Sample records for cyclooxygenase-2 inhibition protects

  1. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms.

    PubMed

    Ouellet, M; Percival, M D

    2001-03-15

    Acetaminophen has similar analgesic and antipyretic properties to nonsteroidal antiinflammatory drugs (NSAIDs), which act via inhibition of cyclooxygenase enzymes. However, unlike NSAIDs, acetaminophen is at best weakly antiinflammatory. The mechanism by which acetaminophen exerts its therapeutic action has yet to be fully determined, as under most circumstances, acetaminophen is a very weak cyclooxygenase inhibitor. The potency of acetaminophen against both purified ovine cyclooxygenase-1 (oCOX-1) and human cyclooxygenase-2 (hCOX-2) was increased approximately 30-fold by the presence of glutathione peroxidase and glutathione to give IC50 values of 33 microM and 980 microM, respectively. Acetaminophen was found to be a good reducing agent of both oCOX-1 and hCOX-2. The results are consistent with a mechanism of inhibition of acetaminophen in which it acts to reduce the active oxidized form of COX to the resting form. Inhibition would therefore be more effective under conditions of low peroxide concentration, consistent with the known tissue selectivity of acetaminophen.

  2. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  3. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway.

    PubMed

    Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Vila, Virginia; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2004-12-17

    Cyclooxygenase-2 is transiently induced upon cell activation or viral infections, resulting in inflammation and modulation of the immune response. Here we report that A238L, an African swine fever virus protein, efficiently inhibits cyclooxygenase-2 gene expression in Jurkat T cells and in virus-infected Vero cells. Transfection of Jurkat cells stably expressing A238L with cyclooxygenase-2 promoter-luciferase constructs containing 5'-terminal deletions or mutations in distal or proximal nuclear factor of activated T cell (NFAT) response elements revealed that these sequences are involved in the inhibition induced by A238L. Overexpression of a constitutively active version of the calcium-dependent phosphatase calcineurin or NFAT reversed the inhibition mediated by A238L on cyclooxygenase-2 promoter activation, whereas overexpression of p65 NFkappaB had no effect. A238L does not modify the nuclear localization of NFAT after phorbol 12-myristate 13-acetate/calcium ionophore stimulation. Moreover, we show that the mechanism by which the viral protein down-regulates cyclooxygenase-2 activity does not involve inhibition of the binding between NFAT and its specific DNA sequences into the cyclooxygenase-2 promoter. Strikingly, A238L dramatically inhibited the transactivation mediated by a GAL4-NFAT fusion protein containing the N-terminal transactivation domain of NFAT1. Taken together, these data indicate that A238L down-regulates cyclooxygenase-2 transcription through the NFAT response elements, being NFAT-dependent transactivation implicated in this down-regulation.

  4. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis.more » Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.« less

  5. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    PubMed Central

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  6. Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition

    PubMed Central

    Barden, Curtis A; Lu, Ping; Kusewitt, Donna F.; Colitz, Carmen M. H.

    2007-01-01

    Purpose To determine if cyclooxygenase-2 (COX-2) is upregulated when lens epithelial cells (LEC) in clinical samples of cataracts and posterior capsule opacification (PCO) undergo epithelial-mesenchymal transition (EMT)-like changes. We also wanted to learn if inhibition of the enzymatic activity of COX-2 could prevent PCO formation. Methods To ensure that EMT-like changes were occurring in LEC, real-time RT-PCR was used to examine expression of EMT markers. Clinical samples of canine cataracts and PCO were examined for COX-2 expression using immunohistochemistry, western blot analysis, and real-time RT-PCR. The COX-2 inhibitors, rofecoxib and celecoxib, were used in an ex vivo model of PCO formation, and the effects on cellular migration, proliferation, and apoptosis were analyzed using immunohistochemistry and western blots. Prostaglandin E2 (PGE2) expression was examined with ELISA. Results Markers of EMT, such as lumican, Snail, Slug, and COX-2 were expressed in LEC. In clinical samples of cataracts and PCO, there was overexpression of COX-2 protein and mRNA. Both rofecoxib and celecoxib were effective at inhibiting PCO formation in our ex vivo model. Prevention of PCO with the COX-2 inhibitors appeared to work through decreased migration and proliferation, and increased apoptosis. Neither of the drugs had a toxic effect on confluent LEC and appeared to inhibit PCO through their pharmacologic action. Synthesis of PGE2 was inhibiting in the capsules treated with the COX-2 inhibiting drugs. Conclusions Extracapsular phacoemulsification cataract surgery is the most common surgical procedure performed in human and veterinary ophthalmology. The most frequent postoperative complication is PCO. The LEC that remain adhered to the lens capsule undergo EMT-like changes, proliferate, and migrate across the posterior lens capsule causing opacities. We have shown that COX-2, a protein associated with EMT, is upregulated in canine cataracts and PCO. Inhibiting the enzymatic

  7. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme.

    PubMed Central

    Masferrer, J L; Seibert, K; Zweifel, B; Needleman, P

    1992-01-01

    The effect of endogenous glucocorticoids on the expression of the cyclooxygenase enzyme was studied by contrasting cyclooxygenase expression and prostanoid synthesis in adrenalectomized and sham-adrenalectomized mice with or without the concurrent administration of endotoxin. Peritoneal macrophages obtained from adrenalectomized mice showed a 2- to 3-fold induction in cyclooxygenase synthesis and activity when compared to sham controls. Intravenous injection of a sublethal dose of endotoxin (5 micrograms/kg) further stimulated cyclooxygenase synthesis, resulting in a 4-fold increase in prostaglandin production. Similar cyclooxygenase induction can be achieved in macrophages obtained from normal mice but only after high doses of endotoxin (2.5 mg/kg) that are 100% lethal to adrenalectomized mice. Restoration of glucocorticoids in adrenalectomized animals with dexamethasone completely inhibited the elevated cyclooxygenase and protected these animals from endotoxin-induced death. In contrast, no signs of cyclooxygenase induction were observed in the kidneys of the adrenalectomized mice, even when treated with endotoxin. Dexamethasone did not affect the constitutive cyclooxygenase activity and prostaglandin production present in normal and adrenalectomized kidneys. These data indicate the existence of a constitutive cyclooxygenase that is normally present in most cells and tissues and is unaffected by steroids and of an inducible cyclooxygenase that is expressed only in the context of inflammation by proinflammatory cells, like macrophages, and that is under glucocorticoid regulation. Under normal physiological conditions glucocorticoids maintain tonic inhibition of inducible cyclooxygenase expression. Depletion of glucocorticoids or the presence of an inflammatory stimulus such as endotoxin causes rapid induction of this enzyme, resulting in an exacerbated inflammatory response that is often lethal. Images PMID:1570314

  8. Effects of nitric oxide synthase inhibition with or without cyclooxygenase-2 inhibition on resting haemodynamics and responses to exendin-4

    PubMed Central

    Gardiner, S M; March, J E; Kemp, P A; Bennett, T

    2006-01-01

    Background and purpose: Interactions between the NO system and the cyclooxygenase systems may be important in cardiovascular regulation. Here we measured the effects of acute cyclooxygenase-2 inhibition (with parecoxib), alone and in combination with NOS inhibition (with N G-nitro-L-arginine methyl ester (L-NAME)), on resting cardiovascular variables and on responses to the glucagon-like peptide 1 agonist, exendin-4, which causes regionally-selective vasoconstriction and vasodilatation. Experimental approach: Rats were instrumented with flow probes and intravascular catheters to measure regional haemodynamics in the conscious, freely moving state. L-NAME was administered as a primed infusion 180 min after administration of parecoxib or vehicle, and exendin-4 was given 60 min after the onset of L-NAME infusion. Key results: Parecoxib had no effect on resting cardiovascular variables or on responses to L-NAME. Exendin-4 caused a pressor response accompanied by tachycardia, mesenteric vasoconstriction and hindquarters vasodilatation. Parecoxib did not affect haemodynamic responses to exendin-4, but L-NAME inhibited its hindquarters vasodilator and tachycardic effects. When combined, L-NAME and parecoxib almost abolished the hindquarters vasodilatation while enhancing the pressor response. Conclusions and implications: Cyclooxygenase-2-derived products do not affect basal haemodynamic status in conscious normotensive rats, or influence the NO system acutely. The inhibitory effects of L-NAME on the hindquarters vasodilator and tachycardic effects of exendin-4 are consistent with a previous study that showed those events to be β-adrenoceptor mediated. The additional effect of parecoxib on responses to exendin-4 in the presence of L-NAME, is consistent with other evidence for enhanced involvement of vasodilator prostanoids when NO production is reduced. PMID:17016494

  9. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity.

    PubMed

    Kutil, Zsofia; Temml, Veronika; Maghradze, David; Pribylova, Marie; Dvorakova, Marcela; Schuster, Daniela; Vanek, Tomas; Landa, Premysl

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  10. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    PubMed Central

    Temml, Veronika; Maghradze, David; Vanek, Tomas

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682

  11. Inhibition of cyclooxygenase-independent platelet aggregation by sodium salicylate.

    PubMed

    Violi, F; Alessandri, C; Praticò, D; Guzzo, A; Ghiselli, A; Balsano, F

    1989-06-15

    The effect of acetylsalicylic acid (ASA) on platelet aggregation (PA) and thromboxane A2 (TxA2) formation was investigated in vitro and ex vivo after 1 g or 300 mg ASA administration to healthy subjects. 50-100 microM ASA inhibited PA by single aggregating agent such as platelet aggregating factor (PAF) or epinephrine and reduced to less than or equal to 5% of control platelet TxB2 formation, but did not influence PA by epinephrine plus PAF. The latter was inhibited by increasing ASA concentration. In samples incubated with 100 microM ASA and stimulated with epinephrine plus PAF, PA could be inhibited by the addition of 100-300 microM sodium salicylate. After 300 mg-1 g ASA administration to healthy subjects, the inhibition of PA by epinephrine plus PAF was more marked by highest doses of ASA. This study suggests that aspirin inhibits PA with a cyclooxygenase-independent mechanism; this effect is mediated, at least in vitro, by salicylic acid.

  12. Parecoxib Increases Blood Pressure Through Inhibition of Cyclooxygenase-2 Messenger RNA in an Experimental Model.

    PubMed

    Vértiz-Hernández, Ángel Antonio; Martínez-Morales, Flavio; Valle-Aguilera, Roberto; López-Sánchez, Pedro; Villalobos-Molina, Rafael; Pérez-Urizar, José

    2015-01-01

    Cyclooxygenase-2 selective inhibitors have been developed to alleviate pain and inflammation; however, the use of a selective cyclooxygenase-2 inhibitor is associated with mild edema, hypertension, and cardiovascular risk. To evaluate, in an experimental model in normotensive rats, the effect of treatment with parecoxib in comparison with diclofenac and aspirin and L-NAME, a non-selective nitric oxide synthetase, on mean arterial blood pressure, and cyclooxygenase-1 and -2 messenger RNA and protein expression in aortic tissue. Rats were treated for seven days with parecoxib (10 mg/kg/day), diclofenac (3.2 mg/kg/day), aspirin (10 mg/kg/day), or L-NAME (10 mg/kg/day). Mean arterial blood pressure was evaluated in rat tail; cyclooxygenase-1 and -2 were evaluated by reverse transcription-polymerase chain reaction and Western blot analysis in aortic tissue. Parecoxib and L-NAME, but not aspirin and diclofenac, increased mean arterial blood pressure by about 50% (p < 0.05) without changes in cardiac frequency. Messenger RNA cyclooxygenase-1 expression in aortic tissue was not modified with any drug (p < 0.05). L-NAME and parecoxib treatment decreased messenger RNA cyclooxygenase-2 and cyclooxygenase-2 (p < 0.05). While cyclooxygenase-1 protein decreased with the three drugs tested but not with L-NAME (p < 0.05), the cyclooxygenase-2 protein decreased only with aspirin and parecoxib (p < 0.05). Parecoxib increases the blood pressure of normotensive rats by the suppression of COX-2 gene expression, which apparently induced cardiovascular control.

  13. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic.

    PubMed Central

    Masferrer, J L; Zweifel, B S; Manning, P T; Hauser, S D; Leahy, K M; Smith, W G; Isakson, P C; Seibert, K

    1994-01-01

    We have examined the role of cyclooxygenase 2 (COX-2) in a model of inflammation in vivo. Carrageenan administration to the subcutaneous rat air pouch induces a rapid inflammatory response characterized by high levels of prostaglandins (PGs) and leukotrienes in the fluid exudate. The time course of the induction of COX-2 mRNA and protein coincided with the production of PGs in the pouch tissue and cellular infiltrate. Carrageenan-induced COX-2 immunoreactivity was localized to macrophages obtained from the fluid exudate as well as to the inner surface layer of cells within the pouch lining. Dexamethasone inhibited both COX-2 expression and PG synthesis in the fluid exudate but failed to inhibit PG synthesis in the stomach. Furthermore, NS-398, a selective COX-2 inhibitor, and indomethacin, a nonselective COX-1/COX-2 inhibitor, blocked proinflammatory PG synthesis in the air pouch. In contrast, only indomethacin blocked gastric PG and, additionally, produced gastric lesions. These results suggest that inhibitors of COX-2 are potent antiinflammatory agents which do not produce the typical side effects (e.g., gastric ulcers) associated with the nonselective, COX-1-directed antiinflammatory drugs. Images PMID:8159730

  14. Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.

    PubMed

    Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün

    2004-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.

  15. Mechanism of inhibition of cyclo-oxygenase in human blood platelets by carbamate insecticides.

    PubMed Central

    Krug, H F; Hamm, U; Berndt, J

    1988-01-01

    Carbamates are a widely used class of insecticides and herbicides. They were tested for their ability to affect human blood platelet aggregation and arachidonic acid metabolism in platelets. (1) The herbicides of the carbamate type have no, or only little, influence up to a concentration of 100 microM; the carbamate insecticides, however, inhibit both aggregation and arachidonic acid metabolism in a dose- and time-dependent manner. (2) Carbaryl, the most effective compound, inhibits platelet aggregation and cyclo-oxygenase activity completely at 10 microM. The liberation of arachidonic acid from phospholipids and the lipoxygenase pathway are not affected, whereas the products of the cyclo-oxygenase pathway are drastically decreased. (3) By using [14C]carbaryl labelled in the carbamyl or in the ring moiety, it could be proved that the carbamyl residue binds covalently to platelet proteins. In contrast with acetylsalicylic acid, which acetylates only one protein, carbaryl carbamylates a multitude of platelet proteins. (4) One of the carbamylated proteins was found to be the platelet cyclo-oxygenase, indicating that carbaryl resembles in this respect acetylsalicylic acid, which is known to inhibit this enzyme specifically by acetylation. Images Fig. 4. PMID:3128272

  16. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition

    PubMed Central

    Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele

    2010-01-01

    The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464

  17. Decreased cyclooxygenase inhibition by aspirin in polymorphic variants of human prostaglandin H synthase-1

    PubMed Central

    Liu, Wen; Poole, Elizabeth M.; Ulrich, Cornelia M.; Kulmacz, Richard J.

    2012-01-01

    Objectives Aspirin, a major anti-platelet and cancer preventing drug, irreversibly blocks the cyclooxygenase activity of prostaglandin H synthase-1 (PGHS-1). Considerable differences in aspirin effectiveness are observed between individuals, and some of this variability may be due to PGHS-1 protein variants. Our overall aim is to determine which, if any, of the known variants in the mature PGHS-1 protein lead to functional alterations in cyclooxygenase catalysis or inhibition by aspirin. The present study targeted four PGHS-1 variants: R53H, R108Q, L237M and V481I. Methods Wildtype human PGHS-1 and the four polymorphic variants were expressed as histidine-tagged, homodimeric proteins in insect cells using baculovirus vectors, solubilized with detergent, and purified by affinity chromatography. The purified proteins were characterized in vitro to evaluate cyclooxygenase and peroxidase catalytic parameters and the kinetics of cyclooxygenase inhibition by aspirin and NS-398. Results Compared to wildtype, several variants exhibited a higher COX/POX ratio (up to 1.5-fold, for R108Q), an elevated arachidonate Km (up to 1.9-fold, for R108Q), and/or a lower aspirin reactivity (up to 60% less, for R108Q). The decreased aspirin reactivity in R108Q reflected both a 70% increase in the Ki for aspirin and a 30% decrease in the rate constant for acetyl group transfer to the protein. Computational modeling of the brief aspirin pulses experienced by PGHS-1 in circulating platelets during daily aspirin dosing predicted that the 60% lower aspirin reactivity in R108Q gives a 15-fold increase in surviving cyclooxygenase activity; smaller, ~2-fold increases in surviving cyclooxygenase activity were predicted for L237M and V481I. NS-398 competitively inhibited cyclooxygenase catalysis of the wildtype (Ki = 6 μM) and inhibited cyclooxygenase inactivation by 1.0 mM aspirin in both wildtype (IC50 = 0.8 μM) and R108Q (IC50 = 2.1 μM). Conclusions Of the four PGHS-1 variants examined, R108

  18. The influence of cyclooxygenase-1 expression on the efficacy of cyclooxygenase-2 inhibition in head and neck squamous cell carcinoma cell lines.

    PubMed

    Park, Seok-Woo; Kim, Hyo-Sun; Choi, Myung-Sun; Kim, Ji-Eun; Jeong, Woo-Jin; Heo, Dae-Seog; Sung, Myung-Whun

    2011-06-01

    We have previously observed that cyclooxygenase-2 (COX-2) inhibition blocked the production of vascular endothelial growth factor (VEGF) in some head and neck squamous cell carcinoma (HNSCC) cells. However, as some HNSCC cells showed little response to COX-2 inhibition, although they highly expressed COX-2 and prostaglandin E2, we set out to elucidate what made this difference between them and focused on the possibility of the differential expression of COX-1. In western blotting, we found that COX-1 was expressed in SNU-1041 and SNU-1066, but not in SNU-1076 and PCI-50. Only in those cell lines without expression of COX-1 was VEGF production blocked meaningfully by small interfering RNA of COX-2. However, by cotreating with small interfering RNAs of COX-2 and COX-1, VEGF synthesis and prostaglandin E2 were inhibited in SNU-1041 and SNU-1066, similarly in SNU-1076 and PCI-50 with high expression of only COX-2. We also found that there was no difference in the pattern of prostaglandin synthesis between COX-2 and COX-1 through enzyme-linked immunosorbent assay for various prostaglandins. Our study suggests that, as COX-1 and COX-2 express and affect VEGF synthesis in HNSCC cells, we should check COX-1 expression in investigations on cancer treatment by inhibiting COX-2-induced prostaglandins.

  19. Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells*

    PubMed Central

    Liu, Teresa T.; Grubisha, Melanie J.; Frahm, Krystle A.; Wendell, Stacy G.; Liu, Jiayan; Ricke, William A.; Auchus, Richard J.; DeFranco, Donald B.

    2016-01-01

    Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ. PMID:27226548

  20. The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2.

    PubMed

    Tronina, Tomasz; Strugała, Paulina; Popłoński, Jarosław; Włoch, Aleksandra; Sordon, Sandra; Bartmańska, Agnieszka; Huszcza, Ewa

    2017-07-21

    The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol ( 2 ) and ( Z )-6,4'-dihydroxy-4-methoxy-7-prenylaurone ( 3 )) was performed in one step reactions from xanthohumol ( 1 )-major prenylated chalcone naturally occurring in hops. Obtained flavonoids ( 2 - 3 ) and xanthohumol ( 1 ) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana . As a result six glycosides ( 4 - 9 ) were formed, of which four glycosides ( 6 - 9 ) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4- O -methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone ( 1 ) had the highest binding affinity to HSA (8.624 × 10⁴ M -1 ) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone ( 2 ) and aurone ( 3 ). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity.

  1. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids.

    PubMed

    Catella-Lawson, F; McAdam, B; Morrison, B W; Kapoor, S; Kujubu, D; Antes, L; Lasseter, K C; Quan, H; Gertz, B J; FitzGerald, G A

    1999-05-01

    Conventional nonsteroidal anti-inflammatory drugs inhibit both cyclooxygenase (Cox) isoforms (Cox-1 and Cox-2) and may be associated with nephrotoxicity. The present study was undertaken to assess the renal effects of the specific Cox-2 inhibitor, MK-966. Healthy older adults (n = 36) were admitted to a clinical research unit, placed on a fixed sodium intake, and randomized under double-blind conditions to receive the specific Cox-2 inhibitor, MK-966 (50 mg every day), a nonspecific Cox-1/Cox-2 inhibitor, indomethacin (50 mg t.i.d.), or placebo for 2 weeks. All treatments were well tolerated. Both active regimens were associated with a transient but significant decline in urinary sodium excretion during the first 72 h of treatment. Blood pressure and body weight did not change significantly in any group. The glomerular filtration rate (GFR) was decreased by indomethacin but was not changed significantly by MK-966 treatment. Thromboxane biosynthesis by platelets was inhibited by indomethacin only. The urinary excretion of the prostacyclin metabolite 2,3-dinor-6-keto prostaglandin F1alpha was decreased by both MK-966 and indomethacin and was unchanged by placebo. Cox-2 may play a role in the systemic biosynthesis of prostacyclin in healthy humans. Selective inhibition of Cox-2 by MK-966 caused a clinically insignificant and transient retention of sodium, but no depression of GFR. Inhibition of both Cox isoforms by indomethacin caused transient sodium retention and a decline in GFR. Our data suggest that acute sodium retention by nonsteroidal anti-inflammatory drugs in healthy elderly subjects is mediated by the inhibition of Cox-2, whereas depression of GFR is due to inhibition of Cox-1.

  2. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus

    Treesearch

    Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross

    2009-01-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...

  3. Flurbiprofen, a Cyclooxygenase Inhibitor, Protects Mice from Hepatic Ischemia/Reperfusion Injury by Inhibiting GSK-3β Signaling and Mitochondrial Permeability Transition

    PubMed Central

    Fu, Hailong; Chen, Huan; Wang, Chengcai; Xu, Haitao; Liu, Fang; Guo, Meng; Wang, Quanxing; Shi, Xueyin

    2012-01-01

    Flurbiprofen acts as a nonselective inhibitor for cyclooxygenases (COX-1 and COX-2), but its impact on hepatic ischemia/reperfusion (I/R) injury remains unclear. Mice were randomized into sham, I/R and flurbiprofen (Flurb) groups. The hepatic artery and portal vein to the left and median liver lobes were occluded for 90 min and unclamped for reperfusion to establish a model of segmental (70%) warm hepatic ischemia. Pretreatment of animals with flurbiprofen prior to I/R insult significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and prevented hepatocytes from I/R-induced apoptosis/necrosis. Moreover, flurbiprofen dramatically inhibited mitochondrial permeability transition (MPT) pore opening, and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that flurbiprofen markedly inhibited glycogen synthase kinase (GSK)-3β activity and increased phosphorylation of GSK-3β at Ser9, which, consequently, could modulate the adenine nucleotide translocase (ANT)–cyclophilin D (CyP-D) complex and the susceptibility to MPT induction. Therefore, administration of flurbiprofen prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through inhibition of MPT and inactivation of GSK-3β, and provides experimental evidence for clinical use of flurbiprofen to protect liver function in surgical settings in addition to its conventional use for pain relief. PMID:22714712

  4. Cyclooxygenase-2 Inhibition Enhances Proliferation of NKT Cells Derived from Patients with Laryngeal Cancer.

    PubMed

    Klatka, Janusz; Grywalska, Ewelina; Hymos, Anna; Guz, Małgorzata; Polberg, Krzysztof; Roliński, Jacek; Stepulak, Andrzej

    2017-08-01

    The aim of this study was to analyze whether inhibition of cyclooxygenase-2 by celecoxib and the subsequent enhancement in the proliferation of natural killer T (NKT) cells could play a role in dendritic cell (DC)-based laryngeal cancer (LC) immunotherapy. Peripheral blood mononuclear cells were obtained from 48 male patients diagnosed with LC and 30 control patients without cancer disease. Neoplastic cell lysate preparations were made from cancer tissues obtained after surgery and used for in vitro DCs generation. NKT cells proliferation assay was performed based on 3 H-thymidine incorporation assay. An increased proliferation of NKT cells was obtained from control patients compared to NKT cells obtained from LC patients regardless of the type of stimulation or treatment. In the patient group diagnosed with LC, COX-2 inhibition resulted in a significantly enhanced proliferation of NKT cells when stimulated with autologous DCs than NKT cells stimulated with DCs without COX-2 inhibition. These correlations were not present in the control group. Higher proliferation rate of NKT cells was also observed in non-metastatic and highly differentiated LC, which was independent of the type of stimulation or treatment. COX-2 inhibition could be regarded as immunotherapy-enhancing tool in patients with LC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  6. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    PubMed

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  7. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  8. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  9. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes.

    PubMed

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11-7082. Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11-7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression

  10. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells

    PubMed Central

    Ahn, Quein; Jeong, Soo-Jin; Lee, Hyo-Jung; Kwon, Hee-Young; Han, Ihn; Kim, Hyun Seok; Lee, Hyo-Jeong; Lee, Eun-Ok; Ahn, Kwang Seok; Jung, Min-Hyung; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2013-01-01

    We demonstrate that decursin induces apoptosis via regulation of cyclooxygenase-2 (COX-2) and survivin in leukemic KBM-5 cells. By activating an apoptotic machinery, decursin is cytotoxic to KBM-5 cells. In this apoptotic process, decursin can activate caspase family members and triggers PARP cleavage. At the same time, the expression of COX-2 and survivin in the cells is downregulated. Furthermore, decursin is in synergy with COX-2 inhibitor, celecoxib or NS398 for the induction of apoptosis. Overall, these results suggest that decursin, via inhibiting COX-2 and survivin, sensitizes human leukemia cells to apoptosis and is a potential chemotherapeutic agent to treat this disease. PMID:20673699

  11. Upregulation of Cyclooxygenase-2 Expression in Porcine Macula Densa With Chronic Nitric Oxide Synthase Inhibition

    PubMed Central

    Kommareddy, M.; McAllister, R. M.; Ganjam, V. K.; Turk, J. R.; Laughlin, M. Harold

    2012-01-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with NG-nitro-l-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release. PMID:21160023

  12. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    PubMed

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  13. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide

    PubMed Central

    Araujo, Magali; Welch, William J.

    2009-01-01

    Thromboxane (TxA2) and nitric oxide (NO) are potent vasoactive autocoids that modulate tubuloglomerular feedback (TGF). Each is produced in the macula densa (MD) by cyclooxygenase-2 (COX-2) and neuronal nitric oxide synthase (nNOS), respectively. Both enzymes are similarly regulated in the MD and their interaction may be an important factor in the regulation of TGF and glomerular filtration rate. We tested the hypothesis that TGF is modified by the balance between MD nNOS-dependent NO and MD COX-2-dependent TxA2. We measured maximal TGF during perfusion of the loop of Henle (LH) by continuous recording of the proximal tubule stopped flow pressure response to LH perfusion of artificial tubular fluid (ATF) at 0 and 40 nl/min. The response to inhibitors of COX-1 (SC-560), COX-2 [parecoxib (Pxb)], and nNOS (l-NPA) added to the ATF solution was measured in separate nephrons. COX-2 inhibition with Pxb reduced TGF by 46% (ATF + vehicle vs. ATF + Pxb), whereas COX-1 inhibition with SC-560 reduced TGF by only 23%. Pretreatment with intravenous infusion of SQ-29,548, a selective thromboxone/PGH2 receptor (TPR) antagonist, blocked all of the SC-560 effect on TGF, suggesting that this effect was due to activation of TPR. However, SQ-29,548 only partially diminished the effect of Pxb (−66%). Specific inhibition of nNOS with l-NPA increased TGF, as expected. However, the ability of Pxb to reduce TGF was significantly impaired with comicroperfusion of l-NPA. These data suggest that COX-2 modulates TGF by two proconstrictive actions: generation of TxA2 acting on TPR and by simultaneous reduction of NO. PMID:19144694

  14. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells.

    PubMed

    Ahn, Quein; Jeong, Soo-Jin; Lee, Hyo-Jung; Kwon, Hee-Young; Han, Ihn; Kim, Hyun Seok; Lee, Hyo-Jeong; Lee, Eun-Ok; Ahn, Kwang Seok; Jung, Min-Hyung; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-12-08

    We demonstrate that decursin induces apoptosis via regulation of cyclooxygenase-2 (COX-2) and survivin in leukemic KBM-5 cells. By activating an apoptotic machinery, decursin is cytotoxic to KBM-5 cells. In this apoptotic process, decursin can activate caspase family members and triggers PARP cleavage. At the same time, the expression of COX-2 and survivin in the cells is downregulated. Furthermore, decursin is in synergy with COX-2 inhibitor, celecoxib or NS398 for the induction of apoptosis. Overall, these results suggest that decursin, via inhibiting COX-2 and survivin, sensitizes human leukemia cells to apoptosis and is a potential chemotherapeutic agent to treat this disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase.

    PubMed

    Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik

    2016-05-15

    Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Modulation of the cyclooxygenase pathway via inhibition of nitric oxide production contributes to the anti-inflammatory activity of kaempferol.

    PubMed

    Mahat, Mahamad Yunnus A; Kulkarni, Nagaraj M; Vishwakarma, Santosh L; Khan, Farhin R; Thippeswamy, B S; Hebballi, Vijay; Adhyapak, Anjana A; Benade, Vijay S; Ashfaque, Saudagar Mohammad; Tubachi, Suraj; Patil, Basangouda M

    2010-09-10

    Kaempferol has been reported to inhibit nitric oxide synthase and cyclooxygenase enzymes in animal models. The present study was designed to investigate whether kaempferol modulates the cyclooxygenase pathway via inhibition of nitric oxide production, which in turn contributes to its anti-inflammatory activity. Investigations were performed using carrageenan induced rat air pouch model. Inflammation was assessed by measurement of nitrites (nitrite, a breakdown product of nitric oxide), prostaglandin-E(2) levels and cellular infiltration in the pouch fluid exudates. To assess the anti-inflammatory effect of the extract, rat air pouch linings were examined histologically. The levels of nitrite and prostaglandin-E(2) in pouch fluid were measured by using Griess assay and ELISA respectively. Cell counts and differential counts were performed using a Coulter counter and Wright-Giemsa stain respectively. Kaempferol when administered orally at 50 and 100mg/kg dose showed significant inhibition of carrageenan induced production of nitrite (40.12 and 59.74%, respectively) and prostaglandin-E(2) generation (64.23 and 78.55%, respectively). Infiltration of the cells into the rat granuloma air pouch was also significantly inhibited by kaempferol. Modulation of cyclooxygenase pathway via inhibition of nitric oxide synthesis significantly contributes to kaempferol's anti-inflammatory activity. The present study characterizes the effects and mechanisms of naturally occurring phenolic flavonoid kaempferol, on inducible nitric oxide synthase expression and nitric oxide production. These results partially explain the pharmacological efficacy of flavonoids in general and kaempferol in particular as anti-inflammatory compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. An apple oligogalactan suppresses endotoxin-induced cyclooxygenase-2 expression by inhibition of LPS pathways.

    PubMed

    Li, Yuhua; Fan, Lei; Sun, Yang; Zhang, Dian; Yue, Zhenggang; Niu, Yinbo; Meng, Jin; Yang, Tiehong; Liu, Wenchao; Mei, Qibing

    2013-10-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality in developed countries. Many ingredients of apples have been proven to have anti-inflammatory and anti-carcinogenic characteristics, and show benefits for CRC prevention. The aim of this study, therefore, was to evaluate inhibitory effect of an apple oligogalactan (AOG) on pro-inflammatory endotoxin lipopolysaccharide (LPS)-activated human colon carcinoma cells HT-29 and SW-620 and investigate the possible mechanisms. The two cell lines were pretreated with AOG (0.1-1 g/L) for 30 min and then treated with 10 μg/mL LPS. Real time PCR, Western blot, electrophoretic mobility shift assay (EMSA), and ELISA were used to detect the expression and activity of cyclooxygenase-2 (COX-2), NF-κB and MAPKs pathways. AOG significantly inhibited the expression and activity of COX-2 in LPS-activated human colon carcinoma cells HT-29 and SW-620. The mechanisms of AOG-suppressed COX-2 expression may be through inhibiting the phosphorylation of MAPKs and the activation of NF-κB and AP-1. These data may provide another molecular basis for understanding how apples act to prevent CRC and indicate that AOG may be useful for treatment of colitis and prevention of carcinogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  19. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities

    PubMed Central

    Liu, Miao; Boussetta, Tarek; Makni-Maalej, Karama; Fay, Michèle; Driss, Fathi; El-Benna, Jamel; Lagarde, Michel; Guichardant, Michel

    2014-01-01

    Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits with an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX) - a docosahexaenoic acid (DHA) di-hydroxylated product which inhibits blood platelet aggregation - on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides (LPS)-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases. PMID:24254970

  20. Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells.

    PubMed

    Min, Kyoung-Jin; Choi, Kyounghwa; Kwon, Taeg Kyu

    2011-08-01

    Microglia are the major immune effector cells in the brain, and microglia activated by injury and infection can produce inflammatory mediators. A number of studies have reported that withaferin A has anti-inflammatory functions. However, the effects of withaferin A on the microglial inflammatory response have not been investigated. Our results show that withaferin A inhibited lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-2 mRNA and protein expression and prostaglandin E2 (PGE(2)) production in BV2 murine microglial cells. Withaferin A had no effect on LPS-induced Akt and ERK phosphorylation, but phosphorylation of p38 and JNK was slightly decreased by withaferin A. Withaferin A significantly inhibited LPS-induced STAT1 and STAT3 phosphorylation in a dose-dependent manner. Furthermore, withaferin A inhibited nuclear translocation of STAT1 and interferon-gamma activated sequence (GAS)-promoter activity. Taken together, these results suggest that withaferin A inhibits LPS-induced PGE(2) production and COX-2 expression, at least in part, by blocking STAT1 and STAT3 activation. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Corn silk induced cyclooxygenase-2 in murine macrophages.

    PubMed

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  2. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice

    PubMed Central

    Woodling, Nathaniel S.; Colas, Damien; Wang, Qian; Minhas, Paras; Panchal, Maharshi; Liang, Xibin; Mhatre, Siddhita D.; Brown, Holden; Ko, Novie; Zagol-Ikapitte, Irene; van der Hart, Marieke; Khroyan, Taline V.; Chuluun, Bayarsaikhan; Priyam, Prachi G.; Milne, Ginger L.; Rassoulpour, Arash; Boutaud, Olivier; Manning-Boğ, Amy B.; Heller, H. Craig

    2016-01-01

    Abstract Identifying preventive targets for Alzheimer’s disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer’s disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APP Swe -PS1 ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase ( Tdo2 ), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APP Swe -PS1 ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers. PMID:27190010

  3. The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2.

    PubMed

    Peulen, Olivier; Gonzalez, Arnaud; Peixoto, Paul; Turtoi, Andrei; Mottet, Denis; Delvenne, Philippe; Castronovo, Vincent

    2013-01-01

    Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.

  4. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase.

    PubMed

    Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin

    2017-01-29

    Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays.

    PubMed

    Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter

    2012-12-01

    Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Inhibition of lipoxygenases and cyclooxygenase-2 enzymes by extracts isolated from Bacopa monniera (L.) Wettst.

    PubMed

    Viji, V; Helen, A

    2008-07-23

    Bacopa monniera Linn is described in the Ayurvedic Materia Medica, as a therapeutically useful herb for the treatment of inflammation. In the current study, we investigated the anti-inflammatory activity of methanolic extract of Bacopa monniera (BME). For some experiments EtOAc and bacoside fractions were prepared from BME. The effect of these extracts in modulating key mediators of inflammation was evaluated. Carrageenan-induced rat paw edema, rat mononuclear cells and human whole blood assay were employed as in vivo and in vitro models. In carrageenan-induced rat paw edema, BME brought about 82% edema inhibition at a dose of 100mg/kg i.p. when compared to indomethacin (INDO) (3mg/kg) that showed 70% edema inhibition. BME also significantly inhibited 5-lipoxygenase (5-LOX), 15-LOX and cyclooxygenase-2 (COX-2) activities in rat monocytes in vivo. Among the fractions tested in vitro, EtOAc fraction possessed significant 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with IC(50) value of 30 microg/ml compared to butylated hydroxyl toluene (IC(50) = 13 microg/ml). This fraction also exerted significant hydroxyl radical scavenging activity with IC(50) value of 25 microg/ml in comparison with quercetin (IC(50) = 5 microg/ml). Inhibitory effects of EtOAc and bacoside fractions on LOX and COX activities in Ca-A23187 stimulated rat mononuclear cells were also assessed. 5-LOX IC(50) values were 25 microg/ml for EtOAc, 68 microg/ml for bacosides and 2 microg/ml for nordihydroguaiaretic acid (NDGA) where as COX-2 IC(50) values were 1.32 microg/ml for EtOAc, 1.19 microg/ml for bacoside fraction and 0.23 microg/ml for indomethacin. EtOAc and bacoside fractions also brought about significant decrease in TNF-alpha release ex vivo. Bacopa monniera possesses anti-inflammatory activity through inhibition of COX and LOX and downregulation of TNF-alpha.

  8. Direct and irreversible inhibition of cyclooxygenase-1 by nitroaspirin (NCX 4016).

    PubMed

    Corazzi, Teresa; Leone, Mario; Maucci, Raffaella; Corazzi, Lanfranco; Gresele, Paolo

    2005-12-01

    Benzoic acid, 2-(acetyl-oxy)-3-[(nitrooxy)methyl]phenyl ester (NCX 4016), a new drug made by an aspirin molecule linked, through a spacer, to a nitric oxide (NO)-donating moiety, is now under clinical testing for the treatment of atherothrombotic conditions. Aspirin exerts its antithrombotic activity by irreversibly inactivating platelet cyclooxygenase (COX)-1. NCX 4016 in vivo undergoes metabolism into deacetylated and/or denitrated metabolites, and it is not known whether NCX 4016 needs to liberate aspirin to inhibit COX-1, or whether it can block it as a whole molecule. The aim of our study was to evaluate the effects of NCX 4016 and its analog or metabolites on platelet COX-1 and whole blood COX-2 and on purified ovine COX (oCOX)-1 and oCOX-2. In particular, we have compared the mechanism by which NCX 4016 inhibits purified oCOX enzymes with that of aspirin using a spectrophotometric assay. All the NCX 4016 derivatives containing acetylsalicylic acid inhibited the activity of oCOX-1 and oCOX-2, whereas the deacetylated metabolites and the nitric oxide-donating moiety were inactive. Dialysis experiments showed that oCOX-1 inhibition by NCX 4016, similar to aspirin, is irreversible. Reversible COX inhibitors (indomethacin) or salicylic acid incubated with the enzyme before NCX 4016 prevent the irreversible inhibition of oCOX-1 by NCX 4016 as well as by aspirin. In conclusion, our data show that NCX 4016 acts as a direct and irreversible inhibitor of COX-1 and that the presence of a spacer and NO-donating moiety in the molecule slows the kinetics of COX-1 inhibition by NCX 4016, compared with aspirin.

  9. Effects of chalcone derivatives on lipoxygenase and cyclooxygenase activities of mouse epidermis.

    PubMed

    Nakadate, T; Aizu, E; Yamamoto, S; Kato, R

    1985-09-01

    The effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis were investigated. The chalcone derivatives which have 3,4-dihydroxycinnamoyl structure in the molecule, such as 3,4-dihydroxychalcone, 3,4,2'-trihydroxychalcone, 3,4,4'-trihydroxychalcone and 3,4,2'4'-tetrahydroxychalcone, potently inhibited epidermal 12-lipoxygenase activity. Although some of them also inhibited cyclooxygenase activity at relatively high concentrations, the inhibitory effects of these chalcone derivatives on 12-lipoxygenase were 10 times or more potent than their effects on cyclooxygenase. The chalcone derivatives which have cinnamoyl or 4-hydroxycinnamoyl structure, instead of 3,4-dihydroxycinnamoyl structure, in the molecule, showed little or no inhibitory effects on either 12-lipoxygenase or cyclooxygenase activities. The inhibitory effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis are dependent on the particular structure, i.e. 3,4-dihydroxycinnamoyl structure, of the chalcone derivatives.

  10. Flavocoxid Inhibits Phospholipase A2, Peroxidase Moieties of the Cyclooxygenases (COX), and 5-Lipoxygenase, Modifies COX-2 Gene Expression, and Acts as an Antioxidant

    PubMed Central

    Burnett, Bruce P.; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M.; Pillai, Lakshmi

    2011-01-01

    The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA2) (IC50 = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC50 = 12.3) and COX-2 (IC50 = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC50 = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC50 = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS). PMID:21765617

  11. Flavocoxid inhibits phospholipase A2, peroxidase moieties of the cyclooxygenases (COX), and 5-lipoxygenase, modifies COX-2 gene expression, and acts as an antioxidant.

    PubMed

    Burnett, Bruce P; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M; Pillai, Lakshmi

    2011-01-01

    The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA(2)) (IC(50) = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC(50) = 12.3) and COX-2 (IC(50) = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC(50) = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC(50) = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS).

  12. NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Yun, Yang; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-03-01

    Air pollution has been reported to be associated with increased risks of cognitive impairment and neurodegenerative diseases. Because NO2 is a typical primary air pollutant and an important contributor to secondary aerosols, NO2-induced neuronal functional abnormalities have attracted greater attention, but the available experimental evidence, modulating mechanisms, and targeting medications remain ambiguous. In this study, we exposed C57BL/6J and APP/PS1 mice to dynamic NO2 inhalation and found for the first time that NO2 inhalation caused deterioration of spatial learning and memory, aggravated amyloid β42 (Aβ42) accumulation, and promoted pathological abnormalities and cognitive defects related to Alzheimer’s disease (AD). The microarray and bioinformation data showed that the cyclooxygenase-2 (COX-2)-mediated arachidonic acid (AA) metabolism of prostaglandin E2 (PGE2) played a key role in modulating this aggravation. Furthermore, increasing endocannabinoid 2-arachidonoylglycerol (2-AG) by inhibiting monoacylglycerol lipase (MAGL) prevented PGE2 production, neuroinflammation-associated Aβ42 accumulation, and neurodegeneration, indicating a therapeutic target for relieving cognitive impairment caused by NO2 exposure.

  13. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  14. The Bitter Barricading of Prostaglandin Biosynthesis Pathway: Understanding the Molecular Mechanism of Selective Cyclooxygenase-2 Inhibition by Amarogentin, a Secoiridoid Glycoside from Swertia chirayita

    PubMed Central

    Sundar, Durai; Thorat, Sunil S.

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was −52.35 KCal/mol against a binding free energy of −8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  15. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita.

    PubMed

    Shukla, Shantanu; Bafna, Khushboo; Sundar, Durai; Thorat, Sunil S

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was -52.35 KCal/mol against a binding free energy of -8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  16. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  17. Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility

    PubMed Central

    Takeuchi, Koji

    2012-01-01

    This article reviews the pathogenic mechanism of non-steroidal anti-inflammatory drug (NSAID)-induced gastric damage, focusing on the relation between cyclooxygenase (COX) inhibition and various functional events. NSAIDs, such as indomethacin, at a dose that inhibits prostaglandin (PG) production, enhance gastric motility, resulting in an increase in mucosal permeability, neutrophil infiltration and oxyradical production, and eventually producing gastric lesions. These lesions are prevented by pretreatment with PGE2 and antisecretory drugs, and also via an atropine-sensitive mechanism, not related to antisecretory action. Although neither rofecoxib (a selective COX-2 inhibitor) nor SC-560 (a selective COX-1 inhibitor) alone damages the stomach, the combined administration of these drugs provokes gastric lesions. SC-560, but not rofecoxib, decreases prostaglandin E2 (PGE2) production and causes gastric hypermotility and an increase in mucosal permeability. COX-2 mRNA is expressed in the stomach after administration of indomethacin and SC-560 but not rofecoxib. The up-regulation of indomethacin-induced COX-2 expression is prevented by atropine at a dose that inhibits gastric hypermotility. In addition, selective COX-2 inhibitors have deleterious influences on the stomach when COX-2 is overexpressed under various conditions, including adrenalectomy, arthritis, and Helicobacter pylori-infection. In summary, gastric hypermotility plays a primary role in the pathogenesis of NSAID-induced gastric damage, and the response, causally related with PG deficiency due to COX-1 inhibition, occurs prior to other pathogenic events such as increased mucosal permeability; and the ulcerogenic properties of NSAIDs require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 upregulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious effect of COX-1 inhibition. PMID:22611307

  18. Cyclooxygenase Inhibition in Sepsis: Is There Life after Death?

    PubMed Central

    Aronoff, David M.

    2012-01-01

    Prostaglandins are important mediators and modulators of the inflammatory response to infection. The prostaglandins participate in the pathogenesis of hemodynamic collapse, organ failure, and overwhelming inflammation that characterize severe sepsis and shock. In light of this, cyclooxygenase (COX) inhibiting pharmacological agents have been extensively studied for their capacity to ameliorate the aberrant physiological and immune responses during severe sepsis. Animal models of sepsis, using the systemic administration of pathogen-associated molecular patterns (PAMPs) or live pathogens, have been used to examine the effectiveness of COX inhibition as a treatment for severe sepsis. These studies have largely shown beneficial effects on mortality. However, human studies have failed to show clinical utility of COX inhibitor treatment in severely septic patients. Why this approach “worked” in animals but not in humans might reflect differences in the controlled nature of animal investigations compared to human studies. This paper contrasts the impact of COX inhibitors on mortality in animal models of sepsis and human studies of sepsis and examines potential reasons for differences between these two settings. PMID:22665954

  19. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.

    PubMed

    Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas

    2012-03-01

    In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). © Georg Thieme Verlag KG Stuttgart · New York.

  20. Vitex negundo inhibits cyclooxygenase-2 inflammatory cytokine-mediated inflammation on carrageenan-induced rat hind paw edema

    PubMed Central

    Chattopadhyay, Pronobesh; Hazarika, Soilyadhar; Dhiman, Sunil; Upadhyay, Aadesh; Pandey, Anurag; Karmakar, Sanjeev; Singh, Lokendra

    2012-01-01

    Background: Vitex negundo L. (Verbenaceae) is a hardy plant widely distributed in the Indian subcontinent and used for treatment of a wide spectrum of health disorders in traditional and folk medicine, some of which have been experimentally validated. In present study, we aimed to investigate the anti-inflammatory effects of V. negundo in carrageenan-induced paw edema in rats, and to investigate the probable mechanism of anti-inflammatory action. Materials and Methods: Paw edema was produced by injecting 1% solution of carrageenan, and the paw volume was measured before and after carrageenan injection up to 5 h. V. negundo leaf oil was extracted using a Clevenger apparatus and administered by a trans-dermal route to Wistar rats and the percentage of inhibition of inflammation was observed using a Plethysmometer by comparing a compound aerosol-based formulation with 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP/kg body weight served as a standard drug whereas paraffin oil served as the placebo group. After withdrawing of blood, serum was separated and cyclooxygenase (COX)-1 and COX-2 inhibitory activities were measured by the enzyme immuno assay (EIA) method by using a COX inhibitor screening assay kit. Results and Discussion: V. negundo leaf oil significantly (P < 0.05) reduced the carrageenan-induced paw edema as compared to the placebo group (paraffin oil) and 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP showed the maximum inhibition of paw edema as compared to the V. negundo leaf oil treated group and the control group. Also in the present study V. negundo leaf oil showed significantly (P < 0.05) inhibits COX-1 pathways rather than COX-2 pathways as compared to the V. negundo leaf oil treated group. Conclusion: It is suggested that the V. negundo leaf oil is a potent anti-inflammatory agent and acts via inhibition of COX-2 without much interfering COX-1 pathways. PMID:22923950

  1. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  2. Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats.

    PubMed

    Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei

    2016-06-01

    Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.

  3. Cyclooxygenase inhibitors are potent sensitizers of prostate tumours to hyperthermia and radiation.

    PubMed

    Asea, A; Mallick, R; Lechpammer, S; Ara, G; Teicher, B A; Fiorentino, S; Stevenson, M A; Calderwood, S K

    2001-01-01

    It has previously been demonstrated that hyperthermia can activate prostaglandin synthesis and that prostaglandins are protective against hyperthermia. This study examined the use of inhibitors of prostaglandin synthesis on the response of prostate tumours to hyperthermia. The non-steroidal anti-inflammatory drugs (NSAID) ibuprofen and sulindac, known cyclooxygenase inhibitors that inhibit prostaglandin production, were effective hyperthermia sensitizers and augmented growth delay of DU-145 and PC-3 prostate tumours to combined radiation and hyperthermia treatment protocols. Pre-treatment of mice with ibuprofen and sulindac at hyperthermia sensitizing doses resulted in significant (p < 0.01) inhibition of hyperthemia-induced serum prostaglandin E2. These findings indicate that NSAID may have both sensitizing effects on prostate tumour growth and may function by inhibiting prostaglandin synthesis.

  4. Synthesis and pharmacological evaluation of N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide as cyclooxygenase inhibitors.

    PubMed

    Rambabu, D; Mulakayala, Naveen; Ismail; Kumar, K Ravi; Kumar, G Pavan; Mulakayala, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rao, M V Basaveswara; Oruganti, Srinivas; Pal, Manojit

    2012-11-01

    A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    PubMed

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  6. Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1

    PubMed Central

    Zhou, Teng-Jian; Zhang, Shi-Li; He, Cheng-Yong; Zhuang, Qun-Ying; Han, Pei-Yu; Jiang, Sheng-Wei; Yao, Huan; Huang, Yi-Jun; Ling, Wen-Hua; Lin, Yu-Chun; Lin, Zhong-Ning

    2017-01-01

    Cancer stem cells (CSCs) are a small subset of malignant cells, possessing stemness, with strong tumorigenic capability, conferring resistance to therapy and leading to the relapse of nasopharyngeal carcinoma (NPC). Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for the CSCs-like side population (SP) cells in NPC. In the present study, we further found that COX-2 maintained the stemness of NPC by enhancing the activity of mitochondrial dynamin-related protein 1 (Drp1), a mitochondrial fission mediator, by studying both sorted SP cells from NPC cell lines and gene expression analyses in NPC tissues. Using both overexpression and knockdown of COX-2, we demonstrated that the localization of COX-2 at mitochondria promotes the stemness of NPC by recruiting the mitochondrial translocation of p53, increasing the activity of Drp1 and inducing mitochondrial fisson. Inhibition of the expression or the activity of Drp1 by siRNA or Mdivi-1 downregulates the stemness of NPC. The present study also found that inhibition of mitochondrial COX-2 with resveratrol (RSV), a natural phytochemical, increased the sensitivity of NPC to 5-fluorouracil (5-FU), a classical chemotherapy drug for NPC. The underlying mechanism is that RSV suppresses mitochondrial COX-2, thereby reducing NPC stemness by inhibiting Drp1 activity as demonstrated in both the in vitro and the in vivo studies. Taken together, the results of this study suggest that mitochondrial COX-2 is a potential theranostic target for the CSCs in NPC. Inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical treatment of therapy-resistant NPC. PMID:28435473

  7. Mechanical stimulation of skeletal muscle increases prostaglandin F2(alpha) synthesis and cyclooxygenase activity by a pertussis toxin sensitive mechanism

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Solerssi, Rosa; Chromiak, Joseph

    1992-01-01

    Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increases the production of prostaglandin F(sub 2(alpha)), an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical activity, the activity of cyclooxygenase, a regulatory enzyme in prostaglandin synthesis, was increased 82% (P is less than .005), and this increase was maintained for at least 24 h. Kinetic analysis of the stretch-activated cyclooxygenase indicated a two to three-fold decrease in the enzyme's K(sub m) with no change in V(sub max). The stretch-induced increase in enzymatic activity was not inhibited by cycloheximide, was independent of cellular electrical activity (tetrodotoxin-insensitive), but was prevented by the G protein inhibitor pertussis toxin. Pertussis toxin also inhibited the stretch-induced increases in PGF(sub 2(alpha)) production, and cell growth. It is concluded that stretch of skeletal muscle increases the synthesis of the anabolic modulator PGF(sub 2(alpha)) by a G protein-dependent process which involves activation of cyclooxygenase by a posttranslational mechanism.

  8. 2',5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor.

    PubMed

    Lin, C N; Lee, T H; Hsu, M F; Wang, J P; Ko, F N; Teng, C M

    1997-05-01

    Eleven chalcone derivatives have been tested for their inhibitory effects on platelet aggregation in rabbit platelet suspension and the activation of mast cells and neutrophils. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the compounds and some also had a potent inhibitory effect on collagen-induced platelet aggregation and cyclooxygenase. Some hydroxychalcone derivatives showed strong inhibitory effects on the release of beta-glucuronidase and lysozyme, and on superoxide formation by rat neutrophils stimulated with the peptide fMet-Leu-Phe (fMLP). We found that the anti-inflammatory effect of 2',5'-dihydroxychalcone was greater than that of trifluoperazine. 2'5'-Dihydroxy and 2',3,4,5'-tetrahydroxyl chalcones, even at low concentration (50 microM), tested in platelet-rich plasma from man almost completely inhibited secondary aggregation induced by adrenaline. These results suggest that the anti-platelet effects of the chalcones are mainly a result of inhibition of thromboxane formation.

  9. The Effect of Cyclooxygenase Inhibition on Tendon-Bone Healing in an In Vitro Coculture Model

    PubMed Central

    Schwarting, Tim; Pretzsch, Sebastian; Debus, Florian; Ruchholtz, Steffen; Lechler, Philipp

    2015-01-01

    The effects of cyclooxygenase (COX) inhibition following the reconstruction of the anterior cruciate ligament remain unclear. We examined the effects of selective COX-2 and nonselective COX inhibition on bone-tendon integration in an in vitro model. We measured the dose-dependent effects of ibuprofen and parecoxib on the viability of lipopolysaccharide- (LPS-) stimulated and unstimulated mouse MC3T3-E1 and 3T3 cells, the influence on gene expression at the osteoblast, interface, and fibroblast regions measured by quantitative PCR, and cellular outgrowth assessed on histological sections. Ibuprofen led to a dose-dependent suppression of MC3T3 cell viability, while parecoxib reduced the viability of 3T3 cultures. Exposure to ibuprofen significantly suppressed expression of Alpl (P < 0.01), Bglap (P < 0.001), and Runx2 (P < 0.01), and although parecoxib reduced expression of Alpl (P < 0.001), Fmod (P < 0.001), and Runx2 (P < 0.01), the expression of Bglap was increased (P < 0.01). Microscopic analysis showed a reduction in cellular outgrowth in LPS-stimulated cultures following exposure to ibuprofen and parecoxib. Nonselective COX inhibition and the specific inhibition of COX-2 led to region-specific reductions in markers of calcification and cell viability. We suggest further in vitro and in vivo studies examining the biologic and biomechanical effects of selective and nonselective COX inhibition. PMID:26063979

  10. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2.

    PubMed

    Wu, Dan; Yuan, Ping; Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-05-03

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation.

  11. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    PubMed Central

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  12. n-Hexane Insoluble Fraction of Plantago lanceolata Exerts Anti-Inflammatory Activity in Mice by Inhibiting Cyclooxygenase-2 and Reducing Chemokines Levels.

    PubMed

    Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus

    2017-03-13

    Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n -hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).

  13. Piperine Inhibits the Activities of Platelet Cytosolic Phospholipase A2 and Thromboxane A2 Synthase without Affecting Cyclooxygenase-1 Activity: Different Mechanisms of Action Are Involved in the Inhibition of Platelet Aggregation and Macrophage Inflammatory Response

    PubMed Central

    Son, Dong Ju; Akiba, Satoshi; Hong, Jin Tae; Yun, Yeo Pyo; Hwang, Seock Yeon; Park, Young Hyun; Lee, Sung Eun

    2014-01-01

    PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms. PMID:25153972

  14. Protective effects of amifostine and cyclooxygenase-1 inhibitor against normal human epidermal keratinocyte toxicity induced by methotrexate and 5-fluorouracil.

    PubMed

    Maiguma, Takayoshi; Kaji, Hiroaki; Makino, Kazutaka; Teshima, Daisuke

    2009-07-01

    Our study aimed to find more effective protective agents against mucosa toxicity induced by methotrexate and 5-fluorouracil. We focused on the relationship between oral mucositis and keratinocyte injury and examined methotrexate and 5-fluorouracil-induced cytotoxicity in normal human epidermal keratinocyte cell lines. Cell viability and superoxide radical activity were measured based on converting WST-1 (4-[3-(4-indophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzen disulfonate) to a water-soluble formazan dye. DNA synthesis by 5-bromo-2'-deoxyuridine incorporation was measured as an indirect parameter of cell proliferation. Allopurinol and amifostine were used as the radical scavengers. l-glutamine was used as a mucosa-protective agent. A cyclooxygenase inhibitor interrupting the production of hydroxyl radicals in the arachidonic acid cascade was also examined. 5-fluorouracil and methotrexate caused cytotoxicity due to the activation of intracellular superoxide radicals specifically on normal human epidermal keratinocytes. From the electron spin resonance study, it was found that allopurinol was a superoxide radical scavenger, while amifostine was hydroxyl radical scavenger. Allopurinol showed no effect on the cytotoxicity due to 5-fluorouracil and methotrexate. The cell injury induced by methotrexate was restored by amifostine. However, the cell injury induced by 5-fluorouracil was markedly recovered by a selective cyclooxygenase-1 inhibitor compared to amifostine. It was suggested that amifostine and cyclooxygenase-1 inhibitor could be useful protective agents against methotrexate and 5-fluorouracil chemotherapeutic toxicity. Additionally, this in vitro cell injury model using normal human epidermal keratinocytes may be useful for understanding the pathophysiology of oral mucositis induced by chemotherapeutic agents.

  15. Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system

    PubMed Central

    Kirkby, Nicholas S.; Lundberg, Martina H.; Harrington, Louise S.; Leadbeater, Philip D. M.; Milne, Ginger L.; Potter, Claire M. F.; Al-Yamani, Malak; Adeyemi, Oladipupo; Warner, Timothy D.; Mitchell, Jane A.

    2012-01-01

    Prostacyclin is an antithrombotic hormone produced by the endothelium, whose production is dependent on cyclooxygenase (COX) enzymes of which two isoforms exist. It is widely believed that COX-2 drives prostacyclin production and that this explains the cardiovascular toxicity associated with COX-2 inhibition, yet the evidence for this relies on indirect evidence from urinary metabolites. Here we have used a range of experimental approaches to explore which isoform drives the production of prostacyclin in vitro and in vivo. Our data show unequivocally that under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular system, and that urinary metabolites do not reflect prostacyclin production in the systemic circulation. With the idea that COX-2 in endothelium drives prostacyclin production in healthy individuals removed, we must seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events to move forward with drug discovery and to enable more informed prescribing advice. PMID:23045674

  16. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.

    PubMed

    Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-09-01

    In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.

  17. Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel

    Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less

  18. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    PubMed Central

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  19. Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2

    PubMed Central

    Papanicolaou, Kyriakos N.; Streicher, John M.; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin; Walsh, Kenneth

    2010-01-01

    Cyclooxygenase-1 and -2 are rate-limiting enzymes in the formation of a wide array of bioactive lipid mediators collectively known as prostanoids (prostaglandins, prostacyclins, thromboxanes). Evidence from clinical trials shows that selective inhibition of the second isoenzyme (cyclooxygenase-2, or Cox-2) is associated with increased risk for serious cardiovascular events and findings from animal-based studies have suggested protective roles of Cox-2 for the heart. To further characterize the function of Cox-2 in the heart, mice with loxP sites flanking exons 4 and 5 of Cox-2 were rendered knockout specifically in cardiac myocytes (Cox-2 CKO mice) via cre-mediated recombination. Baseline cardiac performance of CKO mice remained unchanged and closely resembled that of control mice. Furthermore, myocardial infarct size induced after in vivo ischemia/reperfusion (I/R) injury was comparable between CKO and control mice. In addition, cardiac hypertrophy and function four weeks after transverse aortic constriction (TAC) was found to be similar between the two groups. Assessment of Cox-2 expression in purified adult cardiac cells isolated after I/R and TAC suggests that the dominant source of Cox-2 is found in the non-myocyte fraction. In conclusion, our animal-based analyses together with the cell-based observations portray a limited role of cardiomyocyte-produced Cox-2 at baseline and in the context of ischemic or hemodynamic challenge. PMID:20399788

  20. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  1. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal

    PubMed Central

    Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc

    2010-01-01

    Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843

  2. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    PubMed

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  3. Cyclooxygenase inhibition does not alter methacholine-induced sweating

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Paull, Gabrielle; Stapleton, Jill M.; Meade, Robert D.

    2014-01-01

    Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min−1·cm−2) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1–2,000 mM methacholine. PMID:25213633

  4. Cyclooxygenase-2 inhibitory effects and composition of the volatile oil from the dried roots of Lithospermum erythrorhizon.

    PubMed

    Kawata, Jyunichi; Kameda, Munekazu; Miyazawa, Mitsuo

    2008-04-01

    The composition of the volatile oil from Lithospermi Radix, the dried roots of Lithospermum erythrorhizon (Boraginaceae), has been investigated by capillary GC and GC-MS. To investigate the anti-inflammatory activity of the oil, in-vitro inhibition of ovine cyclooxygenase-1 and 2 (COX-1 and COX-2) activity by the oil was studied. Fifty-four components of the oil were identified, representing 92.74% of the oil. The main components were 2-methylbutanoic acid (21.50%), 3-methylbutanoic acid (12.61%), 2-methylpropanoic acid (8.99%), methyl linoleate (8.76%), methyl oleate (6.27%), methyl palmitate (6.06%), and 2-methyl-2-butenoic acid (5.74%). Highly selective COX-2 inhibition was observed; at 50 microg/ml the oil inhibited 38.8% of COX-2 activity.

  5. The Selective Cyclooxygenase-2 Inhibitor, the Compound 11b Improves Haloperidol Induced Catatonia by Enhancing the Striatum Dopaminergic Neurotransmission

    PubMed Central

    Fathi-Moghaddam, Hadi; Shafiee Ardestani, Mehdi; Saffari, Mostafa; Jabbari Arabzadeh, Ali; Elmi, Mitra

    2010-01-01

    A substantial amount of evidence has proposed an important role for Cyclooxygenase-2 (COX-2) enzyme in brain diseases and affiliate disorders. The purpose of this research was studying the effects of COX-2 selective inhibition on haloperidol-induced catatonia in an animal model of drug overdose and Parkinson’s disease (PD). In this study, the effect of acute and Sub-chronic oral administration of a new selective COX-2 inhibitor, i.e. the compound 11b or 1-(Phenyl)-5-(4-methylsulfonylphenyl)-2-ethylthioimidazole, in a dosage of 2, 4 and 8 mg/kg on haloperidol-induced catatonia was evaluated and compared to the standard drug scopolamine (1 mg/kg) by microanalysis of Striatum dopaminergic neurotransmission. The results showed a very high potency for 11b in improving the catalepsy by enhancing the dopaminergic neurotranmission (p < 0.05). In addition, statistical analysis showed the dose- and time-dependent behavior of the observed protective effect of 11b against the haloperidol-induced catatonia and enhancement of the dopaminergic neurotransmission. These findings are additional pharmacological data that suggest the effectiveness of COX-2 inhibition in treatment of schizophreny-associated rigidity. PMID:24381603

  6. Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-05-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.

  7. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells.

    PubMed

    Kim, Jong-Eun; Son, Joe Eun; Jang, Young Jin; Lee, Dong Eun; Kang, Nam Joo; Jung, Sung Keun; Heo, Yong-Seok; Lee, Ki Won; Lee, Hyong Joo

    2011-09-01

    Targeting tumor necrosis factor (TNF)-α-mediated signal pathways may be a promising strategy for developing chemopreventive agents, because TNF-α-mediated cyclooxygenase (COX)-2 expression plays a key role in inflammation and carcinogenesis. Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] exerts anticarcinogenic effects, although little is known about the underlying molecular mechanisms and specific targets of this compound. In the present study, we found that luteolin inhibited TNF-α-induced COX-2 expression by down-regulating the transactivation of nuclear factor-κB and activator protein-1. Furthermore, luteolin inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/ERK/p90(RSK), mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase/c-Jun, and Akt/p70(S6K). However, it had no effect on the phosphorylation of p38. These effects of luteolin on TNF-α-mediated signaling pathways and COX-2 expression are similar to those achieved by blocking tumor progression locus 2 serine/threonine kinase (TPL2) using pharmacologic inhibitors and small interfering RNAs. Luteolin inhibited TPL2 activity in vitro and in TPL2 immunoprecipitation kinase assays by binding directly in an ATP-competitive manner. Overall, these results indicate that luteolin exerts potent chemopreventive activities, which primarily target TPL2.

  8. Tilapia Hepcidin 2-3 Peptide Modulates Lipopolysaccharide-induced Cytokines and Inhibits Tumor Necrosis Factor-α through Cyclooxygenase-2 and Phosphodiesterase 4D*

    PubMed Central

    Rajanbabu, Venugopal; Pan, Chieh-Yu; Lee, Shang-Chun; Lin, Wei-Ju; Lin, Ching-Chun; Li, Chung-Leung; Chen, Jyh-Yih

    2010-01-01

    The antimicrobial peptide, tilapia hepcidin (TH) 2-3, belongs to the hepcidin family, and its antibacterial function has been reported. Here, we examined the TH2-3-mediated regulation of proinflammatory cytokines in bacterial endotoxin lipopolysaccharide (LPS)-stimulated mouse macrophages. The presence of TH2-3 in LPS-stimulated cells reduced the amount of tumor necrosis factor (TNF)-α secretion. From a microarray, real-time polymerase chain reaction (PCR), and cytokine array studies, we showed down-regulation of the proinflammatory cytokines TNF-α, interleukin (IL)-1α, IL-1β, IL-6, and the prostaglandin synthesis gene, cyclooxygenase (COX)-2, by TH2-3. Studies with the COX-2-specific inhibitor, melaxicam, and with COX-2-overexpressing cells demonstrated the positive regulation of TNF-α and negative regulation of cAMP degradation-specific phosphodiesterase (PDE) 4D by COX-2. In LPS-stimulated cells, TH2-3 acts like melaxicam and down-regulates COX-2 and up-regulates PDE4D. The reduction in intracellular cAMP by TH2-3 or melaxicam in LPS-stimulated cells supports the negative regulation of PDE4D by COX-2 and TH2-3. This demonstrates that the inhibition of COX-2 is among the mechanisms through which TH2-3 controls TNF-α release. At 1 h after treatment, the presence of TH2-3 in LPS-stimulated cells had suppressed the induction of pERK1/2 and prevented the LPS-stimulated nuclear accumulation of NF-κB family proteins of p65, NF-κB2, and c-Rel. In conclusion, TH2-3 inhibits TNF-α and other proinflammatory cytokines through COX-2-, PDE4D-, and pERK1/2-dependent mechanisms. PMID:20675368

  9. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  10. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    PubMed

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  11. Inhibition of cyclooxygenase and nitric oxide synthase in hypoxic vasoconstriction and oleic acid-induced lung injury.

    PubMed

    Leeman, M; de Beyl, V Z; Biarent, D; Maggiorini, M; Mélot, C; Naeije, R

    1999-05-01

    Cyclooxygenase (COX) products and nitric oxide (NO) inhibit hypoxic pulmonary vasoconstriction (HPV), and their release could contribute to alterations in gas exchange in lung injury. We tested the hypothesis that combined blockade of COX and NO synthase (NOS) could further increase HPV and better protect gas exchange in lung injury than could blockade of either COX or NOS alone. We determined pulmonary vascular pressure-flow relationships in pentobarbital-anesthetized and ventilated dogs submitted to hypoxic challenges before and after administration of solvent (n = 4), indomethacin alone (2 mg/kg intravenously, n = 8), Nomega-nitro-L-arginine (L-NA) alone (10 mg/kg intravenoulsy, n = 8), indomethacin followed by L-NA (n = 8), and L-NA followed by indomethacin (n = 8). All of the dogs so treated then received oleic acid (0.06 ml/kg intravenously) to induce lung injury. Blood flow was manipulated by establishing a femoral arteriovenous bypass or by inflating an inferior vena caval balloon. Gas exchange was evaluated by measuring arterial PO2 and intrapulmonary shunt (using the inert gas sulfur hexafluoride) at identical cardiac outputs. The magnitude of HPV was not affected by solvent. Indomethacin and L-NA given separately enhanced HPV. L-NA added to indomethacin further enhanced HPV, as did indomethacin added to L-NA. After oleic acid-induced lung injury, gas exchange deteriorated less in dogs pretreated with indomethacin than in dogs pretreated with solvent or with L-NA alone. These results suggest that in pentobarbital-anesthetized dogs: (1) the magnitude of HPV is limited by the corelease of COX metabolites and of NO; and (2) inhibition of COX, but not of NOS, attenuates the deterioration of gas exchange in oleic acid-induced lung injury.

  12. Phloretin Inhibits Phorbol Ester–Induced Tumor Promotion and Expression of Cyclooxygenase-2 in Mouse Skin: Extracellular Signal-Regulated Kinase and Nuclear Factor-κB as Potential Targets

    PubMed Central

    Shin, Jun-Wan; Kundu, Joydeb Kumar

    2012-01-01

    Abstract The present study investigated the effect of phloretin [2′,4′,6′-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)–induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis. PMID:22181070

  13. Phloretin inhibits phorbol ester-induced tumor promotion and expression of cyclooxygenase-2 in mouse skin: extracellular signal-regulated kinase and nuclear factor-κB as potential targets.

    PubMed

    Shin, Jun-Wan; Kundu, Joydeb Kumar; Surh, Young-Joon

    2012-03-01

    The present study investigated the effect of phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis.

  14. Surface plasmon resonance studies and biochemical evaluation of a potent peptide inhibitor against cyclooxygenase-2 as an anti-inflammatory agent.

    PubMed

    Somvanshi, Rishi K; Kumar, Ashwini; Kant, Shashi; Gupta, Deepti; Singh, S Bhaskar; Das, Utpal; Srinivasan, Alagiri; Singh, Tej P; Dey, Sharmistha

    2007-09-14

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation [D.L. Dewitt, W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85 (1988) 1412-1416, 1]. It exists mainly in two isoforms COX-1 and COX-2 [A. Raz, A. Wyche, N. Siegel, P. Needleman, Regulation of fibroblast cyclooxygenase synthesis by interleukin-1, J. Biol. Chem. 263 (1988) 3022-3028, 2]. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) have adverse gastrointestinal side-effects, because they inhibit both isoforms [T.D. Warner, F. Guiliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.P. Vane, Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96 (1999) 7563-7568, 3; L.J. Marnett, A.S. Kalgutkar, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future, Trends Pharmacol. Sci. 20 (1999) 465-469, 4; J.R. Vane, NSAIDs, Cox-2 inhibitors, and the gut, Lancet 346 (1995) 1105-1106, 5]. Therefore drugs which selectively inhibit COX-2, known as coxibs were developed. Recent reports on the harmful cardiovascular and renovascular side-effects of the anti-inflammatory drugs have led to the quest for a novel class of COX-2 selective inhibitors. Keeping this in mind, we have used the X-ray crystal structures of the complexes of the COX-1 and COX-2 with the known inhibitors for a rational, structure based approach to design a small peptide, which is potent inhibitor for COX-2. The peptides have been checked experimentally by in-vitro kinetic studies using surface plasmon resonance (SPR) and other biochemical methods. We have identified a tripeptide inhibitor which is a potential lead for a new class of COX-2 inhibitor. The dissociation constant (K(D)) determined for COX-2

  15. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  16. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance?

    PubMed

    Choy, Hak; Milas, Luka

    2003-10-01

    Results of preclinical studies suggesting that the efficacy of molecular therapies is enhanced when they are combined with radiation have generated a surge of clinical trials combining these modalities. We reviewed the literature to identify the rationale and experimental foundation supporting the use of cyclooxygenase-2 (COX-2) inhibitors with standard radiotherapy regimens in current clinical trials. Radiation affects the ability of cells to divide and proliferate and induces the expression of genes involved in signaling pathways that promote cell survival or trigger cell death. Future advances in radiotherapy will hinge on understanding mechanisms by which radiation-induced transcription of genes governs cell death and survival, the selective control of this process, and the optimal approaches to combining this knowledge with existing therapeutic modalities. COX-2 is expressed in all stages of cancer, and in several cancers its overexpression is associated with poor prognosis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumor cell invasion and metastasis. Clinical trial results have demonstrated that selective inhibition of COX-2 can alter the development and the progression of cancer. In animal models, selective inhibition of COX-2 activity is associated with the enhanced radiation sensitivity of tumors without appreciably increasing the effects of radiation on normal tissue, and preclinical evidence suggests that the principal mechanism of radiation potentiation through selective COX-2 inhibition is the direct increase in cellular radiation sensitivity and the direct inhibition of tumor neovascularization. Results of current early-phase studies of non-small-cell lung, esophageal, cervical, and brain cancers will determine whether therapies that combine COX-2 inhibitors and radiation will enter

  17. Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity.

    PubMed

    Theisen, Erin; McDougal, Courtney E; Nakanishi, Masako; Stevenson, David M; Amador-Noguez, Daniel; Rosenberg, Daniel W; Knoll, Laura J; Sauer, John-Demian

    2018-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes -based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE 2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8 + T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8 + T cell responses to L. monocytogenes , whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE 2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes . Copyright © 2018 by The American Association of Immunologists, Inc.

  18. Expression of cyclooxygenase-2 in normal urothelium, and superficial and advanced transitional cell carcinoma of bladder.

    PubMed

    Margulis, Vitaly; Shariat, Shahrokh F; Ashfaq, Raheela; Thompson, Melissa; Sagalowsky, Arthur I; Hsieh, Jer-Tsong; Lotan, Yair

    2007-03-01

    We compared the differential expression of cyclooxygenase-2 in normal bladder tissue, primary bladder transitional cell carcinoma and transitional cell carcinoma metastases to lymph nodes, and determined whether cyclooxygenase-2 expression is associated with molecular alterations commonly found in bladder transitional cell carcinoma and clinical outcomes after radical cystectomy. Immunohistochemical staining for cyclooxygenase-2, survivin (Novus Biologicals, Littleton, Colorado), p21, p27, pRB, p53, MIB-1, Bax, Bcl-2, cyclin D(1) (Dakotrade mark), cyclin E (Oncogene, Cambridge, Massachusetts) and caspase-3 (Cell Signaling, Beverley, Massachusetts) was performed on archival bladder specimens from 9 subjects who underwent cystectomy for benign causes, 21 patients who underwent transurethral resection and 157 consecutive patients after radical cystectomy, and on 41 positive lymph nodes. Cyclooxygenase-2 was expressed in none of the 9 normal bladder specimens (0%), 52% of transurethral resection specimens, 62% of cystectomy specimens and 80% of lymph nodes involved with transitional cell carcinoma. Cyclooxygenase-2 expression was associated with higher pathological stage, lymphovascular invasion and metastases to lymph nodes (p=0.001, 0.045 and 0.002, respectively). Cyclooxygenase-2 expression was associated with altered expression of p53 (p=0.039), pRB (p=0.025), cyclin D1 (p=0.034) and caspase-3 (p=0.014). On univariate analysis cyclooxygenase-2 expression was associated with an increased risk of disease recurrence and bladder cancer specific mortality (p=0.0189 and 0.0472, respectively). However, on multivariate analysis only pathological stage and metastases to lymph nodes were associated with disease recurrence (p<0.001 and <0.001) and survival (p<0.001 and 0.015, respectively). Cyclooxygenase-2 is not expressed in normal bladder urothelium. Cyclooxygenase-2 over expression is associated with pathological and molecular features of biologically aggressive disease

  19. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  20. The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats.

    PubMed

    Peng, Mian; Wang, Yan-Lin; Wang, Fei-Fei; Chen, Chang; Wang, Cheng-Yao

    2012-11-01

    Neuroinflammatory response triggered by surgery has been increasingly reported to be associated with postoperative cognitive dysfunction. Proinflammatory cytokines, such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), play a pivotal role in mediating surgery-induced neuroinflammation. The role of cyclooxygenase-2 (COX-2), a critical regulator in inflammatory response, in surgery-induced neuroinflammation is still unknown. The aim of the study was to investigate the changes of COX-2 expression and prostaglandin E2 (PGE2) production in the hippocampus in aged rats following partial hepatectomy. The effects of selective COX-2 inhibitor (parecoxib) on hippocampal proinflammatory cytokine expression were also evaluated. Aged rats were randomly divided into three groups: control (n = 10), surgery (n = 30), and parecoxib (n = 30). Control animals received sterile saline to control for the effects of injection stress. Rats in the surgery group received partial hepatectomy under isoflurane anesthesia and sterile saline injection. Rats in the parecoxib group received surgery and anesthesia similar to surgery group rats, and parecoxib treatment. On postanesthetic days 1, 3, and 7, animals were euthanized to assess levels of hippocampal COX-2 expression, PGE2 production, and cytokines IL-1β and TNF-α expression. The effects of parecoxib on proinflammatory cytokine expression were also assessed. Partial hepatectomy significantly increased COX-2 expression, PGE2 production, and proinflammatory cytokine expression in the hippocampus in aged rats on postoperative days 1 and 3. Parecoxib inhibited hippocampal IL-1β and TNF-α expression through downregulation of the COX-2/PGE2 pathway. COX-2 may play a critical role in surgery-induced neuroinflammation. The COX-2 inhibitor may be a promising candidate for treatment of neuroinflammation caused by surgical trauma. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization.

    PubMed

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-09-01

    Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. We tested the effect of HC on platelet aggregation, thromboxane B(2) (TXB(2)) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB(2) production. HC inhibited the thrombin-induced TXB(2) production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB(2) production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca(2+) mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB(2) production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions.

  2. Preferential Cyclooxygenase 2 Inhibitors as a Nonhormonal Method of Emergency Contraception: A Look at the Evidence.

    PubMed

    Weiss, Erich A; Gandhi, Mona

    2016-04-01

    To review the literature surrounding the use of preferential cyclooxygenase 2 (COX-2) inhibitors as an alternative form of emergency contraception. MEDLINE (1950 to February 2014) was searched using the key words cyclooxygenase or COX-2 combined with contraception, emergency contraception, or ovulation. Results were limited to randomized control trials, controlled clinical trials, and clinical trials. Human trials that measured the effects of COX inhibition on female reproductive potential were included for review. The effects of the COX-2 inhibitors rofecoxib, celecoxib, and meloxicam were evaluated in 6 trials. Each of which was small in scope, enrolled women of variable fertility status, used different dosing regimens, included multiple end points, and had variable results. Insufficient evidence exists to fully support the use of preferential COX-2 inhibitors as a form of emergency contraception. Although all trials resulted in a decrease in ovulatory cycles, outcomes varied between dosing strategies and agents used. A lack of homogeneity in these studies makes comparisons difficult. However, success of meloxicam in multiple trials warrants further study. Larger human trials are necessary before the clinical utility of this method of emergency contraception can be fully appreciated. © The Author(s) 2014.

  3. [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].

    PubMed

    Páramo, José A; Beloqui, Oscar; Orbe, Josune

    2006-05-27

    It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.

  4. Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents.

    PubMed

    Lin, Chun-Kuang; Tseng, Chin-Kai; Wu, Yu-Hsuan; Liaw, Chih-Chuang; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-03-20

    Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E 2 (PGE 2 ) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE 2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection.

  5. Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2.

    PubMed Central

    Hinson, R M; Williams, J A; Shacter, E

    1996-01-01

    Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 8 PMID:8643498

  6. Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization

    PubMed Central

    Chang, M C; Uang, B J; Tsai, C Y; Wu, H L; Lin, B R; Lee, C S; Chen, Y J; Chang, C H; Tsai, Y L; Kao, C J; Jeng, J H

    2007-01-01

    Background and purpose: Platelet hyperactivity is important in the pathogenesis of cardiovascular diseases. Betel leaf (PBL) is consumed by 200-600 million betel quid chewers in the world. Hydroxychavicol (HC), a betel leaf component, was tested for its antiplatelet effect. Experimental approach: We tested the effect of HC on platelet aggregation, thromboxane B2 (TXB2) and reactive oxygen species (ROS) production, cyclooxygenase (COX) activity, ex vivo platelet aggregation and mouse bleeding time and platelet plug formation in vivo. The pharmacokinetics of HC in rats was also assessed. Key results: HC inhibited arachidonic acid (AA) and collagen-induced platelet aggregation and TXB2 production. HC inhibited the thrombin-induced TXB2 production, but not platelet aggregation. SQ29548, suppressed collagen- and thrombin-induced TXB2 production, but not thrombin-induced platelet aggregation. HC also suppressed COX-1/COX-2 enzyme activity and the AA-induced ROS production and Ca2+ mobilization. HC further inhibited the ex vivo platelet aggregation of platelet-rich plasma (>100 nmole/mouse) and prolonged platelet plug formation (>300 nmole/mouse) in mesenteric microvessels, but showed little effect on bleeding time in mouse tail. Moreover, pharmacokinetics analysis found that more than 99% of HC was metabolized within 3 min of administration in Sprague-Dawley rats in vivo. Conclusions and implications: HC is a potent COX-1/COX-2 inhibitor, ROS scavenger and inhibits platelet calcium signaling, TXB2 production and aggregation. HC could be a potential therapeutic agent for prevention and treatment of atherosclerosis and other cardiovascular diseases through its anti-inflammatory and antiplatelet effects, without effects on haemostatic functions. PMID:17641677

  7. Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke.

    PubMed

    Singh, Dhirendra Pratap; Chopra, Kanwaljit

    2014-05-01

    The efficacy of flavocoxid, a prescription medical food used in osteoarthritis in the USA, containing natural flavonoids, baicalin and catechin in experimentally induced cerebral ischaemia in rats was evaluated. Rationale behind the study was that the transient acute ischaemic attack triggers neuroinflammatory cascade. Global cerebral ischaemia was induced transiently by occluding both common carotid arteries for 15 min followed by restoration of perfusion. Flavocoxid (50, 100, 200mg/kg; p.o.) pre-treatment was instituted 6 days prior to surgery and fluoxetine (10mg/kg, p.o.) and rivastigmine (2mg/kg, p.o.) as a standard treatment for depression and cognition impairment was implied from day 1 after the surgery. Different behavioural, biochemical, neurochemical tests, molecular markers of inflammation e.g. tumour necrosis factor-α, interleukin-1 beta, and nuclear factor-kappa B levels and infarct volume were determined. Flavocoxid's strong antioxidant properties figured out from the decreased level of lipid peroxidation and protection of endogenous antioxidants like reduced glutathione and superoxide dismutase. It also reduced TNF-α, IL-1β, and NF-κB levels, and infarct volume as well as protected the loss of biogenic amines in brain tissue of ischaemic rats. This dual inhibitor of cyclooxygenase-1 and 2 with additional 5-lipoxygenase inhibition activity might be useful as a potential neuroprotectant medical food in ischaemic stroke prone patient population. Copyright © 2014. Published by Elsevier Inc.

  8. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2.

    PubMed

    Qu, Chen; Leung, Susan W S; Vanhoutte, Paul M; Man, Ricky Y K

    2010-08-01

    Acute inhibition of nitric-oxide synthase (NOS) unmasks the release of endothelium-derived contracting factors (EDCFs). The present study investigated whether chronic inhibition of NOS modulates endothelium-dependent contractions. Eighteen-week-old male Sprague-Dawley rats were treated by daily gavage for 6 weeks with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (60 mg/kg) or vehicle (distilled water; 1 ml/kg). Chronic treatment with L-NAME increased arterial blood pressure. Isometric tension was measured in aortic rings with or without endothelium. Endothelium-dependent relaxations to acetylcholine and the calcium ionophore 5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid (A23187) were reduced in preparations from L-NAME-treated rats. The reduction in relaxation to A23187 was partially reversed by L-arginine (1 mM). In quiescent aortic rings, A23187 caused contractions in the presence of L-NAME and intact endothelium. The A23187-induced contractions were greater in rings from the L-NAME-treated rats than in those from the control group. These contractions were abolished by the cyclooxygenase (COX)-2 inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS-398) and the thromboxane-prostanoid (TP) receptor antagonist 3-((6R)-6-{[(4-chlorophenyl)sulfonyl]amido}-2-methyl-5,6,7,8-tetrahydronaphthalen-1-yl)propanoate (S18886), but not by the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560). Chronic L-NAME treatment reduced the level of nitric oxide in the plasma but increased COX activity in the aortic rings. Western blotting and immunohistochemical staining showed that endothelial NOS expression was reduced in the aortae of the chronic L-NAME-treated group. COX-1 expression was augmented slightly, whereas COX-2 expression was up-regulated markedly. The TP receptor

  9. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways

    PubMed Central

    Singh, Bhupendra; Shoulson, Rivka; Chatterjee, Anwesha; Ronghe, Amruta; Bhat, Nimee K.; Dim, Daniel C.; Bhat, Hari K.

    2014-01-01

    The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective

  10. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    PubMed

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  11. Expression of cyclooxygenase-1 and -2 in canine nasal carcinomas.

    PubMed

    Borzacchiello, G; Paciello, O; Papparella, S

    2004-07-01

    Cyclooxygenase-1 (COX-1) and cyclooxygenase -2 (COX-2) are known to play a role in the carcinogenesis of many human and animal primary epithelial tumours. However, expression of COX-1 and -2 has not been investigated in canine nasal epithelial carcinoma, a rare form of neoplasia. COX-1 immunolabelling was demonstrated in normal canine nasal mucosa and in a minority of neoplastic specimens. Cytoplasmic COX-2, however, was strongly expressed in the majority of canine nasal carcinomas. In addition, COX-2 expression was demonstrated in dysplastic epithelium and in a proportion of stromal cells. Co-expression of both enzyme isoforms was revealed by confocal laser scanning microscopy. The results indicate that COX-2 is overexpressed in a proportion of naturally occurring canine nasal carcinomas, suggesting its possible role in canine nasal tumorigenesis. Copyright 2004 Elsevier Ltd.

  12. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  13. Inhibition of cyclooxygenase-2 (COX-2) by meloxicam decreases the incidence of ovarian hyperstimulation syndrome in a rat model.

    PubMed

    Quintana, Ramiro; Kopcow, Laura; Marconi, Guillermo; Young, Edgardo; Yovanovich, Carola; Paz, Dante A

    2008-10-01

    To investigate the effects of selective cyclooxygenase-2 (COX-2) inhibition on the ovarian hyperstimulation syndrome (OHSS) in an experimental model. Controlled laboratory study. University-affiliated fertility center. Female Wistar rats. Female Wistar rats (22 days old) were divided into four groups: group 1 (control group; n = 10) received 0.1 mL of intraperitoneal (IP) saline from days 22-26; group 2 (mild-stimulated group; n = 10) received 10 IU of pregnant mare serum gonadotropin (PMSG) on day 24 and 10 IU of hCG 48 hours later (day 26); group 3 (OHSS group; n = 10) was given 10 IU of PMSG for 4 consecutive days from day 22 and 30 IU hCG on the fifth day to induce OHSS; group 4 was treated the same as group 3, but received 2 muL (15 mg/mL) of meloxicam 2 hours before the PMSG injection for 4 consecutive days, and 2 hours before the hCG injection on the fifth day. All groups were killed on day 26. Number of antral and luteinized follicles, ovarian weight, semiquantitative vascular endothelial growth factor (VEGF) and COX-2 immunohistochemistry. There were no differences in the ovarian weight between groups 1 and 2. Group 3 showed significantly increased ovarian weight that was suppressed, in group 4, by meloxicam. There was no difference in the number of antral follicles among the four groups. In the mild-stimulated and OHSS groups, the granulosa cells (GC) of preovulatory follicles and the stromal cells showed intense VEGF immunoreactivity. The ovaries from the meloxicam-treated group showed less immunoreactivity than the OHSS group, indicating diminished VEGF expression associated with meloxicam treatment. Group 3 (OHSS group) showed increased COX-2 immunoreactivity that was diminished in the meloxicam-treated group. Meloxicam treatment did not affect the hormone-induced increase in serum E(2) levels seen in OHSS rats. Our results in a rat model suggest that meloxicam has a beneficial effect on OHSS by reducing the increases in ovarian weight and VEGF

  14. Crystal structure of rofecoxib bound to human cyclooxygenase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, Benjamin J.; Malkowski, Michael G.

    2016-10-26

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditionsmore » were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.« less

  15. Theiler's virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10.

    PubMed

    Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Ortiz, Sergio; Vela, José M; Guaza, Carmen

    2002-05-24

    Theiler's murine encephalomyelitis virus (TMEV) causes an acute encephalomyelitis followed by a persistent infection of the central nervous system (CNS) resulting in a chronic inflammation and axonal demyelination in susceptible strains of mice. The pathogenesis of TMEV-induced demyelinating disease remains unknown, but infection of brain glial cells is a critical factor for virus persistence in the CNS. In the present study we investigated the effects of the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) on the production of inflammatory mediators, such as prostaglandins, after infection of primary astroglial SJL/J murine cultures with TMEV. This infection resulted in a time-dependent transcription of the gene encoding cyclooxygenase-2 (COX-2) and an increased production of prostaglandin E2 (PGE(2)). Both, IL-4 but mainly, IL-10 (1 and 10 ng/ml) decreased the TMEV-induced expression of COX-2 as well as the synthesis of PGE(2). Interestingly, treatment with IL-10 completely abrogated COX-2 induction. The molecular mechanisms involved in the regulation of COX-2 expression by TMEV are unknown, but the effects of anti-inflammatory cytokines may involve the inhibition of the transcription factor nuclear factor B activity and lead to strategies capable of interrupting the inflammatory cascade triggered by TMEV in brain glial cells.

  16. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  17. Red ginseng represses hypoxia-induced cyclooxygenase-2 through sirtuin1 activation.

    PubMed

    Lim, Wonchung; Shim, Myeong Kuk; Kim, Sikwan; Lee, YoungJoo

    2015-06-01

    Korean red ginseng (KRG) is a traditional herbal medicine made by steaming and drying the fresh ginseng, leading to chemical transformation of some components by heat. It ameliorates various inflammatory diseases and strengthens the endocrine, immune, and central nervous systems. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumorigenesis. In this study we examined the effects and the mechanism underlying Korean red ginseng water extract (KRG-WE) inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. The effect of the KRG on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or qRT-PCR. The anti-invasive effect of KRG-WE was evaluated on A549 cells using matrigel invasion assay. The activation of glucocorticoid receptor (GR) and sirtuin1 (Sirt1) was examined by using specific inhibitors. We first observed that hypoxia induced COX-2 protein and mRNA levels and promoter activity were suppressed by KRG-WE. Second, we observed that hypoxia-induced cell migration is dramatically reduced by KRG-WE. Third, we found that the effect of KRG-WE was not antagonized by the GR antagonist RU486 implying that the effect is mediated other than GR pathway. Finally, we demonstrated that inhibition of Sirt1 abolished the effect of KRG-WE on hypoxia-induced COX-2 suppression and cell-invasion indicating that the suppression is mediated by Sirt1. Taken together, KRG-WE inhibits the hypoxic induction of COX-2 expression and cell invasion through Sirt1 activation. Our results imply that KRG-WE could be effective for suppression of inflammation under hypoxia. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Tangeretin suppresses IL-1beta-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells.

    PubMed

    Chen, Kuan-Hung; Weng, Meng-Shih; Lin, Jen-Kun

    2007-01-15

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is a polymethoxylated flavonoid concentrated in the peel of citrus fruits. Recent studies have shown that tangeretin exhibits anti-proliferative, anti-invasive, anti-metastatic, and antioxidant activities. However, the anti-inflammatory properties of tangeretin are unclear. In this study, we examine the effects of tangeretin and its structure-related compound, nobiletin, on the expression of cyclooxygenases-2 (COX-2) in human lung epithelial carcinoma cells, A549, and human non-small cell lung carcinoma cells, H1299. Tangeretin exerts a much better inhibitory activity than nobiletin against IL-1beta-induced production of COX-2 in A549 cells, and it effectively represses the constitutively expressed COX-2 in H1299. RT-PCR was used to investigate the transcriptional inhibition of COX-2 by tangeretin. COX-2 mRNA was rapidly induced by IL-1beta in 3h and markedly suppressed by tangeretin. IL-1beta-induced the activation of ERK, p38 MAPK, JNK, and AKT in A549 cells. COX-2 expression in response to IL-1beta was attenuated by pretreatment with SB203580, SP600125, and LY294002, but not with PD98059, suggesting the involvement of p38 MAPK, JNK, and PI3K in this response. Pretreatment of cells with tangeretin inhibited IL-1beta-induced p38 MAPK, JNK, and AKT phosphorylation and the downstream activation of NF-kappaB. These results may reveal that the tangeretin inhibition of IL-1beta-induced COX-2 expression in A549 cells is, at least in part, mediated through suppression of NF-kappaB transcription factor as well as through suppression of the signaling proteins of p38 MAPK, JNK, and PI3K, but not of ERK.

  19. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner

    PubMed Central

    Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin

    2012-01-01

    It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771

  20. Cyclo-oxygenase-2 contributes to constitutive prostanoid production in rat kidney and brain

    PubMed Central

    2005-01-01

    Cyclo-oxygenases (COXs) catalyse the synthesis of PGH2 (prostaglandin H2), which serves as the common substrate for the production of PGE2, PGD2, PGF2α, prostacyclin (or PGI2) and TXs (thromboxanes). While COX-1 is the major isoform responsible for prostanoid synthesis in healthy tissues, little information is available on the contribution of constitutive COX-2 to the various prostanoid synthetic pathways under non-inflammatory conditions. To evaluate further the role of COX-2 in prostanoid biosynthesis, rats were acutely treated with the selective COX-1 inhibitor SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] or the selective COX-2 inhibitors MF tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulphonyl)phenyl)-2-(5H)-furanone] and DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone]. Selected tissues were then processed for a complete analysis of their prostanoid content by liquid chromatography MS. Whereas the treatment with SC-560 caused a 60–70% inhibition in the total prostanoid content of most tissues examined, a significant decrease (35–50%) in total prostanoid content following selective COX-2 inhibition was solely detected for kidney and brain tissues. Analysis of the individual prostanoids reveals significant inhibition of 6-oxo-PGF1α, PGE2, PGD2, PGF2α and TXB2 in the kidney and inhibition of all these prostanoids with the exception of PGD2 in the forebrain. These results demonstrate that constitutively expressed COX-2 contributes to the production of prostanoids in kidney and brain for each of the PGE2, PGI2 and TXB2 pathways under non-inflammatory conditions. Approaches to modulate inflammation through specific inhibition of terminal synthases, such as mPGES-1 (microsomal PGE2 synthase-1), thus have the potential to differ from COX-2 inhibitors and non-selective non-steroidal anti-inflammatory drugs with regard to effects on constitutive prostanoid synthesis and on renal function. PMID

  1. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  2. Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling.

    PubMed

    Al-Rashed, Fahad; Calay, Damien; Lang, Marie; Thornton, Clare C; Bauer, Andrea; Kiprianos, Allan; Haskard, Dorian O; Seneviratne, Anusha; Boyle, Joseph J; Schönthal, Alex H; Wheeler-Jones, Caroline P; Mason, Justin C

    2018-04-19

    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα (Thr172) and CREB-1 (Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65 (Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs.

  3. COX2 Inhibition Reduces Aortic Valve Calcification In Vivo

    PubMed Central

    Wirrig, Elaine E.; Gomez, M. Victoria; Hinton, Robert B.; Yutzey, Katherine E.

    2016-01-01

    Objective Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects approximately 1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild type mice, increased expression of the gene encoding cyclooxygenase 2/COX2 (Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. Approach and Results In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells (VICs) prior to calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic VICs with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacologic inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. Conclusions COX2 expression is upregulated in CAVD and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo. PMID:25722432

  4. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    PubMed

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  5. Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity

    PubMed Central

    Ching, Tsui-Ting; Chiang, Wei-Chung; Chen, Ching-Shih; Hsu, Ao-Lin

    2011-01-01

    Summary One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here we report that celecoxib, a non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain and inflammation, extends C. elegans lifespan and delays the age-associated physiological changes, such as motor activity declines. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent COX-2 inhibitor. However, the result from a structural-activity analysis demonstrated that the anti-aging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack cyclooxygenase-2 (COX-2) inhibitory activity produces a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3’-phosphoinositide-dependent kinase-1 (PDK-1), a component of the insulin/IGF-1 signaling (IIS) cascade to increase lifespan. PMID:21348927

  6. Expression of cyclooxygenase-2 in transitional cell carcinoma of the urinary bladder in dogs.

    PubMed

    Khan, K N; Knapp, D W; Denicola, D B; Harris, R K

    2000-05-01

    To evaluate expression of cyclooxygenase (COX)-1 and COX-2 in the urinary bladder epithelium of clinically normal dogs and in transitional cell carcinoma cells of dogs. 21 dogs with transitional cell carcinoma of the urinary bladder and 8 dogs with clinically normal urinary bladders. COX-1 and COX-2 were evaluated by use of isoform-specific antibodies with standard immunohistochemical methods. COX-1, but not COX-2, was constitutively expressed in normal urinary bladder epithelium; however, COX-2 was expressed in neoplastic epithelium in primary tumors and in metastatic lesions of all 21 dogs and in new proliferating blood vessels in 3 dogs. Also, COX-1 was expressed in the neoplastic cells. Lack of expression of COX-2 in normal bladder epithelium and its substantial expression in transitional cell carcinoma cells suggest that this isoform may be involved in tumor cell growth. Inhibition of COX-2 is a likely mechanism of the antineoplastic effects of non steroidal antiinflammatory drugs.

  7. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat.

    PubMed

    Somasundaram, S; Sigthorsson, G; Simpson, R J; Watts, J; Jacob, M; Tavares, I A; Rafi, S; Roseth, A; Foster, R; Price, A B; Wrigglesworth, J M; Bjarnason, I

    2000-05-01

    The pathogenesis of NSAID-induced gastrointestinal damage is believed to involve a nonprostaglandin dependent effect as well as prostaglandin dependent effects. One suggestion is that the nonprostaglandin mechanism involves uncoupling of mitochondrial oxidative phosphorylation. To assess the role of uncoupling of mitochondrial oxidative phosphorylation in the pathogenesis of small intestinal damage in the rat. We compared key pathophysiologic events in the small bowel following (i) dinitrophenol, an uncoupling agent (ii) parenteral aspirin, to inhibit cyclooxygenase without causing a 'topical' effect and (iii) the two together, using (iv) indomethacin as a positive control. Dinitrophenol altered intestinal mitochondrial morphology, increased intestinal permeability and caused inflammation without affecting gastric permeability or intestinal prostanoid levels. Parenteral aspirin decreased mucosal prostanoids without affecting intestinal mitochondria in vivo, gastric or intestinal permeability. Aspirin caused no inflammation or ulcers. When dinitrophenol and aspirin were given together the changes in intestinal mitochondrial morphology, permeability, inflammation and prostanoid levels and the macro- and microscopic appearances of intestinal ulcers were similar to indomethacin. These studies allow dissociation of the contribution and consequences of uncoupling of mitochondrial oxidative phosphorylation and cyclooxygenase inhibition in the pathophysiology of NSAID enteropathy. While uncoupling of enterocyte mitochondrial oxidative phosphorylation leads to increased intestinal permeability and low grade inflammation, concurrent decreases in mucosal prostanoids appear to be important in the development of ulcers.

  8. Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Crews, Brenda C.; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Xu, Shu; Marnett, Lawrence J.

    2015-05-01

    Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancer cell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116) or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.

  9. Methotrexate as a preferential cyclooxygenase 2 inhibitor in whole blood of patients with rheumatoid arthritis.

    PubMed

    Mello, S B; Barros, D M; Silva, A S; Laurindo, I M; Novaes, G S

    2000-05-01

    To investigate the regulation of whole-blood cyclooxygenase-1 and -2 (COX-2 and COX-1) activities by methotrexate (MTX) in rheumatoid arthritis (RA) patients. Whole blood was withdrawn from nine healthy volunteers, 12 RA patients treated with MTX (RA/MTX) and six RA patients treated with chloroquine (RA/CQ). COX-1 activity was quantified as platelet thromboxane B(2) production in unstimulated blood and COX-2 activity was measured as prostaglandin E(2) (PGE(2)) production in whole blood stimulated with LPS. Thromboxane B(2) and PGE(2) were measured by radioimmunoassay. We studied the drug effect in vitro by direct incubation of MTX with blood obtained from normal donors. Ex vivo assays were performed with blood collected from RA/MTX and RA/CQ patients. The influence of serum factors on enzyme activities was analysed in blood collected from normal donors and incubated with RA/MTX, autologous or heterologous serum. In vitro assays showed no direct action of MTX on the activity of either enzyme. Assays performed with blood from RA/MTX patients showed preferential inhibition of COX-2 activity (PGE(2) = 10.11 +/- 2.42 ng/ml) when compared with blood of normal donors (PGE(2) = 37.7 +/- 4.36 ng/ml; P = 0.001). Inhibition of COX-2 activity was also observed when blood of normal donors was co-incubated with RA/MTX serum. Our results clearly show that the anti-inflammatory action of low-dose MTX is partly mediated by a serum factor induced by MTX or a MTX metabolite that preferentially inhibits the activity of COX-2.

  10. Bcl-2 protects tubular epithelial cells from ischemia reperfusion injury by inhibiting apoptosis.

    PubMed

    Suzuki, Chigure; Isaka, Yoshitaka; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Takabatake, Yoshitsugu; Ito, Takahito; Takahara, Shiro; Imai, Enyu

    2008-01-01

    Ischemia followed by reperfusion leads to severe organ injury and dysfunction. Inflammation is considered to be the most important cause of graft dysfunction in kidney transplantation subjected to ischemia. The mechanism that triggers inflammation and renal injury after ischemia remains to be elucidated; however, cellular stress may induce apoptosis during the first hours and days after transplantation, which might play a crucial role in early graft dysfunction. Bcl-2 is known to inhibit apoptosis induced by the etiological factors promoting ischemia and reperfusion injury. Accordingly, we hypothesized that an augmentation of the antiapoptotic factor Bcl-2 may thus protect tubular epithelial cells by inhibiting apoptosis, thereby ameliorating the subsequent tubulointerstitial injury. We examined the effects of Bcl-2 overexpression on ischemia-reperfusion (I/R) injury using Bcl-2 transgenic mice (Bcl-2 TG) and their wild-type littermates (WT). To investigate the effects of I/R injury, the left renal artery and vein were clamped for 45 min, followed by reperfusion for 0-96 h. Bcl-2 TG exhibited decreased active caspase protein in the tubular cells, which led to a reduction in TUNEL-positive apoptotic cells. Consequently, interstitial fibrosis and phenotypic changes were ameliorated in Bcl-2 TG. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R, and subsequent interstitial injury by inhibiting tubular apoptosis.

  11. PYRIDOXAMINE ANALOGS SCAVENGE LIPID-DERIVED γ-KETOALDEHYDES AND PROTECT AGAINST H2O2-MEDIATED CYTOTOXICITY†

    PubMed Central

    Davies, Sean S.; Brantley, Eric J.; Voziyan, Paul A.; Amarnath, Venkataraman; Zagol-Ikapitte, Irene; Boutaud, Olivier; Hudson, Billy G.; Oates, John A.; Jackson Roberts, L.

    2008-01-01

    Isoketals and levuglandins are highly reactive γ-ketoaldehydes formed by oxygenation of arachidonic acid in settings of oxidative injury and cyclooxygenase activation, respectively. These compounds rapidly adduct to proteins via lysyl residues, which can alter protein structure/function. We examined whether pyridoxamine, which has been shown to scavenge α-ketoaldehydes formed by carbohydrate or lipid peroxidation, could also effectively protect proteins from the more reactive γ-ketoaldehydes. Pyridoxamine prevented adduction of ovalbumin and also prevented inhibition of RNase A and glutathione reductase activity by the synthetic γ-ketoaldehyde, 15-E2-isoketal. We identified the major products of the reaction of pyridoxamine with the 15-E2-isoketal, including a stable lactam adduct. Two lipophilic analogs of pyridoxamine, salicylamine and 5’O-pentylpyridoxamine, also formed lactam adducts when reacted with 15-E2-isoketal. When we oxidized arachidonic acid in the presence of pyridoxamine or its analogs, pyridoxamine-isoketal adducts were found in significantly greater abundance than the pyridoxamine-N-acyl adducts formed by α-ketoaldehyde scavenging. Therefore, pyridoxamine and its analogs appear to preferentially scavenge γ-ketoaldehydes. Both pyridoxamine and its lipophilic analogs inhibited the formation of lysyl-levuglandin adducts in platelets activated ex vivo with arachidonic acid. The two lipophilic pyridoxamine analogs provided significant protection against H2O2-mediated cytotoxicity in HepG2 cells. These results demonstrate the utility of pyridoxamine and lipophilic pyridoxamine analogs to assess the potential contributions of isoketals and levuglandins in oxidant injury and inflammation and suggest their potential utility as pharmaceutical agents in these conditions. PMID:17176098

  12. Cyclooxygenase products contribute to endothelin-induced pulmonary hypertension and altered lung mechanics in sheep.

    PubMed

    Snapper, J R; Lu, W; Lefferts, P L; Thabes, J S

    1997-01-01

    Endothelins have potent biological effect in vivo which may, in part, be mediated by stimulation of cyclooxygenase metabolism of arachidonic acid. We administered endothelins (ETs) intravenously to chronically instrumented awake sheep with and without pretreatment with meclofenamate (n = 8). 30 micrograms doses of ET-1, ET-2, and ET-3 caused similar degrees of acute elevation of pulmonary artery pressure (PPA), reduction of the dynamic compliance of the lungs (Cdyn), and increases in lung lymph flow. Pretreatment with meclofenamate inhibited the rise in PPA and reduction in Cdyn, but had no effect on lung lymph flow. We conclude that the biological effects of the endothelins on PPA and Cdyn, but not lung fluid balance, are mediated in part by cyclooxygenase products of arachidonic acid metabolism.

  13. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    PubMed

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  14. [Effect of nonsteroidal antiinflammatory drugs on colonic lipoxygenase and cyclooxygenase activities from patients with colonic neoplasia].

    PubMed

    Di Girolamo, G; Franchi, A; De Los Santos, A R; Martí, M L; Farina, M; Fernández de Gimeno, M A

    2001-01-01

    Lysine clonixinate (LC) is a nonsteroidal anti-inflammatory drug (NSAID) with good gastrointestinal tolerance. Treatment with LC at levels equivalent to those found in plasma following therapeutic doses resulted in significant inhibition of both cyclooxygenase 2 (COX-2) and production of 5 hydroxy-eicosatetraeonic acid (5-HETE) and slightly affected levels of cyclooxygenase 1 (COX-1) in in vitro studies carried out on human tissues. This study deals with the in vivo effect of the drug on human colon segments. Experiment 1: Five patients about to undergo hemicholectomy due to colon neoplasia were treated preoperatively with a continuous infusion of LC, to achieve a steady-state concentration between 4 and 6 mg/ml. Human colon segments from the five patients and from another five control patients receiving no treatment with [14C]-arachidonic acid were incubated. Human colon segments treated with LC showed significant inhibition of PGE2, the only prostaglandin (PG) synthesised by the tissue, as well as of 5-HETE. Experiment 2: Fifteen patients received an i.v. bolus of LC 100 mg (n1 = 5); LC 200 mg (n2 = 5) or indomethacin (INDO) 50 mg (n3 = 5). Both doses of LC showed greater inhibition of PGE2 synthesis than the INDO bolus. Both NSAIDs studied proved to have different effects on the production of 5-HETE; while treatment with LC elicited significant inhibition, levels with INDO remained unchanged. Western blotting analysis showed expression of both COX isoforms in colon segments, COX-2 levels being 20% higher. Both types of in vivo studies conducted continuous infusion and i.v. bolus, revealed that LC exerted significant inhibition of basal synthesis of PGE2 and 5-HETE.

  15. CYCLOOXYGENASE COMPETITIVE INHIBITORS ALTER TYROSYL RADICAL DYNAMICS IN PROSTAGLANDIN H SYNTHASE-2

    PubMed Central

    Wu, Gang; Tsai, Ah-Lim; Kulmacz, Richard J.

    2009-01-01

    Reaction of prostaglandin H synthase (PGHS) isoforms 1 or 2 with peroxide forms a radical at Tyr385 that is required for cyclooxygenase catalysis, and another radical at Tyr504, whose function is unknown. Both tyrosyl radicals are transient and rapidly dissipated by reductants, suggesting that cyclooxygenase catalysis might be vulnerable to suppression by intracellular antioxidants. Our initial hypothesis was that the two radicals are in equilibrium and that their proportions and stability are altered upon binding of fatty acid substrate. As a test, we examined the effects of three competitive inhibitors (nimesulide, flurbiprofen and diclofenac) on the proportions and stability of the two radicals in PGHS-2 pretreated with peroxide. Adding nimesulide after ethyl peroxide led to some narrowing of the tyrosyl radical signal detected by EPR spectroscopy, consistent with a small increase in the proportion of the Tyr504 radical. Neither flurbiprofen nor diclofenac changed the EPR linewidth when added after peroxide. In contrast, the effects of cyclooxygenase inhibitors on the stability of the preformed tyrosyl radicals were dramatic. The half-life of total tyrosyl radical was 4.1 min in the control, >10 hr with added nimesulide, 48 min with flurbiprofen, and 0.8 min with diclofenac. Stabilization of the tyrosyl radicals was evident even at substoichiometric levels of nimesulide. Thus, the inhibitors had potent, structure-dependent, effects on the stability of both tyrosyl radicals. This dramatic modulation of tyrosyl radical stability by cyclooxygenase site ligands suggests a mechanism for regulating the reactivity of PGHS tyrosyl radicals with cellular antioxidants. PMID:19894761

  16. Conceptualizing adverse outcome pathways for cyclooxygenase inhibitors using transcriptomic and metabolomic characterization

    EPA Science Inventory

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study ut...

  17. Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents.

    PubMed

    Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi

    2011-03-15

    Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages.

    PubMed

    Yam, Mun-Li; Abdul Hafid, Sitti Rahma; Cheng, Hwee-Ming; Nesaretnam, Kalanithi

    2009-09-01

    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.

  19. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    PubMed

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia

    PubMed Central

    Chu, Louis M.; Robich, Michael P.; Bianchi, Cesario; Feng, Jun; Liu, Yuhong; Xu, Shu-Hua; Burgess, Thomas

    2012-01-01

    The cardiovascular effects of cyclooxygenase (COX) inhibition remain controversial, especially in the setting of cardiovascular comorbidities. We examined the effects of nonselective and selective COX inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Twenty-four intact male Yorkshire swine underwent left circumflex ameroid constrictor placement and were subsequently given either no drug (HCC; n = 8), a nonselective COX inhibitor (440 mg/day naproxen; HCNS; n = 8), or a selective COX-2 inhibitor (200 mg/day celecoxib; HCCX; n = 8). After 7 wk, myocardial functional was measured and myocardium from the nonischemic ventricle and ischemic area-at-risk (AAR) were analyzed. Regional function as measured by segmental shortening was improved in the AAR of HCCX compared with HCC. There was no significant difference in perfusion to the nonischemic ventricle between groups, but myocardial perfusion in the AAR was significantly improved in the HCCX group compared with controls at rest and during pacing. Endothelium-dependent microvessel relaxation was diminished by ischemia in HCC animals, but both naproxen and celecoxib improved vessel relaxation in the AAR compared with controls, and also decreased the vasoconstrictive response to serotonin. Thromboxane levels in the AAR were decreased in both HCNS and HCCX compared with HCC, whereas prostacyclin levels were decreased only in HCNS, corresponding to a decrease in prostacyclin synthase expression. Chronic ischemia increased apoptosis in Troponin T negative cells and intramyocardial fibrosis, both of which were reduced by celecoxib administration in the AAR. Capillary density was decreased in both the HCNS and HCCX groups. Protein oxidative stress was decreased in both HCNS and HCCX, whereas lipid oxidative stress was decreased only in the HCCX group. Thus nonselective and especially selective COX inhibition may have beneficial myocardial effects in the setting of

  1. Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia.

    PubMed

    Chu, Louis M; Robich, Michael P; Bianchi, Cesario; Feng, Jun; Liu, Yuhong; Xu, Shu-Hua; Burgess, Thomas; Sellke, Frank W

    2012-01-01

    The cardiovascular effects of cyclooxygenase (COX) inhibition remain controversial, especially in the setting of cardiovascular comorbidities. We examined the effects of nonselective and selective COX inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Twenty-four intact male Yorkshire swine underwent left circumflex ameroid constrictor placement and were subsequently given either no drug (HCC; n = 8), a nonselective COX inhibitor (440 mg/day naproxen; HCNS; n = 8), or a selective COX-2 inhibitor (200 mg/day celecoxib; HCCX; n = 8). After 7 wk, myocardial functional was measured and myocardium from the nonischemic ventricle and ischemic area-at-risk (AAR) were analyzed. Regional function as measured by segmental shortening was improved in the AAR of HCCX compared with HCC. There was no significant difference in perfusion to the nonischemic ventricle between groups, but myocardial perfusion in the AAR was significantly improved in the HCCX group compared with controls at rest and during pacing. Endothelium-dependent microvessel relaxation was diminished by ischemia in HCC animals, but both naproxen and celecoxib improved vessel relaxation in the AAR compared with controls, and also decreased the vasoconstrictive response to serotonin. Thromboxane levels in the AAR were decreased in both HCNS and HCCX compared with HCC, whereas prostacyclin levels were decreased only in HCNS, corresponding to a decrease in prostacyclin synthase expression. Chronic ischemia increased apoptosis in Troponin T negative cells and intramyocardial fibrosis, both of which were reduced by celecoxib administration in the AAR. Capillary density was decreased in both the HCNS and HCCX groups. Protein oxidative stress was decreased in both HCNS and HCCX, whereas lipid oxidative stress was decreased only in the HCCX group. Thus nonselective and especially selective COX inhibition may have beneficial myocardial effects in the setting of

  2. Bovine milk-derived α-lactalbumin inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice.

    PubMed

    Yamaguchi, Makoto; Takai, Shoko; Hosono, Akira; Seki, Taiichiro

    2014-01-01

    Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages.

  3. Indomethacin Inhibits Circulating PGE2 and Reverses Postexercise Suppression of Natural Killer Cell Activity

    DTIC Science & Technology

    1999-01-01

    after the oral administration of a placebo, the PG inhibitor indomethacin (75 mg/day for 5 days), or naltrexone (reported elsewhere). Circulating...which blocks PGE2 biosynthe- sis via inhibition of cyclooxygenase activity (57). Maxi- mal suppression of PG production occurs with doses between 50...and 150 mg (1). In addition to the indepen- dent effects of PGE2 on NKCA, low circulating levels of PGE2 can synergize with endogenous glucocorticoids

  4. Methylmercury promotes prostacyclin release from cultured human brain microvascular endothelial cells via induction of cyclooxygenase-2 through activation of the EGFR-p38 MAPK pathway by inhibiting protein tyrosine phosphatase 1B activity.

    PubMed

    Yoshida, Eiko; Kurita, Masaru; Eto, Komyo; Kumagai, Yoshito; Kaji, Toshiyuki

    2017-12-01

    Methylmercury is an environmental pollutant that exhibits neurotoxicity when ingested, primarily in the form of neuropathological lesions that localize along deep sulci and fissures, in addition to edematous and inflammatory changes in patient cerebrums. These conditions been known to give rise to a variety of ailments that have come to be collectively termed Minamata disease. Since prostaglandins I 2 and E 2 (PGI 2 and PGE 2 ) increase vascular permeability and contribute to the progression of inflammatory changes, we hypothesize that methylmercury induces the synthesis of these prostaglandins in brain microvascular endothelial cells and pericytes. To test this theory, human brain microvascular endothelial cells and pericytes were cultured and treated with methylmercury, after which the PGI 2 and PGE 2 released from endothelial cells and/or pericytes were quantified by enzyme-linked immunosorbent assay while protein and mRNA expressions in endothelial cells were analyzed by western blot analysis and real-time reverse transcription polymerase chain reaction, respectively. Experimental results indicate that methylmercury inhibits the activity of protein tyrosine phosphatase 1B, which in turn activates the epidermal growth factor receptor-p38 mitogen-activated protein kinase pathway that induces cyclooxygenase-2 expression. It was also found that the cyclic adenosine 3',5'-monophosphate pathway, which can be activated by PGI 2 and PGE 2 , is involved in methylmercury-induced cyclooxygenase-2 expression. Since it appears that protein tyrosine phosphatase 1 B serves as a sensor protein for methylmercury in these mechanisms, it is our belief that the results of the present study may provide additional insights into the molecular mechanisms responsible for edematous and inflammatory changes in the cerebrum of patients with Minamata disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Cyclooxygenase-2 polymorphisms in Parkinson's disease.

    PubMed

    Håkansson, Anna; Bergman, Olle; Chrapkowska, Cecilia; Westberg, Lars; Belin, Andrea Carmine; Sydow, Olof; Johnels, Bo; Olson, Lars; Holmberg, Björn; Nissbrandt, Hans

    2007-04-05

    Accumulating evidence indicate that cyclooxygenase-2 (COX-2) is of pathophysiological importance for the neurodegeneration in Parkinson's disease (PD). For example, in a large epidemiological study, use of NSAIDs was associated with a lower risk of PD. Genetic variants of the COX-2 gene might therefore influence the risk of developing the disease. The genotype distribution of four common single nucleotide polymorphisms (SNPs) in the COX-2 gene (rs689466:A496G, rs20417:G926C, rs5277:G3050C, rs5275:C8473T) was analyzed in PD patients and control subjects in a Swedish population. No differences could be seen between the PD-patient and controls regarding the A496G, G926C, and G3050C SNPs, but the allele frequency of the C8473T SNP was found to differ when male patients were compared to controls (P = 0.007). In females no difference could be seen between PD-patients and controls. In conclusion, the results suggest a possible influence of the COX-2 C8473T SNP in PD, although it only seems to be of importance in men. (c) 2006 Wiley-Liss, Inc.

  6. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression.

    PubMed

    Qin, Wang-Sen; Deng, Yu-Hui; Cui, Fa-Cai

    2016-08-01

    Acrolein (2-propenal) is a reactive α, β-unsaturated aldehyde which causes a health hazard to humans. The present study focused on determining the protection offered by sulforaphane against acrolein-induced damage in peripheral blood mononuclear cells (PBMC). Acrolein-induced oxidative stress was determined through evaluating the levels of reactive oxygen species, protein carbonyl and sulfhydryl content, thiobarbituric acid reactive species, total oxidant status and antioxidant status (total antioxidant capacity, glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase activity). Also, Nrf-2 expression levels were determined using western blot analysis. Acrolein-induced inflammation was determined through analyzing expression of cyclooxygenase-2 by western blot and PGE2 levels by ELISA. The protection offered by sulforaphane against acrolein-induced oxidative stress and inflammation was studied. Acrolein showed a significant (p < 0.001) increase in the levels of oxidative stress parameters and down-regulated Nrf-2 expression. Acrolein-induced inflammation was observed through upregulation (p < 0.001) of COX-2 and PGE2 levels. Pretreatment with sulforaphane enhanced the antioxidant status through upregulating Nrf-2 expression (p < 0.001) in PBMC. Acrolein-induced inflammation was significantly inhibited through suppression of COX-2 (p < 0.001) and PGE2 levels (p < 0.001). The present study provides clear evidence that pre-treatment with sulforaphane completely restored the antioxidant status and prevented inflammatory responses mediated by acrolein. Thus the protection offered by sulforaphane against acrolein-induced damage in PBMC is attributed to its anti-oxidant and anti-inflammatory potential.

  7. Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity.

    PubMed

    Choi, Seunghwan; Lim, Tae-Gyu; Hwang, Mun Kyung; Kim, Yoon-A; Kim, Jiyoung; Kang, Nam Joo; Jang, Tae Su; Park, Jun-Seong; Yeom, Myeong Hun; Lee, Ki Won

    2013-11-15

    Rutin is a well-known flavonoid that exists in various natural sources. Accumulative studies have represented the biological effects of rutin, such as anti-oxidative and anti-inflammatory effects. However, the underlying mechanisms of rutin and its direct targets are not understood. We investigated whether rutin reduced B[a]PDE-induced-COX-2 expression. The transactivation of AP-1 and NF-κB were inhibited by rutin. Rutin also attenuated B[a]PDE-induced Raf/MEK/ERK and Akt activation, but had no effect on the phosphorylation of EGFR. An in vitro kinase assay revealed rutin suppressed EGFR kinase activity. We also confirmed direct binding between rutin and EGFR, and found that the binding was regressed by ATP. The EGFR inhibitor also inhibited the B[a]PDE-induced MEK/ERK and Akt signaling pathways and subsequently, suppressed COX-2 expression and promoter activity, in addition to suppressing the transactivation of AP-1 and NF-κB. In EGFR(-/-)mouse embryonic fibroblast cells, B[a]PDE-induced COX-2 expression was also diminished. Collectively, rutin inhibits B[a]PDE-induced COX-2 expression by suppressing the Raf/MEK/ERK and Akt signaling pathways. EGFR appeared to be the direct target of rutin. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer.

    PubMed

    Gungor, Hilal; Ilhan, Nevin; Eroksuz, Hatice

    2018-06-01

    Colorectal cancer (CRC) is an important cause of cancer-related deaths worldwide. Early diagnosis and treatment of CRCs are of importance for improving the survival. In the present study, we studied the effects of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effects on tumor development incidence and angiogenesis in experimental CRC rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and two NSAIDs (celecoxib and diclofenac) were given orally as chemopreventive agents. Histopathological and immuno histochemical evaluations were performed in colorectal tissue samples, whereas angiogenesis parameters were studied in blood samples. Histopathological examination showed that adenocarcinoma (62.5%), dysplastic changes (31.25%) and inflammattory changes (6.25%) were detected in DMH group, whereas no pathological change was observed in control rats. In treatment groups, there was marked decrease in adenocarcinoma rate (30% and 10%, respectively). A significant increase was detected in MMP-2, MMP-9 levels and MMP-2/TIMP-2 ratio in DMH group as compared with controls and treatment groups. In immunohistochemical evaluations, there was an increase in intensity and extent of staining of MMP-2 and MMP-9 in DMH group as compared to controls and treatment groups. The decrease in celecoxib group was more prominent. Overall, it was concluded that NSAIDs, particularly cyclooxygenase-2 (COX-2) inhibitors, might have a protective effect on CRC development and slow down progression of tumor in a DMH-induced experimental cancer model. One of the possible mechanisms in the chemoprevention of colon cancer seems to be inhibition of angiogenesis by diclofenac and celecoxib. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teraoka, Hiroki; Kubota, Akira; Dong, Wu

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic veinmore » blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.« less

  10. Endogenous 2-Arachidonoylglycerol Alleviates Cyclooxygenases-2 Elevation-Mediated Neuronal Injury From SO2 Inhalation via PPARγ Pathway.

    PubMed

    Li, Ben; Chen, Minjun; Guo, Lin; Yun, Yang; Li, Guangke; Sang, Nan

    2015-10-01

    Although the health effects of sulfur dioxide (SO2) pollution in the atmospheric environment are not new, epidemiological studies and parallel experimental investigations indicate that acute SO2 exposure causes glutamate-mediated excitotoxicity and even contributes to the outcome of cerebral ischemia. Additionally, the free radical-related inflammatory responses are responsible for neuronal insults and consequent brain disorders. However, few medications are available for preventing the inflammatory responses and relieving the subsequent harmful insults from SO2 inhalation. Here, we show that endocannabinoid 2-arachidonoylglycerol (2-AG) prevents neurotoxicity from SO2 inhalation by suppressing cyclooxygenase-2 (COX-2) overexpression, and this action appears to be mediated via cannabinoid receptor 1 (CB1)-dependent mitogen-activated protein kinase/nuclear factor κB (NF-κB) signaling pathways. Furthermore, CB1-dependent peroxisome proliferator activated receptor γ (PPARγ) expression was an important modulator of the 2-AG-mediated resolution on NF-κB-coupled COX-2 elevation in response to SO2 neuroinflammation. This finding provides evidence of a possible therapeutic effect of endogenous 2-AG regulation for protecting against neurological dysfunction from SO2 inhalation in polluted areas. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions.

    PubMed

    Harizi, Hedi; Juzan, Monique; Pitard, Vincent; Moreau, Jean-François; Gualde, Norbert

    2002-03-01

    PGE(2) is a well-known immunomodulator produced in the immune response by APCs, such as dendritic cells (DCs), the most potent APC of the immune system. We investigated the PGE(2) biosynthetic capacity of bone marrow-derived DC (BM-DC) and the effects of PG on the APC. We observed that BM-DC produce PGE(2) and other proinflammatory mediators, such as leukotriene B(4) and NO, after LPS exposure. Constitutively present in BM-DC, cyclooxygenase (COX)-1 did not contribute significantly to the total pool of PGE(2) compared with the LPS-induced COX-2-produced PGE(2). Treatment of BM-DC with exogenous PGE(2) induced the production of large amounts of IL-10 and less IL-12p70. In addition, selective inhibition of COX-2, but not COX-1, was followed by significant decrements in PGE(2) and IL-10, a concomitant restoration of IL-12 production, and an enhancement of DC stimulatory potential. In contrast, we found no demonstrable role for leukotriene B(4) or NO. In view of the potential of PGE(2) to stimulate IL-10, we examined the possibility that the suppressive effect of PGE(2) is mediated via IL-10. We found that exogenous IL-10 inhibits IL-12p70 production in the presence of NS-398, a COX-2 selective inhibitor, while the inhibitory effects of PGE(2) were totally reversed by anti-IL-10. We conclude that COX-2-mediated PGE(2) up-regulates IL-10, which down-regulates IL-12 production and the APC function of BM-DC.

  12. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    PubMed

    Uhlig, S; Nüsing, R; von Bethmann, A; Featherstone, R L; Klein, T; Brasch, F; Müller, K M; Ullrich, V; Wendel, A

    1996-05-01

    Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. LPS induced the release of TX and caused increased airway resistance after about 30 min. Both TX formation and LPS-induced bronchoconstriction were prevented by treatment with the unspecific COX inhibitor acetyl salicylic acid, the specific COX-2 inhibitor CGP-28238, dexamethasone, actinomycin D, or cycloheximide. LPS-induced bronchoconstriction was also inhibited by the TX receptor antagonist BM-13177. The TX-mimetic compound, U-46619, increased airway resistance predominantly by constricting terminal bronchioles. COX-2-specific mRNA in lung tissue was elevated after LPS exposure, and this increase was attenuated by addition of dexamethasone or of actinomycin D. In contrast to LPS, platelet-activating factor (PAF) induced immediate TX release and bronchoconstriction that was prevented by acetyl salicylic acid, but not by CGP-28238. LPS elicits the following biochemical and functional changes in rat lungs: (i) induction of COX-2; (ii) formation of prostaglandins and TX; (iii) activation of the TX receptor on airway smooth muscle cells; (iv) constriction of terminal bronchioles; and (v) increased airway resistance. In contrast to LPS, the PAF-induced TX release is likely to depend on COX-1.

  13. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity.

  14. Role of cyclooxygenase in the vascular responses to extremity cooling in Caucasian and African males.

    PubMed

    Maley, Matthew J; House, James R; Tipton, Michael J; Eglin, Clare M

    2017-07-01

    What is the central question of this study? Compared with Caucasians, African individuals are more susceptible to non-freezing cold injury and experience greater cutaneous vasoconstriction and cooler finger skin temperatures upon hand cooling. We investigated whether the enzyme cyclooxygenase is, in part, responsible for the exaggerated response to local cooling. What is the main finding and its importance? During local hand cooling, individuals of African descent experienced significantly lower finger skin blood flow and skin temperature compared with Caucasians irrespective of cyclooxygenase inhibition. These data suggest that in young African males the cyclooxygenase pathway appears not to be the primary reason for the increased susceptibility to non-freezing cold injury. Individuals of African descent (AFD) are more susceptible to non-freezing cold injury (NFCI) and experience an exaggerated cutaneous vasoconstrictor response to hand cooling compared with Caucasians (CAU). Using a placebo-controlled, cross-over design, this study tested the hypothesis that cyclooxygenase (COX) may, in part, be responsible for the exaggerated vasoconstrictor response to local cooling in AFD. Twelve AFD and 12 CAU young healthy men completed foot cooling and hand cooling (separately, in 8°C water for 30 min) with spontaneous rewarming in 30°C air after placebo or aspirin (COX inhibition) treatment. Skin blood flow, expressed as cutaneous vascular conductance (as flux per millimetre of mercury), and skin temperature were measured throughout. Irrespective of COX inhibition, the responses to foot cooling, but not hand cooling, were similar between ethnicities. Specifically, during hand cooling after placebo, AFD experienced a lower minimal skin blood flow [mean (SD): 0.5 (0.1) versus 0.8 (0.2) flux mmHg -1 , P < 0.001] and a lower minimal finger skin temperature [9.5 (1.4) versus 10.7 (1.3)°C, P = 0.039] compared with CAU. During spontaneous rewarming, average skin blood

  15. Protective Effect of Procyanidin B2 against CCl4-Induced Acute Liver Injury in Mice.

    PubMed

    Yang, Bing-Ya; Zhang, Xiang-Yu; Guan, Sheng-Wen; Hua, Zi-Chun

    2015-07-03

    Procyanidin B2 has demonstrated several health benefits and medical properties. However, its protective effects against CCl4-induced hepatotoxicity have not been clarified. The present study aimed to investigate the hepatoprotective effects of procyanidin B2 in CCl4-treated mice. Our data showed that procyanidin B2 significantly decreased the CCl4-induced elevation of serum alanine aminotransferase activities, as well as improved hepatic histopathological abnormalities. Procyanidin B2 also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD, CAT and GSH-Px. Further research demonstrated that procyanidin B2 decreased the expression of TNF-α, IL-1β, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibited the translocation of nuclear factor-kappa B (NF-κB) p65 from the cytosol to the nuclear fraction in mouse liver. Moreover, CCl4-induced apoptosis in mouse liver was measured by (terminal-deoxynucleotidyl transferase mediated nick end labeling) TUNEL assay and the cleaved caspase-3. Meanwhile, the expression of apoptosis-related proteins Bax and Bcl-xL was analyzed by Western blot. Results showed that procyanidin B2 significantly inhibited CCl4-induced hepatocyte apoptosis, markedly suppressed the upregulation of Bax expression and restored the downregulation of Bcl-xL expression. Overall, the findings indicated that procyanidin B2 exhibited a protective effect on CCl4-induced hepatic injury by elevating the antioxidative defense potential and consequently suppressing the inflammatory response and apoptosis of liver tissues.

  16. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and

  17. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids.

    PubMed

    Cho, Hongsik; Walker, Andrew; Williams, Jeb; Hasty, Karen A

    2015-01-01

    Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  18. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  19. CHP1002, a novel andrographolide derivative, inhibits pro-inflammatory inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW264.7 macrophages via up-regulation of heme oxygenase-1 expression.

    PubMed

    Zhang, Bo; Yan, Lingdi; Zhou, Peilan; Dong, Zhaoqi; Feng, Siliang; Liu, Keliang; Gong, Zehui

    2013-02-01

    Andrographolides, a type of diterpene lactone, are widely known to have anti-inflammatory and anti-oxidative properties. CHP1002, a synthetic derivative of andrographolide, has similar anti-inflammatory action in mouse ear swelling test and rat paw edema test. In the present study, the mechanism of anti-inflammatory effects of CHP1002 was investigated in RAW264.7 macrophages. CHP1002 potently suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CHP1002 reduced the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 (PGE2). CHP1002 induced heme oxygenase-1 (HO-1) expression via activation of extracellular signal-regulated kinase (ERK) and NF-E2 related factor 2 transcription factor (Nrf2). Down-regulation of LPS-induced iNOS and COX-2 expressions was partially reversed by the HO-1 inhibitor zinc protoporphyrin (ZnPP). In addition, CHP1002 significantly attenuated LPS-induced TNF-α, IL-1β and IL-6 production. CHP1002 effectively induced HO-1 and was capable of inhibiting some macrophage-derived pro-inflammatory mediators, which may be closely correlated with its anti-inflammatory action. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimon, Gilad; Sidhu, Ranjinder S.; Lauver, D. Adam

    Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A{sub 2} formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially blocked by COX-2 inhibitors called coxibs. COXs are homodimers composed of identical subunits, but we have shown that only one subunit is active at a time during catalysis; moreover, many nsNSAIDS bind to a single subunit of a COX dimer to inhibit the COX activity of the entire dimer. Here, we reportmore » the surprising observation that celecoxib and other coxibs bind tightly to a subunit of COX-1. Although celecoxib binding to one monomer of COX-1 does not affect the normal catalytic processing of AA by the second, partner subunit, celecoxib does interfere with the inhibition of COX-1 by aspirin in vitro. X-ray crystallographic results obtained with a celecoxib/COX-1 complex show how celecoxib can bind to one of the two available COX sites of the COX-1 dimer. Finally, we find that administration of celecoxib to dogs interferes with the ability of a low dose of aspirin to inhibit AA-induced ex vivo platelet aggregation. COX-2 inhibitors such as celecoxib are widely used for pain relief. Because coxibs exhibit cardiovascular side effects, they are often prescribed in combination with low-dose aspirin to prevent thrombosis. Our studies predict that the cardioprotective effect of low-dose aspirin on COX-1 may be blunted when taken with coxibs.« less

  1. Decursinol angelate inhibits PGE2-induced survival of the human leukemia HL-60 cell line via regulation of the EP2 receptor and NFκB pathway

    PubMed Central

    Shehzad, Adeeb; Islam, Salman Ul; Ahn, Eun-Mi; Lee, You Mie; Lee, Young Sup

    2016-01-01

    ABSTRACT Decursinol angelate (DA), an active pyranocoumarin compound from the roots of Angelica gigas, has been reported to possess anti-inflammatory and anti-cancer activities. In a previous study, we demonstrated that prostaglandin E2 (PGE2) plays a survival role in HL-60 cells by protecting them from the induction of apoptosis via oxidative stress. Flow cytometry and Hoechst staining revealed that PGE2 suppresses menadione-induced apoptosis, cell shrinkage, and chromatin condensation, by blocking the generation of reactive oxygen species. Treatment of DA was found to reverse the survival effect of PGE2 as well as restoring the menadione-mediated cleavage of caspase-3, lamin B, and PARP. DA blocked PGE2-induced activation of the EP2 receptor signaling pathway, including the activation of PKA and the phosphorylation of CREB. DA also inhibited PGE2-induced expression of cyclooxygenase-2 and the activation of the Ras/Raf/ Erk pathway, which activates downstream targets for cell survival. Finally, DA greatly reduced the PGE2-induced activation of NF-κB p50 and p65 subunits. These results elucidate a novel mechanism for the regulation of cell survival and apoptosis, and open a gateway for further development and combinatory treatments that can inhibit PGE2 in cancer cells. PMID:27414656

  2. Decursinol angelate inhibits PGE2-induced survival of the human leukemia HL-60 cell line via regulation of the EP2 receptor and NFκB pathway.

    PubMed

    Shehzad, Adeeb; Islam, Salman Ul; Ahn, Eun-Mi; Lee, You Mie; Lee, Young Sup

    2016-09-01

    Decursinol angelate (DA), an active pyranocoumarin compound from the roots of Angelica gigas, has been reported to possess anti-inflammatory and anti-cancer activities. In a previous study, we demonstrated that prostaglandin E2 (PGE2) plays a survival role in HL-60 cells by protecting them from the induction of apoptosis via oxidative stress. Flow cytometry and Hoechst staining revealed that PGE2 suppresses menadione-induced apoptosis, cell shrinkage, and chromatin condensation, by blocking the generation of reactive oxygen species. Treatment of DA was found to reverse the survival effect of PGE2 as well as restoring the menadione-mediated cleavage of caspase-3, lamin B, and PARP. DA blocked PGE2-induced activation of the EP2 receptor signaling pathway, including the activation of PKA and the phosphorylation of CREB. DA also inhibited PGE2-induced expression of cyclooxygenase-2 and the activation of the Ras/Raf/ Erk pathway, which activates downstream targets for cell survival. Finally, DA greatly reduced the PGE2-induced activation of NF-κB p50 and p65 subunits. These results elucidate a novel mechanism for the regulation of cell survival and apoptosis, and open a gateway for further development and combinatory treatments that can inhibit PGE2 in cancer cells.

  3. Cyanidin-3-glucoside suppresses B[a]PDE-induced cyclooxygenase-2 expression by directly inhibiting Fyn kinase activity.

    PubMed

    Lim, Tae-Gyu; Kwon, Jung Yeon; Kim, Jiyoung; Song, Nu Ry; Lee, Kyung Mi; Heo, Yong-Seok; Lee, Hyong Joo; Lee, Ki Won

    2011-07-15

    Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) is a well-known carcinogen that is associated with skin cancer. Abnormal expression of cyclooxygenase-2 (COX-2) is an important mediator in inflammation and tumor promotion. We investigated the inhibitory effect of cyanidin-3-glucoside (C3G), an anthocyanin present in fruits, on B[a]PDE-induced COX-2 expression in mouse epidermal JB6 P+ cells. Pretreatment with C3G resulted in the reduction of B[a]PDE-induced expression of COX-2 and COX-2 promoter activity. The activation of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) induced by B[a]PDE was also attenuated by C3G. C3G attenuated the B[a]PDE-induced phosphorylation of MEK, MKK4, Akt, and mitogen-activated protein kinases (MAPKs), but no effect on the phosphorylation of the upstream MAPK regulator Fyn. However, kinase assays demonstrated that C3G suppressed Fyn kinase activity and C3G directly binds Fyn kinase noncompetitively with ATP. By using PP2, a pharmacological inhibitor for SFKs, we showed that Fyn kinase regulates B[a]PDE-induced COX-2 expression by activating MAPKs, AP-1 and NF-κB. These results suggest that C3G suppresses B[a]PDE-induced COX-2 expression mainly by blocking the activation of the Fyn signaling pathway, which may contribute to its chemopreventive potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  5. Diabetes Upregulation of Cyclooxygenase 2 Contributes to Altered Coronary Reactivity After Cardiac Surgery.

    PubMed

    Feng, Jun; Anderson, Kelsey; Singh, Arun K; Ehsan, Afshin; Mitchell, Hunter; Liu, Yuhong; Sellke, Frank W

    2017-08-01

    We hypothesized that upregulation of inducible cyclooxygenase 2 (COX-2) contributes to altered coronary arteriolar reactivity early after cardioplegic arrest and cardiopulmonary bypass (CP/CPB) in patients with diabetes mellitus who are undergoing cardiac surgery. The right atrial tissue samples of nondiabetes (ND), controlled diabetes (CDM), and uncontrolled diabetes (UDM) patients undergoing cardiac surgery were harvested before and after CP/CPB. Coronary arterioles (80 to 150 μm) were dissected from the harvested atrial tissue samples, cannulated, and pressurized. The changes in diameter were measured with video microscopy. The protein expression and localization of COX-1 and COX-2 were assayed by Western blot and immunohistochemistry. In the diabetes arterioles, bradykinin-induced relaxation response was inhibited by the selective COX-2 inhibitor NS398 at baseline (p < 0.05). This effect was more pronounced in UDM arterioles than CDM (p < 0.05). After CP/CPB, bradykinin-induced responses in all groups were inhibited by NS398, but this effect was more pronounced in the UDM patients (p < 0.05). The intensities of COX-2 staining of coronary arterioles and COX-2 protein levels in myocardium were higher in diabetes than nondiabetes at baseline (p < 0.05). The post-CP/CPB protein levels of the inducible COX-2 were significantly increased compared with pre-CP/CPB values in all groups (p < 0.05), whereas this increase was higher with diabetes than with ND (p < 0.05). Furthermore, these effects were more profound in UDM than CDM (p < 0.05). Diabetes and CP/CPB are associated with upregulation in COX-2 expression in human coronary vasculature. Upregulation of COX-2 expression may contribute to bradykinin-induced coronary arteriolar relaxation in diabetic patients undergoing cardiac surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury

    PubMed Central

    Pengal, Ruma; Guess, Adam J.; Agrawal, Shipra; Manley, Joshua; Ransom, Richard F.; Mourey, Robert J.; Smoyer, William E.

    2011-01-01

    While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases. PMID:21613416

  7. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Pharmacokinetic and pharmacodynamic interaction between the lipoxygenase inhibitor MK-0591 and the cyclooxygenase inhibitor ibuprofen in man.

    PubMed

    Depré, M; Van Hecken, A; Verbesselt, R; De Lepeleire, I; Schwartz, J; Porras, A; Larson, P; Lin, C; De Schepper, P J

    1998-01-01

    Twelve healthy male subjects participated in a double-blind, placebo-controlled, randomized, three-period, crossover study to investigate the safety, tolerability, biochemical activity and pharmacokinetics of ibuprofen, a cyclooxygenase inhibitor and MK-0591, a 5-lipoxygenase inhibitor, given as single entities and in combination. Each subject received for three consecutive 8-day periods, separated by 1 week washout, each of the following treatments: ibuprofen 600 mg three times a day with 125 mg MK-0591 twice a day, ibuprofen 600 mg three times a day with placebo for MK-0591 and MK-0591 125 mg twice a day with placebo for ibuprofen. Cyclooxygenase inhibition was measured by platelet thromboxane (TxB2) generation test, and 5-lipoxygenase inhibition was measured by urinary leukotriene E4 excretion and ex vivo LTB4 generation in calcium-ionophore-stimulated blood. TxB2 suppression on day 8 by ibuprofen was not affected by concomitant treatment with MK-0591. MK-0591 alone had no effect on TxB2 generation. Leukotriene biosynthesis was inhibited by more than 90% by MK-0591 alone and by combined treatment, while ibuprofen alone had no effect. Coadministration appears to affect the pharmacokinetics of MK-0591 (decrease of area under the plasma concentration-vs-time curve [AUC] and maximum plasma concentrations [Cmax]) and of ibuprofen (increase of AUC and half-lives of elimination (t1/2) of the (S)-enantiomer, increase of t1/2 the (R)-enantiomer). Combined treatment had no effect on creatinine clearance nor on the number and intensity of the reported adverse experiences.

  9. Resveratrol decreases noise-induced cyclooxygenase-2 expression in the rat cochlea.

    PubMed

    Seidman, Michael D; Tang, Wenxue; Bai, Venkatesh Uma; Ahmad, Nadir; Jiang, Hao; Media, Joseph; Patel, Nimisha; Rubin, Cory J; Standring, Robert T

    2013-05-01

    Our previous studies have demonstrated the efficacy of resveratrol, a grape constituent noted for its antioxidant and anti-inflammatory properties, in reducing temporary threshold shifts and decreasing cochlear hair cell damage following noise exposure. This study was designed to identify the potential protective mechanism of resveratrol by measuring its effect on cyclooxygenase-2 (COX-2) protein expression and reactive oxygen species (ROS) formation following noise exposure. Controlled animal intervention study. Otology Laboratory, Henry Ford Health System. Twenty-two healthy male Fischer 344 rats (2-3 months old) were exposed to acoustic trauma of variable duration with or without intervention. An additional 20 healthy male rats were used to study COX-2 expression at different time points during and following treatment of 24 hours of noise exposure. Cochlear harvest was performed at various time intervals for measurement of COX-2 protein expression via Western blot analysis and immunostaining. Peripheral blood was also obtained for ROS analysis using flow cytometry. Acoustic trauma exposure resulted in a progressive up-regulation of COX-2 protein expression, commencing at 8 hours and peaking at 32 hours. Similarly, ROS production increased after noise exposure. However, treatment with resveratrol reduced noise-induced COX-2 expression as well as ROS formation in the blood as compared with the controls. COX-2 levels are induced dramatically following noise exposure. This increased expression may be a potential mechanism of noise-induced hearing loss (NIHL) and a possible mechanism of resveratrol's ability to mitigate NIHL by its ability to reduce COX-2 expression.

  10. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  11. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential

  12. Radiation-induced cyclooxygenase 2 up-regulation is dependent on redox status in prostate cancer cells.

    PubMed

    Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J

    2003-12-01

    Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.

  13. Protein kinase Cε regulates nuclear translocation of extracellular signal-regulated kinase, which contributes to bradykinin-induced cyclooxygenase-2 expression.

    PubMed

    Nakano, Rei; Kitanaka, Taku; Namba, Shinichi; Kitanaka, Nanako; Sugiya, Hiroshi

    2018-06-04

    The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E 2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca 2+ . Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E 2 synthesis in dermal fibroblasts.

  14. Rosmarinic acid induces rabbit articular chondrocyte differentiation by decreases matrix metalloproteinase-13 and inflammation by upregulating cyclooxygenase-2 expression.

    PubMed

    Eo, Seong-Hui; Kim, Song Ja

    2017-09-18

    Matrix metalloproteinases (MMPs) are known to play an important role in the degradation of the extracellular matrix and the pathological progression of osteoarthritis (OA). The natural polyphenolic compound rosmarinic acid (Ros. A) has been shown to suppress the inhibitory activity of matrix metalloproteinases (MMPs). However, the effects of Ros. A on OA have not been investigated. In the current study, primary articular chondrocytes were cultured from rabbit articular cartilage and treated with Ros. A. Phenotypic characterization was performed by western blotting to assess specific markers, prostaglandin E 2 (PGE 2 ) assays, and alcian blue staining to measure sulfated-proteoglycan production. We report that in rabbit articular chondrocytes, Ros. A increased type II collagen, sulfated-proteoglycan, cyclooxygenase-2 (COX-2), and PGE 2 production in a dose- and time-dependent manner. Furthermore, Ros. A suppressed the expression of MMP-13. In addition, treatment with Ros A activated extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase signaling pathways. Inhibition of MMP-13 enhanced Ros. A-induced type II collagen expression and sulfated-proteoglycan synthesis but COX-2 and PGE 2 production were unchanged. Ros. A-mediated up-regulation of ERK phosphorylation was abolished by the MEK inhibitor, PD98059, which prevented induction of the associated inflammatory response. Inhibition of p38 kinase with SB203580 enhanced the increase in type II collagen expression via Ros. A-mediated down-regulation of MMP-13. Results suggest that ERK-1/2 regulates Ros. A-induced inflammation and that p38 regulates differentiation by inhibiting MMP-13 in rabbit articular chondrocytes.

  15. Cyclooxygenase-2 inhibitors. Synthesis and pharmacological activities of 5-methanesulfonamido-1-indanone derivatives.

    PubMed

    Li, C S; Black, W C; Chan, C C; Ford-Hutchinson, A W; Gauthier, J Y; Gordon, R; Guay, D; Kargman, S; Lau, C K; Mancini, J

    1995-12-08

    The recent discovery of an alternative form cyclooxygenase (cyclooxygenase-2, COX-2), which has been proposed to play a significant role in inflammatory conditions, may provide an opportunity to develop anti-inflammatory drugs with fewer side effects than existing non-steroidal anti-inflammatory drugs (NSAIDs). We have now identified 6-[(2,4-difluorophenyl)-thio]-5-methanesulfonamido-1-indanone++ + (20) (L-745,337) as a potent, selective, and orally active COX-2 inhibitor. The structure-activity relationships in this series have been extensively studied. Ortho- and para-substituted 6-phenyl substitutents are optimal for in vitro potency. Replacement of this phenyl ring by a variety of heterocycles gave compounds that were less active. The methanesulfonamido group seems to be the optimal group at the 5-position of the indanone system. Compound 20 has an efficacy profile that is superior or comparable to that of the nonselective COX inhibitor indomethacin in animal models of inflammation, pain, and fever and appears to be nonulcerogenic within the dosage ranges required for functional efficacy. Although 20 and its oxygen linkage analog 2 (flosulide) are equipotent in the in vitro assays, compound 20 is more potent in the rat paw edema assay, has a longer t1/2 in squirrel monkeys, and seems less ulcergenic than 2 in rats.

  16. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats

    PubMed Central

    Esquivias, Paula; Morandeira, Antonio; Escartín, Alfredo; Cebrián, Carmelo; Santander, Sonia; Esteva, Francisco; García-González, María Asunción; Ortego, Javier; Lanas, Angel; Piazuelo, Elena

    2012-01-01

    AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma. METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control. RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX

  17. Cyclooxygenase-2 expression and recurrence of colorectal adenomas: effect of aspirin chemoprevention.

    PubMed

    Benamouzig, Robert; Uzzan, Bernard; Martin, Antoine; Deyra, Jacques; Little, Julian; Girard, Bernard; Chaussade, Stanislas

    2010-05-01

    Low-dose aspirin reduces the incidence of colorectal cancer and recurrence of adenomas. Cyclooxygenase-2 (COX-2), one of its main target enzymes, is reportedly over-expressed in colorectal adenomas. To assess COX-2 expression, in relation to adenoma recurrence and the protective effect of aspirin, in a large series of colorectal adenomas, recruited from a double-blind randomised controlled trial comparing recurrences after low-dose aspirin or placebo. Follow-up colonoscopies were performed after 1 and 4 years to assess adenoma recurrence. COX-2 expression was assessed by immunohistochemistry for each adenoma obtained at baseline colonoscopy, separately for epithelium, deep stroma and overall. Architecture, grade of dysplasia, K-ras mutation, p53 and cyclin D1 expression were studied. COX-2 expression could be assessed in 219 adenomas from 136 128 adenomas (58%) from 59 patients strongly expressed COX-2. Strong COX-2 expression predominated in adenomas larger than 10 mm (84/129 vs 44/90; p=0.02) and in adenomas showing high-grade dysplasia (22/29 vs 104/188; p=0.04). Deep stromal but not epithelial initial expression of COX-2 predicted adenoma recurrence in the whole population (30/72 patients or 42% strongly expressed deep stromal COX-2 compared with 16/64 or 25% without recurrent adenoma; p=0.04). The protective effect of aspirin was mainly observed in patients in whom COX-2 initial expression was low (RR for recurrence in patients taking aspirin with low COX-2 expression: 0.59; 95% CI 0.39 to 0.90; p=0.02). There was no significant effect of aspirin at the end of the trial. Over-expression of COX-2 was frequent and predominated in large and high-grade dysplasia adenomas. Deep stromal but not epithelial initial expression of COX-2 predicted recurrence of adenomas. Aspirin did not act preferentially on patients whose initial adenomas strongly expressed COX-2.

  18. Endothelin-1 increases expression of cyclooxygenase-2 and production of interlukin-8 in hunan pulmonary epithelial cells.

    PubMed

    Peng, Hong; Chen, Ping; Cai, Ying; Chen, Yan; Wu, Qing-Hua; Li, Yun; Zhou, Rui; Fang, Xiang

    2008-03-01

    Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.

  19. The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation.

    PubMed

    Kong, Weimin; Hooper, Kirsten M; Ganea, Doina

    2016-03-01

    Prostaglandins and leukotrienes, bioactive mediators generated by cyclooxygenases (COX) and 5-lipoxygenase (5-LO) from arachidonic acid, play an essential role in neuroinflammation. High levels of LTB4 and PGE2 and increased expression of COX and 5-LO, as well as high expression of PGE2 receptors were reported in multiple sclerosis (MS) patients and in experimental autoimmune encephalomyelitis (EAE). Prostaglandins and leukotrienes have an interdependent and compensatory role in EAE, which led to the concept of therapy using dual COX/5-LO inhibitors. The plant derived flavocoxid, a dual COX/5-LO inhibitor with anti-inflammatory and antioxidant properties, manufactured as a prescription pharmaconutrient, was reported to be neuroprotective in models of transient ischemic stroke and brain injury. The present study is the first report on prophylactic and therapeutic effects of flavocoxid in EAE. The beneficial effects correlate with reduced expression of proinflammatory cytokines and of COX2 and 5-LO in spinal cords and spleens of EAE mice. The protective mechanisms include: 1. reduction in expression of MHCII/costimulatory molecules and production of proinflammatory cytokines; 2. promotion of the M2 phenotype including IL-10 expression and release by macrophages and microglia; 3. inhibition of Th1 and Th17 differentiation through direct effects on T cells. The direct inhibitory effect on Th1/Th17 differentiation, and promoting the development of M2 macrophages and microglia, represent novel mechanisms for the flavocoxid anti-inflammatory activity. As a dual COX/5-LO inhibitor with antioxidant properties, flavocoxid might be useful as a potential therapeutic medical food agent in MS patients. Copyright © 2015. Published by Elsevier Inc.

  20. O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi

    2014-10-01

    Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.

  1. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    PubMed

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  2. Effects of lysine clonixinate on cyclooxygenase I and II in rat lung and stomach preparations.

    PubMed

    Franchi, A M; Di Girolamo, G; de los Santos, A R; Martí, M L; Gimeno, M A

    1998-06-01

    Lysine clonixinate (LC) is a drug of antiinflammatory antipyretic and analgesic activity that produces minor digestive side-effects. This fact induced us to think that LC is possibly a weak COX-1 inhibitor. In order to investigate our hypothesis we inhibited cyclooxygenase activity with LC or indomethacin (INDO) in rat lung and stomach obtained from rats treated with lipopolysacharide (LPS) and control rats. Rat lung preparations incubated with 14C-arachidonic acid synthesise mainly PGE2. LC at 2.5 and 4.1 x 10(-5) M does not modify the basal production of PGE2 (probably COX-1) but at 6.8 x 10(-5) M significantly inhibited PGE2 production (approximately 48.5% inhibition, P<0.001). On the other hand, INDO at 10(-6) inhibited the basal production of PGE2 by around 73%. In LPS-treated rats, the production of PGE2 was significantly higher than in the lungs of control rats, probably due to the induction of COX-2. The addition of LC at 2.7 and 4.1 x 10(-5) M recovered the control values of PGE2 inhibiting, probably only from COX-2 activity. LC at higher concentrations (6.8 x 10(-5) M) and INDO 10(-6) M inhibited PGE2 formed by COX-2 and also partly by COX-1 activity.

  3. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells.

    PubMed

    Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan

    2015-01-01

    To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.

  4. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin*

    PubMed Central

    Griesser, Markus; Pistis, Valentina; Suzuki, Takashi; Tejera, Noemi; Pratt, Derek A.; Schneider, Claus

    2011-01-01

    The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 μm/min) and associated with stoichiometric uptake of O2. Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 μm/min), and the rate was increased ≈10-fold by the addition of 300 μm H2O2. The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H218O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity. PMID:21071447

  5. Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression.

    PubMed

    Chen, Jing-Yi; Li, Chien-Feng; Kuo, Cheng-Chin; Tsai, Kelvin K; Hou, Ming-Feng; Hung, Wen-Chun

    2014-07-25

    Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival.

  6. Arctigenin exerts protective effects against myocardial infarction via regulation of iNOS, COX‑2, ERK1/2 and HO‑1 in rats.

    PubMed

    Zhang, Yanmin; Yang, Yong

    2018-03-01

    The present study aimed to determine the protective effects of arctigenin against myocardial infarction (MI), and its effects on oxidative stress and inflammation in rats. Left anterior coronary arteries of Sprague‑Dawley rats were ligated, in order to generate an acute MI (AMI) model. Arctigenin was administered to AMI rats at 0, 50, 100 or 200 µmol/kg. Western blotting and ELISAs were performed to analyze protein expression and enzyme activity. Arctigenin was demonstrated to effectively inhibit the levels of alanine transaminase, creatine kinase‑MB and lactate dehydrogenase, and to reduce infarct size in AMI rats. In addition, the activity levels of malondialdehyde, interleukin (IL)‑1β and IL‑6 were significantly suppressed, and the levels of glutathione peroxidase, catalase and superoxide dismutase were significantly increased by arctigenin treatment. Arctigenin treatment also suppressed the protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX‑2) and heme oxygenase 1 (HO‑1), and increased the protein expression levels of phosphorylated‑extracellular signal‑regulated kinase 1/2 (p‑ERK1/2) in AMI rats. Overall, the results of the present study suggest that arctigenin may inhibit MI, and exhibits antioxidative and anti‑inflammatory effects through regulation of the iNOS, COX‑2, ERK1/2 and HO‑1 pathways in a rat model of AMI.

  7. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  8. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B.

    PubMed

    Lee, Kyung Mi; Kang, Nam Joo; Han, Jin Hee; Lee, Ki Won; Lee, Hyong Joo

    2007-11-14

    Abnormal expression of cyclooxygenase-2 (COX-2) has been implicated in the development of cancer. There are multiple lines of evidence that red wine exerts chemopreventive effects, and 3,5,4'-trihydroxy- trans-stilbene (resveratrol), which is a non-flavonoid polyphenol found in red wine, has been reported to be a natural chemopreventive agent. However, other phytochemicals might contribute to the cancer-preventive activities of red wine, and the flavonol content of red wines is about 30 times higher than that of resveratrol. Here we report that 3,3',4',5,5',7-hexahydroxyflavone (myricetin), one of the major flavonols in red wine, inhibits 12-O-tetradecanoylphorbol-13-acetate (phorbol ester)-induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells by suppressing activation of nuclear factor kappa B (NF-kappaB). Myricetin at 10 and 20 microM inhibited phorbol ester-induced upregulation of COX-2 protein, while resveratrol at the same concentration did not exert significant effects. The phorbol ester-induced production of prostaglandin E 2 was also attenuated by myricetin treatment. Myricetin inhibited both COX-2 and NF-kappaB transactivation in phorbol ester-treated JB6 P+ cells, as determined using a luciferase assay. Myricetin blocked the phorbol ester-stimulated DNA binding activity of NF-kappaB, as determined using an electrophoretic mobility shift assay. Moreover, TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), a NF-kappaB inhibitor, significantly attenuated COX-2 expression and NF-kappaB promoter activity in phorbol ester-treated JB6 P+ cells. In addition, red wine extract inhibited phorbol ester-induced COX-2 expression and NF-kappaB transactivation in JB6 P+ cells. Collectively, these data suggest that myricetin contributes to the chemopreventive effects of red wine through inhibition of COX-2 expression by blocking the activation of NF-kappaB.

  9. Immunosensors for quantifying cyclooxygenase 2 pain biomarkers.

    PubMed

    Noah, Naumih M; Mwilu, Samuel K; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D

    2011-07-15

    Cyclooxygenase 2 (COX-2) is a key enzyme in pain biomarkers, inflammation and cancer cell proliferation. Thus biosensors that can quantify pain mediators based on biochemical mechanism are imperative. Biomolecular recognition and affinity of antigenic COX-2 with the antibody were investigated using surface plasmon resonance (SPR) and ultra-sensitive portable capillary (UPAC) fluorescence sensors. Polyclonal goat anti-COX-2 (human) antibodies were covalently immobilized on gold SPR surface and direct recognition for the COX-2 antigen assessed. The UPAC sensor utilized an indirect sandwich design involving covalently attached goat anti-COX-2 as the capture antibody and rabbit anti-COX-2 (human) antibody as the secondary antibody. UPAC fluorescence signals were directly proportional to COX-2 at a linear range of 7.46×10⁻⁴-7.46×10¹ ng/ml with detection limit of 1.02×10⁻⁴ ng/ml. With SPR a linear range was 3.64×10⁻⁴-3.64×10² ng/ml was recorded and a detection limit of 1.35×10⁻⁴ ng/ml. Validation was achieved in simulated blood samples with percent recoveries of 81.39% and 87.23% for SPR and UPAC respectively. The developed sensors have the potential to provide objective characterization of pain biomarkers for clinical diagnoses. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Inhibition of untransformed prostaglandin H(2) production and stretch-induced contraction of rabbit pulmonary arteries by indoxam, a selective secretory phospholipase A(2) inhibitor.

    PubMed

    Tanabe, Yoshiyuki; Saito, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Hirose, Masamichi; Nakayama, Koichi

    2011-01-01

    Involvement of secretory phospholipase A(2) (sPLA(2)) in the stretch-induced production of untransformed prostaglandin H(2) (PGH(2)) in the endothelium of rabbit pulmonary arteries was investigated. The stretch-induced contraction was significantly inhibited by indoxam, a selective inhibitor for sPLA(2), and NS-398, a selective inhibitor for cyclooxygenase-2 (COX-2). Indoxam inhibited the RGD-sensitive-integrin-independent production of untransformed PGH(2), but did not affect the RGD-sensitive-integrin-dependent production of thromboxane A(2) (TXA(2)). These results suggest that the stretch-induced contraction and untransformed PGH(2) production was mediated by sPLA(2)-COX-2 pathway, making it a new possible target for pharmacological intervention of pulmonary artery contractility.

  11. [Effect of lysine clonixinate and indomethacin on lipoxygenase and cyclooxygenase activity in colon isolated from cancer patients].

    PubMed

    Franchi, A; Di Girolamo, G; de los Santos, A R; Marti, M L; Gimeno, M A

    1998-01-01

    The non-steroidal anti-inflammatory drugs (NSAIDS) induced ulcerations in the gastrointestinal tract are possibly associated with the reduction in prostaglandin (PGs) synthesis due to the inhibition of cyclooxygenase. On the other hand, it has been shown that 5-lipooxygenase products (5-LO) are ulcerogenic agents. In some cases, the utilization of NSAIDS stimulates 5-LO pathway to an excess of arachidonic acid because of cyclooxygenase inhibition. In these cases, the damage produced by NSAIDS is greater, since not only the cytoprotective PGs decrease but also the products of 5-LO are increased. The object of the present paper was to study the effects of lysine clonixinate (LC) and indomethacin (INDO) on PGs and 5-HETE synthesis. The concentrations used of LC (4 and 6 micrograms/ml) and INDO (0.035 micrograms/ml and 0.35 micrograms/ml) correspond to the plasmatic values reached with oral therapeutic doses for both drugs. The results show that in no case did LC reduce the production of PGE2. On the contrary INDO inhibited significantly the synthesis of PGe2. It is interesting to mention that LC 4 and 6 micrograms/ml inhibited drastically the production of 5-HETE. Only with the higher concentration of INDO did we observe a similar effect. These results may indicate an inhibitory action on 5-LO, the first enzyme in the metabolic pathway of arachidonic acid in the production of HETEs and LTS. We conclude that LC in therapeutic doses has a mechanism of action different from the classical NSAIDS. The data obtained in this study could explain the low incidence in gastrointestinal lesions with LC.

  12. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.

    PubMed

    Rayan, Nirmala Arul; Baby, Nimmi; Pitchai, Daisy; Indraswari, Fransisca; Ling, Eng-Ang; Lu, Jia; Dheen, Thameem

    2011-06-01

    Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.

  13. Immunohistochemical expression of cyclooxygenase-2 (COX-2) in oral nevi and melanoma.

    PubMed

    de Souza do Nascimento, Juliana; Carlos, Román; Delgado-Azañero, Wilson; Mosqueda Taylor, Adalberto; de Almeida, Oslei Paes; Romañach, Mário José; de Andrade, Bruno Augusto Benevenuto

    2016-07-01

    Cyclooxygenase-2 (COX-2) catalyses the conversion of arachidonic acid to prostaglandin, and its overexpression has been demonstrated in different malignant tumors, including cutaneous melanoma. However, no data about the expression of this protein in oral melanocytic lesions are available to date. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in oral nevi and melanomas, comparing the results with correspondent cutaneous lesions. COX-2 was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 36 intramucosal nevi and 13 primary oral melanomas, and in four cutaneous nevi and eight melanomas. All cases of oral and cutaneous melanomas were positive for COX-2. On the other hand, all oral and cutaneous melanocytic nevi were negative. COX-2 is highly positive in oral melanomas and negative in oral nevi and might represent a useful marker to distinguish melanocytic lesions of the oral cavity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Resveratrol Directly Targets COX-2 to Inhibit Carcinogenesis

    PubMed Central

    Zykova, Tatyana A.; Zhu, Feng; Zhai, Xiuhong; Ma, Wei-ya; Ermakova, Svetlana P.; Lee, Ki Won; Bode, Ann M.; Dong, Zigang

    2008-01-01

    Targeted molecular cancer therapies can potentially deliver treatment directly to a specific protein or gene to optimize efficacy and reduce adverse side effects often associated with traditional chemotherapy. Key oncoprotein and oncogene targets are rapidly being identified based on their expression, pathogenesis and clinical outcome. One such protein target is cyclooxygenase-2 (COX-2), which is highly expressed in various cancers. Research findings suggest that resveratrol (3,5,4'-trihydroxy-trans-stilbene) demonstrates non-selective COX-2 inhibition. We report herein that resveratrol (RSVL) directly binds with COX-2 and this binding is absolutely required for RSVL's inhibition of the ability of human colon adenocarcinoma HT-29 cells to form colonies in soft agar. Binding of COX-2 with RSVL was compared with two RSVL analogues, 3,3’,4’,5’5’-pentahydroxy-trans-stilbene (RSVL-2) or 3,4’,5-trimethoxy-trans-stilbene (RSVL-3). The results indicated that COX-2 binds with RSVL-2 more strongly than with RSVL, but does not bind with RSVL-3. RSVL or RSVL-2, but not RSVL-3, inhibited COX-2-mediated PGE2 production in vitro and ex vivo. HT-29 human colon adenocarcinoma cells express high levels of COX-2 and either RSVL or RSVL-2, but not RSVL-3, suppressed anchorage independent growth of these cells in soft agar. RSVL or RSVL-2 (not RSVL-3) suppressed growth of COX-2+/+ cells by 60 or 80%, respectively. Notably, cells deficient in COX-2 were unresponsive to RSVL or RSVL-2. These data suggest that the anticancer effects of RSVL or RSLV-2 might be mediated directly through COX-2. PMID:18381589

  15. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less

  16. Cyclooxygenases 1 and 2 Differentially Regulate Blood Pressure and Cerebrovascular Responses to Acute and Chronic Intermittent Hypoxia: Implications for Sleep Apnea

    PubMed Central

    Beaudin, Andrew E.; Pun, Matiram; Yang, Christina; Nicholl, David D. M.; Steinback, Craig D.; Slater, Donna M.; Wynne‐Edwards, Katherine E.; Hanly, Patrick J.; Ahmed, Sofia B.; Poulin, Marc J.

    2014-01-01

    Background Obstructive sleep apnea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease resulting from intermittent hypoxia (IH)‐induced inflammation. Cyclooxygenase (COX)‐formed prostanoids mediate the inflammatory response, and regulate blood pressure and cerebral blood flow (CBF), but their role in blood pressure and CBF responses to IH is unknown. Therefore, this study's objective was to determine the role of prostanoids in cardiovascular and cerebrovascular responses to IH. Methods and Results Twelve healthy, male participants underwent three, 6‐hour IH exposures. For 4 days before each IH exposure, participants ingested a placebo, indomethacin (nonselective COX inhibitor), or Celebrex® (selective COX‐2 inhibitor) in a double‐blind, randomized, crossover study design. Pre‐ and post‐IH blood pressure, CBF, and urinary prostanoids were assessed. Additionally, blood pressure and urinary prostanoids were assessed in newly diagnosed, untreated OSA patients (n=33). Nonselective COX inhibition increased pre‐IH blood pressure (P≤0.04) and decreased pre‐IH CBF (P=0.04) while neither physiological variable was affected by COX‐2 inhibition (P≥0.90). Post‐IH, MAP was elevated (P≤0.05) and CBF was unchanged with placebo and nonselective COX inhibition. Selective COX‐2 inhibition abrogated the IH‐induced MAP increase (P=0.19), but resulted in lower post‐IH CBF (P=0.01). Prostanoids were unaffected by IH, except prostaglandin E2 was elevated with the placebo (P=0.02). Finally, OSA patients had elevated blood pressure (P≤0.4) and COX‐1 formed thromboxane A2 concentrations (P=0.02). Conclusions COX‐2 and COX‐1 have divergent roles in modulating vascular responses to acute and chronic IH. Moreover, COX‐1 inhibition may mitigate cardiovascular and cerebrovascular morbidity in OSA. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique identifier: NCT01280006 PMID:24815497

  17. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition.

    PubMed

    Binion, D G; Otterson, M F; Rafiee, P

    2008-11-01

    Angiogenesis, the growth of new blood vessels, is a critical homeostatic mechanism which regulates vascular populations in response to physiological requirements and pathophysiological demand, including chronic inflammation and cancer. The importance of angiogenesis in gastrointestinal chronic inflammation and cancer has been defined, as antiangiogenic therapy has demonstrated benefit in models of inflammatory bowel disease and colon cancer treatment. Curcumin is a natural product undergoing evaluation for the treatment of chronic inflammation, including inflammatory bowel disease (IBD). The effect of curcumin on human intestinal angiogenesis is not defined. The antiangiogenic effect of curcumin on in vitro angiogenesis was examined using primary cultures of human intestinal microvascular endothelial cells (HIMECs), stimulated with vascular endothelial growth factor (VEGF). Curcumin inhibited proliferation, cell migration and tube formation in HIMECs induced by VEGF. Activation of HIMECs by VEGF resulted in enhanced expression of cyclo-oxygenase-2 (COX-2) mRNA, protein and prostaglandin E(2) (PGE(2)) production. Pretreatment of HIMECs with 10 microM curcumin as well as 1 microM NS398, a selective inhibitor of COX-2, resulted in inhibition of COX-2 at the mRNA and protein level and PGE(2) production. Similarly COX-2 expression in HIMECs was significantly inhibited by Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (MAPK; SB203580) inhibitors and was reduced by p44/42 MAPK inhibitor (PD098059). Taken together, these data demonstrate an important role for COX-2 in the regulation of angiogenesis in HIMECs via MAPKs. Moreover, curcumin inhibits microvascular endothelial cell angiogenesis through inhibition of COX-2 expression and PGE(2) production, suggesting that this natural product possesses antiangiogenic properties, which warrants further investigation as adjuvant treatment of IBD and cancer.

  18. PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway.

    PubMed

    Yin, Xiao-Hui; Yan, Jing-Zhi; Yang, Guo; Chen, Li; Xu, Xiao-Feng; Hong, Xi-Ping; Wu, Shi-Liang; Hou, Xiao-Yu; Zhang, GuangYi

    2016-04-15

    Respecting the selective inhibition of peptides on protein-protein interactions, they might become potent methods in ischemic stroke therapy. In this study, we investigated the effect of PDZ1 inhibitor peptide on ischemic neuron apoptosis and the relative mechanism. Results showed that PDZ1 inhibitor peptide, which significantly disrupted GluK2-PSD-95 interaction, efficiently protected neuron from ischemia/reperfusion-induced apoptosis. Further, PDZ1 inhibited FasL expression, DISC assembly and activation of Caspase 8, Bid, Caspase 9 and Caspase 3 after global brain ischemia. Based on our previous report that GluK2-PSD-95 pathway increased FasL expression after global brain ischemia, the neuron protection effect of PDZ1 inhibitor peptide was considered to be achieved by disrupting GluK2-PSD-95 interaction and subsequently inhibiting FasL expression and Fas apoptosis pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Gunhyuk, E-mail: uranos5@kiom.re.kr

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-likemore » skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.« less

  20. Cyclooxygenase-2 expression in the eyes of cats with and without uveitis.

    PubMed

    Sim, Zhi Hui; Pinard, Chantale L; Plattner, Brandon L; Bienzle, Dorothee

    2018-01-01

    OBJECTIVE To characterize the distribution and intensity of cyclooxygenase (COX)-2 expression in the eyes of cats with and without uveitis and to determine whether COX-2 expression is correlated with severity of inflammation. SAMPLES Archived ocular tissue specimens from 51 cats with and 10 cats without ocular disease. PROCEDURES Specimens from only 1 eye were evaluated for each cat. Specimens were stained with H&E stain or immunohistochemical stain for detection of COX-2 and reviewed. For each eye, the type, severity, and distribution of inflammation and the distribution and intensity of COX-2 expression were determined for the uvea and other ocular tissues. Correlation between COX-2 expression and inflammation severity was also assessed. RESULTS COX-2 was not expressed in any nondiseased eye. Of the 51 diseased eyes, 20 had histologic evidence of lymphocytic-plasmacytic uveitis, 13 had neutrophilic uveitis, 11 had diffuse iris melanoma with uveitis, and 7 had diffuse iris melanoma without uveitis. Of the 44 eyes with uveitis, COX-2 was detected in the uvea of 16, including 11 eyes with lymphocytic-plasmacytic uveitis, 4 with neutrophilic uveitis, and 1 with diffuse iris melanoma-induced uveitis. Inflammation was severe, moderate, or mild in 10, 5, and 1 of those eyes, respectively. Cyclooxygenase-2 was detected in the cornea of 21 eyes with uveitis and 1 eye with diffuse iris melanoma without uveitis. Uveitis severity was positively correlated with COX-2 expression in both the uvea and cornea. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that COX-2 is an inflammatory mediator in feline uveitis but not diffuse iris melanoma.

  1. Nonylphenol regulates cyclooxygenase-2 expression via Ros-activated NF-κB pathway in sertoli TM4 cells.

    PubMed

    Liu, Xiaozhen; Nie, Shaoping; Huang, Danfei; Xie, Mingyong

    2015-09-01

    The aim of this study was to investigate the signaling pathways involved in the cyclooxygenase (COX)-2 regulation induced by nonylphenol (NP) in mouse testis Sertoli TM4 cells. Our results showed that treatment of TM4 cells with NP increased COX-2 protein expression and interleukin-6 (IL)-6 and prostaglandin E2 (PGE2) secretion in a dose-dependent manner. Pretreatment with reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), attenuated NP-induced ROS production, COX-2 expression, and IL-6 and PGE2 release in TM4 cells. Exposure to NP stimulated activation of NF-κB, whereas the NF-κB inhibitor, pyrrolidine dithiocarbamate, attenuated NP-enhanced COX-2 expression and IL-6 and PGE2 release in TM4 cells in a dose-dependent manner. Furthermore, NAC blocked NP-induced activation of NF-κB. In addition, inhibition of COX-2 mitigated NP-induced IL-6 release. In conclusion, NP induced ROS generation, activation of NF-κB pathway, COX-2 upregulation, and IL-6 and PGE2 secretion in TM4 cells. NP may regulate COX-2 expression via ROS-activated NF-κB pathway in Sertoli TM4 cells. © 2014 Wiley Periodicals, Inc.

  2. Derivation and evaluation of adverse outcome pathways for the effects of cyclooxygenase inhibitors on reproductive processes in fish

    EPA Science Inventory

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study ut...

  3. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented whenmore » animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2

  4. Hyperglycaemia in pregnant rats causes sex-related vascular dysfunction in adult offspring: role of cyclooxygenase-2.

    PubMed

    de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-08-01

    What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg -1 ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A 2 release was analysed with commercial kits and superoxide anion (O 2 - ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the

  5. Evaluation of loxoprofen and its alcohol metabolites for potency and selectivity of inhibition of cyclooxygenase-2.

    PubMed

    Riendeau, Denis; Salem, Myriam; Styhler, Angela; Ouellet, Marc; Mancini, Joseph A; Li, Chun Sing

    2004-03-08

    Loxoprofen, its trans-alcohol and cis-alcohol metabolites were evaluated for selectivity of inhibition of COX-2 over COX-1. The (2S,1'R,2'S)-trans-alcohol derivative was found to be the most active metabolite and to be a potent and nonselective inhibitor of COX-2 and COX-1 in both enzyme and human whole blood assays.

  6. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis

    PubMed Central

    Polito, F; Bitto, A; Irrera, N; Squadrito, F; Fazzari, C; Minutoli, L; Altavilla, D

    2010-01-01

    BACKGROUND AND PURPOSE Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis. EXPERIMENTAL APPROACH Rats were given CER (80 µg·kg−1 for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg−1 i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B4 and prostaglandin (PG)E2; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction. KEY RESULTS Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B4 and prostaglandin E2 levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration. CONCLUSIONS AND IMPLICATIONS Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. PMID:20977452

  7. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function.

    PubMed

    Yang, Yang; Luo, Lan; Cai, Xueting; Fang, Yuan; Wang, Jiaqi; Chen, Gang; Yang, Jie; Zhou, Qian; Sun, Xiaoyan; Cheng, Xiaolan; Yan, Huaijiang; Lu, Wuguang; Hu, Chunping; Cao, Peng

    2018-05-20

    Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells

    PubMed Central

    Strillacci, A; Griffoni, C; Spisni, E; Manara, M C; Tomasi, V

    2006-01-01

    Silencing those genes that are overexpressed in cancer and contribute to the survival and progression of tumour cells is the aim of several researches. Cyclooxygenase-2 (COX-2) is one of the most intensively studied genes since it is overexpressed in most tumours, mainly in colon cancer. The use of specific COX-2 inhibitors to treat colon cancer has generated great enthusiasm. Yet, the side effects of some inhibitors emerging during long-term treatment have caused much concern. Genes silencing by RNA interference (RNAi) has led to new directions in the field of experimental oncology. In this study, we detected sequences directed against COX-2 mRNA, that potently downregulate COX-2 gene expression and inhibit phorbol 12-myristate 13-acetate-induced angiogenesis in vitro in a specific, nontoxic manner. Moreover, we found that the insertion of a specific cassette carrying anti-COX-2 short hairpin RNA sequence into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT29) without activating any interferon response. Phenotypically, COX-2 deficient HT29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, the retroviral approach enhancing COX-2 knockdown, mediated by RNAi, proved to be an useful tool to better understand the role of COX-2 in colon cancer. Furthermore, the higher infection efficiency we observed in tumour cells, if compared to normal endothelial cells, may disclose the possibility to specifically treat tumour cells without impairing endothelial COX-2 activity. PMID:16622456

  9. Alpha-tocopherol succinate increases cyclooxygenase-2 activity: Tissue-specific action in pregnant rat uterus in vitro.

    PubMed

    Kothencz, Anna; Hajagos-Tóth, Judit; Csányi, Adrienn; Gáspár, Róbert

    2018-01-01

    Lipid soluble vitamin E plays a role in several physiological mechanisms, however, the mechanism of this action is controversial. We investigated how tocopherol (α-tocopherol acid succinate) influences the effects of cyclooxygenase inhibitors (COXi) in the smooth muscles. The contractility of the samples from 22-day-pregnant myometrium and non-pregnant myometrium and trachea was determined in an isolated organ bath in vitro. The activity of cyclooxygenase enzymes (COX) was also measured in the tissues. Diclofenac (10 -9 -10 -5 M) and rofecoxib (10 -10 -10 -5 M) decreased the contractions in non-pregnant and 22-day-pregnant uteri. Tocopherol (10 -7 M) increased the relaxant effect only in pregnant uteri. Both diclofenac (10 -9 -10 -5 M) and rofecoxib (10 -10 -10 -5 M) reduced the tracheal tones, while they were slightly intensified by pretreatment with tocopherol (10 -7 M). Tocopherol enhanced the contractions of pregnant uteri. Tocopherol (10 -7 M) itself can induce the cyclooxygenase activity and shift the COX-1 and COX-2 ratio to COX-2. The lowest COX activity was found in non-pregnant uteri, while the highest one was in the trachea. The COX enzymes, especially COX-2, play an important role in the contraction of pregnant uteri in rat. Tocopherol has a tissue specific COX-2 activity increasing effect in pregnant rat uterus but has no such action in non-pregnant uteri or tracheal tissue. Hereby, tocopherol may intensify selectively the uterine relaxing effect of COX-2 inhibitors in preterm contractions. However, tocopherol can enhance the contractile response of pregnant uterus that may increase the risk of premature contractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Involvement of cyclooxygenase-2 in carbachol-induced positive inotropic response in mouse isolated left atrium.

    PubMed

    Hara, Yukio; Ike, Asako; Tanida, Riyo; Okada, Muneyoshi; Yamawaki, Hideyuki

    2009-12-01

    The mouse heart is expected to have characteristic contractile properties. However, basic information on the function of the mouse heart has not been accumulated sufficiently. In this study, the involvement of cyclooxygenase (COX)-2 in carbachol (CCh)-induced inotropic response was investigated in mouse isolated left atrium. Influences of CCh and their mechanisms of action on developed tension elicited by electrical stimulation were examined pharmacologically. The presence of COX-2 in atrium was examined by Western blotting and immunohistochemical analysis. CCh (3 microM for 15 min) produced a biphasic inotropic response: a transient decrease in contractile force followed by a late increase. Atropine suppressed the biphasic inotropic response to CCh. A muscarinic M(3) receptor antagonist, 4-diphenyl-acetoxy-N-methlpiperidine, inhibited the late positive inotropic action. Blockade of prostaglandin (PG) E(2) or F(2alpha) receptor by 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) or 9alpha, 15R-dihydroxy-11beta-fluoro-15-(2,3-dihydro-1H-inden-2-yl)-16,17,18,19,20-pentanor-prosta 5Z, 13E-dien-1-oic acid (AL8810), respectively, significantly suppressed the positive inotropic response to CCh. A nonselective COX inhibitor, indomethacin, and a selective COX-2 inhibitor, N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) inhibited the positive response. A COX-1 inhibitor, valeroyl salicylate, did not affect the positive response. The positive response was almost completely abolished in the endocardial endothelium-deprived atria. Existence of COX-2 in endocardial endothelium was confirmed by Western blotting and immunohistochemical analysis. The present study indicated that the CCh-induced positive inotropic response was mediated by PGs, possibly PGE(2) and PGF(2alpha), released in part from endocardial endothelium. Furthermore, for the first time, we demonstrated that the production of PGs depended in part on COX-2 in endocardial endothelium through the

  11. The protection of meloxicam against chronic aluminium overload-induced liver injury in rats.

    PubMed

    Yang, Yang; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Liang, Guojuan; Kuang, Shengnan; Mai, Shaoshan; Ma, Jie; Tian, Xiaoyan; Chen, Qi; Yang, Junqing

    2017-04-04

    The present study was designed to observe the protective effect and mechanisms of meloxicam on liver injury caused by chronic aluminium exposure in rats. The histopathology was detected by hematoxylin-eosin staining. The levels of prostaglandin E2, cyclic adenosine monophosphate and inflammatory cytokines were detected by enzyme linked immunosorbent assay. The expressions of cyclooxygenases-2, prostaglandin E2 receptors and protein kinase A were measured by western blotting and immunohistochemistry. Our experimental results showed that aluminium overload significantly damaged the liver. Aluminium also significantly increased the expressions of cyclooxygenases-2, prostaglandin E2, cyclic adenosine monophosphate, protein kinase A and the prostaglandin E2 receptors (EP1,2,4) and the levels of inflammation and oxidative stress, while significantly decreased the EP3 expression in liver. The administration of meloxicam significantly improved the impairment of liver. The contents of prostaglandin E2 and cyclic adenosine monophosphate were significantly decreased by administration of meloxicam. The administration of meloxicam also significantly decreased the expressions of cyclooxygenases-2 and protein kinase A and the levels of inflammation and oxidative stress, while significantly increased the EP1,2,3,4 expressions in rat liver. Our results suggested that the imbalance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway is involved in the injury of chronic aluminium-overload rat liver. The protective mechanism of meloxicam on aluminium-overload liver injury is attributed to reconstruct the balance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway.

  12. Targeted inhibition of p38alpha MAPK suppresses tumor-associated endothelial cell migration in response to hypericin-based photodynamic therapy.

    PubMed

    Hendrickx, Nico; Dewaele, Michael; Buytaert, Esther; Marsboom, Glenn; Janssens, Stefan; Van Boven, Maurits; Vandenheede, Jackie R; de Witte, Peter; Agostinis, Patrizia

    2005-11-25

    Photodynamic therapy (PDT) is an established anticancer modality and hypericin is a promising photosensitizer for the treatment of bladder tumors. We show that exposure of bladder cancer cells to hypericin PDT leads to a rapid rise in the cytosolic calcium concentration which is followed by the generation of arachidonic acid by phospholipase A2 (PLA2). PLA2 inhibition significantly protects cells from the PDT-induced intrinsic apoptosis and attenuates the activation of p38 MAPK, a survival signal mediating the up-regulation of cyclooxygenase-2 that converts arachidonic acid into prostanoids. Importantly, inhibition of p38alpha MAPK blocks the release of vascular endothelial growth factor and suppresses tumor-promoted endothelial cell migration, a key step in angiogenesis. Hence, targeted inhibition of p38alpha MAPK could be therapeutically beneficial to PDT, since it would prevent COX-2 expression, the inducible release of growth and angiogenic factors by the cancer cells, and cause an increase in the levels of free arachidonic acid, which promotes apoptosis.

  13. Inhibitory effects of tocopherols on expression of the cyclooxygenase-2 gene in RAW264.7 cells stimulated by lipopolysaccharide, tumor necrosis factor-α or Porphyromonas gingivalis fimbriae.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Koh, Teho; Seki, Yuya; Tamura, Seiko; Katayama, Tadashi; Fujisawa, Seiichiro

    2013-01-01

    Tocopherols, which include α-, β-, γ-, and δ-tocopherol, protect cells against harmful free radicals and play an important role in preventing many human diseases such as cancer, inflammatory disorders, and ageing itself. However, the causal relationships between periodontal or oral chronic diseases and tocopherols have not been sufficiently studied. The present study investigated the inhibitory effects of these compounds on the expression of cyclooxygenase-2 (COX2) mRNA in RAW264.7 cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor-α (TNFα) or fimbriae of Poryphyromonas gingivalis (Pg), an oral anaerobe. The cytotoxicity (EC₅₀) of tocopherols toward RAW cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX2 mRNA stimulated with LPS, TNFα or Pg fimbriae was investigated using real-time polymerase chain reaction (PCR). Each tocopherol had similarly low cytotoxicity. COX2 gene expression in RAW cells after exposure to the three different macrophage activators was inhibited by the tocopherols (p<0.01). Compared to α-tocopherol, β-, γ- and δ-tocopherol exhibited greater inhibitory effects (p<0.05). Tocopherols exhibit anti-inflammatory activity, and β-, γ- and δ-tocopherol have particularly more potent anti-inflammatory activity than α-tocopherol. Tocopherols may have potential utility for prevention of periodontal and chronic oral diseases.

  14. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis.

    PubMed

    Polito, F; Bitto, A; Irrera, N; Squadrito, F; Fazzari, C; Minutoli, L; Altavilla, D

    2010-11-01

    Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis. Rats were given CER (80 µg·kg⁻¹ for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg⁻¹ i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B₄ and prostaglandin (PG)E₂ ; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction. Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B₄ and prostaglandin E₂ levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration. Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  15. Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo

    PubMed Central

    Walduck, Anna K; Weber, Matthias; Wunder, Christian; Juettner, Stefan; Stolte, Manfred; Vieth, Michael; Wiedenmann, Bertram; Meyer, Thomas F; Naumann, Michael; Hoecker, Michael

    2009-01-01

    Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity. PMID:19317916

  16. Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Rordorf, Christiane M; Choi, Les; Marshall, Paul; Mangold, James B

    2005-01-01

    Lumiracoxib (Prexige) is a selective cyclo-oxygenase (COX)-2 inhibitor developed for the treatment of osteoarthritis, rheumatoid arthritis and acute pain. Lumiracoxib possesses a carboxylic acid group that makes it weakly acidic (acid dissociation constant [pKa] 4.7), distinguishing it from other selective COX-2 inhibitors. Lumiracoxib has good oral bioavailability (74%). It is rapidly absorbed, reaching maximum plasma concentrations 2 hours after dosing, and is highly plasma protein bound. Lumiracoxib has a short elimination half-life from plasma (mean 4 hours) and demonstrates dose-proportional plasma pharmacokinetics with no accumulation during multiple dosing. In patients with rheumatoid arthritis, peak lumiracoxib synovial fluid concentrations occur 3-4 hours later than in plasma and exceed plasma concentrations from 5 hours after dosing to the end of the 24-hour dosing interval. These data suggest that lumiracoxib may be associated with reduced systemic exposure, while still reaching sites where COX-2 inhibition is required for pain relief. Lumiracoxib is metabolised extensively prior to excretion, with only a small amount excreted unchanged in urine or faeces. Lumiracoxib and its metabolites are excreted via renal and faecal routes in approximately equal amounts. The major metabolic pathways identified involve oxidation of the 5-methyl group of lumiracoxib and/or hydroxylation of its dihaloaromatic ring. Major metabolites of lumiracoxib in plasma are the 5-carboxy, 4'-hydroxy and 4'-hydroxy-5-carboxy derivatives, of which only the 4'-hydroxy derivative is active and COX-2 selective. In vitro, the major oxidative pathways are catalysed primarily by cytochrome P450 (CYP) 2C9 with very minor contribution from CYP1A2 and CYP2C19. However, in patients genotyped as poor CYP2C9 metabolisers, exposure to lumiracoxib (area under the plasma concentration-time curve) is not significantly increased compared with control subjects, indicating no requirement for adjustment

  17. Immunosuppression in irradiated breast cancer patients: In vitro effect of cyclooxygenase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, J.; Blomgren, H.; Rotstein, S.

    1989-01-01

    We have documented in previous studies that local irradiation therapy for breast cancer caused severe lymphopenia with reduction of both T and non-T lymphocytes. Non-T cells were relatively more depressed but recovered within six months. The recovery of T cells, on the other hand, remained incomplete 10-11 years after irradiation. Several lymphocyte functions were also severely impaired. An association was found between prognosis and postirradiation mitogen reactivity of lymphocytes from these patients. Mortality up to eight years after irradiation was significantly higher in patients with low postirradiation phytohemagglutinin and PPD reactivity. The radiation induced decrease in mitogenic response seemed mainlymore » to be caused by immunosuppressive monocytes, which suggests that the underlying mechanism might be mediated by increased production of prostaglandins by monocytes. For this reason we examined the effect of some cyclooxygenase products on different lymphocyte functions and found that prostaglandins A2, D2, and E2 inhibited phytohemagglutinin response in vitro. Natural killer cell activity was also reduced by prostaglandins D2 and E2. The next step was to examine various inhibitors of cyclooxygenase in respect to their capacity to revert irradiation-induced suppression of in vitro mitogen response in lymphocytes from breast cancer patients. It was demonstrated that Diclofenac Na (Voltaren), Meclofenamic acid, Indomethacin, and lysin-mono-acetylsalicylate (Aspisol) could enhance mitogen responses both before and after radiation therapy. This effect was most pronounced at completion of irradiation. On a molar basis, Diclofenac Na was most effective followed by Indomethacin, Meclofenamic acid, and lysin-monoacetylsalicylate.« less

  18. Identification of 2,3-diaryl-pyrazolo[1,5-b]pyridazines as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Beswick, Paul; Bingham, Sharon; Bountra, Chas; Brown, Terry; Browning, Kerry; Campbell, Ian; Chessell, Iain; Clayton, Nick; Collins, Sue; Corfield, John; Guntrip, Stephen; Haslam, Claudine; Lambeth, Paul; Lucas, Fiona; Mathews, Neil; Murkit, Graham; Naylor, Alan; Pegg, Neil; Pickup, Elizabeth; Player, Hazel; Price, Helen; Stevens, Alexander; Stratton, Sharon; Wiseman, Joanne

    2004-11-01

    GW406381 (8), currently undergoing clinical evaluation for the treatment of inflammatory pain is a member of a novel series of 2,3-diaryl-pyrazolo[1,5-b]pyridazine based cyclooxygenase-2 (COX-2) inhibitors, which have been shown to be highly potent and selective. Several examples of the series, in addition to possessing favourable pharmacokinetic profiles and analgesic activity in vivo, have also demonstrated relatively high brain penetration in the rat compared with the clinically available compounds, which may ultimately prove beneficial in the treatment of pain.

  19. Anti-inflammatory activity of 6-hydroxy-2,7-dimethoxy-1,4-henanthraquinone from tuberous roots of yam (Dioscorea batatas) through inhibition of prostaglandin D₂ and leukotriene C₄ production in mouse bone marrow-derived mast cells.

    PubMed

    Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook

    2011-09-01

    6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.

  20. Derivation and evaluation of putative adverse outcome pathways for the effects of cyclooxygenase inhibitors on reproductive processes in female fish

    EPA Science Inventory

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High conten...

  1. Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome.

    PubMed

    Mulet, Maria; Blasco-Ibáńez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2017-01-01

    Neuroinflammation is one of the hallmarks of Alzheimer's disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer's disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome individuals and mice. Importantly, mice already presented an overexpression of COX-2 at postnatal day 30, before neurodegeneration begins; which suggests that neuroinflammation may underlie the posterior neurodegeneration observed in individuals with Down syndrome and in Ts65Dn mice and could be a factor for the premature appearance of Alzheimer's disease..

  2. Thiopental Inhibits Global Protein Synthesis by Repression of Eukaryotic Elongation Factor 2 and Protects from Hypoxic Neuronal Cell Death

    PubMed Central

    Schwer, Christian I.; Lehane, Cornelius; Guelzow, Timo; Zenker, Simone; Strosing, Karl M.; Spassov, Sashko; Erxleben, Anika; Heimrich, Bernd; Buerkle, Hartmut; Humar, Matjaz

    2013-01-01

    Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited. PMID:24167567

  3. Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling

    PubMed Central

    Xu, Qiu-yun; Zhang, Jing; Lin, Meng-ting; Tu, Ying; He, Li; Bi, Zhi-gang; Cheng, Bo

    2016-01-01

    Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant. PMID:27713170

  4. Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling.

    PubMed

    Ji, Chao; Huang, Jin-Wen; Xu, Qiu-Yun; Zhang, Jing; Lin, Meng-Ting; Tu, Ying; He, Li; Bi, Zhi-Gang; Cheng, Bo

    2016-12-20

    Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant.

  5. Presynaptic inhibition of transmitter release from rat sympathetic neurons by bradykinin.

    PubMed

    Edelbauer, Hannah; Lechner, Stefan G; Mayer, Martina; Scholze, Thomas; Boehm, Stefan

    2005-06-01

    Bradykinin is known to stimulate neurons in rat sympathetic ganglia and to enhance transmitter release from their axons by interfering with the autoinhibitory feedback, actions that involve protein kinase C. Here, bradykinin caused a transient increase in the release of previously incorporated [3H] noradrenaline from primary cultures of dissociated rat sympathetic neurons. When this effect was abolished by tetrodotoxin, bradykinin caused an inhibition of tritium overflow triggered by depolarizing K+ concentrations. This inhibition was additive to that caused by the alpha2-adrenergic agonist UK 14304, desensitized within 12 min, was insensitive to pertussis toxin, and was enhanced when protein kinase C was inactivated. The effect was half maximal at 4 nm and antagonized competitively by the B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor indomethacin and the angiotensin converting enzyme inhibitor captopril did not alter the inhibition by bradykinin. The M-type K+ channel opener retigabine attenuated the secretagogue action of bradykinin, but left its inhibitory action unaltered. In whole-cell patch-clamp recordings, bradykinin reduced voltage-activated Ca2+ currents in a pertussis toxin-insensitive manner, and this action was additive to the inhibition by UK 14304. These results demonstrate that bradykinin inhibits noradrenaline release from rat sympathetic neurons via presynaptic B2 receptors. This effect does not involve cyclooxygenase products, M-type K+ channels, or protein kinase C, but rather an inhibition of voltage-gated Ca2+ channels.

  6. Genetic association of cyclooxygenase-2 gene polymorphisms with Parkinson's disease susceptibility in Chinese Han population.

    PubMed

    Dai, Yi; Wu, Yuquan; Li, Yansheng

    2015-01-01

    The aim of this study was to explore the genetic association of cyclooxygenase-2 (COX2) gene promoter region polymorphisms with Parkinson's disease (PD) susceptibility in Chinese Han population. The genotyping of COX2 gene polymorphisms was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 122 patients with PD and 120 healthy persons. The association strength of gene polymorphism with disease was measured by odds ratio (OR) and 95% confidence interval (95% CI) calculated using χ(2) test which also evaluated the Hardy-Weinberg equilibrium (HWE) of gene polymorphism in controls. The linkage disequilibrium and haplotype were also analyzed as evidence in the analysis of association. On condition that the genotypes distributions of COX2 -1290A>G, -1195G>A, -765G>C in the control group all conformed to HWE, however, only the homozygous genotype AA of -1195G>A polymorphism showed an association with PD (OR=0.432, 95% CI=0.196-0.950). In addition, in haplotype analysis, G-A-C haplotype frequency in cases was significantly lower than the controls, compared with the common haplotype A-G-G (P=0.031, OR=0.375, 95% CI=0.149-0.940). COX2 -1195G>A polymorphism might play a protective role in the onset of PD and G-A-C haplotype in this three promoter region polymorphisms also showed a negative association.

  7. Down-regulation of Cyclooxygenase-2 by the Carboxyl Tail of the Angiotensin II Type 1 Receptor*

    PubMed Central

    Sood, Rapita; Minzel, Waleed; Rimon, Gilad; Tal, Sharon; Barki-Harrington, Liza

    2014-01-01

    The enzyme cyclooxygenase-2 (COX-2) plays an important role in the kidney by up-regulating the production of the vasoconstrictor hormone angiotensin II (AngII), which in turn down-regulates COX-2 expression via activation of the angiotensin II type 1 receptor (AT1) receptor. Chemical inhibition of the catalytic activity of COX-2 is a well-established strategy for treating inflammation but little is known of cellular mechanisms that dispose of the protein itself. Here we show that in addition to its indirect negative feedback on COX-2, AT1 also down-regulates the expression of the COX-2 protein via a pathway that does not involve G-protein or β-arrestin-dependent signaling. Instead, AT1 enhances the ubiquitination and subsequent degradation of the enzyme in the proteasome through elements in its cytosolic carboxyl tail (CT). We find that a mutant receptor that lacks the last 35 amino acids of its CT (Δ324) is devoid of its ability to reduce COX-2, and that expression of the CT sequence alone is sufficient to down-regulate COX-2. Collectively these results propose a new role for AT1 in regulating COX-2 expression in a mechanism that deviates from its canonical signaling pathways. Down-regulation of COX-2 by a short peptide that originates from AT1 may present as a basis for novel therapeutic means of eliminating excess COX-2 protein. PMID:25231994

  8. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  9. Angiotensin II-AT1-receptor signaling is necessary for cyclooxygenase-2-dependent postnatal nephron generation.

    PubMed

    Frölich, Stefanie; Slattery, Patrick; Thomas, Dominique; Goren, Itamar; Ferreiros, Nerea; Jensen, Boye L; Nüsing, Rolf M

    2017-04-01

    Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2 -/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2 -/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2 -/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2 -/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Haibo; Tian, Yue; Yang, Yang

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cellmore » proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.« less

  11. Human umbilical vein: involvement of cyclooxygenase-2 pathway in bradykinin B1 receptor-sensitized responses.

    PubMed

    Errasti, A E; Rey-Ares, V; Daray, F M; Rogines-Velo, M P; Sardi, S P; Paz, C; Podestá, E J; Rothlin, R P

    2001-08-01

    In isolated human umbilical vein (HUV), the contractile response to des-Arg9-bradykinin (des-Arg9-BK), selective BK B1 receptor agonist, increases as a function of the incubation time. Here, we evaluated whether cyclooxygenase (COX) pathway is involved in BK B1-sensitized response obtained in 5-h incubated HUV rings. The effect of different concentrations of indomethacin, sodium salicylate, ibuprofen, meloxicam, lysine clonixinate or NS-398 administrated 30 min before concentration-response curves (CRC) was studied. All treatments produced a significant rightward shift of the CRC to des-Arg9-BK in a concentration-dependent manner, which provides pharmacological evidence that COX pathway is involved in the BK B1 responses. Moreover, in this tissue, the NS-398 pKb (5.2) observed suggests that COX-2 pathway is the most relevant. The strong correlation between published pIC50 for COX-2 and the NSAIDs' pKbs estimated further supports the hypothesis that COX-2 metabolites are involved in BK B1 receptor-mediated responses. In other rings, indomethacin (30, 100 micromol/l) or NS-398 (10, 30 micromol/l) produced a significant rightward shift of the CRC to BK, selective BK B2 agonist, and its pKbs were similar to the values to inhibit BK B1 receptor responses, suggesting that COX-2 pathway also is involved in BK B2 receptor responses. Western blot analysis shows that COX-1 and COX-2 isoenzymes are present before and after 5-h in vitro incubation and apparently COX-2 does not suffer additional induction.

  12. γ-Oryzanol suppresses COX-2 expression by inhibiting reactive oxygen species-mediated Erk1/2 and Egr-1 signaling in LPS-stimulated RAW264.7 macrophages.

    PubMed

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Kim, Jung-Bong; Lim, Yoongho; Lee, Young Han

    2017-09-16

    Cyclooxygenase (COX)-2 produces prostanoids, which contribute to inflammatory responses. Nuclear factor (NF)-κB is a key transcription factor mediating COX-2 expression. γ-Oryzanol is an active component in rice bran oil, which inhibits lipopolysaccharide (LPS)-mediated COX-2 expression by inhibiting NF-κB. However, the inhibition of COX-2 expression by γ-oryzanol independently of NF-κB is poorly understood. We found that LPS upregulated Egr-1 expression at the transcriptional level. Forced expression of Egr-1 trans-activated the Cox-2 promoter independently of NF-κB. In contrast, silencing of Egr-1 abrogated LPS-mediated COX-2 expression. LPS produced reactive oxygen species (ROS), which, in turn, induced Egr-1 expression via the Erk1/2 MAPK pathway. ROS scavenging activity of γ-oryzanol suppressed Egr-1 expression by inhibiting the Erk1/2 MAPK pathway. Our results suggest that γ-oryzanol inhibits LPS-mediated COX-2 expression by suppressing Erk1/2-mediated Egr-1 expression. This study supports that γ-oryzanol may be useful for ameliorating LPS-mediated inflammatory responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  14. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestre, Francisco; Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es; Rodriguez, Jose

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2more » defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.« less

  15. Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition.

    PubMed

    Paudel, U; Lee, Y H; Kwon, T H; Park, N H; Yun, B S; Hwang, P H; Yi, H K

    2014-11-01

    The aim of this study was to elucidate the role of 6-6 bieckol (EB1) and pholorofucofuroeckol-A (EB5) from brown seaweed marine algae (Eisenia bicyclis) on lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (HDPCs). The cytotoxicity of EB1 and EB5 was examined by MTT assay on LPS-induced human dental pulp cells. Their role on expression of inflammatory, odontogenic, and osteogenic molecules was determined by Western blot analysis. The dentin mineralization was checked by alkaline phosphatase activity. The five compounds from E. bicyclis have different structure with non-cytotoxic in HDPCs. EB1 and EB5 showed anti-inflammatory properties and inhibited phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) and phosphorylated-c-jun N-terminal kinases (p-JNK) without any cytotoxicity. In particular, EB1 inhibited cyclooxygenase-2 (COX-2) and p-ERK1/2 signaling, and EB5 inhibited only p-ERK1/2 signaling but not COX-2. Both compounds inhibited nuclear factor kappa-B (NF-κB) translocation. Furthermore, EB1 and EB5 increased dentinogenic and osteogenic molecules, and dentin mineralized via alkaline phosphatase activity (ALP) in LPS-induced HDPCs. This study elucidates that EB1 and EB5 have different types of anti-inflammatory property and help in dentin formation. Therefore, these compounds derived from marine algae of E. bicyclis may be used as selective therapeutic strategies for pulpitis and oral diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Gene Therapy With Inducible Nitric Oxide Synthase Protects Against Myocardial Infarction via a Cyclooxygenase-2—Dependent Mechanism

    PubMed Central

    Li, Qianhong; Guo, Yiru; Xuan, Yu-Ting; Lowenstein, Charles J.; Stevenson, Susan C.; Prabhu, Sumanth D.; Wu, Wen-Jian; Zhu, Yanqing; Bolli, Roberto

    2013-01-01

    Although the inducible isoform of NO synthase (iNOS) mediates late preconditioning (PC), it is unknown whether iNOS gene transfer can replicate the cardioprotective effects of late PC, and the role of this protein in myocardial ischemia is controversial. Thus, the cDNA for human iNOS was cloned behind the Rous sarcoma virus (RSV) promoter to create adenovirus (Ad) 5/iNOS lacking E1, E2a, and E3 regions. Intramyocardial injection of Ad5/iNOS in mice increased local iNOS protein expression and activity and markedly reduced infarct size. The infarct-sparing effects of Ad5/iNOS were at least as powerful as those of ischemic PC. The increased iNOS expression was associated with increased cyclooxygenase-2 (COX-2) protein expression and prostanoid levels. Pretreatment with the COX-2–selective inhibitor NS-398 completely abrogated the infarct-sparing actions of Ad5/iNOS, demonstrating that COX-2 is an obligatory downstream effector of iNOS-dependent cardioprotection. We conclude that gene transfer of iNOS (an enzyme commonly thought to be detrimental) affords powerful cardioprotection the magnitude of which is equivalent to that of late PC. This is the first report that upregulation of iNOS, in itself, is sufficient to reduce infarct size. The results provide proof-of-principle for gene therapy against ischemia/reperfusion injury, which increases local myocardial NO synthase levels without the need for continuous intravenous infusion of NO donors and without altering systemic hemodynamics. The data also reveal the existence of a close coupling between iNOS and COX-2, whereby induction of the former enzyme leads to secondary induction of the latter, which in turn mediates the cytoprotective effects of iNOS. We propose that iNOS and COX-2 form a stress-responsive functional module that mitigates ischemia/reperfusion injury. PMID:12702642

  17. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    PubMed

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  18. Ca(2+)-mediated prostaglandin E2 induction reduces haematoporphyrin-derivative-induced cytotoxicity of T24 human bladder transitional carcinoma cells in vitro.

    PubMed Central

    Penning, L C; Keirse, M J; VanSteveninck, J; Dubbelman, T M

    1993-01-01

    The effects of haematoporphyrin-derivative-mediated photodynamic treatment on arachidonic acid metabolism and its relation to clonogenicity have been studied in human bladder-tumour cells. Photodynamic treatment resulted in a transient release of arachidonic acid-derived compounds; prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) especially were strongly increased. This release was reduced by chelation of intracellular Ca2+ with Quin-2 or by lowering the extracellular Ca2+ concentration in the medium with EGTA, presumably resulting in inhibition of phospholipase A2. A similar reduction was obtained when indomethacin, an inhibitor of the cyclo-oxygenase pathway, was added prior to light exposure. These three treatments enhanced the photosensitivity, as revealed by the clonogenicity assay. Incubation with PGE2 prior to light exposure, but not with TXB2, protected against reproductive-cell death. The results of these experiments suggest that Ca(2+)-mediated activation of cyclo-oxygenase, resulting in increased levels of PGE2, participates in a cellular-defence mechanism against photodynamic cell killing. PMID:8503851

  19. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase

    PubMed Central

    Limberg, Jacqueline K.; Johansson, Rebecca E.; Peltonen, Garrett L.; Harrell, John W.; Kellawan, J. Mikhail; Eldridge, Marlowe W.; Sebranek, Joshua J.

    2016-01-01

    We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [NG-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P < 0.01), and this effect was not different between men and women (P = 0.41). l-NMMA infusion had no effect on isoproterenol-mediated dilation in men (P > 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P < 0.01) and women (P = 0.04) and this rise was lost with subsequent l-NMMA infusion (men, P < 0.01; women, P < 0.05). β-Adrenergic vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease. PMID:26747505

  20. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation.

    PubMed

    Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre

    2002-11-01

    Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.

  1. Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: dual inhibitors of cyclooxygenases and 5-lipoxygenase.

    PubMed

    Yu, Gang; Praveen Rao, P N; Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2010-04-01

    A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs. 2010 Elsevier Ltd. All rights reserved.

  2. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    PubMed

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  3. Differential effect of ethanol and hydrogen peroxide on barrier function and prostaglandin E2 release in differentiated Caco-2 cells: selective prevention by growth factors.

    PubMed

    Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro

    2009-02-01

    The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.

  4. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway

    PubMed Central

    Duffy, Diane M.

    2015-01-01

    BACKGROUND Prostaglandin E2 (PGE2) is an essential intrafollicular regulator of ovulation. In contrast with the one-gene, one-protein concept for synthesis of peptide signaling molecules, production and metabolism of bioactive PGE2 requires controlled expression of many proteins, correct subcellular localization of enzymes, coordinated PGE2 synthesis and metabolism, and prostaglandin transport in and out of cells to facilitate PGE2 action and degradation. Elevated intrafollicular PGE2 is required for successful ovulation, so disruption of PGE2 synthesis, metabolism or transport may yield effective contraceptive strategies. METHODS This review summarizes case reports and studies on ovulation inhibition in women and macaques treated with cyclooxygenase inhibitors published from 1987 to 2014. These findings are discussed in the context of studies describing levels of mRNA, protein, and activity of prostaglandin synthesis and metabolic enzymes as well as prostaglandin transporters in ovarian cells. RESULTS The ovulatory surge of LH regulates the expression of each component of the PGE2 synthesis-metabolism-transport pathway within the ovulatory follicle. Data from primary ovarian cells and cancer cell lines suggest that enzymes and transporters can cooperate to optimize bioactive PGE2 levels. Elevated intrafollicular PGE2 mediates key ovulatory events including cumulus expansion, follicle rupture and oocyte release. Inhibitors of the prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme (also known as cyclooxygenase-2 or COX2) reduce ovulation rates in women. Studies in macaques show that PTGS2 inhibitors can reduce the rates of cumulus expansion, oocyte release, follicle rupture, oocyte nuclear maturation and fertilization. A PTGS2 inhibitor reduced pregnancy rates in breeding macaques when administered to simulate emergency contraception. However, PTGS2 inhibition did not prevent pregnancy in monkeys when administered to simulate monthly contraceptive use. CONCLUSION

  5. The G-765C promoter polymorphism in cyclooxygenase-2 (PTGS2), aspirin utilization and cardiovascular disease risk: the Atherosclerosis Risk in Communities (ARIC) study

    USDA-ARS?s Scientific Manuscript database

    Cyclooxygenase-2 derived prostaglandins modulate cardiovascular disease risk. We sought to determine if the reduced function G-765C promoter polymorphism in PTGS2 was associated with incident coronary heart disease (CHD) or ischemic stroke risk, and if this was modified by aspirin utilization. Usin...

  6. XRCC5 cooperates with p300 to promote cyclooxygenase-2 expression and tumor growth in colon cancers

    PubMed Central

    Hao, Jiajiao; Chen, Miao; Yu, Wendan; Guo, Wei; Chen, Yiming; Huang, Wenlin; Deng, Wuguo

    2017-01-01

    Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandins (PGs) biosynthesis. Previous studies indicate that COX-2, one of the isoforms of COX, is highly expressed in colon cancers and plays a key role in colon cancer carcinogenesis. Thus, searching for novel transcription factors regulating COX-2 expression will facilitate drug development for colon cancer. In this study, we identified XRCC5 as a binding protein of the COX-2 gene promoter in colon cancer cells with streptavidin-agarose pulldown assay and mass spectrometry analysis, and found that XRCC5 promoted colon cancer growth through modulation of COX-2 signaling. Knockdown of XRCC5 by siRNAs inhibited the growth of colon cancer cells in vitro and of tumor xenografts in a mouse model in vivo by suppressing COX-2 promoter activity and COX-2 protein expression. Conversely, overexpression of XRCC5 promoted the growth of colon cancer cells by activating COX-2 promoter and increasing COX-2 protein expression. Moreover, the role of p300 (a transcription co-activator) in acetylating XRCC5 to co-regulate COX-2 expression was also evaluated. Immunofluorescence assay and confocal microscopy showed that XRCC5 and p300 proteins were co-located in the nucleus of colon cancer cells. Co-immunoprecipitation assay also proved the interaction between XRCC5 and p300 in nuclear proteins of colon cancer cells. Cell viability assay indicated that the overexpression of wild-type p300, but not its histone acetyltransferase (HAT) domain deletion mutant, increased XRCC5 acetylation, thereby up-regulated COX-2 expression and promoted the growth of colon cancer cells. In contrast, suppression of p300 by a p300 HAT-specific inhibitor (C646) inhibited colon cancer cell growth by suppressing COX-2 expression. Taken together, our results demonstrated that XRCC5 promoted colon cancer growth by cooperating with p300 to regulate COX-2 expression, and suggested that the XRCC5/p300/COX-2 signaling pathway was a potential target in the

  7. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  8. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  9. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Swarbrick, Martin E; Beswick, Paul J; Gleave, Robert J; Green, Richard H; Bingham, Sharon; Bountra, Chas; Carter, Malcolm C; Chambers, Laura J; Chessell, Iain P; Clayton, Nick M; Collins, Sue D; Corfield, John A; Hartley, C David; Kleanthous, Savvas; Lambeth, Paul F; Lucas, Fiona S; Mathews, Neil; Naylor, Alan; Page, Lee W; Payne, Jeremy J; Pegg, Neil A; Price, Helen S; Skidmore, John; Stevens, Alexander J; Stocker, Richard; Stratton, Sharon C; Stuart, Alastair J; Wiseman, Joanne O

    2009-08-01

    A novel series of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidine-based cyclooxygenase-2 (COX-2) inhibitors, which have a different arrangement of substituents compared to the more common 1,2-diarylheterocycle based molecules, have been discovered. For example, 2-(butyloxy)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)pyrimidine (47), a member of the 2-pyrimidinyl ether series, has been shown to be a potent and selective inhibitor with a favourable pharmacokinetic profile, high brain penetration and good efficacy in rat models of hypersensitivity.

  10. DuCLOX-2/5 Inhibition Attenuates Inflammatory Response and Induces Mitochondrial Apoptosis for Mammary Gland Chemoprevention

    PubMed Central

    Gautam, Swetlana; Rawat, Atul K.; Sammi, Shreesh R.; Roy, Subhadeep; Singh, Manjari; Devi, Uma; Yadav, Rajnish K.; Singh, Lakhveer; Rawat, Jitendra K.; Ansari, Mohd N.; Saeedan, Abdulaziz S.; Kumar, Dinesh; Pandey, Rakesh; Kaithwas, Gaurav

    2018-01-01

    The present study is a pursuit to define implications of dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) (DuCLOX-2/5) inhibition on various aspects of cancer augmentation and chemoprevention. The monotherapy and combination therapy of zaltoprofen (COX-2 inhibitor) and zileuton (5-LOX inhibitor) were validated for their effect against methyl nitrosourea (MNU) induced mammary gland carcinoma in albino wistar rats. The combination therapy demarcated significant effect upon the cellular proliferation as evidenced through decreased in alveolar bud count and restoration of the histopathological architecture when compared to toxic control. DuCLOX-2/5 inhibition also upregulated levels of caspase-3 and caspase-8, and restored oxidative stress markers (GSH, TBARs, protein carbonyl, SOD and catalase). The immunoblotting and qRT-PCR studies revealed the participation of the mitochondrial mediated death apoptosis pathway along with favorable regulation of COX-2, 5-LOX. Aforementioned combination restored the metabolic changes to normal when scrutinized through 1H NMR studies. Henceforth, the DuCLOX-2/5 inhibition was recorded to import significant anticancer effects in comparison to either of the individual treatments. PMID:29681851

  11. Inhibition of COX-2 and PGE2 in LPS-stimulated RAW264.7 cells by lonimacranthoide VI, a chlorogenic acid ester saponin

    PubMed Central

    GUAN, FUQIN; WANG, HAITING; SHAN, YU; CHEN, YU; WANG, MING; WANG, QIZHI; YIN, MIN; ZHAO, YOUYI; FENG, XU; ZHANG, JIANHUA

    2014-01-01

    Lonimacranthoide VI, first isolated from the flower buds of Lonicera macranthoides in our previous study, is a rare chlorogenic acid ester acylated at C-23 of hederagenin. In the present study, the anti-inflammatory effects of lonimacranthoide VI were studied. Lipopolysaccharides (LPS) induced an inflammatory response through the production of prostaglandin E2 (PGE2), and these levels were reduced when lonimacranthoide VI was pre-administered. Additionally, the mechanism of the anti-inflammatory effects of lonimacranthoide VI was investigated by measuring cyclooxygenase (COX) activity and mRNA expression. The results showed that lonimacranthoide VI inhibited mRNA expression and in vitro activity of COX-2 in a dose-dependent manner, whereas only the higher lonimacranthoide VI concentration possibly reduced COX-1 expression and in vitro activity. Taken together, these results indicate that lonimacranthoide VI is an important anti-inflammatory constituent of Lonicera macranthoides and that the anti-inflammatory effect is attributed to the inhibition of PGE2 production through COX activity and mRNA expression. PMID:25054024

  12. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.

    PubMed

    Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders

    2013-03-01

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer’s Disease

    PubMed Central

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD. PMID:29636677

  14. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy ismore » widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.« less

  15. Vascular Endothelial Growth Factor Receptor-2 Couples Cyclo-Oxygenase-2 with Pro-Angiogenic Actions of Leptin on Human Endothelial Cells

    PubMed Central

    Garonna, Elena; Botham, Kathleen M.; Birdsey, Graeme M.; Randi, Anna M.; Gonzalez-Perez, Ruben R.; Wheeler-Jones, Caroline P. D.

    2011-01-01

    Background The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs. Methodology/Principal Findings Immunoblotting studies showed that leptin increased cyclo-oxygenase-2 (COX-2) expression (but not COX-1) in cultured human umbilical vein ECs (HUVEC) through pathways that depend upon activation of both p38 mitogen-activated protein kinase (p38MAPK) and Akt, and stimulated rapid phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) on Tyr1175. Phosphorylation of VEGFR2, p38MAPK and Akt, and COX-2 induction in cells challenged with leptin were blocked by a specific leptin peptide receptor antagonist. Pharmacological inhibitors of COX-2, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and p38MAPK abrogated leptin-induced EC proliferation (assessed by quantifying 5-bromo-2′-deoxyuridine incorporation, calcein fluorescence and propidium iodide staining), slowed the increased migration rate of leptin-stimulated cells (in vitro wound healing assay) and inhibited leptin-induced capillary-like tube formation by HUVEC on Matrigel. Inhibition of VEGFR2 tyrosine kinase activity reduced leptin-stimulated p38MAPK and Akt activation, COX-2 induction, and pro-angiogenic EC responses, and blockade of VEGFR2 or COX-2 activities abolished leptin-driven neo-angiogenesis in a chick chorioallantoic membrane vascularisation assay in vivo. Conclusions/Significance We conclude that a functional endothelial p38MAPK/Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is

  16. Potential use of COX-2–aromatase inhibitor combinations in breast cancer

    PubMed Central

    Bundred, N J; Barnes, N L P

    2005-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Cyclooxygenase-2-positive tumours tend to be larger, higher grade, node-positive and HER-2/neu-positive. High COX-2 expression is associated with poor prognosis. Cyclooxygenase-2 inhibition reduces the incidence of tumours in animal models, inhibits the development of invasive cancer in colorectal cancer and reduces the frequency of polyps in familial adenomatous polyposis (FAP). These effects may be as a result of increased apoptosis, reduced angiogenesis and/or proliferation. Studies of COX-2 inhibitors in breast cancer are underway both alone and in combination with other agents. There is evidence to suggest that combining COX-2 inhibitors with aromatase inhibitors, growth factor receptor blockers, or chemo- or radiotherapy may be particularly effective. Preliminary results from combination therapy with celecoxib and exemestane in postmenopausal women with advanced breast cancer showed that the combination increased the time to recurrence. Up to 80% of ductal carcinomas in situ (DCISs) express COX-2, therefore COX-2 inhibition may be of particular use in this situation. Cyclooxygenase-2 expression correlates strongly with expression of HER-2/neu. As aromatase inhibitors appear particularly effective in patients with HER-2/neu-positive tumours, the combination of aromatase inhibitors and COX-2 inhibitors may be particularly useful in both DCIS and invasive cancer. PMID:16100520

  17. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms.

    PubMed

    Kawakami, Yuki; Nakamura, Tomomi; Hosokawa, Tomoko; Suzuki-Yamamoto, Toshiko; Yamashita, Hiromi; Kimoto, Masumi; Tsuji, Hideaki; Yoshida, Hideki; Hada, Takahiko; Takahashi, Yoshitaka

    2009-01-01

    Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.

  18. Inhibition of the biosynthesis of prostaglandin E2 by low dose aspirin: implications for adenocarcinoma metastasis

    PubMed Central

    Boutaud, Olivier; Sosa, I. Romina; Amin, Taneem; Oram, Denise; Adler, David; Hwang, Hyun S.; Crews, Brenda C.; Milne, Ginger; Harris, Bradford K.; Hoeksema, Megan; Knollmann, Bjorn C.; Lammers, Philip E.; Marnett, Lawrence J.; Massion, Pierre P.; Oates, John A.

    2016-01-01

    Meta-analyses have demonstrated that low dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the anti-platelet action of low dose aspirin likely contributes to its anti-metastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) also contributes to metastasis, and we addressed the hypothesis that low dose aspirin also inhibits PGE2 biosynthesis. We show that low dose aspirin inhibits systemic PGE2 biosynthesis by 45% in healthy volunteers (p <0.0001). Aspirin is found to be more potent in colon adenocarcinoma cells than in the platelet, and in lung adenocarcinoma cells its inhibition is equivalent to that in the platelet. Inhibition of COX by aspirin in colon cancer cells is in the context of the metastasis of colon cancer primarily to the liver, the organ exposed to the same high concentrations of aspirin as the platelet. We find that the interaction of activated platelets with lung adenocarcinoma cells up-regulates COX-2 expression and PGE2 biosynthesis, and inhibition of platelet COX-1 by aspirin inhibits PGE2 production by the platelet-tumor cell aggregates. In conclusion, low dose aspirin has a significant effect on extraplatelet cyclooxygenase, and potently inhibits COX-2 in lung and colon adenocarcinoma cells. This supports a hypothesis that the remarkable prevention of metastasis from adenocarcinomas, and particularly from colon adenocarcinomas, by low dose aspirin results from its effect on platelet COX-1 combined with inhibition of PGE2 biosynthesis in metastasizing tumor cells. PMID:27554763

  19. Chemoprevention of Head and Neck Cancer by Simultaneous Blocking of Epidermal Growth Factor Receptor and Cyclooxygenase-2 Signaling Pathways: Preclinical and Clinical Studies

    PubMed Central

    Shin, Dong M.; Zhang, Hongzheng; Saba, Nabil; Chen, Amy; Nannapaneni, Sreenivas; Amin, A.R.M. Ruhul; Müller, Susan; Lewis, Melinda; Sica, Gabriel; Kono, Scott; Brandes, Johann C.; Grist, William; Moreno-Williams, Rachel; Beitler, Jonathan J.; Thomas, Sufi M.; Chen, Zhengjia; Shin, Hyung Ju C.; Grandis, Jennifer R.; Khuri, Fadlo R.; Chen, Zhuo Georgia

    2013-01-01

    Purpose We investigated the efficacy and underlying molecular mechanism of a novel chemopreventive strategy combining epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with cyclooxygenase-2 inhibitor (COX-2I). Experimental Design We examined the inhibition of tumor cell growth by combined EGFR-TKI (erlotinib) and COX-2I (celecoxib) treatment using head and neck cancer (HNC) cell lines and a preventive xenograft model. We studied the antiangiogenic activity of these agents and examined the affected signaling pathways by immunoblotting analysis in tumor cell lysates and immunohistochemistry (IHC) and enzyme immunoassay (EIA) analyses on the mouse xenograft tissues and blood, respectively. Biomarkers in these signaling pathways were studied by IHC, EIA, and an antibody array analysis in samples collected from participants in a phase I chemoprevention trial of erlotinib and celecoxib. Results The combined treatment inhibited HNC cell growth significantly more potently than either single agent alone in cell line and xenograft models, and resulted in greater inhibition of cell cycle progression at G1 phase than either single drug. The combined treatment modulated the EGFR and mTOR signaling pathways. A phase I chemoprevention trial of combined erlotinib and celecoxib revealed an overall pathologic response rate of 71% at time of data analysis. Analysis of tissue samples from participants consistently showed downregulation of EGFR, pERK and pS6 levels after treatment, which correlated with clinical response. Conclusion Treatment with erlotinib combined with celecoxib offers an effective chemopreventive approach through inhibition of EGFR and mTOR pathways, which may serve as potential biomarkers to monitor the intervention of this combination in the clinic. PMID:23422093

  20. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways

    PubMed Central

    Knuckles, Travis L.; Yi, Jinghai; Frazer, David G.; Leonard, Howard D.; Chen, Bean T.; Castranova, Vince; Nurkiewicz, Timothy R.

    2016-01-01

    The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. PMID:21830860

  1. Tumor cell proliferation and cyclooxygenase inhibitory constituents in horseradish (Armoracia rusticana) and Wasabi (Wasabia japonica).

    PubMed

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2005-03-09

    Cyclooxygenase and human tumor cell growth inhibitory extracts of horseradish (Armoracia rusticana) and wasabi (Wasabia japonica) rhizomes upon purification yielded active compounds 1-3 from horseradish and 4 and 5 from wasabi rhizomes. Spectroscopic analyses confirmed the identities of these active compounds as plastoquinone-9 (1), 6-O-acyl-beta-d-glucosyl-beta-sitosterol (2), 1,2-dilinolenoyl-3-galactosylglycerol (3), linolenoyloleoyl-3-beta-galactosylglycerol (4), and 1,2-dipalmitoyl-3-beta-galactosylglycerol (5). 3-Acyl-sitosterols, sinigrin, gluconasturtiin, and phosphatidylcholines isolated from horseradish and alpha-tocopherol and ubiquinone-10 from wasabi rhizomes isolated were inactive in our assays. At a concentration of 60 microg/mL, compounds 1 and 2 selectively inhibited COX-1 enzyme by 28 and 32%, respectively. Compounds 3, 4, and 5 gave 75, 42, and 47% inhibition of COX-1 enzyme, respectively, at a concentration of 250 microg/mL. In a dose response study, compound 3 inhibited the proliferation of colon cancer cells (HCT-116) by 21.9, 42.9, 51.2, and 68.4% and lung cancer cells (NCI-H460) by 30, 39, 44, and 71% at concentrations of 7.5, 15, 30, and 60 microg/mL, respectively. At a concentration of 60 microg/mL, compound 4 inhibited the growth of colon, lung, and stomach cancer cells by 28, 17, and 44%, respectively. This is the first report of the COX-1 enzyme and cancer cell growth inhibitory monogalactosyl diacylglycerides from wasabi and horseradish rhizomes.

  2. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    PubMed

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-04-15

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  3. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells.

  4. The relationship between cyclooxygenase-2 expression and characteristics of malignant transformation in human colorectal adenomas.

    PubMed

    Sheehan, Katherine M; O'Connell, Fionnuala; O'Grady, Anthony; Conroy, Ronan M; Leader, Mary B; Byrne, Michael F; Murray, Frank E; Kay, Elaine W

    2004-06-01

    Cyclooxygenase 2 (COX-2) is a target of aspirin and other non-steroidal anti-inflammatory drugs and is implicated in the pathogenesis of colorectal cancer. The objective of this study was to evaluate the extent of COX-2 in pre-malignant colorectal polyps and to assess the relationship between COX-2 and the level of dysplasia in these lesions. Whole polypectomy specimens were retrieved from 123 patients by endoscopic or surgical resection. Following formalin fixation and paraffin embedding, the polyps were evaluated histologically for size, type and grade of dysplasia. The extent of COX-2 expression was measured by the avidin-biotin immunohistochemical technique using a monoclonal COX-2 antibody. The extent of COX-2 expression was graded according to percentage epithelial COX-2 expression. The polyps were of the following histological types: 10 hyperplastic, 35 tubular adenomas, 61 tubulovillous adenomas and 17 villous adenomas. Twenty showed mild dysplasia, 65 moderate dysplasia, and 28 focal or severe dysplasia (including eight with focal invasion). The average polyp size was 1.7 cm. Nine hyperplastic polyps were COX-2-negative and one was COX-2-positive. COX-2 expression was more extensive in larger polyps and in polyps with a higher villous component. There was a significant increase in the extent of COX-2 protein with increasing severity of dysplasia. Within a polyp, there was a focal corresponding increase in COX-2 expression within epithelium showing a higher grade of dysplasia. COX-2 expression is related directly to colorectal adenomatous polyp size, type and grade of dysplasia. This suggests that the role of COX-2 in colorectal cancer may be at an early stage in the adenoma-to-carcinoma sequence and supports the suggestion that inhibition of COX-2 may be useful chemoprevention for this disease.

  5. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less

  6. N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    PubMed

    Wang, Bin; Zhong, Shuping; Zheng, Fuchun; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Lu, Binger; Xu, Han; Shi, Ganggang

    2015-09-22

    N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.

  7. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro

    USDA-ARS?s Scientific Manuscript database

    High intake of whole grain food is associated with reduced risk of colon cancer, but the mechanism underlying this protection has yet to be elucidated. Chronic inflammation and associated cyclooxygenase-2 (COX-2) expression in the colon epithelium are causally related to epithelial carcinogenesis, p...

  8. Role of cyclooxygenase-2 in intestinal injury in neonatal rats.

    PubMed

    Lu, Hui; Zhu, Bing

    2014-11-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC.

  9. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.

  10. EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes.

    PubMed

    Liu, Yun; Shen, Huan-Jia; Wang, Xin-Qiu-Yue; Liu, Hai-Qi; Zheng, Ling-Yun; Luo, Jian-Dong

    2018-06-20

    Cardiac hypertrophy is one of the major risk factors for chronic heart failure. The role of endophilinA2 (EndoA2) in clathrin-mediated endocytosis and clathrin-independent endocytosis is well documented. In the present study, we tested the hypothesis that EndoA2 protects against angiotensin II (Ang II)-induced cardiac hypertrophy by mediating intracellular angiotensin II type 1 receptor (AT1-R) trafficking in neonatal rat cardiomyocytes (NRCMs). Cardiac hypertrophy was evaluated by using cell surface area and quantitative RT-PCR (qPCR) analyses. For the first time, we found that EndoA2 attenuated cardiac hypertrophy and fibrosis induced by Ang II. Moreover, EndoA2 inhibited apoptosis induced by excessive endoplasmic reticulum stress (ERS), which accounted for the beneficial effects of EndoA2 on cardiac hypertrophy. We further revealed that there was an interaction between EndoA2 and AT1-R.The expression levels of EndoA2, which inhibits AT1-R transport from the cytoplasm to the membrane, and the interaction between EndoA2 and AT1-R were obviously decreased after Ang II treatment. Furthermore, Ang II inhibited the co-localization of AT1-R with GRP-78, which was reversed by EndoA2 overexpression. In conclusion, our results suggested that EndoA2 plays a role in protecting against cardiac hypertrophy induced by Ang II, possibly by inhibiting AT1-R transport from the cytoplasm to the membrane to suppress signal transduction. © 2018 Wiley Periodicals, Inc.

  11. Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor.

    PubMed

    Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun

    2017-08-09

    To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

  12. Ethanol extract of Angelica gigas inhibits croton oil-induced inflammation by suppressing the cyclooxygenase - prostaglandin pathway

    PubMed Central

    Shin, Sunhee; Joo, Seong Soo; Park, Dongsun; Jeon, Jeong Hee; Kim, Tae Kyun; Kim, Jeong Seon; Park, Sung Kyeong

    2010-01-01

    The anti-inflammatory effects of an ethanol extract of Angelica gigas (EAG) were investigated in vitro and in vivo using croton oil-induced inflammation models. Croton oil (20 µg/mL) up-regulated mRNA expression of cyclooxygenase (COX)-I and COX-II in the macrophage cell line, RAW 264.7, resulting in the release of high concentrations of prostaglandin E2 (PGE2). EAG (1~10 µg/mL) markedly suppressed croton oil-induced COX-II mRNA expression and PGE2 production. Application of croton oil (5% in acetone) to mouse ears caused severe local erythema, edema and vascular leakage, which were significantly attenuated by oral pre-treatment with EAG (50~500 mg/kg). Croton oil dramatically increased blood levels of interleukin (IL)-6 and PGE2 without affecting tumor-necrosis factor (TNF)-α and nitric oxide (NO) levels. EAG pre-treatment remarkably lowered IL-6 and PGE2, but did not alter TNF-α or NO concentrations. These results indicate that EAG attenuates inflammatory responses in part by blocking the COX-PGE2 pathway. Therefore, EAG could be a promising candidate for the treatment of inflammatory diseases. PMID:20195064

  13. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Davies, N M; McLachlan, A J; Day, R O; Williams, K M

    2000-03-01

    Celecoxib, a nonsteroidal anti-inflammatory drug (NSAID), is the first specific inhibitor of cyclo-oxygenase-2 (COX-2) approved to treat patients with rheumatism and osteoarthritis. Preliminary data suggest that celecoxib also has analgesic and anticancer properties. The selective inhibition of COX-2 is thought to lead to a reduction in the unwanted effects of NSAIDs. Upper gastrointestinal complication rates in clinical trials are significantly lower for celecoxib than for traditional nonselective NSAIDs (e.g. naproxen, ibuprofen and diclofenac). The rate of absorption of celexocib is moderate when given orally (peak plasma drug concentration occurs after 2 to 4 hours), although the extent of absorption is not known. Celexocib is extensively protein bound, primarily to plasma albumin, and has an apparent volume of distribution of 455+/-166L in humans. The area under the plasma concentration-time curve (AUC) of celecoxib increases in proportion to increasing oral doses between 100 and 800mg. Celecoxib is eliminated following biotransformation to carboxylic acid and glucuronide metabolites that are excreted in urine and faeces, with little drug (2%) being eliminated unchanged in the urine. Celecoxib is metabolised primarily by the cytochrome P450 (CYP) 2C9 isoenzyme and has an elimination half-life of about 11 hours in healthy individuals. Racial differences in drug disposition and pharmacokinetic changes in the elderly have been reported for celecoxib. Plasma concentrations (AUC) of celecoxib appear to be 43% lower in patients with chronic renal insufficiency [glomerular filtration rate 2.1 to 3.6 L/h (35 to 60 ml/min)] compared with individuals with healthy renal function, with a 47% increase in apparent clearance. Compared with healthy controls, it has been reported that the steady-state AUC is increased by approximately 40% and 180% in patients with mild and moderate hepatic impairment, respectively. Celecoxib does not appear to interact with warfarin

  14. Hepatocyte growth factor regulates cyclooxygenase-2 expression via β-catenin, Akt, and p42/p44 MAPK in human bronchial epithelial cells

    PubMed Central

    Lee, Young H.; Suzuki, Yuichiro J.; Griffin, Autumn J.; Day, Regina M.

    2008-01-01

    Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC. PMID:18245266

  15. Attenuation of Proinflammatory Responses by S-[6]-Gingerol via Inhibition of ROS/NF-Kappa B/COX2 Activation in HuH7 Cells.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C Y; Tran, Van H; Li, Yi-Ming; Duke, Colin C; Roufogalis, Basil D; Heather, Alison K

    2013-01-01

    Introduction. Hepatic inflammation underlies the pathogenesis of chronic diseases such as insulin resistance and type 2 diabetes mellitus. S-[6]-Gingerol has been shown to have anti-inflammatory properties. Important inflammatory mediators of interleukins include nuclear factor κ B (NF κ B) and cyclooxygenase 2 (COX2). We now explore the mechanism of anti-inflammatory effects of S-[6]-gingerol in liver cells. Methods. HuH7 cells were stimulated with IL1β to establish an in vitro hepatic inflammatory model. Results. S-[6]-Gingerol attenuated IL1β-induced inflammation and oxidative stress in HuH7 cells, as evidenced by decreasing mRNA levels of inflammatory factor IL6, IL8, and SAA1, suppression of ROS generation, and increasing mRNA levels of DHCR24. In addition, S-[6]-gingerol reduced IL1β-induced COX2 upregulation as well as NF κ B activity. Similar to the protective effects of S-[6]-gingerol, both NS-398 (a selective COX2 inhibitor) and PDTC (a selective NF κ B inhibitor) suppressed mRNA levels of IL6, IL8, and SAA1. Importantly, PDTC attenuated IL1β-induced overexpression of COX2. Of particular note, the protective effect of S-[6]-gingerol against the IL1β-induced inflammatory response was similar to that of BHT, an ROS scavenger. Conclusions. The findings of this study demonstrate that S-[6]-gingerol protects HuH7 cells against IL1β-induced inflammatory insults through inhibition of the ROS/NF κ B/COX2 pathway.

  16. Selective cyclooxygenase-2 inhibitor suppresses renal thromboxane production but not proliferative lesions in the MRL/lpr murine model of lupus nephritis.

    PubMed

    Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S

    2011-02-01

    Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.

  17. Effects of cyclooxygenase inhibitors on the alterations in lung mechanics caused by endotoxemia in the unanesthetized sheep.

    PubMed

    Snapper, J R; Hutchison, A A; Ogletree, M L; Brigham, K L

    1983-07-01

    The effects of Escherichia coli endotoxin on lung mechanics, hemodynamics, gas exchange, and lung fluid and solute exchange were studied in 12 chronically instrumented unanesthetized sheep. A possible role for cyclooxygenase products of arachidonate metabolism as mediators of the endotoxin-induced alterations in lung mechanics was investigated by studying sheep before and after cyclooxygenase inhibition with sodium meclofenamate and ibuprofen. Sheep were studied three times in random order: (a) sodium meclofenamate (or ibuprofen) infusion alone; (b) E. coli endotoxin alone; and (c) meclofenamate (or ibuprofen) and endotoxin. Meclofenamate alone had no effect on any of the variables measured. Endotoxin alone caused early marked changes in lung mechanics: resistance to airflow across the lungs (RL) increased 10-fold, dynamic lung compliance (Cdyn) decreased 80% and functional residual capacity (FRC) decreased by greater than 30%. The alveolar-to-arterial oxygen difference (delta AaPO2) increased markedly following endotoxemia. In the presence of sufficient meclofenamate to inhibit accumulation of thromboxane-B2 and 6-keto-prostaglandin F1 alpha in lung lymph, endotoxin caused no increase in RL, Cdyn decreased by less than 40%, and FRC decreased by only 6%. Meclofenamate significantly attenuated the hypoxemia and early pulmonary hypertension caused by endotoxemia but had no effect on the late increases in lung fluid and solute exchange. Ibuprofen had similar effects to those observed with meclofenamate. We conclude that both the pulmonary hypertension and changes in lung mechanics observed after endotoxemia may be mediated, at least in part, by constrictor prostaglandins or thromboxanes and that gas exchange may be improved by preventing endogenous synthesis of these mediators.

  18. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    PubMed

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia.

  19. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis.

    PubMed

    Boolbol, S K; Dannenberg, A J; Chadburn, A; Martucci, C; Guo, X J; Ramonetti, J T; Abreu-Goris, M; Newmark, H L; Lipkin, M L; DeCosse, J J; Bertagnolli, M M

    1996-06-01

    Inducible cyclooxygenase (Cox-2), also known as prostaglandin H synthase 2 (PGH-2) is a key enzyme in the formation of prostaglandins and thromboxanes. Cox-2 is the product of an immediate-early gene that is expressed in response to growth factors, tumor promoters, or cytokines. Overexpression of Cox-2 is associated with both human colon cancers and suppression of apoptosis in cultured epithelia] cells, an activity that is reversed by the nonsteroidal anti-inflammatory drug, sulindac sulfide. To address the relationship between Cox-2, apoptosis, and tumor development in vivo, we studied C57BL/6J-Min/+(Min) mice, a strain containing a fully penetrant dominant mutation in the Apc gene, leading to the development of gastrointestinal adenomas by 110 days of age. Min mice were fed AIN-76A chow diet and given sulindac (0.5 +/- 0.1 mg/day) in drinking water. Control Min mice and homozygous C57BL/6J-+/+ normal littermates lacking the Apc mutation (+/+) were fed AIN-76A diet and given tap water to drink. At 110 days of age, all mice were sacrificed, and their intestinal tracts were examined. Control Min mice had 11.9 +/- 7.8 tumors per mouse compared to 0.1 +/- 0.1 tumors for sulindac-treated Min mice. As expected, +/+ littermates had no macroscopic tumors. Examination of histologically normal-appearing small bowel from Min animals revealed increased amounts of Cox-2 and prostaglandin E(2) compared to +/+ littermates. Using two different in situ techniques, terminal transferase-mediated dUTP nick end labeling and a direct immunoperoxidase method, Min animals also demonstrated a 27-47% decrease in enterocyte apoptosis compared to +/+ animals. Treatment with sulindac not only inhibited tumor formation but decreased small bowel Cox-2 and prostaglandin E(2) to baseline and restored normal levels of apoptosis. These data suggest that overexpression of Cox-2 is associated with tumorigenesis in the gastrointestinal epithelium, and that both are inhibited by sulindac administration.

  20. Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse

    PubMed Central

    Armstrong, Paul C.; Kirkby, Nicholas S.; Zain, Zetty N.; Emerson, Michael; Mitchell, Jane A.; Warner, Timothy D.

    2011-01-01

    Background Clinical use of selective inhibitors of cyclooxygenase (COX)-2 appears associated with increased risk of thrombotic events. This is often hypothesised to reflect reduction in anti-thrombotic prostanoids, notably PGI2, formed by COX-2 present within endothelial cells. However, whether COX-2 is actually expressed to any significant extent within endothelial cells is controversial. Here we have tested the effects of acute inhibition of COX on platelet reactivity using a functional in vivo approach in mice. Methodology/Principal Findings A non-lethal model of platelet-driven thromboembolism in the mouse was used to assess the effects of aspirin (7 days orally as control) diclofenac (1 mg.kg−1, i.v.) and parecoxib (0.5 mg.kg−1, i.v.) on thrombus formation induced by collagen or the thromboxane (TX) A2-mimetic, U46619. The COX inhibitory profiles of the drugs were confirmed in mouse tissues ex vivo. Collagen and U46619 caused in vivo thrombus formation with the former, but not latter, sensitive to oral dosing with aspirin. Diclofenac inhibited COX-1 and COX-2 ex vivo and reduced thrombus formation in response to collagen, but not U46619. Parecoxib inhibited only COX-2 and had no effect upon thrombus formation caused by either agonist. Conclusions/Significance Inhibition of COX-1 by diclofenac or aspirin reduced thrombus formation induced by collagen, which is partly dependent upon platelet-derived TXA2, but not that induced by U46619, which is independent of platelet TXA2. These results are consistent with the model demonstrating the effects of COX-1 inhibition in platelets, but provide no support for the hypothesis that acute inhibition of COX-2 in the circulation increases thrombosis. PMID:21629780

  1. Platelet cyclooxygenase expression in normal dogs.

    PubMed

    Thomason, J; Lunsford, K; Mullins, K; Stokes, J; Pinchuk, L; Wills, R; McLaughlin, R; Langston, C; Pruett, S; Mackin, A

    2011-01-01

    Human platelets express both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Variation in COX-2 expression could be a mechanism for variable response to aspirin. The hypotheses were that circulating canine platelets express COX-1 and COX-2, and that aspirin alters COX expression. The objective was to identify changes in platelet COX expression and in platelet function caused by aspirin administration to dogs. Eight female, intact hounds. A single population, repeated measures design was used to evaluate platelet COX-1 and COX-2 expression by flow cytometry before and after aspirin (10 mg/kg Q12h for 10 days). Platelet function was analyzed via PFA-100(®) (collagen/epinephrine), and urine 11-dehydro-thromboxane B(2) (11-dTXB(2)) was measured and normalized to urinary creatinine. Differences in COX expression, PFA-100(®) closure times, and urine 11-dTXB(2 ): creatinine ratio were analyzed before and after aspirin administration. Both COX-1 and COX-2 were expressed in canine platelets. COX-1 mean fluorescent intensity (MFI) increased in all dogs, by 250% (range 63-476%), while COX-2 expression did not change significantly (P = 0.124) after aspirin exposure, with large interindividual variation. PFA-100(®) closure times were prolonged and urine 11-dTXB(2) concentration decreased in all dogs after aspirin administration. Canine platelets express both COX isoforms. After aspirin exposure, COX-1 expression increased despite impairment of platelet function, while COX-2 expression varied markedly among dogs. Variability in platelet COX-2 expression should be explored as a potential mechanism for, or marker of, variable aspirin responsiveness. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  2. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    PubMed

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  3. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation.

    PubMed

    Burnett, B P; Jia, Q; Zhao, Y; Levy, R M

    2007-09-01

    A mixed extract containing two naturally occurring flavonoids, baicalin from Scutellaria baicalensis and catechin from Acacia catechu, was tested for cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition via enzyme, cellular, and in vivo models. The 50% inhibitory concentration for inhibition of both ovine COX-1 and COX-2 peroxidase enzyme activities was 15 microg/mL, while the mixed extract showed a value for potato 5-LOX enzyme activity of 25 microg/mL. Prostaglandin E2 generation was inhibited by the mixed extract in human osteosarcoma cells expressing COX-2, while leukotriene production was inhibited in both human cell lines, immortalized THP-1 monocyte and HT-29 colorectal adenocarcinoma. In an arachidonic acid-induced mouse ear swelling model, the extract decreased edema in a dose-dependent manner. When arachidonic acid was injected directly into the intra-articular space of mouse ankle joints, the mixed extract abated the swelling and restored function in a rotary drum walking model. These results suggest that this natural, flavonoid mixture acts via "dual inhibition" of COX and LOX enzymes to reduce production of pro-inflammatory eicosanoids and attenuate edema in an in vivo model of inflammation.

  4. New Ferrocene Compounds as Selective Cyclooxygenase (COX-2) Inhibitors: Design, Synthesis, Cytotoxicity and Enzyme-inhibitory Activity.

    PubMed

    Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2018-01-01

    Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity

  5. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.

    PubMed

    Harizi, Hedi; Limem, Ilef; Gualde, Norbert

    2011-02-01

    We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).

  6. Effects of the estrous cycle, pregnancy and interferon tau on expression of cyclooxygenase two (COX-2) in ovine endometrium

    PubMed Central

    Kim, Seokwoon; Choi, Youngsok; Spencer, Thomas E; Bazer, Fuller W

    2003-01-01

    In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF) on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL). These PGF pulses are produced by the endometrial lumenal epithelium (LE) and superficial ductal glandular epithelium (sGE) in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR) and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1) and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ), produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα) (directly) and OTR (indirectly) genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus. PMID:12956885

  7. Sulforaphane inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of MMPs, COX-2, and PGE2.

    PubMed

    Choi, Yun Jung; Lee, Won-Seok; Lee, Eun-Gyeong; Sung, Myung-Soon; Yoo, Wan-Hee

    2014-10-01

    This study was performed to define the effects of sulforaphane on interleukin-1β (IL-1β)-induced proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), the expression of matrix metalloproteinases (MMPs) and cyclooxygenase (COX), and the production of prostaglandin E2 (PGE2) by RASFs. The proliferation of RASFs was evaluated with CCK-8 reagent in the presence of IL-1β with/without sulforaphane. The expression of MMPs, tissue inhibitor of metalloproteinase-1, COXs, intracellular mitogen-activated protein kinase signalings, including p-ERK, p-p38, p-JNK, and nuclear factor-kappaB (NF-kB), and the production of PGE2 were examined by Western blotting or semi-quantitative RT-PCR and ELISA. Sulforaphane inhibits unstimulated and IL-1β-induced proliferation of RASFs; the expression of MMP-1, MMP-3, and COX-2 mRNA and protein; and the PGE2 production induced by IL-1β. Sulforaphane also inhibits the phosphorylation of ERK-1/2, p-38, and JNK and activation of NF-kB by IL-1β. These results indicate that sulforaphane inhibits the proliferation of synovial fibroblasts, the expression of MMPs and COX-2, and the production of PGE2, which are involved in synovitis and destruction of RA, and suggest that sulforaphane might be a new therapeutic agent for RA.

  8. NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone, a novel antithrombotic agent with dual inhibition of thromboxane A2 synthesis and calcium entry

    PubMed Central

    Kuo, Heng-Lan; Lien, Jin-Cherng; Chang, Chien-Hsin; Chung, Ching-Hu; Kuo, Sheng-Chu; Hsu, Chun-Chieh; Peng, Hui-Chin; Huang, Tur-Fu

    2011-01-01

    BACKGROUND AND PURPOSE 1,4-Naphthoquinones exhibit antiplatelet activity both in vivo and in vitro. In the present study, we investigated the antiplatelet effect of a novel naphthoquinone derivative NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone and its mechanism of action. EXPERIMENTAL APPROACH We measured platelet aggregation, Ca2+ mobilization, thromboxane B2 formation and P-selectin expression and examined several enzymatic activities. Furthermore, we used the irradiated mesenteric venules in fluorescein sodium–treated mice to monitor the antithrombotic effect of NP-313 in vivo. KEY RESULTS NP-313 concentration-dependently inhibited human platelet aggregation induced by collagen, arachidonic acid, thapsigargin, thrombin and A23187. NP-313 also inhibited P-selectin expression, thromboxane B2 formation and [Ca2+]i elevation in platelets stimulated by thrombin and collagen. NP-313 at 10 µM inhibited cyclooxygenase, thromboxane A2 synthase, and protein kinase Cα, whereas it did not affect phospholipase A2 or phospholipase C activity. In the presence of indomethacin and an adenosine 5-diphosphate scavenger, NP-313 concentration-dependently inhibited thrombin- and A23187-induced [Ca2+]i increase through its inhibitory effects on Ca2+ influx, rather than blocking Ca2+ release from intracellular stores. NP-313 also inhibited thapsigargin-mediated Ca2+ influx through store-operated calcium channel but had no effect on Ca2+ influx through store-independent calcium channel evoked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol. Nevertheless, it had little effect on cyclic AMP and cyclic GMP levels. Also, intravenously administered NP-313 dose-dependently inhibited the thrombus occlusion of the irradiated mesenteric vessels of fluorescein-pretreated mice. CONCLUSIONS AND IMPLICATIONS Taken together, these results indicate that NP-313 exerts its antithrombotic activity through dual inhibition of thromboxane A2 synthesis and Ca2+ influx through SOCC. PMID

  9. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes.

    PubMed

    Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng

    2012-07-25

    Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.

  10. Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

    PubMed Central

    Liang, Chun; Ding, Yan; Song, Seok Bean; Kim, Jeong Ah; Cuong, Nguyen Manh; Ma, Jin Yeul; Kim, Young Ho

    2013-01-01

    In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-κB activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-κB, with IC50 values between 3.1 to 18.9 μM. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-κB activity by reducing the concentration of inflammatory factors in HepG2 cells. PMID:23717159

  11. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes.

    PubMed

    Jeng, J H; Ho, Y S; Chan, C P; Wang, Y J; Hahn, L J; Lei, D; Hsu, C C; Chang, M C

    2000-07-01

    There are about 600 million betel quid (BQ) chewers in the world. BQ chewing is associated with increased incidence of oral cancer and submucous fibrosis. In this study, areca nut (AN) extract (200-800 microg/ml) induced the prostaglandin E(2) (PGE(2)) production by 1. 4-3.4-fold and 6-keto-PGF(1 alpha) production by 1.1-1.7-fold of gingival keratinocytes (GK), respectively, following 24 h of exposure. Exposure of GK to AN extract (>400 microg/ml) led to cell retraction and intracellular vacuoles formation. At concentrations of 800 and 1200 microg/ml, AN extract induced cell death at 21-24 and 32-52% as detected by MTT assay and cellular lactate dehydrogenase release, respectively. Interestingly, AN-induced morphological changes of GK are reversible. GK can still proliferate following exposure to AN extract. Cytotoxicity of AN extract cannot be inhibited by indomethacin (1 microM) and aspirin (50 microM), indicating that prostaglandin (PG) production is not the major factor responsible for AN cytotoxicity. PGE(2) exhibited little effect on the growth of GK at concentrations ranging from 100-1000 pg/ml. Stimulating GK production of PGs by AN extract could be due to induction of cyclooxygenase-2 (COX-2) mRNA expression and protein production. These results suggest that AN ingredients are critical in the pathogenesis of oral submucous fibrosis and oral cancer via their stimulatory effects on the PGs, COX-2 production and associated tissue inflammatory responses. AN cytotoxicity to GK is not directly mediated by COX-2 stimulation and PG production.

  12. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells

    PubMed Central

    Lee, Seung Eun; Park, Yong Seek

    2013-01-01

    Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V–propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells. PMID:24558308

  13. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    PubMed

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  14. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  15. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release From Platelet-Rich Plasma.

    PubMed

    Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P

    2017-12-01

    It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor

  16. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    PubMed

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  17. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R

    2009-08-01

    Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.

  18. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells.

    PubMed

    Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun

    2015-06-01

    Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.

  19. The role of chemoprevention by selective cyclooxygenase-2 inhibitors in colorectal cancer patients - a population-based study

    PubMed Central

    2012-01-01

    Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2) inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR) of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD). The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs) for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months) prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021) for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer. PMID:23217168

  20. Historical Lessons in Translational Medicine: Cyclooxygenase Inhibition and P2Y12 Antagonism

    PubMed Central

    Fitzgerald, Desmond J.; FitzGerald, Garret A.

    2013-01-01

    The development of drugs that inhibit platelets has been driven by a combination of clinical insights, fundamental science and sheer luck. The process has evolved as the days of stumbling upon therapeutic gems like aspirin have long passed and have been replaced by an arduous process where a drug is designed to target a specific protein implicated in a well-characterized pathophysiological process. Or so we would like to believe. The development of antiplatelet therapy illustrates the importance of understanding the mechanisms of disease and the pharmacology of the compounds we develop, coupled with careful clinical experimentation and observation. And yes, still, a fair bit of luck. PMID:23287454

  1. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  2. Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.

    PubMed

    Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro

    2013-01-01

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.

  3. Inhibitory effect of interferon-α-2b on expression of cyclooxygenase-2 and vascular endothelial growth factor in human hepatocellular carcinoma inoculated in nude mice

    PubMed Central

    Cao, Bin; Chen, Xiao-Ping; Zhu, Peng; Ding, Lei; Guan, Jian; Shi, Zuo-Liang

    2008-01-01

    AIM: To evaluate the effects of interferon-α-2b (IFN-α-2b) on expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) in human hepatocellular carcinoma (HCC) inoculated in nude mice and to study the underlying mechanism of IFN-α-2b against HCC growth. METHODS: Thirty-two nude mice bearing human HCC were randomly divided into four groups (n = 8). On the 10th day after implantation of HCC cells, the mice in test groups (groups A, B and C) received IFN-α-2b at a serial dose (10 000 IU for group A, 20 000 IU for group B, 40 000 IU for group C sc daily) for 35 d. The mice in control group received normal saline (NS). The growth conditions of transplanted tumors were observed. Both genes and proteins of COX-2 and VEGF were detected by RT-PCR and Western blot. Apoptosis of tumor cells in nude mice was detected by TUNEL assay after treatment with IFN-α-2b. RESULTS: Tumors were significantly smaller and had a lower weight in the IFN-α-2b treatment groups than those in the control group (P < 0.01), and the tumor growth inhibition rate in groups A, B and C was 27.78%, 65.22% and 49.64%, respectively. The expression levels of both genes and proteins of COX-2 and VEGF were much lower in the IFN-α-2b treatment groups than in the control group (P < 0.01). The apoptosis index (AI) of tumor cells in the IFN-α-2b treatment groups was markedly higher than that in the control group (P < 0.01). Group B had a higher inhibition rate of tumor growth, a lower expression level of COX-2 and VEGF and a higher AI than groups A and C (P < 0.05), but there was no significant difference between groups A and C. CONCLUSION: The inhibitory effects of IFN-α-2b on implanted tumor growth and apoptosis may be associated with the down-regulation of COX-2 and VEGF expression. There is a dose-effect relationship. The medium dose of IFN-α-2b for inhibiting tumor growth is 20 000 IU/d. PMID:19058305

  4. Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: role of cyclooxygenase.

    PubMed

    Sato, K; Li, J; Metais, C; Bianchi, C; Sellke, F

    2000-05-15

    Pulmonary vascular resistance is frequently elevated after cardiopulmonary bypass (CPB). We examined if altered pulmonary microvascular reactivity to serotonin (5-HT) is due to altered expression of isoforms of nitric oxide synthase (NOS) or cyclooxygenase (COX). Pigs (n = 8) were heparinized and placed on total CPB for 90 min and then perfused off CPB for 90 min. Noninstrumented pigs (n = 6) served as controls for vascular studies. Relaxation responses (% of precontraction) of microvessels (60-150 microm in diameter) were examined in vitro in a pressurized (20 mm Hg) no-flow state with video microscopic imaging. Expression of eNOS, iNOS, and inducible (COX-2) and constitutive (COX-1) cyclooxygenase was examined with Western blotting and reverse transcription polymerase chain reaction. Pulmonary vascular resistance (PVR) increased from 316 +/- 39 mm Hg x s/cm(5) at baseline to 495 +/- 53 at 60 min and 565 +/- 62 at 90 min after termination of CPB. 5-HT elicited a relaxation response (46.8 +/- 11. 8%) in precontracted control microvessels. This response was not affected by the NOS inhibitor N(G)-nitro-l-arginine. After CPB, pulmonary microvessels contracted significantly to 5-HT (-29 +/- 27%, P < 0.05 vs control). This response was partially inhibited (7 +/- 20%, P = 0.06) in the presence of the COX-2 inhibitor NS398, but was unaffected by the thromboxane synthase inhibitor U63557A (-20 +/- 19%). Expression of iNOS or COX-1 was not changed after CPB. Protein and mRNA expressions of COX-2 both increased significantly after CPB, while that of eNOS decreased by approximately 50%. PVR increased after CPB. This was associated with a hypercontractile response of isolated pulmonary microvessels to 5-HT that was in part mediated by the release of prostaglandins (but not thromboxane) and associated with increased expression of COX-2 and with decreased expression of eNOS. Copyright 2000 Academic Press.

  5. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3.

    PubMed

    Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair; Piano, Ilaria; Gargini, Claudia; Tosini, Gianluca

    2017-01-01

    Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT 1 and MT 2 ) in 661W cells, then whether MEL can prevent H 2 O 2 -induced cell death, and last, through which pathway MEL confers protection. The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H 2 O 2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H 2 O 2 -mediated cell death, a Fas/FasL antagonist was used before the exposure to H 2 O 2 . Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H 2 O 2 and/or MEL. Cell viability was analyzed by using Trypan Blue. Both MEL receptors (MT 1 and MT 2 ) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H 2 O 2 -mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H 2 O 2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H 2 O 2 , and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H 2 O 2 . The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H 2 O 2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

  7. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs.

    PubMed

    Patrignani, Paola; Patrono, Carlo

    2015-04-01

    Acetylsalicylic acid (aspirin) is a prototypic cyclooxygenase (COX) inhibitor. It was synthesized serendipitously from a natural compound, i.e., salicylic acid, with known analgesic activity. This chemical modification, obtained for the first time in an industrial environment in 1897, endowed aspirin with the unique capacity of acetylating and inactivating permanently COX-isozymes. Traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) were developed to mimic the pharmacological effects of aspirin, using aspirin-sensitive experimental models of pain and inflammation as the template for screening new chemical entities. Among the tNSAIDs, some were endowed with moderate COX- selectivity (e.g., diclofenac), but no studies of sufficient size and duration were performed to show any clinically relevant difference between different members of the class. Similarly, no serious attempts were made to unravel the mechanisms involved in the shared therapeutic and toxic effects of tNSAIDs until the discovery of COX-2. This led to characterizing their main therapeutic effects as being COX-2-dependent and their gastrointestinal (GI) toxicity as being COX-1-dependent, and provided a rationale for developing a new class of selective COX-2 inhibitors, the coxibs. This review will discuss the clinical pharmacology of tNSAIDs and coxibs, and the clinical read-outs of COX-isozyme inhibition. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance." Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modulation of Rho-ROCK Signaling Pathway Protects Oligodendrocytes Against Cytokine Toxicity via PPAR-α-Dependent Mechanism

    PubMed Central

    Singh, Avtar K.; Singh, Inderjit

    2013-01-01

    We earlier documented that lovastatin (LOV)-mediated inhibition of small Rho GTPases activity protects vulnerable oligodendrocytes (OLs) in mixed glial cell cultures stimulated with Th1 cytokines and in a murine model of multiple sclerosis (MS). However, the precise mechanism of OL protection remains unclear. We here employed genetic and biochemical approaches to elucidate the underlying mechanism that protects LOV treated OLs from Th1 (tumor necrosis factor-α) and Th17 (interleukin-17) cytokines toxicity in in vitro. Cytokines enhanced the reactive oxygen species (ROS) generation and mitochondrial membrane depolarization with corresponding lowering of glutathione (reduced) level in OLs and that were reverted by LOV. In addition, the expression of ROS detoxifying enzymes (catalase and superoxide-dismutase 2) and the transactivation of peroxisome proliferators-activated receptor (PPAR)-α/-β/-γ including PPAR-γ coactivator-1α were enhanced by LOV in similarly treated OLs. Interestingly, LOV-mediated inhibition of small Rho GTPases, i.e., RhoA and cdc42, and Rho-associated kinase (ROCK) activity enhanced the levels of PPAR ligands in OLs via extracellular signal regulated kinase (1/2)/p38 mitogen-activated protein kinase/cytoplasmic phospholipase 2/cyclooxygenase-2 signaling cascade activation. Small hairpin RNA transfection-based studies established that LOV mainly enhances PPAR-α and less so of PPAR-β and PPAR-γ transactivation that enhances ROS detoxifying defense in OLs. In support of this, the observed LOV-mediated protection was lacking in PPAR-α-deficient OLs exposed to cytokines. Collectively, these data provide unprecedented evidence that LOV-mediated inhibition of the Rho–ROCK signaling pathway boosts ROS detoxifying defense in OLs via PPAR-α-dependent mechanism that has implication in neurodegenerative disorders including MS. PMID:23839981

  9. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-05

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Nam; Kim, Dae Won; Jo, Hyo Sang

    Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB)more » and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.« less

  11. Celastrol, an inhibitor of heat shock protein 90β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes.

    PubMed

    Ding, Qian-Hai; Cheng, Ye; Chen, Wei-Ping; Zhong, Hui-Ming; Wang, Xiang-Hua

    2013-05-15

    Overexpression of matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have long been suggested to play crucial roles in the progression of osteoarthritis. Studies have showed that selective MMPs, iNOS and COX-2 inhibitors possess great potential as chondroprotective agents for osteoarthritis. Therefore, there have been intensive efforts to develop novel natural compounds that target MMPs, iNOS and COX-2 activation. As interleukin-1β (IL-1β) is one of the key proinflammatory cytokines contributing to the progression in osteoarthritis, we investigated the effect of celastrol, a triterpenoid compound extracted from the Chinese herb Tript erygium wilfordii Hook F, in neutralizing the inflammatory effects of IL-1β on MMPs, iNOS and COX-2 expression as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production. Protein expression was detected by Western blotting or by enzyme-linked immunosorbent assay (ELISA); messenger RNA (mRNA) expression was examined by real-time reverse transcription-polymerase chain reaction analysis and the involvement of signal pathway was assessed by transient transfection and luciferase activity assay. We found that treatment of primary human osteoarthritic chondrocytes with various concentrations of celastrol resulted in striking decrease in the expression of MMP-1, MMP-3, MMP-13, iNOS-2 and COX-2. In addition, celastrol treatment of cells also inhibited the activation of nuclear factor-kappa B (NF-kappaB). Taken together, we provide evidence that celastrol can protect human chondrocytes by downregulating the expression of MMPs, iNOS and COX-2. We suggest that celastrol could be a useful agent for prevention and treatment of osteoarthritis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence.

    PubMed

    Narayanan, Bhagavathi A; Reddy, Bandaru S; Bosland, Maarten C; Nargi, Dominick; Horton, Lori; Randolph, Carla; Narayanan, Narayanan K

    2007-10-01

    Nonsteroidal anti-inflammatory drugs mediate anticancer effects by modulating cyclooxygenase-2 (COX-2)-dependent and/or COX-2-independent mechanism(s); however, the toxicity issue is a concern with single agents at higher doses. In this study, we determined the combined effect of celecoxib, a COX-2 inhibitor, along with exisulind (sulindac sulfone/Aptosyn) at low doses in prostate cancer. We used a sequential regimen of N-methyl-N-nitrosourea + testosterone to induce prostate cancer in Wistar-Unilever rats. Following carcinogen treatment, celecoxib and exisulind individually and their combination at low doses were given in NIH-07 diet for 52 weeks. We determined the incidence of prostatic intraepithelial neoplasia, adenocarcinomas, rate of tumor cell proliferation, and apoptosis. Immunohistochemical and Western blot analysis were done to determine COX-2, epidermal growth factor receptor (EGFR), Akt, androgen receptor, and cyclin D1 expression. Serum prostaglandin E2 and tumor necrosis factor-alpha levels were determined using enzyme immunoassay/ELISA assays. The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis. An overall decrease in COX-2, EGFR, Akt, androgen receptor, and cyclin D1 expression was found associated with tumor growth inhibition. Reduced serum levels of COX-2 protein, prostaglandin E2, and tumor necrosis factor-alpha indicated anti-inflammatory effects. A strong inhibition of total and phosphorylated form of EGFR (Tyr(992) and Tyr(845)) and Akt (Ser(473)) was significant in rats given with these agents in combination. In this study, we show for the first time that the combination of celecoxib with exisulind at low doses could prevent prostate carcinogenesis by altering key molecular events.

  13. Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment.

    PubMed

    Swiercz, Radosław; Lutz, Piotr; Gralewicz, Sławomir; Grzelińska, Zofia; Piasecka-Zelga, Joanna; Wąsowicz, Wojciech

    2013-08-01

    Organophosphates are cholinesterase (ChE) inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours) rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP) poisoning symptomatology. In rodents, corticosterone (CORT) is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentration (the CORT response) and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET) [2-methyl-1,2-di(pyridin-3-yl)propan-1-one] blocks CORT synthesis by inhibiting steroid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP) [2-chloro-1-(2,4-dichlorophenyl) ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. The purpose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. The following was observed in the MET-treated rats: i) no rise in plasma CORT concentration after the CVP administration, ii) a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.

  14. Protective effect of magnolol on lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Ni, Yun Feng; Jiang, Tao; Cheng, Qing Shu; Gu, Zhong Ping; Zhu, Yi Fang; Zhang, Zhi Pei; Wang, Jian; Yan, Xiao Long; Wang, Wu Ping; Ke, Chang Kang; Han, Yong; Li, Xiao Fei

    2012-12-01

    Magnolol, a tradition Chinese herb, displays an array of activities including antifungal, antibacterial, and antioxidant effects. To investigate the protective effect of magnolol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intratracheal instillation of magnolol (5 μg/kg) 30 min before LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and myeloperoxidase (MPO) activity were measured by enzyme-linked immunosorbent assay. Expression of cyclooxygenase (COX)-2 in lung tissues was determined by Western blot analysis. Magnolol pretreatment significantly attenuated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by magnolol pretreatment. The expression of COX-2 was significantly suppressed by magnolol pretreatment. Magnolol potently protected against LPS-induced ALI and the protective effects of magnolol may attribute partly to the suppression of COX-2 expression.

  15. Pharmacology of a selective cyclooxygenase-2 inhibitor, HN-56249: a novel compound exhibiting a marked preference for the human enzyme in intact cells.

    PubMed

    Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D

    2000-04-01

    HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited

  16. Outcomes studies of the gastrointestinal safety of cyclooxygenase-2 inhibitors.

    PubMed

    Scheiman, James M

    2002-01-01

    Short-term endoscopic studies of the highly selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) rofecoxib and celecoxib have shown that these agents are well tolerated and have efficacy equivalent to nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) with fewer adverse effects on the upper gastrointestinal (GI) tract. These studies are limited, however, as the detection of endoscopic lesions is not well correlated with symptomatic ulcers and ulcer complications. Outcomes studies of the GI safety are, therefore, essential to understanding how coxibs are likely to perform in a clinical practice setting. Four large outcomes studies (Vioxx Gastrointestinal Outcomes Research, VIGOR; Assessment of Difference Between Vioxx and Naproxen to Ascertain Gastrointestinal Tolerability and Effectiveness trial, ADVANTAGE; Celecoxib Long-term Arthritis Safety Study, CLASS; and the Successive Celecoxib Efficacy and Safety Studies, SUCCESS) examined the GI safety of rofecoxib and celecoxib in over 39,000 patients with osteoarthritis or rheumatoid arthritis. Results of these studies showed that patients taking a supratherapeutic dose of rofecoxib or celecoxib had significantly lower rates of GI-related adverse events than those taking a nonselective NSAID (naproxen, ibuprofen, or diclofenac). Reduced risk of upper GI events was seen in patients with multiple risk factors and in patients using low-dose aspirin and corticosteroids concomitantly with a coxib. Results of large outcomes studies provide support for the COX-2 hypothesis and demonstrate the long-term safety and tolerability of coxibs.

  17. Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils

    PubMed Central

    Leclerc, Patrick; Biarc, Jordane; St-Onge, Mireille; Gilbert, Caroline; Dussault, Andrée-Anne; Laflamme, Cynthia; Pouliot, Marc

    2008-01-01

    The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis. PMID:18493301

  18. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    PubMed

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health.

  19. Caveolin-1–mediated Suppression of Cyclooxygenase-2 via a β-catenin-Tcf/Lef–dependent Transcriptional Mechanism Reduced Prostaglandin E2 Production and Survivin Expression

    PubMed Central

    Rodriguez, Diego A.; Tapia, Julio C.; Fernandez, Jaime G.; Torres, Vicente A.; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette

    2009-01-01

    Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E2 (PGE2) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and β-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE2 and cell proliferation. Moreover, COX-2 overexpression or PGE2 supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE2 to the medium prevented effects attributed to caveolin-1–mediated inhibition of β-catenin-Tcf/Lef–dependent transcription. Finally, PGE2 reduced the coimmunoprecipitation of caveolin-1 with β-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE2-induced signaling events linked to β-catenin/Tcf/Lef–dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345

  20. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, You Jin; Park, Sun Young; Kim, Sun Gun

    2010-01-22

    A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPSmore » in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.« less

  1. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2.

    PubMed

    Atar, Shaul; Ye, Yumei; Lin, Yu; Freeberg, Sheldon Y; Nishi, Shawn P; Rosanio, Salvatore; Huang, Ming-He; Uretsky, Barry F; Perez-Polo, Jose R; Birnbaum, Yochai

    2006-05-01

    We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.

  2. Cyclooxygenase-2 regulated by the nuclear factor-κB pathway plays an important role in endometrial breakdown in a female mouse menstrual-like model.

    PubMed

    Xu, Xiangbo; Chen, Xihua; Li, Yunfeng; Cao, Huizi; Shi, Cuige; Guan, Shuo; Zhang, Shucheng; He, Bin; Wang, Jiedong

    2013-08-01

    The role of prostaglandins (PGs) in menstruation has long been proposed. Although evidence from studies on human and nonhuman primates supports the involvement of PGs in menstruation, whether PGs play an obligatory role in the process remains unclear. Although cyclooxygenase (COX) inhibitors have been used in the treatment of irregular uterine bleeding, the mechanism involved has not been elucidated. In this study, we used a recently established mouse menstrual-like model for investigating the role of COX in endometrial breakdown and its regulation. Administration of the nonspecific COX inhibitor indomethacin and the COX-2 selective inhibitor DuP-697 led to inhibition of the menstrual-like process. Furthermore, immunostaining analysis showed that the nuclear factor (NF)κB proteins P50, P65, and COX-2 colocalized in the outer decidual stroma at 12 to 16 hours after progesterone withdrawal. Chromatin immunoprecipitation analysis showed that NFκB binding to the Cox-2 promoter increased at 12 hours after progesterone withdrawal in vivo, and real-time PCR analysis showed that the NFκB inhibitors pyrrolidine dithiocarbamate and MG-132 inhibited Cox-2 mRNA expression in vivo and in vitro, respectively. Furthermore, COX-2 and NFκB inhibitors similarly reduced endometrial breakdown, suggesting that NFκB/COX-2-derived PGs play a critical role in this process. In addition, the CD45(+) leukocyte numbers were sharply reduced following indomethacin (COX-1 and COX-2 inhibitor), DuP-697 (COX-2 inhibitor), and pyrrolidine dithiocarbamate (NFκB inhibitor) treatment. Collectively, these data indicate that NFκB/COX-2-induced PGs regulate leukocyte influx, leading to endometrial breakdown.

  3. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    PubMed

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  4. Differential effects of selective cyclooxygenase (COX)-1 and COX-2 inhibitors on anorexic response and prostaglandin generation in various tissues induced by zymosan.

    PubMed

    Naoi, Kazuhisa; Kogure, Suguru; Saito, Masataka; Hamazaki, Tomohito; Watanabe, Shiro

    2006-07-01

    We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response.

  5. Indomethacin derivatives as tubulin stabilizers to inhibit cancer cell proliferation.

    PubMed

    Chennamaneni, Snigdha; Gan, Chunfang; Lama, Rati; Zhong, Bo; Su, Bin

    2016-01-15

    Cyclooxygenase (COX) inhibitor Indomethacin analogs exhibited more potent cancer cell growth inhibition and apoptosis inducing activities than the parental compound. The anti-proliferative mechanism investigation of the analogs revealed that they inhibited tubulin polymerization at high concentrations whereas enhanced polymerization at low concentrations. The two opposite activities might antagonize each other and impaired the anti-proliferative activity of the derivatives eventually. In this study, we further performed lead optimization based on the structure activity relationship (SAR) generated. One of the new Indomethacin derivatives compound 11 {2-(4-(benzyloxy)phenyl)-N-(1-(4-bromobenzoyl)-3-(2-((2-(dimethylamino)ethyl)amino)-2-oxoethyl)-2-methyl-1H-indol-5-yl)acetamide} inhibited the proliferation of a panel of cancer cell lines with IC50s at the sub-micromole levels. Further study revealed that the compound only enhanced tubulin polymerization and was a tubulin stabilizer. Published by Elsevier Ltd.

  6. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less

  7. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    PubMed

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor.

    PubMed

    Favia, Angelo D; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2012-10-25

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.

  9. Endogenous cyclo-oxygenase activity regulates mouse gastric surface pH

    PubMed Central

    Baumgartner, Heidi K; Kirbiyik, Uzay; Coskun, Tamer; Chu, Shaoyou; Montrose, Marshall H

    2002-01-01

    In the stomach, production of prostaglandins by cyclo-oxygenase (COX) is believed to be important in mucosal defence. We tested the hypothesis that endogenous COX activity is required for protective gastric surface pH control. Intact stomachs of anaesthetized mice were perfused with a weakly buffered solution (150 mmNaCl + 4 mm Homopipes) at pH values from 2.5 to 7.0. Gastric effluents were collected to measure pH and estimate amounts of acid or alkali secretion in nanomoles secreted per minute. A switch from net acid to net alkali secretion was seen in response to acidifying luminal pH with an apparent ‘set point’ between pH 4 and 5. At luminal pH 3, the net alkali secretion (12.7 ± 2.8 nmol OH− equivalents min−1) was abolished (2.2 ± 1.7 nmol OH− min−1) by the non-specific COX inhibitor indomethacin (5 mg kg−1 I.P.). Similar inhibition was observed using a COX-1 inhibitor (SC-560; 10 mg kg−1 I.P.), but not a COX-2 inhibitor (NS-398; 10 mg kg−1 I.P.). Subsequent treatment with 16,16-dimethyl prostaglandin E2 (dm-PGE2; 1 mg kg−1 I.P.) rescued the alkali secretion (21.8 ± 2.7 nmol OH− min−1). In either the absence or presence of the H+,K+-ATPase inhibitor omeprazole (60 mg kg−1 I.P.), indomethacin blocked similar amounts of net alkali secretion (10.5 ± 2.7 and 16.4 ± 3.4 nmol OH− min−1, respectively). We also used in vivo confocal microscopy to examine pH near the mucosal surface. The gastric mucosal surface of anaesthetized mice was exposed and mucosal surface pH was imaged using the fluorescence intensity ratio of Cl-NERF as a pH indicator. Results showed a switch from a continuous net acid to net alkali secretion by the stomach in response to changing superfusate pH from 5 to 3. At luminal pH 3, the relatively alkaline surface pH (4.3 ± 0.1) was acidified (3.6 ± 0.2) by indomethacin, and subsequent dm-PGE2 restored surface pH (4.2 ± 0.2). We conclude that the pre-epithelial alkaline layer is regulated by endogenous COX

  10. Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia.

    PubMed

    Zhao, Lixing; Wu, Yeke; Tan, Lijun; Xu, Zhenrui; Wang, Jun; Zhao, Zhihe; Li, Xiaoyu; Li, Yu; Yang, Pu; Tang, Tian

    2013-12-01

    During periodontitis and orthodontic tooth movement, periodontal vasculature is severely impaired, leading to a hypoxic microenvironment of periodontal cells. However, the impact of hypoxia on periodontal cells is poorly defined. The present study investigates responses of cocultured endothelial cells (ECs) and periodontal ligament stem cells (PDLSCs) to hypoxia. Osteogenic differentiation, molecular characterization, and various behaviors of PDLSCs and human umbilical venous ECs under hypoxia were assessed by quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Moreover, the effect of ECs on PDLSC osteogenic differentiation was tested using NS398 (cyclooxygenase 2 blocker), SU5416 (vascular endothelial growth factor [VEGF] receptor inhibitor), AH6809, L-798106, and L-161982 (EP1/2/3/4 antagonists). First, hypoxia promoted osteogenic differentiation in PDLSCs and enhanced EC migration, whereas PD98059 (extracellular signal-regulated protein kinase [ERK] inhibitor) blocked, and cocultured ECs further enhanced, hypoxia-induced osteogenic differentiation. Second, NS398 impaired EC migration and prostaglandin E2 (PGE2)/VEGF release, whereas cocultured PDLSCs and exogenous PGE2 partially reversed it. Third, NS398 (pretreated ECs) decreased PGE2/VEGF concentrations. NS398-treated ECs and AH6809/SU5416-treated PDLSCs impaired cocultured EC-induced enhancement of PDLSC osteogenic differentiation. Hypoxia enhances ERK-mediated osteogenic differentiation in PDLSCs. Coculture with EC further augments PDLSC osteogenic differentiation via cyclooxygenase-2/PGE2/VEGF signaling.

  11. Anti-inflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction.

    PubMed

    Shim, Sehwan; Kim, Sokho; Choi, Dea-Seung; Kwon, Young-Bae; Kwon, Jungkee

    2011-11-01

    Ginger extracts have been reported to have anti-inflammatory, anti-oxidant, and anti-cancer effects. [6]-shogaol is one of the most bioactive components of ginger rhizomes. This study assessed the [6]-shogaol's ability to protect cultured primary rat astrocytes against lipopolysaccharide (LPS)-induced inflammation. [6]-shogaol was shown to suppress the release of pro-inflammatory cytokines and decreased the level of inducible nitric oxide syntheses (iNOS), cyclooxygenase-2 (COX-2), and phospho-NF-kB in LPS-treated astrocytes. Furthermore, [6]-shogaol treatment markedly up-regulated histone H3 acetylation and suppressed histone deacetylase (HDAC)1 expression. In addition, [6]-shogaol treatment also increased the expression of heat-shock protein (HSP)70. The neuroprotective, neurotrphic, and anti-inflammatory properties of [6]-shogaol may be translated to improvements in neurological performance. [6]-Shogaol's ability to inhibit HDAC was comparable to that of commonly used HDAC inhibitors Trichostatin A and MS275. Taken together, our results suggest that [6]-shogaol can significantly attenuate a variety of neuroinflammatory responses by inducing HSP70, that is associated with HDAC inhibition in cortical astrocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression.

    PubMed

    Gore, Prashant R; Prajapati, Chaitali P; Mahajan, Umesh B; Goyal, Sameer N; Belemkar, Sateesh; Ojha, Shreesh; Patil, Chandragouda R

    2016-01-01

    Cyclophosphamide (CYP) induced hemorrhagic cystitis is a dose-limiting side effect involving increased oxidative stress, inflammatory cytokines and suppressed activity of nuclear factor related erythroid 2-related factor (Nrf2). Thymoquinone (TQ), an active constituent of Nigella sativa seeds, is reported to increase the expression of Nrf2, exert antioxidant action, and anti-inflammatory effects in the experimental animals. The present study was designed to explore the effects of TQ on CYP-induced hemorrhagic cystitis in Balb/c mice. Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg). TQ was administered intraperitoneally at 5, 10 and 20 mg/kg doses twice a day, for three days before and three days after the CYP administration. The efficacy of TQ was determined in terms of the protection against the CYP-induced histological perturbations in the bladder tissue, reduction in the oxidative stress, and inhibition of the DNA fragmentation. Immunohistochemistry was performed to examine the expression of Nrf2. TQ protected against CYP-induced oxidative stress was evident from significant reduction in the lipid peroxidation, restoration of the levels of reduced glutathione, catalase and superoxide dismutase activities. TQ treatment significantly reduced the DNA damage evident as reduced DNA fragmentation. A significant decrease in the cellular infiltration, edema, epithelial denudation and hemorrhage were observed in the histological observations. There was restoration and rise in the Nrf2 expression in the bladder tissues of mice treated with TQ. These results confirm that, TQ ameliorates the CYP-induced hemorrhagic cystitis in mice through reduction in the oxidative stress, inhibition of the DNA damage and through increased expression of Nrf2 in the bladder tissues.

  13. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sung Gu; Department of Animal and Food Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536; Han, Seong-Su

    Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCBmore » 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants.

  14. Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression.

    PubMed

    Wang, Huiqiang; Zhang, Dajun; Ge, Miao; Li, Zhuorong; Jiang, Jiandong; Li, Yuhuan

    2015-03-01

    The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE₂) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE₂ expression. The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0-6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE₂ expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Formononetin could inhibit EV71-induced COX-2 expression and PGE₂ production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.

  15. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.

    PubMed

    Zheng, Ling; Howell, Scott J; Hatala, Denise A; Huang, Kun; Kern, Timothy S

    2007-02-01

    It has been previously reported that aspirin inhibited the development of diabetic retinopathy in diabetic animals, raising the possibility that anti-inflammatory drugs may have beneficial effects on diabetic retinopathy. To further explore this, we compared effects of oral consumption of three different salicylate-based drugs (aspirin, sodium salicylate, and sulfasalazine) on the development of early stages of diabetic retinopathy in rats. These three drugs differ in their ability to inhibit cyclooxygenase but share an ability to inhibit nuclear factor-kappaB (NF-kappaB). Diabetes of 9-10 months duration significantly increased the number of TUNEL (transferase-mediated dUTP nick-end labeling)-positive capillary cells and acellular (degenerate) capillaries in the retinal vasculature, and all three salicylate-based drugs inhibited this cell death and formation of acellular capillaries without altering the severity of hyperglycemia. In short-term diabetes (2-4 months), all three salicylates inhibited the diabetes-induced loss of neuronal cells from the ganglion cell layer. Oral aspirin (as a representative of the salicylate family) inhibited diabetes-induced increase in NF-kappaB DNA-binding affinity in electrophoretic mobility shift assay and transcription factor array in nuclear extract isolated from whole retina. All three salicylates inhibited the diabetes-induced translocation of p50 (a subunit of NF-kappaB) into nuclei of retinal vascular endothelial cells of the isolated retinal vasculature, as well as of p50 and p65 into nuclei of cells in the ganglion cell layer and inner nuclear layer on whole-retinal sections. Sulfasalazine (also as a representative of the salicylates) inhibited the diabetes-induced upregulation of several inflammatory gene products, which are regulated by NF-kappaB, including vascular cell adhesion molecule, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 in whole-retinal lysate. Salicylates, in

  16. Trimethyltin-activated cyclooxygenase stimulates tumor necrosis factor-alpha release from glial cells through reactive oxygen species.

    PubMed

    Viviani, B; Corsini, E; Pesenti, M; Galli, C L; Marinovich, M

    2001-04-15

    Exposure of a primary culture of glial cells to the classical neurotoxicant trimethyltin (TMT) results in the release of prostaglandin (PG)E(2) and tumor necrosis factor (TNF)-alpha. Prior treatment of glial cells with either the nonspecific inhibitor of cyclooxygenase and lypoxygenase eicosatetraynoic acid (ETYA) or the cyclooxygenase inhibitor indomethacin completely prevented TMT-induced PGE(2) production and TNF-alpha release, suggesting a role for cyclooxygenase metabolites in TMT-induced TNF-alpha release. Exposure of glial cells to increasing concentrations of PGE(2) or other prostanoids did not increase TNF-alpha synthesis, while the presence of exogenous PGE(2) during treatment of glial cells with TMT actually suppressed TNF-alpha release. The activation of arachidonic acid metabolism produces reactive oxygen species (ROS). Scavenging of ROS by means of the antioxidant trolox prevented the TMT-induced release of TNF-alpha from glial cells, while indomethacin was found to suppress ROS formation induced by 1 microM TMT in glial cells. These results suggest that activation of arachidonic acid metabolism causes TNF-alpha release through the production of ROS rather than PGE(2). Indeed, PGE(2) may exert negative feedback on the release of TNF-alpha. Copyright 2001 Academic Press.

  17. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria.

    PubMed

    Danz, H; Stoyanova, S; Wippich, P; Brattström, A; Hamburger, M

    2001-07-01

    Various extracts prepared from the traditional dye and medicinal plant Isatis tinctoria L. were submitted to a broad in vitro screening against 16 anti-inflammatory targets. Dichloromethane (DCM) extracts from dried leaves showed a marked cyclooxygenase (COX) inhibitory activity with a preferential effect on COX-2 catalysed prostaglandin synthesis. A supercritical fluid extraction (SFE) procedure employing CO2-modifier mixtures was developed by which the bioactivity profile and chromatographic fingerprint of the DCM extract could be reproduced. High-resolution activity directed on-line identification of the COX-2 inhibitory principle, using a combination of LC-DAD-MS with a microtitre-based bioassay, led to the identification of tryptanthrin (1) as the constituent responsible for essentially all COX-2 inhibitory activity in the crude extract. Following on-line identification, 1 was isolated at preparative scale and its structure confirmed by comparison with synthetic tryptanthrin. In an assay with lipopolysaccharide stimulated Mono Mac 6 cells, tryptanthrin (1) was of comparable potency (IC50 = 64 nM) than the preferential COX-2 inhibitors nimesulide (IC50 = 39 nM) and NS 398 (IC50 = 2 nM). The SFE extract and 1 showed no cytotoxicity in Mono Mac 6 and RAW 264.7 cells when tested at 100 microg/ml and 10 microM, respectively.

  18. PTGS-2-PTGER2/4 signaling pathway partially protects from diabetogenic toxicity of streptozotocin in mice.

    PubMed

    Vennemann, Antje; Gerstner, Anemone; Kern, Niklas; Ferreiros Bouzas, Nerea; Narumiya, Shuh; Maruyama, Takayuki; Nüsing, Rolf M

    2012-07-01

    Prostanoids are suggested to participate in diabetes pathology, but their roles are controversially discussed. The purpose of the current study was to examine the role of cyclooxygenase (prostaglandin synthase [PTGS]) enzymes and prostaglandin (PG) E(2) signaling pathways in streptozotocin (STZ)-induced type 1 diabetes. Blood glucose, insulin, and survival rate were studied in mice with targeted disruption of the genes for PTGS and PGE receptors (PTGERs). PGE(2) was found as the main prostanoid formed by the pancreas. Contrarily to PTGS-1, deficiency of PTGS-2 activity significantly amplified STZ effect, causing dramatic loss of insulin production and rise in blood glucose and death rate. STZ metabolism was unaffected by PTGS deficiency. Diabetogenicity of STZ in PTGER1(-/-), PTGER2(-/-), PTGER3(-/-), and PTGER4(-/-) mice was comparable to control mice. In striking contrast, combined knockout of PTGER2 and PTGER4 by blocking PTGER4 in PTGER2(-/-) mice strongly enhanced STZ pathology. Treatment of PTGS-2(-/-) and wild-type mice with PTGER2/PTGER4 agonists partially protected against STZ-induced diabetes and restored β-cell function. Our data uncover a previously unrecognized protective role of PTGS-2-derived PGE(2) in STZ-induced diabetes mediated by the receptor types PTGER2 and PTGER4. These findings offer the possibility to intervene in early progression of type 1 diabetes by using PTGER-selective agonists.

  19. Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway.

    PubMed

    Ren, Xiaolin; Shi, Yuling; Zhao, Di; Xu, Mengyu; Li, Xiaolong; Dang, Yongyan; Ye, Xiyun

    2016-05-01

    Naringin is a bioflavonoid and has free radical scavenging and anti-inflammatory properties. We examined the effects of naringin on skin after ultraviolet radiation B (UVB) irradiation and the signal pathways by in vitro and in vivo assay. HaCaT cells pretreated with naringin significantly inhibited UVB induced-cell apoptosis and production of intracellular reactive oxygen species (ROS). The expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in HaCaT cells pretreated with naringin were decreased compared with the only UVB group. Also, the activation of p38 induced by UVB in HaCaT cells was reversed by naringin treatments. The inhibition function of naringin on p38 activity was more obvious than JNK. In vivo, topical treatments with naringin prevented the increase of epidermal thickness, IL-6 production, cell apoptosis and the overexpression of COX-2 in BALB/c mice skin irradiated with UVB. Naringin treatment also markedly blocked the activation of p38 in response to UVB stimulation in the mouse skin. Naringin can effectively protect against UVB-induced keratinocyte apoptosis and skin damage by inhibiting ROS production, COX-2 overexpression and strong inflammation reactions. It seemed that naringin played its role against UVB-induced skin damage through inhibition of mitogen-activated protein kinase (MAPK)/p38 activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. COX-2 chronology

    PubMed Central

    Hawkey, C J

    2005-01-01

    The role of selective cyclooxygenase (COX)-2 inhibitors in medical practice has become controversial since evidence emerged that their use is associated with an increased risk of myocardial infarction. Selective COX-2 inhibitors were seen as successor to non-selective non-steroidal anti-inflammatory drugs, in turn successors to aspirin. The importance of pain relief means that such drugs have always attracted attention. The fact that they work through inhibition of cyclooxygenase, are widespread, and have multiple effects also means that adverse effects that were unanticipated (even though predictable) have always emerged. In this paper I therefore present an historical perspective so that the lessons of the past may be applied to the present. PMID:16227351

  1. Paeoniflorin, a Monoterpene Glycoside, Protects the Brain from Cerebral Ischemic Injury via Inhibition of Apoptosis.

    PubMed

    Zhang, Yuqin; Li, Huang; Huang, Mingqing; Huang, Mei; Chu, Kedan; Xu, Wei; Zhang, Shengnan; Que, Jinhua; Chen, Lidian

    2015-01-01

    Paeoniflorin (PF) is a principal bioactive component, which exhibits many pharmacological effects, including protection against ischemic injury. This paper aimed to investigate the protective effect of PF both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was performed on male Sprague-Dawley (SD) rat for 2 h, and different doses of PF or vehicle were administered 2 h after reperfusion. Rats were sacrificed after 7 days treatment of PF/vehicle. PF treatment for 7 days ameliorated MCAO-induced neurological deficit and decreased the infarct area. Further study demonstrated that PF inhibited the over-activation of astrocytes and apoptosis of neurons, and PF promoted up-regulation of neuronal specific marker neuron-specific nuclear (NeuN) and microtubule-associated protein 2 (MAP-2) in brain. Moreover, NMDA-induced neuron apoptosis was employed. The in vitro study revealed that PF treatment protected against NMDA-induced cell apoptosis and neuronal loss via up-regulation of neuronal specific marker NeuN, MAP-2 and Bcl-2 and the down-regulation Bax. Taken together, the present study demonstrates that PF produces its protective effect by inhibiting the over-activation of astrocytes, apoptosis of neurons and up-regulation of neuronal specific marker NeuN, MAP-2, and B-cell lymphoma-2 (Bcl-2), and down-regulation Bax. Our study reveals that PF may be a potential neuroprotective agent for stroke and can provide basic data for clinical use.

  2. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    EPA Science Inventory

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  3. Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression.

    PubMed

    Lu, Jianrao; Yi, Yang; Pan, Ronghua; Zhang, Chuanfu; Han, Haiyan; Chen, Jie; Liu, Wenrui

    2018-03-01

    Renal ischemia reperfusion injury (RIRI) refers to the irreversible damage for renal function when blood perfusion is recovered after ischemia for an extended period, which is common in clinical surgeries and has been regarded as a major risk for acute renal failures (ARF) that is accompanied with unimaginably high morbidity and mortality. Hypoxia during ischemia followed by reoxygenation via reperfusion serves as a major event contributing to cell apoptosis, which has been widely accepted as the vital pathogenesis in RIRI. Preventing apoptosis in renal tubular epithelial cell has been considered as effective method for blocking RIRI. In this paper, we established a hypoxia/reoxygenation (H/R) injury model in human proximal tubular epithelial HK-2 cells. Here, we found increased SPHK1 levels in H/R injured HK-2 cells, which could be significantly down regulated after berberine treatment. Berberine has been reported to exert a protective effect on H/R-induced apoptosis of HK-2 cells. So, in our present study, we planned to investigate whether SPHK1 participated in the anti-apoptosis process of berberine in H/R injured HK-2 cells. Our study confirmed the protective effect of berberine against H/R-induced apoptosis in HK-2 cells through promoting cells viability, inhibiting cells apoptosis, and down-regulating p-P38, caspase-3, caspase-9 as well as SPHK1, while up regulating the ratio of Bcl-2/Bax. However, SPHK1 overexpression in HK-2 cells induced severe apoptosis, which can be significantly ameliorated with additional berberine treatment. We concluded that berberine could remarkably prevent H/R-induced apoptosis in HK-2 cells through down-regulating SPHK1 expression levels, and the mechanisms included the suppression of p38 MAPK activation and mitochondrial stress pathways.

  4. Use of a balanced dual cyclooxygenase-1/2 and 5-lypoxygenase inhibitor in experimental colitis.

    PubMed

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Minutoli, Letteria; Arcoraci, Vincenzo; Squadrito, Giovanni; Macrì, Antonio; Squadrito, Francesco; Altavilla, Domenica

    2016-10-15

    Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) play an important role in inflammatory bowel diseases (IBDs). We investigated the effects of flavocoxid, a dual COX/LOX inhibitor, in experimental colitis induced with either dinitrobenzenesulfonic acid (DNBS) or dextrane sulphate sodium (DSS) In the first model, colitis was induced in rats by a single intra-colonic instillation (25mg in 0.8ml 50% ethanol) of DNBS; after 24h animals were randomized to receive orally twice a day, flavocoxid (10mg/kg), zileuton (50mg/kg), or celecoxib (5mg/kg). Sham animals received 0.8ml of saline by a single intra-colonic instillation. Rats were killed 4 days after induction and samples were collected for analysis. In the second model, colitis was induced in rats by the administration of 8% DSS dissolved in drinking water; after 24h animals were randomized to the same above reported treatments. Sham animals received standard drinking water. Rats were killed 5 days after induction and samples were collected for analysis. Flavocoxid, zileuton and celecoxib improved weight loss, reduced colonic myeloperoxydase activity, macroscopic and microscopic damage, and TNF-α serum levels. Flavocoxid and celecoxib also reduced malondialdheyde, 6-keto PGF1α and PGE-2 levels while flavocoxid and zileuton decreased LTB-4 levels. In addition, flavocoxid treatment improved histological features and apoptosis as compared to zileuton and celecoxib; moreover only flavocoxid reduced TXB2, thus avoiding an imbalance in eicosanoids production. Our results show that flavocoxid has protective effect in IBDs and may represents a future safe treatment for inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis.

    PubMed

    Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G

    2013-03-01

    Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP.

  6. Inhibiting renin angiotensin system in rate limiting step by aliskiren as a new approach for preventing indomethacin induced gastric ulcers.

    PubMed

    Halici, Zekai; Polat, Beyzagul; Cadirci, Elif; Topcu, Atilla; Karakus, Emre; Kose, Duygu; Albayrak, Abdulmecit; Bayir, Yasin

    2016-10-25

    Previously blocking the renin angiotensin system (RAAS) has been effective in the prevention of gastric damage. Therefore, the aim of this study was to investigate the effects of aliskiren, and thus, direct renin blockage, in indomethacin-induced gastric damage model. Effects of aliskiren were evaluated in indomethacin-induced gastric damage model on Albino Wistar rats. Effects of famotidine has been investigated as standard antiulcer agent. Stereological analyses for ulcer area determination, biochemical analyses for oxidative status determination and molecular analyses for tissue cytokine and cyclooxygenase determination were performed on stomach tissues. In addition, to clarify antiulcer effect mechanism of aliskiren pylorus ligation-induced gastric acid secretion model was applied on rats. Aliskiren was able to inhibit indomethacin-induced ulcer formation. It also inhibited renin, and thus, decreased over-produced Angiotensin-II during ulcer formation. Aliskiren improved the oxidative status and cytokine profile of the stomach, which was most probably impaired by increased Angiotensin II concentration. Aliskiren also increased gastroprotective prostaglandin E2 concentration. Finally, aliskiren did not change the gastric acidity in pylorus ligation model. Aliskiren exerted its protective effects on stomach tissue by decreasing inflammatory cytokines and oxidative stress as a result of inhibiting the RAAS, at a rate-limiting step, as well as its end product, angiotensin II. Aliskiren also significantly increased protective factors such as PGE2, but not affect aggressive factors such as gastric acidity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells

    PubMed Central

    Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo

    2016-01-01

    Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment. PMID:26672764

  8. ASP6537, a novel highly selective cyclooxygenase-1 inhibitor, exerts potent antithrombotic effect without "aspirin dilemma".

    PubMed

    Sakata, Chinatsu; Kawasaki, Tomihisa; Kato, Yasuko; Abe, Masaki; Suzuki, Ken-ichi; Ohmiya, Makoto; Funatsu, Toshiyuki; Morita, Yoshiaki; Okada, Masamichi

    2013-07-01

    Aspirin inhibits both the cyclooxygenase (COX)-1-dependent production of thromboxane A2 (TXA2) in platelets and COX-2-dependent production of anti-aggregatory prostaglandin I2 (PGI2) in vessel walls, resulting in "aspirin dilemma." Our objective is to investigate whether ASP6537 can overcome aspirin dilemma and exert a potent antithrombotic effect without a concurrent ulcerogenic effect. We evaluated the inhibitory effects of ASP6537 on recombinant human COX-1 (rhCOX-1) and rhCOX-2 activities using a COX-1/2 selectivity test. To determine whether ASP6537 induces aspirin dilemma, we examined the effects of ASP6537 on in vitro TXA2 and PGI2 metabolite production from platelets and isolated aorta of guinea pigs, and on plasma concentrations of TXA2 and PGI2 metabolites in aged rats. Finally, we evaluated the antithrombotic effects and ulcerogenic activity of ASP6537 using an electrically induced carotid arterial thrombosis model and a gastric ulcer model in guinea pigs. The IC50 ratios of rhCOX-2 to rhCOX-1 for ASP6537 and aspirin were >142,000 and 1.63 fold, respectively. ASP6537 inhibited TXA2 production more selectively than aspirin in in vitro and in vivo TXA2/PGI2 production studies. ASP6537 exerted a significant antithrombotic effect at ≥3 mg/kg, while aspirin tended to inhibit thrombosis at 300 mg/kg but it was not statistically significant. Further, ASP6537 did not induce ulcer formation at 100 mg/kg, whereas aspirin exhibited an ulcerogenic effect at doses of ≥100 mg/kg. ASP6537 functions as a highly selective COX-1 inhibitor with a superior ability to aspirin for normalizing TXA2/PGI2 balance, and exerts antithrombotic effect without ulcerogenic effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Transitional cell carcinoma in fishing cats (Prionailurus viverrinus): pathology and expression of cyclooxygenase-1, -2, and p53.

    PubMed

    Landolfi, J A; Terio, K A

    2006-09-01

    A high prevalence of urinary bladder transitional-cell carcinoma (TCC) has been noted in captive fishing cats (Prionailurus viverrinus). Of the 91 adult deaths between 1995 and 2004, 12 (13%) were attributed to TCC. To help elucidate mechanisms of carcinogenesis, archival sections of urinary bladder from 14 fishing cats were examined histologically and immunohistochemically for p53, cyclooxygenase (COX)-1, and COX-2 expression. Ten cats had TCC, and 4 were unaffected. The average age at death was 10.8 years in affected individuals and 10.5 years in unaffected individuals. There was no sex predilection. Fishing cat TCCs were characterized histologically as papillary and infiltrating (n = 6), nonpapillary and infiltrating (n = 3), or carcinoma in situ (n = 1). Glandular and squamous metaplasia, necrosis, and lymphatic invasion were prominent histologic features. Two individuals had documented metastasis. p53 nuclear immunolabeling was detected in 4/10 (40%) TCCs. In two cases, immunolabeling was limited to less than 10% of the neoplastic cellular population and was comparable to staining of normal fishing cat bladder. Therefore, p53 gene mutation did not appear to be an essential component of TCC carcinogenesis in examined fishing cats. COX-1 immunohistochemistry was negative in all cases. All TCCs had some degree of COX-2 cytoplasmic immunolabeling, which was exclusively within the invasive portions of the neoplasms. Papillary portions were uniformly negative. COX-2 overexpression was a prominent feature in the majority of the examined fishing cat TCCs, suggesting that COX-2-mediated mechanisms of carcinogenesis are important in this species and that COX-inhibiting drugs may be of therapeutic benefit.

  10. Cyclooxygenase Expression and Platelet Function in Healthy Dogs Receiving Low Dose Aspirin

    PubMed Central

    Dudley, Alicia; Thomason, John; Fritz, Sara; Grady, Jesse; Stokes, John; Wills, Robert; Pinchuk, Lesya; Mackin, Andrew; Lunsford, Kari

    2014-01-01

    Background Low dose aspirin is used to prevent thromboembolic complications in dogs, but some animals are non-responsive to the anti-platelet effects of aspirin (‘aspirin resistance’). Hypothesis/Objectives That low dose aspirin would inhibit platelet function, decrease thromboxane synthesis, and alter platelet cyclooxygenase (COX) expression. Animals Twenty-four healthy dogs Methods A repeated measures study. Platelet function (PFA-100® closure time, collagen/epinephrine), platelet COX-1 and COX-2 expression, and urine 11-dehydro-thromboxane B2 (11-dTXB2) was evaluated prior to and during aspirin administration (1 mg/kg Q24 hours PO, 10 days). Based on prolongation of closure times after aspirin administration, dogs were divided into categories according to aspirin responsiveness: responders, non-responders, and inconsistent responders. Results Low dose aspirin increased closure times significantly (62% by Day 10, P<0.001), with an equal distribution among aspirin responsiveness categories, 8 dogs per group. Platelet COX-1 mean fluorescent intensity (MFI) increased significantly during treatment, 13% on Day 3 (range, −29.7%–136.1%) (P=0.047) and 72% on Day 10 (range, −0.37–210.36%) (P<0.001). Platelet COX-2 MFI increased significantly by 34% (range, −29.2–270.4%) on Day 3 (P = 0.003) and 74% (range, −19.7–226.2%) on Day 10 (P<0.001). Urinary 11-dTXB2 concentrations significantly (P=0.005, P<0.001) decreased at both time points. There was no difference between aspirin responsiveness and either platelet COX expression or thromboxane production. Conclusions and Clinical Importance Low dose aspirin consistently inhibits platelet function in approximately one third of healthy dogs, despite decreased thromboxane synthesis and increased platelet COX expression in most dogs. Pre-treatment COX isoform expression did not predict aspirin resistance. PMID:23278865

  11. Centella asiatica Leaf Extract Protects Against Indomethacin-Induced Gastric Mucosal Injury in Rats.

    PubMed

    Zheng, Hong-Mei; Choi, Myung-Joo; Kim, Jae Min; Cha, Kyung Hoi; Lee, Kye Wan; Park, Yu Hwa; Hong, Soon-Sun; Lee, Don Haeng

    2016-01-01

    The present study evaluated the protective effect of Centella asiatica (gotu kola) leaf extract (CAE) against indomethacin (IND)-induced gastric mucosal injury in rats. Gastric mucosal injury was induced by the oral administration of IND to the rats after a 24 h fast. CAE (50 or 250 mg/kg) or lansoprazole (a reference drug) was orally administrated 30 min before the IND administration, and 5 h later, the stomachs were removed to quantify the lesions. Orally administered CAE significantly reduced IND-induced gastric injury. The histopathological observations (hematoxylin-eosin and Periodic acid-Schiff staining) confirmed the protection against gastric mucosal injury. Also, CAE decreased the malondialdehyde content compared to the control group. Moreover, pretreatment with CAE resulted in a significant reduction in the elevated expression of tumor necrosis factor, Cyclooxygenase (COX)-2, and inducible nitric oxide synthase. These results suggested that CAE possesses gastroprotective effects against IND-induced gastric mucosal injury, which could be attributed to its ability to inhibit lipid peroxidation and stimulate gastric mucus secretion in the rat gastric mucosa.

  12. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmis, Lars; Tanner, Felix C.; Center for Integrative Human Physiology, University of Zuerich, Zuerich

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysismore » showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.« less

  13. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Peng, Pingan; Ma, Qian; Wang, Le; Zhang, Ou; Han, Hongya; Liu, Xiaoli; Zhou, Yujie; Zhao, Yingxin

    2015-11-01

    To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 (P = .005), ATF4 (P = .01), and caspase 12 (P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups (P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS. © The Author(s) 2015.

  14. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.

    PubMed

    Li, Rui; Peng, Ning; Du, Fang; Li, Xu-ping; Le, Wei-dong

    2006-04-01

    To observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo. The effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated. Pretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP. EGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.

  15. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  16. Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population

    PubMed Central

    LI, YUCHUN; DAI, LIPING; ZHANG, JIANZHONG; WANG, PENG; CHAI, YURONG; YE, HUA; ZHANG, JIANYING; WANG, KAIJUAN

    2012-01-01

    A number of studies have shown that cyclooxygenase-2 (COX-2) gene polymorphisms were associated with gastric cancer. However, the results from different research groups have not been consistent. The present study aimed to investigate the association between polymorphisms of the cyclooxygenase-2 promoter region (-1195G>A, -765G>C) and gastric cancer patients with various degrees of relationship in the Chinese Han population. COX-2-1195G>A and COX-2-765G>C polymorphisms in 296 gastric cancer patients and 319 control family members were genotyped using polymerase chain reaction-restriction fragment length polymorphism. An increased risk of gastric cancer was observed in subjects with the COX-2-1195AA genotype (OR=2.03; 95% CI, 1.27–3.22), and the association strength decreased as the degree of relationship decreased. Stratification analysis revealed that the OR value of COX-2-1195AA genotype and A carriers exhibited synergy with Helicobacter pylori (H. pylori) infection (AA genotype: OR=2.96; 95% CI, 1.57–5.58; A carriers: OR=2.04; 95% CI, 1.18–3.52). No significant difference was found in each genotype of COX-2-765G>C between gastric cancer patients and control family members, as well as gastric cancer patients with various degrees of relationship. Our study demonstrated that the polymorphism of COX-2-1195AA genotype may be a risk factor for gastric cancer patients with various degrees of relationship among the Chinese Han population. H. pylori infection therefore may enhance the risk of gastric cancer in individuals with the COX-2-1195 AA genotype. PMID:22740864

  17. Cyclooxygenase-2 and 5-lipoxygenase in dogs with chronic enteropathies.

    PubMed

    Dumusc, S D; Ontsouka, E C; Schnyder, M; Hartnack, S; Albrecht, C; Bruckmaier, R M; Burgener, I A

    2014-01-01

    Cyclooxygenase-2 (COX-2) is a key enzyme in the synthesis of pro-inflammatory prostaglandins and 5-lipoxygenase (5-LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). COX-2 and 5-LO are upregulated in dogs with CCE. Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food-responsive diarrhea (FRD). Prospective study. mRNA expression of COX-2, 5-LO, IL-1b, IL-4, IL-6, TNF, IL-10 and TFG-β was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies before and after treatment. COX-2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL-1b was higher in FRD in the duodenum after treatment (P = .021). TGF-β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL-4, IL-6, TNF, and IL-10. There was a significant correlation between COX-2 and IL-1b in duodenum and colon before treatment in FRD and IBD, whereas 5-LO correlated better with IL-6 and TNF. IL-10 and TGF-β usually were correlated. COX-2 is upregulated in IBD and FRD, whereas IL-1b and TGF-β seem to be important pro- and anti-inflammatory cytokines, respectively. The use of dual COX/5-LO inhibitors could be an interesting alternative in the treatment of CCE. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  18. The protective effect of Nigella sativa against liver injury: a review.

    PubMed

    Mollazadeh, Hamid; Hosseinzadeh, Hossein

    2014-12-01

    Nigella sativa (Family Ranunculaceae) is a widely used medicinal plant throughout the world. N. sativa is referred in the Middle East as a part of an overall holistic approach to health. Pharmacological properties of N. sativa including immune stimulant, hypotensive, anti-inflammatory, anti-cancer, antioxidant, hypoglycemic, spasmolytic and bronchodilator have been shown. Reactive oxygen species (ROS) and oxidative stress are known as the major causes of many diseases such as liver injury and many substances and drugs can induce oxidative damage by generation of ROS in the body. Many pharmacological properties of N. sativa are known to be attributed to the presence of thymoquinone and its antioxidant effects. Thymoquinone protects liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and glutathione level, radical scavengering, increasing the activity of quinone reductase, catalase, superoxide dismutase and glutathione transferase, inhibition of NF-κB activity and inhibition of both cyclooxygenase and lipoxygenase. Therefore, this review aimed to highlight the roles of ROS in liver diseases and the mechanisms of N. sativa in prevention of liver injury.

  19. Aryl Hydrocarbon Receptor-Dependent Retention of Nuclear HuR Suppresses Cigarette Smoke-Induced Cyclooxygenase-2 Expression Independent of DNA-Binding

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407

  20. Cyclooxygenase-2 expression and oxidative DNA adducts in murine intestinal adenomas: modification by dietary curcumin and implications for clinical trials.

    PubMed

    Tunstall, R G; Sharma, R A; Perkins, S; Sale, S; Singh, R; Farmer, P B; Steward, W P; Gescher, A J

    2006-02-01

    The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.

  1. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding.

    PubMed

    Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

  2. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    NASA Astrophysics Data System (ADS)

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-11-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.

  3. [Differential action of non-steroidal antiinflammatory drugs on human gallbladder cyclooxygenase and lipoxygenase].

    PubMed

    Franchi, A; Di Girolamo, G; Farina, M; de los Santos, A R; Martí, M L; Gimeno, M A

    2000-01-01

    Lysine clonixinate (LC) is a non-steroidal antiinflammatory agent (NSAID) with only few adverse effects. This characteristic has prompted us to suggest that its administration, at levels equivalent to those found in human plasma following therapeutic doses, slightly inhibits cyclooxygenase I (COX I). Three experiments were performed. Experiment 1: to study the in vitro effect of LC at concentrations of 4 and 6 micrograms/ml, comparable with those found in plasma following an oral therapeutic dose of 125 mg. Gallbladder tissue segments were incubated with 0.25 microCi of 14C-arachidonic acid and the production of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha) was measured. LC did not affect basal production of any of the 3 prostaglandins (PGs) but at 6 micrograms/ml slightly reduced the levels of 5-hidroxyeicosatetraenoic acid (5-HETE). Experiment 2: LC was administered preoperatively to 6 patients by continuous perfusion, to achieve a steady-state concentration between 4 and 6 micrograms/ml. Gallbladder segments from the 6 treated and another 6 control patients were incubated in 14C-arachidonic acid. Gallbladder segments treated with LC did not show a decreased production of any of the three PGs whereas 5-HETE released to the medium was significantly lower. Experiment 3: 18 patients received an i.v. bolus of LC 100 mg (n1 = 6) or LC 200 mg (n2 = 6) or indomethacin (INDO) 50 mg (n3 = 6). Unlike the administration of INDO bolus, LC in the above doses did not inhibit PG synthesis. Both NSAIDs showed different effects when the production of 5-HETE synthesis was assessed. Treatment with INDO did not alter the production of 5-HETE while LC elicited significant inhibition. The three studies conducted, namely in vitro and in vivo continuous perfusion and i.v. bolus, revealed that LC had no effect on prostaglandin synthesis while reducing significantly the levels of 5-HETE.

  4. Temporal and pharmacological division of fibroblast cyclooxygenase expression into transcriptional and translational phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raz, A.; Wyche, A.; Needleman, P.

    1989-03-01

    The authors have recently shown that the synthesis of cyclooxygenase in human dermal fibroblasts is markedly stimulated by the cytokine interleukin 1 (IL-1). They now show that the temporal sequence of the induced synthesis of PG synthase can be separated into an early transcriptional (i.e., actinomycin D inhibitable) phase and a subsequent translational (cycloheximide but not actinomycin D inhibitable) phase and that IL-1 exerts its effect during the transcriptional phase. Phorbol 12-myristate 13-acetate also stimulates synthesis of PG synthase and, together with IL-1, produces a synergistic stimulatory effect. Inhibitors of protein kinase C activation abolished the stimulatory effect of IL-1,more » suggesting that protein kinase C activation is a critical event in the signal-transduction sequence of the IL-1-induced increase of PG synthase synthesis. The antiinflammatory glucocorticosteroids dexamethasone and triamcinolone, but not progesterone or testosterone, were potent inhibitors of PG synthase synthesis when added during the translational phase of the synthesis sequence. The glucocorticosteroid effect was blocked by RNA and protein synthesis inhibitors. This report suggests that glucocorticosteroids exert their effect via a newly synthesized protein, causing a profound translational control of PG synthase synthesis. This novel mechanism of suppression of arachidonate metabolism is distinct from any influence of steroids on phospholipase A{sub 2} activity.« less

  5. Advanced Glycation End-Products Induce Apoptosis in Pancreatic Islet Endothelial Cells via NF-κB-Activated Cyclooxygenase-2/Prostaglandin E2 Up-Regulation

    PubMed Central

    Lan, Kuo-Cheng; Chiu, Chen-Yuan; Kao, Chia-Wei; Huang, Kuo-How; Wang, Ching-Chia; Huang, Kuo-Tong; Tsai, Keh-Sung

    2015-01-01

    Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation. PMID:25898207

  6. Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A{sub 2} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chi; Chang, Hsiao-Hua; Chan, Chiu-Po

    2012-09-15

    Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5–25 μM) suppressed AA-induced platelet aggregation and thromboxane B{sub 2} (TXB{sub 2}) production, but not U46619-induced platelet aggregation. Phloroglucinol (100–250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45–74% and 49–72% respectively at concentrations of 10–50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC{sub 50} ofmore » 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10–25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57–71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE{sub 2} production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use. -- Highlights: ► Phloroglucinol suppressed AA-induced platelet aggregation and thromboxane production. ► Phloroglucinol inhibited COX activity and IL-1b-induced PGE2 production in fibroblast.

  7. Greater Collagen‐Induced Platelet Aggregation Following Cyclooxygenase 1 Inhibition Predicts Incident Acute Coronary Syndromes

    PubMed Central

    Becker, Diane M.; Yanek, Lisa R.; Faraday, Nauder; Vaidya, Dhananjay; Mathias, Rasika; Kral, Brian G.; Becker, Lewis C.

    2014-01-01

    Abstract Greater ex vivo platelet aggregation to agonists may identify individuals at risk of acute coronary syndromes (ACS). However, increased aggregation to a specific agonist may be masked by inherent variability in other activation pathways. In this study, we inhibited the cyclooxygenase‐1 (COX1) pathway with 2‐week aspirin therapy and measured residual aggregation to collagen and ADP to determine whether increased aggregation in a non‐COX1 pathway is associated with incident ACS. We assessed ex vivo whole blood platelet aggregation in 1,699 healthy individuals with a family history of early‐onset coronary artery disease followed for 6±1.2 years. Incident ACS events were observed in 22 subjects. Baseline aggregation was not associated with ACS. After COX1 pathway inhibition, collagen‐induced aggregation was significantly greater in participants with ACS compared with those without (29.0 vs. 23.6 ohms, p < 0.001). In Cox proportional hazards models, this association remained significant after adjusting for traditional cardiovascular risk factors (HR = 1.10, 95%CI = 1.06–1.15; p < 0.001). In contrast, ADP‐induced aggregation after COX1 inhibition was not associated with ACS. After COX1 pathway inhibition, subjects with greater collagen‐induced platelet aggregation demonstrated a significant excess risk of incident ACS. These data suggest that platelet activation related to collagen may play an important role in the risk of ACS. PMID:25066685

  8. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-09-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

  9. Gentiolactone, a Secoiridoid Dilactone from Gentiana triflora, Inhibits TNF-α, iNOS and Cox-2 mRNA Expression and Blocks NF-κB Promoter Activity in Murine Macrophages

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Inui, Tomoki; Takahashi, Hideyuki; Kimura, Ken-ichi

    2014-01-01

    Background Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained. Methods and Findings Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS)-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNF-α production in our test system. We isolated gentiolactone as an inhibitor of TNF-α production from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport. Conclusions Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots. PMID:25423092

  10. Tangeretin reduces ultraviolet B (UVB)-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking mitogen-activated protein kinase (MAPK) activation and reactive oxygen species (ROS) generation.

    PubMed

    Yoon, Ji Hye; Lim, Tae-Gyu; Lee, Kyung Mi; Jeon, Ae Ji; Kim, Su Yeon; Lee, Ki Won

    2011-01-12

    The present study examined the effects of tangeretin, a polymethoxylated flavonone present in citrus fruits, on ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) expression in JB6 P+ mouse skin epidermal cells. Tangeretin suppressed UVB-induced COX-2 expression and transactivation of nuclear factor-κB and activator protein-1 in JB6 P+ cells. Moreover, tangeretin blocked UVB-induced phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38, and attenuated the phosphorylation of MAPK kinases 1/2, 3/6, and 4. Tangeretin also limited the endogenous generation of reactive oxygen species (ROS), thereby protecting the cells against oxidative stress. However, tangeretin did not scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and influence the nicotinamide adenine dinucleotide phosphate oxidase activity. These results suggest that the anti-inflammatory effects of tangeretin stem from its modulation of cell signaling and suppression of intracellular ROS generation. Tangeretin may have a potent chemopreventive effect in skin cancer.

  11. Role of cyclooxygenase isoforms in prostacyclin biosynthesis and murine prehepatic portal hypertension

    PubMed Central

    Skill, N. J.; Theodorakis, N. G.; Wang, Y. N.; Wu, J. M.; Redmond, E. M.; Sitzmann, J. V.

    2008-01-01

    Portal hypertension (PHT) is a common complication of liver cirrhosis and significantly increases morbidity and mortality. Abrogation of PHT using NSAIDs has demonstrated that prostacyclin (PGI2), a direct downstream metabolic product of cyclooxygenase (COX) activity, is an important mediator in the development of experimental and clinical PHT. However, the role of COX isoforms in PGI2 biosynthesis and PHT is not fully understood. Prehepatic PHT was induced by portal vein ligation (PVL) in wild-type, COX-1−/−, and COX-2−/− mice treated with and without COX-2 (NS398) or COX-1 (SC560) inhibitors. Hemodynamic measurements and PGI2 biosynthesis were determined 1–7 days after PVL or sham surgery. Gene deletion or pharmacological inhibition of COX-1 or COX-2 attenuated but did not ameliorate PGI2 biosynthesis after PVL or prevent PHT. In contrast, treatment of COX-1−/− mice with NS398 or COX-2−/− mice with SC560 restricted PGI2 biosynthesis and abrogated the development of PHT following PVL. In conclusion, either COX-1 or COX-2 can mediate elevated PGI2 biosynthesis and the development of experimental prehepatic PHT. Consequently, PGI2 rather then COX-selective drugs are indicated in the treatment of PHT. Identification of additional target sites downstream of COX may benefit the >27,000 patients whom die annually from cirrhosis in the United States alone. PMID:18772366

  12. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.

    PubMed

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-06-06

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.

  13. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation.

    PubMed

    Badie, Behnam; Schartner, Jill M; Hagar, Aaron R; Prabakaran, Sakthivel; Peebles, Todd R; Bartley, Becky; Lapsiwala, Samir; Resnick, Daniel K; Vorpahl, Jessica

    2003-02-01

    Cerebral edema is responsible for significant morbidity and mortality in patients harboring malignant gliomas. To examine the role of inflammatory cells in brain edema formation, we studied the expression cyclooxygenase (COX)-2, a key enzyme in arachidonic acid metabolism, by microglia in the C6 rodent glioma model. The expression of COX-2 in primary microglia cultures obtained from intracranial rat C6 gliomas was examined using reverse transcription-PCR, Western analysis, and prostaglandin E(2) (PGE(2)) enzyme immunoassay. Blood-tumor barrier permeability was studied in the same tumor model using magnetic resonance imaging. In contrast to C6 glioma cells, microglia isolated from intracranial C6 tumors produced high levels of PGE(2) through a COX-2-dependent pathway. To test whether the observed microglia COX-2 activity played a role in brain edema formation in gliomas, tumor-bearing rats were treated with rofecoxib, a selective COX-2 inhibitor. Rofecoxib was as effective as dexamethasone in decreasing the diffusion of contrast material into the brain parenchyma (P = 0.01, rofecoxib versus control animals), suggesting a reduction in blood-tumor barrier permeability. These findings suggest that glioma-infiltrating microglia are a major source of PGE(2) production through the COX-2 pathway and support the use of COX-2 inhibitors as possible alternatives to glucocorticoids in the treatment of peritumoral edema in patients with malignant brain tumors.

  14. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway.

    PubMed

    Park, Gunhyuk; Oh, Dal-Seok; Lee, Mi Gi; Lee, Chang Eon; Kim, Yong-Ung

    2016-11-01

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α)+IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Contribution of vasoactive eicosanoids and nitric oxide production to the effect of selective cyclooxygenase-2 inhibitor, NS-398, on endotoxin-induced hypotension in rats.

    PubMed

    Tunctan, Bahar; Korkmaz, Belma; Cuez, Tuba; Kemal Buharalioglu, C; Sahan-Firat, Seyhan; Falck, John; Malik, Kafait U

    2010-11-01

    Our previous studies with the use of non-selective cyclooxygenase (COX) inhibitor, indomethacin, demonstrated that prostanoids produced during endotoxaemia increase inducible nitric oxide synthase (iNOS) protein expression and nitric oxide synthesis, and decrease cyctochrome P450 (CYP) 4A1 protein expression and CYP 4A activity. The results suggest that dual inhibition of iNOS and COX by indomethacin restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from CYP 4A in endotoxaemic rats. The present study examined whether increased levels of vasoconstrictor eicosanoids, 20-HETE, prostaglandin F(2α) (PGF(2α) )and thromboxane A(2) (TxA(2) ), would contribute to the effect of selective COX-2 inhibition to prevent endotoxin (ET)-induced fall in blood pressure associated with an increase in the production of vasodilator prostanoids, prostaglandin I(2) (PGI(2) ) and prostaglandin E(2) (PGE(2) ) and nitric oxide synthesis. Mean arterial blood pressure fell by 31 mmHg and heart rate (HR) rose by 90 beats/min. in male Wistar rats treated with ET (10 mg/kg, i.p.). The fall in mean arterial pressure and increase in HR were associated with increased levels of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α) ), PGE(2) , TxB(2) , and nitrite in the serum, kidney, heart, thoracic aorta and/or superior mesenteric artery. Systemic and renal 20-HETE and PGF(2α) levels were also decreased in endotoxaemic rats. These effects of ET were prevented by a selective COX-2 inhibitor, N-(2-cyclohexyloxy-4-nitrophenyl)methansulphonamide (10 mg/kg, i.p.), given 1 hr after injection of ET. These data suggest that an increase in 20-HETE and PGF(2α) levels associated with decreased production of PGI(2) , PGE(2) , and TxA(2) , and nitric oxide synthesis contributes to the effect of selective COX-2 inhibitor to prevent the hypotension during rat endotoxaemia. © 2010 The Authors. Basic & Clinical Pharmacology & Toxicology © 2010 Nordic

  16. Regression of experimentally induced endometriosis with a new selective cyclooxygenase-2 enzyme inhibitor.

    PubMed

    Kilico, Ismail; Kokcu, Arif; Kefeli, Mehmet; Kandemir, Bedri

    2014-01-01

    Cyclooxygenase-2 (COX-2) levels increase in women with endometriosis. COX-2, via increasing prostaglandin E2, contributes to an increase in vascular endothelial growth factor. In this way, COX-2 may contribute to the progression and continuity of endometriosis. We investigated the effect of dexketoprofen trometamol, a new selective COX-2 enzyme inhibitor, on experimentally induced endometriotic cysts. Experimental endometriotic cysts were created in 60 adult female Wistar albino rats. The rats were randomized to 2 equal groups, a control (group Con) and a dexketoprofen (group Dex) group. Six weeks later, cyst volumes were measured as in vivo (volume 1). Following volume 1 measurement, for 4 weeks group Con received 0.1 ml distilled water; group Dex received 0.375 mg dexketoprofen trometamol/0.1 ml distilled water, intramuscularly, twice a day. At the end of administration, the cyst volumes were remeasured (volume 2), and the cysts totally excised and weighed. Glandular (GT) and stromal tissues (ST) and natural killer (NK) cell contents in the cyst wall were scored. NK cell content and volume 1 were not different between the 2 groups. Volume 2, cyst weight, and GT and ST contents in group Dex were significantly lower than those in group Con. Dexketoprofen trometamol significantly reduced the development of experimentally induced endometriotic cysts both macroscopically and microscopically.

  17. Epigallocatechin-3-gallate blocks triethylene glycol dimethacrylate-induced cyclooxygenase-2 expression by suppressing extracellular signal-regulated kinase in human dental pulp and embryonic palatal mesenchymal cells.

    PubMed

    Yang, Wan-Hsien; Deng, Yi-Ting; Kuo, Mark Yen-Ping; Liu, Cheing-Meei; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng

    2013-11-01

    Methacrylate resin-based materials could release components into adjacent environment even after polymerization. The major components leached include triethylene glycol dimethacrylate (TEGDMA). TEGDMA has been shown to induce the expression of cyclooxygenase-2 (COX-2). However, the mechanisms are not completely understood. The aims of this study were to investigate the molecular mechanism underlying TEGDMA-induced COX-2 in 2 oral cell types, the primary culture of human dental pulp (HDP) cells and the human embryonic palatal mesenchymal (HEPM) pre-osteoblasts, and to propose potential strategy to prevent or ameliorate the TEGDMA-induced inflammation in oral tissues. TEGDMA-induced COX-2 expression and its signaling pathways were assessed by Western blot analyses in HDP and HEPM cells. The inhibition of TEGDMA-induced COX-2 protein expression using various dietary phytochemicals was investigated. COX-2 protein expression was increased after exposure to TEGDMA at concentrations as low as 5 μmol/L. TEGDMA-induced COX-2 expression was associated with reaction oxygen species, the extracellular signal-regulated kinase 1/2, and the p38 mitogen-activated protein kinase signaling pathways in HDP and HEPM cells. The activation of p38 mitogen-activated protein kinase was directly associated with reactive oxygen species. Epigallocatechin-3-gallate suppressed TEGDMA-induced COX-2 expression by inhibiting phosphorylation of extracellular signal-regulated kinase 1/2. Cells exposed to low concentrations of TEGDMA may induce inflammatory responses of the adjacent tissues, and this should be taken into consideration during common dental practice. Green tea, which has a long history of safe beverage consumption, may be a useful agent for the prevention or treatment of TEGDMA-induced inflammation in oral tissues. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Cyclooxygenase-2 expression after preoperative chemoradiotherapy correlates with more frequent esophageal cancer recurrence

    PubMed Central

    Yoshikawa, Reigetsu; Fujiwara, Yoshinori; Koishi, Kenji; Kojima, Syoudou; Matsumoto, Tomohiro; Yanagi, Hidenori; Yamamura, Takehira; Hashimoto-Tamaoki, Tomoko; Nishigami, Takashi; Tsujimura, Tohru

    2007-01-01

    AIM: To investigate the relationship between cycloo-xygenase-2 (COX-2), and vascular endothelial growth factor (VEGF), and to determine the clinical significance of this relationship in esophageal cancer patients undergoing chemoradiotherapy (CRT). METHODS: Immunohistochemical staining was used to evaluate COX-2 and VEGF expression in 40 patients with histologically-confirmed esophageal squamous carcinoma (ESCC) who were undergoing preoperative CRT. RESULTS: Fourteen out of 40 ESCC patients showed a pathological complete response (CR) after CRT. COX-2 and VEGF protein expressions were observed in the cytoplasm of 17 and 13 tumors, respectively, with null expression in 9 and 13 tumors, respectively. COX-2 expression was strongly correlated with VEGF expression (P < 0.05). There were also significant associations between COX-2 expression, tumor recurrence, and lymph-node involvement (P = 0.0277 and P = 0.0095, respectively). COX-2 expression and VEGF expression had significant prognostic value for disease-free survival (log-rank test; P = 0.0073 and P = 0.0341, respectively), but not for overall survival, as assessed by univariate analysis. CONCLUSION: Our results suggest that COX-2 expression correlates with VEGF expression and might be a useful prognostic factor for more frequent tumor recurrence in ESCC patients undergoing neoadjuvant CRT. These findings support the use of anti-angiogenic COX-2 inhibitors in the treatment of ESCC. PMID:17511025

  19. Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk

    PubMed Central

    Dovizio, Melania; Alberti, Sara; Sacco, Angela; Guillem-Llobat, Paloma; Schiavone, Simone; Maier, Thorsten J.; Steinhilber, Dieter; Patrignani, Paola

    2015-01-01

    Platelets are activated by the interaction with cancer cells and release enhanced levels of lipid mediators [such as thromboxane (TX)A2 and prostaglandin (PG)E2, generated from arachidonic acid (AA) by the activity of cyclooxygenase (COX)-1], granule content, including ADP and growth factors, chemokines, proteases and Wnt proteins. Moreover, activated platelets shed different vesicles, such as microparticles (MPs) and exosomes (rich in genetic material such as mRNAs and miRNAs). These platelet-derived products induce several phenotypic changes in cancer cells which confer high metastatic capacity. A central event involves an aberrant expression of COX-2 which influences cell-cycle progression and contribute to the acquisition of a cell migratory phenotype through the induction of epithelial mesenchymal transition genes and down-regulation of E-cadherin expression. The identification of novel molecular determinants involved in the cross-talk between platelets and cancer cells has led to identify novel targets for anti-cancer drug development. PMID:26551717

  20. Attenuation of cysteamine-induced duodenal ulcer with Cochinchina momordica seed extract through inhibiting cytoplasmic phospholipase A2/5-lipoxygenase and activating γ-glutamylcysteine synthetase.

    PubMed

    Choi, Ki-Seok; Kim, Eun-Hee; Hong, Hua; Ock, Chan Young; Lee, Jeong Sang; Kim, Joo-Hyun; Hahm, Ki-Baik

    2012-04-01

    Cysteamine is a reducing aminothiol used for inducing duodenal ulcer through mechanisms of oxidative stress related to thiol-derived H(2)O(2) reaction. Cochinchina momordica saponins have been suggested to be protective against various gastric diseases based on their cytoprotective and anti-inflammatory mechanisms. This study was aimed to document the preventive effects of Cochinchina momordica seed extract against cysteamine-induced duodenal ulcer as well as the elucidation of its pharmacological mechanisms. Cochinchina momordica seed extract (50, 100, 200 mg/kg) was administrated intragastrically before cysteamine administration, after which the incidence of the duodenal ulcer, ulcer size, serum gastrin level, and the ratio of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) as well as biochemical and molecular measurements of cytoplasmic phospholipase A(2) (cPLA(2)), cyclooxygenase-2 (COX-2), 5-lipoxygenase and the expression of proinflammatory genes including IL-1β, IL-6, COX-2 were measured in rat model. Additional experiments of electron spin resonance measurement and the changes of glutathione were performed. Cochinchina momordica seed extract effectively prevented cysteamine-induced duodenal ulcer in a dose-dependent manner as reflected with significant decreases in either duodenal ulcerogenesis or perforation accompanied with significantly decreased in serum gastrin in addition to inflammatory mediators including cPLA(2), COX-2, and 5-lipoxygenase. Cochinchina momordica seed extract induced the expression of γ-glutamylcysteine synthetase (γ-GCS)-related glutathione synthesis as well as significantly reduced the expression of cPLA(2). Cochinchina momordica seed extract preserved reduced glutathione through increased expressions of γ-GCS. Cochinchina momordica seed extracts exerted significantly protective effect against cysteamine-induced duodenal ulcer by either cPLA2 inhibition or glutathione preservation. © 2012 Journal of

  1. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  2. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    PubMed

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  3. Hydrogen sulfide increases survival during sepsis: Protective effect of CHOP inhibition

    PubMed Central

    Ferlito, Marcella; Wang, Qihong; Fulton, William B; Colombani, Paul; Marchionni, Luigi; Fox-Talbot, Karen; Paolocci, Nazareno; Steenbergen, Charles

    2014-01-01

    Sepsis is a major cause of mortality, and dysregulation of the immune response plays a central role in this syndrome. Hydrogen sulfide (H2S), a recently discovered gaso-transmitter, is endogenously generated by many cell types, regulating a number of physiologic processes and pathophysiologic conditions. Here we report that H2S increased survival after experimental sepsis induced by cecal ligation and puncture (CLP) in mice. Exogenous H2S decreased the systemic inflammatory response, reduced apoptosis in the spleen, and accelerated bacterial eradication. We found that CHOP, a mediator of the endoplasmic reticulum (ER) stress response, was elevated in several organs after CLP and its expression was inhibited by H2S treatment. Using CHOP knockout (KO) mice, we demonstrated for the first time that genetic deletion of Chop increased survival after lipopolysaccharide (LPS) injection or CLP. CHOP KO mice displayed diminished splenic caspase-3 activation and apoptosis, decreased cytokine production and augmented bacterial clearance. Furthermore, septic CHOP KO mice treated with H2S showed no additive survival benefit compared to septic CHOP KO mice. Finally, we showed that H2S inhibited CHOP expression in macrophages by a mechanism involving Nrf2 activation. In conclusion, our findings show a protective effect of H2S treatment afforded, at least partially, by inhibition of CHOP expression. The data reveal a major negative role for the transcription factor CHOP in overall survival during sepsis and suggest a new target for clinical intervention as well potential strategies for treatment. PMID:24403532

  4. Platelet P2Y₁₂ blockers confer direct postconditioning-like protection in reperfused rabbit hearts.

    PubMed

    Yang, Xi-Ming; Liu, Yanping; Cui, Lin; Yang, Xiulan; Liu, Yongge; Tandon, Narendra; Kambayashi, Junichi; Downey, James M; Cohen, Michael V

    2013-05-01

    Blockade of platelet activation during primary percutaneous intervention for acute myocardial infarction is standard care to minimize stent thrombosis. To determine whether antiplatelet agents offer any direct cardioprotective effect, we tested whether they could modify infarction in a rabbit model of ischemia/reperfusion caused by reversible ligation of a coronary artery. The P2Y₁₂ (adenosine diphosphate) receptor blocker cangrelor administered shortly before reperfusion in rabbits undergoing 30-minute regional ischemia/3-hour reperfusion reduced infarction from 38% of ischemic zone in control hearts to only 19%. Protection was dose dependent and correlated with the degree of inhibition of platelet aggregation. Protection was comparable to that seen with ischemic postconditioning (IPOC). Cangrelor protection, but not its inhibition of platelet aggregation, was abolished by the same signaling inhibitors that block protection from IPOC suggesting protection resulted from protective signaling rather than anticoagulation. As with IPOC, protection was lost when cangrelor administration was delayed until 10 minutes after reperfusion and no added protection was seen when cangrelor and IPOC were combined. These findings suggest both IPOC and cangrelor may protect by the same mechanism. No protection was seen when cangrelor was used in crystalloid-perfused isolated hearts indicating some component in whole blood is required for protection. Clopidogrel had a very slow onset of action requiring 2 days of treatment before platelets were inhibited, and only then the hearts were protected. Signaling inhibitors given just prior to reperfusion blocked clopidogrel's protection. Neither aspirin nor heparin was protective. Clopidogrel and cangrelor protected rabbit hearts against infarction. The mechanism appears to involve signal transduction during reperfusion rather than inhibition of intravascular coagulation. We hypothesize that both drugs protect by activating IPOC

  5. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    PubMed

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.

    PubMed

    Park, Cheol; Moon, Dong-Oh; Choi, Il-Whan; Choi, Byung Tae; Nam, Taek-Jeong; Rhu, Chung-Ho; Kwon, Taeg Kyu; Lee, Won Ho; Kim, Gi-Young; Choi, Yung Hyun

    2007-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hyperplasia of the synovial fibroblasts, which is partly the result of decreased apoptosis. This study investigated the mechanisms through which curcumin, a polyphenolic compound from the rhizome of Curcuma longa, exerts its anti-proliferative action in the synovial fibroblasts obtained from patients with RA. Exposure of the synovial fibroblasts to curcumin resulted in growth inhibition and the induction of apoptosis, as measured by MTT assay, fluorescent microscopy and Annexin-V-based assay. RT-PCR and immunoblotting showed that treating the cells with curcumin resulted in the down-regulation of anti-apoptotic Bcl-2 and the X-linked inhibitor of the apoptosis protein as well as the up-regulation of pro-apoptotic Bax expression in a concentration-dependent manner. Curcumin-induced apoptosis was also associated with the proteolytic activation of caspase-3 and caspase-9, and the concomitant degradation of poly(ADP-ribose) polymerase protein. Furthermore, curcumin decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of prostaglandin E(2) synthesis. These results show that curcumin might help identify a new therapeutic pathway against hyperplasia of the synovial fibroblasts in RA.

  7. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice.

    PubMed

    Kiraly, Alex J; Soliman, Eman; Jenkins, Audrey; Van Dross, Rukiyah T

    2016-01-01

    Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP). Apigenin is a bioflavonoid that blocks mouse skin tumorigenesis induced by the chemical carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the effect of apigenin on the COX-2 pathway has not been examined in the DMBA/TPA skin tumor model. In the present study, apigenin decreased tumor multiplicity and incidence in DMBA/TPA-treated SKH-1 mice. Analysis of the non-tumor epidermis revealed that apigenin reduced COX-2, PGE2, EP1, and EP2 synthesis and also increased terminal differentiation. In contrast, apigenin did not inhibit the COX-2 pathway or promote terminal differentiation in the tumors. Since fewer tumors developed in apigenin-treated animals which contained reduced epidermal COX-2 levels, our data suggest that apigenin may avert skin tumor development by blocking COX-2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. PTGS-2–PTGER2/4 Signaling Pathway Partially Protects From Diabetogenic Toxicity of Streptozotocin in Mice

    PubMed Central

    Vennemann, Antje; Gerstner, Anemone; Kern, Niklas; Ferreiros Bouzas, Nerea; Narumiya, Shuh; Maruyama, Takayuki; Nüsing, Rolf M.

    2012-01-01

    Prostanoids are suggested to participate in diabetes pathology, but their roles are controversially discussed. The purpose of the current study was to examine the role of cyclooxygenase (prostaglandin synthase [PTGS]) enzymes and prostaglandin (PG) E2 signaling pathways in streptozotocin (STZ)-induced type 1 diabetes. Blood glucose, insulin, and survival rate were studied in mice with targeted disruption of the genes for PTGS and PGE receptors (PTGERs). PGE2 was found as the main prostanoid formed by the pancreas. Contrarily to PTGS-1, deficiency of PTGS-2 activity significantly amplified STZ effect, causing dramatic loss of insulin production and rise in blood glucose and death rate. STZ metabolism was unaffected by PTGS deficiency. Diabetogenicity of STZ in PTGER1−/−, PTGER2−/−, PTGER3−/−, and PTGER4−/− mice was comparable to control mice. In striking contrast, combined knockout of PTGER2 and PTGER4 by blocking PTGER4 in PTGER2−/− mice strongly enhanced STZ pathology. Treatment of PTGS-2−/− and wild-type mice with PTGER2/PTGER4 agonists partially protected against STZ-induced diabetes and restored β-cell function. Our data uncover a previously unrecognized protective role of PTGS-2–derived PGE2 in STZ-induced diabetes mediated by the receptor types PTGER2 and PTGER4. These findings offer the possibility to intervene in early progression of type 1 diabetes by using PTGER-selective agonists. PMID:22522619

  9. Inhibition of Nuclear Transcription Factor-κB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia

    PubMed Central

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean

    2012-01-01

    Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180

  10. Methylene chloride fraction of the leaves of Thuja orientalis inhibits in vitro inflammatory biomarkers by blocking NF-κB and p38 MAPK signaling and protects mice from lethal endotoxemia.

    PubMed

    Kim, Jin-Young; Kim, Hyun Jung; Kim, Sung-Moo; Park, Kyung-Ran; Jang, Hyeung-Jin; Lee, Eun Ha; Jung, Sang Hoon; Ahn, Kwang Seok

    2011-01-27

    Thuja orientalis (TO) has been a recognized herbal medicine across Northeast Asian countries for thousands of years and used for the treatment of various inflammatory diseases through as yet undefined mechanisms. In this study, we set out to determine whether the anti-inflammatory effects of this plant are mediated to suppress mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RAW 264.7 cells were pretreated with the methylene chloride fraction of TO (MTO) and stimulated with LPS. Nitric oxide (NO) release was determined by the accumulation of nitrite in the culture supernatants and tumor necrosis factor-α (TNF-α) and IL-6 secretion were determined by immunoenzymatic assay. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were evaluated via RT-PCR and Western blotting. NF-κB activation was also evaluated by reporter gene assay and electrophoretic mobility shift assay (EMSA). In addition, the protective effect of MTO was evaluated by use of the LPS-induced endotoxin shock model in mice. We found that MTO significantly suppressed LPS-stimulated NO and IL-6 production without affecting cell viability. MTO inhibited the expression of LPS-induced iNOS and COX-2 protein and their mRNA expression. Also, TNF-α and IL-6 secretion were decreased by MTO in both PMA and ionomycin-stimulated splenocytes. As a result, MTO inhibited pro-inflammatory cytokines such as TNF-α and IL-6, which is hypothesized as being due to the suppression of LPS-induced p38 MAPK and NF-κB activation. Moreover, MTO improved the survival rate during lethal endotoxemia by inhibiting the production of TNF-α in an animal model and our LC-MS analysis showed that a major component of MTO was pinusolide. We demonstrate here the evidence that the methylene chloride fraction of Thuja orientalis (MTO) potentially inhibits the biomarkers related to inflammation in vitro and in vivo, and

  11. The mononuclear nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2 N2 ,N3 ]nickel(II) protects tomato from Verticillium dahliae by inhibiting fungal growth and activating plant defences.

    PubMed

    Zine, Hanane; Rifai, Lalla Aicha; Koussa, Tayeb; Bentiss, Fouad; Guesmi, Salaheddine; Laachir, Abdelhakim; Makroum, Kacem; Belfaiza, Malika; Faize, Mohamed

    2017-01-01

    The antifungal properties of the nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ 2 N 2 ,N 3 ]nickel(II) [NiL 2 (N 3 ) 2 ] and its parental ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole were examined to evaluate their ability to protect tomato plants against Verticillium dahliae. Our main objectives were to determine their effects on the in vitro growth of the pathogen, and their aptitude for controlling verticillium wilt and activating plant defence responses in the greenhouse. NiL 2 (N 3 ) 2 exhibited in vitro an elevated inhibition of radial growth of three strains of the pathogen. According to the strain, the EC 50 values ranged from 10 to 29 µg mL -1 for NiL 2 (N 3 ) 2 . In the greenhouse, it induced an elevated protection against V. dahliae when it was applied twice as foliar sprays at 50 µg mL -1 . It reduced the leaf alteration index by 85% and vessel browning by 96%. In addition, its protective ability was associated with the accumulation of H 2 O 2 and the activation of total phenolic content, as well as potentiation of the activity of peroxidase and polyphenol oxidase. These results demonstrated that the coordination of the ligand with Ni associated with the azide as a coligand resulted in an improvement in its biological activity by both inhibiting the growth of V. dahliae and activating plant defence responses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells.

    PubMed Central

    Roy, Soumya Sinha; Biswas, Swati; Ray, Manju; Ray, Subhankar

    2003-01-01

    Previous publications from our laboratory have shown that methylglyoxal inhibits mitochondrial respiration of malignant and cardiac cells, but it has no effect on mitochondrial respiration of other normal cells [Biswas, Ray, Misra, Dutta and Ray (1997) Biochem. J. 323, 343-348; Ray, Biswas and Ray (1997) Mol. Cell. Biochem. 171, 95-103]. However, this inhibitory effect of methylglyoxal is not significant in cardiac tissue slices. Moreover, post-mitochondrial supernatant (PMS) of cardiac cells could almost completely protect the mitochondrial respiration against the inhibitory effect of methylglyoxal. A systematic search indicated that creatine present in cardiac cells is responsible for this protective effect. Glutathione has also some protective effect. However, creatine phosphate, creatinine, urea, glutathione disulphide and beta-mercaptoethanol have no protective effect. The inhibitory and protective effects of methylglyoxal and creatine respectively on cardiac mitochondrial respiration were studied with various concentrations of both methylglyoxal and creatine. Interestingly, neither creatine nor glutathione have any protective effect on the inhibition by methylglyoxal on the mitochondrial respiration of Ehrlich ascites carcinoma cells. The creatine and glutathione contents of several PMS, which were tested for the possible protective effect, were measured. The activities of two important enzymes, namely glyoxalase I and creatine kinase, which act upon glutathione plus methylglyoxal and creatine respectively, were also measured in different PMS. Whether mitochondrial creatine kinase had any role in the protective effect of creatine had also been investigated using 1-fluoro-2,4-dinitrobenzene, an inhibitor of creatine kinase. The differential effect of creatine on mitochondria of cardiac and malignant cells has been discussed with reference to the therapeutic potential of methylglyoxal. PMID:12605598

  13. Topical Application of a Bioadhesive Black Raspberry Gel Modulates Gene Expression and Reduces Cyclooxygenase 2 Protein in Human Premalignant Oral Lesions

    PubMed Central

    Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.

    2010-01-01

    Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte

  14. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  15. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy.

    PubMed

    Shoieb, Sherif M; El-Kadi, Ayman O S

    2018-06-07

    We have recently demonstrated that the racemic mixture of 19-hydroxyeicosatetraenoic acid (19-HETE) protects against angiotensin II (Ang II) induced cardiac hypertrophy. Therefore, the purpose of this study was to investigate whether R- or S-enantiomer of 19-HETE confers cardioprotection against Ang II-induced cellular hypertrophy in RL-14 and H9c2 cells. Both cell lines were treated with vehicle or 10 μM Ang II in the absence and presence of 20 &#[mu]M 19(R)-HETE or 19(S)-HETE for 24 h. Thereafter, the level of mid-chain HETEs was determined using liquid chromatography - mass spectrometry (LC/MS). Gene and protein expression levels were measured using real-time PCR and Western blot analysis, respectively. The results showed that both 19(R)-HETE and 19(S)-HETE significantly decreased the metabolite formation rate of midchain HETEs namely 8-, 9-, 12- and 15-HETE compared to control group while the level of 5-HETE was selectively decreased by S-enantiomer. Moreover, both 19(R)-HETE and 19(S)-HETE significantly inhibited the catalytic activity of CYP1B1 and decreased the protein expression of 5- and 12-lipoxxygenase (LOX) as well as cyclooxygenase-2 (COX-2). Notably, the decrease in 15-LOX protein expression was only mediated by 19(S)-HETE. Moreover, both enantiomers protected against Ang II-induced cellular hypertrophy as evidenced by a significant decrease in mRNA expression of β/α-myosin heavy chain ratio, ANP, IL-6 and IL-8. Our data demonstrated that S-enantiomer of 19-HETE preferentially protected against Ang II-induced cellular hypertrophy via decreasing the level of mid-chain HETEs, inhibiting catalytic activity of CYP1B1, decreasing protein expression of LOX and COX-2 enzymes and decreasing mRNA expression of IL-6 and IL-8. The American Society for Pharmacology and Experimental Therapeutics.

  16. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression.

    PubMed

    Kim, Hak-Su; Kim, Myung-Jin; Kim, Eun Ju; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2012-02-01

    Berberine is clinically important natural isoquinoline alkaloid that affects various biological functions, such as cell proliferation, migration and survival. The activation of AMP-activated protein kinase (AMPK) regulates tumor cell migration. However, the specific role of AMPK on the metastatic potential of cancer cells remains largely unknown. The present study investigated whether berberine induces AMPK activation and whether this induction directly affects mouse melanoma cell migration, adhesion and invasion. Berberine strongly increased AMPK phosphorylation via reactive oxygen species (ROS) production. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a well-known AMPK activator, also inhibited tumor cell adhesion and invasion and reduced the expression of epithelial to mesenchymal transition (EMT)-related genes. Knockdown of AMPKα subunits using siRNAs significantly abated the berberine-induced inhibition of tumor cell invasion. Furthermore, berberine inhibited the metastatic potential of melanoma cells through a decrease in ERK activity and protein levels of cyclooxygenase-2 (COX-2) by a berberine-induced AMPK activation. These data were confirmed using specific MEK inhibitor, PD98059, and a COX-2 inhibitor, celecoxib. Berberine- and AICAR-treated groups demonstrated significantly decreased lung metastases in the pulmonary metastasis model in vivo. Treatment with berberine also decreased the metastatic potential of A375 human melanoma cells. Collectively, our results suggest that berberine-induced AMPK activation inhibits the metastatic potential of tumor cells through a reduction in the activity of the ERK signaling pathway and COX-2 protein levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis

    PubMed Central

    Gandhi, Jaya; Khera, Lohit; Gaur, Nivedita; Paul, Catherine; Kaul, Rajeev

    2017-01-01

    Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer. PMID:28400769

  18. Constitutive cyclooxygenase-2 is involved in central nociceptive processes in humans

    PubMed Central

    Martin, Frédéric; Fletcher, Dominique; Chauvin, Marcel; Bouhassira, Didier

    2007-01-01

    Background Prostaglandins play a major role in inflammation and pain. They are synthesised by the two cyclooxygenase (COX) isoforms: COX-1, which is expressed constitutively in many cell types and COX-2, which is induced at the site of inflammation. However, unlike peripheral tissues, COX-2 is expressed constitutively in the central nervous system and may play a role in nociceptive processes. The present study aimed to investigate the role of constitutive COX-2 in the spinal transmission of nociceptive signals in humans. Methods We used 12 healthy volunteers to compare the effects of the specific COX-2 inhibitor sodium parecoxib (1 mg/kg) or placebo, administered intravenously in a double-blind and cross-over fashion, on the electrophysiological recordings of the nociceptive flexion (RIII) reflex. The RIII reflex is an objective psychophysiological index of the spinal transmission of nociceptive signals and was recorded from the biceps femoris after electrical stimulation of the sural nerve. Two experiments, seven days apart, were carried out on each volunteer. On each experimental day, the effects of parecoxib or placebo were tested on: 1) the RIII reflex threshold, 2) the stimulus-response curves of the reflex up to the tolerance threshold (frequency of stimulation: 0.1 Hz); 3) the progressive increase of the reflex and pain sensations (i.e. “wind-up” phenomenon) induced by a series of 15 stimulations at a frequency of 1 Hz (intensity 20% above RIII threshold). Results Parecoxib, but not placebo, significantly reduced the slope of the stimulus-response curve, suggesting a reduction in the gain of the spinal transmision of nociceptive signals. By contrast, the “wind-up” phenomenon was not significantly altered after administration of parecoxib or placebo. Conclusions Our study shows that constitutive COX-2 modulates spinal nociceptive processes and that the anti-inflammatory and antinociceptive actions of COX-2 inhibitors are not necessarily related. PMID

  19. Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury.

    PubMed

    Shiow, Lawrence R; Favrais, Geraldine; Schirmer, Lucas; Schang, Anne-Laure; Cipriani, Sara; Andres, Christian; Wright, Jaclyn N; Nobuta, Hiroko; Fleiss, Bobbi; Gressens, Pierre; Rowitch, David H

    2017-12-01

    Inflammation is a major risk factor for neonatal white matter injury (NWMI), which is associated with later development of cerebral palsy. Although recent studies have demonstrated maturation arrest of oligodendrocyte progenitor cells (OPCs) in NWMI, the identity of inflammatory mediators with direct effects on OPCs has been unclear. Here, we investigated downstream effects of pro-inflammatory IL-1β to induce cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) production in white matter. First, we assessed COX2 expression in human fetal brain and term neonatal brain affected by hypoxic-ischemic encephalopathy (HIE). In the developing human brain, COX2 was expressed in radial glia, microglia, and endothelial cells. In human term neonatal HIE cases with subcortical WMI, COX2 was strongly induced in reactive astrocytes with "A2" reactivity. Next, we show that OPCs express the EP1 receptor for PGE2, and PGE2 acts directly on OPCs to block maturation in vitro. Pharmacologic blockade with EP1-specific inhibitors (ONO-8711, SC-51089), or genetic deficiency of EP1 attenuated effects of PGE2. In an IL-1β-induced model of NWMI, astrocytes also exhibit "A2" reactivity and induce COX2. Furthermore, in vivo inhibition of COX2 with Nimesulide rescues hypomyelination and behavioral impairment. These findings suggest that neonatal white matter astrocytes can develop "A2" reactivity that contributes to OPC maturation arrest in NWMI through induction of COX2-PGE2 signaling, a pathway that can be targeted for neonatal neuroprotection. © 2017 Wiley Periodicals, Inc.

  20. Structural Basis for Certain Naturally Occurring Bioflavonoids to Function as Reducing Co-Substrates of Cyclooxygenase I and II

    PubMed Central

    Zhu, Bao Ting

    2010-01-01

    Background Recent studies showed that some of the dietary bioflavonoids can strongly stimulate the catalytic activity of cyclooxygenase (COX) I and II in vitro and in vivo, presumably by facilitating enzyme re-activation. In this study, we sought to understand the structural basis of COX activation by these dietary compounds. Methodology/Principal Findings A combination of molecular modeling studies, biochemical analysis and site-directed mutagenesis assay was used as research tools. Three-dimensional quantitative structure-activity relationship analysis (QSAR/CoMFA) predicted that the ability of bioflavonoids to activate COX I and II depends heavily on their B-ring structure, a moiety known to be associated with strong antioxidant ability. Using the homology modeling and docking approaches, we identified the peroxidase active site of COX I and II as the binding site for bioflavonoids. Upon binding to this site, bioflavonoid can directly interact with hematin of the COX enzyme and facilitate the electron transfer from bioflavonoid to hematin. The docking results were verified by biochemical analysis, which reveals that when the cyclooxygenase activity of COXs is inhibited by covalent modification, myricetin can still stimulate the conversion of PGG2 to PGE2, a reaction selectively catalyzed by the peroxidase activity. Using the site-directed mutagenesis analysis, we confirmed that Q189 at the peroxidase site of COX II is essential for bioflavonoids to bind and re-activate its catalytic activity. Conclusions/Significance These findings provide the structural basis for bioflavonoids to function as high-affinity reducing co-substrates of COXs through binding to the peroxidase active site, facilitating electron transfer and enzyme re-activation. PMID:20808785

  1. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.

    2006-11-15

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and themore » upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 {mu}M) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction.« less

  2. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats.

    PubMed

    Hosaka, E M; Santos, O F P; Seguro, A C; Vattimo, M F F

    2004-07-01

    The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 +/- 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 +/- 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.

  3. Bacopa monniera (L.) wettst inhibits type II collagen-induced arthritis in rats.

    PubMed

    Viji, V; Kavitha, S K; Helen, A

    2010-09-01

    Bacopa monniera (L.) Wettst is an Ayurvedic herb with antirheumatic potential. This study investigated the therapeutic efficacy of Bacopa monniera in treating rheumatoid arthritis using a type II collagen-induced arthritis rat model. Arthritis was induced in male Wistar rats by immunization with bovine type II collagen in complete Freund's adjuvant. Bacopa monniera extract (BME) was administered after the development of arthritis from day 14 onwards. The total duration of experiment was 60 days. Paw swelling, arthritic index, inflammatory mediators such as cyclooxygenase, lipoxygenase, myeloperoxidase and serum anti-collagen IgG and IgM levels were analysed in control and experimental rats. Arthritic induction significantly increased paw edema and other classical signs of arthritis coupled to upregulation of inflammatory mediators such as cyclooxygenase, lipoxygenase, neutrophil infiltration and increased anti-collagen IgM and IgG levels in serum. BME significantly inhibited the footpad swelling and arthritic symptoms. BME was effective in inhibiting cyclooxygenase and lipoxygenase activities in arthritic rats. Decreased neutrophil infiltration was evident from decreased myeloperoxidase activity and histopathological data where an improvement in joint architecture was also observed. Serum anti-collagen IgM and IgG levels were consistently decreased. Thus the study demonstrates the potential antiarthritic effect of Bacopa monniera for treating arthritis which might confer its antirheumatic activity. Copyright 2010 John Wiley & Sons, Ltd.

  4. Interleukin-1 inhibits the synthesis of collagen by fibroblasts.

    PubMed

    Bhatnagar, R; Penfornis, H; Mauviel, A; Loyau, G; Saklatvala, J; Pujol, J P

    1986-10-01

    Human dermal fibroblasts, exposed to human or porcine Interleukin-1, responded by an inhibition of collagen synthesis in a dose dependent manner. Incubation with Il-1 for more than 8 h was required to see an appreciable effect. The phenomenon was not dependent on the presence of serum in the culture medium. Since a stimulation of prostaglandin E2 secretion was also observed in presence of Il-1, we investigated the eventual role of arachidonic acid metabolites in the phenomenon. Inhibitors interfering with arachidonate metabolism, namely indomethacin, acetyl salicylic acid, BW 755 C and NDGA had no influence on the inhibition of collagen synthesis caused by Il-1. These data suggest that both cyclooxygenase and lipoxygenase derived metabolites of arachidonic acid are unlikely to play a role in the mechanism.

  5. Fluorocoxib A Loaded Nanoparticles Enable Targeted Visualization of Cyclooxygenase-2 in Inflammation and Cancer

    PubMed Central

    Uddin, Md. Jashim; Werfel, Thomas A.; Crews, Brenda C.; Gupta, Mukesh K.; Kavanaugh, Taylor E.; Kingsley, Philip J.; Boyd, Kelli; Marnett, Lawrence J.; Duvall, Craig L.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is expressed in virtually all solid tumors and its overexpression is a hallmark of inflammation. Thus, it is a potentially powerful biomarker for the early clinical detection of inflammatory disease and human cancers. We report a reactive oxygen species (ROS) responsive micellar nanoparticle, PPS-b-POEGA, that solubilizes the first fluorescent COX-2-selective inhibitor fluorocoxib A (FA) for COX-2 visualization in vivo. Pharmacokinetics and biodistribution of FA-PPS-b-POEGA nanoparticles (FA-NPs) were assessed after a fully-aqueous intravenous (i.v.) administration in wild-type mice and revealed 4 – 8 h post-injection as an optimal fluorescent imaging window. Carrageenan-induced inflammation in the rat and mouse footpads and 1483 HNSCC tumor xenografts were successfully visualized by FA-NPs with fluorescence up to 10-fold higher than that of normal tissues. The targeted binding of the FA cargo was blocked by pretreatment with the COX-2 inhibitor indomethacin, confirming COX-2-specific binding and local retention of FA at pathological sites. Our collective data indicate that FA-NPs are the first i.v.-ready FA formulation, provide high signal-to-noise in inflamed, premalignant, and malignant tissues, and will uniquely enable clinical translation of the poorly water-soluble FA compound. PMID:27043768

  6. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol.

    PubMed

    Ahn, Sang-Il; Lee, Jun-Kyung; Youn, Hyung-Sun

    2009-02-28

    Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-kappaB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.

  7. Prostaglandin E(2) synthase inhibition as a therapeutic target.

    PubMed

    Iyer, Jitesh P; Srivastava, Punit K; Dev, Rishabh; Dastidar, Sunanda G; Ray, Abhijit

    2009-07-01

    Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.

  8. Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways.

    PubMed

    Jang, Minhee; Cho, Ik-Hyun

    2016-05-01

    The potential neuroprotective value of sulforaphane (SFN) in Huntington's disease (HD) has not been established yet. We investigated whether SFN prevents and improves the neurological impairment and striatal cell death in a 3-nitropropionic acid (3-NP)-induced mouse model of HD. SFN (2.5 and 5.0 mg/kg/day, i.p.) was given daily 30 min before 3-NP treatment (pretreatment) and from onset/progression/peak points of the neurological scores. Pretreatment with SFN (5.0 mg/kg/day) produced the best neuroprotective effect with respect to the neurological scores and lethality among other conditions. The protective effects due to pretreatment with SFN were associated with the following: suppression of the formation of a lesion area, neuronal death, succinate dehydrogenase activity, apoptosis, microglial activation, and mRNA or protein expression of inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP treatment. Also, pretreatment with SFN activated the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and inhibited the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways in the striatum after 3-NP treatment. As expected, the pretreatment with activators (dimethyl fumarate and antioxidant response element inducer-3) of the Keap1-Nrf2-ARE pathway decreased the neurological impairment and lethality after 3-NP treatment. Our findings suggest that SFN may effectively attenuate 3-NP-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways and that SFN has a wide therapeutic time-window for HD-like symptoms.

  9. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients.

    PubMed

    Mosalpuria, Kailash; Hall, Carolyn; Krishnamurthy, Savitri; Lodhi, Ashutosh; Hallman, D Michael; Baraniuk, Mary S; Bhattacharyya, Anirban; Lucci, Anthony

    2014-09-01

    Triple-negative breast cancer (TNBC) is characterised by lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER)2/neu gene amplification. TNBC patients typically present at a younger age, with a larger average tumor size, higher grade and higher rates of lymph node positivity compared to patients with ER/PR-positive tumors. Cyclooxygenase (COX)-2 regulates the production of prostaglandins and is overexpressed in a variety of solid tumors. In breast cancer, the overexpression of COX-2 is associated with indicators of poor prognosis, such as lymph node metastasis, poor differentiation and large tumor size. Since both TNBC status and COX-2 overexpression are known poor prognostic markers in primary breast cancer, we hypothesized that the COX-2 protein is overexpressed in the primary tumors of TNBC patients. The purpose of this study was to determine whether there exists an association between TNBC status and COX-2 protein overexpression in primary breast cancer. We prospectively evaluated COX-2 expression levels in primary tumor samples obtained from 125 patients with stage I-III breast cancer treated between February, 2005 and October, 2007. Information on clinicopathological factors was obtained from a prospective database. Baseline tumor characteristics and patient demographics were compared between TNBC and non-TNBC patients using the Chi-square and Fisher's exact tests. In total, 60.8% of the patients were classified as having ER-positive tumors, 51.2% were PR-positive, 14.4% had HER-2/neu amplification and 28.0% were classified as TNBC. COX-2 overexpression was found in 33.0% of the patients. TNBC was associated with COX-2 overexpression (P=0.009), PR expression (P=0.048) and high tumor grade (P=0.001). After adjusting for age, menopausal status, body mass index (BMI), lymph node status and neoadjuvant chemotherapy (NACT), TNBC was an independent predictor of COX-2 overexpression (P=0.01). In conclusion, the

  10. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells.

    PubMed

    Tang, Esther Lai-Har; Rajarajeswaran, Jayakumar; Fung, ShinYee; Kanthimathi, M S

    2015-10-01

    Petroselinum crispum (English parsley) is a common herb of the Apiaceae family that is cultivated throughout the world and is widely used as a seasoning condiment. Studies have shown its potential as a medicinal herb. In this study, P. crispum leaf and stem extracts were evaluated for their antioxidant properties, protection against DNA damage in normal 3T3-L1 cells, and the inhibition of proliferation and migration of the MCF-7 cells. The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis. Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food. © 2015 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  12. The selective cyclooxygenase-2 inhibitor parecoxib markedly improves the ability of the duodenum to regulate luminal hypertonicity in anaesthetized rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2012-07-01

    To examine whether the prevention of post-operative duodenal ileus by treatment with parecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, affects the ability of the duodenum to respond to luminal hypertonicity. The proximal duodenums of anaesthetized rats were perfused with hypertonic NaCl solutions with osmolalities of 400, 500, 600 or 700 mOsm kg(-1) , and the effects on mucosal permeability, motility, transepithelial net fluid flux and effluent osmolality were assessed in the absence (control) and presence of parecoxib. Parecoxib-treated, but not control animals, exhibited duodenal contractions, which were reduced by the nicotinic receptor antagonists mecamylamine and hexamethonium and by perfusion with 700 mOsm kg(-1) . All animals responded to luminal hypertonicity with induction of net fluid secretion, which peaked at an osmolality of 500 mOsm kg(-1) . The hypertonicity-induced increases in fluid secretion were twofold greater in parecoxib-treated than in control rats and attenuated by nicotinic receptor blockade. The decrease in luminal osmolality correlated with the osmolality of the perfusion solution in both control and parecoxib-treated animals but the osmolality-adjusting capability was markedly better in the latter group. Rats exposed to duodenal luminal distension responded to hypertonicity with a greater fluid secretion and a larger decrease in luminal osmolality than control rats. Perfusion with 700 mOsm kg(-1) increased mucosal permeability in parecoxib-treated animals only, an effect abolished by nicotinic receptor blockade. Parecoxib markedly improved the ability of the duodenum to sense and to decrease luminal hypertonicity by a mechanism most probably involving inhibition of COX-2 and stimulation of nicotinic acetylcholine receptors. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  13. Hyaluronan inhibits prostaglandin E2 production via CD44 in U937 human macrophages.

    PubMed

    Yasuda, Tadashi

    2010-03-01

    Prostaglandin E(2) (PGE(2)) is one of the key mediators of inflammation in affected joints of rheumatoid arthritis (RA). Intra-articular injection of high molecular weight hyaluronan (HA) into RA knee joints relieves arthritic pain. Although HA has been shown to inhibit PGE(2) production in cytokine-stimulated synovial fibroblasts, it remains unclear how HA suppresses PGE(2) production in activated cells. Furthermore, HA effect on macrophages has rarely been investigated in spite of their contribution to RA joint pathology. This study was aimed to investigate the inhibitory mechanism of HA on lipopolysaccharide (LPS)-stimulated PGE(2) production in U937 human macrophages. Stimulation of U937 macrophages with LPS enhanced PGE(2) production in association with increased protein levels of cyclooxygenase-2 (COX-2). Pretreatment with HA of 2,700 kDa resulted in suppression of the LPS-mediated induction of COX-2, leading to a decrease in PGE(2) production. Likewise, the LPS-stimulated PGE(2) production was inhibited by the pretreatment with a specific COX2 inhibitor, NS-398, or a specific inhibitor of nuclear factor (NF)-kappaB, BAY11-7085. HA also decreased the degree of phosphorylation and nuclear translocation of NF-kappaB enhanced by LPS. Fluorescence cytochemistry demonstrated that HA bound to CD44, the principal HA receptor, on U937 macrophages. Anti-CD44 antibody reversed the inhibitory effects of HA on the LPS-mediated increase in PGE(2) production, COX-2 induction, and activation of NF-kappaB. These results indicate that HA suppresses the LPS-stimulated PGE(2) production via CD44 through down-regulation of NF-kappaB. Administration of HA into RA joints may decrease PGE(2) production by activated macrophages, which could result in improvement of arthritic pain.

  14. Cyclooxygenase-2 expression and clinical parameters in laryngeal squamous cell carcinoma, vocal fold nodule, and laryngeal atypical hyperplasia.

    PubMed

    Sayar, Cağdaş; Sayar, Hamide; Özdemir, Süleyman; Selçuk, Tahsin; Görgülü, Orhan; Akbaş, Yücel; Kemal Olgun, Mustafa

    2013-01-01

    The diagnostic role of cyclooxygenase-2 (COX-2) expression in laryngeal atypical hyperplasia, vocal fold nodule, and laryngeal squamous cell carcinoma was examined. Specimens obtained from patients diagnosed with vocal fold nodule (n = 35), atypical hyperplasia (n = 35), laryngeal squamous cell carcinoma (n = 35), and clinical parameters were evaluated retrospectively. Although no staining was observed in patients with vocal fold nodules, staining was noted in laryngeal atypical hyperplasia and squamous cell carcinoma. The percentage of COX-2 staining was the highest in the carcinoma group. It was determined that COX-2 staining was significantly associated with laryngeal squamous cell carcinoma. It should be noted that overexpression of COX-2, a potentially important factor in the evolution of carcinogenesis in precancerous lesions, might be an indicator of the development of carcinoma. Copyright © 2012 Wiley Periodicals, Inc.

  15. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  16. Eupatolide inhibits lipopolysaccharide-induced COX-2 and iNOS expression in RAW264.7 cells by inducing proteasomal degradation of TRAF6.

    PubMed

    Lee, Jongkyu; Tae, Nara; Lee, Jung Joon; Kim, Taeho; Lee, Jeong-Hyung

    2010-06-25

    Inula britannica is a traditional medicinal plant used to treat bronchitis, digestive disorders, and inflammation in Eastern Asia. Here, we identified eupatolide, a sesquiterpene lactone from I. britannica, as an inhibitor of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Eupatolide inhibited the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) as well as iNOS and COX-2 protein expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Eupatolide dose-dependently decreased the mRNA levels and the promoter activities of COX-2 and iNOS in LPS-stimulated RAW264.7 cells. Moreover, eupatolide significantly suppressed the LPS-induced expression of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) reporter genes. Pretreatment of eupatolide inhibited LPS-induced phosphorylation and degradation of I kappaB alpha, and phosphorylation of RelA/p65 on Ser-536 as well as the activation of mitogen-activated protein kinases (MAPKs) and Akt in LPS-stimulated RAW264.7 cells. Eupatolide induced proteasomal degradation of tumor necrosis factor receptor-associated factor-6 (TRAF6), and subsequently inhibited LPS-induced TRAF6 polyubiquitination. These results suggest that eupatolide blocks LPS-induced COX-2 and iNOS expression at the transcriptional level through inhibiting the signaling pathways such as NF-kappaB and MAPKs via proteasomal degradation of TRAF6. Taken together, eupatolide may be a novel anti-inflammatory agent that induces proteasomal degradation of TRAF6, and a valuable compound for modulating inflammatory conditions. (c) 2010 Elsevier B.V. All rights reserved.

  17. XuefuZhuyu decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    PubMed

    Shi, Xiaowen; Zhu, Haiyan; Zhang, Yuanyuan; Zhou, Mingmei; Tang, Danli; Zhang, Huamin

    2017-06-19

    XuefuZhuyu decoction (XFZY) is a well-known traditional Chinese herbal medicine for the treatment of various cardiovascular diseases, such as unstable angina pectoris and myocardial ischemia-reperfusion injury. However, the mechanism by which XFZY contributes to the amelioration of cardiac injury remains unclear. H9C2 cells were cultured under the hypoxic condition for 10 h and reoxygenated for 2 h. In the presence of various concentrations of XFZY for 12 h, the cell viability was measured by MTT assay. The protective effect of XFZY in hypoxia/reoxygenation (H/R) cell model was confirmed by measuring the amount of LDH released into the extracellular fluid. Cell apoptosis was measured by western blotting. The autophagy level of H9C2 cells and the correlative pathway were determined by transmission electron microscopy, Cyto-ID® Autophagy Detection Kit, and western blotting. In this study, we investigated the effects of XFZY on H/R induced cardiac injury. The results showed that treatment with XFZY significantly inhibited autophagy induced by H/R, with decreased formation of autophagosomes as well as the expression of LC3-II/LC3-I ratio and Beclin 1 after H/R. Importantly, inhibition of autophagy by XFZY resulted in enhanced cell viability and decreased apoptosis. XFZY also inhibited the activation of AMPK and upregulated the phosphorylation of mammalian target of Rapamycin (mTOR). The cardioprotective effects of XFZY during H/R were mediated by inhibiting autophagy via regulating AMPK-mTOR signaling pathways.

  18. Xue-fu-Zhu-Yu decoction protects rats against retinal ischemia by downregulation of HIF-1α and VEGF via inhibition of RBP2 and PKM2.

    PubMed

    Tan, Shu-Qiu; Geng, Xue; Liu, Jorn-Hon; Pan, Wynn Hwai-Tzong; Wang, Li-Xiang; Liu, Hui-Kang; Hu, Lei; Chao, Hsiao-Ming

    2017-07-14

    Retinal ischemia-related eye diseases result in visual dysfunction. This study investigates the protective effects and mechanisms of Xue-Fu-Zhu-Yu decoction (XFZYD) with respect to retinal ischemia. Retinal ischemia (I) was induced in Wistar rats by a high intraocular pressure (HIOP) of 120 mmHg for 1 h, which was followed by reperfusion of the ischemic eye; the fellow untreated eye acted as a control. Electroretinogram (ERG), biochemistry and histopathology investigations were performed. Significant ischemic changes occurred after ischemia including decreased ERG b-wave ratios, less numerous retinal ganglion cells (RGCs), reduced inner retinal thickness, fewer choline acetyltransferase (ChAT) labeled amacrine cell bodies, increased glial fibrillary acidic protein (GFAP) immunoreactivity and increased vimentin Müller immunolabeling. These were accompanied by significant increases in the mRNA/protein concentrations of vascular endothelium growth factor, hypoxia-inducible factor-1α, pyruvate kinase M2 and retinoblastoma-binding protein 2. The ischemic changes were concentration-dependently and significantly altered when XFZYD was given for seven consecutive days before or after retina ischemia, compared to vehicle. These alterations included enhanced ERG b-wave amplitudes, more numerous RGCs, enhanced inner retinal thickness, a greater number of ChAT immunolabeled amacrine cell bodies and decreased GFAP/vimentin immunoreactivity. Furthermore, decreased mRNA levels of VEGF, HIF-1α, PKM2, and RBP2 were also found. Reduced protein concentrations of VEGF, HIF-1α, PKM2, and RBP2 were also demonstrated. Furthermore, there was an inhibition of the ischemia-associated increased ratios (target protein/β-actin) in the protein levels of VEGF, HIF-1α, PKM2, and RBP2, which were induced by Shikonin, JIB-04 or Avastin. XFZYD would seem to protect against well-known retinal ischemic changes via a synergistic inhibition of RBP2 and PKM2, as well as down-regulation of HIF-1

  19. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    PubMed

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  20. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    PubMed

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (p<0.05) DNA protecting activity. Treatment of MCF-7 cells with nicotine induced cell migration, whereas pre-treatment with spices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.

    PubMed

    Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José

    2005-08-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.

  2. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms.

    PubMed

    Banu, Sakhila K; Lee, JeHoon; Speights, V O; Starzinski-Powitz, Anna; Arosh, Joe A

    2009-08-01

    Endometriosis is a benign chronic gynecological disease of reproductive-age women characterized by the presence of functional endometrial tissues outside the uterine cavity. It is an estrogen-dependent disease. Current treatment modalities to inhibit biosynthesis and actions of estrogen compromise menstruation, pregnancy, and the reproductive health of women and fail to prevent reoccurrence of disease. There is a critical need to identify new specific signaling modules for non-estrogen-targeted therapies for endometriosis. In our previous study, we reported that selective inhibition of cyclooxygenase-2 prevented survival, migration, and invasion of human endometriotic epithelial and stromal cells, which was due to decreased prostaglandin E(2) (PGE(2)) production. In this study, we determined mechanisms through which PGE(2) promoted survival of human endometriotic cells. Results of the present study indicate that 1) PGE(2) promotes survival of human endometriotic cells through EP2 and EP4 receptors by activating ERK1/2, AKT, nuclear factor-kappaB, and beta-catenin signaling pathways; 2) selective inhibition of EP2 and EP4 suppresses these cell survival pathways and augments interactions between proapoptotic proteins (Bax and Bad) and antiapoptotic proteins (Bcl-2/Bcl-XL), facilitates the release of cytochrome c, and thus activates caspase-3/poly (ADP-ribose) polymerase-mediated intrinsic apoptotic pathways; and 3) these PGE(2) signaling components are more abundantly expressed in ectopic endometriosis tissues compared with eutopic endometrial tissues during the menstrual cycle in women. These novel findings may provide an important molecular framework for further evaluation of selective inhibition of EP2 and EP4 as potential therapy, including nonestrogen target, to expand the spectrum of currently available treatment options for endometriosis in women.

  3. Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress

    PubMed Central

    Li, Wenlu; Xu, Hongjiao; Hu, Yangmin; He, Ping; Ni, Zhenzhen; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin

    2013-01-01

    Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10–100 µmol/l. What’s more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress. PMID:24098758

  4. Indomethacin inhibits eosinophil migration to prostaglandin D2: therapeutic potential of CRTH2 desensitization for eosinophilic pustular folliculitis

    PubMed Central

    Kataoka, Naoko; Satoh, Takahiro; Hirai, Aiko; Saeki, Kazumi; Yokozeki, Hiroo

    2013-01-01

    Summary Indomethacin is a cyclo-oxygenase inhibitor, and shows therapeutic potential for various eosinophilic skin diseases, particularly eosinophilic pustular folliculitis. One of the unique characteristics of indomethacin is that, unlike other non-steroidal anti-inflammatory drugs, it is a potent agonist of chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2). This study investigated the pharmacological actions of indomethacin on eosinophil migration to clarify the actual mechanisms underlying the therapeutic effects of indomethacin on eosinophilic pustular folliculitis. Eosinophils exhibited chemokinetic and chemotactic responses to both PGD2 and indomethacin through CRTH2 receptors. Pre-treatment of eosinophils with indomethacin greatly inhibited eosinophil migration to PGD2 and, to a much lesser extent, to eotaxin (CCL11); these effects could be mediated by homologous and heterologous desensitization of eosinophil CRTH2 and CCR3, respectively, by agonistic effects of indomethacin on CRTH2. Indomethacin also cancelled a priming effect of Δ12-PGJ2, a plasma metabolite of PGD2, on eosinophil chemotaxis to eotaxin. Indomethacin down-modulated cell surface expression of both CRTH2 and CCR3. Hair follicle epithelium and epidermal keratinocytes around eosinophilic pustules together with the eccrine apparatus of palmoplantar lesions of eosinophilic pustular folliculitis were immunohistochemically positive for lipocalin-type PGD synthase. Indomethacin may exert therapeutic effects against eosinophilic skin diseases in which PGD2-CRTH2 signals play major roles by reducing eosinophil responses to PGD2. PMID:23582181

  5. Effect of celecoxib plus standard chemotherapy on serum levels of vascular endothelial growth factor and cyclooxygenase-2 in patients with gastric cancer.

    PubMed

    Han, Xiaopeng; Li, Hongtao; Su, Lin; Zhu, Wankun; Xu, Wei; Li, Kun; Zhao, Qingchuan; Yang, Hua; Liu, Hongbin

    2014-03-01

    Elevated serum levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) are associated with poor prognosis in patients with gastric cancer. Little is known regarding the clinical benefits of combining celecoxib, a selective inhibitor of COX-2, with standard chemotherapy regimens for the treatment of gastric cancer patients. In this study, we investigated the effect of the combinatorial use of celecoxib with standard chemotherapy on the serum levels of VEGF and COX-2 in patients with gastric cancer. In our study, 80 patients with gastric cancer who underwent laparoscopic radical surgery were randomized into two groups, the combination [celecoxib plus standard oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX4) chemotherapy, n=40] and the FOLFOX4 alone (n=40) groups. In the combination group, celecoxib was orally administered to the patients (400 mg, twice daily). The serum levels of VEGF and COX-2 were measured by ELISA prior to and following surgery. We detected no significant difference in the serum levels of VEGF and COX-2 between the combination and FOLFOX4 alone groups prior to chemotherapy (P>0.05). However, after 6 cycles of chemotherapy, there was a greater decrease in the serum levels of VEGF and COX-2 in the combination group compared to those in the FOLFOX4 group (P<0.01). In addition, the serum levels of VEGF and COX-2 were closely correlated in patients with gastric adenocarcinoma prior to treatment. Our data indicated that, when combined with standard chemotherapy, celecoxib may reduce the serum levels of VEGF and COX-2, suggesting that COX-2 inhibitors may be of therapeutic value through the inhibition of tumor angiogenesis and the prevention of recurrence or metastasis. Thus, celecoxib may be a useful adjuvant agent to standard chemotherapy in patients with advanced gastric cancer.

  6. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge.

    PubMed

    Kang, Jingjing; Zhang, Yushun; Cao, Xiang; Fan, Jie; Li, Guilan; Wang, Qi; Diao, Ying; Zhao, Zhihui; Luo, Lan; Yin, Zhimin

    2012-01-01

    As a natural alkaloid extracted from Amaryllidaceae, lycorine shows various biological effects on tumor cells. Here we show that lycorine dose-dependently inhibited the LPS-induced up-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein level in RAW264.7 cells. Besides, it also inhibited NO, PGE(2), TNF-α and IL-6 release from LPS-treated RAW264.7 cells. RT-PCR experiments showed that lycorine suppressed LPS-induced iNOS but not COX-2 gene expression. Moreover, lycorine decreased LPS-induced mortality in mice. Mechanistically, LPS-induced activation of P38 and STATs pathways was suppressed significantly by lycorine. In addition, lycorine did not interfere with the phosphorylation of ERK1/2, JNK1/2 and NF-κB pathways. In conclusion, lycorine inhibits LPS-induced production of pro-inflammatory mediators and increases the survival rate of mice after LPS challenge, suggesting that lycorine could play an anti-inflammatory role in response to LPS. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Protective activity of salidroside against ethanol-induced gastric ulcer via the MAPK/NF-κB pathway in vivo and in vitro.

    PubMed

    Chang, Xiayun; Luo, Fen; Jiang, Wenjiao; Zhu, Lingpeng; Gao, Jin; He, He; Wei, Tingting; Gong, Shilin; Yan, Tianhua

    2015-09-01

    Salidroside (Sal) is a traditional Chinese medicine with various pharmacological effects. The present study aimed to investigate the protective effect of Sal on ethanol-induced acute gastric ulcer and H2O2-induced gastric epithelial cell damage. 0.2 ml ethanol and 400 μM H2O2 were applied to establish a gastric ulcer model in vivo and in vitro respectively. The production of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α was analyzed, as well as myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD). MTT assay was used to detect cell viability. In addition, MAPK/NF-κB signal pathway-related proteins p-ERK, p-JNK, p-p38, p-IκBα and p-NF-κBp65 were analyzed to determine the underlying protective mechanism. Downstream genes such as cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and leukotrienes B4 (LTB4) were also measured. Obtained data indicated that Sal inhibited the overproduction of pro-inflammatory cytokines and enhanced antioxidant activity. Collectively, it is assumed that Sal could alleviate ethanol-induced acute gastric ulcer and H2O2-induced gastric epithelial cell damage through the MAPK/NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model.

    PubMed

    Comba, Andrea; Maestri, Damian M; Berra, María A; Garcia, Carolina Paola; Das, Undurti N; Eynard, Aldo R; Pasqualini, María E

    2010-10-08

    Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs) have the ability to induce modifications in the activity of lipoxygenase (LOX) and cyclooxygenase (COX) enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C) that received commercial diet. Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA) content and the cyclooxygenase enzyme derived 12-HHT (p < 0.05) and simultaneously showed decrease in 12-LOX, 15-LOX-2, 15-LOX-1 and PGE activities (p < 0.05) that corresponded to higher apoptosis and lower mitosis seen in this group (p < 0.05). Furthermore, Peanut oil group showed lower T-cell infiltration (p < 0.05), number of metastasis (p < 0.05) and tumour volume (p < 0.05) and longer survival rate compared to other groups. The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.

  9. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  10. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  11. Toward the understanding of the molecular basis for the inhibition of COX-1 and COX-2 by phenolic compounds present in Uruguayan propolis and grape pomace.

    PubMed

    Paulino, Margot; Alvareda, Elena; Iribarne, Federico; Miranda, Pablo; Espinosa, Victoria; Aguilera, Sara; Pardo, Helena

    2016-12-01

    Propolis and grape pomace have significant amounts of phenols which can take part in anti-inflammatory mechanisms. As the cyclooxygenases 1 and 2 (COX-1 and COX-2) are involved in said mechanisms, the possibility for a selective inhibition of COX-2 was analyzed in vitro and in silico. Propolis and grape pomace from Uruguayan species were collected, extracted in hydroalcoholic mixture and analyzed. Based on phenols previously identified, and taking as reference the crystallographic structures of COX-1 and COX-2 in complex with the commercial drug Celecoxib, a molecular docking procedure was devised to adjust 123 phenolic molecular models at the enzyme-binding sites. The most important results of this work are that the extracts have an overall inhibition activity very similar in COX-1 and COX-2, i.e. they do not possess selective inhibition activity for COX-2. Nevertheless, 10 compounds of the phenolic database turned out to be more selective and 94 phenols resulted with similar selectivity than Celecoxib, an outcome that accounts for the overall experimental inhibition measures. Binding site environment observations showed increased polarity in COX-2 as compared with COX-1, suggesting that polarity is the key for selectivity. Accordingly, the screening of molecular contacts pointed to the residues: Arg106, Gln178, Leu338, Ser339, Tyr341, Tyr371, Arg499, Ala502, Val509, and Ser516, which would explain, at the atomic level, the anti-inflammatory effect of the phenolic compounds. Among them, Gln178 and Arg499 appear to be essential for the selective inhibition of COX-2.

  12. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    PubMed

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  13. Indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 expression prediction for adverse prognosis in colorectal cancer

    PubMed Central

    Ma, Wen-Juan; Wang, Xing; Yan, Wen-Ting; Zhou, Zhong-Guo; Pan, Zhi-Zhong; Chen, Gong; Zhang, Rong-Xin

    2018-01-01

    AIM To evaluate indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 (IDO1/COX2) expression as an independent prognostic biomarker for colorectal cancer (CRC) patients. METHODS We retrospectively studied the medical records of 95 patients who received surgical resection from August 2008 to January 2010. All patients were randomly assigned to adjuvant treatment with or without celecoxib groups after surgery. We performed standard immunohistochemistry to assess the expression levels of IDO1/COX2 and evaluated the correlation of IDO1/COX2 with clinicopathological factors and overall survival (OS) outcomes. RESULTS The expression of nuclear IDO1 was significantly correlated with body mass index (P < 0.001), and IDO1 expression displayed no association with sex, age, tumor differentiation, T stage, N stage, carcinoembryonic antigen, cancer antigen 19-9, CD3+ and CD8+ tumor infiltrating lymphocytes, and COX2. In univariate analysis, we found that nuclear IDO1 (P = 0.039), nuclear/cytoplasmic IDO1 [hazard ratio (HR) = 2.044, 95% confidence interval (CI): 0.871-4.798, P = 0.039], nuclear IDO1/COX2 (HR = 3.048, 95%CI: 0.868-10.7, P = 0.0049) and cytoplasmic IDO1/COX2 (HR = 2.109, 95%CI: 0.976-4.558, P = 0.022) all yielded significantly poor OS outcomes. Nuclear IDO1 (P = 0.041), nuclear/cytoplasmic IDO1 (HR = 3.023, 95%CI: 0.585-15.61, P = 0.041) and cytoplasmic IDO1/COX2 (HR = 2.740, 95%CI: 0.764-9.831, P = 0.038) have significantly poor OS outcomes for the CRC celecoxib subgroup. In our multivariate Cox model, high coexpression of cytoplasmic IDO1/COX2 was found to be an independent predictor of poor outcome in CRC (HR = 2.218, 95%CI: 1.011-4.48, P = 0.047) and celecoxib subgroup patients (HR = 3.210, 95%CI: 1.074-9.590, P = 0.037). CONCLUSION Our results showed that cytoplasmic IDO1/COX2 coexpression could be used as an independent poor predictor for OS in CRC. PMID:29853736

  14. Celecoxib-Induced Cytotoxic Effect Is Potentiated by Inhibition of Autophagy in Human Urothelial Carcinoma Cells

    PubMed Central

    Ho, I-Lin; Chang, Hong-Chiang; Chuang, Yuan-Ting; Lin, Wei-Chou; Lee, Ping-Yi; Chang, Shih-Chen; Chiang, Chih-Kang; Pu, Yeong-Shiau; Chou, Chien-Tso; Hsu, Chen-Hsun; Liu, Shing-Hwa

    2013-01-01

    Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC. PMID:24349176

  15. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2

    PubMed Central

    Du, Yipeng; Cao, Lin-lin; Li, Meiting; Shen, Changchun; Hou, Tianyun; Zhao, Ying; Wang, Haiying; Deng, Dajun; Wang, Lina; He, Qihua; Zhu, Wei-Guo

    2015-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in a variety of human epithelial cancers, including lung cancer, and is highly associated with a poor prognosis and a low survival rate. Understanding how COX-2 is regulated in response to carcinogens will offer insight into designing anti-cancer strategies and preventing cancer development. Here, we analyzed COX-2 expression in several human lung cancer cell lines and found that COX-2 expression was absent in the H719 and H460 cell lines by a DNA methylation-independent mechanism. The re-expression of COX-2 was observed after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment in both cell lines. Further investigation found that H3K36 dimethylation was significantly reduced near the COX-2 promoter because histone demethylase 2A (KDM2A) was recruited to the COX-2 promoter after TPA treatment. In addition, the transcription factor c-Fos was found to be required to recruit KDM2A to the COX-2 promoter for reactivation of COX-2 in response to TPA treatment in both the H719 and H460 cell lines. Together, our data reveal a novel mechanism by which the carcinogen TPA activates COX-2 expression by regulating H3K36 dimethylation near the COX-2 promoter. PMID:26430963

  16. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    PubMed

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways.

    PubMed

    Tang, Fan; Zhou, Xinhua; Wang, Liang; Shan, Luchen; Li, Chuwen; Zhou, Hefeng; Lee, Simon Ming-Yuen; Hoi, Maggie Pui-Man

    2018-02-05

    Doxorubicin (Dox) is an effective anti-cancer agent but limited by its cardiotoxicity, thus the search for pharmacological agents for enhancing anti-cancer activities and protecting against cardiotoxicity has been a subject of great interest. We have previously reported the synergistic anti-cancer effects of a novel compound DT-010. In the present study, we further investigated the cardioprotective effects of DT-010 in zebrafish embryos in vivo and the molecular underlying mechanisms in H9c2 cardiomyocytes in vitro. We showed that DT-010 prevented the Dox-induced morphological distortions in the zebrafish heart and the associated cardiac impairments, and especially improved ventricular functions. By using H9c2 cells model, we showed that DT-010 directly inhibited the generation of reactive oxygen species by Dox and protected cell death and cellular damage. We further observed that DT-010 protected against Dox-induced myocardiopathy via inhibiting downstream molecular pathways in response to oxidative stress, including reactive oxygen species-mediated MAPK signaling pathways ERK and JNK, and apoptotic pathways involving the activation of caspase 3, caspase 7, and PARP signaling. Recent studies also suggest the importance of alterations in cardiac autophagy in Dox cardiotoxicity. We further showed that DT-010 could inhibit the induction of autophagosomes formation by Dox via regulating the upstream Akt/AMPK/mTOR signaling. Since Dox-induced cardiotoxicity is multifactorial, our results suggest that multi-functional agent such as DT-010 might be an effective therapeutic agent for combating cardiotoxicity associated with chemotherapeutic agents such as Dox. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prostaglandins inhibit 5-lipoxygenase-activating protein expression and leukotriene B4 production from dendritic cells via an IL-10-dependent mechanism.

    PubMed

    Harizi, Hedi; Juzan, Monique; Moreau, Jean-François; Gualde, Norbert

    2003-01-01

    PGs produced from arachidonic acid by the action of cyclooxygenase enzymes play a pivotal role in the regulation of both inflammatory and immune responses. Because leukotriene B4 (LTB4), a product of 5-lipoxygenase (5-LO) pathway, can exert numerous immunoregulatory and proinflammatory activities, we examined the effects of PGs on LTB4 release from dendritic cells (DC) and from peritoneal macrophages. In concentration-dependent manner, PGE1 and PGE2 inhibited the production of LTB4 from DC, but not from peritoneal macrophage, with an IC50 of 0.04 microM. The same effect was observed with MK-886, a 5-LO-activating protein (FLAP)-specific inhibitor. The decreased release of LTB4 was associated with an enhanced level of IL-10. Furthermore, the inhibition of LTB4 synthesis by PGs was significantly reversed by anti-IL-10, suggesting the involvement of an IL-10-dependent mechanism. Hence, we examined the effects of exogenous IL-10 on the 5-LO pathway. We demonstrate that IL-10 suppresses the production of LTB4 from DC by inhibiting FLAP protein expression without any effect on 5-LO and cytosolic phospholipase A2. Taken together, our results suggest links between DC cyclooxygenase and 5-LO pathways during the inflammatory response, and FLAP is a key target for the PG-induced IL-10-suppressive effects.

  19. Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion

    PubMed Central

    Aune, Sverre E.; Herr, Daniel J.; Mani, Santhosh K.; Menick, Donald R.

    2014-01-01

    While inhibition of class I/IIb histone deacetylases (HDACs) protects the mammalian heart from ischemia reperfusion (IR) injury, class selective effects remain unexamined. We hypothesized that selective inhibition of class I HDACs would preserve left ventricular contractile function following IR in isolated hearts. Male Sprague Dawley rats (n=6 per group) were injected with vehicle (dimethylsulfoxide, 0.63 mg/kg), the class I/IIb HDAC inhibitor trichostatin A (1 mg/kg), the class I HDAC inhibitor entinostat (MS-275, 10 mg/kg), or the HDAC6 (class IIb) inhibitor tubastatin A (10 mg/kg). After 24 h, hearts were isolated and perfused in Langendorff mode for 30 min (Sham) or subjected to 30 min global ischemia and 120 min global reperfusion (IR). A saline filled balloon attached to a pressure transducer was placed in the LV to monitor contractile function. After perfusion, LV tissue was collected for measurements of antioxidant protein levels and infarct area. At the conclusion of IR, MS-275 pretreatment was associated with significant preservation of developed pressure, rate of pressure generation, rate of pressure relaxation and rate pressure product, as compared to vehicle treated hearts. There was significant reduction of infarct area with MS-275 pretreatment. Contractile function was not significantly restored in hearts treated with trichostatin A or tubastatin A. Mitochondrial superoxide dismutase (SOD2) and catalase protein and mRNA in hearts from animals pretreated with MS-275 were increased following IR, as compared to Sham. This was associated with a dramatic enrichment of nuclear FOXO3a transcription factor, which mediates the expression of SOD2 and catalase. Tubastatin A treatment was associated with significantly decreased catalase levels after IR. Class I HDAC inhibition elicits protection of contractile function following IR, which is associated with increased expression of endogenous antioxidant enzymes. Class I/IIb HDAC inhibition with trichostatin A

  20. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal

    PubMed Central

    Collins, Clinton; Klausner, Adam P; Herrick, Benjamin; Koo, Harry P; Miner, Amy S; Henderson, Scott C; Ratz, Paul H

    2009-01-01

    Interstitial cells of Cajal (ICCs) have been identified as pacemaker cells in the upper urinary tract and urethra, but the role of ICCs in the bladder remains to be determined. We tested the hypotheses that ICCs express cyclooxygenase (COX), and that COX products (prostaglandins), are the cause of spontaneous rhythmic contraction (SRC) of isolated strips of rabbit bladder free of urothelium. SRC was abolished by 10 μM indomethacin and ibuprofen (non-selective COX inhibitors). SRC was concentration-dependently inhibited by selective COX-1 (SC-560 and FR-122047) and COX-2 inhibitors (NS-398 and LM-1685), and by SC-51089, a selective antagonist for the PGE-2 receptor (EP) and ICI-192,605 and SQ-29,548, selective antagonists for thromboxane receptors (TP). The partial agonist/antagonist of the PGF-2α receptor (FP), AL-8810, inhibited SRC by ∼50%. Maximum inhibition was ∼90% by SC-51089, ∼80–85% by the COX inhibitors and ∼70% by TP receptor antagonists. In the presence of ibuprofen to abolish SRC, PGE-2, sulprostone, misoprostol, PGF-2α and U-46619 (thromboxane mimetic) caused rhythmic contractions that mimicked SRC. Fluorescence immunohistochemistry coupled with confocal laser scanning microscopy revealed that c-Kit and vimentin co-localized to interstitial cells surrounding detrusor smooth muscle bundles, indicating the presence of extensive ICCs in rabbit bladder. Co-localization of COX-1 and vimentin, and COX-2 and vimentin by ICCs supports the hypothesis that ICCs were the predominant cell type in rabbit bladder expressing both COX isoforms. These data together suggest that ICCs appear to be an important source of prostaglandins that likely play a role in regulation of SRC. Additional studies on prostaglandin-dependent SRC may generate opportunities for the application of novel treatments for disorders leading to overactive bladder. PMID:19243470

  1. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression

    PubMed Central

    Posadas, Inmaculada; Bucci, Mariarosaria; Roviezzo, Fiorentina; Rossi, Antonietta; Parente, Luca; Sautebin, Lidia; Cirino, Giuseppe

    2004-01-01

    Injection of carrageenan 1% (50 μl) in the mouse paw causes a biphasic response: an early inflammatory response that lasts 6 h and a second late response that peaks at 72 h, declining at 96 h. Only mice 7- or 8-week old, weighing 32–34 g, displayed a consistent response in both phases. In 8-week-old mice, myeloperoxidase (MPO) levels are significantly elevated in the early phase at 6 h and reach their maximum at 24 h to decline to basal value at 48 h. Nitrate+nitrite (NOx) levels in the paw are maximal after 2 h and slowly decline thereafter in contrast to prostaglandin E2 levels that peak in the second phase at the 72 h point. Western blot analysis showed that inducible nitric oxide synthase (iNOS) is detectable at 6 h and cyclooxygenase 2 (COX-2) at 24 h point, respectively. Analysis of endothelial nitric oxide synthase (eNOS), iNOS and COX-2 expression at 6 and 24 h in 3–8-week-old mice demonstrated that both eNOS and iNOS expressions are dependent upon the age–weight of mice, as opposite to COX-2 that is present only in the second phase of the oedema and is not linked to mouse age–weight. Subplantar injection of carrageenan to C57BL/6J causes a biphasic oedema that is significantly reduced by about 20% when compared to CD1 mice. Interestingly, in these mice, iNOS expression is absent up to 6 h, as opposite to CD1, and becomes detectable at the 24 h point. Cyclooxygenase (COX-1) expression is upregulated between 4 and 24 h after carrageenan injection, whereas in CD1 mice COX-1 remains unchanged after irritant agent injection. MPO levels are maximal at the 24 h point and they are significantly lower, at 6 h point, than MPO levels detected in CD1 mice. In conclusion, mouse paw oedema is biphasic and age-weight dependent. The present results are the first report on the differential expressions of eNOS, iNOS, COX-1 and COX-2 in response to carrageenan injection in the two phases of the mouse paw oedema. PMID:15155540

  2. Vitual screening and binding mode elucidation of curcumin analogues on Cyclooxygenase-2 using AYO_COX2_V1.1 protocol

    NASA Astrophysics Data System (ADS)

    Mulatsari, E.; Mumpuni, E.; Herfian, A.

    2017-05-01

    Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.

  3. Açaí Berries Inhibit Colon Tumorigenesis in Azoxymethane/Dextran Sulfate Sodium-Treated Mice

    PubMed Central

    Choi, Yoon Jin; Choi, Yoon Jeong; Kim, Nayoung; Nam, Ryoung Hee; Lee, Seonmin; Lee, Hye Seung; Lee, Ha-Na; Surh, Young-Joon; Lee, Dong Ho

    2017-01-01

    Background/Aims The aim of this study was to investigate the protective effect of açaí against azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colorectal cancer development. Methods The effect of açaí on tumorigenesis was assessed by evaluating tumor incidence, multiplicity and invasiveness in the mouse colon. The levels of myeloperoxidase (MPO) and proinflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin [IL]-1β, and IL-6) were measured via enzyme-linked immunosorbent assay. Protein levels of cyclooxygenase 2 (COX-2), proliferating cell nuclear antigen (PCNA), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad) and cleaved-caspase-3 were assessed by immunoblotting. Results Administration of pellets containing 5% açaí powder reduced the incidences of both colonic adenoma and cancer (adenoma, 23.1% vs 76.9%, respectively, p=0.006; cancer, 15.4% vs 76.9%, respectively, p=0.002). In the açaí-treated mice, the MPO, TNF-α, IL-1β and IL-6 levels in the colon were significantly down-regulated. Açaí inhibited PCNA and Bcl-2 expression and increased Bad and cleaved-caspase-3 expression. In vitro studies demonstrated that açaí treatment reduced lipopolysaccharide-induced expression of TNF-α, IL-1β, IL-6 and COX-2 in murine macrophage RAW 264.7 cells. Conclusions Açaí demonstrated protective effects against AOM/DSS-induced colon carcinogenesis, which suggests that the intake of açaí may be beneficial for the prevention of human colon cancer. PMID:27965474

  4. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phoxmore » activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving

  5. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    PubMed

    Karlsson, Jessica; Fowler, Christopher J

    2014-01-01

    In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  6. Inhibition of Endocannabinoid Metabolism by the Metabolites of Ibuprofen and Flurbiprofen

    PubMed Central

    Karlsson, Jessica; Fowler, Christopher J.

    2014-01-01

    Background In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. Methodology/Principal Findings COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. Conclusions/Significance It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo. PMID:25061885

  7. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress.

    PubMed

    Zhang, Tao; Zhao, Qiang; Ye, Fang; Huang, Chan-Yan; Chen, Wan-Mei; Huang, Wen-Qi

    2018-04-13

    Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1 h, followed by 6 h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30 min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.

  8. Protective Effect of Ginsenosides Rg1 and Re on Lipopolysaccharide-Induced Sepsis by Competitive Binding to Toll-Like Receptor 4

    PubMed Central

    Su, Fei; Xue, Yin; Wang, Yuemin; Zhang, Lili; Chen, Wangxue

    2015-01-01

    We previously demonstrated that ginsenosides Rg1 and Re enhanced the immune response in C3H/HeB mice but not in C3H/HeJ mice carrying a mutation in the Tlr4 gene. The results of the present study showed that both Rg1 and Re inhibited mRNA expression and production of proinflammatory mediators that included tumor necrosis factor α, interleukin-1β, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase from lipopolysaccharide (LPS)-stimulated macrophages. Rg1 was found to be distributed both extracellularly and intracellularly but Re was located only extracellularly to compete with LPS for binding to Toll-like receptor 4. Preinjection of Rg1 and Re into rats suppressed LPS-induced increases in body temperature, white blood cell counts, and levels of serum proinflammatory mediators. Preinjection of Rg1 and Re into mice prevented the LPS-induced decreases in total white blood cell counts and neutrophil counts, inhibited excessive expression of multiple proinflammatory mediators, and successfully rescued 100% of the mice from sepsis-associated death. More significantly, when administered after lethal LPS inoculation, Rg1, but not Re, still showed a potent antisepsis effect and protected 90% of the mice from death. The better protection efficacy of Rg1 could result from its intracellular distribution, suggesting that Rg1 may be an ideal antisepsis agent. PMID:26149990

  9. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  10. Does non-acetylated salicylate inhibit thromboxane biosynthesis in human platelets?

    PubMed

    Danesh, B J; McLaren, M; Russell, R I; Lowe, G D; Forbes, C D

    1988-08-01

    Ingestion of aspirin (acetyl salicylic acid: ASA) may promote bleeding complications due to inhibition of thromboxane biosynthesis, which results in the prolongation of bleeding time. The effect is believed to be achieved by the irreversible acetylation of the enzyme cyclooxygenase by aspirin. This alteration in platelet function by aspirin prohibits its use in patients with bleeding disorders such as haemophiliacs. Choline magnesium trisalicylate (CMT; Napp Laboratories Ltd) is a non-acetylated salicylate with analgesic and anti-inflammatory effects similar to that of aspirin. However, despite a comparable salicylate absorption from the two drugs, CMT is found to have no inhibitory action in platelet aggregation and to cause less gastric mucosal damage and gastrointestinal blood loss than aspirin. To investigate the role of the acetyl moiety in the inhibition of platelet thromboxane biosynthesis, we studied the effect of CMT and ASA on bleeding time, serum thromboxane B2 (TxB2) and thromboxane (Tx) generation in healthy volunteers.

  11. Oral gold compound auranofin triggers arachidonate release and cyclooxygenase metabolism in the alveolar macrophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters-Golden, M.; Shelly, C.

    1988-12-01

    We examined the effect of in vitro incubation with the oral gold compound auranofin (AF) on arachidonic acid (AA) release and metabolism by rat alveolar macrophages (AMs). AF stimulated dose- and time-dependent release of /sup 14/C-AA from prelabeled AMs, which reached 4.7 +/- 0.3% (mean +/- SEM) of incorporated radioactivity at 10 micrograms/ml for 90 min, as compared to 0.5 +/- 0.1% release following control incubation for 90 min (p less than 0.001). Similar dose- and time-dependent synthesis of thromboxane (Tx) A2 (measured as TxB2) and prostaglandin (PG) E2 was demonstrated by radioimmunoassay of medium from unlabeled cultures, reaching 18-foldmore » and 9-fold, respectively, of the control values at 10 micrograms/ml AF for 90 min (p less than 0.001 for both). AF-induced TxB2 and PGE2 synthesis was inhibited by indomethacin as well as by pretreatment with methylprednisolone. No increase in the synthesis of immunoreactive leukotrienes (LT) B4 or C4 was noted at any dose or time of AF. High performance liquid chromatographic separation of /sup 14/C-eicosanoids synthesized by prelabeled AMs confirmed that AF induced the release of free AA and its metabolism to cyclooxygenase, but not 5-lipoxygenase, metabolites. The ability of AF to trigger macrophage AA metabolism may be relevant to the exacerbation of certain inflammatory processes which sometimes accompany gold therapy.« less

  12. Spilanthol Inhibits COX-2 and ICAM-1 Expression via Suppression of NF-κB and MAPK Signaling in Interleukin-1β-Stimulated Human Lung Epithelial Cells.

    PubMed

    Huang, Wen-Chung; Wu, Ling-Yu; Hu, Sindy; Wu, Shu-Ju

    2018-06-30

    Spilanthol a phytochemical derived from the Spilanthes acmella plant has antimicrobial, antioxidant, and anti-inflammatory properties. This study evaluated its effects on the expression of intercellular adhesion molecule 1 (ICAM-1) and inflammation-related mediators in IL-1β-stimulated human lung epithelial A549 cells. Human lung epithelial A549 cells were pretreated with various concentrations of spilanthol (3-100 μM) followed by treatment with IL-1β to induce inflammation. The protein levels of pro-inflammatory cytokines, chemokines, and prostaglandin E2 (PGE2) were measured using ELISA. Cyclooxygenase-2 (COX-2), heme oxygenase (HO-1), nuclear transcription factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) were measured by immunoblotting. The mRNA expression levels of ICAM-1 and MUC5AC were determined by real-time polymerase chain reaction. Spilanthol decreased the expression of PGE 2 , COX-2, TNF-α, and MCP-1. It also decreased ICAM-1 expression and suppressed monocyte adhesion to IL-1β-stimulated A549 cells. Spilanthol also significantly inhibited the phosphorylation of MAPK and I-κB. These results suggest that spilanthol exerts anti-inflammatory effects by inhibiting the expression of the pro-inflammatory cytokines, COX-2, and ICAM-1 by inhibiting the NF-κB and MAPK signaling pathways. Graphical Abstract ᅟ.

  13. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Cyclooxygenase-2 expression is related to nuclear grade in ductal carcinoma in situ and is increased in its normal adjacent epithelium

    NASA Technical Reports Server (NTRS)

    Shim, Veronica; Gauthier, Mona L.; Sudilovsky, Daniel; Mantei, Kristin; Chew, Karen L.; Moore, Dan H.; Cha, Imok; Tlsty, Thea D.; Esserman, Laura J.

    2003-01-01

    Cyclooxygenase-2 (COX-2) is emerging as an important cancer biomarker and is now an experimental target for solid tumor treatment.However, no study has exclusively focused on COX-2 expression in early lesions such as ductal carcinoma in situ (DCIS). We examined COX-2 expression by immunohistochemistry in 46 cases of women undergoing surgical resection for DCIS. We found that COX-2 expression was detected in 85% of all DCIS specimens, with increased COX-2 staining correlating with higher nuclear grade. Strikingly, COX-2 staining intensity in the normal adjacent epithelium was stronger than in the DCIS lesion itself. Our observations demonstrate that COX-2 is up-regulated in the normal adjacent epithelium and supports the hypothesis that the surrounding epithelial tissue is part of the disease process in DCIS.

  15. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    PubMed

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  16. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. The COX-2 Selective Blocker Etodolac Inhibits TNFα-Induced Apoptosis in Isolated Rabbit Articular Chondrocytes

    PubMed Central

    Kumagai, Kousuke; Kubo, Mitsuhiko; Imai, Shinji; Toyoda, Futoshi; Maeda, Tsutomu; Okumura, Noriaki; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2013-01-01

    Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA. PMID:24084720

  18. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  19. Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro

    2012-01-01

    The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be

  20. FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells.

    PubMed

    Liu, Shuo; Zhang, Cun; Zhang, Kuo; Gao, Yuan; Wang, Zhaowei; Li, Xiaoju; Cheng, Guang; Wang, Shuning; Xue, Xiaochang; Li, Weina; Zhang, Wei; Zhang, Yingqi; Xing, Xianghui; Li, Meng; Hao, Qiang

    2017-07-04

    Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.

  1. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    PubMed

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  2. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus

    PubMed Central

    Rojas, Asheebo; Ganesh, Thota; Lelutiu, Nadia; Gueorguieva, Paoula; Dingledine, Raymond

    2015-01-01

    Exposure to high levels of organophosphorus compounds (OP) can induce status epilepticus (SE) in humans and rodents via acute cholinergic toxicity, leading to neurodegeneration and brain inflammation. Currently there is no treatment to combat the neuropathologies associated with OP exposure. We recently demonstrated that inhibition of the EP2 receptor for PGE2 reduces neuronal injury in mice following pilocarpine-induced SE. Here, we investigated the therapeutic effects of an EP2 inhibitor (TG6-10-1) in a rat model of SE using diisopropyl fluorophosphate (DFP). We tested the hypothesis that EP2 receptor inhibition initiated well after the onset of DFP-induced SE reduces the associated neuropathologies. Adult male Sprague-Dawley rats were injected with pyridostigmine bromide (0.1 mg/kg, sc) and atropine methylbromide (20 mg/kg, sc) followed by DFP (9.5 mg/kg, ip) to induce SE. DFP administration resulted in prolonged upregulation of COX-2. The rats were administered TG6-10-1 or vehicle (ip) at various time points relative to DFP exposure. Treatment with TG6-10-1 or vehicle did not alter the observed behavioral seizures, however six doses of TG6-10-1 starting 80-150 min after the onset of DFP-induced SE significantly reduced neurodegeneration in the hippocampus, blunted the inflammatory cytokine burst, reduced microglial activation and decreased weight loss in the days after status epilepticus. By contrast, astrogliosis was unaffected by EP2 inhibition 4 d after DFP. Transient treatments with the EP2 antagonist 1 h before DFP, or beginning 4 h after DFP, were ineffective. Delayed mortality, which was low (10%) after DFP, was unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor within a time window that coincides with the induction of cyclooxygenase-2 by DFP is neuroprotective and accelerates functional recovery of rats. PMID:25656476

  3. Ibutilide protects against cardiomyocytes injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways.

    PubMed

    Wang, Yu; Wang, Yi-Li; Huang, Xia; Yang, Yang; Zhao, Ya-Jun; Wei, Cheng-Xi; Zhao, Ming

    2017-02-01

    Atrial fibrillation (AF) is a complex disease with multiple inter-relating causes culminating in rapid atrial activation and atrial structural remodeling. The contribution of endoplasmic reticulum and mitochondria stress to AF has been highlighted. As the class III antiarrhythmic agent, ibutilide are widely used to AF. This study was designed to explore whether ibutilide could treat AF by inhibiting endoplasmic reticulum stress pathways and mitochondria stress. The neonatal rat cardiomyocytes were isolated and exposed to H 2 O 2 , ibutilide was add to the culture medium 12 h. Then the cell viability, oxidative stress levels and apoptotic rate were analyzed. In addition, endoplasmic reticulum stress related protein (GRP78, GRP94, CHOP), mitochondria-dependent protein (Bax, Bcl-2) and caspase-3/9/12 were identified by real-time PCR and western blot analysis. In our results, remarkable decreased cell viability and oxidative stress levels were detected in cardiomyocytes after treating with H 2 O 2 . The apoptotic rate and the expression of proteins involved in mitochondrial stress and endoplasmic reticulum stress pathways increased. While ibutilide significantly inhibited these changes. These data suggested that ibutilide serves a protective role against H 2 O 2 -induced apoptosis of neonatal rat cardiomyocytes, and the mechanism is related to suppression of mitochondrial stress and endoplasmic reticulum stress.

  4. Indomethacin inhibits eosinophil migration to prostaglandin D2 : therapeutic potential of CRTH2 desensitization for eosinophilic pustular folliculitis.

    PubMed

    Kataoka, Naoko; Satoh, Takahiro; Hirai, Aiko; Saeki, Kazumi; Yokozeki, Hiroo

    2013-09-01

    Indomethacin is a cyclo-oxygenase inhibitor, and shows therapeutic potential for various eosinophilic skin diseases, particularly eosinophilic pustular folliculitis. One of the unique characteristics of indomethacin is that, unlike other non-steroidal anti-inflammatory drugs, it is a potent agonist of chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2 ). This study investigated the pharmacological actions of indomethacin on eosinophil migration to clarify the actual mechanisms underlying the therapeutic effects of indomethacin on eosinophilic pustular folliculitis. Eosinophils exhibited chemokinetic and chemotactic responses to both PGD2 and indomethacin through CRTH2 receptors. Pre-treatment of eosinophils with indomethacin greatly inhibited eosinophil migration to PGD2 and, to a much lesser extent, to eotaxin (CCL11); these effects could be mediated by homologous and heterologous desensitization of eosinophil CRTH2 and CCR3, respectively, by agonistic effects of indomethacin on CRTH2. Indomethacin also cancelled a priming effect of Δ(12) -PGJ2 , a plasma metabolite of PGD2 , on eosinophil chemotaxis to eotaxin. Indomethacin down-modulated cell surface expression of both CRTH2 and CCR3. Hair follicle epithelium and epidermal keratinocytes around eosinophilic pustules together with the eccrine apparatus of palmoplantar lesions of eosinophilic pustular folliculitis were immunohistochemically positive for lipocalin-type PGD synthase. Indomethacin may exert therapeutic effects against eosinophilic skin diseases in which PGD2 -CRTH2 signals play major roles by reducing eosinophil responses to PGD2 . © 2013 John Wiley & Sons Ltd.

  5. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    PubMed

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  6. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.

    PubMed

    Bengmark, Stig

    2006-01-01

    The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest. A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed. Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases. Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.

  7. Vitamin D Inhibits COX-2 Expression and Inflammatory Response by Targeting Thioesterase Superfamily Member 4*

    PubMed Central

    Wang, Qingsong; He, Yuhu; Shen, Yujun; Zhang, Qianqian; Chen, Di; Zuo, Caojian; Qin, Jing; Wang, Hui; Wang, Junwen; Yu, Ying

    2014-01-01

    Inadequate vitamin D status has been linked to increased risk of type 2 diabetes and cardiovascular disease. Inducible cyclooxygenase (COX) isoform COX-2 has been involved in the pathogenesis of such chronic inflammatory diseases. We found that the active form of vitamin D, 1,25(OH)2D produces dose-dependent inhibition of COX-2 expression in murine macrophages under both basal and LPS-stimulated conditions and suppresses proinflammatory mediators induced by LPS. Administration of 1,25(OH)2D significantly alleviated local inflammation in a carrageenan-induced paw edema mouse model. Strikingly, the phosphorylation of both Akt and its downstream target IκBα in macrophages were markedly suppressed by 1,25(OH)2D in the presence and absence of LPS stimulation through up-regulation of THEM4 (thioesterase superfamily member 4), an Akt modulator protein. Knockdown of both vitamin D receptor and THEM4 attenuated the inhibitory effect of 1,25(OH)2D on COX-2 expression in macrophages. A functional vitamin D-responsive element in the THEM4 promoter was identified by chromatin immunoprecipitation and luciferase reporter assay. Our results indicate that vitamin D restrains macrophage-mediated inflammatory processes by suppressing the Akt/NF-κB/COX-2 pathway, suggesting that vitamin D supplementation might be utilized for adjunctive therapy for inflammatory disease. PMID:24619416

  8. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses.

    PubMed

    Guo, Ruo-Bing; Wang, Guo-Feng; Zhao, An-Peng; Gu, Jun; Sun, Xiu-Lan; Hu, Gang

    2012-01-01

    Paeoniflorin (PF), the principal component of Paeoniae Radix prescribed in traditional Chinese medicine, has been reported to exhibit many pharmacological effects including protection against ischemic injury. However, the mechanisms underlying the protective effects of PF on cerebral ischemia are still under investigation. The present study showed that PF treatment for 14 days could significantly inhibit transient middle cerebral artery occlusion (MCAO)-induced over-activation of astrocytes and microglia, and prevented up-regulations of pro-inflamamtory mediators (TNFα, IL-1β, iNOS, COX(2) and 5-LOX) in plasma and brain. Further study demonstrated that chronic treatment with PF suppressed the activations of JNK and p38 MAPK, but enhanced ERK activation. And PF could reverse ischemia-induced activation of NF-κB signaling pathway. Moreover, our in vitro study revealed that PF treatment protected against TNFα-induced cell apoptosis and neuronal loss. Taken together, the present study demonstrates that PF produces a delayed protection in the ischemia-injured rats via inhibiting MAPKs/NF-κB mediated peripheral and cerebral inflammatory response. Our study reveals that PF might be a potential neuroprotective agent for stroke.

  9. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  10. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma.

    PubMed

    Upadhyay, Rohit; Jain, Meenu; Kumar, Shaleen; Ghoshal, Uday Chand; Mittal, Balraj

    2009-04-26

    Cyclooxygenase-2 (COX-2) influences carcinogenesis through regulation of angiogenesis, apoptosis and cytokine expression. We aimed to evaluate association of COX-2 polymorphisms with predisposition to esophageal squamous cell carcinoma (ESCC), its phenotype variability and modulation of environmental risk in northern Indian population. We genotyped 174 patients with ESCC and 216 controls for COX-2 gene polymorphisms (-765G>C; -1195G>A; -1290A>G; 3'UTR 8473T>C) using PCR-RFLP. Data were statistically analyzed using chi-square test and logistic regression model. COX-2 -765C allele carriers were at increased risk for ESCC (OR=1.66; 95% CI=1.08-2.54; P=0.004). However, -1195G>A; -1290A>G; 3'UTR 8473T>C polymorphisms of COX-2 gene were not significantly associated with ESCC. We observed significantly enhanced risk for ESCC due to interaction between COX-2 -1195GAx-765GC+CC genotypes (OR=4.60; 95% CI=1.63-13.01; P=0.004). High risk to ESCC was also observed with respect to COX-2 haplotypes, A(-1290)G(-1195)C(-765)T(8473) and A(-1290)A(-1195)C(-765)T(8473) [OR=3.35; 95% CI=0.83-13.44; P=0.089; OR=4.28; 95% CI=0.43-42.40; P=0.246] however, it was not statistically significant. Stratification of subjects based on gender showed that females were at higher risk for ESCC due to COX-2 -765C carrier genotypes (OR=2.97; 95% CI=1.23-7.18; P=0.016). In association of genotypes with clinical characteristics, -765C carrier genotype conferred risk of ESCC in middle third of esophagus (OR=1.78; 95% CI=1.08-2.93; P=0.023). In case-only analysis, interaction of environmental risk factors and COX-2 genotypes did not further modulate the risk for ESCC. In summary, COX-2 -765G>C polymorphism confers ESCC susceptibility particularly in females and patients with middle third anatomical location of the tumor. Interaction of COX-2 -1195GA and -765C carrier genotypes also modulates ESCC risk.

  11. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition.

    PubMed

    Wang, Shuai; Shi, Xiao-Lei; Feng, Min; Wang, Xun; Zhang, Zhi-Heng; Zhao, Xin; Han, Bing; Ma, Hu-Cheng; Dai, Bo; Ding, Yi-Tao

    2016-09-01

    Liver fibrosis, which is the pathophysiologic process of the liver due to sustained wound healing in response to chronic liver injury, will eventually progress to cirrhosis. Puerarin, a bioactive isoflavone glucoside derived from the traditional Chinese medicine pueraria, has been reported to have many anti-inflammatory and anti-fibrosis properties. However, the detailed mechanisms are not well studied yet. This study aimed to investigate the effects of puerarin on liver function and fibrosis process in mice induced by CCl4. C57BL/6J mice were intraperitoneally injected with 10% CCl4 in olive oil(2mL/kg) with or without puerarin co-administration (100 and 200mg/kg intraperitoneally once daily) for four consecutive weeks. As indicated by the ameliorative serum hepatic enzymes and the reduced histopathologic abnormalities, the data collected showed that puerarin can protect against CCl4-induced chronic liver injury. Moreover, CCl4-induced development of fibrosis, as evidenced by increasing expression of alpha smooth muscle actin(α-SMA), collagen-1, transforming growth factor (TGF)-β and connective tissue growth factor(CTGF) in liver, were suppressed by puerarin. Possible mechanisms related to these suppressive effects were realized by inhibition on NF-κB signaling pathway, reactive oxygen species(ROS) production and mitochondrial dysfunction in vivo. In addition, these protective inhibition mentioned above were driven by down-regulation of PARP-1 due to puerarin because puerarin can attenuate the PARP-1 expression in CCl4-damaged liver and PJ34, a kind of PARP-1 inhibitor, mimicked puerarin's protection. In conclusion, puerarin played a protective role in CCl4-induced liver fibrosis probably through inhibition of PARP-1 and subsequent attenuation of NF-κB, ROS production and mitochondrial dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pu-erh Tea Protects the Nervous System by Inhibiting the Expression of Metabotropic Glutamate Receptor 5.

    PubMed

    Li, Chunjie; Chai, Shaomeng; Ju, Yongzhi; Hou, Lu; Zhao, Hang; Ma, Wei; Li, Tian; Sheng, Jun; Shi, Wei

    2017-09-01

    Glutamate is one of the major excitatory neurotransmitters of the CNS and is essential for numerous key neuronal functions. However, excess glutamate causes massive neuronal death and brain damage owing to excitotoxicity via the glutamate receptors. Metabotropic glutamate receptor 5 (mGluR5) is one of the glutamate receptors and represents a promising target for studying neuroprotective agents of potential application in neurodegenerative diseases. Pu-erh tea, a fermented tea, mainly produced in Yunnan province, China, has beneficial effects, including the accommodation of the CNS. In this study, pu-erh tea markedly decreased the transcription and translation of mGluR5 compared to those by black and green teas. Pu-erh tea also inhibited the expression of Homer, one of the synaptic scaffolding proteins binding to mGluR5. Pu-erh tea protected neural cells from necrosis via blocked Ca 2+ influx and inhibited protein kinase C (PKC) activation induced by excess glutamate. Pu-erh tea relieved rat epilepsy induced by LiCl-pilocarpine in behavioural and physiological assays. Pu-erh tea also decreased the expression of mGluR5 in the hippocampus. These results show that the inhibition of mGluR5 plays a role in protecting neural cells from glutamate. The results also indicate that pu-erh tea contains biological compounds binding transcription factors and inhibiting the expression of mGluR5 and identify pu-erh tea as a novel natural neuroprotective agent.

  13. Polygonum viviparum L. inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through haem oxygenase-1 induction and activation of the Nrf2 pathway.

    PubMed

    Cheng, Hui-Wen; Lee, Kock-Chee; Cheah, Khoot-Peng; Chang, Ming-Long; Lin, Che-Wei; Li, Joe-Sharg; Yu, Wen-Yu; Liu, E-Tung; Hu, Chien-Ming

    2013-02-01

    Polygonum viviparum L. (PV) is a member of the family Polygonaceae and is widely distributed in high-elevation areas. It is used as a folk remedy to treat inflammation-related diseases. This study was focused on the anti-inflammatory response of PV against lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. Treatment with PV did not cause cytotoxicity at 0-50 µg mL(-1) in RAW264.7 macrophages, and the IC(50) value was 270 µg mL(-1). PV inhibited LPS-stimulated nitric oxide (NO), prostaglandin (PG)E(2) , interleukin (IL)-1β and tumour necrosis factor (TNF)-α release and inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein expression. In addition, PV suppressed the LPS-induced p65 expression of nuclear factor (NF)-κB, which is associated with the inhibition of IκB-α degradation. These results suggest that, among mechanisms of the anti-inflammatory response, PV inhibits the production of NO and these cytokines by down-regulating iNOS and COX-2 gene expression. Furthermore, PV can induce haem oxygenase (HO)-1 protein expression through nuclear factor E2-related factor 2 (Nrf2) activation. A specific inhibitor of HO-1, zinc(II) protoporphyrin IX, inhibited the suppression of iNOS and COX-2 expression by PV. These results suggest that PV possesses anti-inflammatory actions in macrophages and works through a novel mechanism involving Nrf2 actions and HO-1. Thus PV could be considered for application as a potential therapeutic approach for inflammation-associated disorders. Copyright © 2012 Society of Chemical Industry.

  14. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death.

    PubMed

    Amri, Fatma; Ghouili, Ikram; Amri, Mohamed; Carrier, Alice; Masmoudi-Kouki, Olfa

    2017-01-01

    Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in astroglial cell death occurring in diverse neuropathological conditions. Numerous studies indicate that neuroglobin (Ngb) promotes neuron survival, but nothing is known regarding the action of Ngb in astroglial cell survival. Thus, the purpose of this study was to investigate the potential glioprotective effect of Ngb on hydrogen peroxide (H 2 O 2 )-induced oxidative stress and apoptosis in cultured mouse astrocytes. Incubation of cells with subnanomolar concentrations of Ngb (10 -14 -10 -10  M) was found to prevent both H 2 O 2 -evoked reduction in surviving cells number and accumulation of reactive oxygen species in a concentration-dependent manner. Furthermore, Ngb treatment abolishes H 2 O 2 -induced increase in mitochondrial oxygen consumption rates. Concomitantly, Ngb treatment rescues H 2 O 2 -associated reduced expression of endogenous antioxidant enzymes (superoxide dismutases and catalase) and prevents the stimulation of the expression of pro-inflammatory genes (inducible nitric oxide synthase, cyclooxygenase-2, and interleukin (IL) IL-6 and IL-33). Moreover, Ngb blocks the stimulation of Bax (pro-apoptotic) and the inhibition of Bcl-2 (anti-apoptotic) gene expression induced by H 2 O 2 , which in turn abolishes caspase 3 activation. The protective effect of Ngb upon H 2 O 2 induced activation of caspase 3 activity and cell death can be accounted for by activation of protein kinase A and mitogen-activated protein kinase transduction cascade. Finally, we demonstrate that Ngb increases Akt phosphorylation and prevents H 2 O 2 -provoked inhibition of ERK and Akt phosphorylation. Taken together, these data demonstrate for the first time that Ngb is a glioprotective agent that prevents H 2 O 2 -induced oxidative stress and apoptotic astroglial cell death. Protection of astrocytes from oxidative insult may thus contribute to the neuroprotective effect of Ngb.

  15. Hyperforin, an Anti-Inflammatory Constituent from St. John's Wort, Inhibits Microsomal Prostaglandin E2 Synthase-1 and Suppresses Prostaglandin E2 Formation in vivo

    PubMed Central

    Koeberle, Andreas; Rossi, Antonietta; Bauer, Julia; Dehm, Friederike; Verotta, Luisella; Northoff, Hinnak; Sautebin, Lidia; Werz, Oliver

    2010-01-01

    The acylphloroglucinol hyperforin (Hyp) from St. John's wort possesses anti-inflammatory and anti-carcinogenic properties which were ascribed among others to the inhibition of 5-lipoxygenase. Here, we investigated whether Hyp also interferes with prostanoid generation in biological systems, particularly with key enzymes participating in prostaglandin (PG)E2 biosynthesis, i.e., cyclooxygenases (COX)-1/2 and microsomal PGE2 synthase (mPGES)-1 which play key roles in inflammation and tumorigenesis. Similar to the mPGES-1 inhibitors MK-886 and MD-52, Hyp significantly suppressed PGE2 formation in whole blood assays starting at 0.03–1 μM, whereas the concomitant generation of COX-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, thromboxane B2, and 6-keto PGF1α was not significantly suppressed up to 30 μM. In cell-free assays, Hyp efficiently blocked the conversion of PGH2 to PGE2 mediated by mPGES-1 (IC50 = 1 μM), and isolated COX enzymes were not (COX-2) or hardly (COX-1) suppressed. Intraperitoneal (i.p.) administration of Hyp (4 mg kg−1) to rats impaired exudate volume and leukocyte numbers in carrageenan-induced pleurisy associated with reduced PGE2 levels, and Hyp (given i.p.) inhibited carrageenan-induced mouse paw edema formation (ED50 = 1 mg kg−1) being superior over indomethacin (ED50 = 5 mg kg−1). We conclude that the suppression of PGE2 biosynthesis in vitro and in vivo by acting on mPGES-1 critically contributes to the anti-inflammatory efficiency of Hyp. PMID:21687502

  16. Ancient Chinese Formula Qiong-Yu-Gao Protects Against Cisplatin-Induced Nephrotoxicity Without Reducing Anti-tumor Activity

    PubMed Central

    Teng, Zhi-Ying; Cheng, Xiao-Lan; Cai, Xue-Ting; Yang, Yang; Sun, Xiao-Yan; Xu, Jin-Di; Lu, Wu-Guang; Chen, Jiao; Hu, Chun-Ping; Zhou, Qian; Wang, Xiao-Ning; Li, Song-Lin; Cao, Peng

    2015-01-01

    Cisplatin is a highly effective anti-cancer chemotherapeutic agent; however, its clinical use is severely limited by serious side effects, of which nephrotoxicity is the most important. In this study, we investigated whether Qiong-Yu-Gao (QYG), a popular traditional Chinese medicinal formula described 840 years ago, exhibits protective effects against cisplatin-induced renal toxicity. Using a mouse model of cisplatin-induced renal dysfunction, we observed that pretreatment with QYG attenuated cisplatin-induced elevations in blood urea nitrogen and creatinine levels, ameliorated renal tubular lesions, reduced apoptosis, and accelerated tubular cell regeneration. Cisplatin-mediated elevations in tumor necrosis factor alpha (TNF-α) mRNA, interleukin-1 beta (IL-1β) mRNA, and cyclooxygenase-2 (COX-2) protein in the kidney were also significantly suppressed by QYG treatment. Furthermore, QYG reduced platinum accumulation in the kidney by decreasing the expression of copper transporter 1 and organic cation transporter 2. An in vivo study using implanted Lewis lung cancer cells revealed that concurrent administration of QYG and cisplatin did not alter the anti-tumor activity of cisplatin. Our findings suggest that the traditional Chinese medicinal formula QYG inhibits cisplatin toxicity by several mechanisms that act simultaneously, without compromising its therapeutic efficacy. Therefore, QYG may be useful in the clinic as a protective agent to prevent cisplatin-induced nephrotoxicity. PMID:26510880

  17. Urothelium-dependent and urothelium-independent detrusor contractility mediated by nitric oxide synthase and cyclooxygenase inhibition.

    PubMed

    Santoso, Aneira Gracia Hidayat; Lo, Wan Ning; Liang, Willmann

    2011-04-01

    The urothelium has been implicated in regulating detrusor smooth muscle contractility but the identity of the putative urothelium-derived inhibitory factor remains unconfirmed. There was inconclusive evidence on the role of nitric oxide synthase (NOS) and cyclooxygenase (COX) in mediating detrusor contractions. This study examined varying regulation by NOS and COX in transverse and longitudinal carbachol (CCh)-induced and unstimulated phasic contractions. Rat detrusor strips with the urothelium-intact (+UE) and urothelium-denuded (-UE) were isolated in both transverse and longitudinal directions. Isometric tension of the detrusor strips was recorded both during stimulation with CCh and at the unstimulated state. In the unstimulated state, phasic contractile activity was measured. Tension recordings were made with and without the NOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and COX inhibitor indomethacin (Indo). Only transverse +UE strips responded convincingly to L-NAME and Indo treatment, generating larger CCh-induced contractions. In unstimulated tissues, L-NAME treatment increased phasic amplitude in -UE strips only. Indo treatment failed to elicit any change in the amplitude but suppressed frequency of the phasic activity in transverse +UE strips. There was no significant Indo-mediated change in other strips. The data suggested heterogeneity in the regulation of directional detrusor contractility via NOS- and COX-associated mechanisms. Copyright © 2011 Wiley-Liss, Inc.

  18. Anti-inflammatory effects of novel polygonum multiflorum compound via inhibiting NF-κB/MAPK and upregulating the Nrf2 pathways in LPS-stimulated microglia.

    PubMed

    Park, Sun Young; Jin, Mei Ling; Kang, Nam Jun; Park, Geuntae; Choi, Young-Whan

    2017-06-09

    The incorporation of Polygonum multiflorum into the diet can result in anti-aging effects owing to its wide range of biological and pharmaceutical properties. We investigated the anti-neuroinflammatory properties of CRPE56IGIH isolated from P. multiflorum by focusing on its role in the induction of phase II antioxidant enzymes and the modulation of upstream signaling pathways. In microglia, CRPE56IGIH significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide and prostaglandin E 2 production with nonspecific cytotoxicity. CRPE56IGIH also markedly inhibited LPS-inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 protein and mRNA expression in the same manner as it inhibited nitric oxide and prostaglandin E 2 production. In the control cells, NF-κB transactivation and nuclear translocation occurred at a baseline level, which was significantly increased in response to LPS. However, pretreatment with CRPE56IGIH concentration-dependently inhibited the LPS-induced NF-κB transactivation and nuclear translocation. The phosphorylation of Janus kinase-signal transducers and activators of transcription and mitogen-activated protein kinases was markedly upregulated by LPS, but considerably and dose-dependently inhibited by pretreatment with CRPE56IGIH. Furthermore, CRPE56IGIH induced the expression of phase II antioxidant enzymes, including heme oxygenase-1 (HO-1) and NADPH dehydrogenase quinone-1 (NQO-1). The activation of upstream signaling pathways, such as the Nrf2 pathway, was significantly increased following CRPE56IGIH treatment. Furthermore, the anti-neuroinflammatory effect of CRPE56IGIH was reversed by transfection of Nrf2, HO-1, and NQO-1 siRNA. Our results indicated that CRPE56IGIH isolated from P. multiflorum could be used as a natural anti-neuroinflammatory agent that induces phase II antioxidant enzymes via Nrf2 signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid.

    PubMed

    Lin, Liteng; Cai, Mingyue; Deng, Shaohui; Huang, Wensou; Huang, Jingjun; Huang, Xinghua; Huang, Mingsheng; Wang, Yong; Shuai, Xintao; Zhu, Kangshun

    2017-10-01

    Portal hypertension (PH), a leading cause of mortality in cirrhosis, lacks effective clinical therapeutic strategies. The increased thromboxane A 2 (TXA 2 ), derived primarily from the upregulation of cyclooxygenase-1 (COX-1) in cirrhotic liver sinusoidal endothelial cells (LSECs), is responsible for hepatic endothelial dysfunction and PH. Thus, blocking the COX-1 pathway in cirrhotic LSECs may benefit the treatment of PH. In this study, hyaluronate-graft-polyethylenimine (HA-PEI) was synthesized for the targeted delivery of COX-1 siRNA to LSECs. Compared to non-targeted PEI, HA-PEI mediated much more efficient siRNA delivery, which resulted in potent targeted gene silencing in LSECs. In vivo, HA-PEI notably increased the accumulation of siRNA along the sinusoidal lining of the liver, inhibited over-activation of the COX-1/TXA 2 pathway in LSECs, and successfully reduced portal pressure in cirrhotic mice. These results highlight the potential of HA-PEI complexed siRNA to serve as a LSECs-specific nanomedical system for effective gene therapy in PH. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Suppression of follicular rupture with meloxicam, a cyclooxygenase-2 inhibitor: potential for emergency contraception.

    PubMed

    Jesam, Cristián; Salvatierra, Ana María; Schwartz, Jill L; Croxatto, Horacio B

    2010-02-01

    There is evidence that cyclooxygenase-2 (COX-2) inhibitors can prevent or delay follicular rupture. COX-2 inhibitors, such as meloxicam, may offer advantages over emergency contraception with levonorgestrel, such as extending the therapeutic window for up to 24 h. We assessed the effect of meloxicam administered in the late follicular phase upon ovulation in women. This was a single center, double blind, crossover study designed to assess the effects in 27 eligible women (18-40 years old, surgically sterilized with regular menstrual cycles) of meloxicam, 15 or 30 mg/day, administered orally for five consecutive days during the late follicular phase, starting when the leading follicle reached 18 mm diameter. Volunteers underwent two treatment cycles separated by one resting cycle, with randomization to dose sequence. Main outcomes were follicular rupture; serum LH, progesterone and estradiol (E2) levels; and incidence of adverse events. Twenty-two volunteers completed the study. There were no differences between meloxicam doses in menstrual cycle length. Dysfunctional ovulation was observed in 11/22 (50%) cycles treated with 15 mg/day and 20/22 (90.9%) cycles with 30 mg/day (P = 0.0068). All women had normal luteal phase progesterone levels; mean maximal values +/- SEM were 42 +/- 4.1 and 46.8 +/- 2.6 nmol/l for 15 and 30 mg/day groups, respectively. There were no serious adverse events, and no changes in LH and E2 levels or in cycle length. Meloxicam 30 mg given for five consecutive days in the late follicular phase is safe, effective and may be an alternative form of emergency contraception.

  1. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    PubMed

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Raf Kinase Inhibitory Protein Protects Cells against Locostatin-Mediated Inhibition of Migration

    PubMed Central

    Shemon, Anne N.; Eves, Eva M.; Clark, Matthew C.; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira

    2009-01-01

    Background Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. Methods/Findings We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP−/−) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP−/− MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. Conclusions/Significance These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells. PMID:19551145

  3. Protective effects of levamisole, acetylsalicylic acid, and α-tocopherol against dioxin toxicity measured as the expression of AhR and COX-2 in a chicken embryo model.

    PubMed

    Gostomska-Pampuch, Kinga; Ostrowska, Alicja; Kuropka, Piotr; Dobrzyński, Maciej; Ziółkowski, Piotr; Kowalczyk, Artur; Łukaszewicz, Ewa; Gamian, Andrzej; Całkosiński, Ireneusz

    2017-04-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are classed as persistent organic pollutants and have adverse effects on multiple functions within the body. Dioxins are known carcinogens, immunotoxins, and teratogens. Dioxins are transformed in vivo, and interactions between the products and the aryl hydrocarbon receptor (AhR) lead to the formation of proinflammatory and toxic metabolites. The aim of this study was to determine whether α-tocopherol (vitamin E), acetylsalicylic acid (ASA), and levamisole can decrease the amount of damage caused by dioxins. Fertile Hubbard Flex commercial line chicken eggs were injected with solutions containing 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or containing TCDD and the test compounds. The chicken embryos and organs were analyzed after 7 and 13 days. The levels at which AhR and cyclooxygenase-2 (COX-2) proteins (which are induced during inflammation) were expressed were evaluated by performing immunohistochemical analyses on embryos treated with TCDD alone or with TCDD and the test compounds. TCDD caused developmental disorders and increased AhR and COX-2 expression in the chicken embryo tissues. Vitamin E, levamisole, ASA, and ASA plus vitamin E inhibited AhR and COX-2 expression in embryos after 7 days and decreased AhR and COX-2 expression in embryos after 13 days. ASA, levamisole, and ASA plus vitamin E weakened the immune response and prevented multiple organ changes. Vitamin E was not fully protective against developmental changes in the embryos.

  4. ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death.

    PubMed

    Darling, Nicola J; Balmanno, Kathryn; Cook, Simon J

    2017-01-01

    Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway.

  5. Effects of Lipoic Acid Supplementation on Activities of Cyclooxygenases and Levels of Prostaglandins E2 and F2 α Metabolites, in the Offspring of Rats with Streptozotocin-Induced Diabetes

    PubMed Central

    Oriquat, Ghaleb A.; Abu-Samak, Mahmoud; Al Hanbali, Othman A.; Salim, Maher D.

    2016-01-01

    Background. Our aim was to evaluate the protective effect of lipoic acid (LA) on fetal outcome of diabetic mothers. Methods. Diabetes was induced in female rats using streptozotocin and rats were made pregnant. Pregnant control (group 1; n = 9; and group 2; n = 7) or pregnant diabetic (group 3; n = 10; and group 4; n = 8) rats were treated daily with either LA (groups 2 and 4) or vehicle (groups 1 and 3) between gestational days 0 and 15. On day 15 of gestation, the fetuses, placentas, and membranes were dissected, examined morphologically, and then homogenized, to measure cyclooxygenase (COX) activities and metabolisms of prostaglandin (PG) E2 (PGEM) and PGF2 α (PGFM) levels. The level of total glutathione was measured in the maternal liver and plasma and in all fetuses. Results. Supplementation of diabetic rats with LA was found to significantly (p < 0.05) reduce resorption rates in diabetic rats and led to a significant (p < 0.05) increase in liver, plasma, and fetuses total glutathione from LA-TD rats as compared to those from V-TD. Decreased levels of PGEM and elevated levels of PGFM in the fetuses, placentas, and membranes were characteristic of experimental diabetic gestation associated with malformation. The levels of PGEM in malformed fetuses from LA-TD mothers was significantly (p < 0.05) higher than those in malformed fetuses from V-TD rats. Conclusions. LA treatment did not completely prevent the occurrence of malformations. Thus, other factors may be involved in the pathogenesis of the diabetes-induced congenital malformations. PMID:28042582

  6. Cyclooxygenase 2 gene polymorphisms and chronic periodontitis in a North Indian population: a pilot study

    PubMed Central

    Daing, Anika; Singh, Sarvendra Vikram; Saimbi, Charanjeet Singh; Khan, Mohammad Akhlaq

    2012-01-01

    Purpose Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of COX2 enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in COX2 gene (-1195G>A and 8473C>T) with chronic periodontitis in North Indians. Methods Both SNPs and their haplotypes were used to explore the associations between COX2 polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results By the individual genotype analysis, mutant genotypes (GA and AA) of COX2 -1195 showed more than a two fold risk (odds ratio [OR]>2) and COX2 8473 (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of COX2 gene SNPs and chronic periodontitis. Conclusions Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians. PMID:23185695

  7. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties.

    PubMed

    Siskou, Ioanna C; Rekka, Eleni A; Kourounakis, Angeliki P; Chrysselis, Michael C; Tsiakitzis, Kariofyllis; Kourounakis, Panos N

    2007-01-15

    Six novel ibuprofen derivatives and related structures, incorporating a proline moiety and designed for neurodegenerative disorders, are studied. They possess anti-inflammatory properties and three of them inhibited lipoxygenase. One compound was found to inhibit cyclooxygenase (COX)-2 production in spleenocytes from arthritic rats. The HS-containing compounds are potent antioxidants and one of them protected against glutathione loss after cerebral ischemia/reperfusion. They demonstrated lipid-lowering ability and seem to acquire low gastrointestinal toxicity. Acetylcholinesterase inhibitory activity, found in two of these compounds, may be an asset to their actions.

  8. Systemic Inhibition of NF-κB Activation Protects from Silicosis

    PubMed Central

    Di Giuseppe, Michelangelo; Gambelli, Federica; Hoyle, Gary W.; Lungarella, Giuseppe; Studer, Sean M.; Richards, Thomas; Yousem, Sam; McCurry, Ken; Dauber, James; Kaminski, Naftali; Leikauf, George; Ortiz, Luis A.

    2009-01-01

    Background Silicosis is a complex lung disease for which no successful treatment is available and therefore lung transplantation is a potential alternative. Tumor necrosis factor alpha (TNFα) plays a central role in the pathogenesis of silicosis. TNFα signaling is mediated by the transcription factor, Nuclear Factor (NF)-κB, which regulates genes controlling several physiological processes including the innate immune responses, cell death, and inflammation. Therefore, inhibition of NF-κB activation represents a potential therapeutic strategy for silicosis. Methods/Findings In the present work we evaluated the lung transplant database (May 1986–July 2007) at the University of Pittsburgh to study the efficacy of lung transplantation in patients with silicosis (n = 11). We contrasted the overall survival and rate of graft rejection in these patients to that of patients with idiopathic pulmonary fibrosis (IPF, n = 79) that was selected as a control group because survival benefit of lung transplantation has been identified for these patients. At the time of lung transplantation, we found the lungs of silica-exposed subjects to contain multiple foci of inflammatory cells and silicotic nodules with proximal TNFα expressing macrophage and NF-κB activation in epithelial cells. Patients with silicosis had poor survival (median survival 2.4 yr; confidence interval (CI): 0.16–7.88 yr) compared to IPF patients (5.3 yr; CI: 2.8–15 yr; p = 0.07), and experienced early rejection of their lung grafts (0.9 yr; CI: 0.22–0.9 yr) following lung transplantation (2.4 yr; CI:1.5–3.6 yr; p<0.05). Using a mouse experimental model in which the endotracheal instillation of silica reproduces the silica-induced lung injury observed in humans we found that systemic inhibition of NF-κB activation with a pharmacologic inhibitor (BAY 11-7085) of IκBα phosphorylation decreased silica-induced inflammation and collagen deposition. In contrast, transgenic mice expressing

  9. Nitric oxide synthase and cyclooxygenase modulate β-adrenergic cutaneous vasodilatation and sweating in young men.

    PubMed

    Fujii, Naoto; McNeely, Brendan D; Kenny, Glen P

    2017-02-15

    β-Adrenergic receptor agonists such as isoproterenol induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. Using intradermal microdialysis, we evaluated the roles of nitric oxide synthase (NOS) and cyclooxygenase (COX) in β-adrenergic cutaneous vasodilatation and sweating elicited by administration of isoproterenol. We show that while NOS contributes to β-adrenergic cutaneous vasodilatation, COX restricts cutaneous vasodilatation. We also show that combined inhibition of NOS and COX augments β-adrenergic sweating These new findings advance our basic knowledge regarding the physiological control of cutaneous blood flow and sweating, and provide important and new information to better understand the physiological significance of β-adrenergic receptors in the skin. β-Adrenergic receptor agonists such as isoproterenol can induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. We evaluated the hypotheses that (1) nitric oxide synthase (NOS) contributes to β-adrenergic cutaneous vasodilatation, whereas cyclooxygenase (COX) limits the vasodilatation, and (2) COX contributes to β-adrenergic sweating. In 10 young males (25 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites infused with (1) lactated Ringer solution (control), (2) 10 mm N ω -nitro-l-arginine (l-NNA), a non-specific NOS inhibitor, (3) 10 mm ketorolac, a non-specific COX inhibitor, or (4) a combination of l-NNA and ketorolac. All sites were co-administered with a high dose of isoproterenol (100 μm) for 3 min to maximally induce β-adrenergic sweating (β-adrenergic sweating is significantly blunted by subsequent activations). Approximately 60 min after the washout period, three incremental doses of isoproterenol were co-administered (1, 10 and 100 μm each for 25 min). Increases in CVC induced

  10. Inhibition of soluble epoxide hydrolase limits niacin-induced vasodilation in mice

    PubMed Central

    Inceoglu, A. B.; Clifton, H.L.; Yang, J.; Hegedus, C.; Hammock, B. D.; Schaefer, S.

    2012-01-01

    Background The use of niacin in the treatment of dyslipidemias is limited by the common side effect of cutaneous vasodilation, commonly termed flushing. Flushing is thought to be due to release of the vasodilatory prostanoids PGD2 and PGE2 from arachidonic acid metabolism through the cyclooxygenase (COX) pathway. Arachidonic acid is also metabolized by the cytochrome P450 system which is regulated, in part, by the enzyme soluble epoxide hydrolase (sEH). Methods: These experiments used an established murine model in which ear tissue perfusion was measured by laser Doppler to test the hypothesis that inhibition of sEH would limit niacin-induced flushing. Results: Niacin-induced flushing was reduced from 506 ± 126 to 213 ± 39 % in sEH knockout animals. Pharmacologic treatment with 3 structurally distinct sEH inhibitors similarly reduced flushing in a dose dependent manner, with maximal reduction to 143±15% of baseline flow using a concentration of 1 mg/kg TPAU (1-trifluoromethoxyphenyl-3-(1-acetylpiperidin-4-yl) urea). Systemically administered PGD2 caused ear vasodilation which was not changed by either pharmacologic sEH inhibition or by sEH gene deletion. Conclusions: Inhibition of sEH markedly reduces niacin-induced flushing in this model without an apparent effect on the response to PGD2. sEH inhibition may be a new therapeutic approach to limit flushing in humans. PMID:22526297

  11. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

    PubMed Central

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano

    2016-01-01

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  12. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    PubMed

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.

  13. Correlation between expression of cyclooxygenase-2 and angiogenesis in human gastric adenocarcinoma

    PubMed Central

    Li, Hong-Xia; Chang, Xin-Ming; Song, Zheng-Jun; He, Shui-Xiang

    2003-01-01

    AIM: To evaluate the expression of cyclooxygenase (COX-2) and the relationship with tumor angiogenesis and advancement in gastric adenocarcinoma. METHODS: Immunohistochemical stain was used for detecting the expression of COX-2 in 45 resected specimens of gastric adenocarcinoma; the monoclonal antibody against CD34 was used for displaying vascular endothelial cells, and microvascular density (MVD) was detected by counting of CD34-positive vascular endothelial cells. Paracancerous tissues were examined as control. RESULTS: Immunohistological staining with COX-2-specific polyclonal antibody showed cytoplasmic staining in the cancer cells, some atypical hyperplasia and intestinal metaplasia, as well as angiogenic vasculature present within the tumors and prexisting vasculature adjacent to cancer lesions. The rate of expression of COX-2 and MVD index in gastric cancers were significantly increased, compared with those in the paracancerous tissues (77.78 vs 33.33%, 58.13 ± 19.99 vs 24.02 ± 10.28, P < 0.01, P < 0.05, respectively). In 36 gastric carcinoma specimens with lymph node metastasis, the rate of COX-2 expression and MVD were higher than those in the specimens without metostasis (86.11 vs 44.44%, 58.60 ± 18.24 vs 43.54 ± 15.05, P < 0.05, P < 0.05, respectively). The rate of COX-2 expression and MVD in the specimens with invasive serosa were significantly higher than those in the specimens without invasion to serosa (87.88 vs 50.0%, 57.01 ± 18.79 vs 42.35 ± 14.65, P < 0.05, P < 0.05). Moreover, MVD in COX-2-positive specimens was higher than that in COX-2-negative specimens (61.29 ± 14.31 vs 45.38 ± 12.42, P < 0.05). COX-2 expression was positively correlated with MVD (r = 0.63, P < 0.05). CONCLUSION: COX-2 expression might correlate with the occurance and advancement of gastric carcinoma and is involved in tumor angiogenesis in gastric carcinoma. It is likely that COX-2 by inducing angiogenesis can be one of mechanisms which promotes invasion and

  14. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  15. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    PubMed Central

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  16. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Ko, Dong Ok; Wang, Zhi Hong; Lee, In Kyung; Kim, Bum Joon; Jeong, Il Yun; Shin, Taekyun; Park, Jae Woo; Lee, Nam Ho; Hyun, Jin Won

    2008-09-04

    The radioprotective effect of eckol against gamma-ray radiation-induced oxidative stress and its possible protective mechanisms were investigated. Eckol was found to reduce the intracellular reactive oxygen species generated by gamma-ray radiation. Moreover, eckol also protected against radiation-induced cellular DNA damage and membrane lipid peroxidation, which are the main targets of radiation-induced damage. In addition, eckol recovered the cell viability damaged by radiation via the inhibition of apoptosis. Irradiated cells with eckol treatment reduced the expression of bax, the activation of caspase 9 and caspase 3, which were induced by radiation. However, irradiated cells with eckol recovered the expression of bcl-2 and mitochondrial cytochrome c which were decreased by radiation. The anti-apoptotic effect of eckol exerted via the inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1)-c-Jun NH(2)-terminal kinase (JNK)-activator protein 1 (AP-1) cascades induced by radiation. In summary, the results suggest that eckol protects cells against the oxidative stress induced by radiation via the reduction of reactive oxygen species and the attenuation of activation in SEK1-JNK-AP-1 pathway.

  17. Carbohydrase inhibition and anti-cancerous and free radical scavenging properties along with DNA and protein protection ability of methanolic root extracts of Rumex crispus

    PubMed Central

    Shiwani, Supriya; Singh, Naresh Kumar

    2012-01-01

    The study elucidated carbohydrase inhibition, anti-cancerous, free radical scavenging properties and also investigated the DNA and protein protection abilities of methanolic root extract of Rumex crispus (RERC). For this purpose, pulverized roots of Rumex crispus was extracted in methanol (80% and absolute conc.) for 3 hrs for 60℃ and filtered and evaporated with vacuum rotary evaporator. RERC showed high phenolic content (211 µg/GAE equivalent) and strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50 = 42.86 (absolute methanol) and 36.91 µg/mL (80% methanolic extract)) and reduced power ability. Furthermore, RERC exhibited significant protective ability in H2O2/Fe3+/ascorbic acid-induced protein or DNA damage and percentage inhibition of the HT-29 cell growth rate following 80% methanolic RERC exposure at 400 µg/mL was observed to be highest (10.2% ± 1.03). Moreover, methanolic RERC inhibited α-glucosidase and amylase effectively and significantly (P < 0.05). Conclusively, RERC could be considered as potent carbohydrase inhibitor, anti-cancerous and anti-oxidant. PMID:23198017

  18. Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells.

    PubMed

    Chiappini, Florencia; Bastón, Juan Ignacio; Vaccarezza, Agustina; Singla, José Javier; Pontillo, Carolina; Miret, Noelia; Farina, Mariana; Meresman, Gabriela; Randi, Andrea

    2016-06-01

    Hexachlorobenzene (HCB) is an organochlorine pesticide that induces toxic reproductive effects in laboratory animals. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). Endometriosis is characterized by the presence of functional endometrial tissues outside the uterine cavity. Experimental studies indicate that exposure to organochlorines can interfere with both hormonal regulation and immune function to promote endometriosis. Altered expression of metalloproteinases (MMPs) in patients with endometriosis, suggests that MMPs may play a critical role. In the endometriotic lesions, prostaglandin E2 (PGE2) produced by cyclooxygenase-2 (COX-2), binds to its EP4 receptor (EP4), and via c-Src kinase induces MMPs activation, promoting endometriosis. We examined the HCB action on MMP-2 and MMP-9 activities and expression, COX-2 levels, PGE2 signaling, and the AhR involvement in HCB-induced effects. We have used different in vitro models: (1) human endometrial stromal cell line T-HESC, (2) primary cultures of Human Uterine Fibroblast (HUF), and (3) primary cultures of endometrial stromal cells from eutopic endometrium of control (CESC) and subjects with endometriosis (EESC). Our results show that HCB enhances MMP-2 and MMP-9 activities in T-HESC, HUF and ESC cells. The MMP-9 levels were elevated in all models, while the MMP-2 expression only increased in ESC cells. HCB enhanced COX-2 and EP4 expression, PGE2 secretion and the c-Src kinase activation in T-HESC. Besides, we observed that AhR is implicated in these HCB-induced effects. In conclusion, our results show that HCB exposure could contribute to endometriosis development, affecting inflammation and invasion parameters of human endometrial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A selective cyclooxygenase-2 inhibitor (Etodolac) prevents spontaneous biliary tumorigenesis in a hamster bilioenterostomy model.

    PubMed

    Kitasato, Amane; Kuroki, Tamotsu; Adachi, Tomohiko; Ono, Shinichiro; Tanaka, Takayuki; Tsuneoka, Noritsugu; Hirabaru, Masataka; Takatsuki, Mitsuhisa; Eguchi, Susumu

    2014-01-01

    Secondary biliary carcinomas are associated with persistent reflux cholangitis after bilioenterostomy. Cyclooxygenase-2 (COX-2) has been a target for cancer prevention. The aim of this study was to evaluate the chemopreventive efficacy of long-term treatment with a selective COX-2 inhibitor medication during the natural course after bilioenterostomy without chemical induction. Syrian golden hamsters which underwent choledochojejunostomy were randomly divided into two groups: the control group (n = 31), which was fed a normal diet, and the etodolac group (n = 33), which was fed 0.01% etodolac (a selective COX-2 inhibitor) mixed in the meal. The hamsters were killed at the postoperative weeks 20-39, 40-59, 60-79, or 80-100. Biliary neoplasms, cholangitis, proliferating cell nuclear antigen labeling index (PCNA-LI) of the biliary epithelium, and prostaglandin E2 (PGE2) production were evaluated. The occurrence rates of biliary neoplasm were 43.8 and 15.2% in the control and etodolac groups, respectively (p < 0.05). The incidence of biliary neoplasm increased as time progressed in the control group, whereas it remained at a low level throughout the experimental period in the etodolac group. PGE2 products tended to be lower in the etodolac group, and PCNA-LI was significantly lower in the etodolac group (p < 0.01). These results suggest that the medication etodolac suppresses cell proliferation of the biliary epithelium, thereby preventing biliary carcinogenesis. Etodolac is expected to prevent secondary biliary carcinogenesis caused by persistent reflux cholangitis after bilioenterostomy. © 2014 S. Karger AG, Basel.

  20. Myricetin and Quercetin Are Naturally-Occurring Co-substrates of Cyclooxygenases In Vivo1

    PubMed Central

    Bai, Hyoung-Woo; Zhu, Bao T.

    2009-01-01

    Bioflavonoids are ubiquitously present in the plant kingdom, and some of them are presently being sold as healthy dietary supplements around the world. Recently, it was shown that some of the dietary polyphenols were strong stimulators of the catalytic activity of cyclooxygenase I and II, resulting in increased formation of certain prostaglandin (PG) products in vitro and also in intact cells in culture. In the present study, we investigated the effect of two representative dietary compounds, quercetin and myricetin, on plasma and tissue levels of several PG products in normal Sprague-Dawley rats. We found that these two dietary bioflavonoids could strongly stimulate the formation of PG products in vivo in a time-dependent manner, and the stimulatory effect of these two bioflavonoids was dose-dependent with a unique biphasic pattern. At lower doses (<0.3 mg/kg b.w.), they strongly stimulated the formation of PGE2, but at higher doses (>0.3 mg/kg b.w.), there was a dose-dependent reduction of the stimulatory effect. These results provide support for the hypothesis that some of the bioflavonoids are naturally-occurring physiological co-substrates for the cyclooxygenases in vivo. PMID:19897347