed that Cox-1 anti-inflammatory activity was caused by at least two compounds that acted synergistically to produce the biological effect.

  3. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  4. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process.

    PubMed

    Li, Xiang; Wang, Yujue; Yuan, Shi; Li, Zhaoxin; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2014-10-15

    Electro-peroxone (E-peroxone) treatment of the anti-inflammatory drug ibuprofen aqueous solution was investigated in this study. The E-peroxone process combined conventional ozonation with electrolysis processes, and used a carbon-polytetrafluorethylene cathode to electrochemically generate H2O2 from O2 in the sparged ozone generator effluent (O2 and O3 mixture). The in-situ generated H2O2 then reacted with the sparged O3 to produce aqueous •OH, which can in turn oxidize pollutants effectively in the bulk solution. The E-peroxone process overcomes several intrinsic limitations of conventional ozonation and electrolysis processes for pollutant degradation such as the selective oxidation with O3 and mass transfer limitations of pollutants to the electrodes, and thus significantly enhanced both ibuprofen degradation and total organic carbon (TOC) mineralization. Results show that ibuprofen could be completely degraded much more rapidly in the E-peroxone process (e.g., 5-15 min under all tested reaction conditions) than in ozonation (≥30 min) and electrolysis (several hours) processes. In addition, thanks to the powerful and non-selective oxidation capacity of •OH, toxic intermediates formed during ibuprofen degradation could be completely mineralized in the E-peroxone process. The E-peroxone effluent (2 h) thus exhibited much lower toxicity (5% inhibition of bioluminescence of Vibrio fisheri) than the ozonation and electrolysis effluents (22% and 88% inhibition, respectively). The results of this study indicate that the E-peroxone process may provide a promising technology for pharmaceutical wastewater treatment.

  5. Treating tendinopathy: perspective on anti-inflammatory intervention and therapeutic exercise.

    PubMed

    Joseph, Michael F; Denegar, Craig R

    2015-04-01

    Tendinopathy is a common and complex disorder. Once viewed as an inflammatory condition labeled tendinitis, it is now viewed along a continuum that can lead to tissue necrosis and risk of tendon rupture. Anti-inflammatory medications can alter symptoms but may also promote tissue degeneration. Loading of the tendon through exercise, especially exercise involving eccentric muscle contraction, has been shown to promote symptom resolution and functional recovery in many patients. This article reviews the pathoetiology of tendinopathy and the role anti-inflammatory interventions and therapeutic exercise in treatment of active patients.

  6. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines.

    PubMed

    Balakumar, C; Lamba, P; Kishore, D Pran; Narayana, B Lakshmi; Rao, K Venkat; Rajwinder, K; Rao, A Raghuram; Shireesha, B; Narsaiah, B

    2010-11-01

    A series of novel 8/10-trifluoromethyl-substituted-imidazo[1,2-c] quinazolines have been synthesized and evaluated in vivo (rat paw edema) for their anti-inflammatory activity and in silico (docking studies) to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing GOLD (CCDC, 4.0.1 version) software. The compounds, 9b and 10b, were found to have good anti-inflammatory activity [around 80% of the standard: indomethacin]. The binding mode of the title compounds has been proposed based on the docking studies.

  7. Dental gel viscosity parameters and pharmaceutical availability of non-steroidal anti-inflammatory drugs.

    PubMed

    Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2004-01-01

    Model prescription for dental anti-inflammatory gels with carboxymethylcellulose sodium salt and non-ionic surfactants have been worked out. Viscosity parameters of 10 variant gel forms were investigated and an attempt on their interpretation was undertaken in relation to pharmaceutical availability of non-steroidal anti-inflammatory drugs (diclofenac, ibuprofen sodium). Viscosity tests demonstrated higher pharmaceutical availability of ibuprofen sodium than of diclofenac sodium particularly from model gels with surfactants of low number of oxyethylene segments in the structure. The above has been confirmed by in vitro studies on the kinetics of therapeutic agent penetration into external compartment.

  8. Anti-Inflammatory Activity of Aqueous Extract of Beta Vulgaris L.

    PubMed Central

    Jain, Swati; Garg, Vipin Kumar; Sharma, Pramod Kumar

    2011-01-01

    The present study deals with the investigation of phytochemically evaluated aqueous extract of leaves of Beta vulgaris for its anti-inflammatory activity. The anti-inflammatory activity was evaluated by carrageenan induced rat paw oedema method for acute inflammation and cotton pellet granuloma method for chronic inflammation. The standard drug used was indomethacin (10 mg/kg) for both the models. In both methods, aqueous extract at a dose level of 1000 mg/kg has shown significant activity which is comparable to that of the standard PMID:24826006

  9. Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles.

    PubMed

    Bernela, Manju; Ahuja, Munish; Thakur, Rajesh

    2016-06-01

    Bromelain-loaded katira gum nanoparticles were synthesized using 3 level optimization process and desirability approach. Nanoparticles of the optimized batch were characterized using particle size analysis, zeta potential, transmission electron microscopy and Fourier-transform infrared spectroscopy. Investigation of their in vivo anti-inflammatory activity by employing carrageenan induced rat-paw oedema method showed that encapsulation of bromelain in katira gum nanoparticles substantially enhanced its anti-inflammatory potential. This may be attributed to enhanced absorption owing to reduced particle size or to protection of bromelain from acid proteases.

  10. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines.

    PubMed

    Balakumar, C; Lamba, P; Kishore, D Pran; Narayana, B Lakshmi; Rao, K Venkat; Rajwinder, K; Rao, A Raghuram; Shireesha, B; Narsaiah, B

    2010-11-01

    A series of novel 8/10-trifluoromethyl-substituted-imidazo[1,2-c] quinazolines have been synthesized and evaluated in vivo (rat paw edema) for their anti-inflammatory activity and in silico (docking studies) to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing GOLD (CCDC, 4.0.1 version) software. The compounds, 9b and 10b, were found to have good anti-inflammatory activity [around 80% of the standard: indomethacin]. The binding mode of the title compounds has been proposed based on the docking studies. PMID:20800934

  11. Anti-inflammatory activity of thiabendazole and its relation to parasitic disease.

    PubMed

    van Arman, G G; Campbell, W C

    1975-01-01

    In 6 differnet animal assays in the laboratory, thiabendazole had clear anti-inflammatory effect, though it was less potent than aspirin in all assays. These findings add support to clinical suggestions that the drug may have anti-inflammatory properties in man. Such properties may contribute to the clinical response observed following the use of thiabendazole in cases of trichinosis, cutaneous larva migrans, visceral larva migrans, dracunculosis and scabies. In parasitic infections in which corticosteroids are commonly used in clinical management, notably trichinosis, the fact that thiabendazole does not appear to have immunosuppressive activity may confer an added clinical advantage.

  12. The anti-inflammatory effects of dexamethasone and therapeutic ultrasound in oral surgery.

    PubMed

    ElHag, M; Coghlan, K; Christmas, P; Harvey, W; Harris, M

    1985-02-01

    A single blind, controlled trial was carried out to assess the anti-inflammatory effects of 10 mg dexamethasone given pre- and post-operatively and also ultrasound therapy in patients following the removal of impacted lower third molars. Facial swelling and trismus were significantly reduced in both the dexamethasone- and the ultrasound-treated groups compared with an untreated control group. This first report of the anti-inflammatory properties of ultrasound in a controlled clinical trial indicates its potential clinical use in reducing post-operative morbidity in oral surgery.

  13. Fluorescence quenching analysis of the association and dissociation of a diarylheterocycle to cyclooxygenase-1 and cyclooxygenase-2: dynamic basis of cyclooxygenase-2 selectivity.

    PubMed

    Lanzo, C A; Sutin, J; Rowlinson, S; Talley, J; Marnett, L J

    2000-05-23

    Cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) are the enzymes responsible for the biosynthesis of the precursor to the biologically active prostaglandins, prostacyclin, and thromboxane and are the molecular targets for nonsteroidal antiinflammatory drugs (NSAIDs). Selective COX-2 inhibitors are antiinflammatory and analgesic but lack gastrointestinal toxicity, an undesirable side effect attributed to COX-1 inhibition. Crystallographic analysis of selective COX inhibitors complexed with either isoform provides some information about the molecular determinants of selectivity but does not provide information about the dynamics of inhibitor association/dissociation. We employed rapid-mixing techniques and fluorescence quenching to monitor the association and dissociation of a selective COX-2 inhibitor to COX-1 or COX-2. The association of the fluorescent diaryloxazole, SC299, with both enzymes occurs in a time-dependent fashion. Its binding to COX-2 occurs in three kinetically distinct steps whereas its binding to COX-1 occurs in two steps. In contrast to the relatively rapid association of SC299 with both enzymes, its dissociation from COX-2 is quite slow and occurs over several hours whereas the dissociation from COX-1 is complete in less than 1 min. The selectivity of SC299 as a COX-2 inhibitor correlates to its relative rates of dissociation from the two COX isoforms. A model is proposed for diarylheterocycle binding to COX's that integrates these kinetic data with available structural information.

  14. Cost-effectiveness analysis for joint pain treatment in patients with osteoarthritis treated at the Instituto Mexicano del Seguro Social (IMSS): Comparison of nonsteroidal anti-inflammatory drugs (NSAIDs) vs. cyclooxygenase-2 selective inhibitors

    PubMed Central

    Contreras-Hernández, Iris; Mould-Quevedo, Joaquín F; Torres-González, Rubén; Goycochea-Robles, María Victoria; Pacheco-Domínguez, Reyna Lizette; Sánchez-García, Sergio; Mejía-Aranguré, Juan Manuel; Garduño-Espinosa, Juan

    2008-01-01

    Background Osteoarthritis (OA) is one of the main causes of disability worldwide, especially in persons >55 years of age. Currently, controversy remains about the best therapeutic alternative for this disease when evaluated from a cost-effectiveness viewpoint. For Social Security Institutions in developing countries, it is very important to assess what drugs may decrease the subsequent use of medical care resources, considering their adverse events that are known to have a significant increase in medical care costs of patients with OA. Three treatment alternatives were compared: celecoxib (200 mg twice daily), non-selective NSAIDs (naproxen, 500 mg twice daily; diclofenac, 100 mg twice daily; and piroxicam, 20 mg/day) and acetaminophen, 1000 mg twice daily. The aim of this study was to identify the most cost-effective first-choice pharmacological treatment for the control of joint pain secondary to OA in patients treated at the Instituto Mexicano del Seguro Social (IMSS). Methods A cost-effectiveness assessment was carried out. A systematic review of the literature was performed to obtain transition probabilities. In order to evaluate analysis robustness, one-way and probabilistic sensitivity analyses were conducted. Estimations were done for a 6-month period. Results Treatment demonstrating the best cost-effectiveness results [lowest cost-effectiveness ratio $17.5 pesos/patient ($1.75 USD)] was celecoxib. According to the one-way sensitivity analysis, celecoxib would need to markedly decrease its effectiveness in order for it to not be the optimal treatment option. In the probabilistic analysis, both in the construction of the acceptability curves and in the estimation of net economic benefits, the most cost-effective option was celecoxib. Conclusion From a Mexican institutional perspective and probably in other Social Security Institutions in similar developing countries, the most cost-effective option for treatment of knee and/or hip OA would be celecoxib. PMID:19014495

  15. Anti-Inflammatory and Antinociceptive Effects of Salbutamol on Acute and Chronic Models of Inflammation in Rats: Involvement of an Antioxidant Mechanism

    PubMed Central

    Uzkeser, Hulya; Cadirci, Elif; Halici, Zekai; Odabasoglu, Fehmi; Polat, Beyzagul; Yuksel, Tugba Nurcan; Ozaltin, Seda; Atalay, Fadime

    2012-01-01

    The possible role of β-2 adrenergic receptors in modulation of inflammatory and nociceptive conditions suggests that the β-2 adrenergic receptor agonist, salbutamol, may have beneficial anti-inflammatory and analgesic effects. Therefore, in this study, we induced inflammatory and nociceptive responses with carrageenan-induced paw edema or cotton-pellet-induced granuloma models, both of which result in oxidative stress. We hypothesized that salbutamol would prevent inflammatory and nociceptive responses by stimulating β-2 adrenergic receptors and the prevention of generation of ROS during the acute inflammation process in rats. Both doses of salbutamol used in the study (1 and 2 mg/kg) effectively blocked the acute inflammation and inflammatory nociception induced by carrageenan. In the cotton-pellet-induced granuloma test, both doses of salbutamol also significantly decreased the weight of granuloma tissue on the cotton pellets when compared to the control. Anti-inflammatory and analgesic effects of salbutamol were found to be comparable with those of indomethacin. Salbutamol decreased myeloperoxidase (MPO) activity and lipid peroxidation (LPO) level and increased the activity of superoxide dismutase (SOD) and level of glutathione (GSH) during the acute phase of inflammation. In conclusion, salbutamol can decrease acute and chronic inflammation, possibly through the stimulation of β-2 adrenergic receptors. This anti-inflammatory effect may be of significance in asthma treatment, where inflammation also takes part in the etiopathology. This study reveals that salbutamol has significant antioxidative effects, which at least partially explain its anti-inflammatory capabilities. These findings presented here may also shed light on the roles of β-2 adrenergic receptors in inflammatory and hyperalgesic conditions. PMID:22665951

  16. Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells.

    PubMed

    An, Xiangxue; Lee, Sang Gil; Kang, Hee; Heo, Ho Jin; Cho, Youn-Sup; Kim, Dae-Ok

    2016-08-28

    The present study evaluated the total phenolic and flavonoid contents as well as total antioxidant capacity (TAC) of three cultivars of Actinidia arguta Planch. kiwi berries; cv. Mansoo (Mansoo), cv. Chiak (Chiak), and cv. Haeyeon (Haeyeon). In addition, the anti-inflammatory effects of the three cultivars of kiwi berries were investigated using a lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Mansoo had the highest total phenolic content and TAC among the three cultivars, whereas Chiak had the highest total flavonoid content. The total antioxidant capacities of the kiwi berry extracts were more strongly correlated with total phenolic content than with total flavonoid content. The kiwi berry extracts suppressed the secretion of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α, from LPS-stimulated RAW 264.7 cells. The release of nitrite, an indirect indicator of nitric oxide, was also ameliorated by pre-treatment with the kiwi berry extracts in a dose-dependent manner. Cellular-based measurements of antioxidant capacity exhibited that the kiwi berry extracts had cellular antioxidant capacities. Such cellular antioxidant effects are possibly attributed to their direct antioxidant capacity or to the inhibition of reactive oxygen species generation via anti-inflammatory effects. Our findings suggest that kiwi berries are potential antioxidant and anti-inflammatory agents. PMID:27160577

  17. AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype.

    PubMed

    Komohara, Yoshihiro; Hirahara, Junko; Horikawa, Tomohiro; Kawamura, Kyoko; Kiyota, Emi; Sakashita, Naomi; Araki, Norie; Takeya, Motohiro

    2006-07-01

    CD163 is a member of the scavenger receptor cysteine-rich superfamily restricted to the monocyte/macrophage lineage and is thought to be a useful marker for anti-inflammatory or alternatively activated macrophages. In this study we used mass spectrometric analysis to determine that the antigen recognized by the antibody AM-3K, which we previously generated as a tissue macrophage-specific monoclonal antibody, was CD163. An anti-inflammatory subtype of macrophages stimulated by dexamethasone or interleukin-10 showed strong reactivity for AM-3K and increased expression of CD163 mRNA. Immunohistochemical staining of routinely processed pathological specimens revealed that AM-3K recognized a specialized subpopulation of macrophages. In granulomatous diseases such as tuberculosis, sarcoidosis, or foreign body reactions, tissue macrophages around granulomas, but not component cells of the granulomas such as epithelioid cells and multinucleated giant cells, showed positive staining for AM-3K. In atherosclerotic lesions, scattered macrophages in diffuse intimal lesions were strongly positive for AM-3K, whereas foamy macrophages in atheromatous plaques demonstrated only weak staining. We therefore suggest that, in routine pathological specimens, AM-3K is a useful marker for anti-inflammatory macrophages because these cells can be distinguished from inflammatory or classically activated macrophages. Because AM-3K cross-reacts with macrophage subpopulations in different animal species including rats, guinea pigs, rabbits, cats, dogs, goats, pigs, bovine species, horses, monkeys, and cetaceans, it will have wide application for detection of CD163 in various animals.

  18. Exogenous heat shock cognate protein 70 pretreatment attenuates cardiac and hepatic dysfunction with associated anti-inflammatory responses in experimental septic shock.

    PubMed

    Hsu, Jong-Hau; Yang, Rei-Cheng; Lin, Shih-Jen; Liou, Shu-Fen; Dai, Zen-Kong; Yeh, Jwu-Lai; Wu, Jiunn-Ren

    2014-12-01

    It has been recently demonstrated that intracellular heat shock cognate protein 70 (HSC70) can be released into extracellular space with physiologic effects. However, its extracellular function in sepsis is not clear. In this study, we hypothesize that extracellular HSC70 can protect against lipopolysaccharide (LPS)-induced myocardial and hepatic dysfunction because of its anti-inflammatory actions. In Wistar rats, septic shock developed with hypotension, tachycardia, and myocardial and hepatic dysfunction at 4 h following LPS administration (10 mg/kg, i.v.). Pretreatment with recombinant bovine HSC70 (20 μg/kg, i.v.) attenuated LPS-induced hypotension and tachycardia by 21% and 23%, respectively (P < 0.05), improved myocardial dysfunction (left ventricular systolic pressure: 33%; max dP/dt: 20%; min dP/dt: 33%, P < 0.05), and prevented hepatic dysfunction (glutamic-oxaloacetic transaminase: 81 vs. 593 IU/L; glutamic-pyruvic transaminase: 15 vs. 136 IU/L, P < 0.05) compared with LPS-treated rats at 4 h. Heat shock cognate protein 70 also prevented LPS-induced hypoglycemia (217 vs. 59 mg/dL, P < 0.05) and elevated lactate dehydrogenase (1,312 vs. 6,301 IU/L, P < 0.05). Furthermore, HSC70 decreased LPS-induced elevation of circulating tumor necrosis factor α and nitrite/nitrate, and tissue expression of inducible nitric oxide synthase, cyclooxygenase 2, and matrix metalloproteinase 9 in the heart and liver. To investigate underlying mechanisms, we found that HSC70 attenuated LPS-induced nuclear translocation of nuclear factor κB subunit p65 by blocking the phosphorylation of inhibitor of nuclear factor κB. Finally, we showed that HSC70 repressed the activation of MAPKs caused by LPS. These results demonstrate that in LPS-induced septic shock, extracellular HSC70 conveys pleiotropic protection on myocardial, hepatic, and systemic derangements, with associated inhibition of proinflammatory mediators including tumor necrosis factor α, nitric oxide, cyclooxygenase 2

  19. Inhibitory effect of dihydroartemisinin against phorbol ester-induced cyclooxygenase-2 expression in macrophages.

    PubMed

    Kim, Hyung Gyun; Yang, Ji Hye; Han, Eun Hee; Choi, Jae Ho; Khanal, Tilak; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-06-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua L., has recently been shown to possess antitumor activity in various cancer cells. However, the effect of anti-inflammatory potentials of DHA in murine macrophage RAW 264.7 cells has not been studied. The present study investigated the effect of COX-2 and molecular mechanisms by DHA in PMA stimulated RAW 264.7 cells. DHA dose-dependently decreased PMA-induced COX-2 expression and PGE2 production, as well as COX-2 promoter-driven luciferase activity. Additionally, DHA decreased luciferase activity of COX-2 regulation-related transcription factors including NF-κB, AP-1, C/EBP and CREB. DHA also remarkably reduced PMA-induced p65, C/EBPβ, c-jun and CREB nuclear translocation. Furthermore, DHA evidently inhibited PMA-induced phosphorylation of AKT and the MAP Kinases, such as ERK, JNK and p38. Taken together, our data indicated that DHA effectively attenuates COX-2 production via down-regulation of AKT and MAPK pathway, revealing partial molecular basis for the anti-inflammatory properties of DHA. PMID:23429041

  20. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.

    PubMed

    Orhan, I; Küpeli, E; Aslan, M; Kartal, M; Yesilada, E

    2006-04-21

    The ethanolic and aqueous extracts prepared from different parts of Pistacia vera L. (Anacardiaceae) as well as its oleoresin were evaluated for their in vivo anti-inflammatory and antinociceptive activities. Among the extracts screened, only the oleoresin was shown to possess a marked anti-inflammatory activity against carrageenan-induced hind paw edema model in mice without inducing any gastric damage at both 250 and 500 mg/kg doses whereas the rest of the extracts were totally inactive. While the oleoresin was found to display significant antinociceptive activity at 500 mg/kg dose, the ethanolic and aqueous extracts belonging to fruit, leaf, branch and peduncle of Pistacia vera did not exhibit any noticeable antinociception in p-benzoquinone-induced abdominal contractions in mice. Fractionation of the oleoresin indicated the n-hexane fraction to be active, which further led to recognition of some monoterpenes, mainly alpha-pinene (77.5%) by capillary gas chromatography-mass spectrometry (GC-MS) as well as the oleoresin itself. alpha-Pinene was also assessed for its antinociceptive and anti-inflammatory activities in the same manner and exerted a moderate anti-inflammatory effect at 500 mg/kg dose.

  1. Design and In Vivo Anti-Inflammatory Effect of Ketoprofen Delayed Delivery Systems.

    PubMed

    Cerciello, Andrea; Auriemma, Giulia; Morello, Silvana; Pinto, Aldo; Del Gaudio, Pasquale; Russo, Paola; Aquino, Rita P

    2015-10-01

    For the treatment of inflammatory-based diseases affected by circadian rhythms, the development of once-daily dosage forms is required to target early morning symptoms. In this study, Zn-alginate beads containing ketoprofen (K) were developed by a tandem technique prilling/ionotropic gelation. The effect of main critical variables on particles micromeritics, inner structure as well as on drug loading and in vitro drug release was studied. The in vivo anti-inflammatory efficacy was evaluated using a modified protocol of carrageenan-induced edema in rat paw administering beads to rats by oral gavage at 0, 3, or 5 h before edema induction. Good drug loading and desired particle size and morphology were obtained for the optimized formulation F20. In vitro dissolution studies showed that F20 had a gastroresistant behavior and delayed release of the drug in simulated intestinal fluid. The in vitro delayed release pattern was clearly reflected in the prolonged anti-inflammatory effect in vivo of F20, compared to pure ketoprofen; F20, administered 3 h before edema induction, showed a significant anti-inflammatory activity, reducing maximum paw volume in response to carrageenan injection, whereas no response was observed for ketoprofen. The designed beads appear a promising platform suitable for a delayed release of anti-inflammatory drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3451-3458, 2015. PMID:26088065

  2. Analgesic, Anti-Inflammatory and Anticancer Activities of Extra Virgin Olive Oil

    PubMed Central

    Senovilla, Laura; Jemaà, Mohamed; Ben-Attia, Mossadok

    2013-01-01

    Background. In folk medicine, extra virgin olive oil (EVOO) is used as a remedy for a variety of diseases. This study investigates the in vivo antinociceptive, anti-inflammatory, and anti-cancer effects of EVOO on mice and rats. Materials and Methods. In this experimental study, using the acetic acid-induced writhing and formalin tests in mice, the analgesic effect of EVOO was evaluated. Acetylsalicylic acid and morphine were used as standard drugs, respectively. The anti-inflammatory activity was investigated by means of the carrageenan-induced paw edema model in rats using acetylsalicylic acid and dexamethasone as standard drugs. Last, the xenograft model in athymic mice was used to evaluate the anticancer effect in vivo. Results. EVOO significantly decreased acetic acid-induced abdominal writhes and reduces acute and inflammatory pain in the two phases of the formalin test. It has also a better effect than Dexamethasone in the anti-inflammatory test. Finally, the intraperitoneal administration of EVOO affects the growth of HCT 116 tumours xenografted in athymic mice. Conclusion. EVOO has a significant analgesic, anti-inflammatory, and anticancer properties. However, further detailed studies are required to determine the active component responsible for these effects and mechanism pathway. PMID:24455277

  3. Enhanced Anti-inflammatory Effects of γ-irradiated Pig Placenta Extracts

    PubMed Central

    Kim, Youn Kyu; Kim, Chang-Kyu; Oh, Yu-Kyung

    2015-01-01

    Porcine placenta extract (PPE) is known to possess anti-inflammatory properties owing to its high concentration of bioactive substances. However, the need to eliminate blood-borne infectious agents while maintaining biological efficacy raises concerns about the optimal method for sterilizing PPE. Therefore, the objective of this study was to compare the effects of the standard pressurized heat (autoclaving) method of sterilization with γ-irradiation on the anti-inflammatory effects of PPE. The anti-inflammatory actions of these two preparations of PPE were evaluated by measuring their inhibitory effects on the production of NO, the expression of iNOS protein, and the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA in lipopolysaccharide-stimulated RAW 264.7 cells. Compared with autoclaved PPE, γ-irradiated PPE showed significantly greater inhibition of NO production and iNOS protein expression, and produced a greater reduction in the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA. These results provide evidence that the sterilization process is crucial in determining the biological activity of PPE, especially its anti-inflammatory activity. Collectively, our data suggest that γ-irradiated PPE acts at the transcriptional level to effectively and potently suppresses the production of NO and the expression of pro-inflammatory cytokines. PMID:26761842

  4. A Review on the Anti-Inflammatory Activity of Pomegranate in the Gastrointestinal Tract

    PubMed Central

    Colombo, Elisa; Sangiovanni, Enrico; Dell'Agli, Mario

    2013-01-01

    Several biological activities of pomegranate have been widely described in the literature, but the anti-inflammatory effect in the gastrointestinal tract has not been reviewed till now. The aim of the present paper is to summarize the evidence for or against the efficacy of pomegranate for coping with inflammatory conditions of the gastro-intestinal tract. The paper has been organized in three parts: (1) the first one is devoted to the modifications of pomegranate active compounds in the gastro-intestinal tract; (2) the second one considering the literature regarding the anti-inflammatory effect of pomegranate at gastric level; (3) the third part considers the anti-inflammatory effect of pomegranate in the gut. In vivo studies performed on the whole fruit or juice, peel, and flowers demonstrate antiulcer effect in a variety of animal models. Ellagic acid was the main responsible for this effect, although other individual ellagitannins could contribute to the biological activity of the mixture. Different preparations of pomegranate, including extracts from peels, flowers, seeds, and juice, show a significant anti-inflammatory activity in the gut. No clinical studies have been found, thus suggesting that future clinical studies are necessary to clarify the beneficial effects of pomegranate in the gastrointestinal tract. PMID:23573120

  5. An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis).

    PubMed

    Phosri, Santi; Mahakunakorn, Pramote; Lueangsakulthai, Jiraporn; Jangpromma, Nisachon; Swatsitang, Prasan; Daduang, Sakda; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-10-01

    Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.

  6. AMP-activated protein kinase is activated by non-steroidal anti-inflammatory drugs.

    PubMed

    King, Tanya S; Russe, Otto Quintus; Möser, Christine V; Ferreirós, Nerea; Kynast, Katharina L; Knothe, Claudia; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-09-01

    AMP-activated kinase (AMPK) is a cellular energy sensor, which is activated in stages of increased adenosine triphosphate (ATP) consumption. Its activation has been associated with a number of beneficial effects such as decrease of inflammatory processes and inhibition of disease progression of diabetes and obesity. A recent study suggested that salicylate, the active metabolite of the non-steroidal anti-inflammatory drug (NSAID) acetyl-salicylic acid (aspirin), is able to activate AMPK pharmacologically. This observation raised the question whether or not other NSAIDs might also act as AMPK activators and whether this action might contribute to their cyclooxygenase (COX)-independent anti-inflammatory properties. In this study, we investigated mouse and human neuronal cells and liver tissue of mice after treatment with various NSAIDs. Our results showed that the non-selective acidic NSAIDs ibuprofen and diclofenac induced AMPK activation similar to aspirin while the COX-2 selective drug etoricoxib and the non-opioid analgesic paracetamol, both drugs have no acidic structure, failed to activate AMPK. In conclusion, our results revealed that AMPK can be activated by specific non-steroidal anti-inflammatory drugs such as salicylic acid, ibuprofen or diclofenac possibly depending on the acidic structure of the drugs. AMPK might therefore contribute to their antinociceptive and anti-inflammatory properties. PMID:26049010

  7. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication.

    PubMed

    Du, Bin; Zeng, Huansong; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2016-10-01

    Ultrasound treatment was applied to modify the physicochemical properties of an exopolysaccharide from mycelial culture of Schizophyllum commune. Molecular weight (MW) degradation, viscosity and anti-inflammatory property of ultrasonic treated polysaccharide were optimized with response surface methodology. The best ultrasonic parameters were obtained with a three-variable-three-level Box-Behnken design. The optimized conditions for efficient anti-inflammatory activity are initial concentration at 0.4%, ultrasonic power at 600W, and duration of ultrasonic irradiation for 9min. Under these conditions, the nitric oxide inhibition rate was 95±0.03% which agreed closely with the predicted value (96%). Average MW of polysaccharide decreased after ultrasonic treatments. The viscosity of degraded polysaccharide dropped compared with native polysaccharide. The anti-inflammatory activity was improved by ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the MW of polysaccharide with high anti-inflammatory activity. Ultrasonic treatment is a viable modification technology for high MW polymer materials. PMID:27189700

  8. Anti-inflammatory effects of apo-9′-fucoxanthinone from the brown alga, Sargassum muticum

    PubMed Central

    2013-01-01

    Background The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo) Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized. Methods Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis. Results Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages. Conclusions This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies. PMID:23889890

  9. Non-steroidal anti-inflammatory drug gastropathy: clinical results with antacids and sucralfate.

    PubMed

    Lazzaroni, M; Sainaghi, M; Bianchi Porro, G

    1999-01-01

    The efficacy of antacids in the short- and long-term treatment of peptic ulcers, has suggested a possible use in the prevention and in the treatment of non-steroidal anti-inflammatory drug related gastroduodenal lesions. In short-term prevention studies, significant protection against ASA-related lesions was observed when antacids at high-dose were given before the administration of the offending drug. To the contrary, antacids at low dose did not prevent ASA-induced lesions of gastric and duodenal mucosa. As for long-term prophylaxis, no clinical effect was observed. In the treatment of non-steroidal anti-inflammatory drug-related mucosal lesions in patients who were able to discontinue the offending drugs, antacids proved of some use, when compared with placebo, but were significantly less effective than H2 blockers, as cimetidine. Sucralfate is an effective antiulcer drug thought to provide cytoprotective action. Although initial studies utilizing sucralfate for protection against short-term aspirin administration were encouraging, longer term studies (more than 7 days) were generally disappointing. A comparative study with misoprostol demonstrated that the PGE1 analogue was far superior for the prevention of non-steroidal anti-inflammatory drugs ulcers, and that ulceration rates in the sucralfate group were equivalent to rates in the placebo group. As far as the treatment of non-steroidal anti-inflammatory drug-related mucosal lesions is concerned, sucralfate proved superior to placebo, similar to ranitidine, but significantly less effective than omeprazole.

  10. Analgesic and anti-inflammatory activity of root bark of Grewia asiatica Linn. in rodents

    PubMed Central

    Paviaya, Udaybhan Singh; Kumar, Parveen; Wanjari, Manish M.; Thenmozhi, S.; Balakrishnan, B. R.

    2013-01-01

    Background: Grewia asiatica Linn. (Family: Tiliaceae), called Phalsa in Hindi is an Indian medicinal plant used for a variety of therapeutic and nutritional uses. The root bark of the plant is traditionally used in rheumatism (painful chronic inflammatory condition). Aims: The present study demonstrates the analgesic and anti-inflammatory activity of root bark of G. asiatica in rodents. Settings and Design: The methanolic extract of Grewia asiatica (MEGA) and aqueous extract of Grewia asiatica (AEGA) of the bark were prepared and subjected to phytochemical tests and pharmacological screening for analgesic and anti-inflammatory effect in rodents. Materials and Methods: Analgesic effect was studied using acetic acid-induced writhing in mice and hot plate analgesia in rats while anti-inflammatory activity was investigated using carrageenan-induced paw oedema in rats. The MEGA or AEGA was administered orally in doses of 200 and 400 mg/kg/day of body weight. Statistical Analysis: Data were analysed by one-way analysis of variance followed by Dunnett's test. Results: The extracts showed a significant inhibition of writhing response and increase in hot plate reaction time and also caused a decrease in paw oedema. The effects were comparable with the standard drugs used. Conclusions: The present study indicates that root bark of G. asiatica exhibits peripheral and central analgesic effect and anti-inflammatory activity, which may be attributed to the various phytochemicals present in root bark of G. asiatica. PMID:24501443

  11. In Vivo Potential Anti-Inflammatory Activity of Melissa officinalis L. Essential Oil.

    PubMed

    Bounihi, Amina; Hajjaj, Ghizlane; Alnamer, Rachad; Cherrah, Yahia; Zellou, Amina

    2013-01-01

    Melissa officinalis L. (Lamiaceae) had been reported in traditional Moroccan medicine to exhibit calming, antispasmodic, and strengthening heart effects. Therefore, this study is aimed at determining the anti-inflammatory activities of M. officinalis L. leaves. The effect of the essential oil of the leaves of this plant was investigated for anti-inflammatory properties by using carrageenan and experimental trauma-induced hind paw edema in rats. The essential oil extracted from leaves by hydrodistillation was characterized by means of gas chromatography-mass spectrometry (GC-MS). M. officinalis contained Nerol (30.44%), Citral (27.03%), Isopulegol (22.02%), Caryophyllene (2.29%), Caryophyllene oxide (1.24%), and Citronella (1.06%). Anti-inflammatory properties of oral administration of essential oil at the doses of 200, 400 mg/kg p.o., respectively, showed significant reduction and inhibition of edema with 61.76% and 70.58%, respectively, (P < 0.001) induced by carrageenan at 6 h when compared with control and standard drug (Indomethacin). On experimental trauma, M. officinalis L. essential oil showed pronounced reduction and inhibition of edema induced by carrageenan at 6 h at 200 and 400 mg/kg with 91.66% and 94.44%, respectively (P < 0.001). We can conclude that the essential oil of M. officinalis L. possesses potential anti-inflammatory activities, supporting the traditional application of this plant in treating various diseases associated with inflammation and pain.

  12. Neutrophilia and an Anti-Inflammatory Drug as Markers of Inflammation in Delayed Muscle Soreness.

    ERIC Educational Resources Information Center

    Smith, Lucille L.; And Others

    This study reexamined the concept that delayed muscle soreness (DMS) is a form of inflammatory pain. This was accomplished by having 32 male volunteers perform exercise known to induce DMS and then assess the total and differential white blood cell changes. In addition, an anti-inflammatory drug, idomethacin, was administered to determine whether…

  13. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  14. [Screening of anti-inflammatory and analgesic activities in marines macroalgae from Mediterranean Sea].

    PubMed

    Chatter Riahi, R; Tarhouni, S; Kharrat, R

    2011-01-01

    Methanolic extracts of 13 seaweeds collected from the Mediterranean sea (Tunisian, Moroccan and Greek coasts) from different classes (Chlorophycae, Pheopbycae and Rhodophycae) are testedfor their analgesic and antiinflammatory effects. These activities were estimated in vivo, respectively by writhing test and carrageenan test. Nine species among 13 tested seaweeds showed an important analgesic activity. On the other hand only 5 seaweeds showed a significant anti-inflammatory activity (< 0.001 compared to control group). The percentage of inhibition reached 80% for the red algae Laurencia glandulifera but was only 50% for aspirin. The screening showed different pharmacological profiles. The red algae (Laurencia glandulfera and Hypnea musciformis) and brown algae (Cystoseira barbata and Sargassum vulgare) had endowed with the double analgesic and anti-inflammatory activity. The red algae Geliduim sesquipedale have only anti-inflammatory activity and the other one endowed only with an analgesic activity (Enteromorpha compressa, Chaetomorpha linum, Cystoseira ericoidies, Sacchoriza bulbosa et Corralina officinalis). The simultaneous or individual presence of the analgesic and\\or anti-inflammatory activities of the various extracts can find its application in the therapeutic domain. PMID:23461139

  15. Analgesic and Anti-Inflammatory Activities of Methanol Extract of Cissus repens in Mice

    PubMed Central

    Chang, Ching-Wen; Chang, Wen-Te; Liao, Jung-Chun; Chiu, Yung-Jia; Hsieh, Ming-Tsuen; Peng, Wen-Huang; Lin, Yu-Chin

    2012-01-01

    The aim of this study was to investigate possible analgesic and anti-inflammatory mechanisms of the CRMeOH. Analgesic effect was evaluated in two models including acetic acid-induced writhing response and formalin-induced paw licking. The anti-inflammatory effect was evaluated by λ-carrageenan-induced mouse paw edema and histopathologic analyses. The results showed that CRMeOH (500 mg/kg) decreased writhing response in the acetic acid assay and licking time in the formalin test. CRMeOH (100 and 500 mg/kg) significantly decreased edema paw volume at 4th to 5th hours after λ-carrageenan had been injected. Histopathologically, CRMeOH abated the level of tissue destruction and swelling of the edema paws. These results were indicated that anti-inflammatory mechanism of CRMeOH may be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx, and GRd in the liver. Additionally, CRMeOH also decreased IL-1β, IL-6, NFκB, TNF-α, COX-2, and iNOS levels. The contents of two active ingredients, ursolic acid and lupeol, were quantitatively determined. This paper demonstrated possible mechanisms for the analgesic and anti-inflammatory effects of CRMeOH and provided evidence for the classical treatment of Cissus repens in inflammatory diseases. PMID:22991570

  16. Design and In Vivo Anti-Inflammatory Effect of Ketoprofen Delayed Delivery Systems.

    PubMed

    Cerciello, Andrea; Auriemma, Giulia; Morello, Silvana; Pinto, Aldo; Del Gaudio, Pasquale; Russo, Paola; Aquino, Rita P

    2015-10-01

    For the treatment of inflammatory-based diseases affected by circadian rhythms, the development of once-daily dosage forms is required to target early morning symptoms. In this study, Zn-alginate beads containing ketoprofen (K) were developed by a tandem technique prilling/ionotropic gelation. The effect of main critical variables on particles micromeritics, inner structure as well as on drug loading and in vitro drug release was studied. The in vivo anti-inflammatory efficacy was evaluated using a modified protocol of carrageenan-induced edema in rat paw administering beads to rats by oral gavage at 0, 3, or 5 h before edema induction. Good drug loading and desired particle size and morphology were obtained for the optimized formulation F20. In vitro dissolution studies showed that F20 had a gastroresistant behavior and delayed release of the drug in simulated intestinal fluid. The in vitro delayed release pattern was clearly reflected in the prolonged anti-inflammatory effect in vivo of F20, compared to pure ketoprofen; F20, administered 3 h before edema induction, showed a significant anti-inflammatory activity, reducing maximum paw volume in response to carrageenan injection, whereas no response was observed for ketoprofen. The designed beads appear a promising platform suitable for a delayed release of anti-inflammatory drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3451-3458, 2015.

  17. Anti-inflammatory drugs and uterine cervical cancer cells: Antineoplastic effect of meclofenamic acid

    PubMed Central

    SORIANO-HERNANDEZ, ALEJANDRO D.; MADRIGAL-PÉREZ, DANIELA; GALVAN-SALAZAR, HECTOR R.; MARTINEZ-FIERRO, MARGARITA L.; VALDEZ-VELAZQUEZ, LAURA L.; ESPINOZA-GÓMEZ, FRANCISCO; VAZQUEZ-VUELVAS, OSCAR F.; OLMEDO-BUENROSTRO, BERTHA A.; GUZMAN-ESQUIVEL, JOSE; RODRIGUEZ-SANCHEZ, IRAM P.; LARA-ESQUEDA, AGUSTIN; MONTES-GALINDO, DANIEL A.; DELGADO-ENCISO, IVAN

    2015-01-01

    Uterine cervical cancer (UCC) is one of the main causes of cancer-associated mortality in women. Inflammation has been identified as an important component of this neoplasia; in this context, anti-inflammatory drugs represent possible prophylactic and/or therapeutic alternatives that require further investigation. Anti-inflammatory drugs are common and each one may exhibit a different antineoplastic effect. As a result, the present study investigated different anti-inflammatory models of UCC in vitro and in vivo. Celecoxib, sulindac, nimesulide, dexamethasone, meclofenamic acid, flufenamic acid and mefenamic acid were tested in UCC HeLa, VIPA, INBL and SiHa cell lines. The cytotoxicity of the drugs was evaluated in vitro. Celecoxib, sulindac, nimesulide, mefenamic acid and flufenamic acid presented with slight to moderate toxicity (10–40% of cell death corresponding to 100 µM) in certain cell lines, while meclofenamic acid exhibited significant cytotoxicity in all essayed cell lines (50–90% of cell death corresponding to 100 µM). The meclofenamic acid was tested in murine models (immunodeficient and immunocompetent) of UCC, which manifested a significant reduction in tumor growth and increased mouse survival. It was demonstrated that of the evaluated anti-inflammatory drugs, meclofenamic acid was the most cytotoxic, with a significant antitumor effect in murine models. Subsequent studies are necessary to evaluate the clinical utility of this drug. PMID:26622892

  18. New analogues of butylated hydroxytoluene as anti-inflammatory and antioxidant agents.

    PubMed

    Ziakas, George N; Rekka, Eleni A; Gavalas, Antonios M; Eleftheriou, Phaedra T; Kourounakis, Panos N

    2006-08-15

    Amine or amide derivatives bearing the 2,6-di-tert-butyl phenol moiety are synthesised. Almost all are antioxidants, reduce acute inflammation and inhibit COX-1 and lipoxygenase activity. The most potent anti-inflammatory, COX-1 inhibitor and antioxidant agent, with low toxicity, is 2,6-di-tert-butyl-4-thiomorpholin-4-ylmethyl-phenol.

  19. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil.

    PubMed

    Silva, Gabriela L da; Luft, Carolina; Lunardelli, Adroaldo; Amaral, Robson H; Melo, Denizar A da Silva; Donadio, Márcio V F; Nunes, Fernanda B; de Azambuja, Marcos S; Santana, João C; Moraes, Cristina M B; Mello, Ricardo O; Cassel, Eduardo; Pereira, Marcos Aurélio de Almeida; de Oliveira, Jarbas R

    2015-08-01

    Several studies have investigated the antinociceptive, immunomodulatory and anti-inflammatory properties of compounds found in the lavender essential oil (LEO), however to date, there is still lack of substantial data. The objective of this study was to assess the antioxidant, anti-inflammatory and antinociceptive effects of lavender essential oil. The 1,1-diphenyl-2-picrylhydrazyl radical decolorization assay was used for antioxidant activity evaluation. The anti-inflammatory activity was tested using two models of acute inflammation: carrageenan-induced pleurisy and croton oil-induced ear edema. The antinociceptive activity was tested using the pain model induced by formalin. LEO has antioxidant activity, which is dose-dependent response. The inflammatory response evoked by carrageenan and by croton oil was reduced through the pre-treatment of animals with LEO. In the pleurisy model, the drug used as positive control, dexamethasone, was more efficacious. However, in the ear swelling, the antiedematogenic effect of the oil was similar to that observed for dexamethasone. In the formalin test, LEO consistently inhibited spontaneous nociception and presented a similar effect to that of tramadol. The results of this study reveal (in vivo) the analgesic and anti-inflammatory activities of LEO and demonstrates its important therapeutic potential. PMID:26247152

  20. In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta

    PubMed Central

    Azza, Zora; Oudghiri, Mounia

    2015-01-01

    Background: The aerial parts of Thymelaea hirsuta (TH) are used as a decoction in the treatment of different pathologies in folk medicine in Morocco. Objective: The aqueous extracts were evaluated for its anti-inflammatory activity and in inhibition of adjuvant induction arthritis in male Wistar rats. Materials and Methods: The anti-inflammatory activity was carried out using carrageenan-induced rat paw edema model, and the antiarthritic activity was carried out using complete Freund's adjuvant-induced arthritis model. Results: The plant extract (500 mg/kg body weight) exhibited significant activity in acute inflammation produced 60% of inhibition after 4 h as compared with that of the standard anti-inflammatory drug, the diclofenac (100 mg/kg) which showed 40% of inhibition. In arthritis model, the extract produced 85% inhibition after 18 days when compared with the diclofenac (10 mg/kg; 72%). Conclusion: These results indicate that the aqueous extract of TH had an anti-inflammatory activity and inhibited the induction of adjuvant arthritis in male Wistar rats. PMID:25829798

  1. Improvement of bioavailability and anti-inflammatory potential of curcumin in combination with emu oil.

    PubMed

    Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna

    2014-12-01

    The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis. PMID:25028100

  2. Comparative Evaluation of Anti-Inflammatory Activity of Curcuminoids, Turmerones, and Aqueous Extract of Curcuma longa

    PubMed Central

    Bagad, Ashish Subhash; Bhaskaran, Natarajan; Agarwal, Amit

    2013-01-01

    Curcuma longa is widely known for its anti-inflammatory activity in traditional system of medicine for centuries and has been scientifically validated extensively. The present study was conducted to evaluate the anti-inflammatory activity of curcuminoids and oil-free aqueous extract (COFAE) of C. longa and compare it with that of curcuminoids and turmerones (volatile oil), the bioactive components of C. longa that are proven for the anti-inflammatory potential. The activity against inflammation was evaluated in xylene-induced ear edema, cotton pellet granuloma models in albino Swiss mice and albino Wistar rats, respectively. The results showed that COFAE of C. longa at three dose levels significantly (P ≤ 0.05) inhibited inflammation in both models, as evidenced by reduction in ear weight and decrease in wet as well as dry weights of cotton pellets, when compared to the vehicle control. The COFAE of C. longa showed considerable anti-inflammatory effects against acute and chronic inflammation and the effects were comparable to those of curcuminoids and turmerones. PMID:24454348

  3. Potential pathway of anti-inflammatory effect by New Zealand honeys

    PubMed Central

    Tomblin, Victoria; Ferguson, Lynnette R; Han, Dug Yeo; Murray, Pamela; Schlothauer, Ralf

    2014-01-01

    The role of honey in wound healing continues to attract worldwide attention. This study examines the anti-inflammatory effect of four honeys on wound healing, to gauge its efficacy as a treatment option. Isolated phenolics and crude extracts from manuka (Leptospermum scoparium), kanuka (Kunzea ericoides), clover (Trifolium spp.), and a manuka/kanuka blend of honeys were examined. Anti-inflammatory assays were conducted in HEK-Blue™-2, HEK-Blue™-4, and nucleotide oligomerization domain (NOD)2-Wild Type (NOD2-WT) cell lines, to assess the extent to which honey treatment impacts on the inflammatory response and whether the effect was pathway-specific. Kanuka honey, and to a lesser extent manuka honey, produced a powerful anti-inflammatory effect related to their phenolic content. The effect was observed in HEK-Blue™-2 cells using the synthetic tripalmitoylated lipopeptide Pam3CysSerLys4 (Pam3CSK4) ligand, suggesting that honey acts specifically through the toll-like receptor (TLR)1/TLR2 signaling pathway. The manuka/kanuka blend and clover honeys had no significant anti-inflammatory effect in any cell line. The research found that kanuka and manuka honeys have an important role in modulating the inflammatory response associated with wound healing, through a pathway-specific effect. The phenolic content of honey correlates with its effectiveness, although the specific compounds involved remain to be determined. PMID:24623989

  4. Anti-inflammatory and immune-regulatory mechanisms prevent contact hypersensitivity to Arnica montana L.

    PubMed

    Lass, Christian; Vocanson, Marc; Wagner, Steffen; Schempp, Christoph M; Nicolas, Jean-Francois; Merfort, Irmgard; Martin, Stefan F

    2008-10-01

    Sesquiterpene lactones (SL), secondary plant metabolites from flowerheads of Arnica, exert anti-inflammatory effects mainly by preventing nuclear factor (NF)-kappaB activation because of alkylation of the p65 subunit. Despite its known immunosuppressive action, Arnica has been classified as a plant with strong potency to induce allergic contact dermatitis. Here we examined the dual role of SL as anti-inflammatory compounds and contact allergens in vitro and in vivo. We tested the anti-inflammatory and allergenic potential of SL in the mouse contact hypersensitivity model. We also used dendritic cells to study the activation of NF-kappaB and the secretion of interleukin (IL)-12 in the presence of different doses of SL in vitro. Arnica tinctures and SL potently suppressed NF-kappaB activation and IL-12 production in dendritic cells at high concentrations, but had immunostimulatory effects at low concentrations. Contact hypersensitivity could not be induced in the mouse model, even when Arnica tinctures or SL were applied undiluted to inflamed skin. In contrast, Arnica tinctures suppressed contact hypersensitivity to the strong contact sensitizer trinitrochlorobenzene and activation of dendritic cells. However, contact hypersensitivity to Arnica tincture could be induced in acutely CD4-depleted MHC II knockout mice. These results suggest that induction of contact hypersensitivity by Arnica is prevented by its anti-inflammatory effect and immunosuppression as a result of immune regulation in immunocompetent mice.

  5. Study of anti-inflammatory activities of α-D-glucosylated eugenol.

    PubMed

    Zhang, Peng; Zhang, Erli; Xiao, Min; Chen, Chang; Xu, Weijian

    2013-01-01

    Inflammation is an immune response against a variety of noxious stimuli, such as infection, chemicals, and physical injury. Eugenol, a natural phenolic extract, has drawn much attention for its various desirable pharmacological functions and is, therefore, broadly used in our daily life and medical practice. However, further usage of eugenol is greatly limited due to its unwanted properties, such as physicochemical instability, poor solubility, and high-dose cytotoxicity. In hopes of extending its applicability through glycosylation, we previously reported a novel, efficient, and high throughput way to biosynthesize α-D-glucosylated eugenol (α-EG). In this study, we further explored the potential superior properties of α-EG to its parent eugenol in terms of anti-inflammatory activities. We demonstrated that α-EG was an effective anti-inflammatory mediator in both non-cellular and cellular environments. In addition, the non-cellular inhibitory effect of α-EG could be amplified by α-glucosidase, which ubiquitously exists in cytoplasm. Furthermore, α-EG exhibited a superior anti-inflammatory effect to its parent eugenol in a cellular environment. In words, our findings collectively suggest that α-EG is a stronger anti-inflammatory mediator and may thereby serve as a desirable substitute for eugenol and a potential therapeutic prodrug in treating inflammatory diseases in the future.

  6. Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats.

    PubMed

    Matsumoto, Kazuaki; Obara, Shigeaki; Kuroda, Yuko; Kizu, Junko

    2015-12-01

    The immunomodulatory activity of linezolid has recently been reported using in vitro experimental models. However, the anti-inflammatory activity of linezolid has not yet been demonstrated using in vivo experimental models. Therefore, the aim of the present study was to demonstrate the anti-inflammatory activity of linezolid and other anti-MRSA agents using the carrageenan-induced rat paw edema model. The pretreatment with 50 mg/kg linezolid significantly suppressed edema rates, compared with control (5% glucose), with edema rates at 0.5 and 3 h after the administration of carrageenan being 17.3 ± 3.5 and 30.8 ± 3.0%, respectively. On the other hand, edema rates were not suppressed by the pretreatments with 50 mg/kg vancomycin, teicoplanin, arbekacin, and daptomycin. Furthermore, we demonstrated that linezolid exhibited anti-inflammatory activity in a concentration-dependent manner. These effects were observed at linezolid concentrations that are achievable in human serum with conventional dosing. In conclusion, the results of the present study suggest that the anti-inflammatory activities of linezolid, in addition to its antimicrobial effects, have a protective effect against destructive inflammatory responses in areas of inflammation.

  7. Anti-inflammatory and antinociceptive activities of Solenostemon monostachyus aerial part extract in mice

    PubMed Central

    Okokon, Jude Fiom; Davis, Koofreh; Nwidu, Lucky Legbosi

    2016-01-01

    Objective: Solenostemon monostachyus is used in traditional medicine for the treatment of various ailments such as ulcer, hypertension, pains and inflammatory diseases. Evaluation of anti-inflammatory and analgesic activities of S. monostachyus aerial parts was carried out to ascertain its uses in traditional medicine. Materials and Methods: The aerial parts of S. monostachyus was cold extracted by soaking the dried powdered material in ethanol. The aerial parts crude extract (75 –225 mg/kg) of S. monostachyus was investigated for analgesic and anti-inflammatory activities using various experimental models; acetic acid, formalin and thermal- induced pains models for analgesic study and carrageenin, egg albumin and xylene – induced edema models for anti-inflammatory investigation. Results: The extract caused a significant (p<0.05 – 0.001) dose-dependent reduction of inflammation and pains induced by different phlogistic agents used. These effects were comparable to those of the standard drug, (ASA, 100 mg/kg) used in some models. Conclusion: The anti-inflammatory and analgesic effects of this plant may in part be mediated through the chemical constituents of the plant and the results of the analgesic action suggest central and peripheral mechanisms. The findings of this work confirm the ethno medical use of this plant to treat inflammatory conditions. PMID:27462551

  8. Antimicrobial and anti-inflammatory activities of leaf extract of Valeriana wallichii DC.

    PubMed

    Khuda, Fazli; Iqbal, Zafar; Zakiullah; Khan, Ayub; Nasir, Fazli

    2012-10-01

    Valeriana wallichii DC (Valerianaceae) is one of the most widely used traditional remedies for various complications associated with nervous system and digestion. No antimicrobial and anti-inflammatory studies have so far been carried out on the aerial parts of the plant. The present work was focused to evaluate the antimicrobial (antifungal and antibacterial) and anti-inflammatory properties of V. wallichii using reported methods. Chloroform fraction (VW-2) and hexane fraction (VW-3) exhibited significant activity against S. aureus and B. subtilus, respectively. The chloroform fraction (VW-2) showed significant activity against S. aureus with 0.27 mg/ml MIC, where 0.31 mg/ml MIC was deduced for VW-3 fraction against B. subtilus. VW-3 fraction was also found to be the most potent inhibitor of M. canis, showing 70% inhibition with an MIC value of 0.19 mg/ml. Considerable inhibitory activity was also observed for VW-2 and water fraction (VW-6) against M. canis and A. flavus. A remarkable anti-inflammatory like activity was observed for the crude extract at a dose of 200 mg/kg at all observed durations. Other doses of the sample also showed excellent activity. Looking to these results it may be concluded that V. wallichii may be a potential source for activity guided isolation of natural products with antimicrobial and anti-inflammatory-like properties. PMID:23009985

  9. Anti-inflammatory activities of eleven Centaurea species occurring in the Carpathian Basin.

    PubMed

    Csupor, Dezső; Widowitz, Ute; Blazsó, Gábor; Laczkó-Zöld, Eszter; Tatsimo, Joel S N; Balogh, Agnes; Boros, Klára; Dankó, Balázs; Bauer, Rudolf; Hohmann, Judit

    2013-04-01

    Our study aimed at the identification of anti-inflammatory activities of different fractions of C. sadleriana extract after per os administration in rats, the identification of the active compounds of the plant and the investigation of the in vitro anti-inflammatory activities of Centaurea species native to or cultivated in the Carpathian Basin. The aerial parts of Centaurea sadleriana Janka have been used in Hungarian folk medicine to treat the wounds of sheep. Methanol extract of C. sadleriana was fractioned by solvent-solvent partitioning. The n-hexane fraction was further fractionated and the anti-inflammatory activities of certain subfractions were confirmed in vivo in rats. The n-hexane and chloroform fraction of the methanol extract of C. sadleriana exhibited remarkable COX-1 and COX-2 inhibiting effects in vitro. Chromatographic separation of the fractions led to the identification of the active subfractions and 11 compounds (α-linolenic acid, γ-linolenic acid, stigmasterol, β-sitosterol, campesterol, vanillin, pectolinarigenin, salvigenin, hispidulin, chrysoeriol and apigenin). The in vitro screening for anti-inflammatory activities of further Centaurea species occurring in the Carpathian Basin (C. adjarica, C. bracteata, C. cataonica, C. cynaroides, C. dealbata, C. indurata, C. macrocephala, C. melitensis, C. nigrescens, C. ruthenica) revealed considerable COX-1 and COX-2 inhibitory activities. Because C. sadleriana is an endangered species native only to the Carpathian Basin, the investigation of more prevalent species is reasonable. PMID:22674731

  10. Analgesic and Anti-Inflammatory Activities of Le