Science.gov

Sample records for cyclooxygenase-2 inhibition protects

  1. Ethyl pyruvate protects rats from phosgene-induced pulmonary edema by inhibiting cyclooxygenase2 and inducible nitric oxide synthase expression.

    PubMed

    Chen, Hong-li; Bai, Hua; Xi, Miao-miao; Liu, Riu; Qin, Xu-jun; Liang, Xin; Zhang, Wei; Zhang, Xiao-di; Li, Wen-li; Hai, Chun-xu

    2013-01-01

    Phosgene is a poorly water-soluble gas penetrating the lower respiratory tract which can induce acute lung injury characterized by a latent phase of fatal pulmonary edema. Pulmonary edema caused by phosgene is believed to be a consequence of oxidative stress and inflammatory responses. Ethyl pyruvate (EP) has been demonstrated to have anti-inflammatory and anti-oxidative properties in vivo and in vitro. The potential therapeutic role of EP in phosgene-induced pulmonary edema has not been addressed so far. In the present study, we aim to investigate the protective effects of EP on phosgene-induced pulmonary edema and the underlying mechanisms. Rats were administered with EP (40 mg kg(-1)) and RAW264.7 cells were also incubated with it (0, 2, 5 or 10 µm) immediately after phosgene (400 ppm, 1 min) or air exposure. Wet-to-dry lung weight ratio (W:D ratio), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production, cyclooxygenase2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, and mitogen-activated protein kinases activities (MAPKs) were measured. Our results showed that EP treatment attenuated phosgene-induced pulmonary edema and decreased the level of NO and PGE(2) dose-dependently. Furthermore, EP significantly reduced COX-2 expression, iNOS expression and MAPK activation induced by phosgene. Moreover, specific inhibitors of MAPKs reduced COX-2 and iNOS expression induced by phosgene. These findings suggested that EP has a protective role against phosgene-induced pulmonary edema, which is mediated in part by inhibiting MAPK activation and subsequently down-regulating COX-2 and iNOS expression as well as decreasing the production of NO and PGE(2). Copyright © 2011 John Wiley & Sons, Ltd.

  2. Comparative QSAR analysis of cyclo-oxygenase2 inhibiting drugs.

    PubMed

    Mohanapriya, Arumugam; Achuthan, Dayalan

    2012-01-01

    Cyclo-oxygenase 2 (COX2) inhibiting drugs were subjected to comparative quantitative structure activity relationship (QSAR) analysis with an attempt to derive and to understand the relationship between the biological activity and molecular descriptors by multiple regression analysis. The different drugs that inhibit cyclo-oxygenase 2 enzyme were compared instead of subjecting one drug and its derivatives to QSAR analysis. The study was conducted to look for the common structural features between the drugs which confer to a good biological activity. Based on the regression analysis the following descriptors were finalized as the components fitting best in the regression equations: Ss, SCBO, RBN, nN, SIC0, IC1, and H-055. These descriptors belong to constitution (Ss, SCBO, RBN, nN), information indices (SIC0, IC1) and atom centered fragments (H-055) category. Based on these descriptors QSAR models were generated and evaluated for best structure-activity correlation. The model generated from constitution and information indices descriptors corresponds to the essential structural features of the drugs and are found to have significant correlation with COX2 inhibiting activity. This study shall help in rational drug design and synthesis of new selective cyclo-oxygenase 2 inhibitors with predetermined affinity and activity.

  3. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    PubMed Central

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  4. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology.

    PubMed

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-05-10

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.

  5. Orthodontic tooth movement after inhibition of cyclooxygenase-2.

    PubMed

    de Carlos, Felix; Cobo, Juan; Díaz-Esnal, Belen; Arguelles, Juan; Vijande, Manuel; Costales, Marina

    2006-03-01

    The purpose of this study was to compare the effects of a conventional nonsteroidal anti-inflammatory drug, diclofenac (Voltaren [Novartis, Barcelona, Spain]), and a specific cyclooxygenase-2 (COX-2) inhibitor, rofecoxib (Vioxx [MSD, Madrid, Spain]), on the inhibition of dental movement induced with a coil-spring orthodontic apparatus in rats. Tooth movement was measured on the lateral cranial teleradiographs of 42 male Wistar rats in 6 experimental groups: (1) 50-g coil spring and 2 rofecoxib injections of 1 mg per kilogram of body weight; (2) similar orthodontic procedure and 2 diclofenac injections of 10 mg per kilogram of body weight; (3) the same orthodontic treatment and 0.9% saline-solution injections; and (4), (5), and (6) 100-g coil appliance and the same pharmacological treatment as 1, 2, and 3, respectively. The difference in tooth movement, measured in the control animals after 10 days of 50 or 100 g of orthodontic force application, was not statistically significant. Reduction in tooth movement in 50-g traction groups reached statistically significant differences; both rofecoxib or diclofenac were effective in inhibiting dental movement. The comparison of the 3 groups treated with 100 g of force also reached statistical significance. Both rofecoxib and diclofenac significantly inhibited dental movement, partially in the case of rofecoxib and totally in the case of diclofenac. Nevertheless, no statistically significant difference was found between the effects of rofecoxib and diclofenac. There is no substantial advantage in using selective COX-2 inhibitors compared with nonspecific COX inhibitors to avoid interference with tooth movement during orthodontic treatment in rats.

  6. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG.

    PubMed

    Valdeolivas, S; Pazos, M R; Bisogno, T; Piscitelli, F; Iannotti, F A; Allarà, M; Sagredo, O; Di Marzo, V; Fernández-Ruiz, J

    2013-10-17

    The cannabinoid CB2 receptor, which is activated by the endocannabinoid 2-arachidonoyl-glycerol (2-AG), protects striatal neurons from apoptotic death caused by the local administration of malonate, a rat model of Huntington's disease (HD). In the present study, we investigated whether endocannabinoids provide tonic neuroprotection in this HD model, by examining the effect of O-3841, an inhibitor of diacylglycerol lipases, the enzymes that catalyse 2-AG biosynthesis, and JZL184 or OMDM169, two inhibitors of 2-AG inactivation by monoacylglycerol lipase (MAGL). The inhibitors were injected in rats with the striatum lesioned with malonate, and several biochemical and morphological parameters were measured in this brain area. Similar experiments were also conducted in vitro in cultured M-213 cells, which have the phenotypic characteristics of striatal neurons. O-3841 produced a significant reduction in the striatal levels of 2-AG in animals lesioned with malonate. However, surprisingly, the inhibitor attenuated malonate-induced GABA and BDNF deficiencies and the reduction in Nissl staining, as well as the increase in GFAP immunostaining. In contrast, JZL184 exacerbated malonate-induced striatal damage. Cyclooxygenase-2 (COX-2) was induced in the striatum 24 h after the lesion simultaneously with other pro-inflammatory responses. The COX-2-derived 2-AG metabolite, prostaglandin E2 glyceryl ester (PGE2-G), exacerbated neurotoxicity, and this effect was antagonized by the blockade of PGE2-G action with AGN220675. In M-213 cells exposed to malonate, in which COX-2 was also upregulated, JZL184 worsened neurotoxicity, and this effect was attenuated by the COX-2 inhibitor celecoxib or AGN220675. OMDM169 also worsened neurotoxicity and produced measurable levels of PGE2-G. In conclusion, the inhibition of 2-AG biosynthesis is neuroprotective in rats lesioned with malonate, possibly through the counteraction of the formation of pro-neuroinflammatory PGE2-G, formed from COX-2

  7. Sinomenine inhibits proliferation of SGC-7901 gastric adenocarcinoma cells via suppression of cyclooxygenase-2 expression

    PubMed Central

    LV, YIFEI; LI, CHANGSHUN; LI, SHUANG; HAO, ZHIMING

    2011-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum. Results of studies have shown that the anti-inflammatory, immunosuppressive and anti-arthritic effects of SIN are partially attributed to the inhibition of cyclooxygenase-2 (COX-2) expression. COX-2 overexpression is associated with enhanced proliferation and angiogenesis of gastric cancer (GC). SGC-7901 cells were treated with different concentrations of SIN in order to observe its effect on the proliferation of human gastric adenocarcinoma cells and to explore the potential underlying molecular mechanism via the detection of COX-2 expression. Celecoxib was used as the positive control. Morphological alterations of the cells were observed microscopically. Cell proliferation was evaluated using MTT assay. COX-2 expression was detected using semi-quantitative RT-PCR and Western blotting. The results showed that SIN inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. In the presence of SIN or celecoxib, SGC-7901 cells became round and detached morphologically, indicating cell apoptosis. The expression of COX-2 was inhibited by SIN in a dose-dependent manner at both the mRNA and protein levels. Our findings indicate that the protective effects of SIN are mediated through the inhibition of COX-2 expression. These findings suggest a novel therapy to treat inflammation-mediated gastric adenocarcinomata. PMID:22848259

  8. Cyclooxygenase-2 Inhibition Limits Angiotensin II-Induced DNA Oxidation and Protein Nitration in Humans

    PubMed Central

    Pialoux, Vincent; Poulin, Marc J.; Hemmelgarn, Brenda R.; Muruve, Daniel A.; Chirico, Erica N.; Faes, Camille; Sola, Darlene Y.; Ahmed, Sofia B.

    2017-01-01

    Compared to other cyclooxygenase-2 inhibitors, celecoxib is associated with a lower cardiovascular risk, though the mechanism remains unclear. Angiotensin II is an important mediator of oxidative stress in the pathophysiology of vascular disease. Cyclooxygenase-2 may modify the effects of angiotensin II though this has never been studied in humans. The purpose of the study was to test the effects of selective cyclooxygenase-2 inhibition on plasma measures of oxidative stress, the vasoconstrictor endothelin-1, and nitric oxide metabolites, both at baseline and in respose to Angiotensin II challenge in healthy humans. Measures of 8-hydroxydeoxyguanosine, advanced oxidation protein products, nitrotyrosine, endothelin-1, and nitric oxide metabolites were assessed from plasma samples drawn at baseline and in response to graded angiotensin II infusion (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min) before and after 14 days of cyclooxygenase-2 inhibition in 14 healthy subjects (eight male, six female) in high salt balance, a state of maximal renin angiotensin system suppression. Angiotensin II infusion significantly increased plasma oxidative stress compared to baseline (8-hydroxydeoxyguanosine; +17%; advanced oxidation protein products; +16%), nitrotyrosine (+76%). Furthermore, levels of endothelin-1 levels were significantly increased (+115%) and nitric oxide metabolites were significantly decreased (−20%). Cycloxygenase-2 inhibition significantly limited the increase in 8-hydroxydeoxyguanosine, nitrotyrosine and the decrease in nitric oxide metabolites induced by angiotensin II infusion, though no changes in advanced oxidation protein products and endothelin-1 concentrations were observed. Cyclooxygenase-2 inhibition with celecoxib partially limited the angiotensin II-mediated increases in markers of oxidative stress in humans, offering a potential physiological pathway for the improved cardiovascular risk profile of this drug. PMID:28344559

  9. Radical scavenging glycoprotein inhibiting cyclooxygenase-2 and thromboxane A2 synthase from aloe vera gel.

    PubMed

    Yagi, A; Kabash, A; Mizuno, K; Moustafa, S M; Khalifa, T I; Tsuji, H

    2003-03-01

    An active glycoprotein fraction containing 58 % protein was isolated from Aloe vera gel by precipitation with 55 % ammonium sulfate followed by gel permeation using DEAE-Sephacel A-25, Sepharose 6B and Sephadex G-50 columns in a yield of 3 x 10 -3 %. The glycoprotein fraction showed a single band corresponding to a subunit of verectin at the same position when stained with both Coomassie brilliant blue and periodic acid-Schiff reagents on 18 % SDS-PAGE. The molecular weight (14 kDa) was confirmed by Sephadex G-50 column chromatography. The glycoprotein fraction showed a radical scavenging activity against superoxide anion generated by the xanthine-xanthine oxidase system as well as inhibition of cyclooxygenase-2 and reduction of thromboxane A 2 synthase level in vitro.

  10. Cyclooxygenase-2 Inhibition Enhances Proliferation of NKT Cells Derived from Patients with Laryngeal Cancer.

    PubMed

    Klatka, Janusz; Grywalska, Ewelina; Hymos, Anna; Guz, Małgorzata; Polberg, Krzysztof; Roliński, Jacek; Stepulak, Andrzej

    2017-08-01

    The aim of this study was to analyze whether inhibition of cyclooxygenase-2 by celecoxib and the subsequent enhancement in the proliferation of natural killer T (NKT) cells could play a role in dendritic cell (DC)-based laryngeal cancer (LC) immunotherapy. Peripheral blood mononuclear cells were obtained from 48 male patients diagnosed with LC and 30 control patients without cancer disease. Neoplastic cell lysate preparations were made from cancer tissues obtained after surgery and used for in vitro DCs generation. NKT cells proliferation assay was performed based on (3)H-thymidine incorporation assay. An increased proliferation of NKT cells was obtained from control patients compared to NKT cells obtained from LC patients regardless of the type of stimulation or treatment. In the patient group diagnosed with LC, COX-2 inhibition resulted in a significantly enhanced proliferation of NKT cells when stimulated with autologous DCs than NKT cells stimulated with DCs without COX-2 inhibition. These correlations were not present in the control group. Higher proliferation rate of NKT cells was also observed in non-metastatic and highly differentiated LC, which was independent of the type of stimulation or treatment. COX-2 inhibition could be regarded as immunotherapy-enhancing tool in patients with LC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic.

    PubMed Central

    Masferrer, J L; Zweifel, B S; Manning, P T; Hauser, S D; Leahy, K M; Smith, W G; Isakson, P C; Seibert, K

    1994-01-01

    We have examined the role of cyclooxygenase 2 (COX-2) in a model of inflammation in vivo. Carrageenan administration to the subcutaneous rat air pouch induces a rapid inflammatory response characterized by high levels of prostaglandins (PGs) and leukotrienes in the fluid exudate. The time course of the induction of COX-2 mRNA and protein coincided with the production of PGs in the pouch tissue and cellular infiltrate. Carrageenan-induced COX-2 immunoreactivity was localized to macrophages obtained from the fluid exudate as well as to the inner surface layer of cells within the pouch lining. Dexamethasone inhibited both COX-2 expression and PG synthesis in the fluid exudate but failed to inhibit PG synthesis in the stomach. Furthermore, NS-398, a selective COX-2 inhibitor, and indomethacin, a nonselective COX-1/COX-2 inhibitor, blocked proinflammatory PG synthesis in the air pouch. In contrast, only indomethacin blocked gastric PG and, additionally, produced gastric lesions. These results suggest that inhibitors of COX-2 are potent antiinflammatory agents which do not produce the typical side effects (e.g., gastric ulcers) associated with the nonselective, COX-1-directed antiinflammatory drugs. Images PMID:8159730

  12. Inhibition of cyclooxygenase-2 by NS398 attenuates noise-induced hearing loss in mice.

    PubMed

    Sun, Yu; Yu, Jintao; Lin, Xi; Tang, Wenxue

    2016-03-03

    Noise-induced hearing loss (NIHL) is an important occupational disorder. However, the molecular mechanisms underlying NIHL have not been fully clarified; therefore, the condition lacks effective therapeutic methods. Cyclooxygenase-2 (Cox-2) is an inducible enzyme involved in the synthesis of prostaglandins, and has been implicated in many pathophysiological events, such as oxidative stress and inflammation. In this study, we investigated the possible role of Cox-2 in the mechanisms of NIHL and the therapeutic effect of the Cox-2 inhibitor NS398 on NIHL using a mouse model. We demonstrated that Cox-2 is constitutively expressed in the mouse cochlea, and its expression could be dramatically up-regulated by high levels of noise exposure. Furthermore, we demonstrated that pre-treatment with the Cox-2 inhibitor NS398 could inhibit Cox-2 expression during noise overstimulation; and could attenuate noise-induced hearing loss and hair cell damage. Our results suggest that Cox-2 is involved in the pathogenesis of NIHL; and pharmacological inhibition of Cox-2 has considerable therapeutic potential in NIHL.

  13. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension

    PubMed Central

    Zhang, Ming-Zhi; Yao, Bing; Wang, Yinqiu; Yang, Shilin; Wang, Suwan; Fan, Xiaofeng; Harris, Raymond C.

    2015-01-01

    Inhibition of prostaglandin (PG) production with either nonselective or selective inhibitors of cyclooxygenase-2 (COX-2) activity can induce or exacerbate salt-sensitive hypertension. This effect has been previously attributed to inhibition of intrinsic renal COX-2 activity and subsequent increase in sodium retention by the kidney. Here, we found that macrophages isolated from kidneys of high-salt–treated WT mice have increased levels of COX-2 and microsomal PGE synthase–1 (mPGES-1). Furthermore, BM transplantation (BMT) from either COX-2–deficient or mPGES-1–deficient mice into WT mice or macrophage-specific deletion of the PGE2 type 4 (EP4) receptor induced salt-sensitive hypertension and increased phosphorylation of the renal sodium chloride cotransporter (NCC). Kidneys from high-salt–treated WT mice transplanted with Cox2–/– BM had increased macrophage and T cell infiltration and increased M1- and Th1-associated markers and cytokines. Skin macrophages from high-salt–treated mice with either genetic or pharmacologic inhibition of the COX-2 pathway expressed decreased M2 markers and VEGF-C production and exhibited aberrant lymphangiogenesis. Together, these studies demonstrate that COX-2–derived PGE2 in hematopoietic cells plays an important role in both kidney and skin in maintaining homeostasis in response to chronically increased dietary salt. Moreover, these results indicate that inhibiting COX-2 expression or activity in hematopoietic cells can result in a predisposition to salt-sensitive hypertension. PMID:26485285

  14. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition.

    PubMed

    Tong, Xin; Van Dross, Rukiyah T; Abu-Yousif, Adnan; Morrison, Aubrey R; Pelling, Jill C

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation.

  15. Cyclo-oxygenase-2 inhibition and endothelium-dependent vasodilation in younger vs. older healthy adults.

    PubMed

    Eisenach, John H; Gullixson, Leah R; Allen, Alexander R; Kost, Susan L; Nicholson, Wayne T

    2014-10-01

    A major feature of endothelial dysfunction is reduced endothelium-dependent vasodilation, which in ageing may be due to decreased production of endothelial prostacyclin, or nitric oxide (NO), or both. We tested this hypothesis in 12 younger (age 18-38 years, six women) and 12 older healthy adults (age 55-73 years, six post-menopausal women). Endothelium-dependent vasodilation was assessed by the forearm vascular conductance (FVC) response to intra-arterial acetylcholine (ACh) (0.5, 1.0, 2.0, 4.0 μg dl(-1) forearm tissue min(-1) ) before and 90 min after inhibition of the enzyme cyclo-oxygenase-2 (COX-2) with oral celecoxib (400 mg), followed by the addition of endothelial NO synthase inhibition with intra-arterial N(G) -monomethyl-l arginine acetate (L-NMMA). Ageing was associated with a significantly reduced FVC response to ACh (P = 0.009, age-by-dose interaction; highest dose FVC ± SEM in ageing: 11.2 ± 1.4 vs. younger: 17.7 ± 2.4 units, P = 0.02). Celecoxib did not reduce resting FVC or the responses to ACh in any group. L-NMMA significantly reduced resting FVC and the responses to ACh in all groups, and absolute FVC values following L-NMMA were similar between groups. In healthy normotensive younger and older adults, there is minimal contribution of prostacyclin to ACh-mediated vasodilation, yet the NO component of vasodilation is reduced with ageing. In the clinical context, these findings suggest that acute administration of medications that inhibit prostacyclin (i.e. COX-2 inhibitors) evoke modest vascular consequences in healthy persons. Additional studies are necessary to test whether chronic use of COX-2 medications reduces endothelium dependent vasodilation in older persons with or without cardiovascular risk factors. © 2014 The British Pharmacological Society.

  16. Cyclooxygenase-2 Inhibition Restored Endothelium-Mediated Relaxation in Old Obese Zucker Rat Mesenteric Arteries

    PubMed Central

    Vessières, Emilie; Belin de Chantemèle, Eric J.; Toutain, Bertrand; Guihot, Anne-Laure; Jardel, Alain; Loufrani, Laurent; Henrion, Daniel

    2010-01-01

    Metabolic syndrome is associated with reduced endothelial vasodilator function. It is also associated with the induction of cyclooxygenase-2 (COX2), which produces vasoactive prostanoids. The frequency of metabolic syndrome increases with age and aging per se is a risk factor associated with reduced endothelium-mediated relaxation. Nevertheless, the combined effect of aging and metabolic syndrome on the endothelium is less known. We hypothesized that COX2 derived prostanoids may affect endothelium function in metabolic syndrome associated with aging. We used obese Zucker rats, a model of metabolic syndrome. First order mesenteric arteries were isolated from 4- and 12-month-old rats and acetylcholine (endothelium)-dependent relaxation determined using wire-myography. Endothelium-mediated relaxation, impaired in young Zucker rats (89 versus 77% maximal relaxation; lean versus Zucker), was further reduced in old Zucker rats (72 versus 51%, lean versus Zucker). The effect of the nitric oxide-synthesis inhibitor L-NAME on the relaxation was reduced in both young and old Zucker rats without change in eNOS expression level. COX inhibition (indomethacin) improved acetylcholine-mediated relaxation in old obese rats only, suggesting involvement of vasoconstrictor prostanoids. In addition, COX2 inhibition (NS398) and TxA2/PGH2 receptor blockade (SQ29548) both improved relaxation in old Zucker rat arteries. Old Zucker rats had the highest TxB2 (TxA2 metabolite) blood level associated with increased COX2 immunostaining. Chronic COX2 blockade (Celecoxib, 3 weeks) restored endothelium-dependent relaxation in old Zucker rats to the level observed in old lean rats. Thus the combination of aging and metabolic syndrome further impairs endothelium-dependent relaxation by inducing an excessive production of COX2-derived vasoconstrictor(s); possibly TxA2. PMID:21423385

  17. Cyclooxygenase-2 inhibition restored endothelium-mediated relaxation in old obese zucker rat mesenteric arteries.

    PubMed

    Vessières, Emilie; Belin de Chantemèle, Eric J; Toutain, Bertrand; Guihot, Anne-Laure; Jardel, Alain; Loufrani, Laurent; Henrion, Daniel

    2010-01-01

    Metabolic syndrome is associated with reduced endothelial vasodilator function. It is also associated with the induction of cyclooxygenase-2 (COX2), which produces vasoactive prostanoids. The frequency of metabolic syndrome increases with age and aging per se is a risk factor associated with reduced endothelium-mediated relaxation. Nevertheless, the combined effect of aging and metabolic syndrome on the endothelium is less known. We hypothesized that COX2 derived prostanoids may affect endothelium function in metabolic syndrome associated with aging. We used obese Zucker rats, a model of metabolic syndrome. First order mesenteric arteries were isolated from 4- and 12-month-old rats and acetylcholine (endothelium)-dependent relaxation determined using wire-myography. Endothelium-mediated relaxation, impaired in young Zucker rats (89 versus 77% maximal relaxation; lean versus Zucker), was further reduced in old Zucker rats (72 versus 51%, lean versus Zucker). The effect of the nitric oxide-synthesis inhibitor L-NAME on the relaxation was reduced in both young and old Zucker rats without change in eNOS expression level. COX inhibition (indomethacin) improved acetylcholine-mediated relaxation in old obese rats only, suggesting involvement of vasoconstrictor prostanoids. In addition, COX2 inhibition (NS398) and TxA2/PGH2 receptor blockade (SQ29548) both improved relaxation in old Zucker rat arteries. Old Zucker rats had the highest TxB2 (TxA2 metabolite) blood level associated with increased COX2 immunostaining. Chronic COX2 blockade (Celecoxib, 3 weeks) restored endothelium-dependent relaxation in old Zucker rats to the level observed in old lean rats. Thus the combination of aging and metabolic syndrome further impairs endothelium-dependent relaxation by inducing an excessive production of COX2-derived vasoconstrictor(s); possibly TxA2.

  18. Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer.

    PubMed

    Melisi, Davide; Caputo, Rosa; Damiano, Vincenzo; Bianco, Roberto; Veneziani, Bianca Maria; Bianco, A Raffaele; De Placido, Sabino; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-12-01

    Biphosphonates (BPs) are widely used to inhibit osteoclastic activity in malignant diseases such as bone metastatic breast and prostate carcinoma. Recent studies reported that BPs could also cause a direct antitumor effect, probably due to their ability to interfere with several intracellular signalling molecules. The enzyme cyclooxygenase-2 (COX-2) and the epidermal growth factor receptor (EGFR) play an important role in the control of cancer cell growth and inhibitors of COX-2 and EGFR have shown antitumor activity in vitro and in vivo in several tumor types. We, and others, have previously shown that EGFR and COX-2 may be directly related to each other and that their selective inhibitors may have a cooperative effect. In the present study we have evaluated the combined effect of zoledronic acid, the most potent nitrogen-containing BP, with the COX-2 inhibitor SC-236 and the selective EGFR-tyrosine kinase inhibitor gefitinib, on breast and prostate cancer models in vitro and in xenografted nude mice. We show that combination of zoledronic acid with SC-236 and gefitinib causes a cooperative antitumor effect accompanied by induction of apoptosis and regulation of the expression of mitogenic factors, proangiogenic factors and cell cycle controllers both in vitro and in xenografted nude mice. The modulatory effect on protein expression and the inhibitory effect on tumor growth is much more potent when the three agents are used together. Since studies are ongoing to explore the antitumor effect of zoledronic acid, our results provide new insights into the mechanism of action of these agents and a novel rationale to translate this feasible combination treatment strategy into a clinical setting.

  19. Inhibition of Cyclooxygenase-2 Reduces Hypothalamic Excitation in Rats with Adriamycin-Induced Heart Failure

    PubMed Central

    Liu, Wei; Zang, Wei-Jin; Bao, Cui-Yu; Qin, Da-Nian

    2012-01-01

    Background The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the progression of heart failure (HF). We investigated whether cyclooxygenase-2 (COX-2) inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in rats with adriamycin-induced heart failure. Methodology/Principal Finding Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg). On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB) or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW) and lung to body weight (LW/BW) ratios, heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak systolic pressure (LVPSP) and maximum rate of change in left ventricular pressure (LV±dp/dtmax) were improved in HF+CLB rats. Angiotensin II (ANG II), norepinephrine (NE), COX-2 and glutamate (Glu) in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH) positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. Conclusions These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure. PMID:23152801

  20. Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation.

    PubMed

    Teather, Lisa A; Packard, Mark G; Bazan, Nicolas G

    2002-01-01

    Evidence indicates that prostanoids, such as prostaglandins, play a regulatory role in several forms of neural plasticity, including long-term potentiation, a cellular model for certain forms of learning and memory. In these experiments, the significance of the COX isoforms cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in post-training memory processes was assessed. Adult male Long-Evans rats underwent an eight-trial (30-sec intertrial interval) training session on a hippocampus-dependent (hidden platform) or dorsal striatal-dependent (visible platform) tasks in a water maze. After the completion of training, rats received an intraperitoneal injection of the nonselective COX inhibitor indomethacin, the COX-1-specific inhibitor piroxicam, the COX-2-specific inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]-methanesulfonamide (NS-398), vehicle (45% 2-hydroxypropyl-beta-cyclodextrin in distilled water), or saline. On a two-trial retention test session 24 h later, latency to mount the escape platform was used as a measure of memory. In the hidden platform task, the retention test escape latencies of rats administered indomethacin (5 and 10 mg/kg) or NS-398 (2 and 5 mg/kg) were significantly higher than those of vehicle-treated rats, indicating an impairment in retention. Injections of indomethacin or NS-398 that were delayed 2 h post-training had no effect on retention. Post-training indomethacin or NS-398 had no influence on retention of the visible platform version of the water maze at any of the doses administered. Furthermore, selective inhibition of COX-1 via post-training piroxicam administration had no effect on retention of either task. These findings indicate that COX-2 is a required biochemical component mediating the consolidation of hippocampal-dependent memory.

  1. Celecoxib inhibits invasion and metastasis via a cyclooxygenase 2-independent mechanism in an in vitro model of Ewing sarcoma.

    PubMed

    Barlow, Meade; Edelman, Morris; Glick, Richard D; Steinberg, Bettie M; Soffer, Samuel Z

    2012-06-01

    Previously, we reported that celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, prevented lung metastases but did not affect tumor growth in a model of Ewing sarcoma. Cyclooxygenase-2 inhibition has been proposed as an antimetastatic strategy. The mechanism of action remains unclear. Ewing sarcoma cells were suspended in a soluble basement membrane extract (Cultrex; Trevigen, Inc, Gaithersburg, MD) and supplemented with celecoxib or with rofecoxib, a second COX-2 inhibitor, above a filter. Controls received solvent. After 48 hours, the cells that invaded through the basement membrane and filter were stained and counted. The assay was repeated with the addition of 500-nM prostaglandin E2 (PGE(2)). Invasion was significantly decreased in the celecoxib groups compared with the control. The addition of PGE(2) did not overcome celecoxib inhibition. Rofecoxib did not significantly affect invasion compared with control either with or without PGE(2). Celecoxib significantly inhibits invasion of Ewing sarcoma cells in vitro. Prostaglandin E2, a downstream product of COX-2, did not reverse in vitro inhibition, suggesting that celecoxib acts through a COX-2-independent mechanism. This is further supported by the failure of rofecoxib to inhibit invasion despite more selectively inhibiting COX-2. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Inhibition of cyclooxygenase-2 aggravates secretory phospholipase A{sub 2}-mediated progression of acute liver injury

    SciTech Connect

    Bhave, Vishakha S.; Donthamsetty, Shashikiran; Latendresse, John R.; Mehendale, Harihara M.

    2008-04-15

    Our previous study [Bhave, V. S., Donthamsetty, S., Latendresse, J. R., Muskhelishvili, L., and Mehendale, H. M. 2008-this issue. Secretory phospholipase A{sub 2} mediates progression of acute liver injury in the absence of sufficient COX-2. Toxicol Appl Pharmacol] showed that in the absence of sufficient induction and co-presence of cyclooxygenase-2 (COX-2), secretory phospholipase A{sub 2} (sPLA{sub 2}) appearing in the intercellular spaces for cleanup of post-necrotic debris seems to contribute to the progression of toxicant-initiated liver injury, possibly by hydrolysis of membrane phospholipids of hepatocytes in the perinecrotic areas. To further test our hypothesis on the protective role of COX-2, male Fisher-344 rats were administered a selective COX-2 inhibitor, NS-398, and then challenged with a moderately toxic dose of CCl{sub 4}. This led to a 5-fold increase in the susceptibility of the COX-2 inhibited rats to CCl{sub 4} hepatotoxicity and mortality. The CCl{sub 4} bioactivating enzyme CYP2E1 protein, CYP2E1 enzyme activity, and the {sup 14}CCl{sub 4}-derived radiolabel covalently bound to the liver proteins were unaffected by the COX-2 inhibitor suggesting that the increased hepatotoxic sensitivity of the COX-2 inhibited rats was not due to higher bioactivation of CCl{sub 4}. Further investigation showed that this increased mortality was due to higher plasma and hepatic sPLA{sub 2} activities, inhibited PGE{sub 2} production, and progression of liver injury as compared to the non-intervened rats{sub .} In conclusion, inhibition of COX-2 mitigates the tissue protective mechanisms associated with COX-2 induction, which promotes sPLA{sub 2}-mediated progression of liver injury in an acute liver toxicity model. Because increased sPLA{sub 2} activity in the intercellular space is associated with increased progression of injury, and induced COX-2 is associated with hepatoprotection, ratios of hepatic COX-2 and sPLA{sub 2} activities may turn out to be a

  3. Neuroprotection in a rabbit model of intraventricular haemorrhage by cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-alpha inhibition

    PubMed Central

    Vinukonda, Govindaiah; Csiszar, Anna; Hu, Furong; Dummula, Krishna; Pandey, Nishi Kant; Zia, Muhammad T.; Ferreri, Nicholas R.; Ungvari, Zoltan; LaGamma, Edmund F.

    2010-01-01

    Intraventricular haemorrhage is a major complication of prematurity that results in neurological dysfunctions, including cerebral palsy and cognitive deficits. No therapeutic options are currently available to limit the catastrophic brain damage initiated by the development of intraventricular haemorrhage. As intraventricular haemorrhage leads to an inflammatory response, we asked whether cyclooxygenase-2, its derivative prostaglandin E2, prostanoid receptors and pro-inflammatory cytokines were elevated in intraventricular haemorrhage; whether their suppression would confer neuroprotection; and determined how cyclooxygenase-2 and cytokines were mechanistically-linked. To this end, we used our rabbit model of intraventricular haemorrhage where premature pups, delivered by Caesarian section, were treated with intraperitoneal glycerol at 2 h of age to induce haemorrhage. Intraventricular haemorrhage was diagnosed by head ultrasound at 6 h of age. The pups with intraventricular haemorrhage were treated with inhibitors of cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α; and cell-infiltration, cell-death and gliosis were compared between treated-pups and vehicle-treated controls during the first 3 days of life. Neurobehavioural performance, myelination and gliosis were assessed in pups treated with cyclooxygenase-2 inhibitor compared to controls at Day 14. We found that both protein and messenger RNA expression of cyclooxygenase-2, prostaglandin E2, prostanoid receptor-1, tumour necrosis factor-α and interleukin-1β were consistently higher in the forebrain of pups with intraventricular haemorrhage relative to pups without intraventricular haemorrhage. However, cyclooxygenase-1 and prostanoid receptor 2–4 levels were comparable in pups with and without intraventricular haemorrhage. Cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α inhibition reduced inflammatory cell infiltration, apoptosis, neuronal degeneration and gliosis

  4. Selective inhibition of cyclooxygenase-2 suppresses metastatic disease without affecting primary tumor growth in a murine model of Ewing sarcoma.

    PubMed

    Gendy, Amir S; Lipskar, Aaron; Glick, Richard D; Steinberg, Bettie M; Edelman, Morris; Soffer, Samuel Z

    2011-01-01

    Mammalian target of rapamycin suppression by rapamycin inhibits tumor growth and neovascularization via cyclooxygenase-2 (COX-2) downregulation with no effect on lung metastases. We hypothesize that combining a selective COX-2 antagonist (celecoxib) with rapamycin would decrease lung metastases. Ewing sarcoma cells (SK-NEP-1) were surgically implanted into the left kidney of athymic mice (n = 40). The mice were divided into 4 treatment groups (control, rapamycin only, celecoxib only, and combination) and then killed at 6 weeks. Primary tumors were weighed. Vasculature was examined using lectin angiography and immunohistochemistry, and lung metastases were examined using H&E and CD99 immunostaining. Tumor weight and lung metastases were analyzed. Mean primary tumor weights were significantly reduced in the rapamycin-treated groups but not in the celecoxib-only group. Lectin angiography and endothelial markers immunostaining showed markedly decreased vascularity in the rapamycin-treated groups but not in the celecoxib-only group. Celecoxib-treated groups showed significantly fewer mice with lung metastases than non-celecoxib-treated groups. Celecoxib prevents lung metastasis in a murine model of Ewing sarcoma with no effect on tumor size or neovascularization. Cyclooxygenase-2 may represent a future potential target for metastatic disease prevention. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Clinical pharmacokinetics of nabumetone. The dawn of selective cyclo-oxygenase-2 inhibition?

    PubMed

    Davies, N M

    1997-12-01

    Nabumetone is a nonsteroidal anti-inflammatory drug (NSAID) of the 2,6-disubstituted naphthyl-alkanone class. Nabumetone is metabolised to an active metabolite 6-methoxy-2-napthylacetic acid (6-MNA) which is a relatively selective cyclo-oxygenase-2 inhibitor that has anti-inflammatory and analgesic properties. Nabumetone and its metabolites bind extensively to plasma albumin. Nabumetone is eliminated following biotransformation to 6-MNA, which does not undergo enterohepatic circulation and the respective glucoroconjugated metabolites are excreted in urine. Substantial concentrations of 6-MNA are attained in synovial fluid, which is he proposed site of action in chronic inflammatory arthropathies. A smaller area under the plasma concentration-time curve (AUC) is evident at steady state as compared with a single dose; this is possibly due to an increase in the volume of distribution and saturation of protein binding. Relationships between 6-MNA concentrations and the therapeutic and toxicological effects have yet to be elucidated for this NSAID. Renal failure significantly reduces 6-MNA elimination but steady-state concentrations of 6-MNA are not increased, possibly because of nonlinear protein binding. Elderly patients with osteoarthritis demonstrate decreased elimination and increased plasma concentrations of nabumetone as compared with young healthy volunteers. Rheumatic disease activity also influences 6-MNA plasma concentrations, as patients with more active disease and lower serum albumin concentrations demonstrate a lower area under the plasma concentration versus time curve. A reduced bioavailability of 6-MNA in patients with severe hepatic impairment is also evident. Dosage adjustment may be required in the elderly, patients with active rheumatic disease and those with hepatic impairment, but not in patients with mild-to-moderate renal failure.

  6. The role of cyclooxygenase-2 in the protection against apoptosis in vascular endothelial cells induced by cigarette smoking

    PubMed Central

    Shi, Zhihui; Chen, Yan; Pei, Yanfang; Long, Yingjiao; Liu, Caihong; Cao, Jun

    2017-01-01

    Background Apoptosis has been demonstrated to be an important upstream event in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cyclooxygenase-2 (COX-2) seems to be biologically relevant in COPD. However, the role of COX-2 in the apoptosis in vascular endothelial cells induced by cigarette smoke extract (CSE) remains to be elucidated. Our recent study found that the prostacyclin, one of the COX products in the microvascular endothelium, inhibited apoptosis in the emphysematous lungs of rats induced by CSE. In order to clarify the role of COX-2 in the apoptosis of vascular endothelial cells induced by CSE, we performed the present experiment to elucidate it. Methods Twenty surgical lung specimens were obtained from 6 patients with COPD, 7 smoking controls and seven nonsmoking controls. The apoptotic index (AI) and COX-2 protein expression were detected in lung tissues. To further investigate the effects of CSE on the apoptosis and COX-2 expression in a human vascular endothelial cell line, the apoptosis rate and COX-2 expression were examined in human umbilical vein endothelial cells (ECV304) under exposure to varied concentrations of CSE as well as under exposure to 5.0% CSE for varied durations. Repeatedly, the apoptosis rate and COX-2 expression in ECV304 cells under 5.0% CSE were examined after exposing to varied concentrations of celecoxib, a highly selective COX-2 inhibitor. Results Significantly increased AI and expression of COX-2 were found both in the lungs of patients with COPD and smoking controls compared with nonsmoking controls. The CSE induced apoptosis in ECV304 cells in means of both dose-dependent and time-dependent manners. The COX-2 was slightly expressed in the cells after exposing to 5% CSE for 3 and 6 h, and markedly expressed after the exposure time for 9 and 12 h, but vanished after 24 h of the exposure. Of interest, with the completely block of the COX-2 expression by celecoxib at 50.0 µmol/L, the apoptosis rate was

  7. Cyclooxygenase 2 inhibitor celecoxib inhibits glutamate release by attenuating the PGE2/EP2 pathway in rat cerebral cortex endings.

    PubMed

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Huang, Shu Kuei; Wang, Su-Jane

    2014-10-01

    The excitotoxicity caused by excessive glutamate is a critical element in the neuropathology of acute and chronic brain disorders. Therefore, inhibition of glutamate release is a potentially valuable therapeutic strategy for treating these diseases. In this study, we investigated the effect of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor that reduces the level of prostaglandin E2 (PGE2), on endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Celecoxib substantially inhibited the release of glutamate induced by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by chelating the extracellular Ca(2+) ions and by the vesicular transporter inhibitor bafilomycin A1. Celecoxib inhibited a 4-AP-induced increase in cytosolic-free Ca(2+) concentration, and the celecoxib-mediated inhibition of glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC. However, celecoxib did not alter 4-AP-mediated depolarization and Na(+) influx. In addition, this glutamate release-inhibiting effect of celecoxib was mediated through the PGE2 subtype 2 receptor (EP2) because it was not observed in the presence of butaprost (an EP2 agonist) or PF04418948 [1-(4-fluorobenzoyl)-3-[[6-methoxy-2-naphthalenyl)methyl]-3-azetidinecarboxylic acid; an EP2 antagonist]. The celecoxib effect on 4-AP-induced glutamate release was prevented by the inhibition or activation of protein kinase A (PKA), and celecoxib decreased the 4-AP-induced phosphorylation of PKA. We also determined that COX-2 and the EP2 receptor are present in presynaptic terminals because they are colocalized with synaptophysin, a presynaptic marker. These results collectively indicate that celecoxib inhibits glutamate release from nerve terminals by reducing voltage-dependent Ca(2+) entry through a signaling cascade involving EP2 and PKA.

  8. Interleukin-4 inhibits cyclo-oxygenase-2 expression and prostaglandin E2 production by human mature dendritic cells

    PubMed Central

    Teloni, Raffaela; Giannoni, Federico; Rossi, Paolo; Nisini, Roberto; Gagliardi, Maria Cristina

    2007-01-01

    Interleukin-4 (IL-4) is considered the key cytokine for inducing T helper type 2 (Th2) cell differentiation, while interferon-γ and IL-12 are pivotal cytokines for Th1 immune responses. Paradoxically, IL-4 has also been demonstrated to enhance IL-12 production by dendritic cells, suggesting an IL-4-dependent regulatory feedback of the Th1/Th2 system. In addition, prostaglandin E2 (PGE2), a lipid mediator of inflammation, has been implicated in the enhancement of Th2-type responses acting directly on T and B lymphocytes. PGE2 synthesis is dependent on the serial engagement of various enzymes, among which the inducible cyclo-oxygenase-2 (COX-2) exerts a critical role in monocytes and dendritic cells. In this study we demonstrate that IL-4 inhibits COX-2 gene expression and consequently prevents secretion of PGE2 by mature human dendritic cells. We also show that PGE2 does not regulate IL-12 and IL-10 production by dendritic cells in an autocrine fashion. Hence, we suggest that IL-4 may exploit an IL-12-independent regulatory feedback of the Th1/Th2 system through PGE2 inhibition. PMID:17059508

  9. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse.

    PubMed

    Gross, G; Imamura, T; Vogt, S K; Wozniak, D F; Nelson, D M; Sadovsky, Y; Muglia, L J

    2000-06-01

    Prostaglandins (PGs) have proven important during parturition, but inhibition of PG production treating preterm labor (PTL) results in significant maternal and fetal side effects. We hypothesize that specific inhibition of either cyclooxygenase (COX)-1 or -2 may result in separation of therapeutic and toxic effects. We demonstrate that COX-2, but not COX-1, is induced during inflammation-mediated PTL caused by lipopolysaccharide (LPS) administration. A two- to threefold increase in uterine and ovarian PG concentrations coincides with this induction of COX-2. The COX-2-selective inhibitor SC-236 proved effective in stopping preterm delivery and the increases in PGs. The COX-1-selective inhibitor SC-560 also attenuated uterine and ovarian PG production after LPS but did not inhibit PTL as efficiently as SC-236. COX-1-deficient mice, which show delay in the onset of term labor, exhibited no delay in onset of PTL after LPS. These findings suggest that the mechanisms for initiation of inflammation-mediated PTL and term labor differ and that selective COX-2 inhibition may provide a means of stopping inflammation-induced PTL in humans.

  10. Paclitaxel combined with harmine inhibits the migration and invasion of gastric cancer cells through downregulation of cyclooxygenase-2 expression

    PubMed Central

    SUN, KUN; TANG, XIAO-HE; XIE, YI-KUI

    2015-01-01

    Cyclooxygenase-2 (COX-2) has a critical role in the invasiveness and metastasis of gastric cancer. In addition, paclitaxel (PTX) and harmine (HM) were reported to be potential therapeutic drug candidates for cancer therapy; however, the synergistic antitumor effect of PTX and HM combined treatment on the human gastric cancer cells remains to be elucidated. The aim of the present study was to evaluate the effects of PTX and/or HM on the cell migration and invasion in two human gastric cancer cell lines, SGC-7901 and MKN-45. MTT assay was used to detect the growth inhibition induced by PTX and HM. The Transwell assay was employed to assess the effects of PTX and HM on the cell migration and invasion. The expression levels of COX-2 and matrix metalloproteinase-9 (MMP-9) were analyzed by western blot analysis. The results demonstrated that PTX and HM inhibited cell proliferation in a dose-dependent manner. Individually PTX and HM were able to inhibit the migration and invasion of two human gastric cancer cells; however, the combination of PTX and HM exerted synergistic effects on migration and invasion inhibition, with downregulation of COX-2 and matrix metalloproteinase (MMP)-9. In conclusion, the results of the present study indicated that combination chemotherapy using PTX with HM exerted an antitumor effect, which may be implicated for the treatment of gastric cancer. Of note, the combination of the two drugs inhibited migration and invasion more effectively compared with each drug alone, the mechanism of which proceeded via the downregulation of COX-2 expression. PMID:26622726

  11. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385.

    PubMed

    Rowlinson, Scott W; Kiefer, James R; Prusakiewicz, Jeffery J; Pawlitz, Jennifer L; Kozak, Kevin R; Kalgutkar, Amit S; Stallings, William C; Kurumbail, Ravi G; Marnett, Lawrence J

    2003-11-14

    A variety of drugs inhibit the conversion of arachidonic acid to prostaglandin G2 by the cyclooxygenase (COX) activity of prostaglandin endoperoxide synthases. Several modes of inhibitor binding in the COX active site have been described including ion pairing of carboxylic acid containing inhibitors with Arg-120 of COX-1 and COX-2 and insertion of arylsulfonamides and sulfones into the COX-2 side pocket. Recent crystallographic evidence suggests that Tyr-385 and Ser-530 chelate polar or negatively charged groups in arachidonic acid and aspirin. We tested the generality of this binding mode by analyzing the action of a series of COX inhibitors against site-directed mutants of COX-2 bearing changes in Arg-120, Tyr-355, Tyr-348, and Ser-530. Interestingly, diclofenac inhibition was unaffected by the mutation of Arg-120 to alanine but was dramatically attenuated by the S530A mutation. Determination of the crystal structure of a complex of diclofenac with murine COX-2 demonstrates that diclofenac binds to COX-2 in an inverted conformation with its carboxylate group hydrogen-bonded to Tyr-385 and Ser-530. This finding represents the first experimental demonstration that the carboxylate group of an acidic non-steroidal anti-inflammatory drug can bind to a COX enzyme in an orientation that precludes the formation of a salt bridge with Arg-120. Mutagenesis experiments suggest Ser-530 is also important in time-dependent inhibition by nimesulide and piroxicam.

  12. Regulation of cyclooxygenase-2 expression in human mesangial cells--transcriptional inhibition by IL-13.

    PubMed

    Díaz-Cazorla, M; Pérez-Sala, D; Ros, J; Jiménez, W; Fresno, M; Lamas, S

    1999-02-01

    Activated mesangial cells may play an important part in glomerulonephritis. Cytokines can modulate the release of prostanoids by human mesangial cells (HMC). We have investigated the effects of pro-inflammatory stimuli on COX-2 expression in HMC and its potential modulation by interleukin (IL)-13. HMC released increased amounts of prostaglandin E2 (PGE2) after treatment with several combinations of IL-1 beta, tumor necrosis factor (TNF)-alpha and/or lipopolysaccharide. Increases in PGE2 correlated with the induction of COX-2 protein expression. The accumulation of PGE2 elicited by a combination of IL-1 beta/TNF-alpha correlated closely with the temporal pattern of COX-2 protein expression, which reflected the induction of COX-2 mRNA. IL-13 inhibited IL-1 beta/TNF-alpha-elicited PGE2 production, as well as COX-2 protein and mRNA expression in a concentration-dependent fashion. With 50 ng.mL-1 IL-13 these parameters were inhibited by 90, 80 and 84%, respectively. In HMC transfected with the 5' regulatory region of the COX-2 gene, IL-13 suppressed cytokine-induced promoter activation. Our results suggest that COX-2 expression is a major target for IL-13-mediated abrogation of prostaglandin release by HMC and support that this process takes place by transcriptional inhibition of the COX-2 gene.

  13. Scutellaria baicalensis alleviates cantharidin-induced rat hemorrhagic cystitis through inhibition of cyclooxygenase-2 overexpression.

    PubMed

    Huan, Steven Kuan-Hua; Wang, Kun-Teng; Yeh, Shauh-Der; Lee, Chia-Jung; Lin, Li-Chun; Liu, Der-Zen; Wang, Ching-Chiung

    2012-05-25

    Cantharidin, an active component in mylabris, is used in traditional Chinese medicine (TCM) to treat scabies and hepatoma, but accompanied by hemorrhagic cystitis. Evidence shows that cantharidin induces human bladder carcinoma cell death through COX-2 overexpression in vitro. In TCM, Scutellaria baicalensis is usually used to cure mylabris-induced hematuria. This work was undertaken to determine the mechanisms of cantharidin-induced rat hemorrhagic cystitis and explore the uroprotective effect of S. baicalensis. In vitro results showed cantharidin could induce cytotoxicity through prostaglandin (PG)E₂ overproduction of T24 cells. Boiling-water extract of S. baicalensis (SB-WE) could significantly inhibit PGE₂ production and COX-2 expression in lipo-polysaccharide-induced RAW 264.7 cells, indicating obvious anti-inflammatory abilities. In vivo results indicated that cantharidin caused rat hemorrhagic cystitis with hematuria via c-Fos and COX-2 overexpression. SB-WE was given orally to cantharidin-treated rats, whereby hematuria level, elevated PGE₂ and COX-2 protein overexpression were significantly and dose-dependently inhibited by SB-WE. The anti-inflammatory components of SB-WE are baicalin and wogonin, whose contents were 200.95 ± 2.00 and 31.93 ± 0.26 μg/mg, respectively. In conclusion, cantharidin induces rat cystitis through c-Fos and COX-2 over-expression and S. baicalensis can prevent the resulting hematuria because of its anti-inflammatory effects.

  14. Inhibition of cyclooxygenase-2 by diallyl sulfides (DAS) in HEK 293T cells.

    PubMed

    Elango, Erode M; Asita, Hag; Nidhi, Gunapalan; Seema, Parvathy; Banerji, Asoke; Kuriakose, Moni A

    2004-01-01

    Cyclooxygenase (COX) is involved in modulating inflammatory response through the synthesis of prostaglandins. The inducible isoform of the enzyme, COX-2, is overexpressed in some malignant and premalignant lesions. Several preclinical and clinical studies have reported COX-2 inhibition as an effective strategy for chemoprevention. Nonsteroidal anitinflammatory drugs (NASIDs) such as celecoxib, are the most widely investigated COX-2 inhibitors. The oil-soluble diallyl sulfides (DAS) include monosulfides (DAMS), disulfides (DADS) and trisulfides (DATS). They were found to be effective against canine and human tumors, the mechanism of which remains unresolved. We attempted a comparative evaluation of the antiproliferative effect of DAS in HEK 293T cells. The cells were treated with increasing concentrations of DAMS, DADS and DATS. There were significant differences between the IC50 values of DAMS, DADS and DATS. RT-PCR was performed and the expression of COX-2 was compared with that of b actin. DATS inhibited COX-2 gene expression significantly stronger than DAMS and DADS. The data are suggestive of antineoplastic effect of DAS, mediated by controlling COX-2 expression.

  15. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines.

    PubMed

    Vural, Filiz; Ozcan, Mehmet Ali; Ozsan, Güner Hayri; Ateş, Halil; Demirkan, Fatih; Pişkin, Ozden; Undar, Bülent

    2005-05-01

    The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines.

  16. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  17. Honokiol, a phytochemical from Magnolia spp., inhibits breast cancer cell migration by targeting nitric oxide and cyclooxygenase-2.

    PubMed

    Singh, Tripti; Katiyar, Santosh K

    2011-03-01

    In the present study, we report the effects of honokiol, a phytochemical from Magnolia spp., on cancer cell migration capacity and the molecular mechanisms underlying these effects using breast cancer cell lines as an in vitro model. Using cell migration assays, we found that the treatment of human breast cancer cells (MCF-7) and murine mammary cancer cells (4T1) with honokiol resulted in a dose-dependent inhibition of migration of these cells, which was associated with a reduction in nitric oxide (NO) levels. The cell migration capacity was decreased in the presence of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase. Honokiol reduced the elevated levels of cyclic guanosine monophosphate (cGMP) in the cells, while the treatment of 4T1 cells with guanylate cyclase (GC) inhibitor 1-H-[1,2,4]oxadiaxolo[4,3-a]quinolalin-1-one (ODQ) reduced the migration of cells and the levels of cGMP. The presence of 8-bromoguanosine 3'5'-cyclic monophosphate, an analogue of cGMP, enhanced the migration of these cells, suggesting a role for GC in the migration of 4T1 cells. Honokiol also inhibited the levels of cyclooxygenase-2 (COX-2) and prostaglandin (PG) E2 in 4T1 cells. The transfection of 4T1 cells with COX-2 siRNA resulted in a reduction in cell migration. ODQ and L-NAME also decreased the levels of PGE2 in 4T1 cells suggesting a role for COX-2/PGE2 in cell migration. Moreover, honokiol inhibited the activation of nuclear factor κB (NF-κB), an upstream regulator of COX-2 and iNOS, in 4T1 cells. These results indicate that NO and COX-2 are the key targets of honokiol in the inhibition of breast cancer cell migration, an essential step in invasion and metastasis.

  18. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia.

    PubMed

    Francés, Daniel E A; Ingaramo, Paola I; Mayoral, Rafael; Través, Paqui; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma; Carnovale, Cristina E

    2013-03-01

    Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.

  19. Simultaneous Inhibition of EGFR/VEGFR and Cyclooxygenase-2 Targets Stemness-Related Pathways in Colorectal Cancer Cells

    PubMed Central

    Valverde, Araceli; Peñarando, Jon; Cañas, Amanda; López-Sánchez, Laura M.; Conde, Francisco; Hernández, Vanessa; Peralbo, Esther; López-Pedrera, Chary; de la Haba-Rodríguez, Juan; Aranda, Enrique; Rodríguez-Ariza, Antonio

    2015-01-01

    Despite the demonstrated benefits of anti-EGFR/VEGF targeted therapies in metastatic colorectal cancer (mCRC), many patients initially respond, but then show evidence of disease progression. New therapeutic strategies are needed to make the action of available drugs more efficient. Our study aimed to explore whether simultaneous targeting of EGFR/VEGF and cyclooxygenase-2 (COX-2) may aid the treatment and management of mCRC patients. The dual tyrosine kinase inhibitor AEE788 and celecoxib were used to inhibit EGFR/VEGFR and COX-2, respectively, in colorectal cancer cells. COX-2 inhibition with celecoxib augmented the antitumoral and antiangiogenic efficacy of AEE788, as indicated by the inhibition of cell proliferation, induction of apoptosis and G1 cell cycle arrest, down-regulation of VEGF production by cancer cells and reduction of cell migration. These effects were related with a blockade in the EGFR/VEGFR signaling axis. Notably, the combined AEE788/celecoxib treatment prevented β-catenin nuclear accumulation in tumor cells. This effect was associated with a significant downregulation of FOXM1 protein levels and an impairment in the interaction of this transcription factor with β-catenin, which is required for its nuclear localization. Furthermore, the combined treatment also reduced the expression of the stem cell markers Oct 3/4, Nanog, Sox-2 and Snail in cancer cells, and contributed to the diminution of the CSC subpopulation, as indicated by colonosphere formation assays. In conclusion, the combined treatment of AEE788 and celecoxib not only demonstrated enhanced anti-tumoral efficacy in colorectal cancer cells, but also reduced colon CSCs subpopulation by targeting stemness-related pathways. Therefore, the simultaneous targeting of EGFR/VEGF and COX-2 may aid in blocking mCRC progression and improve the efficacy of existing therapies in colorectal cancer. PMID:26107817

  20. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  1. Cyclooxygenase-2 inhibition delays the attainment of peak woven bone formation following four-point bending in the rat.

    PubMed

    Gregory, L S; Forwood, M R

    2007-03-01

    Fracture healing is retarded in the presence of cyclooxygenase-2 (COX-2) inhibitors, demonstrating an important role of COX-2 in trauma-induced woven bone adaptation. The aim of this experiment was to determine the influence of COX-2 inhibition on the remodeling and consolidation of nontraumatic woven bone produced by mechanical loading. A periosteal woven bone callus was initiated in the right tibia of female Wistar rats following a single bout of four-point bending, applied as a haversine wave for 300 cycles at a frequency of 2 Hz and a magnitude of 65 N. Daily injections of vehicle (VEH, polyethylene glycol) or the COX-2 inhibitor 5,5-dimethyl-3-3(3 fluorophenyl)-4-(4-methylsulfonal)phenyl-2(5H)-furanone (DFU, 2.0 mg . kg(-1) and 0.02 mg . kg(-1) i.p.), commenced 7 days postloading, and tibiae were examined 2, 3, 4, and 5 weeks postloading. Tibiae were dissected, embedded in polymethylmethacrylate, and sectioned for histomorphometric analysis of periosteal woven bone. No significant difference in peak woven bone area was observed between DFU-treated and VEH rats. However, treatment with DFU resulted in a temporal defect in woven bone formation, where the achievement of peak woven bone area was delayed by 1 week. Woven bone remodeling was observed in DFU-treated rats at 21 days postloading, demonstrating that remodeling of the periosteal callus is not prevented in the presence of a COX-2 inhibitor in the rat. We conclude that COX-2 inhibition does not significantly disrupt the mechanism of woven bone remodeling but alters its timing.

  2. Chlorella powder inhibits the activities of peptidase cathepsin S, PLA2, cyclooxygenase-2, thromboxane synthase, tyrosine phosphatases, tumor necrosis factor-alpha converting enzyme, calpain and kinases.

    PubMed

    Cheng, Fong-Chi; Feng, Jin-Jye; Chen, Kuo-Hsin; Imanishi, Hideyo; Fujishima, Masaki; Takekoshi, Hideo; Naoki, Yo; Shimoda, Minoru

    2009-01-01

    A Chlorella powder was tested in 118 in vitro enzyme assay systems. The powder showed potent inhibitions of peptidase cathepsin S, thromboxane A(2) synthase and cyclooxygenase-2 in a dose-concentration manner with IC(50)+/-standard error of the mean values of 3.46+/-0.93 microg/ml, 3.23+/-0.69 microg/ml, and 44.26+/-9.98 microg/ml, respectively. Other activities observed were inhibitions of tumor necrosis factor-alpha converting enzyme, protein tyrosine phosphatase (SHP-2), calpain, protein kinases and protein tyrosine phosphatases. Chlorella powder had no significant effect on cyclooxygenase-1. These actions to inhibit cyclooxygenase-2 and thromboxane synthase could contribute to the purported anti-inflammatory and anti-thrombotic effects of Chlorella. These results reveal important potential biochemical activities to be developed that, if confirmed by in vivo studies, might be exploited for the prevention or treatment of several serious pathologies, including inflammatory diseases, immune and cancer.

  3. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance.

    PubMed

    Francés, Daniel E; Motiño, Omar; Agrá, Noelia; González-Rodríguez, Águeda; Fernández-Álvarez, Ana; Cucarella, Carme; Mayoral, Rafael; Castro-Sánchez, Luis; García-Casarrubios, Ester; Boscá, Lisardo; Carnovale, Cristina E; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma

    2015-05-01

    Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction.

  4. Selective cyclo-oxygenase-2 inhibitors: cardiovascular and gastrointestinal toxicity.

    PubMed

    Wallace, J L; Muscará, M N

    2001-12-01

    The introduction of selective inhibitors of cyclo-oxygenase-2 to the marketplace has been much anticipated for several years. It would appear that these compounds have lived up to the expectations of having reduced gastrointestinal toxicity and, at least for some indications, of efficacy similar to that of conventional non-steroidal anti-inflammatory drugs. However, there is a growing body of evidence suggesting that cyclo-oxygenase-2 plays a very important role in gastrointestinal mucosal defence, particularly in situations in which the mucosa is damaged or inflamed. Moreover, physiological roles for cyclo-oxygenase-2 both in the renal and cardiovascular systems are becoming better recognized. Inhibition of cyclo-oxygenase-2 can lead to peripheral oedema and hypertension, and may promote thrombosis. Indeed, there is recent evidence of increased rates of myocardial infarction in arthritis patients taking a selective cyclo-oxygenase-2 inhibitor. Use of low-dose aspirin concurrently with use of a selective cyclo-oxygenase-2 inhibitor may provide some degree of protection against the potential cardiovascular toxicity of the latter but both laboratory and clinical studies suggest that the concomitant use of these two types of drugs results in gastrointestinal ulceration comparable to what is seen with conventional non-steroidal anti-inflammatory drugs. These recent results suggest that care must be exercised in the use of selective cyclo-oxygenase-2 inhibitors by individuals who are at increased risk of myocardial infarction and stroke, and the use of low-dose aspirin by these patients may place them at increased risk of gastrointestinal complications.

  5. Inhibition of cyclooxygenase-2 and activation of peroxisome proliferator-activated receptor-gamma synergistically induces apoptosis and inhibits growth of human breast cancer cells.

    PubMed

    Michael, Michael S; Badr, Mostafa Z; Badawi, Alaa F

    2003-06-01

    Cyclooxygenase-2 (COX-2) expression and peroxisome proliferator-activated receptor-gamma (PPARgamma) inactivation are linked to increased risk of human breast cancer. This study examines the effect of simultaneous targeting of COX-2 and PPARgamma on the proliferation of human breast cancer cells and on the expression of Bcl-2, BAX, and caspases-3 and -9, modulators of apoptotic cell death. Treatment of MDA-MB-231 breast cancer cells with NS-398 (a COX-2 inhibitor) or ciglitazone (CGZ, a PPARgamma-ligand) significantly inhibited cell proliferation and markedly increased apoptotic rates. These effects were accompanied by upregulation of BAX and caspases-3 and -9 mRNA expression and downregulation of Bcl-2. Compared to the influence of separate treatments, simultaneous treatment with NS-398 and CGZ synergistically inhibited cell proliferation and induced apoptotic cell death. In conclusion, combinational targeting of COX-2 and PPARgamma can inhibit the growth of human breast cancer cells and induce apoptosis to an extent more suprior to that produced by targeting each molecule alone. COX-2 and PPARgamma can be promising molecular targets for combinational chemoprevention or treatment of breast cancer.

  6. Protective effects of rosuvastatin in a rat model of lung contusion: Stimulation of the cyclooxygenase 2-prostaglandin E-2 pathway.

    PubMed

    Dolkart, Oleg; Amar, Eyal; Shapira, Shiran; Marmor, Sylvia; Steinberg, Eli L; Weinbroum, Avi A

    2015-05-01

    Lung contusion, which can occur in patients with blunt thoracic trauma, is a leading risk factor for development of acute lung injury (ALI) and acute respiratory distress syndrome. Statins are lipid-lowering drugs with many beneficial antiinflammatory and antioxidative effects. We therefore hypothesized that the administration of statins immediately after trauma will inhibit the production of inflammatory mediators, and thereby alleviate the severity of lung injury. A model of blunt chest injury in rat was employed. The effects of statins (rosuvastatin) and cyclooxygenase-2 (COX-2) inhibitors (meloxicam) on ALI were assessed by measuring inflammatory mediator levels in the serum and in the bronchoalveolar space. Animals were killed at the end of day 3. Histologic evaluation of lung tissue was performed to confirm the presence and severity of lung contusion as well as the effects of statins, nonsteroidal antiinflammatory drugs, and their combination. Administration of meloxicam after lung contusion decreased the amount of neutrophil infiltration; however, marked hemorrhage and edema were still noticed. Administration of rosuvastatin decreased significantly cytokine levels that were increased after the blunt chest trauma. Rosuvastatin increased the expression of inducible nitric oxide (iNOS), COX-2, heme oxygenase-1 (HO-1), and prostaglandin E2 (PGE-2) in the bronchoalveolar lavage fluid of the rat contused lungs. Coadministration of meloxicam prevented these changes. Rosuvastatin treatment after lung contusion attenuated several features of ALI. The enhanced activity of iNOS, COX-2, and HO-1 in the lung may reflect the advent of protective processes that took place in the contused lung. To our knowledge, this is the first demonstration that prostaglandin pathways play an essential role in the effects of statins in lung injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Blockade of cholecystokinin-2 receptor and cyclooxygenase-2 synergistically induces cell apoptosis, and inhibits the proliferation of human gastric cancer cells in vitro.

    PubMed

    Sun, Wei-Hao; Zhu, Feng; Chen, Guo-Sheng; Su, Han; Luo, Cheng; Zhao, Qin-Shi; Zhang, Yuan; Shao, Yun; Sun, Jian; Zhou, Su-Ming; Ding, Guo-Xian; Cheng, Yun-Lin

    2008-05-18

    Gastrin and cyclooxygenase-2 (COX-2) play important roles in the carcinogenesis and progression of gastric cancer. However, it remains unknown whether the combination of cholecystokinin-2 (CCK-2) receptor antagonist plus COX-2 inhibitor exerts synergistic anti-tumor effects on human gastric cancer. Here, we demonstrated that the combination of AG-041R (a CCK-2 receptor antagonist) plus NS-398 (a selective COX-2 inhibitor) treatment had synergistic effects on proliferation inhibition, apoptosis induction, down-regulation of Bcl-2 and up-regulation of Bax expression in MKN-45 cells. These results indicate that simultaneous targeting of CCK-2 receptor and COX-2 may inhibit gastric cancer development more effectively than targeting either molecule alone.

  8. Cyclooxygenase-2-dependent phosphorylation of the pro-apoptotic protein Bad inhibits tonicity-induced apoptosis in renal medullary cells.

    PubMed

    Küper, Christoph; Bartels, Helmut; Beck, Franz-X; Neuhofer, Wolfgang

    2011-11-01

    During antidiuresis, cell survival in the renal medulla requires cyclooxygenase-2 (COX-2) activity. We have recently found that prostaglandin E2 (PGE2) promotes cell survival by phosphorylation and, hence, inactivation of the pro-apoptotic protein Bad during hypertonic stress in Madin-Darby canine kidney (MDCK) cells in vitro. Here we determine the role of COX-2-derived PGE(2) on phosphorylation of Bad and medullary apoptosis in vivo using COX-2-deficient mice. Both wild-type and COX-2-knockout mice constitutively expressed Bad in tubular epithelial cells of the renal medulla. Dehydration caused a robust increase in papillary COX-2 expression, PGE2 excretion, and Bad phosphorylation in wild-type, but not in the knockout mice. The abundance of cleaved caspase-3, a marker of apoptosis, was significantly higher in papillary homogenates, especially in tubular epithelial cells of the knockout mice. Knockdown of Bad in MDCK cells decreased tonicity-induced caspase-3 activation. Furthermore, the addition of PGE2 to cells with knockdown of Bad had no effect on caspase-3 activation; however, PGE2 caused phosphorylation of Bad and substantially improved cell survival in mock-transfected cells. Thus, tonicity-induced COX-2 expression and PGE2 synthesis in the renal medulla entails phosphorylation and inactivation of the pro-apoptotic protein Bad, thereby counteracting apoptosis in renal medullary epithelial cells.

  9. Gene Therapy With Inducible Nitric Oxide Synthase Protects Against Myocardial Infarction via a Cyclooxygenase-2—Dependent Mechanism

    PubMed Central

    Li, Qianhong; Guo, Yiru; Xuan, Yu-Ting; Lowenstein, Charles J.; Stevenson, Susan C.; Prabhu, Sumanth D.; Wu, Wen-Jian; Zhu, Yanqing; Bolli, Roberto

    2013-01-01

    Although the inducible isoform of NO synthase (iNOS) mediates late preconditioning (PC), it is unknown whether iNOS gene transfer can replicate the cardioprotective effects of late PC, and the role of this protein in myocardial ischemia is controversial. Thus, the cDNA for human iNOS was cloned behind the Rous sarcoma virus (RSV) promoter to create adenovirus (Ad) 5/iNOS lacking E1, E2a, and E3 regions. Intramyocardial injection of Ad5/iNOS in mice increased local iNOS protein expression and activity and markedly reduced infarct size. The infarct-sparing effects of Ad5/iNOS were at least as powerful as those of ischemic PC. The increased iNOS expression was associated with increased cyclooxygenase-2 (COX-2) protein expression and prostanoid levels. Pretreatment with the COX-2–selective inhibitor NS-398 completely abrogated the infarct-sparing actions of Ad5/iNOS, demonstrating that COX-2 is an obligatory downstream effector of iNOS-dependent cardioprotection. We conclude that gene transfer of iNOS (an enzyme commonly thought to be detrimental) affords powerful cardioprotection the magnitude of which is equivalent to that of late PC. This is the first report that upregulation of iNOS, in itself, is sufficient to reduce infarct size. The results provide proof-of-principle for gene therapy against ischemia/reperfusion injury, which increases local myocardial NO synthase levels without the need for continuous intravenous infusion of NO donors and without altering systemic hemodynamics. The data also reveal the existence of a close coupling between iNOS and COX-2, whereby induction of the former enzyme leads to secondary induction of the latter, which in turn mediates the cytoprotective effects of iNOS. We propose that iNOS and COX-2 form a stress-responsive functional module that mitigates ischemia/reperfusion injury. PMID:12702642

  10. Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer.

    PubMed

    Moon, Chang Mo; Kwon, Ji-Hee; Kim, Ji Suk; Oh, Sun-Hee; Jin Lee, Kyoung; Park, Jae Jun; Pil Hong, Sung; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2014-02-01

    Cancer stem cells (CSCs) play a pivotal role in cancer relapse or metastasis. We investigated the CSC-suppressing effect of nonsteroidal anti-inflammatory drugs (NSAIDs) and the relevant mechanisms in colorectal cancer. We measured the effect of NSAIDs on CSC populations in Caco-2 or SW620 cells using colosphere formation and flow cytometric analysis of PROM1 (CD133)(+) CD44(+) cells after indomethacin treatment with/without prostaglandin E2 (PGE2) or peroxisome proliferator-activated receptor γ (PPARG) antagonist, and examined the effect of indomethacin on transcriptional activity and protein expression of NOTCH/HES1 and PPARG. These effects of indomethacin were also evaluated in a xenograft mouse model. NSAIDs (indomethacin, sulindac and aspirin), celecoxib, γ-secretase inhibitor and PPARG agonist significantly decreased the number of colospheres formation compared to controls. In Caco-2 and SW620 cells, compared to controls, PROM1 (CD133)(+) CD44(+) cells were significantly decreased by indomethacin treatment, and increased by 5-fluorouracil (5-FU) treatment. This 5-FU-induced increase of PROM1 (CD133)(+) CD44(+) cells was significantly attenuated by combination with indomethacin. This CSC-inhibitory effect of indomethacin was reversed by addition of PGE2 and PPARG antagonist. Indomethacin significantly decreased CBFRE and increased PPRE transcriptional activity and their relative protein expressions. In xenograft mouse experiments using 5-FU-resistant SW620 cells, the 5-FU treatment combined with indomethacin significantly reduced tumor growth, compared to 5-FU alone. In addition, treatment of indomethacin alone or combination of 5-FU and indomethacin decreased the expressions of PROM1 (CD133), CD44, PTGS2 (cyclooxygenase 2) and HES1, and increased PPARG expression. NSAIDs could selectively reduce the colon CSCs and suppress 5-FU-induced increase of CSCs via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1, and activating PPARG.

  11. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer

    PubMed Central

    Yu, Xiao-Juan; Sun, Kun; Tang, Xiao-He; Zhou, Cun-Jin; Sun, Hui; Yan, Zhe; Fang, Ling; Wu, Hong-Wen; Xie, Yi-Kui; Gu, Bin

    2016-01-01

    Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression. PMID:27446381

  12. Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes.

    PubMed

    Van Dross, Rukiyah T; Hong, Xiaoman; Pelling, Jill C

    2005-10-01

    Apigenin is a nonmutagenic bioflavonoid that has been shown to be an inhibitor of mouse skin carcinogenesis induced by the two-stage regimen of initiation and promotion with dimethylbenzanthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). These DMBA/TPA-induced squamous cell carcinomas overexpress cyclooxygenase-2 (COX-2). Cyclooxygenases are key enzymes required for prostaglandin (PG) synthesis, converting the arachidonic acid (AA) released by phospholipase A2 into prostaglandins. A large body of evidence indicates that the inducible form of cyclooxygenase, COX-2, is involved in tumor promotion and carcinogenesis in a wide variety of tissue types, including colon, breast, lung, and skin. In the present study, we have determined that apigenin inhibited the TPA-induced increase in COX-2 protein and mRNA in the human keratinocyte cell line; HaCaT. The induction of COX-2 elicited by TPA correlated with increased activation of Akt kinase and cell treatment with the PI3 kinase inhibitor, LY294002, blocked TPA induction of COX-2. In cells treated with TPA and apigenin, the inhibition of COX-2 expression correlated with inhibition of Akt kinase activation. Apigenin-mediated inhibition of TPA-induced COX-2 expression was reversed by transient transfection with constitutively active Akt (CA-Akt). Chemical inhibitors of MEK (PD98059), p38 (SB202190), but not JNK (SP600125) blocked TPA induction of COX-2 although apigenin did not inhibit TPA-mediated COX-2 expression through these pathways. The TPA-induced release of AA from HaCaT cells was also inhibited by cell treatment with apigenin. These data show that apigenin inhibits TPA-mediated COX-2 expression by blocking signal transduction of Akt and that apigenin also blocks AA release, which may contribute to its chemopreventive activity. (c) 2005 Wiley-Liss, Inc.

  13. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages.

    PubMed

    Chen, Ching-Wen; Lee, Sho Tone; Wu, Wen Tung; Fu, Wen-Mei; Ho, Feng-Ming; Lin, Wan Wan

    2003-11-01

    1. Although capsaicin analogs might be a potential strategy to manipulate inflammation, the mechanism is still unclear. In this study, the effects and action mechanisms of vanilloid analogs on iNOS and COX-2 expression were investigated in RAW264.7 macrophages. 2. Capsaicin and resiniferatoxin (RTX) can inhibit LPS- and IFN-gamma-mediated NO production, and iNOS protein and mRNA expression with similar IC50 values of around 10 microm. 3. Capsaicin also transcriptionally inhibited LPS- and PMA-induced COX-2 expression and PGE2 production. However, this effect exhibited a higher potency (IC50: 0.2 microm), and RTX failed to elicit such responses at 10 microm. 4. Interestingly, we found that capsazepine, a competitive TRPV1 antagonist, did not prevent the inhibition elicited by capsaicin or RTX. Nevertheless, it mimicked vanilloids in inhibiting iNOS/NO and COX-2/PGE2 induction with an IC50 value of 3 microm. RT-PCR and immunoblotting analysis excluded the expression of TRPV1 in RAW264.7 macrophages. 5. The DNA binding assay demonstrated the abilities of vanilloids to inhibit LPS-elicited NF-kappaB and AP-1 activation and IFN-gamma-elicited STAT1 activation. The reporter assay of AP-1 activity also supported this action. 6. The kinase assay indicated that ERK, JNK, and IKK activation by LPS were inhibited by vanilloids. 7. In conclusion, vanilloids can modulate the expression of inflammatory iNOS and COX-2 genes in macrophages through interference with upstream signalling events of LPS and IFN-gamma. These findings provide new insights into the potential benefits of the active ingredient in hot chilli peppers in inflammatory conditions.

  14. Reduction of p38 mitogen-activated protein kinase and cyclooxygenase-2 signaling by isoflurane inhibits proliferation and apoptosis evasion in human papillomavirus-infected laryngeal papillomas

    PubMed Central

    Ren, Hongbo; Shi, Xiaojuan; Li, Ying

    2016-01-01

    Human laryngeal papilloma (LP) is a human papillomavirus-induced hyperplastic tumor of the respiratory tract, which is characterized by rapid growth and apoptosis resistance. Isoflurane (ISO) inhibits proliferation and elicits apoptosis in cancer cells. The results of the present study found that the mRNA and protein levels of cyclooxygenase-2 (COX2) were higher in LP tissues than in normal laryngeal samples, and prostaglandin E2 (PGE2) production was increased in LP cells, as determined by quantitative polymerase chain reaction, western blot and radioimmunoassay analyses. Notably, the increase in COX2 and PGE2 levels was significantly abrogated in the ISO-treated LP cells. The inhibitory effects of ISO on COX2 expression and activity depended on the inactivation of p38 mitogen-activated protein kinase (MAPK) in LP cells. By inhibiting the COX2 activity of LP cells, ISO treatment markedly suppressed cell viability and proliferation, as determined using Cell Counting Kit-8, flow cytometry and 5-ethynyl-20-deoxyuridine incorporation assays. Furthermore, ISO treatment promoted cell apoptosis, as demonstrated by flow cytometry, nucleosomal fragmentation and caspase-3 activity assays. Collectively, the present results suggest that COX2 is critical in the progression of LP, and ISO is a potential agent for LP therapy by impeding p38 MAPK/COX2 signaling. PMID:27882174

  15. Salvianolic Acid B Inhibits Growth of Head and Neck Squamous Cell Carcinoma in vitro and in vivo via Cyclooxygenase-2 and Apoptotic Pathways

    PubMed Central

    Hao, Yubin; Xie, Tianpei; Korotcov, Alexandru; Zhou, Yanfei; Pang, Xiaowu; Shan, Liang; Ji, Hongguang; Sridhar, Rajagopalan; Wang, Paul; Califano, Joseph; Gu, Xinbin

    2010-01-01

    Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a non steroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer preventive agent. Concerns about cardiotoxicity of celecoxib, limits its use in long term chemoprevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China. The purpose of this study was to investigate the mechanisms by which Sal-B inhibits HNSCC growth. Sal-B was isolated from Salvia miltiorrhiza Bge by solvent extraction followed by two chromatographic steps. Pharmacological activity of Sal-B was assessed in HNSCC and other cell lines by estimating COX-2 expression, cell viability and caspase-dependent apoptosis. Sal-B inhibited growth of HNSCC JHU-022 and JHU-013 cells with IC50 of 18 and 50 µM respectively. Nude mice with HNSCC solid tumor xenografts were treated with Sal-B (80mg/kg/day) or celecoxib (5mg/kg/day) for 25 days to investigate in vivo effects of the COX-2 inhibitors. Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p<0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E2 synthesis, either with or without lipopolysaccharide stimulation. Taken together, Sal-B shows promise as a COX-2 targeted anticancer agent for HNSCC prevention and treatment. PMID:19123475

  16. Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells.

    PubMed

    Niu, Zhidan; Zhang, Wenya; Gu, Xueyan; Zhang, Xiaoning; Qi, Yongmei; Zhang, Yingmei

    2016-07-01

    Mitochondrial damage can trigger mitophagy and eventually suppress proliferation. However, the effect of mitophagy on proliferation remains unclear. In this study, HepG2 cells were used to assess mitophagy and proliferation arrest in response to As2O3 exposure. The stimulatory effect of As2O3 on mitophagy was investigated by assessing morphology (mitophagosome and mitolysosome) and relevant proteins (PINK1, LC3 II/I, and COX IV). Additionally, the relationship of mitophagy and proliferation was explored through the use of mitophagy inhibitors (CsA, Mdivi-1). Interestingly, the inhibition of mitophagy rescued proliferation arrest by restoring COX-2 protein level and countered the elimination of mitochondria-located COX-2 and up-regulated the COX-2 mRNA level. Taken together, our findings indicated that mitophagy can be induced and can inhibit proliferation by reducing COX-2 in HepG2 cells during As2O3 treatment.

  17. Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro.

    PubMed

    Rathore, Kusum; Alexander, Mary; Cekanova, Maria

    2014-08-01

    Development and characterization of animal models for human cancers is important for the improvement of diagnosis and therapy. The oral squamous cell carcinoma (OSCC) of domestic animals resembles human OSCC in many aspects; thus, cell lines derived from OSCC of cats and dogs are a valuable model for human OSCC. We characterized 1 feline OSCC (FeOSCC-Sidney) and 1 canine OSCC (K9OSCC-Abby) cell line and compared their characteristics with human OSCC cell line hSCC-25. We calculated the doubling time of the new OSCC cell lines and evaluated the expression profiles of cancer-related markers and cell-cycle proteins such as c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor, epidermal growth factor receptor, cyclooxygenase (COX)-1, COX-2, and p27 by immunocytochemistry and Western blot analysis. We evaluated the effects of novel receptor tyrosine kinase inhibitor (Masitinib, AB1010) and the nonsteroidal anti-inflammatory drug piroxicam on the previously mentioned OSCC cells. Interestingly, AB1010 increased expression levels of COX-2 in all tested OSCCs. Cotreatment of piroxicam with Masitinib significantly inhibited cell proliferation of OSCC as compared to either drug alone through the c-kit and AKT signaling pathways. Piroxicam inhibited Masitinib-induced COX-2 expression in all tested OSCCs. Therefore, targeting these two signaling pathways simultaneously was more efficient for inhibition of OSCCs across these species.

  18. Lansoprazole induces mucosal protection through gastrin receptor-dependent up-regulation of cyclooxygenase-2 in rats.

    PubMed

    Tsuji, Shingo; Sun, Wei-Hao; Tsujii, Masahiko; Kawai, Naoki; Kimura, Arata; Kakiuchi, Yoshimi; Yasumaru, Shoichi; Komori, Masato; Murata, Hiroaki; Sasaki, Yutaka; Kawano, Sunao; Hori, Masatsugu

    2002-12-01

    Proton pump inhibitors (PPIs) are antiulcer agents that have both gastric antisecretory and mucosal protective actions. The mechanisms of PPI-induced gastric mucosal protection are not known. The present study was designed to examine the mechanism for lansoprazole-induced gastric mucosal protection in rats. Rats were given 0.5, 5, and 50 mg/kg/day lansoprazole alone or both lansoprazole (50 mg/kg/day) and a specific gastrin receptor antagonist 3R-1-(2,2-diethoxyethyl)-((4-methylphenyl)amino-carbonyl methyl)-3-((4-methylphenyl)ureidoindoline-2- one) (AG-041R) (3, 10, and 30 mg/kg/day) for 14 days. Serum gastrin concentrations were measured. The expression of cyclooxygenases (COX-1 and COX-2) in the gastric mucosa was analyzed using Western blotting and immunohistochemical staining. Another series of rats was used to examine the 1) levels of prostaglandin (PG) E2 in gastric mucosa, 2) influences of the drugs on gastric damage caused by absolute ethanol, and 3) effects of a COX-2-specific inhibitor on PGE2 in the gastric mucosa and the mucosal protection afforded by lansoprazole. Lansoprazole dose dependently increased the serum gastrin concentration and enhanced the mucosal expression of COX-2 but not that of COX-1. Lansoprazole increased gastric mucosal PGE2 and reduced gastric damage caused by ethanol. Concomitant administration of AG-041R abolished the lansoprazole-induced COX-2 expression, and increased mucosal PGE2 and mucosal protection. A specific COX-2 inhibitor blocked the lansoprazole-induced increase in mucosal PGE2 and mucosal protection. Activation of gastrin receptors by endogenous gastrin has a pivotal role in the effects of lansoprazole on COX-2 up-regulation and mucosal protection in the rat stomach.

  19. Rhizoma Paridis Saponins Suppresses Tumor Growth in a Rat Model of N-Nitrosomethylbenzylamine-Induced Esophageal Cancer by Inhibiting Cyclooxygenases-2 Pathway.

    PubMed

    Yan, Shu; Tian, Shuxia; Kang, Qingwei; Xia, Yafei; Li, Caixia; Chen, Qing; Zhang, Shukun; Li, Zhigang

    2015-01-01

    Rhizoma Paridis Saponins (RPS), a natural compound purified from Rhizoma Paridis, has been found to inhibit cancer growth in vitro and in animal models of cancer. However, its effects on esophageal cancer remain unexplored. The purpose of this study was to investigate the effects of RPS on tumor growth in a rat model of esophageal cancer and the molecular mechanism underlying the effects. A rat model of esophageal cancer was established by subcutaneous injection of N-nitrosomethylbenzylamine (NMBA, 1 mg/kg) for 10 weeks. RPS (350 mg/kg or 100 mg/kg) was administered by oral gavage once daily for 24 weeks starting at the first NMBA injection. RPS significantly reduced the size and number of tumors in the esophagus of rats exposed to NMBA and inhibited the viability, migration, and invasion of esophageal cancer cells EC9706 and KYSE150 in a dose dependent manner (all P < 0.01). Flow cytometry revealed that RPS induced apoptosis and cell cycle G2/M arrest in the esophageal cancer cells. The expression of cyclooxygenases-2 (COX-2) and Cyclin D1 in rat esophageal tissues and the esophageal cancer cells were also significantly reduced by RPS (all P < 0.01). Consistently, RPS also significantly decreased the release of prostaglandin E2, a downstream molecule of COX-2, in a dose-dependent manner (P < 0.01). Our study suggests that RPS inhibit esophageal cancer development by promoting apoptosis and cell cycle arrest and inhibiting the COX-2 pathway. RPS might be a promising therapeutic agent for esophageal cancer.

  20. Rhizoma Paridis Saponins Suppresses Tumor Growth in a Rat Model of N-Nitrosomethylbenzylamine-Induced Esophageal Cancer by Inhibiting Cyclooxygenases-2 Pathway

    PubMed Central

    Yan, Shu; Tian, Shuxia; Kang, Qingwei; Xia, Yafei; Li, Caixia; Chen, Qing; Zhang, Shukun; Li, Zhigang

    2015-01-01

    Rhizoma Paridis Saponins (RPS), a natural compound purified from Rhizoma Paridis, has been found to inhibit cancer growth in vitro and in animal models of cancer. However, its effects on esophageal cancer remain unexplored. The purpose of this study was to investigate the effects of RPS on tumor growth in a rat model of esophageal cancer and the molecular mechanism underlying the effects. A rat model of esophageal cancer was established by subcutaneous injection of N-nitrosomethylbenzylamine (NMBA, 1mg/kg) for 10 weeks. RPS (350 mg/kg or 100mg/kg) was administered by oral gavage once daily for 24 weeks starting at the first NMBA injection. RPS significantly reduced the size and number of tumors in the esophagus of rats exposed to NMBA and inhibited the viability, migration, and invasion of esophageal cancer cells EC9706 and KYSE150 in a dose dependent manner (all P < 0.01). Flow cytometry revealed that RPS induced apoptosis and cell cycle G2/M arrest in the esophageal cancer cells. The expression of cyclooxygenases-2 (COX-2) and Cyclin D1 in rat esophageal tissues and the esophageal cancer cells were also significantly reduced by RPS (all P < 0.01). Consistently, RPS also significantly decreased the release of prostaglandin E2, a downstream molecule of COX-2, in a dose-dependent manner (P < 0.01). Our study suggests that RPS inhibit esophageal cancer development by promoting apoptosis and cell cycle arrest and inhibiting the COX-2 pathway. RPS might be a promising therapeutic agent for esophageal cancer. PMID:26147856

  1. The Bitter Barricading of Prostaglandin Biosynthesis Pathway: Understanding the Molecular Mechanism of Selective Cyclooxygenase-2 Inhibition by Amarogentin, a Secoiridoid Glycoside from Swertia chirayita

    PubMed Central

    Sundar, Durai; Thorat, Sunil S.

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was −52.35 KCal/mol against a binding free energy of −8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  2. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase.

    PubMed

    Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin

    2017-01-29

    Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mechanisms underlying aspirin-mediated growth inhibition and apoptosis induction of cyclooxygenase-2 negative colon cancer cell line SW480

    PubMed Central

    Lai, Ming-Yu; Huang, Jie-An; Liang, Zhi-Hai; Jiang, Hai-Xing; Tang, Guo-Du

    2008-01-01

    AIM: To investigate the effects of aspirin (acetylsalicylic acid) on proliferation and apoptosis of colorectal cancer cell line SW480 and its mechanism. METHODS: Cyclooxygenase (COX)-2 negative colorectal cancer cell line SW480 was treated with aspirin at concentrations of 2.5 mmol/L, 5.0 mmol/L, 10.0 mmol/L for different periods in vitro. Anti-proliferation effect of aspirin on SW480 was detected by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and apoptosis were observed by flow cytometry (FCM). Transmission electron microscope (TEM) was used for morphological study. Apoptosis-associated genes were detected by immunohistochemical staining and Western blotting. RESULTS: Aspirin inhibited SW480 proliferation and induced apoptosis in a dose- and time-dependent manner. Treatment with different concentrations of aspirin significantly increased the proportions of cells at the G0/G1 phase and decreased the proportions of cells at the S- and G2/M phases in a concentration-dependent manner. Aspirin not only induced apoptosis but also caused cell necrosis at a high concentration as well. After treatment with aspirin, SW480 cells displayed typically morphological features of apoptosis and necrosis under TEM, and increased the Bcl-2 expression in cells, but the expression of Bax was down regulated. CONCLUSION: Aspirin inhibits proliferation and induces apoptosis of SW480 cells. Its anti-tumor mechanism may arrest cell cycle and shift Bax/Bcl-2 balance in cells. PMID:18636671

  4. Aqueous Extract of the Edible Gracilaria tenuistipitata Inhibits Hepatitis C Viral Replication via Cyclooxygenase-2 Suppression and Reduces Virus-Induced Inflammation

    PubMed Central

    Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections. PMID:23469054

  5. NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Yun, Yang; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-03-01

    Air pollution has been reported to be associated with increased risks of cognitive impairment and neurodegenerative diseases. Because NO2 is a typical primary air pollutant and an important contributor to secondary aerosols, NO2-induced neuronal functional abnormalities have attracted greater attention, but the available experimental evidence, modulating mechanisms, and targeting medications remain ambiguous. In this study, we exposed C57BL/6J and APP/PS1 mice to dynamic NO2 inhalation and found for the first time that NO2 inhalation caused deterioration of spatial learning and memory, aggravated amyloid β42 (Aβ42) accumulation, and promoted pathological abnormalities and cognitive defects related to Alzheimer’s disease (AD). The microarray and bioinformation data showed that the cyclooxygenase-2 (COX-2)-mediated arachidonic acid (AA) metabolism of prostaglandin E2 (PGE2) played a key role in modulating this aggravation. Furthermore, increasing endocannabinoid 2-arachidonoylglycerol (2-AG) by inhibiting monoacylglycerol lipase (MAGL) prevented PGE2 production, neuroinflammation-associated Aβ42 accumulation, and neurodegeneration, indicating a therapeutic target for relieving cognitive impairment caused by NO2 exposure.

  6. Theiler's virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10.

    PubMed

    Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Ortiz, Sergio; Vela, José M; Guaza, Carmen

    2002-05-24

    Theiler's murine encephalomyelitis virus (TMEV) causes an acute encephalomyelitis followed by a persistent infection of the central nervous system (CNS) resulting in a chronic inflammation and axonal demyelination in susceptible strains of mice. The pathogenesis of TMEV-induced demyelinating disease remains unknown, but infection of brain glial cells is a critical factor for virus persistence in the CNS. In the present study we investigated the effects of the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) on the production of inflammatory mediators, such as prostaglandins, after infection of primary astroglial SJL/J murine cultures with TMEV. This infection resulted in a time-dependent transcription of the gene encoding cyclooxygenase-2 (COX-2) and an increased production of prostaglandin E2 (PGE(2)). Both, IL-4 but mainly, IL-10 (1 and 10 ng/ml) decreased the TMEV-induced expression of COX-2 as well as the synthesis of PGE(2). Interestingly, treatment with IL-10 completely abrogated COX-2 induction. The molecular mechanisms involved in the regulation of COX-2 expression by TMEV are unknown, but the effects of anti-inflammatory cytokines may involve the inhibition of the transcription factor nuclear factor B activity and lead to strategies capable of interrupting the inflammatory cascade triggered by TMEV in brain glial cells.

  7. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation.

    PubMed

    Chen, Kuan-Jen; Tseng, Chin-Kai; Chang, Fang-Rong; Yang, Jin-Iong; Yeh, Chi-Chen; Chen, Wei-Chun; Wu, Shou-Fang; Chang, Hsueh-Wei; Lee, Jin-Ching

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.

  8. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera.

    PubMed

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P; Pezzuto, John M

    2011-01-01

    Moringa oleifera Lamarck is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential antiinflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC(50) = 0.96 ± 0.23 μM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC(50) = 2.86 ± 0.39 μM) and benzyl isothiocyanate (IC(50) = 2.08 ± 0.28 μM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal-regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB and subsequent binding to NF-κB cis-acting element was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating antiinflammatory or cancer chemopreventive activity.

  9. Temporal expression of the PGE2 synthetic system in the kidney is associated with the time frame of renal developmental vulnerability to cyclooxygenase-2 inhibition.

    PubMed

    Frölich, Stefanie; Olliges, Anke; Kern, Niklas; Schreiber, Yannik; Narumiya, Shuh; Nüsing, Rolf M

    2012-07-15

    Pharmacological blockade of cyclooxygenase-2 (COX-2) causes impairment of kidney development. The present study was aimed at determining temporal expression pattern and activity of the PGE(2) synthetic pathway during postnatal nephrogenesis in mice and its association to the time window sensitive to COX-2 inhibition. During the first 10 days after birth, we observed transient induction of mRNA and protein for microsomal PGE synthase (mPGES)-1 between postnatal days 4 (P4) and P8, but not for mPGES-2 or cytosolic PGE synthase (cPGES). PGE(2) synthetic activity using arachidonic acid and PGH(2) as substrates and also urinary excretion of PGE(2) were enhanced during this time frame. In parallel to the PGE(2) system, COX-2 but not COX-1 expression was also transiently induced. Studying glomerulogenesis in EP receptor knockout mice revealed a reduction in glomerular size in EP1(-/-), EP2(-/-), and EP4(-/-) mice, supporting the developmental role of PGE(2). The most vulnerable time window to COX-2 inhibition by SC-236 was found closely related to the temporal expression of COX-2 and mPGES-1. The strongest effects of COX-2 inhibition were achieved following 8 days of drug administration. Similar developmental damage was caused by application of rofecoxib, but not by the COX-1-selective inhibitor SC-560. COX-2 inhibition starting after P10 has had no effect on the size of glomeruli or on the relative number of superficial glomeruli; however, growth of the renal cortex was significantly diminished, indicating the requirement of COX-2 activity after P10. Effects of COX-2 inhibition on renal cell differentiation and on renal fibrosis needed a prolonged time of exposition of at least 10 days. In conclusion, temporal expression of the PGE(2) synthetic system coincides with the most vulnerable age interval for the induction of irreversible renal abnormalities. We assume that mPGES-1 is coregulated with COX-2 for PGE(2) synthesis to orchestrate postnatal kidney development and

  10. Efficacy of cyclo-oxygenase-2 inhibition by etoricoxib and naproxen on the axial manifestations of ankylosing spondylitis in the presence of peripheral arthritis

    PubMed Central

    Gossec, L; van der Heijde, D; Melian, A; Krupa, D; James, M; Cavanaugh, P; Reicin, A; Dougados, M

    2005-01-01

    Objective: The combined efficacy of selective and non-selective cyclo-oxygenase-2 (COX-2) inhibition on the axial manifestations of ankylosing spondylitis (AS) in the presence or absence of chronic peripheral arthritis was evaluated. Methods: In a post hoc subgroup analysis of a 6 week, randomised, double blind, placebo controlled trial, 387 patients with active axial AS were randomised to receive etoricoxib 90 mg or 120 mg once a day, naproxen 500 mg twice daily, or placebo. Randomisation was stratified by the presence or absence of chronic peripheral arthritis. The primary outcome measure was the time weighted average change from baseline of spine pain intensity. Efficacy data from the three groups receiving active treatment (the NSAID/COX-2 inhibitor group) were combined to improve precision. An analysis of covariance model was used to evaluate the effect of peripheral disease on treatment response. Results: 93 patients were allocated to receive placebo and 294 to active treatment (naproxen or etoricoxib). The combined NSAID/COX-2 inhibitor group had a significant treatment response compared with the placebo group for all efficacy measures, both in patients with and without peripheral arthritis. A significantly greater difference in mean patient assessment of spine pain was found between active and placebo treatments in patients without compared with those with peripheral arthritis (p = 0.005; –32.5 mm v –17.0 mm, respectively). Similar differences, although not statistically significant, were seen for other end points. Conclusion: NSAIDs and COX-2 inhibitors have a clinically relevant symptomatic effect on axial AS irrespective of the presence of peripheral arthritis. In this exploratory analysis spinal improvement appeared to be greater in patients without peripheral disease. PMID:15731291

  11. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 transcription by 6-(methylsulfinyl) hexyl isothiocyanate, a chemopreventive compound from Wasabia japonica (Miq.) Matsumura, in mouse macrophages.

    PubMed

    Uto, Takuhiro; Fujii, Makoto; Hou, De-Xing

    2005-12-05

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC) is a chemopreventive compound occurring in Wasabi (Wasabia japonica (Miq.) Matsumura), which is a very popular pungent spice in Japan. We investigated the effects of 6-MITC on the expression of cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Treatment with 6-MITC suppressed LPS-mediated induction of COX-2 protein in a dose-dependent manner. Transfections with various COX-2 promoter reporter constructs revealed that the inhibitory effects of 6-MITC on COX-2 gene expression were directed by the core promoter elements including nuclear factor kappaB (NF-kappaB), CCAAT/enhancer-binding protein (C/EBP) and cyclic AMP-response element (CRE) sites. Western blotting analysis showed that 6-MITC inhibited LPS-induced activation of MAPK (ERK, p38 kinase and JNK) and transcriptional factors (CREB, c-Jun and C/EBPdelta) binding the core elements of COX-2 promoter, substantiating the involvement of these signal transduction pathways in the regulation of COX-2 expression by 6-MITC. Moreover, Western blotting experiments with MAPK-specific inhibitors (U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) demonstrated that 6-MITC suppressed LPS-induced COX-2 expression by blocking the activation of JNK-mediated AP-1 and ERK/p38 kinase-mediated CREB or C/EBPdelta. Finally, the structure-activity study revealed that the inhibitory potency of methylsulfinyl isothiocyanates (MITCs) depended on the methyl chain length. These findings demonstrate for the first time that 6-MITC is an effective agent to attenuate COX-2 production, and enhance our understanding of the anti-inflammation properties of 6-MITC.

  12. MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2

    PubMed Central

    Shao, Ying; Li, Peng; Zhu, Sheng-Tao; Yue, Ji-Ping; Ji, Xiao-Jun; Ma, Dan; Wang, Li; Wang, Yong-Jun; Zong, Ye; Wu, Yong-Dong; Zhang, Shu-Tian

    2016-01-01

    The altered expression of miRNAs is involved in carcinogenesis of esophageal squamous cell carcinoma (ESCC), but whether miRNAs regulate COX-2 expression in ESCC is not clear. To this end, the expression levels of miR-26a and miR-144 in ESCC clinical tissues and cell lines were investigated by qRT-PCR. COX-2 and PEG2 were quantified by western blot and ELISA. Decrease in miR-26a and miR-144 expression in ESCC was found by a comparison between 30 pairs of ESCC tumor and adjacent normal tissues as well as in 11 ESCC cell lines (P < 0.001). Co-transfection of miR-26a and miR-144 in ESCC cell lines more significantly suppressed cell proliferation, migration, and invasion than did either miR-26a or miR-144 alone (all P < 0.001), as shown by assays of CCK8, migration and invasion and flow cytometry. The inhibitory effect of these two miRNAs in vivo was also verified in nude mice xenograft models. COX-2 was confirmed as a target of miR-26a and miR-144. In conclusion, miR-26a and miR-144 expression is downregulated in ESCC. Co-expression of miR-26a and miR-144 in ESCC cells resulted in inhibition of proliferation and metastasis in vitro and in vivo, suggesting that targeting COX-2 may be the mechanism of these two miRNAs. PMID:26959737

  13. C-Phycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line.

    PubMed

    Nishanth, Reddy P; Ramakrishna, B S; Jyotsna, Radhika G; Roy, Karnati R; Reddy, Gorla V; Reddy, Pratap K; Reddanna, Pallu

    2010-12-15

    The effects of C-Phycocyanin (C-PC), a biliprotein from Spirulina platensis on the regulation of multidrug resistance-1 (MDR1), a poly glycoprotein in human hepatocarcinoma cell line, HepG2 were reported. The results revealed that a significant down regulation of MDR1 expression in C-PC treated HepG2 cells was through reactive oxygen species and cyclooxygenase-2 (COX-2) mediated pathways. C-PC in a concentration dependent manner increased the accumulation of doxorubicin in HepG2 cells and enhanced sensitivity of the cells to doxorubicin by 5 folds. The induction of MDR1 expression by PGE₂ and its down regulation by C-PC and DPI (Diphenylene iodonium, NADPH oxidase inhibitor) or by COX-2 knockdown suggest that the enhanced sensitivity of HepG2 cells to doxorubicin by C-PC is mediated by the down regulation of MDR1 expression. Further studies reveal the involvement of NF-κB and AP-1 in the C-PC induced down regulation of MDR1. Also the inactivation of the signal transduction pathways involving Akt, ERK, JNK and p38 by C-PC was observed. The present study thus demonstrates the efficacy of C-PC in overcoming the MDR1 mediated drug resistance in HepG2 cells by the down regulation of reactive oxygen species and COX-2 pathways via the involvement of NF-κB and AP-1.

  14. Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors

    PubMed Central

    Guerrero, Carlos Arturo; Pardo, Paula; Rodriguez, Victor; Guerrero, Rafael; Acosta, Orlando

    2013-01-01

    Live attenuated vaccines have recently been introduced for preventing rotavirus disease in children. However, alternative strategies for prevention and treatment of rotavirus infection are needed mainly in developing countries where low vaccine coverage occurs. In the present work, N-acetylcysteine (NAC), ascorbic acid (AA), some nonsteroidal anti-inflammatory drugs (NSAIDs) and peroxisome proliferator-activated receptor gamma (PPARγ) agonists were tested for their ability to interfere with rotavirus ECwt infectivity as detected by the percentage of viral antigen-positive cells of small intestinal villi isolated from ECwt-infected ICR mice. Administration of 6 mg NAC/kg every 8 h for three days following the first diarrhoeal episode reduced viral infectivity by about 90%. Administration of AA, ibuprofen, diclofenac, pioglitazone or rosiglitazone decreased viral infectivity by about 55%, 90%, 35%, 32% and 25%, respectively. ECwt infection of mice increased expression of cyclooxygenase-2, ERp57, Hsc70, NF-κB, Hsp70, protein disulphide isomerase (PDI) and PPARγ in intestinal villus cells. NAC treatment of ECwt-infected mice reduced Hsc70 and PDI expression to levels similar to those observed in villi from uninfected control mice. The present results suggest that the drugs tested in the present work could be assayed in preventing or treating rotaviral diarrhoea in children and young animals. PMID:24037197

  15. Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behavior: involving the inhibition of cyclooxygenase-2 in rat brain.

    PubMed

    Li, Yu-Cheng; Shen, Ji-Duo; Li, Jing; Wang, Rui; Jiao, Shuo; Yi, Li-Tao

    2013-01-10

    Baicalin, a major constituent of flavonoids isolated from Scutellariae Radix, has been previously confirmed to decrease the duration of immobility in mice exposed to the forced swimming test (FST) and tail suspension test (TST). However, its antidepressant effects and mechanisms are still seldom studied in chronic mild stress (CMS) model of depression. In the present study, we attempted to investigate the effects of baicalin on the depressive-like behavior, the mRNA expression and activity of cyclooxygenase-2 (COX-2), as well as prostaglandin E(2) (PGE(2)) levels in the frontal cortex and hippocampus. Moreover, the serum corticosterone levels were also examined. We found that CMS procedure not only decreased the sucrose preference and increased serum corticosterone levels, but also elevated the activity and mRNA expression of COX-2, and increased PGE(2) levels in rat brain regions. Treatment with baicalin (10, 20, 40 mg/kg) prevented these abnormalities induced by CMS. These results confirmed that baicalin exerted antidepressant-like effects, and suggested its mechanisms at least partially related to decease COX-2 activity and expression, subsequently resulted in reduction of PGE(2) levels in brain. Our findings may provide a new aspect to understand the antidepressant action of baicalin, which is targeted on the COX-2 system in brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. An aqueous extract of Ilex paraguariensis reduces carrageenan-induced edema and inhibits the expression of cyclooxygenase-2 and inducible nitric oxide synthase in animal models of inflammation.

    PubMed

    Schinella, Guillermo; Neyret, Elisa; Cónsole, Gloria; Tournier, Horacio; Prieto, José M; Ríos, José-Luis; Giner, Rosa María

    2014-08-01

    Mate (Ilex paraguariensis) is a highly popular herbal beverage in South America due to its high content of caffeine. Its hypolipidemic and antioxidant properties are of increasing interest in the treatment of cardiovascular disorders and for weight control. In the present study, we show for the first time both the local and systemic anti-inflammatory effects of an aqueous extract of mate in three classic in vivo models, namely acute and chronic 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema and acute carrageenan-induced mouse paw edema. Caffeine, rutin, chlorogenic acid, 3,5-dicafeoyl quinic acid, and 4,5-dicafeoyl quinic acid, accompanied by a complex mixture of other simple phenolic acids, were identified in the extract by HPLC-UV analyses. In the acute edema model, mate extract applied topically (1 mg/ear) halved the 12-O-tetradecanoylphorbol 13-acetate-induced acute edema (50 %) and almost suppressed neutrophil infiltration (93 %), while in the 12-O-tetradecanoylphorbol 13-acetate-induced subchronic inflammation, the edema was significantly reduced by 62 % (1 mg/ear/day × seven doses). The oral administration of the mate extract (250 mg/kg) significantly reduced the carrageenan-induced edema at all time points, an effect which was accompanied by a 43 % and 53 % reduction of the expression of cyclooxygenase-2 and inducible nitric oxide synthase, respectively. Histological analyses confirmed a reduction of epithelium thickness, dermis with mild inflammation, hair follicles with some secretory cells of sebaceous glands, and hypodermic adipocytes. In conclusion, mate is endowed with in vivo preventative or therapeutic anti-inflammatory effects in both local and systemic inflammatory processes. Georg Thieme Verlag KG Stuttgart · New York.

  17. Retraction: "Concurrent inhibition of NF-κB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer" by Ali et al.

    PubMed

    2016-08-01

    The above article, published online on March 8, 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figures 2A, 4, 6A, and 6C to be inappropriately manipulated. REFERENCE Ali S, Banerjee S, Schaffert JM, El-Rayes BF, Philip PA, Sarkar FH. 2010. Concurrent inhibition of NF-κB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer. J Cell Biochem 110:171-181; doi: 10.1002/jcb.22523.

  18. Soy Saponins Meditate the Progression of Colon Cancer in Rats by Inhibiting the Activity of β-Glucuronidase and the Number of Aberrant Crypt Foci but Not Cyclooxygenase-2 Activity

    PubMed Central

    Guo, Yu-Wei; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2013-01-01

    Objective. The effect of extracted crude soybean saponins on preneoplastic lesions, aberrant crypt foci (ACF), and the related mechanism were investigated. Research Methods and Procedures. Rats were assigned into five groups according to different doses of extracted crude soybean saponins and received 1,2-dimethylhydrazine (DMH) injection in week 5. In week 15, all rats were sacrificed. The number of ACFs, the cyclooxygenase-2 (COX-2) protein expression, the level of prostaglandins E2 (PGE2), and the activity of β-glucuronidase were examined. Results. Results revealed that the consumption of extracted crude soybean saponins decreased the number of ACFs and the activity of β-glucuronidase in rats, while the expression of COX-2 protein and PGE2 level were not affected. Conclusions. Soybean saponins were effective in inhibiting colon cancer by downregulating the activity of β-glucuronidase in colonic mucosa but not the COX-2 protein expression and PGE2 level. PMID:24224098

  19. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells.

    PubMed

    Lu, Yue; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.

  20. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.

    PubMed

    Lamy, Sylvie; Ben Saad, Aroua; Zgheib, Alain; Annabi, Borhane

    2016-01-01

    The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.

  1. n-Hexane Insoluble Fraction of Plantago lanceolata Exerts Anti-Inflammatory Activity in Mice by Inhibiting Cyclooxygenase-2 and Reducing Chemokines Levels

    PubMed Central

    Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus

    2017-01-01

    Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n-hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1). PMID:28335408

  2. n-Hexane Insoluble Fraction of Plantago lanceolata Exerts Anti-Inflammatory Activity in Mice by Inhibiting Cyclooxygenase-2 and Reducing Chemokines Levels.

    PubMed

    Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus

    2017-03-13

    Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n-hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).

  3. Interleukin-1α and tumour necrosis factor-α modulate airway smooth muscle DNA synthesis by induction of cyclo-oxygenase-2: inhibition by dexamethasone and fluticasone propionate

    PubMed Central

    Vlahos, Ross; Stewart, Alastair G

    1999-01-01

    Previous studies have established that glucocorticoids inhibit airway smooth muscle DNA synthesis. The effects of a combination of the pro-inflammatory cytokines, interleukin-1α (IL-1α) and tumour necrosis factor-α (TNF-α) on the inhibition of DNA synthesis by glucocorticoids in human cultured airway smooth muscle have now been investigated, since these cytokines are chronically expressed in asthmatic airways. Thrombin (0.3 u ml−1) and basic fibroblast growth factor (bFGF, 300 pM) stimulated increases in DNA synthesis which were concentration-dependently inhibited by dexamethasone (1–1000 nM). The cytokine mixture, comprising IL-1α (0.01 and 0.1 pM) and TNF-α (3 and 30 pM), directly evoked increases in DNA synthesis which were attenuated by dexamethasone. However, the cytokine mixture prevented responses to bFGF or thrombin. Paradoxically, in the presence of the cytokine mixture and bFGF, dexamethasone (1–1000 nM) concentration-dependently increased DNA synthesis. Furthermore, neither dexamethasone (100 nM) nor fluticasone propionate (1 nM) inhibited DNA synthesized in response to bFGF/cytokine mixture combination and dexamethasone was similarly inactive against the thrombin/cytokine mixture. The levels of prostaglandin E2 (PGE2), an established inhibitor of airway smooth muscle DNA synthesis, remained below the limits of assay detection (0.05 nM) under basal conditions or following stimulation with either thrombin or bFGF. In contrast, the cytokine mixture alone, and in the presence of thrombin or bFGF, induced biologically active levels of PGE2. Dexamethasone (100 nM), the non-selective cyclo-oxygenase (COX) inhibitor indomethacin (3 μM) or the selective COX-2 inhibitor L-745,337 (0.3 μM) completely inhibited synthesis of PGE2. Neither indomethacin (3 μM) nor L-745,337 (0.3 μM) influenced thrombin- or bFGF-induced DNA synthesis. However, each COX inhibitor enhanced DNA synthesis in cytokine-treated cells. In

  4. [Jianpi jiedu recipe inhibited Helicobacter pylori-induced the expression of cyclooxygenase-2 via p38MAPK/ATF-2 signal transduction pathway in human gastric cancer cells].

    PubMed

    Liu, Ning-ning; Wang, Yan; Wu, Qiong

    2011-07-01

    To study the effect of Jianpi Jiedu Recipe (JJR) on the expression of cyclooxygenase (COX-2) in Helicobacter pylori (Hp) infected gastric cancer cell line MKN 45, and its regulatory mechanism of p38MAPK signal transduction. The expressions of COX-2 mRNA and protein in human gastric cancer cell line MKN 45 infected by Hp type strain NCTC 11637 and the regulatory effect of JJR containing serum were detected using Real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR) and Western blot. The effects of Hp on COX-2 mRNA and protein expressions in human gastric cancer cell line MKN 45 were observed using blocking p38MAPK signal transduction pathway by p38MAPK specific inhibitor SB203580. The effects of JJR on Hp-infection activated p38MAPK signal transduction pathway and its downstream activating transcription factor 2 (ATF-2) were observed. COX-2 mRNA and protein expressions were obviously higher after human gastric cancer cell line MKN 45 were infected by Hp (P<0.01). After blocking p38MAPK signal transduction pathway, COX-2 mRNA and protein expressions in Hp-induced MKN 45 cell line were obviously down-regulated (P<0.01). JJR containing serum down-regulated Hp-induced COX-2 mRNA and protein expressions in MKN 45 cell line in a dose dependent manner. Besides, it could inhibit the activation of Hp-induced p38MAPK signal pathway. It also showed obvious inhibition on the activity of its downstream transcription factor ATF-2. Hp infection induced COX-2 expressions of gastric cancer cells via p38MAPK signal transduction pathway. JJR inhibited Hp-induced the expression of COX-2 through regulating p38MAPK/ATF-2 signal transduction pathway, which may be one of its mechanisms in prevention and treatment of Hp-induced gastric cancer.

  5. Inhibition of Cyclooxygenase-1 and Cyclooxygenase-2 Impairs Trypanosoma cruzi Entry into Cardiac Cells and Promotes Differential Modulation of the Inflammatory Response

    PubMed Central

    Malvezi, Aparecida D.; Panis, Carolina; da Silva, Rosiane V.; de Freitas, Rafael Carvalho; Lovo-Martins, Maria I.; Tatakihara, Vera L. H.; Zanluqui, Nágela G.; Neto, Edecio Cunha; Goldenberg, Samuel; Bordignon, Juliano; Yamada-Ogatta, Sueli F.; Martins-Pinge, Marli C.; Cecchini, Rubens

    2014-01-01

    The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite's life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host's cyclooxygenase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib) caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO and interleukin-1β and decreased production of transforming growth factor β (TGF-β) by cells. Taken together, these results indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a better understanding of the influence of TGF-β-interfering therapies on the innate inflammatory response to T. cruzi infection and may represent a very pertinent target for new therapeutic treatments of Chagas disease. PMID:25092706

  6. Inhibition of cyclooxygenase-1 and cyclooxygenase-2 impairs Trypanosoma cruzi entry into cardiac cells and promotes differential modulation of the inflammatory response.

    PubMed

    Malvezi, Aparecida D; Panis, Carolina; da Silva, Rosiane V; de Freitas, Rafael Carvalho; Lovo-Martins, Maria I; Tatakihara, Vera L H; Zanluqui, Nágela G; Neto, Edecio Cunha; Goldenberg, Samuel; Bordignon, Juliano; Yamada-Ogatta, Sueli F; Martins-Pinge, Marli C; Cecchini, Rubens; Pinge-Filho, Phileno

    2014-10-01

    The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite's life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host's cyclooxygenase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib) caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO and interleukin-1β and decreased production of transforming growth factor β (TGF-β) by cells. Taken together, these results indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a better understanding of the influence of TGF-β-interfering therapies on the innate inflammatory response to T. cruzi infection and may represent a very pertinent target for new therapeutic treatments of Chagas disease. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress.

    PubMed

    Virdis, Agostino; Colucci, Rocchina; Fornai, Matteo; Blandizzi, Corrado; Duranti, Emiliano; Pinto, Stefania; Bernardini, Nunzia; Segnani, Cristina; Antonioli, Luca; Taddei, Stefano; Salvetti, Antonio; Del Tacca, Mario

    2005-03-01

    We investigated whether cyclooxygenase (COX) isoforms (COX-1 and COX-2) and decreased NO availability contribute to endothelial dysfunction in endotoxemic rats. The involvement of reactive oxygen species (ROS) was also evaluated. Rats were injected with Salmonella-derived lipopolysaccharide or saline. After 6 h, endothelial function of mesenteric resistance arteries was evaluated. In controls, acetylcholine (ACh)-induced relaxation was inhibited by the nitric-oxide synthase inhibitor N(G)-monomethyl-l-arginine (l-NMMA) and unaffected by 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)-phenyl-2(5H)-furanone (DFU) (COX-2 inhibitor). In lipopolysaccharide (LPS)-treated rats, the response to ACh was blunted compared with controls, less sensitive to l-NMMA, and enhanced by DFU. COX-2 blockade also improved the inhibitory effect of l-NMMA on cholinergic relaxation. SC-560 [5-(4-clorophenyl)-1-(4-metoxyphenyl)-3-trifluoromethylpirazole] (COX-1 inhibitor) did not modify the response to ACh in both groups. LPS-induced endothelial dysfunction was unaffected by the thromboxane A(2) (TxA(2)) receptor antagonist SQ-29548 (7-[3-[[2-[(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1] hept-2-yl]-[1S(1alpha,2alpha(Z),3alpha,4alpha)]-5-heptenoic acid). In vivo inducible nitric-oxide synthase (iNOS) inhibition by S-methylisothiourea partly attenuated LPS-induced endothelial dysfunction. The antioxidants ascorbic acid and superoxide dismutase normalized endothelium-dependent relaxation and restored the inhibitory action of l-NMMA on ACh. Responses to sodium nitroprusside were similar in both groups. In LPS-treated rats, reverse transcription-polymerase chain reaction showed a marked increase in mesenteric iNOS and COX-2 expressions, whereas endothelial nitric-oxide synthase and COX-1 were unchanged. LPS-induced COX-2 overexpression was reduced but not abrogated by S-methylisothiourea. LPS-induced COX-2 up-regulation was also documented by immunohistochemistry. In

  8. Cholinergic Autoantibodies from Primary Sjögren's Syndrome Inhibit Mucin Production via Phospholipase C and Cyclooxygenase-2 In the Rat Submandibular Gland

    PubMed Central

    Passafaro, Daniela; Sterin-Borda, Leonor; Reina, Silvia; Borda, Enri

    2011-01-01

    Background: Patients with primary Sjögren's syndrome (pSS) produce functional IgG against cholinoreceptor of exocrine glands modifying their activity. The aim of the present work was to demonstrate pSS IgG antibodies (pSS IgG) interacting with M3 muscarinic acetylcholine receptors (mAChR) of rats submandibular glands that alter mucin release and production via phospholipase C (PLC) and cyclooxigenase-2 (COX-2) pathways. Methods: Mucin release and production of prostaglandin E2 (PGE2), and total inositol phosphates (InsP) were measured in rat submandibular gland in the presence of pSS IgG auto antibodies. Results: The auto antibodies interacting with M3 mAChR decreased mucin release and production through stimulation of PLC and COX-2. This stimulation leads to an incremental increase in InsP production and in PGE2 generation, inducing signalling through the prostaglandin membrane receptors subtype 2 (EP2). Moreover, the decrease in mucin production had negative correlation with PGE2 generation and InsP accumulation. Conclusion: IgG in patients with pSS could play an important role in the pathoetiology of dry mouth, decreasing the salivary mucin through the production of proinflammatory substances and leading to the reduction in the protection of the oral tissues. PMID:22013477

  9. Antitumor Activity of Cytotoxic Cyclooxygenase-2 Inhibitors

    PubMed Central

    Uddin, Md. Jashim; Crews, Brenda C.; Xu, Shu; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Banerjee, Surajit; Marnett, Lawrence J.

    2017-01-01

    Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anti-cancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2’s allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2, but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays. PMID:27588346

  10. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9.

    PubMed

    Takada, Yasunari; Aggarwal, Bharat B

    2003-09-15

    Betulinic acid (BA), a pentacyclic triterpene isolated from the bark of the white birch tree, has been reported to be a selective inducer of apoptosis in tumor cells. It also exhibits anti-inflammatory and immunomodulatory properties. How BA mediates these effects is not known. Because of the critical role of the transcription factor NF-kappaB in growth modulatory, inflammatory, and immune responses, we postulated that BA modulates the activity of this factor. In this study we investigated the effect of BA on NF-kappaB and NF-kappaB-regulated gene expression activated by a variety of inflammatory and carcinogenic agents. BA suppressed NF-kappaB activation induced by TNF, PMA, cigarette smoke, okadaic acid, IL-1, and H(2)O(2). The suppression of NF-kappaB activation was not cell-type specific. BA suppressed the activation of IkappaBalpha kinase, thus abrogating the phosphorylation and degradation of IkappaBalpha. We found that BA inhibited NF-kappaB activated by TNFR 1, TNFR-associated death domain, TNFR-associated factor 2, NF-kappaB-inducing kinase, and IkappaBalpha kinase. Treatment of cells with this triterpinoid also suppressed NF-kappaB-dependent reporter gene expression and the production of NF-kappaB-regulated gene products such as cyclooxygenase-2 and matrix metaloproteinase-9 induced by inflammatory stimuli. Furthermore, BA enhanced TNF-induced apoptosis. Overall, our results indicated that BA inhibits activation of NF-kappaB and NF-kappaB-regulated gene expression induced by carcinogens and inflammatory stimuli. This may provide a molecular basis for the ability of BA to mediate apoptosis, suppress inflammation, and modulate the immune response.

  11. Differential regulation of cyclooxygenase-2 and inducible nitric oxide synthase by 4-hydroxynonenal in human osteoarthritic chondrocytes through ATF-2/CREB-1 transactivation and concomitant inhibition of NF-kappaB signaling cascade.

    PubMed

    Vaillancourt, France; Morquette, Barbara; Shi, Qin; Fahmi, Hassan; Lavigne, Patrick; Di Battista, John A; Fernandes, Julio C; Benderdour, Mohamed

    2007-04-01

    4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation. c 2006 Wiley-Liss, Inc.

  12. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus

    Treesearch

    Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross

    2009-01-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...

  13. A Revised Mechanism for Human Cyclooxygenase-2*

    PubMed Central

    Liu, Yi; Roth, Justine P.

    2016-01-01

    The mechanism of ω-6 polyunsaturated fatty acid oxidation by wild-type cyclooxygenase 2 and the Y334F variant, lacking a conserved hydrogen bond to the catalytic tyrosyl radical/tyrosine, was examined for the first time under physiologically relevant conditions. The enzymes show apparent bimolecular rate constants and deuterium kinetic isotope effects that increase in proportion to co-substrate concentrations before converging to limiting values. The trends exclude multiple dioxygenase mechanisms as well as the proposal that initial hydrogen atom abstraction from the fatty acid is the first irreversible step in catalysis. Temperature dependent kinetic studies reinforce the novel finding that hydrogen transfer from the reduced catalytic tyrosine to a terminal peroxyl radical is the first irreversible step that controls regio- and stereospecific product formation. PMID:26565028

  14. Multifaceted roles of cyclooxygenase-2 in lung cancer.

    PubMed

    Riedl, Karen; Krysan, Kostyantyn; Põld, Mehis; Dalwadi, Harnisha; Heuze-Vourc'h, Nathalie; Dohadwala, Mariam; Liu, Ming; Cui, Xiaoyan; Figlin, Robert; Mao, Jenny T; Strieter, Robert; Sharma, Sherven; Dubinett, Steven M

    2004-06-01

    Lung cancer is the leading cause of cancer death in the United States. Although the low 5-year survival rate (under 15%) has changed minimally in the last 25 years, new agents and combinations of agents that target tumor proliferation, invasion, and survival may lead to improvement in patient outcomes. There is evidence that cyclooxygenase-2 (COX-2) is overexpressed in lung cancer and promotes tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. COX-2 inhibitors have been found to inhibit tumor growth in animal models and have demonstrated responses when combined with conventional therapy in phase II clinical trials. Further understanding of the mechanisms involved in COX-2-mediated tumorigenesis and its interaction with other molecules in lung cancer may lead to improved therapeutic strategies for this disease. In addition, delineation of how COX-2-dependent genes modulate the malignant phenotype will provide novel insights in lung cancer pathogenesis.

  15. Cyclooxygenase-2 Inhibitory and Antioxidant Compounds from the Truffle Elaphomyces granulatus

    USDA-ARS?s Scientific Manuscript database

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inh...

  16. Inhibition of neuronal ferroptosis protects hemorrhagic brain.

    PubMed

    Li, Qian; Han, Xiaoning; Lan, Xi; Gao, Yufeng; Wan, Jieru; Durham, Frederick; Cheng, Tian; Yang, Jie; Wang, Zhongyu; Jiang, Chao; Ying, Mingyao; Koehler, Raymond C; Stockwell, Brent R; Wang, Jian

    2017-04-06

    Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell-derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.

  17. Inhibition of neuronal ferroptosis protects hemorrhagic brain

    PubMed Central

    Li, Qian; Han, Xiaoning; Lan, Xi; Gao, Yufeng; Wan, Jieru; Durham, Frederick; Cheng, Tian; Yang, Jie; Wang, Zhongyu; Jiang, Chao; Ying, Mingyao; Stockwell, Brent R.

    2017-01-01

    Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell–derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies. PMID:28405617

  18. In situ click chemistry generation of cyclooxygenase-2 inhibitors.

    PubMed

    Bhardwaj, Atul; Kaur, Jatinder; Wuest, Melinda; Wuest, Frank

    2017-12-01

    Cyclooxygenase-2 isozyme is a promising anti-inflammatory drug target, and overexpression of this enzyme is also associated with several cancers and neurodegenerative diseases. The amino-acid sequence and structural similarity between inducible cyclooxygenase-2 and housekeeping cyclooxygenase-1 isoforms present a significant challenge to design selective cyclooxygenase-2 inhibitors. Herein, we describe the use of the cyclooxygenase-2 active site as a reaction vessel for the in situ generation of its own highly specific inhibitors. Multi-component competitive-binding studies confirmed that the cyclooxygenase-2 isozyme can judiciously select most appropriate chemical building blocks from a pool of chemicals to build its own highly potent inhibitor. Herein, with the use of kinetic target-guided synthesis, also termed as in situ click chemistry, we describe the discovery of two highly potent and selective cyclooxygenase-2 isozyme inhibitors. The in vivo anti-inflammatory activity of these two novel small molecules is significantly higher than that of widely used selective cyclooxygenase-2 inhibitors.Traditional inflammation and pain relief drugs target both cyclooxygenase 1 and 2 (COX-1 and COX-2), causing severe side effects. Here, the authors use in situ click chemistry to develop COX-2 specific inhibitors with high in vivo anti-inflammatory activity.

  19. Cyclooxygenase-2 expression in primary and metastatic Merkel cell carcinoma.

    PubMed

    Joachims, Zohar; Feinmesser, Raphael; Purim, Ofer; Halpern, Marisa; Brenner, Baruch; Fenig, Eyal; Roizman, Pepi; Sulkes, Jaqueline; Feinmesser, Meora

    2008-10-01

    Cyclooxygenase-2 (COX-2) is involved in the development and progression of many tumors, and its inhibition has been shown to block tumor growth. This study examined COX-2 expression in primary and metastatic Merkel cell carcinoma (MCC). Formalin-fixed paraffin-embedded tissues from 26 primary MCCs and 7 lymph node metastases were stained immunohistochemically with a monoclonal antibody directed against COX-2, and the percentage and intensity of staining were analyzed semiquantitatively. Immunopositivity for COX-2 was found in 20 primary tumors (77%), and was diffuse in 16 of them (80%). Staining intensity was strong in 5 tumors (19%), moderate in 6 (23%), and weak in 9 (35%). Five metastases (71%) showed similar staining. Prominent mitotic activity was associated with more diffuse COX-2 immunopositivity. No association was found between COX-2 expression and outcome. This study confirms that most MCCs express COX-2 and shows that COX-2 expression is related to one parameter of aggressive behavior--a high mitotic rate--but not to any others. The possibility of treating MCC with COX-2 inhibitors should be considered.

  20. Cyclooxygenase 2 and prostaglandin E2 regulate the attachment of calcium oxalate crystals to renal epithelial cells.

    PubMed

    Miyazawa, Katsuhito; Takahashi, Yoshitaka; Morita, Nobuyo; Moriyama, Manabu T; Kosaka, Takeo; Nishio, Matomo; Yoshimoto, Tanihiro; Suzuki, Koji

    2012-10-01

    To determine the roles of endogenous cyclooxygenase 2 and prostaglandin E(2) in crystal-cell binding, which is considered to be an important step in the development of intratubular nephrocalcinosis. An expression plasmid for human cyclooxygenase 2 was introduced into Madin-Darby canine kidney cells using the lipofection method. Cyclooxygenase activity was measured using thin-layer chromatography, and the prostaglandin E(2) concentration was determined with an enzyme immunoassay. In addition, crystal attachment was evaluated with a liquid scintillation counter using [(14)C] calcium oxalate monohydrate crystals, and immunohistochemistry and an enzyme immunoassay were used to analyze and quantify the expression of hyaluronan, a crystal-binding molecule. Cyclooxygenase 2-overexpressing Madin-Darby canine kidney cells produced about 10-fold more prostaglandin E(2) than wild-type Madin-Darby canine kidney cells, and their hyaluronan production was also upregulated. The attachment of calcium oxalate monohydrate crystals to cyclooxygenase 2-overexpressing Madin-Darby canine kidney cells was significantly reduced compared with their attachment to wild-type and mock-transfected Madin-Darby canine kidney cells. Pre-incubation of the cyclooxygenase 2-overexpressing cells, as well as the mock-transfected and wild-type cells with the cyclooxygenase 2 selective inhibitor etodolac, increased the cellular attachment of calcium oxalate monohydrate crystals in a dose-dependent manner. These findings suggest that cyclooxygenase 2 expression and the resultant increase in endogenous prostaglandin E(2), leading to increased hyaluronan production, help to prevent nephrocalcinosis by inhibiting the attachment of calcium oxalate monohydrate crystals to the surface of renal epithelial cells. © 2012 The Japanese Urological Association.

  1. Selective cyclooxygenase-2 inhibitors: after the smoke has cleared.

    PubMed

    Wallace, J L

    2002-02-01

    An enormous amount of fanfare and marketing preceded the introduction of selective inhibitors of cyclooxygenase-2 to the marketplace. These drugs were purported to offer equivalent anti-inflammatory and analgesic effects to conventional non-steroidal anti-inflammatory drugs without causing gastrointestinal injury. Now that there is considerable clinical experience with four drugs of this class having been available for at least two years, it is worthwhile re-visiting some of the original claims to determine whether selective cyclooxygenase-2 inhibitors have thus far lived up to their promise. In short, selective cyclooxygenase-2 inhibitors have proven to be somewhat safer in terms of gastrointestinal toxicity, than some (but not all) conventional non-steroidal antiinflammatory drugs. However their efficacy of the selective cyclooxygenase inhibitors has not always matched that of the conventional nonsteroidal anti-inflammatory drugs and there are significant safety concerns with some of the new drugs that deserve very careful consideration.

  2. Suppression of cyclooxygenase-2 gene transcription by humulon of beer hop extract studied with reference to glucocorticoid.

    PubMed

    Yamamoto, K; Wang, J; Yamamoto, S; Tobe, H

    2000-01-14

    In murine osteoblastic MC3T3-E1 cells which produced prostaglandin E2 as a bone resorption factor, the cyclooxygenase-2 induction by tumor necrosis factor alpha (TNFalpha) was suppressed by dexamethasone with an IC(50) of 1 nM. Humulon isolated from hop extract for beer brewing was reported previously as an inhibitor of bone resorption [Tobe, H. et al. (1997) Biosci. Biotech. Biochem. 61, 158-159]. We showed that the compound suppressed the TNFalpha-dependent cyclooxygenase-2 induction with an IC(50) of as low as about 30 nM as demonstrated experimentally by catalytic activity assay, Northern blot analysis and promoter analysis. Reporter gene experiments suggested that humulon blocked the cyclooxygenase-2 expression mediated by NFkappaB and NF-IL6, but the intracellular glucocorticoid receptor was not involved. The catalytic activity of cyclooxygenase-2 was inhibited by humulon with an IC(50) of as high as 1.6 microM. These results showed that humulon suppressed cyclooxygenase-2 induction at the step of transcription.

  3. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  4. Cyclooxygenase 2: its regulation, role and impact in airway inflammation.

    PubMed

    Rumzhum, N N; Ammit, A J

    2016-03-01

    Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases. © 2015 John Wiley & Sons Ltd.

  5. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy

    PubMed Central

    Mitchell, Jane A; Warner, Timothy D

    1999-01-01

    Cyclo-oxygenase is expressed in cells in two distinct isoforms. Cyclo-oxygenase-1 is present constitutively whilst cyclo-oxygenase-2 is expressed primarily after inflammatory insult. The activity of cyclo-oxygenase-1 and -2 results in the production of a variety of potent biological mediators (the prostaglandins) that regulate homeostatic and disease processes. Inhibitors of cyclo-oxygenase include the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin, ibuprofen and diclofenac. NSAIDs inhibit cyclo-oxygenase-2 at the site of inflammation, to produce their therapeutic benefits, as well as cyclo-oxygenase-1 in the gastric mucosa, which produces gastric damage. Most recently selective inhibitors of cyclo-oxygenase-2 have been developed and introduced to man for the treatment of arthritis. Moreover, recent epidemiological evidence suggests that cyclo-oxygenase inhibitors may have important therapeutic relevance in the prevention of some cancers or even Alzheimer's disease. This review will discuss how the new advancements in NSAIDs research has led to the development of a new class of NSAIDs that has far reaching implications for the treatment of disease. PMID:10578123

  6. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2

    PubMed Central

    Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-01-01

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation. PMID:27028995

  7. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  8. Chemopreventive potential of diallylsulfide, lycopene and theaflavin during chemically induced colon carcinogenesis in rat colon through modulation of cyclooxygenase-2 and inducible nitric oxide synthase pathways.

    PubMed

    Sengupta, Archana; Ghosh, Samit; Das, Rajat Kumar; Bhattacharjee, Shamee; Bhattacharya, Sudin

    2006-08-01

    Chemoprevention of colorectal cancer has become essential in the modern industrialized world as cancer of the large bowel has become one of the major causes of cancer mortality, second only to lung cancer. Colon cancer integrates lifestyle factors and multistep genetic alterations, and without preventive intervention, a substantial part of the population is likely to develop colorectal cancer at some point during their lives. Diet and nutrition clearly play a role in the etiology of colon cancer. Inhibitory activity of aqueous suspensions of garlic, tomato and black tea was tested on azoxymethane-induced colon carcinogenesis in Sprague-Dawley rats during earlier studies. In the present study, the protective activity of diallylsulfide and lycopene and theaflavin, important antioxidative ingredients of garlic, tomato and black tea, respectively, was assessed during colon carcinogenesis. The effect was observed on aberrant crypt foci, the preneoplastic lesion. As inhibition of cyclooxygenase-2 and inducible nitric oxide synthase activities is correlated with the prevention of colon cancer, the study continues with the determination of the change in the expression of these proteins. Following treatment, significant reduction in the incidences of aberrant crypt foci (by 43.65% in diallylsulfide, 57.39% in lycopene and 66.08% in theaflavin group) was observed, which was in accordance with the reduced expression of cyclooxygenase-2 and inducible nitric oxide synthase. The effect of the intact source was found to be more pronounced than their components used separately.

  9. The Influence of Chemokine CXCR4 and Cyclooxygenase-2 in the Recurrence of Pterygium.

    PubMed

    Baser, Gonen; Sivrikoz, Oya Nermin; Karahan, Eyyup; Un, Emine Seker; Yildirim, Hakan

    2017-06-01

    To investigate the role of CXCR4 and cyclooxygenase-2 in pterygium recurrence. A total of 18 primary and 9 recurrent pterygium samples were analyzed. Immunohistochemical staining using primary antibodies against cyclooxygenase-2 and CXCR4 was performed. The cyclooxygenase-2 and CXCR4 expressing cells were calculated separately on the epithelium and stroma. In addition, a correlation between the area of pterygium and CXCR4 and cyclooxygenase-2 levels was investigated. In the primary pterygium group, cyclooxygenase-2 staining was more intense in the epithelium and more dominant in the stroma of the recurrence samples. The CXCR4 expression was more intense in the stroma of both groups. The highest CXCR4 expression was observed in the recurrent pterygium group. There was a strong correlation between the area of pterygium and CXCR4 and cyclooxygenase-2 of stroma. CXCR4 and cyclooxygenase-2 may play an important role in the recurrence of pterygium.

  10. Helicobacter pylori infection, gastrin and cyclooxygenase-2 in gastric carcinogenesis.

    PubMed

    Shao, Yun; Sun, Kun; Xu, Wei; Li, Xiao-Lin; Shen, Hong; Sun, Wei-Hao

    2014-09-28

    Gastric cancer is one of the most frequent neoplasms and a main cause of death worldwide, especially in China and Japan. Numerous epidemiological, animal and experimental studies support a positive association between chronic Helicobacter pylori (H. pylori) infection and the development of gastric cancer. However, the exact mechanism whereby H. pylori causes gastric carcinogenesis remains unclear. It has been demonstrated that expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and COX-2 in H. pylori-infected patients and their possible association with gastric cancer risk.

  11. The role of cyclooxygenase-1 and cyclooxygenase-2 in lipopolysaccharide and interleukin-1 stimulated enterocyte prostanoid formation.

    PubMed

    Longo, W E; Damore, L J; Mazuski, J E; Smith, G S; Panesar, N; Kaminski, D L

    1998-01-01

    Lipopolysaccharide is an inflammatory agent and interleukin-1 is a cytokine. Their pro-inflammatory effects may be mediated by prostanoids produced by inducible cyclooxygenase-2. The aim of this study was to determine the prostanoids produced by lipopolysaccharide and interleukin-1 stimulated enterocytes through the cyclooxygenase-1 and 2 pathways. Cultured enterocytes were stimulated with lipopolysaccharide or interleukin-1beta with and without cyclooxygenase inhibitors. Low concentrations of indomethacin and valerylsalicylic acid (VSA) were evaluated as cyclooxygenase-1 inhibitors and their effects compared with the effects of a specific cyclooxygenase-2 inhibitor, SC-58125. Prostaglandin E2, 6-keto prostaglandin F1alpha, prostaglandin D2 and leukotriene B4 levels were determined by radioimmunoassay. Immunoblot analysis using isoform-specific antibodies showed that the inducible cyclooxygenase enzyme (COX-2) was expressed by 4 h in LPS and IL-1beta treated cells while the constitutive COX-1 remained unaltered in its expression. Interleukin-1beta and lipopolysaccharide stimulated the formation of all prostanoids compared with untreated cells, but failed to stimulate leukotriene B4. Indomethacin at 20 microM concentration, and VSA inhibited lipopolysaccharide and interleukin 1beta stimulated prostaglandin E2, but not 6-keto prostaglandin F1alpha formation. SC-58125 inhibited lipopolysaccharide and interleukin-1beta stimulated 6-keto prostaglandin F1alpha but not prostaglandin E2 release. The specific cyclooxygenase-2 inhibitor also inhibited lipopolysaccharide produced prostaglandin D2 but not interleukin-1beta stimulated prostaglandin D2. While SC-58125 inhibited basal 6-keto prostaglandin-F1alpha formation it significantly increased basal prostaglandin E2 and prostaglandin D2 formation. As SC-58125 inhibited lipopolysaccharide and interleukin-1beta induced 6-keto prostaglandin F1alpha production but not prostaglandin E2 production, it suggests that these agents

  12. Cyclo-oxygenase-2 over-expression in sporadic colorectal carcinoma without lymph node involvement.

    PubMed

    Buecher, B; Heymann, M-F; Lièvre, A; Nguyen, J-M; Wilson, K; Bézieau, S; Mosnier, J-F; Galmiche, J-P; Blottière, H M

    2003-10-01

    Cyclo-oxygenase-2 over-expression has been reported in most advanced human colorectal cancers. To assess the prevalence of cyclo-oxygenase-2 over-expression in non-advanced colorectal cancers, to investigate the correlation between cyclo-oxygenase-2 status and tumour clinicopathological features and molecular phenotype, and to determine the impact of cyclo-oxygenase-2 status on long-term clinical outcome. Sixty-one patients who had undergone surgery for colorectal cancer without lymph node involvement were evaluated retrospectively. Cyclo-oxygenase-2 expression was determined by immunohistochemistry. The tumour replication error phenotype was assessed by amplification of the two microsatellites, BAT-25 and BAT-26. Thirty-six tumours were classified as cyclo-oxygenase-2 positive and 25 as cyclo-oxygenase-2 negative. No correlation was found between cyclo-oxygenase-2 over-expression and clinicopathological features or molecular phenotype. Cyclo-oxygenase-2 over-expression was an independent predictor of a poor prognosis. Indeed, the relative risk of tumour recurrence or death for patients with cyclo-oxygenase-2-positive tumours was 2.13 times that of patients with cyclo-oxygenase-2-negative tumours (P=0.008; 95% confidence interval, 1.22-3.73). This difference remained significant when post-operative deaths were censored in the multivariate analysis (P=0.014). Cyclo-oxygenase-2 over-expression is not associated with tumour phenotype, but is indicative of a poorer clinical outcome in patients with non-advanced colorectal carcinoma.

  13. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    PubMed

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  14. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  15. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression

    PubMed Central

    Liagre, Bertrand; Vergne-Salle, Pascale; Corbiere, Cecile; Charissoux, Jean L; Beneytout, Jean L

    2004-01-01

    In the present study, we have shown for the first time that a plant steroid, diosgenin, causes an inhibition of the growth of fibroblast-like synoviocytes from human rheumatoid arthritis, with apoptosis induction associated with cyclooxygenase-2 (COX-2) up-regulation. Celecoxib, a selective COX-2 inhibitor, provoked a large decrease in diosgenin-induced apoptosis even in the presence of exogenous prostaglandin E2, whereas interleukin-1β, a COX-2 inducer, strongly increased diosgenin-induced apoptosis of these synoviocytes. These findings suggest that the proapoptotic effect of diosgenin is associated with overexpression of COX-2 correlated with overproduction of endogenous prostaglandin E2. We also observed a loss of mitochondrial membrane potential, caspase-3 activation, and DNA fragmentation after diosgenin treatment. PMID:15225373

  16. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    PubMed

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  17. Expression of cyclooxygenase-2 (COX-2) in tumour and stroma compartments in cervical cancer: clinical implications

    PubMed Central

    Ferrandina, G; Lauriola, L; Zannoni, G F; Distefano, M G; Legge, F; Salutari, V; Gessi, M; Maggiano, N; Scambia, G; Ranelletti, F O

    2002-01-01

    This study aims at investigating the relationship between cyclooxygenase-2 expression in tumour vs stroma inflammatory compartment and its possible clinical role. The study included 99 stage IB-IV cervical cancer patients: immunostaining of tumour tissue sections was performed with rabbit antiserum against cyclooxygenase-2. CD3, CD4, CD8, CD25, Mast Cell Tryptase monoclonal antibodies were used to characterise stroma inflammatory cells in nine cervical tumours. An inverse relation was found between cyclooxygenase-2 levels (cyclooxygenase-2 IDV) of tumour vs stroma compartment (r=−0.44, P<0.0001). The percentage of cases showing high tumour/stromal cyclooxygenase-2 IDV ratio was significantly higher in patients who did not respond to treatment (93.3%) with respect to patients with partial (60.5%), and complete (43.7%) response (P= 0.009). Cases with a high tumour/stroma cyclooxygenase-2 IDV ratio had a shorter overall survival rate than cases with a low tumour/stroma cyclooxygenase-2 IDV (P<0.0001). In the multivariate analysis advanced stage and the status of tumour/stroma cyclooxygenase-2 IDV ratio retained an independent negative prognostic role. The proportion of CD3+, CD4+, and CD25+ cells was significantly lower in tumours with high tumour/stroma cyclooxygenase-2 IDV ratio, while a higher percentage of mast cells was detected in tumours showing high tumour/stroma cyclooxygenase-2 IDV ratio. Our study showed the usefulness of assessing cyclooxygenase-2 status both in tumour and stroma compartment in order to identify cervical cancer patients endowed with a very poor chance of response to neoadjuvant therapy and unfavourable prognosis. British Journal of Cancer (2002) 87, 1145–1152. doi:10.1038/sj.bjc.6600578 www.bjcancer.com © 2002 Cancer Research UK PMID:12402155

  18. DNA-PKcs-Dependent Modulation of Cellular Radiosensitivity by a Selective Cyclooxygenase-2 Inhibitor

    SciTech Connect

    Kodym, Elisabeth; Kodym, Reinhard; Chen, Benjamin P.; Chen, David J.; Morotomi-Yano, Keiko; Choy, Hak; Saha, Debabrata

    2007-09-01

    Purpose: Inhibition of cyclooxygenase-2 has been shown to increase radiosensitivity. Recently, the suppression of radiation-induced DNA-dependant protein kinase (DNA-PK) activity by the selective cyclooxygenase-2 inhibitor celecoxib was reported. Given the importance of DNA-PK for repair of radiation-induced DNA double-strand breaks by nonhomologous end-joining and the clinical use of the substance, we investigated the relevance of the DNA-PK catalytic subunit (DNA-PKcs) for the modulation of cellular radiosensitivity by celecoxib. Methods and Materials: We used a syngeneic model of Chinese hamster ovarian cell lines: AA8, possessing a wild-type DNK-PKcs; V3, lacking a functional DNA-PKcs; and V3/WT11, V3 stably transfected with the DNA-PKcs. The cells were treated with celecoxib (50 {mu}M) for 24 h before irradiation. The modulation of radiosensitivity was determined using the colony formation assay. Results: Treatment with celecoxib increased the cellular radiosensitivity in the DNA-PKcs-deficient cell line V3 with a dose-enhancement ratio of 1.3 for a surviving fraction of 0.5. In contrast, clonogenic survival was increased in DNA-PKcs wild-type-expressing AA8 cells and in V3 cells transfected with DNA-PKcs (V3/WT11). The decrease in radiosensitivity was comparable to the radiosensitization in V3 cells, with a dose-enhancement ratio of 0.76 (AA8) and 0.80 (V3/WT11) for a survival of 0.5. Conclusions: We have demonstrated a DNA-PKcs-dependent differential modulation of cellular radiosensitivity by celecoxib. These effects might be attributed to alterations in signaling cascades downstream of DNA-PK toward cell survival. These findings offer an explanation for the poor outcomes in some recently published clinical trials.

  19. Prokaryotic expression, purification and characterization of human cyclooxygenase-2.

    PubMed

    Liao, Xiangzhi; Wang, Wenhan; Fan, Chuanxi; Yang, Ning; Zhao, Jialiang; Zhang, Ying; Gao, Ruijuan; Shen, Guannan; Xia, Simin; Li, Guiying

    2017-07-01

    Cyclooxygenase-2 (COX-2) is a key enzyme which catalyzes the conversion of arachidonic acid (AA) into prostaglandins (PGs). It plays an important role in pathophysiological processes, such as tumorigenesis, angiogenesis, inflammation and tumor cell drug resistance. Therefore, COX-2 has been viewed as an important target for cancer therapy. The preparation of COX-2 protein is an important initial step for the subsequent development of COX-2 inhibitors. In this study, we report a strategy to heterologously express truncated human COX-2 (trCOX-2) in Escherichia coli (E. coli) BL21(DE3) host cells. Following denaturation, purification and renaturation, we successfully obtained enzymatically active trCOX-2 containing 257 residues of the C-terminus. Homology modeling and molecular docking analyses revealed that trCOX-2 retained the predicted 3D catalytic domain structure and AA could still bind to its hydrophobic groove. Western blot analysis and ELISA indicated that the trCOX-2 still retained its characteristic antigenicity and binding activity, while COX assays revealed that trCOX-2 maintained its enzyme activity. On the whole, in this study, we provided a novel method to isolate trCOX-2 possessing AA binding and catalytic activities. This study thus lays a foundation to facilitate further investigations of COX-2 and offers a valuable method with which to achieve the prokaryotic expression of a eukaryotic membrane protein.

  20. Cyclooxygenase 2 genotypes influence prostate cancer susceptibility in Japanese Men.

    PubMed

    Sugie, Satoru; Tsukino, Hiromasa; Mukai, Shoichiro; Akioka, Takahiro; Shibata, Norihiko; Nagano, Masafumi; Kamoto, Toshiyuki

    2014-03-01

    This study aims to evaluate the relationship between the cyclooxygenase 2 (COX2) G1195A (rs689465) polymorphism and the risk of prostate cancer in a Japanese population and the associations between COX2 polymorphisms and clinicopathological characteristics, including Gleason grade and prostate-specific antigen (PSA) grade. We recruited 134 patients with prostate cancer and 86 healthy controls matched for age and smoking status. The COX2 G1195A polymorphism status was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Genotype distributions (p = 0.028) and allelic frequencies (p = 0.014) differed significantly between prostate cancer and control groups in terms of the COX2 G1195A polymorphism (Pearson's χ (2) test). Logistic regression analysis of case and control outcomes showed an odds ratio between the GG and AA genotypes of 3.15 (95% confidence interval = 1.27-8.08, p = 0.014), indicating an increased risk of prostate cancer associated with the AA genotype. Subset analysis revealed no significant associations between this polymorphism and clinicopathological characteristics of prostate cancer. This study demonstrated a relationship between the COX2 G1195A variant and prostate cancer risk. This polymorphism may merit further investigation as a potential genomic marker for the early detection of prostate cancer. Our results support the hypothesis that rs689465 influences susceptibility to prostate cancer; however, prostate cancer progression was not associated with rs689465 in a Japanese population.

  1. Crystal structure of rofecoxib bound to human cyclooxygenase-2.

    PubMed

    Orlando, Benjamin J; Malkowski, Michael G

    2016-10-01

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditions were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7 Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.

  2. Role of cyclooxygenase-2 in intestinal injury in neonatal rats.

    PubMed

    Lu, Hui; Zhu, Bing

    2014-11-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC.

  3. Polymorphisms in cyclooxygenase-2 gene in endometrial cancer patients.

    PubMed

    Torricelli, Federica; Mandato, Vincenzo Dario; Farnetti, Enrico; Abrate, Martino; Casali, Bruno; Ciarlini, Gino; Pirillo, Debora; Gelli, Maria Carolina; Costagliola, Luigi; Nicoli, Davide; Palomba, Stefano; La Sala, Giovanni Battista

    2015-09-01

    The enzyme cyclooxygenase 2 is an inducible enzyme expressed at sites of inflammation and in a variety of malignant solid tumors such as endometrial cancer (EC). In EC patients, its over-expression is correlated with progressive disease and poor prognosis. The expression is encoded by a polymorphic gene, called PTGS2. The aim of the current study was to test the hypothesis that rs5275 polymorphism of PTGS2 influence the prognosis of EC patients. This paper is a retrospective cohort study. Clinical and pathological data were extrapolated and genotypes were assessed on formalin-fixed and paraffin-embedded non-tumor tissues. A total of 159 type I EC patients were included in the final analysis. Univariate analysis indicated that patients with rs5275 genotype CC have a lower risk to develop a grade (G) 2-3 endometrial cancer. rs5275 effect on EC grading was confirmed by multivariate analysis also after data adjusting for age, BMI, parity, hypertension, and diabetes. Adjusted odds ratio (OR) confirmed that patients with rs5275 genotype CC have a risk 80 % lower (OR = 0.20, P = 0.009) to develop a G2 and/or G3 EC in comparison with patients with TT or TC genotype. Differentiation of the type 1 EC is significantly and independently influenced by rs5275 polymorphism. rs5275 CC patients have a lower risk to present a G2-G3 EC.

  4. Crystal structure of rofecoxib bound to human cyclooxygenase-2

    SciTech Connect

    Orlando, Benjamin J.; Malkowski, Michael G.

    2016-10-26

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditions were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.

  5. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus.

    PubMed

    Stanikunaite, Rita; Khan, Shabana I; Trappe, James M; Ross, Samir A

    2009-04-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at 50 microg/mL. Bioassay-guided investigation led to the isolation and identification of two active compounds, syringaldehyde and syringic acid. Syringaldehyde moderately inhibited COX-2 activity with an IC(50) of 3.5 microg/mL, while syringic acid strongly inhibited COX-2 activity with an IC(50) of 0.4 microg/mL. The antioxidant activity of the extract and isolated compounds was evaluated in HL-60 cells by the DCFH-DA method. The extract of E. granulatus showed a potent antioxidant effect, with an IC(50) of 41 microg/mL. Of the pure compounds, syringic acid displayed a strong antioxidant activity, with an IC(50) of 0.7 microg/mL, while syringaldehyde showed no activity in the assay.

  6. Persistent inactivation of macrophage cyclooxygenase-2 in mycobacterial pulmonary inflammation.

    PubMed

    Shinohara, Tsutomu; Pantuso, Traci; Shinohara, Shizuka; Kogiso, Mari; Myrvik, Quentin N; Henriksen, Ruth Ann; Shibata, Yoshimi

    2009-08-01

    The induction of cyclooxygenase-2 (COX-2) in tissue macrophages (MØ) increases prostaglandin E(2) (PGE(2)) release, potentially down-regulating granulomatous inflammation. In response to Mycobacteria, local MØ express COX-2, which is either nuclear envelope (NE)-associated or NE-dissociated. Persistent mycobacterial pulmonary inflammation is characterized by alveolar MØ expressing NE-dissociated (inactive) COX-2 without release of PGE(2). In this study, we examined COX-2 in alveolar MØ after intranasal exposure to heat-killed Mycobacterium bovis BCG (HK-BCG). After administration, whole lungs of C57Bl/6 mice were lavaged with saline; COX-2 expression and PGE(2) release by alveolar MØ and tumor necrosis factor (TNF)-alpha and nitric oxide levels in the lung lavage were monitored. Normal alveolar MØ had undetectable levels of COX-2 on Western blots. However, 1 day after intranasal administration, almost all alveolar MØ had phagocytosed HK-BCG and expressed NE-dissociated COX-2 without any increase in the release of PGE(2). At 28 days after intranasal administration, 68% of alveolar MØ still contained both BCG and the NE-dissociated form of COX-2. NE-associated (active) COX-2 was not observed in alveolar MØ. In contrast, 7 days after intraperitoneal injection of HK-BCG, peritoneal MØ containing HK-BCG were no longer detected. At 28 days after intranasal administration, TNF-alpha and nitrite levels in the lung lavage fluid were significantly higher than those in controls. Our results indicate that mycobacterial pulmonary inflammation is associated with suppressed PGE(2) production by alveolar MØ, with expression of COX-2 dissociated from the NE.

  7. Expression of cyclooxygenase-2 (COX-2) in pituitary tumours

    PubMed Central

    Sokołowski, Grzegorz; Bałdys-Waligórska, Agata; Trofimiuk, Małgorzata; Adamek, Dariusz; Hubalewska-Dydejczyk, Alicja; Gołkowski, Filip

    2012-01-01

    Summary Background Microvessel density in angiogenesis is regarded as a prognostic factor of tumour invasiveness, independent of cell proliferation. In recent studies of pituitary tumours, correlation between the expression of cyclooxygenase-2 (COX-2) and micro-vascularization density and microvessel surface density has been established. We studied the expression of COX-2 in different types of pituitary adenomas to determine the usefulness of COX-2 expression as a prognostic factor of tumour progression or recurrence in patients with hypophyseal tumours. Material/Methods We retrospectively studied a group of 60 patients of mean age 46.7±17.6 (range, 18 to 85) years who underwent pituitary tumour surgery. Expression of COX-2, as determined by immunohistochemistry, was analyzed in relation to histopathology features of tumour, clinical symptoms, MR imaging and post-operative recurrence/progression of disease. Results COX-2 was expressed in adenomas of 87% of patients, with a median index value of 57.5% [IQR=60.5]. Highest COX-2 expression was observed in hormonally inactive adenomas and gonadotropinomas and lowest in prolactinomas. We found no differences in COX-2 expression with respect to patient age, gender, tumour size, degree of tumour invasiveness, or whether tumours were immunopositive or immunonegative for pituitary hormones, nor have we found any relation between COX-2 expression and recurrence or progression of tumour size. Conclusions COX-2 does not appear to be a predictive factor for recurrence or progression of tumour size. Nevertheless, due to the observed relatively high expression of COX-2 in pituitary adenomas, further studies with COX-2 inhibitors are justified in these tumours. PMID:22460097

  8. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity.

    PubMed

    Kutil, Zsofia; Temml, Veronika; Maghradze, David; Pribylova, Marie; Dvorakova, Marcela; Schuster, Daniela; Vanek, Tomas; Landa, Premysl

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  9. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION.

    PubMed

    Gartung, Allison; Zhao, Jiawei; Chen, Simon; Mottillo, Emilio; VanHecke, Garrett C; Ahn, Young-Hoon; Maddipati, Krishna Rao; Sorokin, Andrey; Granneman, James; Lee, Menq-Jer

    2016-07-29

    Excessive adipocyte lipolysis generates lipid mediators and triggers inflammation in adipose tissue. However, the specific roles of lipolysis-generated mediators in adipose inflammation remain to be elucidated. In the present study, cultured 3T3-L1 adipocytes were treated with isoproterenol to activate lipolysis and the fatty acyl lipidome of released lipids was determined by using LC-MS/MS. We observed that β-adrenergic activation elevated levels of approximately fifty lipid species, including metabolites of cyclooxygenases, lipoxygenases, epoxygenases, and other sources. Moreover, we found that β-adrenergic activation induced cyclooxygenase 2 (COX-2), not COX-1, expression in a manner that depended on activation of hormone-sensitive lipase (HSL) in cultured adipocytes and in the epididymal white adipose tissue (EWAT) of C57BL/6 mice. We found that lipolysis activates the JNK/NFκB signaling pathway and inhibition of the JNK/NFκB axis abrogated the lipolysis-stimulated COX-2 expression. In addition, pharmacological inhibition of COX-2 activity diminished levels of COX-2 metabolites during lipolytic activation. Inhibition of COX-2 abrogated the induction of CCL2/MCP-1 expression by β-adrenergic activation and prevented recruitment of macrophage/monocyte to adipose tissue. Collectively, our data indicate that excessive adipocyte lipolysis activates the JNK/NFκB pathway leading to the up-regulation of COX-2 expression and recruitment of inflammatory macrophages. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Selective cyclooxygenase-2 (COX-2) inhibitors reduce anti-Mycobacterium antibodies in adjuvant arthritic rats.

    PubMed

    Turull, A; Queralt, J

    2000-01-01

    Adjuvant arthritis, induced by Mycobacterium butyricum, is an experimental immunopathy that shares many features of human rheumatoid arthritis and, as such, is one of the most widely used models for studying the anti-inflammatory activity of compounds. In rats with adjuvant induced arthritis, IgG antibodies to M. butyricum have been detected and autoantigens that cross react with mycobacteria may be involved in the pathogenesis of adjuvant arthritis. In this study, the anti-inflammatory and immunosuppressive activities of two cyclooxygenase-2 selective inhibitors, flosulide and L-745,337, at doses of 0.1, 1 and 5 mg/kg/day, were examined in adjuvant arthritic rats. After 14 days of treatment, a clear dose-dependent inhibition of plantar edema was seen for both flosulide (ID50 lower than 0.1 mg/kg) and L-745,337 (ID50 = 0.4 mg/kg). Plasma levels of IgG anti-M. butyricum antibodies were also decreased by both drugs. In each case the maximal immunosuppressive effect was observed at doses lower than 5 mg/kg. The non-selective COX-2 inhibitor, indomethacin (1 mg/kg) decreased paw edema by 65% and the levels of IgG anti-M. butyricum by 45%. Neither cyclooxygenase selective inhibitors nor indomethacin decreased the delayed hypersensitivity reaction induced by M. butyricum. Thus, in vivo inhibition of COX-2 inhibited articular swelling and also the humoral immune response to Mycobacterium.

  11. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    PubMed Central

    Temml, Veronika; Maghradze, David; Vanek, Tomas

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682

  12. Cyclooxygenase-2 Mediates Dialysate-Induced Alterations of the Peritoneal Membrane

    PubMed Central

    Aroeira, Luiz S.; Lara-Pezzi, Enrique; Loureiro, Jesús; Aguilera, Abelardo; Ramírez-Huesca, Marta; González-Mateo, Guadalupe; Pérez-Lozano, M. Luisa; Albar-Vizcaíno, Patricia; Bajo, M-Auxiliadora; del Peso, Gloria; Sánchez-Tomero, José Antonio; Jiménez-Heffernan, José Antonio; Selgas, Rafael; López-Cabrera, Manuel

    2009-01-01

    During peritoneal dialysis (PD), exposure of the peritoneal membrane to nonphysiologic solutions causes inflammation, ultimately leading to altered structure and function. Myofibroblasts, one of the cell types that contribute to dysfunction of the peritoneal membrane, can originate from mesothelial cells (MCs) by epithelial-to-mesenchymal transition (EMT), a process that has been associated with an increased rate of peritoneal transport. Because cyclooxygenase-2 (COX-2) is induced by inflammation, we studied the role of COX-2 in the deterioration of the peritoneal membrane. We observed that nonepithelioid MCs found in peritoneal effluent expressed higher levels of COX-2 than epithelioid MCs. The mass transfer coefficient for creatinine correlated with MC phenotype and with COX-2 levels. Although COX-2 was upregulated during EMT of MCs in vitro, COX-2 inhibition did not prevent EMT. In a mouse model of PD, however, COX-2 inhibition with Celecoxib resulted in reduced fibrosis and in partial recovery of ultrafiltration, outcomes that were associated with a reduction of inflammatory cells. Furthermore, PD fluid with a low content of glucose degradation products did not induce EMT or COX-2; the peritoneal membranes of mice treated with this fluid showed less worsening than mice exposed to standard fluid. In conclusion, upregulation of COX-2 during EMT may mediate peritoneal inflammation, suggesting COX-2 inhibition as a potential strategy to ameliorate peritoneal deterioration in PD patients. PMID:19158357

  13. Cyclooxygenase-2–dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer

    PubMed Central

    Lyons, Traci R.; Borges, Virginia F.; Betts, Courtney B.; Guo, Qiuchen; Kapoor, Puja; Martinson, Holly A.; Jindal, Sonali; Schedin, Pepper

    2014-01-01

    Breast involution following pregnancy has been implicated in the high rates of metastasis observed in postpartum breast cancers; however, it is not clear how this remodeling process promotes metastasis. Here, we demonstrate that human postpartum breast cancers have increased peritumor lymphatic vessel density that correlates with increased frequency of lymph node metastases. Moreover, lymphatic vessel density was increased in normal postpartum breast tissue compared with tissue from nulliparous women. In rodents, mammary lymphangiogenesis was upregulated during weaning-induced mammary gland involution. Furthermore, breast cancer cells exposed to the involuting mammary microenvironment acquired prolymphangiogenic properties that contributed to peritumor lymphatic expansion, tumor size, invasion, and distant metastases. Finally, in rodent models of postpartum breast cancer, cyclooxygenase-2 (COX-2) inhibition during the involution window decreased normal mammary gland lymphangiogenesis, mammary tumor-associated lymphangiogenesis, tumor cell invasion into lymphatics, and metastasis. Our data indicate that physiologic COX-2–dependent lymphangiogenesis occurs in the postpartum mammary gland and suggest that tumors within this mammary microenvironment acquire enhanced prolymphangiogenic activity. Further, our results suggest that the prolymphangiogenic microenvironment of the postpartum mammary gland has potential as a target to inhibit metastasis and suggest that further study of the therapeutic efficacy of COX-2 inhibitors in postpartum breast cancer is warranted. PMID:25133426

  14. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes.

    PubMed

    Jimenez, José L; Iñiguez, Miguel A; Muñoz-Fernández, M Angeles; Fresno, Manuel

    2004-12-01

    Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.

  15. Differential expression of cyclooxygenase-2 in metastatic melanoma affects progression free survival.

    PubMed

    Panza, Elisabetta; De Cicco, Paola; Ercolano, Giuseppe; Armogida, Chiara; Scognamiglio, Giosuè; Anniciello, Anna Maria; Botti, Gerardo; Cirino, Giuseppe; Ianaro, Angela

    2016-08-30

    The possible correlation between cyclooxygenase-2 (COX-2) expression and disease progression in melanoma is still a matter of debate. Analysis of COX-2 expression in 45 lymph node melanoma metastases demonstrates a significant correlation between the percent of expression and progression free survival (PFS). A positive COX-2 expression ≥10% (COX-2high), as opposite to a positive expression ≤9% (COX-2low), translated into a striking significant reduction of PFS of about 3 years. The reduction in PFS correlated neither with BRAFV600E nor with NRASQ61 expression in the analyzed samples. This concept was reinforced by the finding that tumour development in COX-2-/- mice was almost blunted. Similarly, inhibition of COX-2 protein expression in human melanoma cell lines, by using siRNAs technology as well as selective inhibition of COX-2 activity by celecoxib, reduced cellular proliferation and invasiveness. In conclusion we show that COX-2high is a negative prognostic factor in metastatic melanoma. Our study also clarifies that the uncertainty about the role of COX-2 in metastatic malignant melanoma, found in the current relevant literature, is probably due to the fact that a threshold in COX-2 expression has to be reached in order to impact on cancer malignancy. Our findings suggest that COX-2 expression may become an useful diagnostic tool in defining melanoma malignancy as well as argue for a possible therapeutic use of NSAID as add on therapy in selected cases.

  16. Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide.

    PubMed Central

    Amin, A R; Attur, M; Patel, R N; Thakker, G D; Marshall, P J; Rediske, J; Stuchin, S A; Patel, I R; Abramson, S B

    1997-01-01

    Cartilage specimens from osteoarthritis (OA)-affected patients spontaneously released PGE2 at 48 h in ex vivo culture at levels at least 50-fold higher than in normal cartilage and 18-fold higher than in normal cartilage + cytokines + endotoxin. The superinduction of PGE2 production coincides with the upregulation of cyclooxygenase-2 (COX-2) in OA-affected cartilage. Production of both nitric oxide (NO) and PGE2 by OA cartilage explants is regulated at the level of transcription and translation. Dexamethasone inhibited only the spontaneously released PGE2 production, and not NO, in OA-affected cartilage. The NO synthase inhibitor HN(G)-monomethyl-L-arginine monoacetate inhibited OA cartilage NO production by > 90%, but augmented significantly (twofold) the spontaneous production of PGE2 in the same explants. Similarly, addition of exogenous NO donors to OA cartilage significantly inhibited PGE2 production. Cytokine + endotoxin stimulation of OA explants increased PGE2 production above the spontaneous release. Addition of L-NMMA further augmented cytokine-induced PGE2 production by at least fourfold. Inhibition of PGE2 by COX-2 inhibitors (dexamethasone or indomethacin) or addition of exogenous PGE2 did not significantly affect the spontaneous NO production. These data indicate that human OA-affected cartilage in ex vivo conditions shows (a) superinduction of PGE2 due to upregulation of COX-2, and (b) spontaneous release of NO that acts as an autacoid to attenuate the production of the COX-2 products such as PGE2. These studies, together with others, also suggest that PGE2 may be differentially regulated in normal and OA-affected chondrocytes. PMID:9077531

  17. Apigenin Prevents UVB-Induced Cyclooxygenase 2 Expression: Coupled mRNA Stabilization and Translational Inhibition▿

    PubMed Central

    Tong, Xin; Van Dross, Rukiyah T.; Abu-Yousif, Adnan; Morrison, Aubrey R.; Pelling, Jill C.

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5′ upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3′-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation. PMID:17074806

  18. Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Crews, Brenda C.; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Xu, Shu; Marnett, Lawrence J.

    2015-05-01

    Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancer cell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116) or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.

  19. Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells.

    PubMed

    Takeda, Shuso; Okazaki, Hiroyuki; Ikeda, Eriko; Abe, Satomi; Yoshioka, Yasushi; Watanabe, Kazuhito; Aramaki, Hironori

    2014-01-01

    Metastases are known to be responsible for approximately 90% of breast cancer-related deaths. Cyclooxygenase-2 (COX-2) is involved not only in inflammatory processes, but also in the metastasis of cancer cells; it is expressed in 40% of human invasive breast cancers. To comprehensively analyze the effects of cannabidiolic acid (CBDA), a selective COX-2 inhibitor found in the fiber-type cannabis plant (Takeda et al., 2008), on COX-2 expression and the genes involved in metastasis, we performed a DNA microarray analysis of human breast cancer MDA-MB-231 cells, which are invasive breast cancer cells that express high levels of COX-2, treated with CBDA for 48 hr at 25 µM. The results obtained revealed that COX-2 and Id-1, a positive regulator of breast cancer metastasis, were down-regulated (0.19-fold and 0.52-fold, respectively), while SHARP1 (or BHLHE41), a suppressor of breast cancer metastasis, was up-regulated (1.72-fold) and CHIP (or STUB1) was unaffected (1.03-fold). These changes were confirmed by real-time RT-PCR analyses. Taken together, the results obtained here demonstrated that i) CBDA had dual inhibitory effects on COX-2 through down-regulation and enzyme inhibition, and ii) CBDA may possess the ability to suppress genes that are positively involved in the metastasis of cancer cells in vitro.

  20. Overexpression of cyclooxygenase-2 in nasopharyngeal carcinoma and association with epidermal growth factor receptor expression.

    PubMed

    Soo, Ross; Putti, Thomas; Tao, Qian; Goh, Boon-Cher; Lee, Kang-Hoe; Kwok-Seng, Loh; Tan, Luke; Hsieh, Wen-Son

    2005-02-01

    To examine the association between cyclooxygenase-2 (COX-2) expression with epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), and latent membrane protein 1 (LMP-1) expression and with COX-2 promoter methylation status in primary nasopharyngeal cancer (NPC) tumors and to determine COX-2 promoter methylation status in NPC cell lines. Retrospective study. Patients with NPC were referred to the Department of Otolaryngology-Head and Neck Surgery for treatment. Formalin-fixed, paraffin-embedded NPC specimens from 42 patients were obtained. Immunohistochemical expression of COX-2, EGFR, VEGF, iNOS, and LMP-1 was performed in 42 NPC samples. COX-2 promoter methylation status was studied in 20 separate specimens and in 4 NPC cell lines. (1) COX-2, EGFR, VEGF, iNOS, and LMP-1 expression; and (2) COX-2 promotor methylation status. COX-2 was overexpressed in 79% of NPC specimens and was associated with EGFR status (P = .03) but not with LMP-1 or iNOS. In primary NPC tissue, methylation of the COX-2 promoter was seen in 4 of 7 COX-2-negative and 1 of 13 COX-2-positive immunohistochemical cases. COX-2 promoter methylation was found in the CNE-1 cell line. Nasopharyngeal cancer may be a useful target for selective COX-2 inhibition. The absence of promoter methylation may be a necessary component of COX-2 overexpression, and promoter methylation may be one of the mechanisms that regulate COX-2 expression.

  1. Methyl syringate, a TRPA1 agonist represses hypoxia-induced cyclooxygenase-2 in lung cancer cells.

    PubMed

    Park, Joonwoo; Shim, Myeong Kuk; Jin, Mirim; Rhyu, Mee-Ra; Lee, YoungJoo

    2016-03-15

    We have previously found that methyl syringate is a specific and selective agonist of the human transient receptor potential channel ankyrin 1 (TRPA1) and suppresses food intake and gastric emptying in imprinting control region mice. Because TRPA1 has been implicated in inflammatory responses, and inflammation and tumorigenesis are stimulated by the cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells. This study examined the effects of methyl syringate on hypoxia-induced COX-2 in human distal lung epithelial A549 cells. The effect of the methyl syringate on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or quantitative real-time polymerase chain reaction. The anti-invasive effect of methyl syringate was evaluated on A549 cells using matrigel invasion assay. Methyl syringate suppressed hypoxia-induced COX-2 protein and mRNA expression and promoter activity and reduced hypoxia-induced cell migration and invasion and secretion of vascular endothelial growth factor. These effects were antagonized by a TRPA1 antagonist, implying their mediation by the TRPA1 pathway. Together, these results indicate that methyl syringate inhibits the hypoxic induction of COX-2 expression and cell invasion through TRPA1 activation. These findings suggest that methyl syringate could be effective to suppress hypoxia-induced inflammation and indicate an additional functional effect of methyl syringate. Copyright © 2016. Published by Elsevier GmbH.

  2. Cyclooxygenase-2 is associated with malignant phenotypes in human lung cancer

    PubMed Central

    Li, Weiying; Yue, Wentao; Wang, Hui; Lai, Baitang; Yang, Xuehui; Zhang, Chunyan; Wang, Yue; Gu, Meng

    2016-01-01

    The objective of the present study was to investigate whether cyclooxygenase-2 (COX-2) is associated with malignancy, and to investigate its molecular mechanisms in human lung cancer tumor malignancy. The present study used RNA interference (RNAi) methodology and celecoxib, a COX-2 inhibitor, to investigate the effect of COX-2 knockdown on the proliferation and invasion abilities of lung cancer cells and the molecular mechanisms involved. Human lung adenocarcinoma A549-si10 and LTEP-A2 cells transfected with a specific small interfering RNA (A549-si10 and LTEP-A2-si10, respectively) grew more slowly compared with parental cell lines and cells transfected with pU6. The colony formation of A549-si10 and LTEP-A2-si10 cells was also reduced. In addition, A549-si10 and LTEP-A2-si10 cells were characterized by decreased metastatic and invasive abilities. The proliferation and invasive potential of parental A549 and LTEP-A2 cells was inhibited following treatment with celecoxib. In vivo, a COX-2 knockdown resulted in a decrease of proliferation and reduction of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and endothelial growth factor receptor (EGFR) expression in A549 xenografts. In conclusion, the present study revealed that COX-2 plays a extremely important role in tumor growth, infiltration and metastasis via the regulation of VEGF, MMP-2 and EGRF expression. Therefore, COX-2 is a potential therapeutic target for lung cancer. PMID:27895738

  3. Study of Osteoarthritis Treatment with Anti-Inflammatory Drugs: Cyclooxygenase-2 Inhibitor and Steroids

    PubMed Central

    Cho, Hongsik; Walker, Andrew; Williams, Jeb; Hasty, Karen A.

    2015-01-01

    Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo. PMID:26000299

  4. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2.

    PubMed

    Jang, Dae Sik; Cuendet, Muriel; Fong, Harry H S; Pezzuto, John M; Kinghorn, A Douglas

    2004-04-21

    As part of a project directed toward the discovery of new cancer chemopreventive agents from plants, two new natural products, asparagusic acid anti-S-oxide methyl ester (1) and asparagusic acid syn-S-oxide methyl ester (2), a new acetylenic compound, 2-hydroxyasparenyn [3',4'-trans-2-hydroxy-1-methoxy-4-[5-(4-methoxyphenoxy)-3-penten-1-ynyl]-benzene] (3), as well as eleven known compounds, asparenyn (4), asparenyol (5), (+/-)-1-monopalmitin (6), ferulic acid (7), 1,3-O-di-p-coumaroylglycerol (8), 1-O-feruloyl-3-O-p-coumaroylglycerol (9), blumenol C, (+/-)-epipinoresinol, linoleic acid, 1,3-O-diferuloylglycerol, and 1,2-O-diferuloylglycerol, were isolated from an ethyl acetate-soluble fraction of the methanol extract of the aerial parts of Asparagus officinalis (Asparagus), using a bioassay based on the inhibition of cyclooxygenase-2 to monitor chromatographic fractionation. The structures of compounds 1-3 were elucidated by 1D- and 2D-NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC and NOESY). All the isolates were evaluated for their inhibitory effects against both cyclooxygenase-1 and -2, with the most active compound being linoleic acid.

  5. Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages.

    PubMed

    Yam, Mun-Li; Abdul Hafid, Sitti Rahma; Cheng, Hwee-Ming; Nesaretnam, Kalanithi

    2009-09-01

    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.

  6. Growth inhibition of human colon cancer cells by nitric oxide (NO)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/T-cell factor signaling, nuclear factor-kappaB, and NO synthase 2 inhibition: implications for chemoprevention.

    PubMed

    Williams, Jennie L; Nath, Niharika; Chen, Jie; Hundley, Thomas R; Gao, Jianjun; Kopelovich, Levy; Kashfi, Khosrow; Rigas, Basil

    2003-11-15

    Nitric oxide (NO)-releasing aspirin (ASA), consisting of a traditional ASA molecule to which a NO-donating moiety is covalently bound, is a promising colon cancer chemopreventive agent. NO-ASA inhibits colon cancer cell growth more potently than ASA by inhibiting cell proliferation and enhancing cell killing. We examined in cultured human colon cancer cells the effect of NO-ASA on the beta-catenin/T-cell factor signaling pathway, nuclear factor-kappaB, and NO synthase 2 and on cyclooxygenase (COX) expression, all presumed to participate in colon carcinogenesis. Besides inhibiting cell growth, NO-ASA inhibited the beta-catenin/T-cell factor signaling pathway (IC(50), 1.1 microM), nuclear factor-kappaB DNA binding (IC(50), 7.5 microM), and NO synthase 2 expression (IC(50), 2 microM). Interestingly, NO-ASA induced COX-2 expression, although it had no effect on COX-1. COX-2 induction was accompanied by increased prostaglandin E(2) production. These effects occurred at NO-ASA concentrations below or near its IC(50) for cell growth (IC(50), 2-50 microM). The metabolism of NO-ASA by these cells is characterized by a rapid deacetylation step and the formation of a conjugate with glutathione. NO-ASA had no effect on intracellular cyclic GMP concentrations. We propose a model incorporating the pleiotropic effects of NO-ASA on cell signaling and postulate that collectively these effects may contribute to its strong chemopreventive effect.

  7. Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-05-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.

  8. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects

    PubMed Central

    Zhao, Y; de Toledo, S M; Hu, G; Hei, T K; Azzam, E I

    2014-01-01

    Background: Signalling events mediated by connexins and cyclooxygenase-2 (COX-2) have important roles in bystander effects induced by ionising radiation. However, whether these proteins mediate bystander effects independently or cooperatively has not been investigated. Methods: Bystander normal human fibroblasts were cocultured with irradiated adenocarcinoma HeLa cells in which specific connexins (Cx) are expressed in the absence of endogenous Cx, before and after COX-2 knockdown, to investigate DNA damage in bystander cells and their progeny. Results: Inducible expression of gap junctions composed of connexin26 (Cx26) in irradiated HeLa cells enhanced the induction of micronuclei in bystander cells (P<0.01) and reduced the coculture time necessary for manifestation of the effect. In contrast, expression of connexin32 (Cx32) conferred protective effects. COX-2 knockdown in irradiated HeLa Cx26 cells attenuated the bystander response due to connexin expression. However, COX-2 knockdown resulted in enhanced micronucleus formation in the progeny of the bystander cells (P<0.001). COX-2 knockdown delayed junctional communication in HeLa Cx26 cells, and reduced, in the plasma membrane, the physical interaction of Cx26 with MAPKKK, a controller of the MAPK pathway that regulates COX-2 and connexin. Conclusions: Junctional communication and COX-2 cooperatively mediate the propagation of radiation-induced non-targeted effects. Characterising the mediating events affected by both mechanisms may lead to new approaches that mitigate secondary debilitating effects of cancer radiotherapy. PMID:24867691

  9. Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-delta.

    PubMed

    Xu, K; Chang, C-M; Gao, H; Shu, H-K G

    2009-03-19

    Earlier, we showed that epidermal growth factor receptor (EGFR) signaling in human glioma cells increased cyclooxygenase-2 (COX-2) expression through p38-mitogen-activated protein kinase (MAPK)-dependent activation of the Sp family of transcription factors. Further mechanistic details of EGFR-dependent induction of COX-2 expression in glioma cells remained elusive. Protein kinase Cs (PKCs) comprise a family of serine-threonine kinases that are major mediators of signaling from receptor tyrosine kinases. Here, we report that PKC-delta, a novel PKC isoform, plays a role in EGF-dependent COX-2 induction in human glioma cells. Pharmacological inhibition and genetic silencing (through siRNA or dominant-negative expression) of PKC-delta confirm a role for this PKC isoform in EGF-dependent COX-2 induction. Overexpression of a functional PKC-delta enhanced COX-2 expression indicating that PKC-delta is not only necessary but also sufficient to regulate COX-2 levels. Inhibition of p38-MAPK pharmacologically or with siRNA further shows that p38-MAPK is required for activation of PKC-delta by EGF while inhibition of PKC-delta had no discernible effects on p38-MAPK activation. Finally, EGF stimulation promotes physical interactions between PKC-delta and Sp1 resulting in phosphorylation and nuclear localization of this transcription factor. These data provide the first evidence that PKC-delta is a critical link between p38-MAPK and Sp1-dependent COX-2 expression in human glioma cells.

  10. Cyclooxygenase-2 inhibitor nimesulide blocks ultraviolet B-induced photocarcinogenesis in SKH-1 hairless mice.

    PubMed

    Tang, Xiuwei; Kim, Arianna L; Kopelovich, Levy; Bickers, David R; Athar, Mohammad

    2008-01-01

    Cyclooxygenase-2 (COX-2) inhibition can inhibit UVB-induced carcinogenesis in the skin. We have shown that COX-2 is overexpressed in UVB-induced squamous cell carcinomas (SCCs). Celecoxib, a specific inhibitor of COX-2, blocks UVB-induced papillomas and carcinomas in murine skin. However, as COX-2 inhibitors of this type are associated with an increased risk of adverse cardiovascular events, we decided to study nimesulide, a different class of COX-2 inhibitor, an N-arylmethanesulfonamide derivative not known to have these untoward effects. To assess the antitumor-promoting effects of nimesulide, 90 mice were equally divided into three groups. Group I animals received no test agent or UVB and served as age-matched controls; group II animals were irradiated with UVB (180 mJ cm(-2), twice weekly for 35 weeks) and group III animals received 300 p.p.m. nimesulide in drinking water and were irradiated with UVB as described for group-II. Nimesulide treatment reduced the growth of UVB-induced tumors both in terms of tumor number and tumor volume. By weeks 25, 30 and 35, the tumor numbers in the nimesulide-treated group were 79%, 49% and 53% less than the number occurring in UVB-treated animals whereas tumor volume was reduced 69%, 54% and 53%, respectively, compared to the UVB-irradiated control group. Nimesulide also inhibited the malignant progression of SCCs. The reduction in tumorigenesis was paralleled by a decrease in cell cycle regulatory proteins (cyclins A, B1, D1, E, CDK2/4/6) and the antiapoptotic protein (Bcl2); concomitantly there was an increase in proapoptotic markers, poly (ADP-ribose) polymerase (PARP) and caspase-3. Nimesulide also decreased ornithine decarboxylase expression and the nuclear accumulation of nuclear factor kappa B transcriptionally active protein complexes. These results show that alternative classes of COX-2 inhibitors may likely be efficacious as cancer chemopreventive agents and may have an improved therapeutic index.

  11. Circadian CLOCK Mediates Activation of Transforming Growth Factor-β Signaling and Renal Fibrosis through Cyclooxygenase 2.

    PubMed

    Chen, Wei-Dar; Yeh, Jih-Kai; Peng, Meng-Ting; Shie, Shian-Sen; Lin, Shuei-Liong; Yang, Chia-Hung; Chen, Tien-Hsing; Hung, Kuo-Chun; Wang, Chun-Chieh; Hsieh, I-Chang; Wen, Ming-Shien; Wang, Chao-Yung

    2015-12-01

    The circadian rhythm regulates blood pressure and maintains fluid and electrolyte homeostasis with central and peripheral clock. However, the role of circadian rhythm in the pathogenesis of tubulointerstitial fibrosis remains unclear. Here, we found that the amplitudes of circadian rhythm oscillation in kidneys significantly increased after unilateral ureteral obstruction. In mice that are deficient in the circadian gene Clock, renal fibrosis and renal parenchymal damage were significantly worse after ureteral obstruction. CLOCK-deficient mice showed increased synthesis of collagen, increased oxidative stress, and greater transforming growth factor-β (TGF-β) expression. TGF-β mRNA expression oscillated with the circadian rhythms under the control of CLOCK-BMAL1 heterodimers. The expression of cyclooxygenase 2 was significantly higher in kidneys from CLOCK-deficient mice with ureteral obstruction. Treatment with a cyclooxygenase 2 inhibitor celecoxib significantly improved renal fibrosis in CLOCK-deficient mice. Taken together, these data establish the importance of the circadian rhythm in tubulointerstitial fibrosis and suggest CLOCK/TGF-β signaling as a novel therapeutic target of cyclooxygenase inhibition. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    PubMed

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man.

    PubMed

    Hinz, Burkhard; Cheremina, Olga; Brune, Kay

    2008-02-01

    For more than three decades, acetaminophen (INN, paracetamol) has been claimed to be devoid of significant inhibition of peripheral prostanoids. Meanwhile, attempts to explain its action by inhibition of a central cyclooxygenase (COX)-3 have been rejected. The fact that acetaminophen acts functionally as a selective COX-2 inhibitor led us to investigate the hypothesis of whether it works via preferential COX-2 blockade. Ex vivo COX inhibition and pharmacokinetics of acetaminophen were assessed in 5 volunteers receiving single 1000 mg doses orally. Coagulation-induced thromboxane B(2) and lipopolysaccharide-induced prostaglandin E(2) were measured ex vivo and in vitro in human whole blood as indices of COX-1 and COX-2 activity. In vitro, acetaminophen elicited a 4.4-fold selectivity toward COX-2 inhibition (IC(50)=113.7 micromol/L for COX-1; IC(50)=25.8 micromol/L for COX-2). Following oral administration of the drug, maximal ex vivo inhibitions were 56% (COX-1) and 83% (COX-2). Acetaminophen plasma concentrations remained above the in vitro IC(50) for COX-2 for at least 5 h postadministration. Ex vivo IC(50) values (COX-1: 105.2 micromol/L; COX-2: 26.3 micromol/L) of acetaminophen compared favorably with its in vitro IC(50) values. In contrast to previous concepts, acetaminophen inhibited COX-2 by more than 80%, i.e., to a degree comparable to nonsteroidal antiinflammatory drugs (NSAIDs) and selective COX-2 inhibitors. However, a >95% COX-1 blockade relevant for suppression of platelet function was not achieved. Our data may explain acetaminophen's analgesic and antiinflammatory action as well as its superior overall gastrointestinal safety profile compared with NSAIDs. In view of its substantial COX-2 inhibition, recently defined cardiovascular warnings for use of COX-2 inhibitors should also be considered for acetaminophen.

  14. Induction of hepatic cyclooxygenase-2 by hyperhomocysteinemia via nuclear factor-kappaB activation.

    PubMed

    Wu, Nan; Siow, Yaw L; O, Karmin

    2009-10-01

    Hyperhomocysteinemia, an elevation of blood homocysteine (Hcy), is a metabolic disorder associated with dysfunction of multiple organs. Apart from endothelial dysfunction, Hcy can cause hepatic lipid accumulation and liver injury. However, the mechanism responsible for Hcy-induced liver injury is poorly understood. The aim of this study was to investigate the regulation of cyclooxygenase-2 (COX-2), a proinflammatory factor, expression in the liver during the initial phase of hyperhomocysteinemia. Sprague-Dawley rats were fed a high-methionine diet for 1 or 4 wk. Serum and liver concentrations of Hcy were significantly elevated after 1 or 4 wk of dietary treatment. COX-2 mRNA and protein levels were significantly elevated in the liver of hyperhomocysteinemic rats. The induction of COX-2 expression was more prominent in 1-wk hyperhomocysteinemic rats than that in the 4-wk group. EMSA revealed an activation of NF-kappaB in the same liver tissue in which COX-2 was induced. Administration of a NF-kappaB inhibitor to hyperhomocysteinemic rats effectively abolished hepatic COX-2 expression, inhibited the formation of inflammatory foci, and improved liver function. Further investigation revealed that oxidative stress due to increased superoxide generation was responsible for increased phosphorylation and degradation of IkappaBalpha leading to NF-kappaB activation in the liver. Administration of 4-hydroxy-tetramethyl-piperidine-1-oxyl, an SOD mimetic, to hyperhomocysteinemic rats not only inhibited NF-kappaB activation but also prevented hepatic COX-2 induction and improved liver function. These results suggest that hyperhomocysteinemia-induced COX-2 expression is mediated via NF-kappaB activation. Increased oxidative stress and inflammatory response may contribute to liver injury associated with hyperhomocysteinemia.

  15. Cyclooxygenase-2 Suppresses the Anabolic Response to PTH Infusion in Mice

    PubMed Central

    Choudhary, Shilpa; Canalis, Ernesto; Estus, Thomas; Adams, Douglas; Pilbeam, Carol

    2015-01-01

    We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2)-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2) knockout (KO) on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d) or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT) and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD), μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2. PMID:25781979

  16. Cyclooxygenase-2 suppresses the anabolic response to PTH infusion in mice.

    PubMed

    Choudhary, Shilpa; Canalis, Ernesto; Estus, Thomas; Adams, Douglas; Pilbeam, Carol

    2015-01-01

    We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2)-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2) knockout (KO) on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d) or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT) and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD), μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.

  17. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    SciTech Connect

    Zuo, Chaohui; Qiu, Xiaoxin; Liu, Nianli; Yang, Darong; Xia, Man; Liu, Jingshi; Wang, Xiaohong; and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  18. Cyclooxygenase-2 Is a Target of MicroRNA-16 in Human Hepatoma Cells

    PubMed Central

    Agra Andrieu, Noelia; Motiño, Omar; Mayoral, Rafael; Llorente Izquierdo, Cristina; Fernández-Alvarez, Ana; Boscá, Lisardo; Casado, Marta; Martín-Sanz, Paloma

    2012-01-01

    Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3′-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression. PMID:23226427

  19. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin*

    PubMed Central

    Griesser, Markus; Pistis, Valentina; Suzuki, Takashi; Tejera, Noemi; Pratt, Derek A.; Schneider, Claus

    2011-01-01

    The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 μm/min) and associated with stoichiometric uptake of O2. Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 μm/min), and the rate was increased ≈10-fold by the addition of 300 μm H2O2. The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H218O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity. PMID:21071447

  20. Use of Selective Cyclooxygenase-2 Inhibitors, Other Analgesics, and Risk of Glioma

    PubMed Central

    Seliger, Corinna; Meier, Christoph R.; Becker, Claudia; Jick, Susan S.; Bogdahn, Ulrich; Hau, Peter; Leitzmann, Michael F.

    2016-01-01

    Background Selective cyclooxygenase-2 (COX-2) inhibitors are analgesic, antipyretic, and anti-inflammatory drugs. They have been found to inhibit the development of glioma in laboratory investigations. Whether these drugs reduce the risk of glioma incidence in humans is unknown. Methods We conducted a matched case-control analysis using the U.K.-based Clinical Practice Research Datalink (CPRD). We identified 2,469 cases matched to 24,690 controls on age, sex, calendar time, general practice, and number of years of active history in the CPRD prior to the index date. We conducted conditional logistic regression analyses to determine relative risks, estimated as odds ratios (ORs) with 95% confidence intervals (CIs) of glioma in relation to use of selective COX-2 inhibitors, adjusted for several confounding variables. Results Use of selective COX-2 inhibitors was unrelated to risk of glioma (adjusted OR for 1–9 versus 0 prescriptions = 1.02; 95% CI = 0.92–1.13, 10–29 versus 0 prescriptions = 1.01; 95% CI = 0.80–1.28, ≥30 versus 0 prescriptions = 1.16; 95% CI = 0.86–1.55). Trends for increasing numbers of prescriptions for other non-steroidal anti-inflammatory drugs (NSAIDs), and non-NSAID analgesics were also not associated with glioma risk. Conclusion Further epidemiologic studies are needed to confirm the null relation of use of selective COX-2 inhibitors to glioma risk and to explain the discrepancy between laboratory investigations and our observational study. Impact: Use of selective COX-2 inhibitors is unrelated to glioma risk. PMID:26871579

  1. The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia.

    PubMed

    Chang, Sung-Hee; Ai, Youxi; Breyer, Richard M; Lane, Timothy F; Hla, Timothy

    2005-06-01

    Expression of cyclooxygenase 2 (COX-2) in breast cancer correlates with poor prognosis, and COX-2 enzyme inhibitors reduce breast cancer incidence in humans. We recently showed that COX-2 overexpression in the mammary gland of transgenic mice induced mammary cancer. Because prostaglandin E2 (PGE2) is the major eicosanoid and because the EP2 subtype of the PGE2 receptor is highly expressed in the mammary tumors, we tested if this G protein-coupled receptor is required for tumorigenesis. We crossed the MMTV-COX-2 transgenic mice with Ep2-/- mice and studied tumor development in bigenic mice. Lack of EP2 receptor strongly suppressed COX-2-induced effects such as precocious development of the mammary gland in virgins and the development of mammary hyperplasia in multiparous female mice. Interestingly, the expression of amphiregulin, a potent mammary epithelial cell growth factor was down regulated in mammary glands of Ep2-/- mice. Total cyclic AMP (cAMP) levels were reduced in Ep2-/- mammary glands suggesting that PGE2 signaling via the EP2 receptor activates the Gs/cAMP/protein kinase A pathway. In mammary tumor cell lines, expression of the EP2 receptor followed by treatment with CAY10399, an EP2-specific agonist, strongly induced amphiregulin mRNA levels in a protein kinase A-dependent manner. These data suggest that PGE2 signaling via the EP2 receptor in mammary epithelial cells regulate mammary gland hyperplasia by the cAMP-dependent induction of amphiregulin. Inhibition of the EP2 pathway in the mammary gland may be a novel approach in the prevention and/or treatment of mammary cancer.

  2. Genetic ablation of cyclooxygenase-2 in keratinocytes produces a cell-autonomous defect in tumor formation.

    PubMed

    Lao, Huei-Chen; Akunda, Jacqueline K; Chun, Kyung-Soo; Flake, Gordon P; Yuspa, Stuart H; Langenbach, Robert

    2012-11-01

    Using a mouse skin tumor model, we reported previously that cyclooxygenase-2 (COX-2) deficiency reduced papilloma formation. However, this model did not differentiate between the effects of systemic COX-2-deficiency and keratinocyte-specific COX-2 deficiency on tumor formation. To determine whether keratinocyte-specific COX-2 deficiency reduced papilloma formation, v-H-ras-transformed COX-2+/+ and COX-2-/- keratinocytes were grafted onto nude mice and tumor development was compared. Transformed COX-2+/+ and COX-2-/- keratinocytes expressed similar levels of H-ras, epidermal growth factor receptor and phospho-extracellular signal-regulated kinase 1/2 in vitro; and COX-2-deficiency did not reduce uninfected or v-H-ras infected keratinocyte replication. In contrast, tumors arising from grafted transformed COX-2+/+ and COX-2-/- keratinocytes expressed similar levels of H-ras, but COX-2 deficiency reduced phospho-extracellular signal-regulated kinase 1/2 and epidermal growth factor receptor levels 50-60% and tumor volume by 80% at 3 weeks. Two factors appeared to account for the reduced papilloma size. First, papillomas derived from COX-2-/- keratinocytes showed about 70% decreased proliferation, as measured by bromodeoxyuridine incorporation, compared with papillomas derived from COX-2+/+ keratinocytes. Second, keratin 1 immunostaining of papillomas indicated that COX-2-/- keratinocytes prematurely initiated terminal differentiation. Differences in the levels of apoptosis and vascularization did not appear to be contributing factors as their levels were similar in tumors derived from COX-2-/- and COX-2+/+ keratinocytes. Overall, the data are in agreement with our previous observations that decreased papilloma number and size on COX-2-/- mice resulted from reduced keratinocyte proliferation and accelerated keratinocyte differentiation. Furthermore, the data indicate that deficiency/inhibition of COX-2 in the initiated keratinocyte is an important determinant of

  3. Genetic ablation of cyclooxygenase-2 in keratinocytes produces a cell-autonomous defect in tumor formation

    PubMed Central

    Langenbach, Robert

    2012-01-01

    Using a mouse skin tumor model, we reported previously that cyclooxygenase-2 (COX-2) deficiency reduced papilloma formation. However, this model did not differentiate between the effects of systemic COX-2-deficiency and keratinocyte-specific COX-2 deficiency on tumor formation. To determine whether keratinocyte-specific COX-2 deficiency reduced papilloma formation, v-H-ras-transformed COX-2+/+ and COX-2−/− keratinocytes were grafted onto nude mice and tumor development was compared. Transformed COX-2+/+ and COX-2−/− keratinocytes expressed similar levels of H-ras, epidermal growth factor receptor and phospho-extracellular signal-regulated kinase1/2 in vitro; and COX-2-deficiency did not reduce uninfected or v-H-ras infected keratinocyte replication. In contrast, tumors arising from grafted transformed COX-2+/+ and COX-2−/− keratinocytes expressed similar levels of H-ras, but COX-2 deficiency reduced phospho-extracellular signal-regulated kinase 1/2 and epidermal growth factor receptor levels 50–60% and tumor volume by 80% at 3 weeks. Two factors appeared to account for the reduced papilloma size. First, papillomas derived from COX-2−/− keratinocytes showed about 70% decreased proliferation, as measured by bromodeoxyuridine incorporation, compared with papillomas derived from COX-2+/+ keratinocytes. Second, keratin 1 immunostaining of papillomas indicated that COX-2−/− keratinocytes prematurely initiated terminal differentiation. Differences in the levels of apoptosis and vascularization did not appear to be contributing factors as their levels were similar in tumors derived from COX-2−/− and COX-2+/+ keratinocytes. Overall, the data are in agreement with our previous observations that decreased papilloma number and size on COX-2−/− mice resulted from reduced keratinocyte proliferation and accelerated keratinocyte differentiation. Furthermore, the data indicate that deficiency/inhibition of COX-2 in the initiated keratinocyte is an

  4. Oxidative stress and cyclooxygenase-2 induction mediate cyanide-induced apoptosis of cortical cells.

    PubMed

    Li, L; Prabhakaran, K; Shou, Y; Borowitz, J L; Isom, G E

    2002-11-15

    Cyanide (KCN)-induced generation of reactive oxygen species (ROS) involves cyclooxygenase-2 (COX-2)-mediated reactions in some neurons. The present study examines the extent to which COX isoforms are involved in KCN-induced apoptotic cell death processes of cultured cortical cells. After treatment with KCN (10-300 microM), COX-2 was expressed in a time- and concentration-dependent manner increasing markedly over a 4-h period. However, no significant changes were observed in COX-1 levels at any cyanide concentration. Correlated with COX-2 up-regulation, KCN induced a time-dependent apoptotic death. TUNEL staining showed that the COX-2 inhibitor NS-398 (30 microM) blocked KCN-induced apoptosis, whereas the selective COX-1 inhibitor valeryl salicylate did not affect the level of apoptotic cell death. Exposure of cells to KCN (300 microM) for 24 h resulted in DNA fragmentation, which was also reduced by NS-398. Prostaglandin E(2) (PGE(2)) accumulation in cell culture supernatants was increased by KCN and NS-398 blocked PGE(2) generation. PCR studies further confirmed that COX-2 expression was increased by KCN. Antioxidants phenyl-N-test-butylnitrone, superoxide dismutase, and catalase significantly inhibited KCN-induced COX-2 up-regulation and subsequent apoptosis. N(G)-nitro-L-arginine methylester an inhibitor of nitric oxide synthase, blocked KCN-induced PGE(2) production and apoptosis, but not COX-2 expression. Increased nitric oxide levels caused by cyanide may directly activate the COX-2 enzyme. These data show that cyanide treatment of cortical cells involves increased COX-2 expression, PGE(2) accumulation, and ROS generation, resulting in apoptotic cell death.

  5. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors

    PubMed Central

    Harris, Randall E; Beebe-Donk, Joanne; Alshafie, Galal A

    2006-01-01

    Background Epidemiologic and laboratory investigations suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) have chemopreventive effects against breast cancer due to their activity against cyclooxygenase-2 (COX-2), the rate-limiting enzyme of the prostaglandin cascade. Methods We conducted a case control study of breast cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 323 incident breast cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 649 cancer free controls matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and breast cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR) and 95% confidence intervals. Results Results showed significant risk reductions for selective COX-2 inhibitors as a group (OR = 0.29, 95% CI = 0.14–0.59), regular aspirin (OR = 0.49, 95% CI = 0.26–0.94), and ibuprofen or naproxen (0.36, 95% CI = 0.18–0.72). Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg) produced no significant change in the risk of breast cancer. Conclusion Selective COX-2 inhibitors (celecoxib and rofecoxib) were only recently approved for use in 1999, and rofecoxib (Vioxx) was withdrawn from the marketplace in 2004. Nevertheless, even in the short window of exposure to these compounds, the selective COX-2 inhibitors produced a significant (71%) reduction in the risk of breast cancer, underscoring their strong potential for breast cancer chemoprevention. PMID:16445867

  6. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Harris, Randall E; Beebe-Donk, Joanne; Alshafie, Galal A

    2006-01-30

    Epidemiologic and laboratory investigations suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) have chemopreventive effects against breast cancer due to their activity against cyclooxygenase-2 (COX-2), the rate-limiting enzyme of the prostaglandin cascade. We conducted a case control study of breast cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 323 incident breast cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003-2004 and compared with 649 cancer free controls matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and breast cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR) and 95% confidence intervals. Results showed significant risk reductions for selective COX-2 inhibitors as a group (OR = 0.29, 95% CI = 0.14-0.59), regular aspirin (OR = 0.49, 95% CI = 0.26-0.94), and ibuprofen or naproxen (0.36, 95% CI = 0.18-0.72). Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg) produced no significant change in the risk of breast cancer. Selective COX-2 inhibitors (celecoxib and rofecoxib) were only recently approved for use in 1999, and rofecoxib (Vioxx) was withdrawn from the marketplace in 2004. Nevertheless, even in the short window of exposure to these compounds, the selective COX-2 inhibitors produced a significant (71%) reduction in the risk of breast cancer, underscoring their strong potential for breast cancer chemoprevention.

  7. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Reddy, Madhava C; Subhashini, J; Mahipal, S V K; Bhat, Vadiraja B; Srinivas Reddy, P; Kiranmai, G; Madyastha, K M; Reddanna, P

    2003-05-02

    C-Phycocyanin (C-PC) is one of the major biliproteins of Spirulina platensis, a blue green algae, with antioxidant and radical scavenging properties. It is also known to exhibit anti-inflammatory and anti-cancer properties. However, the mechanism of action of C-PC is not clearly understood. Previously, we have shown that C-PC selectively inhibits cyclooxygenase-2 (COX-2), an inducible isoform that is upregulated during inflammation and cancer. In view of the reported induction of apoptosis in cancer cells by cyclooxygenase-2 inhibitors, the present study is undertaken to test the effect of C-PC on LPS stimulated RAW 264.7 mouse macrophage cell line. These studies have shown a dose dependent reduction in the growth and multiplication of macrophage cell line by C-PC. This decrease in cell number appears to be mediated by C-PC induced apoptosis as evidenced by flow cytometric and confocal microscopic studies. Cells treated with 20 micro M C-PC showed typical nuclear condensation and 16.6% of cells in sub-G(o)/G(1) phase. These cells also showed DNA fragmentation in a dose dependent manner. The studies on poly(ADP ribose) polymerase (PARP) cleavage showed typical fragmentation pattern in C-PC treated cells. This C-PC induced apoptosis in RAW 264.7 cells appears to be mediated by the release of cytochrome c from mitochondria and independent of Bcl-2 expression. These effects of C-PC on RAW 264.7 cells may be due to reduced PGE(2) levels as a result of COX-2 inhibition.

  8. Effects of cyclooxygenase-2 on human esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Li; Wu, Yong-Dong; Li, Peng; Tu, Jun; Niu, Ying-Lin; Xu, Cai-Min; Zhang, Shu-Tian

    2011-01-01

    AIM: To study the relationship between the cyclooxygenase (COX)-2 gene and the proliferation and apoptosis of esophageal squamous carcinoma EC109 cells. METHODS: The techniques of RNA interference (RNAi) and cell transfection, as well as the levels of oncogenicity in nude mice, were used to study the role of COX-2 in the esophageal squamous carcinoma cell (ESCC) line EC109. Following RNAi and transfection, Western blotting analysis was used to determine the expression of the COX-2 protein. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction assay was used to evaluate cell growth, and flow cytometry was used to detect cell apoptosis. RESULTS: Western blotting analysis demonstrated that COX-2 expression was significantly reduced in EC109 cells treated with COX-2-specific short interfering RNA (siRNA) but was increased in EC109 cells transfected with COX-2. Furthermore, COX-2 siRNA treatment inhibited cell proliferation (P < 0.01) and induced apoptosis in EC109 cells, as determined by an MTT assay and by flow cytometry, respectively. In contrast, transfected COX-2 led to increased cell proliferation (P < 0.05) and decreased apoptosis in EC109 cells. In addition, combination treatment of cells with COX-2 siRNA and aspirin had a synergistic effect (P < 0.01). For experiments measuring tumorigenicity, xenograft tumors of a greater volume and weight were found in the COX-2 group compared with other groups (P < 0.05). A large dose of aspirin inhibited tumor growth in nude mice effectively (P < 0.05), and the rate of tumor suppression was 51.8% in the high-dose aspirin group. CONCLUSION: COX-2 plays a very critical role in ESCC carcinogenesis, and COX-2 siRNA combined with aspirin has the potential to be an anticancer therapy for the treatment of ESCC. PMID:22147962

  9. Withania somnifera targets interleukin-8 and cyclooxygenase-2 in human prostate cancer progression.

    PubMed

    Setty Balakrishnan, Anand; Nathan, Abel Arul; Kumar, Mukesh; Ramamoorthy, Sudhakar; Ramia Mothilal, Sathish Kumar

    2017-06-01

    Prostate cancer (PC) is a common noncutaneous malignancy in men. The incidence of PC is increasing at an alarming rate across the globe. Progression of PC is associated with elevated levels of interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in malignant cells. Overexpression of these players is accompanied by chronic inflammation, increased angiogenesis, proliferation, migration, and inhibition of apoptosis. Moreover, their elevated circulating levels promote the disease progression from androgen-dependent to androgen-independent state. Thus, inhibiting the expression of IL-8 and COX-2 would be a promising target in the development of PC therapeutics. In this study, we investigated the inhibitory effects of Withania somnifera extract on highly metastatic, androgen-independent prostate cancer cell line (PC3). Additionally, we compared the real-time expression of IL-8 and COX-2 in prostate tissue samples. The cell viability and cytotoxicity of W. somnifera extract in PC3 cells was quantified colorimetrically by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase leakage assay, respectively. Hematoxylin and eosin staining for histological examination, trypan blue, and acridine orange dyes to enumerate apoptotic and live cells, quantitative real-time polymerase chain reaction to determine the expression and flow cytometry to study the cell cycle analysis were used. We observed a significant decrease in the cell viability with a half-maximal inhibitory concentration (IC50) of 10 μg/mL. The expression levels of IL-8 and COX-2 in prostate tissue samples and in PC3 cells were predominantly high; however, the lowest dose of W. somnifera significantly inhibited the enhanced expression of IL-8 and COX-2 in PC3 cells in 24 hours. Furthermore, W. somnifera extract (10 μg/mL) irreversibly arrested the cell cycle in G2/M phase, which was evident from the rapid accumulation of PC3 cells significantly. Our results indicate that inherent

  10. The regulation of cytotoxicity and cyclooxygenase-2 expression by 2-hydroxy-ethyl methacrylate in human osteoblasts are related to intracellular glutathione levels.

    PubMed

    Ho, Y-C; Huang, F-M; Lee, S-S; Chang, Y-C

    2014-08-01

    To investigate the effects of 2-hydroxy-ethyl methacrylate (HEMA) on cytotoxicity and cyclooxygenase-2 (COX-2) protein expression in human osteoblasts. Cytotoxicity was judged using an Alamar Blue reduction assay on human osteoblast cell line U2OS. Western blot was used to evaluate the expression of COX-2 protein by HEMA. To determine whether glutathione (GSH) levels were important in cytotoxicity and COX-2 expression of HEMA, cells were pre-treated with the GSH precursor, 2-oxothiazolidine-4-carboxylic acid (OTZ), to boost thiol levels, or buthionine sulfoximine (BSO) to deplete GSH. Paired Student's t-tests were applied for the statistical analysis of the results. HEMA demonstrated a cytotoxic effect to U2OS cells in a dose-dependent manner (P < 0.05). The 50% inhibition concentration of HEMA was approximately 3 mmol L(-1) . HEMA was found to induce COX-2 protein expression in U2OS cells (P < 0.05). The addition of OTZ acted as a protective effect on HEMA-induced cytotoxicity and COX-2 expression (P < 0.05). In contrast, the addition of BSO enhanced HEMA-induced cytotoxicity and COX-2 expression (P < 0.05). Taken together, the levels of HEMA that were tested inhibited cell growth on U2OS cells. HEMA has a significant potential for periapical toxicity. The activation of COX-2 protein expression may be one of the mechanisms of HEMA-induced periapical inflammation. These inhibitory effects were associated with intracellular GSH levels. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. The clinical pharmacology of cyclooxygenase-2-selective and dual inhibitors.

    PubMed

    Clark, Terrence P

    2006-09-01

    Over the past decade, there have been several nonsteroidal anti-inflammatory drugs (NSAIDS) introduced in veterinary medicine with an increased gastrointestinal safety profile consistent with a cyclooxygenase (COX)-1-sparing effect. More recently, an NSAID with additional 5-lipoxygenase (5-LOX) activity has also been approved for use. Although it is tempting to equate in vitro COX-2/COX-1 and 5-LOX inhibition to overall in vivo safety, the data do not support this approach. The true overall safety for any individual compound is based on its evaluation in laboratory margin-of-safety studies, reproductive safety studies, and blind multicenter field studies in client-owned animals. Therefore, when choosing a COX-2-selective or dual-inhibitor NSAID for clinical use, all in vivo data must be taken into account to understand comparative safety, and continued use must be based on the drug's performance in the individual being treated. Until head-to-head trials in multicenter blind studies are published, comments on comparative safety and effectiveness must be reserved.

  12. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    SciTech Connect

    Teraoka, Hiroki Kubota, Akira; Dong, Wu; Kawai, Yusuke; Yamazaki, Koji; Mori, Chisato; Harada, Yoshiteru; Peterson, Richard E.; Hiraga, Takeo

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.

  13. Prostaglandin E2 EP3 receptor regulates cyclooxygenase-2 expression in the kidney

    PubMed Central

    Quiroz-Munoz, Mariana; Cuevas, Catherina A.; Cespedes, Carlos; Ferreri, Nicholas R.

    2012-01-01

    Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE2 EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg−1·day−1) or rofecoxib (10 mg·kg−1·day−1)], with or without sulprostone (20 μg·kg−1·day−1). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (μm2/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE2 acting on its EP3 receptor in the TAL. PMID:22622465

  14. Dual effect of nitric oxide donors on cyclooxygenase-2 expression in human mesangial cells.

    PubMed

    Díaz-Cazorla, M; Pérez-Sala, D; Lamas, S

    1999-05-01

    Nitric oxide (NO) is emerging as a key regulator of gene expression, capable of playing either positive or negative roles. The results of this study indicate that NO exerts a dual effect on cyclooxygenase-2 (COX-2) expression in human mesangial cells (HMC). Treatment of HMC with NO synthase inhibitors attenuated interleukin-1beta (IL-1beta/tumor necrosis factor-alpha (TNF-alpha)-elicited COX-2 protein and mRNA expression, suggesting a positive role of endogenous NO on COX-2 induction. However, NO donors (sodium nitroprusside [SNP] and S-nitroso-N-acetylpenicillamine [SNAP]) amplified cytokine-elicited COX-2 expression at early time points of treatment (up to 8 h for mRNA and up to 24 h for protein expression), but were inhibitory at later times. Oligonucleotide decoy experiments confirmed the importance of nuclear factor kappaB (NF-kappaB) activation for COX-2 induction by IL-1beta/TNF-alpha. Treatment with N(G)-nitro-L-arginine methyl ester (L-NAME) did not affect initial activation of NF-kappaB by IL-1beta/TNF-alpha, but unveiled an inhibitory effect of NO generation on NF-kappaB activity after 4 h. In HMC supplemented with SNP, cytokine-induced NF-kappaB activation was potentiated at early times of induction (5 to 15 min), but inhibited at later times (1 to 4 h), suggesting a dual effect of NO donors on NF-kappaB activation. Interestingly, IkappaBalpha protein levels followed a reciprocal pattern of expression: IkappaBalpha levels were lower at early times of induction in NO donor-supplemented cells; however, after 1 h of treatment, IkappaBalpha levels became higher than in cells treated only with cytokines. In the presence of SNP, cytokine-elicited IkappaBalpha mRNA induction was initially delayed, but was amplified at later times. These changes in IkappaBalpha expression could contribute to the dual effects of NO donors on NF-kappaB activation and COX-2 expression in HMC.

  15. Increased prostaglandin E2 concentrations and cyclooxygenase-2 expression in asthmatic subjects with sputum eosinophilia.

    PubMed

    Profita, Mirella; Sala, Angelo; Bonanno, Anna; Riccobono, Loredana; Siena, Liboria; Melis, Mario R; Di Giorgi, Rossana; Mirabella, Franco; Gjomarkaj, Mark; Bonsignore, Giovanni; Vignola, Antonio M

    2003-10-01

    Prostaglandin E2 (PGE2) is known to be produced within human airways, but it is not clear whether in airway diseases it can play a deleterious or a beneficial role. Recently it has been reported that PGE2 can enhance eosinophil survival in vitro. To evaluate whether the concentrations of PGE2 in asthmatic airways correlate with the number of eosinophils and can be responsible for eosinophil-enhanced survival and to identify the cyclooxygenase isoform contributing to the synthesis of PGE2 by cells present in asthmatic airways. Reversed-phase high-performance liquid chromatography and/or specific radioimmunoassay was used to measure PGE2 concentrations in induced sputum supernatants from 14 control and 30 asthmatic subjects. Correlations between concentrations of PGE2 and the number of eosinophils in induced sputum were evaluated. Expression of cyclooxygenase-2 (COX-2) in induced sputum cells was determined by immunocytochemistry, and the effect of COX-2 inhibition on PGE2 production was evaluated with the use of radiolabeled arachidonic acid. The effects on eosinophil apoptosis by PGE2 or induced sputum supernatants were studied by using peripheral blood eosinophils obtained by negative immunomagnetic selection. PGE2 concentrations resulted in elevated samples from asthmatic subjects and directly correlated with the percentage of eosinophils and the concentrations of eosinophilic cationic protein. Immunostaining for COX-2 showed enhanced expression in macrophages of asthmatic subjects when compared with control subjects, and the use of a specific COX-2 inhibitor provided evidence that PGE2 synthesis was the result of COX-2 enzymatic activity in asthma-induced sputum cells. Supernatant from induced sputum of asthmatic subjects with high eosinophil counts caused a decreased apoptosis of peripheral blood eosinophils when compared with control subjects, and immunoprecipitation of PGE2 significantly reverted this phenomenon, suggesting that PGE2 was present in

  16. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

    PubMed Central

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-01-01

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation. PMID:28208679

  17. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway.

    PubMed

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-02-12

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson's disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  18. Modulation of Ionizing Radiation-Induced G{sub 2} Arrest by Cyclooxygenase-2 and its Inhibitor Celecoxib

    SciTech Connect

    Jun, Hyun Jung; Kim, Young Mee; Park, Soo Yeon; Park, Ji Sun; Lee, Eun Jung; Choi, Shin Ae; Pyo, Hongryull

    2009-09-01

    Purpose: Prolongation or attenuation of ionizing radiation (IR)-induced G{sub 2}-M arrest in cyclooxygenase-2 (COX-2) overexpressing or celecoxib-treated cells, respectively, has been previously observed. To better understand the molecular mechanisms involved, we investigated the molecules involved in G{sub 2} checkpoint pathways after treatment with IR {+-} celecoxib. Methods and Materials: Various molecules in the G{sub 2} checkpoint pathways were investigated in HCT-116-Mock and -COX-2 cells. Western blot, reverse transcriptase polymerase chain reaction, confocal microscopy, and fluorescence activated cell sorter (FACS) analyses were performed to investigate whether expression and activity of the ataxia telangiectasia and rad3-related (ATR) could be modulated by COX-2 and its selective inhibitors. Results: COX-2 overexpression increased expression and activity of ATR after IR exposure. Celecoxib downregulated ATR in all tested cell lines independent of COX-2 expression, but downregulation was greater in COX-2 overexpressing cells after cells were irradiated. Celecoxib pretreatment before radiation caused strongly inhibited G{sub 2} arrest. Conclusions: COX-2 appears to prolong IR-induced G{sub 2} arrest by upregulating ATR. Celecoxib downregulated ATR preferentially in irradiated COX-2 overexpressing cells. Celecoxib may radiosensitize cancer cells by inhibiting G{sub 2} arrest through ATR downregulation.

  19. Mono-, di-, and triaryl substituted tetrahydropyrans as cyclooxygenase-2 and tumor growth inhibitors. Synthesis and biological evaluation.

    PubMed

    Singh, Palwinder; Bhardwaj, Atul

    2010-05-13

    Rationally designed tetrahydropyrans (THPs) carrying one, two, or three aryl rings and other substituents were synthesized by the allylation of beta-hydroxy ketones followed by iodocyclization. It has been observed that compounds with one aryl ring on THP are moderate inhibitors of cyclooxygenase-1 (COX-1) (IC(50) = 0.3 microM) and cyclooxygenase-2 (IC(50) = 0.17 microM) with poor selectivity index (SI = 2-3) for COX-2. The presence of two aryl rings enhanced their inhibitory activities for COX-2 (IC(50) = 0.9-5.5 nM). Selectivity for COX-2 over COX-1 also increased (SI = 50-1900), while triaryl substituted THPs, along with high inhibition (IC(50) = 0.57-4.0 nM), also exhibited excellent selectivity for COX-2 over COX-1 (SI = 3200-44000). Similar to the experimental results of increased COX-2 inhibition and selectivity with the increase in the size of the molecule, their docking in the active sites of COX-1 and COX-2 also showed same trend. Seven compounds from the category of di- and triaryl substituted THPs exhibited average GI(50) over all the human tumor cell lines in the range 1.6-3.2 microM and showed in vitro therapeutic indices of 8-17.

  20. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by l-DOPA?†

    PubMed Central

    Bortolanza, Mariza; Padovan-Neto, Fernando E.; Cavalcanti-Kiwiatkoski, Roberta; dos Santos-Pereira, Maurício; Mitkovski, Miso; Raisman-Vozari, Rita; Del-Bel, Elaine

    2015-01-01

    Inflammatory mechanisms are proposed to play a role in l-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates l-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with l-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with l-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented l-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after l-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia. PMID:26009769

  1. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    SciTech Connect

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R.; Redondo, Santiago; Peçanha, Franck; Martín, Angela; Fortuño, Ana; Cachofeiro, Victoria; Tejerina, Teresa; Salaices, Mercedes; and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  2. Hyperglycaemia in pregnant rats causes sex-related vascular dysfunction in adult offspring: role of cyclooxygenase-2.

    PubMed

    de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-08-01

    What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg(-1) ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A2 release was analysed with commercial kits and superoxide anion (O2(-) ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the

  3. [Mechanism of apoptosis of NB4 cells induced by arsenic trioxide and cyclooxygenase-2 expression].

    PubMed

    Qin, Da-Bing; Chen, Jie-Ping; Wang, Sheng-Qi

    2011-06-01

    Objective of this study was to investigate the changes of cyclooxygenase-2 expression and mitochondrial membrane potential in apoptotic NB4 cells induced by arsenic trioxide (As(2)O(3)). The morphological changes in apoptosis process of NB4 cells treated by arsenic trioxide were observed under immunofluorescence microscope and DNA electrophoresis method, and the apoptosis rate of NB4 cells and the variations of mitochondrial membrane potential were detected by flow cytometry. Furthermore, the variations of expression level of cyclooxygenase-2 protein were analyzed by using Western blot method. The results indicated that after NB4 cells were treated with 2 µmol/L As(2)O(3) for 48 hours, some variations of NB4 cells were observed, such as pyknosis, chromatin segmentation, even fragmentation. Meanwhile, the typical DNA Ladder phenomenon was observed. The apoptosis rate of NB4 cells treated with 3 µmol/L As(2)O(3) for 48 hours was 33.34%, Furthermore the apoptosis rate of NB4 cells was enhanced along with the increase of concentration of As(2)O(3). After NB4 cells were treated with 0.5, 1, 2, 4 and 8 µmol/L As(2)O(3) for 48 hours, the mitochondrial membrane potential decreased by 12.8%, 21.6%, 66.9%, 83.7% and 83.8% respectively. The Western blot detection results showed that the expression level of cyclooxygenase-2 protein in NB4 cells was lower than that in control cells and decreased along with the rise of As(2)O(3) concentration, then the negative dose-dependent manner was observed between these 2 groups. It is concluded that As(2)O(3) can effectively induce NB4 cell apoptosis, and the dose-dependent manner existed in certain extent of concentrations. The decrease of mitochondrial membrane potential may be related with NB4 cell apoptosis induced by As(2)O(3). Cyclooxygenase-2 participates in the process of NB4 cell apoptosis induced by As(2)O(3).

  4. Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer.

    PubMed

    Krysan, Kostyantyn; Dalwadi, Harnisha; Sharma, Sherven; Põld, Mehis; Dubinett, Steven

    2004-09-15

    Elevated tumor cyclooxygenase 2 (COX-2) expression is associated with increased angiogenesis, tumor invasion, and promotion of tumor cell resistance to apoptosis. In our previous studies using non-small cell lung cancer (NSCLC) cell lines constitutively expressing COX-2 cDNA in sense and antisense orientations, we demonstrated that constitutive overexpression of COX-2 leads to stabilization of the inhibitor of apoptosis protein survivin resulting in the elevated apoptosis resistance of COX-2-overexpressing cells. Genetic or pharmacologic suppression of COX-2 activity increased proteasomal degradation of survivin and cellular response to apoptosis induction. Our data show that expression of survivin in non-small cell lung cancer cells can be significantly down-regulated by RNA interference. Whereas COX-2-overexpressing NSCLC cells have significantly higher apoptosis resistance than the parental cells, inhibition of survivin expression by small interfering RNA decreases apoptosis resistance to the level of the parental non-small cell lung cancer. We conclude that COX-2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer.

  5. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  6. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea

    PubMed Central

    Campillo, Noelia; Torres, Marta; Vilaseca, Antoni; Nonaka, Paula Naomi; Gozal, David; Roca-Ferrer, Jordi; Picado, César; Montserrat, Josep Maria; Farré, Ramon; Navajas, Daniel; Almendros, Isaac

    2017-01-01

    An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2. PMID:28300223

  7. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions.

    PubMed

    Fordyce, Colleen; Fessenden, Tim; Pickering, Curtis; Jung, Jason; Singla, Veena; Berman, Hal; Tlsty, Thea

    2010-02-01

    Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the synthesis of prostaglandins. Its overexpression induces numerous tumor-promoting phenotypes and is associated with cancer metastasis and poor clinical outcome. Although COX-2 inhibitors are promising chemotherapeutic and chemopreventative agents for cancer, the risk of significant cardiovascular and gastrointestinal complications currently outweighs their potential benefits. Systemic complications of COX-2 inhibition could be avoided by specifically decreasing COX-2 expression in epithelial cells. To that end, we have investigated the signal transduction pathway regulating the COX-2 expression in response to DNA damage in breast epithelial cells. In variant human mammary epithelial cells that have silenced p16 (vHMEC), double-strand DNA damage or telomere malfunction results in a p53- and activin A-dependent induction of COX-2 and continued proliferation. In contrast, telomere malfunction in HMEC with an intact p16/Rb pathway induces cell cycle arrest. Importantly, in ductal carcinoma in situ lesions, high COX-2 expression is associated with high gammaH2AX, TRF2, activin A, and telomere malfunction. These data show that DNA damage and telomere malfunction can have both cell-autonomous and cell-nonautonomous consequences and can provide a novel mechanism for the propagation of tumorigenesis.

  8. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea.

    PubMed

    Campillo, Noelia; Torres, Marta; Vilaseca, Antoni; Nonaka, Paula Naomi; Gozal, David; Roca-Ferrer, Jordi; Picado, César; Montserrat, Josep Maria; Farré, Ramon; Navajas, Daniel; Almendros, Isaac

    2017-03-16

    An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2.

  9. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats.

    PubMed

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Jung, Eui-Man; Kang, Hong-Seok; Choi, In-Gyu; Park, Mi-Jin; Jeung, Eui-Bae

    2013-07-01

    Essential oils are concentrated hydrophobic liquids containing volatile aromatic compounds from plants. In the present study, the essential oil of Chamaecyparis obtusa (C. obtusa), which is commercially used in soap, toothpaste and cosmetics, was extracted. Essential oil extracted from C. obtusa contains several types of terpenes, which have been shown to have anti-oxidative and anti-inflammatory effects. In the present study, we examined the anti-inflammatory effects of C. obtusa essential oil in vivo and in vitro following the induction of inflammation by lipopolysaccharides (LPS) in rats. While LPS induced an inflammatory response through the production of prostaglandin E2 (PGE2) in the blood and peripheral blood mononuclear cells (PMNCs), these levels were reduced when essential oil was pre-administered. Additionally, the mechanism of action underlying the anti-inflammatory effects of C. obtusa essential oil was investigated by measuring the mRNA expression of inflammation‑associated genes. LPS treatment significantly induced the expression of transforming growth factor α (TNFα) and cyclooxygenase-2 (COX-2) in rats, while C. obtusa essential oil inhibited this effect. Taken together, our results demonstrate that C. obtusa essential oil exerts anti‑inflammatory effects by regulating the production of PGE2 and TNFα gene expression through the COX-2 pathway. These findings suggest that C. obtusa essential oil may constitute a novel source of anti-inflammatory drugs.

  10. Chemoprevention of breast cancer by targeting cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma (Review).

    PubMed

    Badawi, Alaa F; Badr, Mostafa Z

    2002-06-01

    Cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor-gamma (PPARgamma) have emerged as candidate molecules that hold great promise for cancer chemoprevention. COX-2 increased expression and PPARgamma inactivation occur during mammary gland carcinogenesis. COX-2 and PPARgamma may contribute to breast cancer induction either directly or via their effects on factors known to influence tumor development, e.g., nuclear factor-kappaB and vascular endothelial growth factor. Inhibition of COX-2 or activation of PPARgamma prevents mammary carcinomas in experimental animals with little toxicity. Combinational treatment with COX-2 inhibitor and PPARgamma agonists may produce synergistic anti-tumorigenic effects without significant toxicity and, therefore, be an effective strategy to prevent human breast cancer. Establishing a relationship between COX-2 and PPARgamma in this malignancy may provide the basis for a novel chemopreventive strategy based on the modulation of both molecules simultaneously. This review evaluates experimental and epidemiological findings suggesting a possible role of COX-2 and PPARgamma in the development of human breast cancer and presents evidence substantiating their coordinated action in carcinogenesis and finally develops a rationale for the simultaneous targeting of both molecules as a potentially effective strategy to prevent breast malignancy.

  11. Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat.

    PubMed

    Strauss, K I; Barbe, M F; Marshall, R M; Raghupathi, R; Mehta, S; Narayan, R K

    2000-08-01

    Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with

  12. Effects of the selective cyclooxygenase-2 inhibitor rofecoxib on cell death following traumatic brain injury in the rat.

    PubMed

    Kunz, Tina; Marklund, Niklas; Hillered, Lars; Oliw, Ernst H

    2006-01-01

    Lateral fluid percussion brain injury (FPI) increases cyclooxygenase-2 (COX-2) expression in the cortex and hippocampus. The objective was to investigate whether the selective COX-2 inhibitor rofecoxib (10 mg/kg twice daily) reduces neuronal cell death after FPI in rats, since rofecoxib has been shown to be neuroprotective in other models of CNS injury. Rofecoxib (n = 23) or vehicle (n = 20) were administered after FPI and for up to 3 days. Cell death was evaluated by Fluoro-Jade B staining and by the TdT-mediated dUTP nick end labelling (TUNEL) assay. COX-2 immunoreactivity increased in the ipsilateral cortex and hippocampus (CA1) and bilaterally in the dentate gyri. Fluoro-Jade B- and TUNEL-positive cells were detected 12-72 h after FPI in the ipsilateral cortex and bilaterally in the dentate gyri. Fluoro-Jade B staining did not indicate a significant neuroprotective effect of rofecoxib (12-72 h) and neither did TUNEL staining. Quantificaton of the TUNEL staining in the ipsilateral cortex was approximately 50% lower in the rofecoxib group at 12 and 24 h, but this did not reach statistical significance (p = 0.06), and appeared unchanged at 72 h. Rofecoxib lacked significant protective effect on early neuronal cell death in the FPI model of traumatic brain injury.

  13. Deletion of cyclooxygenase-2 inhibits K-ras-induced lung carcinogenesis.

    PubMed

    Pan, Yong; Jiang, Yan; Tan, Lin; Ravoori, Murali K; Gagea, Mihai; Kundra, Vikas; Fischer, Susan M; Yang, Peiying

    2015-11-17

    The purpose of this study was to identify the role COX-2 plays in K-ras-induced lung carcinogenesis. We crossed COX-2-homozygous knockout mice with K-rasLA1 (G12D) expressing mice to obtain COX-2-deficient mice with K-ras expression (K-ras/COX-2(-/-) mice) and COX-2 wild type mice with K-ras expression (K-ras mice). At 3.5 months of age, the K-ras/COX-2(-/-) mice had significantly fewer lung adenocarcinomas and substantially smaller tumors than K-ras mice. K-ras/COX-2(-/-) mice also had significantly fewer bronchioalveolar hyperplasias than K-ras mice. Compared with lung tumors from K-Ras mice, the levels of prostaglandin E2 (PGE2) were significantly lower, whereas levels of the PGE2 metabolite 13,14-dihydro-15-keto-PGE2 were significantly higher, in lung tumors from K-ras/COX-2(-/-) mice. In addition, K-ras/COX-2(-/-) mice had strikingly lower rates of tumor cell proliferation and expressed less MEK and p-Erk1/2 protein than K-ras mice did. In line with this, knocking down COX-2 in mutant K-ras non-small cell lung cancer A549 cells reduced colony formation, PGE2 synthesis and ERK phosphorylation compared to that of vector control cells. Taken together, these findings suggest that COX-2 deletion contributes to the repression of K-ras-induced lung tumorigenesis by reducing tumor cell proliferation, decreasing the production of PGE2, and increasing the production of 13,14-dihydro-15-keto-PGE2, possibly via the MAPK pathway. Thus, COX-2 is likely important in lung tumorigenesis, and COX-2 and its product, PGE2, are potential targets for lung cancer prevention.

  14. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats

    PubMed Central

    Esquivias, Paula; Morandeira, Antonio; Escartín, Alfredo; Cebrián, Carmelo; Santander, Sonia; Esteva, Francisco; García-González, María Asunción; Ortego, Javier; Lanas, Angel; Piazuelo, Elena

    2012-01-01

    AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma. METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control. RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX-2 inhibitor, MF-tricyclic, did not prevent development of intestinal metaplasia or adenocarcinoma. In parallel, we observed a significant decrease in PGE2 levels in indomethacin-treated rats, but not in those treated with MF-tricyclic, at both 2 mo and 4 mo. Compared to control rats that did not undergo surgery (68 ± 8 ng/g, P = 0.0022 Kruskal-Wallis test) there was a significant increase in PGE2 levels in the esophageal tissue of the rats that underwent surgery either 2 mo (1332 ± 656 ng/g) or 4 mo (1121 ± 1015 ng/g) after esophagojejunostomy. However, no differences were found when esophageal PGE2 levels were compared 2 mo vs 4 mo post-esophagojejunostomy. At both the 2- and 4-mo timepoints, we observed a significant decrease in PGE2 levels in indomethacin-treated rat esophagi compared to those in either the control or MF-tricyclic groups (P = 0.049 and P = 0.017, respectively). No differences in PGE2 levels were found when we compared levels in rats treated with MF-tricyclic to not-treated rats. CONCLUSION: In this rat model of gastrointestinal reflux, indomethacin was associated with a decrease in the severity of esophagitis and reduced development of esophageal intestinal metaplasia and adenocarcinoma. PMID:23002358

  15. Taurocholate Induces Cyclooxygenase-2 Expression via the Sphingosine 1-phosphate Receptor 2 in a Human Cholangiocarcinoma Cell Line*

    PubMed Central

    Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Luo, Lan; Hylemon, Phillip B.; Jiang, Zhenzhou; Zhang, Luyong; Zhou, Huiping

    2015-01-01

    Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA. PMID:26518876

  16. Aberrant methylation and histone deacetylation of cyclooxygenase 2 in gastric cancer.

    PubMed

    Kikuchi, Takefumi; Itoh, Fumio; Toyota, Minoru; Suzuki, Hiromu; Yamamoto, Hiroyuki; Fujita, Masahiro; Hosokawa, Masao; Imai, Kohzoh

    2002-01-20

    Cyclooxygenase 2 plays a critical role in the development of gastrointestinal cancers in both human and animal models. About 80% of the gastric cancer showed a high level of expression of cyclooxygenase 2, but a subset of cases do not express without unknown reason. Aberrant methylation of CpG island of COX-2 was examined by using a series of gastric cancer cell lines and primary gastric cancers. Two out of 8 cell lines (25%) and 11 out of 93 (12%) primary cancers showed aberrant methylation of the 5' region of COX-2. Methylation of COX-2 was closely associated with loss of expression and treatment of methylation inhibitor, 5-deoxy-2'-azacytidine restored the expression of COX-2. A combined treatment of 5-deoxy-2'-azacytidine and a histone deacetylese inhibitor, trichostatin A, restored re-expression of the gene synergistically and chromatin immunoprecipitation analysis revealed that histone of methylated COX-2 promoter is deacetylated, indicating the role of cytosine methylation and histone deacetylation in the silencing of the gene. These results indicate that a subset of gastric cancer with COX-2 methylation evolves through the pathway that is independent of COX-2 expression and that COX-2 inhibitor may not be useful to induce apoptosis in these cases. Copyright 2001 Wiley-Liss, Inc.

  17. Inhibitory effects of tocopherols on expression of the cyclooxygenase-2 gene in RAW264.7 cells stimulated by lipopolysaccharide, tumor necrosis factor-α or Porphyromonas gingivalis fimbriae.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Koh, Teho; Seki, Yuya; Tamura, Seiko; Katayama, Tadashi; Fujisawa, Seiichiro

    2013-01-01

    Tocopherols, which include α-, β-, γ-, and δ-tocopherol, protect cells against harmful free radicals and play an important role in preventing many human diseases such as cancer, inflammatory disorders, and ageing itself. However, the causal relationships between periodontal or oral chronic diseases and tocopherols have not been sufficiently studied. The present study investigated the inhibitory effects of these compounds on the expression of cyclooxygenase-2 (COX2) mRNA in RAW264.7 cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor-α (TNFα) or fimbriae of Poryphyromonas gingivalis (Pg), an oral anaerobe. The cytotoxicity (EC₅₀) of tocopherols toward RAW cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX2 mRNA stimulated with LPS, TNFα or Pg fimbriae was investigated using real-time polymerase chain reaction (PCR). Each tocopherol had similarly low cytotoxicity. COX2 gene expression in RAW cells after exposure to the three different macrophage activators was inhibited by the tocopherols (p<0.01). Compared to α-tocopherol, β-, γ- and δ-tocopherol exhibited greater inhibitory effects (p<0.05). Tocopherols exhibit anti-inflammatory activity, and β-, γ- and δ-tocopherol have particularly more potent anti-inflammatory activity than α-tocopherol. Tocopherols may have potential utility for prevention of periodontal and chronic oral diseases.

  18. [Experimental study of suppression of reactivation of herpes simplex virus type 1 by cyclooxygenase 2 inhibitor with acyclovir].

    PubMed

    Xia, Yuan; Huang, Zhen-Ping; Ma, Fei; Xue, Chun-yan

    2008-02-01

    To study whether the cyclooxygenase 2 (COX-2) inhibitor can block the herpes virus reactivation and whether the combination of COX-2 inhibitor with acyclovir can enhance the inhibition of virus reactivation. It was a experimental study. Mice were randomly divided into six groups. Five groups were HSV-1 infected mice, which included: group A, treated with lornoxicam and acyclovir; groups B and C, treated with lornoxicam or acyclovir, respectively; groups E and F were injected with saline as the untreated control groups. The sixth group was uninfected mice as the control group. All groups were undergone to reactivate the herpes virus by UV-B except group F. The shedding of the virus was determined by cultures of ocular swab or ganglion homogenates with indicator cells. The rates of corneas and ganglia containing the infectious virus in the groups A, B and C were significantly lower than those in the control group D, (cornea: 2XA-D = 36.88, XB-D = 22.43, X2C-D = 20.32, P < 0.05, ganglia : X2A-D = 49.91 X2B-D =29. 16,X2C.D = 24.89, P < 0.05). Combined use of these two drugs in group A showed no significant statistical difference as compared with using them separately in the cornea culture (X2A-B= 2.75, X2A-C = 3.66, 0. 05 < P < 0.1), but there was significant difference in trigeminal ganglia culture (X2A-B = 4.78, 2XA-c = 6. 97, P < 0.05). These experiments demonstrate that a selective COX-2 inhibitor can suppress UV-B-induced herpes virus reactivation in the cornea and nervous system. A combination of acyclovir does not significantly enhance the inhibition of virus reactivation by lornoxicam. These results provide a new method to prevent the recurrence of HSK.

  19. 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway

    PubMed Central

    Chlopicki, S; Swies, J; Mogielnicki, A; Buczko, W; Bartus, M; Lomnicka, M; Adamus, J; Gebicki, J

    2007-01-01

    Background and purpose: 1-methylnicotinamide (MNA) has been considered to be an inactive metabolite of nicotinamide. Here we assessed the anti-thrombotic activity of MNA in vivo. Experimental approach: Antithrombotic action of MNA was studied in normotensive rats with extracorporeal thrombus formation (thrombolysis), in renovascular hypertensive rats with intraarterial thrombus formation (arterial thrombosis) and in a venous thrombosis model in rats (venous thrombosis). Key results: MNA (3-100 mg kg−1) induced a dose-dependent and sustained thrombolytic response, associated with a rise in 6-keto-PGF1α in blood. Various compounds structurally related to MNA were either inactive or weaker thrombolytics. Rofecoxib (0.01-1 mg kg−1), dose-dependently inhibited the thrombolytic response of MNA, indomethacin (5 mg kg−1) abolished it, while L-NAME (5 mg kg−1) were without effect. MNA (3–30 mg kg−1) also reduced arterial thrombosis and this effect was abrogated by indomethacin (2.5 mg kg−1) as well as by rofecoxib (1 mg kg−1). MNA, however, did not affect venous thrombosis. In vitro MNA did not modify platelet aggregation nor induce vasodilation. Conclusions and implications: MNA displayed a profile of anti-thrombotic activity in vivo that surpasses that of closely related compounds. MNA inhibited platelet-dependent thrombosis by a mechanism involving cyclooxygenase-2 and prostacyclin. Our findings suggest that endogenous MNA, produced in the liver by nicotinamide N-methyltransferase, could be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system. PMID:17641676

  20. Prostacyclin production in rat aortic smooth muscle cells: role of protein kinase C, phospholipase D and cyclooxygenase-2 expression.

    PubMed

    Frias, Miguel A; Dubouloz, Frédérique; Rebsamen, Michela C; Lang, Ursula

    2003-11-01

    The present study was designed to investigate the role of protein kinase C (PKC) and phospholipase D (PLD) in angiotensin II (AngII)- and phorbol ester (PMA)-induced cyclooxygenase-2 (COX-2) expression and prostacyclin (PGI(2)) production in rat aortic smooth muscle cells (VSMC). Prostacyclin production in cultured VSMC was determined by radioimmunoassay. PKC activity was examined by measuring the transfer of 32P from (gamma-32P)ATP to histone III-S. COX-2 expression was determined by Western blotting. To measure PLD activity, thin layer chromatography was used. AngII (50 nM) and PMA (100 nM) promoted the translocation of PKC activity from the cytosol to the membranes within 30 min, followed by a strong increase in PLD activity as well as COX-2 expression and PGI(2) production. After 48 h exposure to PMA, PKC was downregulated resulting in a complete suppression of its activity. PKC-downregulation and the PKC inhibitor CGP41251 abolished PMA- and AngII-induced PLD activation, suppressed the stimulatory effect of PMA on COX-2 expression and PGI(2) production and strongly inhibited that of AngII. Furthermore, AngII- and PMA-induced PGI(2) production depended on protein synthesis and COX-2 but not COX-1 activity. Inhibition of PLD-mediated phosphatidic acid (PA) formation by 1% 1-butanol abolished AngII-induced COX-2 expression and PGI(2) secretion, while dioctanoyl PA increased COX-2 expression and PGI(2) production in a time- and concentration-dependent manner. Our results indicate that in VSMC, AngII promotes PGI(2) production to a large extent through a rise in COX-2 expression which is mediated by PA generated from increased PKC-dependent PLD activity.

  1. Cyclooxygenase 2 contributes to bradykinin-induced microvascular responses in peripheral arterioles after cardiopulmonary bypass.

    PubMed

    Feng, Jun; Anderson, Kelsey; Liu, Yuhong; Singh, Arun K; Ehsan, Afshin; Sellke, Frank W

    2017-10-01

    Diabetic patients are associated with impaired peripheral microvascular function after cardiopulmonary bypass (CPB) and cardiac surgery. We hypothesized that upregulation of the inducible cyclooxygenase 2 (COX-2) contributes to altered microvascular reactivity of peripheral arterioles in diabetic patients undergoing CPB and cardiac surgery. Skeletal muscle samples of nondiabetic (ND) patients and patients with diabetes mellitus (DM; n = 8 per group) undergoing cardiac surgery were harvested before and after CPB. The protein expression/localization of COX-2 was assayed by Western blotting and immunohistochemistry. Peripheral arterioles were dissected from the harvested skeletal muscle tissue samples, the isolated arterioles (80-180 μm) were cannulated and pressurized, and changes in diameter were measured with video microscopy. In-vitro relaxation responses of precontracted arterioles were examined in the presence of the endothelium-dependent vasodilator bradykinin (10(-10) to 10(-6)M) and in the presence or absence of the selective COX-2 inhibitor NS398 (10(-5)M). The post-CPB protein levels of the inducible COX-2 were significantly increased compared with pre-CPB values in both the ND and DM groups (P < 0.05), whereas, this increase was higher in DM than that of ND (P < 0.05). In the DM arterioles, not the ND vessels, bradykinin-induced relaxation response was inhibited in the presence of the specific COX-2 inhibitor NS398 at baseline (P < 0.05). After CPB, bradykinin-induced relaxation response of the ND and DM arterioles was inhibited in the presence of the specific COX-2 inhibitor NS398, but this effect was more pronounced in the diabetic patients (P < 0.05). Diabetes and CPB are associated with upregulation in COX-2 expression/activation in human peripheral microvasculature. This alteration may lead to altered peripheral microvascular reactivity in diabetic patients undergoing cardiac surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The risk of coronary thrombosis with cyclo-oxygenase-2 inhibitors does not vary with polymorphisms in two regions of the cyclo-oxygenase-2 gene.

    PubMed

    McGettigan, Patricia; Lincz, Lisa F; Attia, John; McElduff, Patrick; Bissett, Linda; Peel, Roseanne; Stokes, Barrie; Hancock, Stephen; Henderson, Kim; Seldon, Michael; Henry, David

    2011-10-01

    To investigate whether polymorphisms of the cyclo-oxygenase-2 (COX-2) gene modify the adverse cardiovascular effects of COX-2 inhibitors. A case control study was conducted in the Hunter Region of New South Wales, Australia. Cases (n= 460) were hospitalized with acute coronary syndrome (ACS). Controls (n= 640) were recruited from the electoral rolls. Structured interviews gathered information on variables including recent ingestion of non-steroidal anti-inflammatory drugs (NSAIDs). Targeted genotyping of rs 20417(G > C) and rs5275 (T > C) polymorphisms was performed by real-time polymerase chain reaction using allele-specific probes. Ingestion of any NSAID in the week prior to interview was associated with an elevated risk for ACS: adjusted odds ratio 1.8 (1.2, 2.5). The rs 20417 and rs 5275 polymorphisms were not singly associated with risk for ACS: adjusted odds ratios 1.1 (0.80, 1.5) and 1.2 (0.88, 1.5), respectively. Individually, the polymorphisms did not modify the risk of ACS with the drugs. When analyses were conducted by haplotype, the adjusted odds ratio with celecoxib or rofecoxib in individuals who had one or two copies of the 'low risk' haplotype (no GT) was 1.2 (0.29, 5.0), compared with 2.1 (1.1, 4.0) with the 'high risk' haplotype (one or two copies of GT). We found little evidence of a gene/drug interaction. We found a statistically non-significant trend toward a lower risk of coronary events with NSAIDs in the presence of the 'low risk' haplotype. Even if confirmed, the clinical utility of the finding would be limited as this haplotype is carried by a minority of the population. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  3. Localization of cyclooxygenase-2 in mice vas deferens and its effects on fertility upon suppression using nimesulide: a preferential cyclooxygenase-2 inhibitor.

    PubMed

    Balaji, Thotakura; Ramanathan, Manickam; Menon, Venugopal Padmanabhan

    2007-05-05

    Accumulating evidence on constitutive expression of cyclooxygenase-2 (COX-2), one of the isoforms of enzyme cyclooxygenase (COX) the other isoform being cyclooxygenase-1 (COX-1), questions the safety profile of non-steroidal anti-inflammatory drugs (NSAIDs). This COX-2 isoform which is induced not only during inflammation but also by factors such as cytokines, steroid hormones and mitogenic stimuli is constitutively expressed in brain, kidney and reproductive organs. Present NSAIDs, particularly COX-2 inhibitors is no longer considered safe since suppression of COX-2 in tissues which it is constitutively expressed may lead to adverse effects. Though intense expression of COX-2 in vas deferens is proved, lack of information with respect to its function has attracted a wide scope for research as to whether COX-2 in vas deferens contributes to male fertility. In the present study, the authors investigated the localization of COX-2 as well as COX-1 in mice vas deferens and also assessed the activity of COX-2 and total prostaglandin (PG) levels in vas deferens. Further they suppressed the expression of COX-2 using a preferential COX-2 inhibitor nimesulide and analyzed the sperm from vas deferens for any defects. COX-2 was intensely expressed in the epithelial cells of mice vas deferens and nimesulide was able to effectively suppress most of COX-2 expression. A decrease in PG levels was observed initially but interestingly, the levels tend to rise on sustained suppression of COX-2. The motility of sperm was affected severely after 6h of nimesulide administration that suggested a crucial role of COX-2 towards fertility of mice sperm.

  4. Cyclooxygenase-2-specific Inhibitor Improves Functional Outcomes, Provides Neuroprotection, and Reduces Inflammation in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Gopez, Jonas J.; Yue, Hongfei; Vasudevan, Ram; Malik, Amir S.; Fogelsanger, Lester N.; Lewis, Shawn; Panikashvili, David; Shohami, Esther; Jansen, Susan A.; Narayan, Raj K.; Strauss, Kenneth I.

    2006-01-01

    OBJECTIVE Increases in brain cyclooxygenase-2 (COX2) are associated with the central inflammatory response and with delayed neuronal death, events that cause secondary insults after traumatic brain injury. A growing literature supports the benefit of COX2-specific inhibitors in treating brain injuries. METHODS DFU [5,5-dimethyl-3(3-fluorophenyl)-4(4-methylsulfonyl)phenyl-2(5H)-furanone] is a third-generation, highly specific COX2 enzyme inhibitor. DFU treatments (1 or 10 mg/kg intraperitoneally, twice daily for 3 d) were initiated either before or after traumatic brain injury in a lateral cortical contusion rat model. RESULTS DFU treatments initiated 10 minutes before injury or up to 6 hours after injury enhanced functional recovery at 3 days compared with vehicle-treated controls. Significant improvements in neurological reflexes and memory were observed. DFU initiated 10 minutes before injury improved histopathology and altered eicosanoid profiles in the brain. DFU 1 mg/kg reduced the rise in prostaglandin E2 in the brain at 24 hours after injury. DFU 10 mg/kg attenuated injury-induced COX2 immunoreactivity in the cortex (24 and 72 h) and hippocampus (6 and 72 h). This treatment also decreased the total number of activated caspase-3–immunoreactive cells in the injured cortex and hippocampus, significantly reducing the number of activated caspase-3–immunoreactive neurons at 72 hours after injury. DFU 1 mg/kg amplified potentially anti-inflammatory epoxyeicosatrienoic acid levels by more than fourfold in the injured brain. DFU 10 mg/kg protected the levels of 2-arachidonoyl glycerol, a neuro-protective endocannabinoid, in the injured brain. CONCLUSION These improvements, particularly when treatment began up to 6 hours after injury, suggest exciting neuroprotective potential for COX2 inhibitors in the treatment of traumatic brain injury and support the consideration of Phase I/II clinical trials. PMID:15730585

  5. Immunohistochemical expression of cyclooxygenase-2 (COX-2) in oral nevi and melanoma.

    PubMed

    de Souza do Nascimento, Juliana; Carlos, Román; Delgado-Azañero, Wilson; Mosqueda Taylor, Adalberto; de Almeida, Oslei Paes; Romañach, Mário José; de Andrade, Bruno Augusto Benevenuto

    2016-07-01

    Cyclooxygenase-2 (COX-2) catalyses the conversion of arachidonic acid to prostaglandin, and its overexpression has been demonstrated in different malignant tumors, including cutaneous melanoma. However, no data about the expression of this protein in oral melanocytic lesions are available to date. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in oral nevi and melanomas, comparing the results with correspondent cutaneous lesions. COX-2 was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 36 intramucosal nevi and 13 primary oral melanomas, and in four cutaneous nevi and eight melanomas. All cases of oral and cutaneous melanomas were positive for COX-2. On the other hand, all oral and cutaneous melanocytic nevi were negative. COX-2 is highly positive in oral melanomas and negative in oral nevi and might represent a useful marker to distinguish melanocytic lesions of the oral cavity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi

    2014-10-01

    Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.

  7. Immunoexpression of cyclooxygenase-2 in primary gastric carcinomas and lymph node metastases

    PubMed Central

    Almeida, Paulo RC; Ferreira, Francisco VA; Santos, Cássio C; Rocha-Filho, Francisco D; Feitosa, Raul RP; Falcão, Esther AA; Cavada, Belise K; Lima-Júnior, Roberto CP; Ribeiro, Ronaldo A

    2012-01-01

    AIM: To evaluate immunoexpression of cyclooxygenase-2 (COX-2) in primary gastric carcinomas and respective lymph node metastases. METHODS: Immunohistochemistry to analyze COX-2 expression was performed on tissue microarray slices obtained from 36 specimens of gastrectomy and satellite lymph nodes from patients with gastric carcinoma. RESULTS: Immunostaining was seen in most cases, and COX-2 expression was higher in lymph node metastases than in corresponding primary gastric tumors of intestinal, diffuse and mixed carcinomas, with a statistically significant difference in the diffuse histotype (P = 0.0108). CONCLUSION: COX-2 immunoexpression occurs frequently in primary gastric carcinomas, but higher expression of this enzyme is observed in lymph node metastases of the diffuse histotype. PMID:22371637

  8. [Quality evaluation of artificial musk based on its inhibitory effect on cyclooxygenase-2].

    PubMed

    Luo, Yun; Jin, Cheng; Zhou, Jian; Wen, Rui-qing; Li, Xing-feng; Li, Rui-sheng; Yang, Ming; Xiao, Xiao-he

    2011-04-01

    The inhibitory ratio (1%) of artificial musk on cyclooxygenase-2 (COX-2) was determined by enzyme immunoassay (EIA). The dose-effect relationship between concentrations of artificial musk and 1% was established. It was found that artificial musk had obvious inhibitory action on COX-2. The concentration for 50% of maximum inhibitory effect (IC50) was about 2.26 mg x mL(-1). There was a good relationship between the logarithm concentrations of artificial musk and 1% when the concentrations of artificial musk ranged from 0.31-20.0 mg x mL(-1). The results indicated that this EIA method could be applied to evaluate the anti-inflammatory activity of artificial musk quickly, conveniently, sensitively and exactly. This paper provided a novel method and foundational research for the bioassay of artificial musk.

  9. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  10. Mitigation and Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, Celecoxib

    SciTech Connect

    Hunter, Nancy R.; Valdecanas, David; Liao Zhongxing; Milas, Luka; Thames, Howard D.; Mason, Kathy A.

    2013-02-01

    Purpose: To test whether a cyclooxygenase-2 inhibitor (celecoxib) could reduce mortality resulting from radiation-induced pneumonitis. Methods and Materials: Celecoxib was given to mice twice daily for 40 consecutive days starting on the day of local thoracic irradiation (LTI) or 40 or 80 days later. C3Hf/KamLaw mice were observed for morbidity, and time to death was determined. Results were analyzed using the Cox proportional hazards model. Results: Timing of celecoxib relative to LTI determined efficacy. A significant reduction in time to death was achieved only when celecoxib was started 80 days after LTI, corresponding to the time when pneumonitis is expressed. For these mice the reduction in mortality was quantified as a hazard ratio for mortality of treated vs untreated of 0.36 (95% confidence interval [CI] 0.24-0.53), thus significantly less than 1.0. Correspondingly, the median lethal dose for treated mice (12.9 Gy; 95% CI 12.55-13.25 Gy) was significantly (P=.026) higher than for untreated mice (12.4 Gy; 95% CI 12.2-12.65 Gy). Conclusions: Celecoxib significantly reduced lung toxicity when administered months after LTI when the deleterious effects of radiation were expressed. The schedule-dependent reduction in fatal pneumonitis suggests that celecoxib could be clinically useful by reintroduction of treatment months after completion of radiation therapy. These findings may be important for designing clinical trials using cyclooxygenase-2 inhibitors to treat radiation-induced lung toxicity as a complement to concurrent radiation therapy of lung cancers.

  11. The cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts.

    PubMed

    Dagouassat, Maylis; Gagliolo, Jean-Marie; Chrusciel, Sandra; Bourin, Marie-Claude; Duprez, Corinne; Caramelle, Philippe; Boyer, Laurent; Hue, Sophie; Stern, Jean-Baptiste; Validire, Pierre; Longrois, Dan; Norel, Xavier; Dubois-Randé, Jean-Luc; Le Gouvello, Sabine; Adnot, Serge; Boczkowski, Jorge

    2013-04-01

    Chronic obstructive pulmonary disease (COPD) is associated with lung fibroblast senescence, a process characterized by the irreversible loss of replicative capacity associated with the secretion of inflammatory mediators. However, the mechanisms of this phenomenon remain poorly defined. The aim of this study was to analyze the role of prostaglandin E2 (PGE2), a prostaglandin known to be increased in COPD lung fibroblasts, in inducing senescence and related inflammation in vitro in lung fibroblasts and in vivo in mice. Fibroblasts were isolated from patients with COPD and from smoker and nonsmoker control subjects. Senescence markers and inflammatory mediators were investigated in fibroblasts and in mice. Lung fibroblasts from patients with COPD exhibited higher expression of PGE2 receptors EP2 and EP4 as compared with nonsmoker and smoker control subjects. Compared with both nonsmoker and smoker control subjects, during long-term culture, COPD fibroblasts displayed increased senescent markers (increased senescence associated-β galactosidase activity, p16, and p53 expression and lower proliferative capacity), and an increased PGE2, IL-6, IL-8, growth-regulated oncogene (GRO), CX3CL1, and matrix metalloproteinase-2 protein and cyclooxygenase-2 and mPGES-1 mRNA expression. Using in vitro pharmacologic approaches and in vivo experiments in wild-type and p53(-/-) mice we demonstrated that PGE2 produced by senescent COPD fibroblasts is responsible for the increased senescence and related inflammation. PGE2 acts either in a paracrine or autocrine fashion by a pathway involving EP2 and EP4 prostaglandin receptors, cyclooxygenase-2-dependent reactive oxygen species production and signaling, and consecutive p53 activation. PGE2 is a critical component of an amplifying and self-perpetuating circle inducing senescence and inflammation in COPD fibroblasts. Modulating the described PGE2 signaling pathway could provide a new basis to dampen senescence and senescence

  12. Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition.

    PubMed

    Wang, Wangsheng; Guo, Chunming; Zhu, Ping; Lu, Jiangwen; Li, Wenjiao; Liu, Chao; Xie, Huiliang; Myatt, Leslie; Chen, Zi-Jiang; Sun, Kang

    2015-10-27

    The induction of cyclooxygenase-2 (COX-2) and subsequent production of prostaglandin E2 (PGE2) by cortisol in the amnion contrast with the effect of cortisol on most other tissues, but this proinflammatory effect of cortisol may be a key event in human parturition (labor). We evaluated the underlying mechanism activated by cortisol in primary human amnion fibroblasts. Exposure of the amnion fibroblasts to cortisol led to the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, which induced the phosphorylation of the kinase SRC and STAT3 (signal transducer and activator of transcription 3). STAT3 interacted with the glucocorticoid receptor (GR) and the transcription factor CREB-1 (cAMP response element-binding protein 1) at the promoter of the gene encoding COX-2, which promoted the production of the secreted prostaglandin PGE2. PGE2 activates the prostaglandin receptors EP2 and EP4, which stimulate cAMP-PKA signaling. Thus, cortisol reinforced the activation of cAMP-PKA signaling through an SRC-STAT3-COX-2-PGE2-mediated feedback loop. Inhibiting STAT3, SRC, or the cAMP-PKA pathway attenuated the cortisol-stimulated induction of COX-2 and PGE2 production in amnion fibroblasts. In human amnion tissue, the amount of phosphorylated STAT3 correlated positively with that of cortisol, COX-2, and PGE2, and all were more abundant in tissue obtained after active labor than in tissue obtained from cesarean surgeries in the absence of labor. These results indicated that the coordinated recruitment of STAT3, CREB-1, and GR to the promoter of the gene encoding COX-2 contributes to the feed-forward induction of COX-2 activity and prostaglandin synthesis in the amnion during parturition. Copyright © 2015, American Association for the Advancement of Science.

  13. Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression.

    PubMed

    Chen, Jing-Yi; Li, Chien-Feng; Kuo, Cheng-Chin; Tsai, Kelvin K; Hou, Ming-Feng; Hung, Wen-Chun

    2014-07-25

    Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival.

  14. Cyclooxygenase-2, a Potential Therapeutic Target, Is Regulated by miR-101 in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Shao, Ying; Li, Peng; Zhu, Sheng-tao; Yue, Ji-ping; Ji, Xiao-jun; He, Zhen; Ma, Dan; Wang, Li; Wang, Yong-jun; Zong, Ye; Wu, Yong-dong; Zhang, Shu-tian

    2015-01-01

    Background & Aims Cyclooxygenase-2 (COX-2) is known to promote the carcinogenesis of esophageal squamous cell carcinoma (ESCC). There are no reports on whether microRNAs (miRNAs) regulate COX-2 expression in ESCC. This study investigated the effect of miR-101 on ESCC through modulating COX-2 expression in ESCC. Methods Real-time quantitative reverse transcription–polymerase chain reaction (RT-PCR) was used to quantify miR-101 expression in ESCC clinical tissues and cell lines. The effects of miR-101 on ESCC progression were evaluated by cell counting kit-8 (CCK8), transwell migration and invasion assays, as well as by flow cytometry. The COX-2 and PEG2 levels were determined by western blot and enzyme-linked immunosorbent assays (ELISA). The luciferase reporter assay was used to verify COX-2 as a direct target of miR-101. The anti-tumor activity of miR-101 in vivo was investigated in a xenograft nude mouse model of ESCC. Results Downregulation of miR-101 was confirmed through comparison of 30 pairs of ESCC tumor and adjacent normal tissues (P < 0.001), as well as in 11 ESCC cell lines and a human immortalized esophageal cell line (P < 0.001). Transfection of miR-101 in ESCC cell lines significantly suppressed cell proliferation, migration, and invasion (all P < 0.001). The antitumor effect of miR-101 was verified in a xenograft model. Furthermore, COX-2 was shown to be a target of miR-101. Conclusions Overexpression of miR-101 in ESCC inhibits proliferation and metastasis. Therefore, the miR-101/COX-2 pathway might be a therapeutic target in ESCC. PMID:26556718

  15. Protection from latent inhibition provided by a conditioned inhibitor.

    PubMed

    McConnell, Bridget L; Wheeler, Daniel S; Urcelay, Gonzalo P; Miller, Ralph R

    2009-10-01

    Two conditioned suppression experiments with rats investigated the influence on latent inhibition of compounding a Pavlovian conditioned inhibitor with the target cue during preexposure treatment. Results were compared with those of subjects that received conventional latent inhibition training, no preexposure, or preexposure to the target cue in compound with a neutral stimulus. In Experiment 1, greater attenuation of the latent inhibition effect was observed in subjects that received target preexposure in compound with a Pavlovian conditioned inhibitor relative to subjects that received preexposure with a neutral stimulus or to the target alone. In Experiment 2, this protection from latent inhibition was attenuated if the excitor that was used to train the conditioned inhibitor was extinguished between preexposure and target training. The results are consistent with an account offered by the extended comparator hypothesis.

  16. The role of chemoprevention by selective cyclooxygenase-2 inhibitors in colorectal cancer patients - a population-based study

    PubMed Central

    2012-01-01

    Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2) inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR) of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD). The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs) for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months) prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021) for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer. PMID:23217168

  17. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    SciTech Connect

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M. . E-mail: jmlnovoa@usal.es

    2006-01-15

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.

  18. Cyclooxygenase-2-derived prostanoids reduce inward arterial remodeling induced by blood flow reduction in old obese Zucker rat mesenteric arteries.

    PubMed

    Vessières, Emilie; Belin de Chantemèle, Eric J; Guihot, Anne-Laure; Jardel, Alain; Toutain, Bertrand; Loufrani, Laurent; Henrion, Daniel

    2013-01-01

    Obesity is associated with altered arterial structure and function leading to arterial narrowing in most vascular beds, especially when associated with aging. Nevertheless, mesenteric blood flow remains elevated in obese rats, although the effect of aging remains unknown. We investigated mesenteric artery narrowing following blood flow reduction in vivo in 3- and 12-month-old obese Zucker rats. After 21 days, inward remodeling occurred in low flow (LF) arteries in young and old lean rats and in young obese rats (30% diameter reduction). Diameter did not significantly decrease in old obese rats. Phenylephrine-mediated contraction was reduced by approximately 20% in LF arteries in all groups but in old obese rat arteries in which the decrease reached 80%. LF arteries expressed cyclooxygenase-2 and blood 6-keto-PGF1alpha (prostacyclin metabolite) was elevated in old obese rats. In old obese rats, acute cyclooxygenase-2 blockade restored phenylephrine-mediated contraction in LF arteries and chronic cyclooxygenase-2 blockade restored inward remodeling and contractility to control level. Thus, in old obese rats, cyclooxygenase-2-derived prostacyclin prevented the diameter reduction induced by a chronic decrease in blood flow. This adaptation is in favor of a preserved perfusion of the mesentery by contrast with other vascular territories, possibly amplifying the vascular disorders occurring in obesity.

  19. Cyclooxygenase-2 Inhibitor Reduces Hepatic Stiffness in Pediatric Chronic Liver Disease Patients Following Kasai Portoenterostomy

    PubMed Central

    Chang, Hye Kyung; Chang, Eun Young; Ryu, Seonae

    2016-01-01

    Purpose The purpose of this study was to define the role of cyclooxygenase-2 inhibitors (COX-2i) in reducing hepatic fibrosis in pediatric patients with chronic liver disease. Materials and Methods From September 2009 to September 2010, patients over 2 years old who visited our outpatient clinic for follow-up to manage their chronic liver disease after Kasai portoenterostomy for biliary atresia, were included in this study. Volunteers were assigned to the study or control groups, according to their preference. A COX-2i was given to only the study group after obtaining consent. The degree of hepatic fibrosis (liver stiffness score, LSS) was prospectively measured using FibroScan, and liver function was examined using serum analysis before and after treatment. After 1 year, changes in LSSs and liver function were compared between the two groups. Results Twenty-five patients (18 females and 7 males) were enrolled in the study group. The control group included 44 patients (26 females and 18 males). After 1 year, the least square mean values for the LSSs were significantly decreased by 3.91±0.98 kPa (p=0.004) only in the study group. Serum total bilirubin did not decrease significantly in either group. Conclusion COX-2i treatment improved the LSS in patients with chronic liver disease after Kasai portoenterostomy for biliary atresia. PMID:27189282

  20. New sterols with anti-inflammatory potentials against cyclooxygenase-2 and 5-lipoxygenase from Paphia malabarica.

    PubMed

    Joy, Minju; Chakraborty, Kajal; Raola, Vamshi Krishna

    2017-06-01

    Marine bivalves occupy a leading share in the total edible molluscs at the coastline regions of south-eastern Asia, and are found to possess significant nutritional and biological potential. Various in vitro evaluation (antioxidant and anti-inflammatory) guided purification of ethyl acetate-methanol (EtOAc-MeOH) extract of bivalve clam, Paphia malabarica characterised two new sterol derivatives as 23-gem-dimethylcholesta-5-en-3β-ol (1) and (22E)-24(1),24(2)-methyldihomocholest-5,22-dien-3β-ol (2) collected from the south-west coast of Arabian Sea. Their structures were unambiguously assigned on the basis of 1D, 2D NMR spectroscopy and mass spectrometry. The antioxidant and anti-inflammatory activities of 2 as determined by DPPH/ABTS(+) radical scavenging and anti-cyclooxygenase-2/5-lipoxygenase assays were significantly greater (IC50 < 1 mg/mL) than 1 (IC50 > 1 mg/mL). Structure-activity relationship analysis revealed that the bioactivities of these compounds were directly proportional to the electronic and lipophilic parameters. This is the first report of the occurrence and characterisation of 23-gem-dimethyl-3β-hydroxy-Δ(5)-cholestane nucleus and C-30 dihomosterol from marine organisms.

  1. Effects of bile acids on cyclooxygenase-2 expression in a rat model of duodenoesophageal anastomosis.

    PubMed

    Hashimoto, Naoki

    2014-06-07

    To examine the expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in rat esophageal lesions induced by reflux of duodenal contents. Thirty 8-week-old male Wistar rats were exposed to duodenal content esophageal reflux. All animals underwent an esophagoduodenal anastomosis (EDA) with total gastrectomy to elicit chronic esophagitis. In ten rats sham operations with only a midline laparotomy were performed (Control). The rats were sacrificed at the 40(th) week, their esophagi were taken for hematoxylin and eosin staining and for examination of expression of COX2, PGE2, and proliferating cell nuclear antigen (PCNA), and total bile acids in the esophageal lumen was measured. After 40 wk of reflux, columnar dysplasia, squamous cell carcinoma and adenocarcinoma were observed. Total bile acids in the esophageal lumen were significantly increased in the EDA group compared with the sham operated rats. PCNA labelling index and esophageal tissue PGE2 levels were higher in dysplastic and cancer tissues than in control tissues. Overexpression of COX2 was observed in dysplastic and cancer tissues. Reflux of duodenal contents induces COX2 expression and increases prostaglandin synthesis in dysplastic and cancer tissues. This result suggests a possible mechanism by which bile acids promote esophageal cancer.

  2. Fluorocoxib A loaded nanoparticles enable targeted visualization of cyclooxygenase-2 in inflammation and cancer.

    PubMed

    Uddin, Md Jashim; Werfel, Thomas A; Crews, Brenda C; Gupta, Mukesh K; Kavanaugh, Taylor E; Kingsley, Philip J; Boyd, Kelli; Marnett, Lawrence J; Duvall, Craig L

    2016-06-01

    Cyclooxygenase-2 (COX-2) is expressed in virtually all solid tumors and its overexpression is a hallmark of inflammation. Thus, it is a potentially powerful biomarker for the early clinical detection of inflammatory disease and human cancers. We report a reactive oxygen species (ROS) responsive micellar nanoparticle, PPS-b-POEGA, that solubilizes the first fluorescent COX-2-selective inhibitor fluorocoxib A (FA) for COX-2 visualization in vivo. Pharmacokinetics and biodistribution of FA-PPS-b-POEGA nanoparticles (FA-NPs) were assessed after a fully-aqueous intravenous (i.v.) administration in wild-type mice and revealed 4-8 h post-injection as an optimal fluorescent imaging window. Carrageenan-induced inflammation in the rat and mouse footpads and 1483 HNSCC tumor xenografts were successfully visualized by FA-NPs with fluorescence up to 10-fold higher than that of normal tissues. The targeted binding of the FA cargo was blocked by pretreatment with the COX-2 inhibitor indomethacin, confirming COX-2-specific binding and local retention of FA at pathological sites. Our collective data indicate that FA-NPs are the first i.v.-ready FA formulation, provide high signal-to-noise in inflamed, premalignant, and malignant tissues, and will uniquely enable clinical translation of the poorly water-soluble FA compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. In vitro cyclooxygenase-2 protein expression and enzymatic activity in neoplastic cells.

    PubMed

    Heller, David A; Fan, Timothy M; de Lorimier, Louis-Philippe; Charney, Sarah C; Barger, Anne M; Tannehill-Gregg, Sarah H; Rosol, Thomas J; Wallig, Matthew A

    2007-01-01

    Cyclooxygenase-2 (COX-2) and its principle enzymatic metabolite, prostaglandin E2 (PGE2), are implicated in cancer progression. Based upon immunohistochemical (IHC) evidence that several tumor types in animals overexpress COX-2 protein, COX-2 inhibitors are used as anticancer agents in dogs and cats. IHC is inaccurate for assessing tumor-associated COX-2 protein and enzymatic activity. Five mammalian cell lines were assessed for COX-2 protein expression by IHC and Western blot analysis (WB), and functional COX-2 activity was based upon PGE2 production. Detection of COX-2 protein by IHC and WB were in agreement in 4 of 5 cell lines. In 1 cell line that lacked COX-2 gene transcription because of promoter hypermethylation (HCT-116), IHC produced false-positive staining for COX-2 protein expression. Functional COX-2 enzymatic activity was dissociated from relative IHC-based COX-2 protein expression in 2 cell lines (RPMI 2650 and SCCF1). The RPMI 2650 cell line demonstrated strong COX-2 protein expression but minimal PGE2 production. Western blot is more accurate than IHC for the detection of COX-2 protein in the cell lines studied. Furthermore, the semiquantitative identification of COX-2 protein by IHC or WB does not necessarily correlate with enzymatic activity. Based upon the potential inaccuracy of IHC and dissociation of COX-2 protein expression from enzymatic activity, the practice of instituting treatment of tumors with COX-2 inhibitors based solely on IHC results should be reconsidered.

  4. Follicle-stimulating hormone enhances alveolar bone resorption via upregulation of cyclooxygenase-2

    PubMed Central

    Zhu, Chunxia; Ji, Yaoting; Liu, Shengbo; Bian, Zhuan

    2016-01-01

    This study aimed to investigate whether follicle-stimulating hormone (FSH)-induced alveolar bone resorption was mediated by a cyclooxygenase 2 (COX-2) enzyme related mechanism. Experimental periodontitis was induced in bilateral ovariectomized (OVX) rats, some of which were injected with triptorelin, an FSH inhibitor. After mandibles were collected, we performed micro-computed tomography to evaluate alveolar bone loss and immunohistochemical staining to assess COX-2 expression. As well, human periodontal ligament cells (PDLCs) were treated with FSH (30 ng/ml), and the COX-2 mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively; prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay (ELISA). The results indicated that FSH significantly increased alveolar bone resorption and the expression of COX-2 in the bilateral OVX + Ligatured rats compared with the other treatment groups. FSH also increased the mRNA and protein expression of COX-2 and PGE2 (P < 0.01) in human PDLCs. Further, the analysis of signaling pathways revealed the activation of COX-2-mediated pathways including Erk, p38, and Akt. These data suggest that FSH aggravates alveolar bone loss via a COX-2-upregulation mechanism and that the Erk, p38, and Akt pathways are involved in this pathological process. PMID:27725865

  5. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  6. Cyclooxygenase-2 regulates TGFβ-induced cancer stemness in triple-negative breast cancer

    PubMed Central

    Tian, Jun; Hachim, Mahmood Y.; Hachim, Ibrahim Y.; Dai, Meiou; Lo, Chieh; Raffa, Fatmah Al; Ali, Suhad; Lebrun, Jean Jacques

    2017-01-01

    Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, display poor prognosis and exhibit resistance to conventional therapies, partly due to an enrichment in breast cancer stem cells (BCSCs). Here, we investigated the role of the cyclooxygenase-2 (COX-2), a downstream target of TGFβ, in regulating BCSCs in TNBC. Bioinformatics analysis revealed that COX-2 is highly expressed in TNBC and that its expression correlated with poor survival outcome in basal subtype of breast cancer. We also found TGFβ-mediated COX-2 expression to be Smad3-dependent and to be required for BCSC self-renewal and expansion in TNBCs. Knocking down COX-2 expression strikingly blocked TGFβ-induced tumorsphere formation and TGFβ-induced enrichment of the two stem-like cell populations, CD24lowCD44high and ALDH+ BCSCs. Blocking COX-2 activity, using a pharmacological inhibitor also prevented TGFβ-induced BCSC self-renewal. Moreover, we found COX-2 to be required for TGFβ-induced expression of mesenchymal and basal breast cancer markers. In particular, we found that TGFβ-induced expression of fibronectin plays a central role in TGFβ-mediated breast cancer stemness. Together, our results describe a novel role for COX-2 in mediating the TGFβ effects on BCSC properties and imply that targeting the COX-2 pathway may prove useful for the treatment of TNBC by eliminating BCSCs. PMID:28054666

  7. Cyclooxygenase-2 contributes to VX-induced cell death in cultured cortical neurons.

    PubMed

    Tenn, Catherine C; Weiss, M Tracy; Beaup, Claire; Peinnequin, Andre; Wang, Yushan; Dorandeu, Frederic

    2012-04-05

    The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cultured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2α)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.

  8. Does uterine prolapse alter endometrial cyclooxygenase 2 expression and promote the development of premalignant lesions?

    PubMed

    Genc, Mine; Sivrikoz, Oya Nermin; Sahin, Nur; Celik, Esin; Turan, Guluzar Arzu; Guclu, Serkan

    2015-01-01

    The aim of this study was to evaluate the expression of cyclooxygenase 2 (COX-2) and its association with the development of premalignant lesions in gland structures of the endometrium in patients with uterine prolapse, a condition which exposes the uterus to mechanical and infectious stress. The study included 102 patients who underwent hysterectomy to correct grade 3-4 uterine prolapse and 105 patients who underwent hysterectomy for other causes. Endometrial gland structures underwent immunohistochemical staining and COX-2 expression was graded. Grades 0 and 1 represent low expression; grades 2 and 3 correspond to high levels of COX-2 expression. The prevalence of grade 2-3 COX-2 expression was significantly higher in the endometrial gland structures of patients with prolapse and hyperplasia compared to the remaining patients (p = 0.014). Grade 0-1 COX-2 expression was significantly more common in the endometrial gland structures of patients without uterine prolapse or hyperplasia (p = 0.004). Among the patients without endometrial hyperplasia, COX-2 expression was elevated in the endometrial gland structures of those with uterine prolapse compared to those without prolapse. Elevated COX-2 expression may explain the presence of unexpected premalignant lesions of the endometrium in patients with uterine prolapse. © 2015 S. Karger AG, Basel.

  9. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    PubMed Central

    Hurst, Emma A.; Argyle, David J.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2), a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy. PMID:27882058

  10. Interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α in asthenozoospermia.

    PubMed

    Salvolini, Eleonora; Buldreghini, Eddi; Lucarini, Guendalina; Vignini, Arianna; Giulietti, Alessia; Lenzi, Andrea; Mazzanti, Laura; Di Primio, Roberto; Balercia, Giancarlo

    2014-11-01

    Impaired male fertility may have a variety of causes, among which asthenozoospermia. In its etiology, several bioactive substances, such as cytokines may be involved. In this context, our aim was to evaluate the expression of interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α, in spermatozoa isolated from normospermic fertile donors and asthenozoospermic infertile patients. We evaluated twenty-eight infertile patients affected by idiopathic asthenozoospermia and twenty-three normospermic fertile donors, age-matched. Sperm parameters were evaluated; immunohistochemical analysis and enzyme-linked immunosorbent assay were then performed in isolated spermatozoa. Spermatozoa from the asthenozoospermic group presented an increased expression of IL-1β, COX-2, and HIF-1α compared with the normospermic fertile subjects. Our results can lead us to speculate that the increased expression of these substances may influence sperm motility. Nevertheless, further studies are needed in order to assess whether these bioactive mediators have a potential relevance as targets in future therapeutic strategies for the treatment of male infertility.

  11. Induction of Cyclooxygenase 2 by Streptococcus pyogenes Is Mediated by Cytolysins.

    PubMed

    Blaschke, Ulrike; Beineke, Andreas; Klemens, Johanna; Medina, Eva; Goldmann, Oliver

    2017-08-17

    Prostaglandin E2 (PGE2), an arachidonic acid metabolite regulating a broad range of physiological activities, is an important modulator of the severity of infection caused by Streptococcus pyogenes. Here, we investigated the role of streptococcal cytolysin S (SLS) and streptococcal cytolysin O (SLO) in the induction of cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of prostaglandins, in in vitro cultured macrophages and during in vivo infection. Macrophages were infected with S. pyogenes wild type or with the isogenic mutant strains deficient in SLS (ΔSLS), SLO (ΔSLO), or both (ΔSLS/ΔSLO), and the expression of COX-2 was determined at the transcriptional and the protein level. The results indicated that S. pyogenes induced expression of COX-2 and concomitant synthesis of PGE2 in macrophages mediated by the synergistic activity of both SLS and SLO, and involved calcium and the PKC/JNK signaling pathway. These results were validated using recombinant cytolysins. In a murine skin infection model, COX-2-positive cells were found more abundant at the site of S. pyogenes wild-type infection than at the site of infection with ΔSLS/ΔSLO mutant strain. These findings suggest that inhibitory targeting of SLS and SLO could ameliorate the adverse effects of high levels of prostaglandins during S. pyogenes infection. © 2017 S. Karger AG, Basel.

  12. Cyclooxygenase-2 gene polymorphisms and susceptibility to colorectal cancer in a Brazilian population

    PubMed Central

    Tomitão, Michele Tatiana Pereira; Nahas, Sergio Carlos; Kubrusly, Marcia Saldanha; Furuya, Tatiane Katsue; Diniz, Marcio Augusto; Marie, Suely Kazue Nagahashi; Safatle-Ribeiro, Adriana Vaz; Eluf-Neto, José; Cecconello, Ivan

    2017-01-01

    Background Multi-ethnicity of Brazilian population displays high levels of genomic diversity. Polymorphism may detect people at higher risk of developing cancer, distinctive response to treatment, and prognosis. Cyclooxygenase-2 (COX-2) is induced in response to growth factors and cytokines, and is expressed in inflammatory diseases, precancerous lesions and colorectal cancer (CRC). The aim of this study was to evaluate the influence of COX-2 −1195A > G and 8473T > C polymorphisms as a risk factor of developing CRC. Methods We evaluated COX-2 Single Nucleotide Polymorphism (SNP) of 230 CRC patients and 196 healthy controls by Real-Time Polymerase Chain Reaction. Results Populations were in Hardy-Weinberg equilibrium (HWE), except for control group of 8473T > C SNP. The frequencies were similar in both groups for genotypes and haplotypes. There was no association between studied polymorphisms and risk of CRC. Conclusions The gene polymorphisms studied do not participate in the genetic susceptibility to CRC in a Brazilian population. PMID:28890812

  13. Role of human cyclooxygenase-2 in the bioactivation of dapsone and sulfamethoxazole.

    PubMed

    Vyas, Piyush M; Roychowdhury, Sanjoy; Svensson, Craig K

    2006-01-01

    Sulfamethoxazole (SMX) and dapsone (4,4'-diaminodiphenylsulfone, DDS) are believed to mediate their adverse effects subsequent to bioactivation to their respective arylhydroxylamine and arylnitroso metabolites, resulting in covalent adduct formation with intracellular proteins. Various bioactivating enzymes, such as cytochromes P450 and myeloperoxidase, have been shown to be capable of catalyzing the N-oxidation of these compounds. We assessed the role of human cyclooxygenase-2 (COX-2) in the metabolism and subsequent adduct formation of DDS and SMX using recombinant human COX-2. Using an adduct-specific enzyme-linked immunosorbent assay, we found that the complete enzyme system gave rise to covalent adducts. However, the nonspecific COX inhibitor indomethacin did not reduce the amount of covalent adduct formed. Formation of the arylhydroxylamine metabolites was demonstrated via high performance liquid chromatography coupled with UV absorption. Metabolite formation was found to be secondary to the H2O2 in the incubation mixture and was not enzyme-mediated. Hence, COX-2 does not play a direct role in the bioactivation of these parent drugs to their arylhydroxylamine metabolites.

  14. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus

    PubMed Central

    Jiang, Jianxiong; Yang, Myung-Soon; Quan, Yi; Gueorguieva, Paoula; Ganesh, Thota; Dingledine, Raymond

    2015-01-01

    As a prominent inflammatory effector of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) mediates brain inflammation and injury in many chronic central nervous system (CNS) conditions including seizures and epilepsy, largely through its receptor subtype EP2. However, EP2 receptor activation might also be neuroprotective in models of excitotoxicity and ischemia. These seemingly incongruent observations expose the delicacy of immune and inflammatory signaling in the brain, thus the therapeutic window for quelling neuroinflammation might vary with injury type and target molecule. Here, we identify a therapeutic window for EP2 antagonism to reduce delayed mortality and functional morbidity after status epilepticus (SE) in mice. Importantly, treatment must be delayed relative to SE onset to be effective, a finding that could be explained by the time-course of COX-2 induction after SE and compound pharmacokinetics. A large number of inflammatory mediators were upregulated in hippocampus after SE with COX-2 and IL-1β temporally leading many others. Thus, EP2 antagonism represents a novel anti-inflammatory strategy to treat SE with a tightly-regulated therapeutic window. PMID:25600211

  15. Selective Visualization of Cyclooxygenase-2 in Inflammation and Cancer by Targeted Fluorescent Imaging Agents†

    PubMed Central

    Uddin, Md. Jashim; Crews, Brenda C.; Blobaum, Anna L.; Kingsley, Philip J.; Gorden, D. Lee; McIntyre, J. Oliver; Matrisian, Lynn M.; Subbaramaiah, Kotha; Dannenberg, Andrew J.; Piston, David W.; Marnett, Lawrence J.

    2010-01-01

    Effective diagnosis of inflammation and cancer by molecular imaging is challenging because of interference from non-selective accumulation of the contrast agents in normal tissues. Here we report a series of novel fluorescence imaging agents that efficiently target cyclooxygenase-2 (COX-2), which is normally absent from cells, but is found at high levels in inflammatory lesions, and in many premalignant and malignant tumors. After either intraperitoneal or intravenous injection, these reagents become highly enriched in inflamed or tumor tissue compared to normal tissue and this accumulation provides sufficient signal for in vivo fluorescence imaging. Further, we show that only the intact parent compound is found in the region of interest. COX-2-specific delivery was unambiguously confirmed using animals bearing targeted deletions of COX-2 and by blocking the COX-2 active site with high affinity inhibitors in both in vitro and in vivo models. Because of their high specificity, contrast, and detectability, these COX-2 beacons are ideal candidates for detection of inflammatory lesions or early-stage COX-2-expressing human cancers, such as those in the esophagus, oropharynx, and colon. PMID:20430759

  16. Expression of androgen receptor and cyclooxygenase-2 in the vesicular glands of castrated and intact goat.

    PubMed

    Emam, Mahmoud Abdelghaffar

    2016-03-01

    This study was conducted to demonstrate the effect of castration on the structure of vesicular glands of the Egyptian Nubian (Zaraibi) goat. Vesicular glands of castrated (n=4) and intact (n=6) goat were used for histological and immunohistochemical evaluations. In this study, we report the difference in cell specific expression of androgen receptor (AR) and cyclooxygenase-2 (COX-2) in the vesicular glands of castrated and intact goats. In both castrated and intact goats, the present study revealed no immunopositive cells for AR or COX-2 in the fibromuscular stroma meanwhile, AR and COX-2 containing immunoreactive cells were restricted only to the epithelium of the secretory acini of the vesicular gland. Such finding suggests androgen and COX-2 as important regulators for the growth and secretory activity of epithelial cells in the vesicular gland of goats. Overall, the vesicular gland of castrated goats showed significantly (P<0.05) lower AR and COX-2 immuno-expression than intact goats indicating that both AR and COX-2 are androgen dependent. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Cyclooxygenase-2 Expression in Helicobacter pylori-Associated Premalignant and Malignant Gastric Lesions

    PubMed Central

    Sung, Joseph J. Y.; Leung, Wai K.; Go, Minnie Y. Y.; To, Ka F.; Cheng, Alfred S. L.; Ng, Enders K. W.; Chan, Francis K. L.

    2000-01-01

    Expression of cyclooxygenase-2 (COX-2) in various stages of the Helicobacter pylori-associated gastric carcinogenesis pathway has not been elucidated. We investigated the distribution and intensity of COX-2 expression in premalignant and malignant gastric lesions, and monitored the changes after H. pylori eradication. Gastric biopsies from H. pylori-infected patients with chronic active gastritis, gastric atrophy, intestinal metaplasia (IM), gastric adenocarcinoma, and noninfected controls were studied. Expression of COX-2 was evaluated by immunohistochemistry and in situ hybridization. Endoscopic biopsies were repeated 1 year after successful eradication of H. pylori in a group of IM patients for comparing COX-2 expression and progression of IM. In all H. pylori-infected patients, COX-2 expression was predominantly found in the foveolar and glandular epithelium and, to a lesser extent, in the lamina propria. In the noninfected group, only 35% of cases demonstrated weak COX-2 expression. Intensity of COX-2 was not significantly different between the chronic active gastritis, gastric atrophy, IM, and gastric adenocarcinoma groups. In 17 patients with IM, COX-2 expressions in the epithelial cells and stromal cells were reduced 1 year after H. pylori eradication. However, the changes in COX-2 expression did not correlate with progression/regression of IM. Both premalignant and malignant gastric lesions demonstrate strong COX-2 expression. Successful eradication of H. pylori leads to down-regulation of COX-2 expression but failed to reverse IM at 1 year. PMID:10980112

  18. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors.

    PubMed

    Giantin, M; Vascellari, M; Lopparelli, R M; Ariani, P; Vercelli, A; Morello, E M; Cristofori, P; Granato, A; Buracco, P; Mutinelli, F; Dacasto, M

    2013-02-01

    In humans, the aryl hydrocarbon receptor (AHR) gene battery constitutes a set of contaminant-responsive genes, which have been recently shown to be involved in the regulation of several patho-physiological conditions, including tumorigenesis. As the domestic dog represents a valuable animal model in comparative oncology, mRNA levels of cytochromes P450 1A1, 1A2 and 1B1 (CYP1A1, 1A2 and 1B1), AHR, AHR nuclear translocator (ARNT), AHR repressor (AHRR, whose partial sequence was here obtained) and cyclooxygenase-2 (COX2) were measured in dog control tissues (liver, skin, mammary gland and bone), in 47 mast cell tumors (MCTs), 32 mammary tumors (MTs), 5 osteosarcoma (OSA) and related surgical margins. Target genes were constitutively expressed in the dog, confirming the available human data. Furthermore, their pattern of expression in tumor biopsies was comparable to that already described in a variety of human cancers; in particular, both AHR and COX2 genes were up-regulated and positively correlated, while CYP1A1 and CYP1A2 mRNAs were generally poorly expressed. This work demonstrated for the first time that target mRNAs are expressed in neoplastic tissues of dogs, thereby increasing the knowledge about dog cancer biology and confirming this species as an useful animal model for comparative studies on human oncology.

  19. Crocidolite Induces Prostaglandin I2 Release Mediated by Vitronectin Receptor and Cyclooxygenase-2 in Lung Cells

    PubMed Central

    Roberts, Kevan

    2010-01-01

    Interstitial lung disease (ILD) produces disruption of alveolar walls with loss of functionality and scar tissue accumulation. Asbestosis is the ILD produced by the inhalation of asbestos fibers. This study attempts to elucidate the role of lung epithelial cells in the generation of asbestos-induced ILD. When exposed to crocidolite LA-4 cells had a decrease in viability and an increase in the release of lactate dehydrogenase (LDH) and 6-keto PGF1α, a PGI2 metabolite. PGI2 release was mediated by cyclo-oxygenase-2 (COX-2) and vitronectin receptor (VNR). When LA-4 cells were treated with VNR inhibitors, either RGD (Arg-Gly-Asp) peptide or VNR blocking antibody, a statistically significant decrease in PGI2 metabolite production was observed, but crocidolite-induced cytotoxicity was not prevented. These findings propose that crocidolite is coated by an RGD protein and binds VNR-inducing COX-2 expression and PGI2 release. Moreover, when LA-4 cells were exposed to crocidolite in the presence of reduced serum culture media, PGI2 production was prevented, and when bronchoalveolar lavage fluid (BALF) was added, PGI2 production was rescued. Cytotoxicity did not occur, either in reduced serum culture media or when BALF was added. In conclusion, crocidolite requires the presence of an RGD protein coating the fibers to induce inflammation (PGI2 production) and crocidolite alone cannot induce cytotoxicity in lung cells. PMID:20155273

  20. Interaction of nimesulide, a cyclooxygenase-2 inhibitor, with cisplatin in normotensive and spontaneously hypertensive rats.

    PubMed

    Al Suleimani, Yousuf M; Abdelrahman, Aly M; AlMahruqi, Ahmed S; Alhseini, Ishaq S; Tageldin, Mohamed H; Mansour, Mohamed E; Ali, Badreldin H

    2010-01-01

    We investigated the effect of administration of nimesulide, a selective cyclooxygenase-2 (COX-2) inhibitor, on cisplatin (CP)-induced nephrotoxicity in rats. WKY rats and SHRs were divided into four groups, each. The first and second groups received saline and oral nimesulide (20mg/kg/day for 6 days), respectively, whereas the third and fourth groups received a single intraperitoneal (i.p.) injection of CP (5mg/kg) and CP (5mg/kg) and nimesulide (20mg/kg/day for 5 days), respectively. At the end of the experiment, rats were anesthetized and blood pressure and renal blood flow (RBF) were monitored, followed by intravenous (i.v.) injection of norepinephrine (NE). Nephrotoxicity was evaluated histopathologically and biochemically. CP caused a reduction in baseline RBF in both WKY and SHRs. It increased the concentrations of urea and creatinine and kidney relative weight, and decreased body weight in both WKY and SHRs. Histopathologically, CP caused remarkable renal damage in both WKY rats and SHRs. Treatment with nimesulide alone did not produce any significant change in any of the above measurements. However, nimesulide aggravated CP-induced renal tissue damage in SHRs, but not in WKY rats. The results show that administration nimesulide augmented the histopathological indices of nephrotoxicity in SHRs, but not in WKY rats.

  1. Predictive utility of cyclo-oxygenase-2 expression by colon and rectal cancer.

    PubMed

    Lobo Prabhu, Kristel C; Vu, Lan; Chan, Simon K; Phang, Terry; Gown, Allen; Jones, Steven J; Wiseman, Sam M

    2014-05-01

    Cyclo-oxygenase-2 (COX-2), an inducible enzyme expressed in areas of inflammation, is a target of interest for colorectal cancer therapy. Currently, the predictive significance of COX-2 in colorectal cancer remains unclear. Tissue microarrays were constructed using 118 colon cancer and 85 rectal cancer specimens; 44 synchronous metastatic colon cancer and 22 rectal cancer lymph nodes were also evaluated. COX-2 expression was assessed by immunohistochemistry. Univariate analysis was used to determine the predictive significance of clinicopathologic variables. Overall survival, disease-specific survival, and disease-free survival were the main outcomes examined. COX-2 was found to be expressed in 93% of colon cancers and 87% of rectal cancers. Decreased COX-2 expression was related to decreased disease-specific survival (P = .016) and decreased disease-free survival (P = .019) in the rectal cancer cohort but not in the colon cancer cohort. COX-2 expression has predictive utility for management of rectal but not colon cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Bryostatin-1 stimulates the transcription of cyclooxygenase-2: evidence for an activator protein-1-dependent mechanism.

    PubMed

    De Lorenzo, Mariana S; Yamaguchi, Kentaro; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2003-10-15

    Bryostatin-1 (bryostatin) is a macrocyclic lactone derived from Bugula neritina, a marine bryozoan. On the basis of the strength of in vitro and animal studies, bryostatin is being investigated as a possible treatment for a variety of human malignancies. Severe myalgias are a common dose-limiting side effect. Because cyclooxygenase-2 (COX-2)-derived prostaglandins can cause pain, we investigated whether bryostatin induced COX-2. Bryostatin (1-10 nM) induced COX-2 mRNA, COX-2 protein, and prostaglandin biosynthesis. These effects were observed in macrophages as well as in a series of human cancer cell lines. Transient transfections localized the stimulatory effects of bryostatin to the cyclic AMP response element of the COX-2 promoter. Electrophoretic mobility shift assays and supershift experiments revealed a marked increase in the binding of activator protein-1 (AP-1)(c-Jun/c-Fos) to the cyclic AMP response element of the COX-2 promoter. Pharmacological and transient transfection studies indicated that bryostatin stimulated COX-2 transcription via the protein kinase C-->mitogen-activated protein kinase-->AP-1 pathway. All-trans-retinoic acid, a prototypic AP-1 antagonist, blocked bryostatin-mediated induction of COX-2. Taken together, these results suggest that bryostatin-mediated induction of COX-2 can help to explain the myalgias that are commonly associated with treatment. Moreover, it will be worthwhile to evaluate whether the addition of a selective COX-2 inhibitor can increase the antitumor activity of bryostatin.

  3. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  4. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  5. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation.

    PubMed

    Yuan, Hua; Li, Xuemei; Zhang, Xiuying; Kang, Rui; Tang, Daolin

    2016-09-16

    Ferroptosis is a form of non-apoptotic cell death originally identified in cancer cells. However, the key regulator of ferroptosis in mitochondria remains unknown. Here, we show that CDGSH iron sulfur domain 1 (CISD1, also termed mitoNEET), an iron-containing outer mitochondrial membrane protein, negatively regulates ferroptotic cancer cell death. The classical ferroptosis inducer erastin promotes CISD1 expression in an iron-dependent manner in human hepatocellular carcinoma cells (e.g., HepG2 and Hep3B). Genetic inhibition of CISD1 increased iron-mediated intramitochondrial lipid peroxidation, which contributes to erastin-induced ferroptosis. In contrast, stabilization of the iron sulfur cluster of CISD1 by pioglitazone inhibits mitochondrial iron uptake, lipid peroxidation, and subsequent ferroptosis. These findings indicate a novel role of CISD1 in protecting against mitochondrial injury in ferroptosis.

  6. Saposin C Protects Glucocerebrosidase against α-Synuclein Inhibition

    PubMed Central

    Yap, Thai Leong; Gruschus, James M.; Velayati, Arash; Sidransky, Ellen; Lee, Jennifer C.

    2013-01-01

    Mutations in GBA1, the gene for glucocerebrosidase (GCase), are genetic risk factors for Parkinson disease (PD). α-Synuclein (α-syn), a protein implicated in PD, interacts with GCase and efficiently inhibits enzyme activity. GCase deficiency causes the lysosomal storage disorder Gaucher disease (GD). We show that saposin C (Sap C), a protein vital for GCase activity in vivo, protects GCase against α-syn inhibition. Using NMR spectroscopy, site-specific fluorescence, and Förster energy transfer probes, Sap C was observed to displace α-syn from GCase in solution and on lipid vesicles. Our results suggest that Sap C might play a crucial role in GD-related PD. PMID:24070323

  7. Propyphenazone-Based Analogues as Prodrugs and Selective Cyclooxygenase-2 Inhibitors

    PubMed Central

    2014-01-01

    Improving the gastrointestinal safety profile of nonsteroidal anti-inflammatory drugs (NSAIDs) is an important goal. Herein, we report two strategies, using the nonacidic propyphenazone structure, with potential to overcome the side effects of NSAIDs. Propyphenazone was employed to temporarily mask the free acid group of the widely used NSAIDs ibuprofen, diclofenac, and ketoprofen to develop three mutual prodrugs hypothesized to have minimal GI irritation. The three prodrugs exhibit in vivo anti-inflammatory and analgesic activities with improved potency over each parent drug when compared to a nonhydrolyzable control betahistine–propyphenazone (BET–MP). Additionally, ANT–MP formed by the irreversible coupling of propyphenazone and 4-aminoantipyrine, displayed exceptional COXII selectivity (COXII IC50 of 0.97 ± 0.04 μM, compared to no observed inhibition of COXI at 160 μM). Inhibition of COXII suppresses inflammatory diseases without affecting COXI-mediated GI tract events. ANT–MP exhibited maximal analgesic effect when tested in vivo in an abdominal writhing assay (100% protection) and its anti-inflammatory activity showed a peak at 2 h in a carrageenan-induced paw edema model. Its unique selectivity toward the COXII enzyme was investigated using molecular modeling techniques. PMID:25221653

  8. Wnt/β-Catenin Signaling Enhances Cyclooxygenase-2 (COX2) Transcriptional Activity in Gastric Cancer Cells

    PubMed Central

    Nuñez, Felipe; Bravo, Soraya; Cruzat, Fernando; Montecino, Martín; De Ferrari, Giancarlo V.

    2011-01-01

    Background Increased expression of the cyclooxygenase-2 enzyme (COX2) is one of the main characteristics of gastric cancer (GC), which is a leading cause of death in the world, particularly in Asia and South America. Although the Wnt/β-catenin signaling pathway has been involved in the transcriptional activation of the COX2 gene, the precise mechanism modulating this response is still unknown. Methodology/Principal Findings Here we studied the transcriptional regulation of the COX2 gene in GC cell lines and assessed whether this phenomenon is modulated by Wnt/β-catenin signaling. We first examined the expression of COX2 mRNA in GC cells and found that there is a differential expression pattern consistent with high levels of nuclear-localized β-catenin. Pharmacological treatment with either lithium or valproic acid and molecular induction with purified canonical Wnt3a significantly enhanced COX2 mRNA expression in a dose- and time-dependent manner. Serial deletion of a 1.6 Kbp COX2 promoter fragment and gain- or loss-of-function experiments allowed us to identify a minimal Wnt/β-catenin responsive region consisting of 0.8 Kbp of the COX2 promoter (pCOX2-0.8), which showed maximal response in gene-reporter assays. The activity of this pCOX2-0.8 promoter region was further confirmed by site-directed mutagenesis and DNA-protein binding assays. Conclusions/Significance We conclude that the pCOX2-0.8 minimal promoter contains a novel functional T-cell factor/lymphoid enhancer factor (TCF/LEF)-response element (TBE Site II; -689/-684) that responds directly to enhanced Wnt/β-catenin signaling and which may be important for the onset/progression of GC. PMID:21494638

  9. Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats.

    PubMed

    Colín-González, Ana Laura; Ortiz-Plata, Alma; Villeda-Hernández, Juana; Barrera, Diana; Molina-Jijón, Eduardo; Pedraza-Chaverrí, José; Maldonado, Perla D

    2011-11-01

    Different garlic products reduce the cerebral ischemic damage due to their antioxidant properties. In this work, we investigated the effect of aged garlic extract (AGE) on cyclooxygenase-2 (COX-2) protein levels and activity, and its role as a possible mechanism of neuroprotection in a cerebral ischemia model. Animals were subjected to 1 h of ischemia plus 24 h of reperfusion. AGE (1.2 ml/kg weight, i.p.) was administered at onset of reperfusion. To evaluate the damage induced by cerebral ischemia, the neurological deficit, the infarct area, and the histological alterations were measured. As an oxidative stress marker to deoxyribonucleic acid, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were determined. Finally, as inflammatory markers, TNFα levels and COX-2 protein levels and activity were measured. AGE treatment diminished the neurological alterations (61.6%), the infarct area (54.8%) and the histological damage (37.7%) induced by cerebral ischemia. AGE administration attenuated the increase in 8-OHdG levels (77.8%), in TNFα levels (76.6%), and in COX-2 protein levels (73.6%) and activity (30.7%) induced after 1 h of ischemia plus 24 h of reperfusion. These data suggest that the neuroprotective effect of AGE is associated not only to its antioxidant properties, but also with its capacity to diminish the increase in TNFα levels and COX-2 protein expression and activity. AGE may have the potential to attenuate the cerebral ischemia-induced inflammation.

  10. Immunohistochemical study of cyclooxygenase-2 and p53 expression in skin tumors.

    PubMed

    Kim, Kwang Ho; Park, Eun Joo; Seo, Young Ju; Cho, Han Suk; Kim, Chul Woo; Kim, Kwang Joong; Park, Hye Rim

    2006-05-01

    Overexpression of cyclooxygenase-2 (COX-2) has been demonstrated in various cancers, including experimentally promoted tumors, gastrointestinal cancers, breast tumors and skin tumors. The mechanism that controls COX-2 expression is not yet clear. Currently, it is reported that COX-2 expression is frequently associated with mutated p53 genes. The goal of this study was to evaluate the expression patterns of COX-2 and p53 in several skin tumors and their correlation. An immunohistochemical method was used to investigate the expression of COX-2 and p53 proteins on formalin-fixed, paraffin-embedded tissue specimens of squamous cell carcinomas (SCC), basal cell carcinomas (BCC), Bowen's disease (BD), actinic keratosis (AK) and porokeratosis. The expression of COX-2 increased in 50% (5/10) of SCC, 80% (8/10) of BCC, 40% (4/10) of BD, 50% (5/10) of AK, and 20% (2/10) of porokeratosis cases. The expression of p53 increased in 90% (9/10) of SCC, 70% (7/10) of BCC, 70% (7/10) of BD, 50% (5/10) of AK, and 40% (4/10) of porokeratosis cases. COX-2 positivity rates of the p53-positive skin tumors were 56%, 100%, 57%, 80% and 25% in SCC, BCC, BD, AK and porokeratosis, respectively. However, the correlation between p53 and COX-2 expression in skin tumors was not statistically significant (P > 0.05). Our results indicate that skin COX-2 and p53 may play roles in skin tumors, but that there is no apparent correlation between the two markers.

  11. Prognostic relevance of cyclooxygenase-2 (COX-2) expression in Chinese patients with prostate cancer.

    PubMed

    Bin, Wu; He, Wang; Feng, Zhang; Xiangdong, Lu; Yong, Chen; Lele, Kou; Hongbin, Zhang; Honglin, Guo

    2011-02-01

    Cyclooxygenase-2 (COX-2), an inducible isoform of cyclooxygenase, has been reported to be correlated with tumorigenesis, tumor progression and metastasis. The present study was designed to investigate the clinicopathological and prognostic significance of COX-2 in Chinese patients with prostate cancer. Firstly, RT-PCR and Western blot assays were performed to detect the expression of COX-2 mRNA and protein in prostate cancer cell lines and 20 tissue samples (tumor or corresponding non-tumor). Next, immunohistochemistry was performed to detect the expression of COX-2 protein in 88 prostate cancer tissue samples. Finally, the correlation between COX-2 expression and clinicopathological factors and patient survival was evaluated. We found that the expression levels of COX-2 mRNA and protein showed significant difference among four prostate cancer cell lines. Moreover, the levels of COX-2 mRNA and protein were significantly higher in prostate cancer tissues than in corresponding non-tumor tissues. COX-2 staining was positive in the cytoplasm of prostate cancer cells. High-COX-2 expression was correlated with the Gleason score (P=0.009), tumor stage (P=0.012), and lymph-node status (P=0.036). Furthermore, patients with high-COX-2 expression showed lower disease-free (P=0.014) and overall survival (P=0.047) rates than those with low-COX-2 expression. Univariate and multivariate analyses suggested that the status of COX-2 protein expression was an independent prognostic indicator for patients' survival. Taken together, higher COX-2 protein expression might provide an independent prognostic marker for Chinese patients with prostate cancer who have undergone surgery.

  12. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis.

    PubMed

    Evans, Iona C; Barnes, Josephine L; Garner, Ian M; Pearce, David R; Maher, Toby M; Shiwen, Xu; Renzoni, Elisabetta A; Wells, Athol U; Denton, Christopher P; Laurent, Geoffrey J; Abraham, David J; McAnulty, Robin J

    2016-04-01

    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4. © 2016 The Author(s).

  13. Posttranscriptional Regulation of Cyclooxygenase-2 in Rat Intestinal Epithelial Cells1

    PubMed Central

    Zhang, Zhonghua; Sheng, Hongmiao; Shao, Jinyi; Beauchamp, R Daniel; DuBois, Raymond N

    2000-01-01

    Abstract Modulation of cyclooxygenase-2 (COX-2) mRNA stability plays an important role in the regulation of its expression by oncogenic Ras. Here, we evaluate COX-2 mRNA stability in response to treatment with two known endogenous promoters of gastrointestinal cancer, the bile acid (chenodeoxycholate; CD) and ceramide. Treatment with CD and ceramide resulted in a 10-fold increase in the level of COX-2 protein and a four-fold lengthening of the half-life of COX-2 mRNA. COX-2 mRNA stability was assessed by Northern blot analysis and by evaluating the AU-rich element located in the COX-2 3′-UTR. A known inhibitor of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK), PD98059, reversed the effects of CD or ceramide to stabilize COX-2 mRNA. Overexpression of a dominant-negative ERK-1 or ERK-2 protein also led to destabilization of COX-2 mRNA. Treatment with a p38 MAPK inhibitor, PD169316, or transfection with a dominant-negative p38 MAPK construct reversed the effect of CD or ceramide to stabilize COX-2 mRNA. Expression of a dominant-negative c-Jun N-terminal kinase (JNK) had no effect on COX-2 mRNA stability in cells treated with CD or ceramide. We conclude that posttranscriptional mechanisms play an important role in the regulation of COX-2 expression during carcinogenesis. PMID:11228545

  14. Prognostic significance of cyclooxygenase-2 protein in pancreatic cancer: a meta-analysis.

    PubMed

    Wang, Di; Guo, Xiao-Zhong; Li, Hong-Yu; Zhao, Jia-Jun; Shao, Xiao-Dong; Wu, Chun-Yan

    2014-10-01

    We conducted a meta-analysis of relevant cohort studies to investigate the relationships between cyclooxygenase-2 (COX-2) protein and the prognosis of pancreatic cancer. The following electronic databases were searched without language restrictions: MEDLINE (1966∼2013), the Library Database (Issue 12, 2013), EMBASE (1980∼2013), CINAHL (1982∼2013), Web of Science (1945∼2013), and the Chinese Biomedical Database (CBM) (1982∼2013). Meta-analysis was performed using the STATA statistical software. Six cohort studies with a total of 712 pancreatic cancer patients were involved in this meta-analysis. Our findings showed that COX-2-positive patients were significantly associated with a shorter overall survival (OS) than COX-2-negative patients (hazard ratio (HR) = 1.48, 95 % confidence interval (95%CI) = 1.12∼1.85, P < 0.001). A subgroup analysis by ethnicity also revealed that pancreatic cancer patients with an abnormal COX-2 expression exhibited a worse OS than COX-2-negative patients among both Asians and Caucasians (Asians: HR = 1.40, 95%CI = -0.09∼2.89, P = 0.066; Caucasians: HR = 1.49, 95%CI = 1.11∼1.87, P < 0.001, respectively). Our findings provide empirical evidence that abnormal COX-2 expression may be strongly correlated with poor prognosis for patients with pancreatic cancer. Thus, COX-2 protein may be a useful biomarker for pancreatic cancer.

  15. Cyclooxygenase-2 expression is positively associated with lymph node metastasis in nasopharyngeal carcinoma

    PubMed Central

    Yang, Gui; Deng, Qiaoling; Fan, Wei; Zhang, Zheng; Xu, Peipei; Tang, Shihui; Wang, Ping; Wang, Jun’e

    2017-01-01

    Background Accumulating evidence has demonstrated that cyclooxygenase-2 (COX-2) is involved in head and neck cancers, especially in nasopharyngeal carcinoma (NPC). However, the association between COX-2 expression and lymph node metastasis in NPC remains uncertain. This systematic review and meta-analysis meta-analysis investigated the relationship between COX-2 expression and lymph node metastasis and other signs of disease progression in NPC. Methods Previously published studies assessing COX-2 expression and lymph node metastasis in NPC were identified in four English databases and three Chinese ones (Pubmed, Embase, Cochrane Database of Systematic Reviews, Web of Science, China National Knowledge Infrastructure, Wanfang, Vip Journal Integration Platform) up to November 2016. Quality of all eligible studies was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). Pooled odds ratios (OR) and their 95% confidence intervals (95%CI) were calculated with fixed-effects or random-effects model to evaluate the effects of COX-2 expression on lymph node metastasis. Results A total of 27 studies with 1797 NPC patients met the inclusion criteria. The expression of COX-2 was significantly higher in patients with nasopharyngeal carcinoma than those without the carcinoma, with a combined OR of 21.17 (95%CI = 15.02–29.85, I2 = 35.1%, Pheterogeneity = 0.070). A statistically significant association between COX-2 expression and lymph node metastasis in NPC patients, with an OR of 4.44 (95%CI = 3.46–5.70, I2 = 38.3%, Pheterogeneity = 0.024), and with other indicators of disease progression. Subgroup analyses based on COX-2 assay and staging criteria of TNM showed no significant heterogeneity. Conclusions The results suggest that expression of COX-2 is associated with lymph node metastasis and disease progression in NPC, indicating a potential role in evaluation of prognosis and in treatment decisions. COX-2 inhibitors have potential in the treatment of NPC that

  16. Secretory phospholipase A{sub 2} mediates progression of acute liver injury in the absence of sufficient cyclooxygenase-2

    SciTech Connect

    Bhave, Vishakha S.; Donthamsetty, Shashikiran; Latendresse, John R.; Muskhelishvili, Levan; Mehendale, Harihara M.

    2008-04-15

    Previous studies have shown that injury initiated by toxicants progresses even after most of the toxicant is eliminated from the body. One mechanism of progression of injury is the extracellular appearance of hydrolytic enzymes following leakage or upon cell lyses. Under normal conditions, after exposure to low to moderate doses of toxicants, secretory phospholipase A{sub 2} (sPLA{sub 2}) and other hydrolytic enzymes are known to appear in the extracellular spaces in order to cleanup the post-necrotic debris in tissues. We tested the hypothesis that sPLA{sub 2} contributes to progression of toxicant-initiated liver injury because of hydrolysis of membrane phospholipids of hepatocytes in the perinecrotic areas in the absence of sufficient cyclooxygenase-2 (COX-2). Male Sprague-Dawley rats were administered either a moderately hepatotoxic dose (MD, 2 ml CCl{sub 4}/kg, ip) or a highly hepatotoxic dose (HD, 3 ml CCl{sub 4}/kg, ip) of CCl{sub 4}. After MD, liver sPLA{sub 2} and COX-2 were co-localized in the necrotic and perinecrotic areas and their activities in plasma and liver increased before decreasing in tandem with liver injury (ALT and histopathology) leading to 100% survival. In contrast, after the HD, high extracellular and hepatic sPLA{sub 2} activities were accompanied by minimal COX-2 activity and localization in the liver throughout the time course. This led to progression of liver injury and 70% mortality. These data suggested a destructive role of sPLA{sub 2} in the absence of sufficient COX-2. Time- and dose-dependent destruction of hepatocytes by sPLA{sub 2} in isolated hepatocyte incubations confirmed the destructive ability of sPLA{sub 2} when present extracellularly, suggesting its ability to spread injury in vivo. These findings suggest that sPLA{sub 2}, secreted for cleanup of necrotic debris upon initiation of hepatic necrosis, requires the co-presence of sufficiently induced COX-2 activity to prevent the run-away destructive action of sPLA{sub 2

  17. Involvement of cyclooxygenase-2 in the potentiation of allyl alcohol-induced liver injury by bacterial lipopolysaccharide.

    PubMed

    Ganey, P E; Barton, Y W; Kinser, S; Sneed, R A; Barton, C C; Roth, R A

    2001-07-15

    Bacterial endotoxin (lipopolysaccharide; LPS) augments the hepatotoxicity of a number of xenobiotics including allyl alcohol. The mechanism for this effect is known to involve the inflammatory response elicited by LPS. Upregulation of cyclooxygenase-2 (COX-2) and production of eicosanoids are important aspects of inflammation, therefore studies were undertaken to investigate the role of COX-2 in LPS-induced enhancement of liver injury from allyl alcohol. Rats were pretreated (iv) with a noninjurious dose of LPS or sterile saline vehicle and 2 h later were treated (ip) with a noninjurious dose of allyl alcohol or saline vehicle. COX-2 mRNA was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and liver injury was assessed from activities in serum of alanine and aspartate aminotransferases (ALT and AST, respectively) and from histology. Liver injury was observed only in rats cotreated with LPS and allyl alcohol. Serum ALT activity was increased by 4 h after administration of LPS and continued to increase through 8 h. COX-2 mRNA was detectable at low levels in livers from rats receiving only the vehicles at any time up to 8 h. Expression of COX-2 mRNA was increased by 30 min after administration of LPS and remained elevated through 6 h. Allyl alcohol treatment alone caused an increase in COX-2 mRNA at 4 h (2 h after allyl alcohol) that lasted less than 2 h. In livers from rats cotreated with LPS and allyl alcohol, levels of COX-2 mRNA were greater than levels seen with either LPS or allyl alcohol alone. The increased expression of COX-2 mRNA was accompanied by an increase in the concentration of prostaglandin (PG) D(2) in plasma. Plasma PGD(2) concentration was increased to a greater extent in rats treated with LPS plus allyl alcohol compared to allyl alcohol or LPS alone. Pretreatment with the COX-2 selective inhibitor, NS-398, abolished the increase in plasma PGD(2) and reduced the increase in ALT and AST activities observed in

  18. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    PubMed Central

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  19. Cyclooxygenase-2 Enhances Antimicrobial Peptide Expression and Killing of Staphylococcus aureus

    PubMed Central

    Bernard, Jamie J.; Gallo, Richard L.

    2011-01-01

    Antimicrobial peptides such as human β-defensins (hBDs) and cathelicidins are critical for protection against infection and can be induced by activation of TLRs, a pathway that also activates cyclooxygenase(Cox)-2 expression. We hypothesized that Cox-2 is induced by TLR activation and is necessary for optimal AMP production, and that inhibitors of Cox-2 may therefore inhibit antimicrobial action. Normal human keratinocytes (NHEKs) stimulated with a TLR2/6 ligand, macrophage-activating lipo-peptide-2, or a TLR3 ligand, polyinosinic-polycytidylic acid, increased Cox-2 mRNA and protein and increased PGE2, a product of Cox-2. Treatment with a Cox-2 selective inhibitor (SC-58125) or Cox-2 small interfering RNA attenuated hBD2 and hBD3 production in NHEKs when stimulated with macrophage-activating lipopeptide-2, polyinosinic-polycytidylic acid, or UVB (15 mJ/cm2), but it did not attenuate vitamin D3-induced cathelicidin. SC-58125 also inhibited TLR-dependent NF-κB activation. Conversely, treatment with Cox-derived prostanoids PGD2 or 15-deoxy-Δ12,14-PGJ2 induced hBD3 or hBD2 and hBD3, respectively. The functional significance of these observations was seen in NHEKs that showed reduced anti-staphylococcal activity when treated with a Cox-2 inhibitor. These findings demonstrate a critical role for Cox-2 in hBD production and suggest that the use of Cox-2 inhibitors may adversely influence the risk for bacterial infection. PMID:20971925

  20. [Cyclooxygenase 2 genetic variant interacting with tobacco smoking and the risk of lung cancer].

    PubMed

    Zhang, Zhi; Liu, Rui; Yang, Zhao-huan; Wang, Guang-xia; Shao, Sha-sha; Song, Qin-qin; Zhang, Xue-mei

    2013-08-01

    To explore the association of -1195G > A genetic variant in the promoter region of cyclooxygenase 2 genetic (COX2) with the genetic susceptibility of lung cancer and its interaction with smoking. Totally, 956 lung cancer patients recruited between January 2000 and December 2008 at Cancer Hospital, Chinese Academy of Medical Science as the case group, and 994 frequency-matched controls were randomly selected from a pool of cancer-free subjects recruited from a nutritional survey. All subjects were ethnic Han Chinese. There was no sex, age restrictions. Case group and control group were matched. Informed consent was obtained and 2 ml peripheral blood was collected from each subject. All samples were genotyped by polymerase chain reaction-restriction fragment length polymorphism method, smoking status of the subjects was surveyed.While the OR and 95% CI were estimated by logistic regression to evaluate the relation of COX2 -1195G > A variant and the risk of lung cancer. The genetic allele COX2 -1195AA of control group and case group were 24.9% (247/994) and 28.3% (271/956) . Case-control analysis showed an increased risk of developing lung cancer for -1195AA genotype carriers (OR = 1.36, 95% CI: 1.03-1.79), compared with -1195GG carriers. When stratified by smoking status, the significant increased risk of lung cancer was found among smokers with COX2-1195AA genotype, with the OR (95%CI) was 1.56 (1.08-2.25); while among non-smokers, difference of lung cancer risk was not found among different genotypes (OR = 1.17; 95%CI: 0.77-1.61). Among heavy smokers (pack-year >20), -1195AA and -1195AG genotype carriers have significant increased risk of lung cancer with 1.85 (1.16-2.95) and 1.62(1.08-2.43) of OR (95%CI), respectively; among light smokers (pack-year ≤ 20), the OR (95%CI) of lung cancer risk in -1195AG and -1195AA genotype carriers were 0.78 (0.47-1.30) and 1.08 (0.60-1.94), respectively. Genetic polymorphism in the promoter of COX2 gene interacting with smoking

  1. Cyclooxygenase-2 and microRNA-155 expression are elevated in asthmatic airway smooth muscle cells.

    PubMed

    Comer, Brian S; Camoretti-Mercado, Blanca; Kogut, Paul C; Halayko, Andrew J; Solway, Julian; Gerthoffer, William T

    2015-04-01

    Cyclooxygenase-2 (COX-2) expression and PGE2 secretion from human airway smooth muscle cells (hASMCs) may contribute to β2-adrenoceptor hyporesponsiveness, a clinical feature observed in some patients with asthma. hASMCs from patients with asthma exhibit elevated expression of cytokine-responsive genes, and in some instances this is attributable to an altered histone code and/or microRNA expression. We hypothesized that COX-2 expression and PGE2 secretion might be elevated in asthmatic hASMCs in response to proinflammatory signals in part due to altered histone acetylation and/or microRNA expression. hASMCs obtained from nonasthmatic and asthmatic human subjects were treated with cytomix (IL-1β, TNF-α, and IFN-γ). A greater elevation of COX-2 mRNA, COX-2 protein, and PGE2 secretion was observed in the asthmatic cells. We investigated histone H3/H4-acetylation, transcription factor binding, mRNA stability, p38 mitogen-activated protein kinase signaling, and microRNA (miR)-155 expression as potential mechanisms responsible for the differential elevation of COX-2 expression. We found that histone H3/H4-acetylation and transcription factor binding to the COX-2 promoter were similar in both groups, and histone H3/H4-acetylation did not increase after cytomix treatment. Cytomix treatment elevated NF-κB and RNA polymerase II binding to similar levels in both groups. COX-2 mRNA stability was increased in asthmatic cells. MiR-155 expression was higher in cytomix-treated asthmatic cells, and we show it enhances COX-2 expression and PGE2 secretion in asthmatic and nonasthmatic hASMCs. Thus, miR-155 expression positively correlates with COX-2 expression in the asthmatic hASMCs and may contribute to the elevated expression observed in these cells. These findings may explain, at least in part, β2-adrenoceptor hyporesponsiveness in patients with asthma.

  2. Cardiovascular thrombotic events in arthritis trials of the cyclooxygenase-2 inhibitor celecoxib.

    PubMed

    White, William B; Faich, Gerald; Borer, Jeffrey S; Makuch, Robert W

    2003-08-15

    To determine whether the cyclooxygenase-2 (COX-2) inhibitor celecoxib affects cardiovascular thrombotic risk, we analyzed the incidence of cardiovascular events for celecoxib, placebo, and nonsteroidal anti-inflammatory drugs (NSAIDs) in the entire controlled, arthritis clinical trial database for celecoxib. The primary analysis used the Antiplatelet Trialists' Collaboration end points, which include: (1) cardiovascular, hemorrhagic, and unknown deaths, (2) nonfatal myocardial infarction, and (3) nonfatal stroke. Other secondary thrombotic events were also examined. Separate analyses were performed for all patients and for those not taking aspirin. Data from all controlled, completed arthritis trials of > or =4 weeks duration, including 13 new drug application studies and 2 large post-marketing trials (CLASS and SUCCESS) were included for analyses. Patients were randomized to celecoxib at doses from 100 to 400 mg twice daily (18,942 patients; 5,668.2 patient-years of exposure), diclofenac 50 to 75 mg twice daily, ibuprofen 800 mg thrice daily, naproxen 500 mg twice daily (combined NSAID exposure of 11,143 patients; 3,612.2 patient-years), or placebo (1,794 subjects; 199.9 subject-years). Data from a long-term uncontrolled trial with 5,209 patients (6,950 patients-years) treated with celecoxib were included in a supplemental analysis. The entire 15-trial database was searched for possible serious thrombotic events as well as to identify all deaths. For these patients, detailed clinical data were obtained and reviewed by 2 of the investigators (WBW and JSB), who were independently and blinded to exposure, to classify the event as primary, secondary, or neither. All analyses were done using the intent-to-treat population, and time-to-event analyses were performed using per-patient data. To examine heterogeneity of results among studies, tests of interaction were performed using the Cox model. Incidences of the primary and secondary events were not significantly

  3. Differential regulation of cyclooxygenase-2 expression by phytosphingosine derivatives, NAPS and TAPS, and its role in the NAPS or TAPS-mediated apoptosis.

    PubMed

    Kim, Hye Jung; Shin, Weonhye; Park, Chang Seo; Kim, Hyung-Ok; Kim, Tae-Yoon

    2003-11-01

    We investigated the effect of novel phytosphingosine derivatives, N-acetyl phytosphingosine (NAPS) and tetra-acetyl phytosphingosine (TAPS), on induction of apoptosis in HaCaT cells in comparison with C2-ceramide. NAPS/TAPS effectively decreased cell viability in a dose dependent manner mainly due to apoptosis. An apoptosis expression array analysis showed that in the TAPS treated cells 13 genes including COX-2 encoding cyclooxygenase-2, the most induced by TAPS, were up-regulated while 23 others down-regulated. Therefore, we examined the mechanism underlying the altered expression of COX-2. Assays with inhibitors and antibodies against proteins involved in signal transduction demonstrated that NAPS and TAPS elevated COX-2 expression via tyrosine kinase, src, PI-3 kinase and PKC, followed by ERK activation. However, P38 was not involved in the NAPS-mediated COX-2 expression but in the TAPS-mediated. We further demonstrated by FACS analyses that NAPS- or TAPS-mediated apoptosis was greatly increased in cells treated with celecoxib, a selective COX-2 inhibitor. Inhibition of the ERK pathway apparently involved in the NAPS/TAPS-mediated COX-2 expression enhanced the NAPS/TAPS-mediated apoptosis, whereas inhibition of the P38 pathway did not. These results suggest that expression of COX-2 in the TAPS- or NAPS-treated cells may be increased to counteract the effect of those compounds on apoptosis.

  4. Sasa quelpaertensis phenylpropanoid derivative suppresses lipopolysaccharide-induced nitric oxide synthase and cyclo-oxygenase-2 expressions in RAW 264.7 cells.

    PubMed

    Moon, Ji-Young; Yang, Eun-Jin; Kim, Sang Suk; Kang, Ji-Yong; Kim, Gi-Ok; Lee, Nam Ho; Hyun, Chang-Gu

    2011-01-01

    3-O-p-Coumaroyl-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-O-β-D-gulcopyranosylpropanol (ESQ10) is a naturally occurring phenylpropanoid derivative isolated from Sasa quelpaertensis (Gramineae). In the present study, we discovered that ESQ10 inhibits nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. ESQ10 attenuated LPS-induced synthesis of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in parallel and inhibited LPS-induced interleukin-6 production, as determined by an enzyme-linked immunosorbent assay in the macrophages. The mechanism of the antiinflammatory action of ESQ10, i.e., suppression of nuclear factor (NF)-κB and mitogen-activated protein kinase activation, has been documented. However, ESQ10 could not influence LPS-mediated IκB-α degradation and extracellular signal-regulated kinase/c-Jun amino-terminal kinase phosphorylation at concentrations of up to 373 µM. To test the potential application of ESQ10 as a topical material, we also conducted a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human HaCaT keratinocytes as well as human dermal fibroblast cells. In this assay, ESQ10 did not induce cytotoxicity. Taken together, the results suggest that ESQ10 may be considered an antiinflammatory candidate for treating inflammatory and skin diseases.

  5. Oolong tea theasinensins attenuate cyclooxygenase-2 expression in lipopolysaccharide (LPS)-activated mouse macrophages: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Masuzaki, Satoko; Tanigawa, Shunsuke; Hashimoto, Fumio; Chen, Jihua; Sogo, Takayuki; Fujii, Makoto

    2010-12-22

    Oolong tea theasinensins are a group of tea polyphenols different from green tea catechins and black tea theaflavins. The present study reports the inhibitory effects of oolong tea theasinensins on the expression of cyclooxygenase-2 (COX-2) and underlying molecular mechanisms in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. The structure-activity data revealed that the galloyl moiety of theasinensins played an important role in the inhibitory actions. Theasinensin A, a more potent inhibitor, caused a dose-dependent inhibition of mRNA, protein, and promoter activity of COX-2. An electrophoretic mobility shift assay (EMSA) revealed that theasinensin A reduced the complex of NF-κB- and AP-1-DNA in the promoter of COX-2. Signaling analysis demonstrated that theasinensin A attenuated IκB-α degradation, nuclear p65 accumulation, and c-Jun phosphorylation. Furthermore, theasinensin A suppressed the phosphorylation of MAPKs, IκB kinase α/β (IKKα/β), and TGF-β activated kinase (TAK1). These data demonstrated that the down-regulation of TAK1-mediated MAPKs and NF-κB signaling pathways might be involved in the inhibition of COX-2 expression by theasinensin A. These findings provide the first molecular basis for the anti-inflammatory properties of oolong tea theasinensins.

  6. δ-Amyrone, a specific inhibitor of cyclooxygenase-2, exhibits anti-inflammatory effects in vitro and in vivo of mice.

    PubMed

    Niu, Xiaofeng; Yao, Huan; Li, Weifeng; Mu, Qingli; Li, Huani; Hu, Hua; Li, Yongmei; Huang, Huimin

    2014-07-01

    The whole plant of Sedum lineare Thunb has been used as traditional folk medicines for the treatment of sore throat, persistent hepatitis, jaundice and dysentery. δ-Amyrone (13(18)-Oleanen-3-one), a pentacyclic triterpene compound from S. lineare Thunb, was found to possess a potent anti-inflammatory effect in different inflammation model animals. Pretreatment with δ-Amyrone (i.p.) inhibited the ear edema in xylene-induced mouse ear edema. δ-Amyrone also decreased the level of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6) and leukocyte numbers in acetic acid-induced peritonitis in vivo. To clarify the possible mechanism of δ-Amyrone, we investigated the effect of δ-Amyrone in lipopolysaccharide (LPS) induced peritoneal macrophages. The data indicated that δ-Amyrone notably inhibited IL-6, TNF-α and NO production. In addition, the result showed that δ-Amyrone may control the cyclooxygenase-2 (COX-2) regulation and not the cyclooxygenase-1 (COX-1) at protein levels. These results suggest that δ-Amyrone is a bioactive agent which possesses anti-inflammatory effects, which may be relevant to the regulation of COX-2.

  7. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Chan, Pei-Chi; Hsiao, Fone-Ching; Chang, Hao-Ming; Wabitsch, Martin; Hsieh, Po Shiuan

    2016-06-01

    We examined the involvement of adipocyte cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)-prostaglandin E receptor (EP)3-mediated signaling during hypertrophy and hypoxia in the development of obesity-associated adipose tissue (AT) inflammation and insulin resistance. The experiments were conducted with high-fat diet (HFD)-induced obese rats, db/db mice, human subjects, and 3T3-L1 and the human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes; the groups were treated with selective inhibitors of COX-2 [celecoxib 30 mg/kg, half maximal inhibitory concentration (IC50) ≈ 0.04 µM] and EP3 (L-798106 100 µg/kg, IC50 ≈ 0.5 µM) or a short interfering RNA. There were strong, positive correlations between adipocyte COX-2 and EP3 gene expressions and the AT TNF-α and monocyte chemotactic protein-1 contents and the homeostatic model assessment for insulin resistance in HFD-induced obese rats, as well as body mass index in human subjects. Treatment with COX-2 and EP3 inhibitors significantly reversed AT inflammatory gene and protein expressions (-50%) and impaired glucose and insulin tolerance in db/db mice. COX-2 inhibition diminished the chemotaxis of adipocytes isolated from HFD rats to macrophages and T cells. Targeting inhibition of adipocyte COX-2 and EP3 during hypertrophy and hypoxia reversed the release of the augmented proinflammatory adipokines and the diminished adiponectin and also suppressed NF-κB and hypoxia-inducible factor-1α transcription activation. These findings suggest that adipocyte COX-2 PGE2-EP3-mediated signaling is crucially involved in the development of obesity-associated AT inflammation and insulin resistance.-Chan, P.-C., Hsiao, F.-C., Chang, H.-M., Wabitsch, M., Hsieh, P. S. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. © FASEB.

  8. Cyclooxygenase-2 pathway as a potential therapeutic target in diabetic peripheral neuropathy.

    PubMed

    Kellogg, Aaron P; Cheng, Hsinlin Thomas; Pop-Busui, Rodica

    2008-01-01

    Diabetic peripheral neuropathy (DPN) is the most common diabetic complication and is the leading cause of diabetes-related hospital admissions and non-traumatic amputations. DPN is also associated with a poor quality of life and high economic costs for both type 1 and type 2 diabetic patients. An effective treatment for DPN, besides tight glycemic control, is not yet available. The pathogenesis of DPN is complex and involves an intertwined array of mechanisms. Glucose-mediated alteration of cyclooxygenase (COX) pathway activity with subsequent impaired production and function of prostaglandins (PGs) is one mechanism that is implicated in the pathogenesis of DPN. COX-2, the inducible COX isoform, is upregulated in a variety of pathophysiological conditions including diabetes. COX-2 upregulation has tissue-specific consequences and is associated with activation of downstream inflammatory reactions. We have previously reported that COX-2 is upregulated in the peripheral nerves and dorsal root ganglia neurons in experimental diabetes and that COX-2 gene inactivation and/or selective COX-2 inhibition provides protection against various DPN deficits. This review will summarize current evidence supporting the role of COX-2 activation in inducing diabetic neurovascular dysfunction and that modulation of the COX-2 pathway is a potential therapeutic target for DPN.

  9. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    EPA Science Inventory

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  10. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    EPA Science Inventory

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  11. L-carnitine inhibits hepatocarcinogenesis via protection of mitochondria.

    PubMed

    Chang, Baojun; Nishikawa, Manabu; Nishiguchi, Shuhei; Inoue, Masayasu

    2005-02-20

    Hepatocellular carcinoma is usually preceded by chronic inflammation. However, the molecular mechanism in hepatocarcinogenesis is not well known. Recently, we reported that mitochondrial dysfunction plays an important role in hepatocarcinogenesis via the production of free radicals. Furthermore, we proved that L-carnitine effectively protects mitochondrial function in vivo. Therefore, we investigated whether long-term administration of L-carnitine could prevent hepatitis and subsequent hepatocellular carcinoma in Long-Evans Cinnamon rats that are often analyzed as a model of hepatocarcinogenesis. The results indicated that oxidative stress elicited from abnormally accumulated copper increased the amount of free fatty acids, thereby inducing mitochondrial dysfunction, resulting in cell death and enhanced secondary generation of reactive oxygen species, which were significantly inhibited by carnitine treatment. Finally, the occurrence of placental glutathione S-transferase-positive foci as a marker for preneoplastic lesions and hepatocarcinogenesis were significantly inhibited by L-carnitine. These facts suggest that mitochondrial injury plays an essential role in the development of hepatocarcinogenesis and that the clinical use of carnitine has excellent therapeutic potential in individuals with chronic hepatitis. (c) 2004 Wiley-Liss, Inc.

  12. Immunomodulatory effects of nicotine on interleukin 1β activated human astrocytes and the role of cyclooxygenase 2 in the underlying mechanism.

    PubMed

    Revathikumar, Priya; Bergqvist, Filip; Gopalakrishnan, Srividya; Korotkova, Marina; Jakobsson, Per-Johan; Lampa, Jon; Le Maître, Erwan

    2016-09-29

    The cholinergic anti-inflammatory pathway (CAP) primarily functions through acetylcholine (ACh)-alpha7 nicotinic acetylcholine receptor (α7nAChR) interaction on macrophages to control peripheral inflammation. Interestingly, ACh can also bind α7nAChRs on microglia resulting in neuroprotective effects. However, ACh effects on astrocytes remain elusive. Here, we investigated the effects of nicotine, an ACh receptor agonist, on the cytokine and cholinesterase production of immunocompetent human astrocytes stimulated with interleukin 1β (IL-1β) in vitro. In addition, the potential involvement of prostaglandins as mediators of nicotine was studied using cyclooxygenase 2 (COX-2) inhibition. Cultured human fetal astrocytes were stimulated with human recombinant IL-1β and treated simultaneously with nicotine at different concentrations (1, 10, and 100 μM). Cell supernatants were collected for cytokine and cholinesterase profiling using ELISA and MesoScale multiplex assay. α7nAChR expression on activated human astrocytes was studied using immunofluorescence. For the COX-2 inhibition studies, enzyme activity was inhibited using NS-398. One-way ANOVA was used to perform statistical analyses. Nicotine treatment dose dependently limits the production of critical proinflammatory cytokines such as IL-6 (60.5 ± 3.3, %inhibition), IL-1β (42.4 ± 1.7, %inhibition), and TNF-α (68.9 ± 7.7, %inhibition) by activated human astrocytes. Interestingly, it also inhibits IL-8 chemokine (31.4 ± 8.5, %inhibition), IL-13 (34.243 ± 4.9, %inhibition), and butyrylcholinesterase (20.8 ± 2.8, %inhibition) production at 100 μM. Expression of α7nAChR was detected on the activated human astrocytes. Importantly, nicotine's inhibitory effect on IL-6 production was reversed with the specific COX-2 inhibitor NS-398. Activation of the cholinergic system through α7nAChR agonists has been known to suppress inflammation both in the CNS and periphery. In the CNS

  13. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion.

  14. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    SciTech Connect

    Mestre, Francisco; Gutiérrez, Antonio; Rodriguez, Jose; Ramos, Rafael; Garcia, Juan Fernando; Martinez-Serra, Jordi; Casasus, Marta; Nicolau, Cristina; Bento, Leyre; Herraez, Ines; Lopez-Perezagua, Paloma; Daumal, Jaime; Besalduch, Joan

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  15. Modulation of UVB-induced and basal cyclooxygenase-2 (COX-2) expression by apigenin in mouse keratinocytes: role of USF transcription factors.

    PubMed

    Van Dross, Rukiyah T; Hong, Xiaoman; Essengue, Suzanne; Fischer, Susan M; Pelling, Jill C

    2007-04-01

    Apigenin is a bioflavonoid with chemopreventive activity against UV- or chemically-induced mouse skin tumors. To further explore the mechanism of apigenin's chemopreventive activity, we determined whether apigenin inhibited UVB-mediated induction of cyclooxygenase-2 (COX-2) expression in mouse and human keratinocytes. Apigenin suppressed the UVB-induced increase in COX-2 protein and mRNA in mouse and human keratinocyte cell lines. UVB radiation of keratinocytes transfected with a mouse COX-2 promoter/luciferase reporter plasmid resulted in a threefold increase in transcription from the promoter, and apigenin inhibited the UV-induced promoter activity at doses of 5-50 microM. Transient transfections with COX-2 promoter deletion constructs and COX-2 promoter constructs containing mutations in specific enhancer elements indicated that the effects of UVB required intact Ebox and ATF/CRE response elements. Electrophoretic mobility shift assays with supershifting antibodies were used to identify USF-1, USF-2, and CREB as proteins binding to the ATF/CRE-Ebox responsive element of the COX-2 promoter. Keratinocytes co-transfected with the COX-2 luciferase reporter and a USF-2 expression vector, alone or in combination with a USF-1 expression vector, exhibited enhanced promoter activity in both UVB-irradiated and nonirradiated cultures. However, COX-2 promoter activity was inhibited in keratinocytes co-transfected with USF-1 alone. Finally, we present data showing that the suppressive effect of apigenin on COX-2 expression could be reversed by co-expression of USF-1 and USF-2. These results suggest that one pathway by which apigenin inhibits COX-2 expression is through modulation of USF transcriptional activity.

  16. Chemoprevention of Head and Neck Cancer by Simultaneous Blocking of Epidermal Growth Factor Receptor and Cyclooxygenase-2 Signaling Pathways: Preclinical and Clinical Studies

    PubMed Central

    Shin, Dong M.; Zhang, Hongzheng; Saba, Nabil; Chen, Amy; Nannapaneni, Sreenivas; Amin, A.R.M. Ruhul; Müller, Susan; Lewis, Melinda; Sica, Gabriel; Kono, Scott; Brandes, Johann C.; Grist, William; Moreno-Williams, Rachel; Beitler, Jonathan J.; Thomas, Sufi M.; Chen, Zhengjia; Shin, Hyung Ju C.; Grandis, Jennifer R.; Khuri, Fadlo R.; Chen, Zhuo Georgia

    2013-01-01

    Purpose We investigated the efficacy and underlying molecular mechanism of a novel chemopreventive strategy combining epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with cyclooxygenase-2 inhibitor (COX-2I). Experimental Design We examined the inhibition of tumor cell growth by combined EGFR-TKI (erlotinib) and COX-2I (celecoxib) treatment using head and neck cancer (HNC) cell lines and a preventive xenograft model. We studied the antiangiogenic activity of these agents and examined the affected signaling pathways by immunoblotting analysis in tumor cell lysates and immunohistochemistry (IHC) and enzyme immunoassay (EIA) analyses on the mouse xenograft tissues and blood, respectively. Biomarkers in these signaling pathways were studied by IHC, EIA, and an antibody array analysis in samples collected from participants in a phase I chemoprevention trial of erlotinib and celecoxib. Results The combined treatment inhibited HNC cell growth significantly more potently than either single agent alone in cell line and xenograft models, and resulted in greater inhibition of cell cycle progression at G1 phase than either single drug. The combined treatment modulated the EGFR and mTOR signaling pathways. A phase I chemoprevention trial of combined erlotinib and celecoxib revealed an overall pathologic response rate of 71% at time of data analysis. Analysis of tissue samples from participants consistently showed downregulation of EGFR, pERK and pS6 levels after treatment, which correlated with clinical response. Conclusion Treatment with erlotinib combined with celecoxib offers an effective chemopreventive approach through inhibition of EGFR and mTOR pathways, which may serve as potential biomarkers to monitor the intervention of this combination in the clinic. PMID:23422093

  17. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo.

    PubMed

    Kerola, Markku; Vuolteenaho, Katriina; Kosonen, Outi; Kankaanranta, Hannu; Sarna, Seppo; Moilanen, Eeva

    2009-01-01

    : The beneficial actions of non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with inhibition of cyclooxygenase-2 (COX-2), whereas some of their adverse effects are associated mainly with inhibition of COX-1. Selective COX-2 inhibitors reduce the risk of gastrointestinal adverse events, but increase the risk of thromboembolic events pointing to importance of optimal COX-1/COX-2 inhibition in drug safety. We compared the effects of acetylsalicylic acid, ibuprofen, nabumetone and nimesulide on COX-1 and COX-2 pathways in healthy volunteers in an ex vivo set-up using single oral doses commonly used to treat acute pain. In a randomized, double-blind four-phase cross-over study, 15 healthy volunteers were given orally a single dose of either acetylsalicylic acid 500 mg, ibuprofen 400 mg, nabumetone 1 g or nimesulide 100 mg. Blood samples were drawn before and 1, 3, 6, 24 and 48 hr after the drug for the assessment of COX-1 and COX-2 activity. COX-1 activity was measured as thromboxane(2) production during blood clotting and COX-2 activity as endotoxin-induced prostaglandin E(2) synthesis in blood leucocytes. The data show that after a single oral dose these four NSAIDs have different profiles of action on COX-1 and COX-2. As expected, acetylsalicylic acid appeared to be COX-1-selective and ibuprofen effectively inhibited both COX-1 and COX-2. Nabumetone showed only a slight inhibitory effect on COX-1 and COX-2. Nimesulide caused almost complete suppression of COX-2 activity and a partial reduction of COX-1 activity. This confirms the relative COX-2 selectivity of nimesulide.

  18. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    SciTech Connect

    Xiao, Haibo; Tian, Yue; Yang, Yang; Hu, Fengqing; Xie, Xiao; Mei, Ju; Ding, Fangbao

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.

  19. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.

    PubMed

    Bengmark, Stig

    2006-01-01

    The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest. A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed. Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases. Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.

  20. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner.

    PubMed

    Xu, Hong-Bin; Shen, Fu-Ming; Lv, Qian-Zhou

    2016-04-05

    Our previous study suggested that co-administration of celecoxib increased chemo-sensitivity of multidrug-resistant human gastric cancer SGC-7901/DDP cells to cisplatin (DDP) in vitro. The present study was designed to investigate whether celecoxib had the similar activities in vivo. SGC-7901/DDP and SGC-7901 xenograft mouse models were established. At the end of the experiment, cisplatin treatment alone significantly inhibited tumor growth in SGC-7901 xenograft, as compared with that in SGC-7901/DDP xenograft, suggesting that it maintained cisplatin sensitivity. When cisplatin and celecoxib were co-administrated, their antitumor activities were augmented in SGC-7901/DDP xenograft. The levels of Ki67 and PCNA after combination therapy were significantly decreased in SGC-7901/DDP xenograft, as compared with those of cisplatin treatment alone. Moreover, examining the apoptotic index by TUNEL assay showed similar results. Further studies demonstrated the inhibitory effect of celecoxib on cyclooxygenase-2 and P-glycoprotein expression was the possible reason to increase sensitivity of SGC-7901/DDP cells to cisplatin in vivo. However, the ratio of thromboxane B2 and prostaglandin F1α was elevated after celecoxib treatment in mice. This has been proposed to increase the risk of thrombogenesis. Further studies are required to evaluate the efficacy and safety of celecoxib for reducing chemo-resistance in gastric cancer.

  1. Genome wide analysis and comparative docking studies of new diaryl furan derivatives against human cyclooxygenase-2, lipoxygenase, thromboxane synthase and prostacyclin synthase enzymes involved in inflammatory pathway.

    PubMed

    Sekhar, P Nataraj; Reddy, L Ananda; De Maeyer, Marc; Kumar, K Praveen; Srinivasulu, Y S; Sunitha, M S L; Sphoorthi, I S N; Jayasree, G; Rao, A Maruthi; Kothekar, V S; Narayana, P V B S; Kishor, P B Kavi

    2009-11-01

    In an effort to develop potent anti-inflammatory and antithrombotic drugs, a series of new 4-(2-phenyltetrahydrofuran-3-yl) benzene sulfonamide analogs were designed and docked against homology models of human cyclooxygenase-2 (COX-2), lipoxygenase and thromboxane synthase enzymes built using MODELLER 7v7 software and refined by molecular dynamics for 2 ns in a solvated layer. Validation of these homology models by procheck, verify-3D and ERRAT programs revealed that these models are highly reliable. Docking studies of 4-(2-phenyltetrahydrofuran-3-yl) benzene sulfonamide analogs designed by substituting different chemical groups on benzene rings replacing 1H pyrazole in celecoxib with five membered thiophene, furan, 1H pyrrole, 1H imidazole, thiazole and 1,3-oxazole showed that diaryl furan molecules showed good binding affinity towards mouse COX-2. Further, docking studies of diaryl furan derivatives are likely to have superior thromboxane synthase and COX-2 selectivity. Docking studies against site directed mutagenesis of Arg120Ala, Ser530Ala, Ser530Met and Tyr355Phe enzymes displayed the effect of inhibition of COX-2. Drug likeliness and activity decay for these inhibitors showed that these molecules act as best drugs at very low concentrations.

  2. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    NASA Astrophysics Data System (ADS)

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-11-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.

  3. Cyclooxygenase-2 utilizes Jun N-terminal kinases to induce invasion, but not tamoxifen resistance, in MCF-7 breast cancer cells.

    PubMed

    Gonzalez-Villasana, Vianey; Gutiérrez-Puente, Yolanda; Tari, Ana M

    2013-09-01

    Elevated cyclooxygenase-2 (COX-2) expression in breast tumors is associated with a lower survival rate in patients with estrogen receptor α (ERα)-positive tumors. We hypothesized that COX-2 reduces the survival rate of breast cancer patients with ERα-positive tumors since COX-2 increases the invasiveness of ERα-positive breast tumors and decreases tumor sensitivity to tamoxifen. Previously, we demonstrated that COX-2 stimulates the activity of protein kinase C (PKC) to increase the invasiveness of ERα-positive MCF-7 breast cancer cells and to decrease the sensitivity of MCF-7 cells to tamoxifen. High levels of COX-2 are associated with the activation of the mitogen-activated protein kinase (MAPK) family and the Akt kinase. However, it is not known whether these kinases mediate COX-2-induced invasive activity and tamoxifen resistance. In the present study, we report that COX-2 utilizes PKC to enhance the phosphorylation of Jun N-terminal kinases (JNKs), but not that of other MAPK family members or Akt. Inhibition aimed at JNKs reduced COX-2-induced invasion but not COX-2-induced tamoxifen resistance. We conclude that JNKs are essential for induced cell invasion by COX-2, but not tamoxifen resistance, in ERα-positive breast cancer cells.

  4. Caveolin-1–mediated Suppression of Cyclooxygenase-2 via a β-catenin-Tcf/Lef–dependent Transcriptional Mechanism Reduced Prostaglandin E2 Production and Survivin Expression

    PubMed Central

    Rodriguez, Diego A.; Tapia, Julio C.; Fernandez, Jaime G.; Torres, Vicente A.; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette

    2009-01-01

    Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E2 (PGE2) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and β-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE2 and cell proliferation. Moreover, COX-2 overexpression or PGE2 supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE2 to the medium prevented effects attributed to caveolin-1–mediated inhibition of β-catenin-Tcf/Lef–dependent transcription. Finally, PGE2 reduced the coimmunoprecipitation of caveolin-1 with β-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE2-induced signaling events linked to β-catenin/Tcf/Lef–dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345

  5. Aspirin analogues as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, nitric oxide release, molecular modeling, and biological evaluation as anti-inflammatory agents.

    PubMed

    Kaur, Jatinder; Bhardwaj, Atul; Huang, Zhangjian; Knaus, Edward E

    2012-01-02

    Analogues of aspirin were synthesized through an efficient one-step reaction in which the carboxyl group was replaced by an ethyl ester, and/or the acetoxy group was replaced by an N-substituted sulfonamide (SO(2)NHOR(2):R(2) =H, Me, CH(2)Ph) pharmacophore. These analogues were designed for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. In vitro COX-1/COX-2 isozyme inhibition studies identified compounds 11 (CO(2) H, SO(2)NHOH), 12 (CO(2)H, SO(2)NHOCH(2)Ph), and 16 (CO(2)Et, SO(2)NHOH) as highly potent and selective COX-2 inhibitors (IC(50) range: 0.07-0.7 μM), which exhibited appreciable in vivo anti-inflammatory activity (ED(50) range: 23.1-31.4 mg kg(-1)). Moreover, compounds 11 (IC(50) =0.2 μM) and 16 (IC(50) =0.3 μM), with a sulfohydroxamic acid (SO(2)NHOH) moiety showed potent 5-LOX inhibitory activity. Furthermore, the SO(2)NHOH moiety present in compounds 11 and 16 was found to be a good nitric oxide (NO) donor upon incubation in phosphate buffer at pH 7.4. Molecular docking studies in the active binding site of COX-2 and 5-LOX provided complementary theoretical support for the experimental biological structure-activity data acquired. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system

    PubMed Central

    Stoeltzing, Oliver; Liu, Wenbiao; Fan, Fan; Wagner, Christine; Stengel, Kathrin; Somcio, Ray J.; Reinmuth, Niels; Parikh, Alexander A.; Hicklin, Daniel J.; Ellis, Lee M.

    2007-01-01

    Both the insulin-like growth factor-I receptor (IGF-IR) and cyclooxygenase-2 (COX-2) are frequently overexpressed in pancreatic cancer. We hypothesized that IGF-IR is directly involved in induction of COX-2 and sought to investigate signaling pathways mediating this effect. Pancreatic cancer cells (L3.6pl) were stably transfected with a dominant-negative receptor (IGF-IR DN) construct or empty vector (pcDNA). Cells were stimulated with IGF-I to determine activated signaling intermediates and induction of COX-2. Signaling pathways mediating COX-2 induction were identified using signaling inhibitors. IGF-I up-regulated COX-2 selectively via the MAPK/(Erk1/2) pathway. In addition, IGF-IR DN cells showed a marked decrease in constitutive COX-2 and a blunted response to IGF-I. Similarly, treatment with an anti-IGF-IR antibody effectively inhibited IGF-IR and MAPK/Erk activation and decreased COX-2 in parental cells. In conclusion, activation of IGF-IR mediates COX-2 expression in human pancreatic cancer cells. PMID:17950526

  7. Small heterodimer partner attenuates hydrogen peroxide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase by suppression of activator protein-1 and nuclear factor-κB in renal proximal tubule epithelial cells.

    PubMed

    Park, Jung Sun; Choi, Hoon In; Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2017-03-01

    The orphan nuclear receptor, small heterodimer partner (SHP), plays a negative regulatory role in innate immune responses and is involved in various inflammatory signaling pathways. In the present study, we aimed to ascertain whether SHP is effective in preventing hydrogen peroxide (H2O2)-induced kidney tubular inflammation and explored the molecular mechanisms underlying the protective effects of SHP. Renal ischemia/reperfusion (I/R) injury was induced in mice by clamping both renal pedicles for 30 min. The effects of H2O2 on cell viability in human renal proximal tubule (HK-2) cells were determined using MTT assays. 2',7'-DCF-DA was used to determine intracellular reactive oxygen species (ROS). SHP, cyclooxygenase-2 (COX-2) levels, and inducible nitric oxide synthase (iNOS) expression levels were determined by semi-quantitative immunoblotting and real-time polymerase chain reaction. In addition, SHP, nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) promoter activities were determined by luciferase assays. SHP mRNA and protein expression levels were reduced, whereas COX-2 and iNOS levels were increased in mice subjected to renal I/R. H2O2 treatment in HK-2 cells decreased cell viability, increased ROS production, and induced COX-2 and iNOS expression. These changes were counteracted by transient transfection with SHP. H2O2 treatment decreased SHP luciferase activity, which was recovered by treatment with the NF-κB inhibitor Bay11-7082, transfection with dominant-negative c-Jun or treatment with N-acetyl cysteine (NAC). AP-1 and NF-κB promoter activities were increased by H2O2 and this increase was blocked by SHP transfection. To conclude, SHP protected HK-2 cells from H2O2-induced tubular injury by inhibition of COX-2 and iNOS through suppression of AP-1 and NF-κB promoter activities.

  8. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion.

    PubMed

    Dohadwala, Mariam; Batra, Raj K; Luo, Jie; Lin, Ying; Krysan, Kostyantyn; Pold, Mehis; Sharma, Sherven; Dubinett, Steven M

    2002-12-27

    Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC.

  9. Autocrine/Paracrine Prostaglandin E2 Production by Non-small Cell Lung Cancer Cells Regulates Matrix Metalloproteinase-2 and CD44 in Cyclooxygenase-2-dependent Invasion*

    PubMed Central

    Dohadwala, Mariam; Batra, Raj K.; Luo, Jie; Lin, Ying; Krysan, Kostyantyn; Põld, Mehis; Sharma, Sherven; Dubinett, Steven M.

    2006-01-01

    Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC. PMID:12393872

  10. Endoplasmic reticulum stress eIF2α–ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney

    PubMed Central

    Luo, B; Lin, Y; Jiang, S; Huang, L; Yao, H; Zhuang, Q; Zhao, R; Liu, H; He, C; Lin, Z

    2016-01-01

    The heavy metal cadmium (Cd) is nephrotoxic. Recent studies show that autophagy plays an essential role in Cd-induced kidney injury. However, the mechanisms of Cd-induced kidney injury accompanied by autophagy are still obscure. In the present study, we first confirmed that Cd induced kidney damage and dysfunction, along with autophagy, both in vivo and in vitro. Then, we observed that cyclooxygenase-2 (COX-2) and the eIF2α–ATF4 pathway of endoplasmic reticulum (ER) stress were induced by Cd in both kidney tissues and cultured cells. Further studies showed that inhibition of COX-2 with celecoxib or RNA interference (RNAi) inhibited the Cd-induced autophagy in kidney cells. In addition, blocking ER stress with 4-phenylbutyrate or RNAi partially counteracted COX-2 overexpression and autophagy induced by Cd, which suggested that ER stress was required for Cd-induced kidney autophagy. Significantly, our results showed that Cd activated ATF4 and induced its translocation to the nucleus. Knockdown of ATF4 inhibited Cd-induced COX-2 overexpression. While COX-2 overexpression is involved in renal dysfunction, there is no prior report on the role of COX-2 in autophagy regulation. The results of the current study suggest a novel molecular mechanism that the ER stress eIF2α–ATF4 pathway-mediated COX-2 overexpression contributes to Cd-induced kidney autophagy and injury. The present study implies that COX-2 may be a potential target for therapy against Cd-induced nephrotoxicity. PMID:27253415

  11. Synthesis and crystal structure of N-[(dimethylamino)methylidene]-4-[1-(4-nitrophenyl)-1H-tetrazol-5-yl]-benzenesulfonamide: Molecular docking and bioassay studies as cyclooxygenase-2 inhibitor

    NASA Astrophysics Data System (ADS)

    Jawabrah Al-Hourani, Baker; El-Barghouthi, Musa I.; McDonald, Robert; Al-Awaida, Wajdy; Sharma, Sai Kiran; Wuest, Frank

    2016-09-01

    The synthesis of N-[(dimethylamino)methylidene]-4-[1-(4-nitrophenyl)-1H-tetrazol-5-yl]benzenesulfonamide (3) has been easily approached and the structure has been determined by X-ray crystallography. Tetrazole 3 crystallizes in the monoclinic space group C2/c, with the cell parameters determined as a = 35.5408 (18) Å, b = 7.6972 (4) Å, c = 13.0700 (7) Å3, β = 96.8598 (6)°, V = 3549.9 (3) Å3, and Z = 8. Its structure refines to R1 = 0.0341 (for 2986 observed reflections [I ≥ 2σ(I)]) and wR2 = 0.0990 (for all 3637 unique reflections). The aryl rings at the 1- and 5-positions show no conjugation to the tetrazole group, and the [(Dimethylamino)methylene]aminosulfonyl (Me2NCHNSO2) group is disordered, with the two disorder conformers being related by a pseudo mirror plane. In the crystal, intermolecular interactions between adjacent molecule of 3 are dominated by weak (2.4-2.7 Å) CeH…O and CeH…N hydrogen bonds. The molecular docking studies were carried out to understand the interaction of compound 3 within the active site of the cyclooxygenase-2 enzyme, followed by a comparison study with the celecoxib drug as a reference compound. The in vitro bioassay studies of tetrazole 3 toward cyclooxygenase-1 and cyclooxygenase-2 enzymes showed that compound 3 has no inhibition potency for either enzyme.

  12. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R

    2009-08-01

    Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.

  13. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.

    PubMed

    Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-09-01

    In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.

  14. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    PubMed

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-04-15

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  15. Hepatocyte growth factor regulates cyclooxygenase-2 expression via β-catenin, Akt, and p42/p44 MAPK in human bronchial epithelial cells

    PubMed Central

    Lee, Young H.; Suzuki, Yuichiro J.; Griffin, Autumn J.; Day, Regina M.

    2008-01-01

    Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC. PMID:18245266

  16. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence.

    PubMed

    Narayanan, Bhagavathi A; Reddy, Bandaru S; Bosland, Maarten C; Nargi, Dominick; Horton, Lori; Randolph, Carla; Narayanan, Narayanan K

    2007-10-01

    Nonsteroidal anti-inflammatory drugs mediate anticancer effects by modulating cyclooxygenase-2 (COX-2)-dependent and/or COX-2-independent mechanism(s); however, the toxicity issue is a concern with single agents at higher doses. In this study, we determined the combined effect of celecoxib, a COX-2 inhibitor, along with exisulind (sulindac sulfone/Aptosyn) at low doses in prostate cancer. We used a sequential regimen of N-methyl-N-nitrosourea + testosterone to induce prostate cancer in Wistar-Unilever rats. Following carcinogen treatment, celecoxib and exisulind individually and their combination at low doses were given in NIH-07 diet for 52 weeks. We determined the incidence of prostatic intraepithelial neoplasia, adenocarcinomas, rate of tumor cell proliferation, and apoptosis. Immunohistochemical and Western blot analysis were done to determine COX-2, epidermal growth factor receptor (EGFR), Akt, androgen receptor, and cyclin D1 expression. Serum prostaglandin E2 and tumor necrosis factor-alpha levels were determined using enzyme immunoassay/ELISA assays. The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis. An overall decrease in COX-2, EGFR, Akt, androgen receptor, and cyclin D1 expression was found associated with tumor growth inhibition. Reduced serum levels of COX-2 protein, prostaglandin E2, and tumor necrosis factor-alpha indicated anti-inflammatory effects. A strong inhibition of total and phosphorylated form of EGFR (Tyr(992) and Tyr(845)) and Akt (Ser(473)) was significant in rats given with these agents in combination. In this study, we show for the first time that the combination of celecoxib with exisulind at low doses could prevent prostate carcinogenesis by altering key molecular events.

  17. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  18. Regulation of p53, nuclear factor kappaB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin.

    PubMed

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-kappaB), we also investigated the effect of bromelain on Cox-2 and NF-kappaB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-kappaB by blocking phosphorylation and subsequent degradation of IkappaBalpha. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-kappaB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  19. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin-linked kinase and cyclooxygenase-2.

    PubMed

    Abbasi, Naser; Akhavan, Maziar Mohammad; Rahbar-Roshandel, Nahid; Shafiei, Massoumeh

    2014-09-01

    Luteolin protects against high glucose (HG)-induced endothelial dysfunction whereas its cytotoxicity has been reported against normal endothelial cells. This study was undertaken to determine luteolin cytoprotective and cytotoxic dose ranges and to elucidate their respective mechanisms. Luteolin prevented HG-induced human umbilical vein endothelial cell (HUVEC) death with an EC50 value of 2.0 ± 0.07 μM. The protective effect of luteolin was associated with decreased intracellular reactive oxygen species (ROS) and Ca(2+) (Cai(2+)) levels and enhanced nitric oxide (NO) production. At high concentrations, luteolin caused HUVEC death in normal glucose (NG) and HG states (LC50 40 ± 2.23 and 38 ± 1.12 μM, respectively), as represented by increased ROS and Cai(2+) and decreased NO. Western blots illustrated that exposure to HG increased cyclooxygenase-2 (COX-2) and integrin-linked kinase (ILK) expression. Luteolin at low concentrations suppressed HG-mediated up-regulation of COX-2 but maintained HG-induced over-expression of ILK while at high concentrations significantly increased COX-2 and decreased ILK expression in both HG and NG states. Our data indicated that cytoprotective action of luteolin was manifested with much lower concentrations, by a factor of approximately 20, compared with cytotoxic activity under both normal or glucotoxic conditions. It appears that luteolin exerts its action, in part, by modulating ILK expression which is associated with regulation of COX-2 expression and NO production in endothelial cells. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Influence of sleep deprivation and morphine on the expression of inducible nitric oxide synthase and cyclooxygenase-2 in skin of hairless mice.

    PubMed

    Egydio, Flavia; Ribeiro, Daniel Araki; Noguti, Juliana; Tufik, Sergio; Andersen, Monica Levy

    2012-10-01

    Skin performs a host of primordial functions that keep the body alive. Morphine is a drug with immunosuppressant properties whose chronic use may lead to increased infection and delayed wound healing. Sleep is a fundamental biological phenomenon that promotes the integrity of several bodily functions. Sleep deprivation adversely affects several systems, particularly the immune system. The aim of this study was to perform an immunohistochemical evaluation on the expression of inducible nitric oxide synthase and cyclooxygenase-2 in skin of sleep-deprived mice and mice chronically treated with morphine. Adult hairless male mice were distributed into the following groups: Control, morphine, sleep-deprived, and morphine + SD. Morphine (10 mg/kg, subcutaneous) was injected every 12 h for 9 days. Morphine induced immunoexpression of cyclooxygenase-2 and nitric oxide synthase. Sleep deprivation did not modulate outcomes induced by morphine. Morphine, not sleep loss, induces cyclooxygenase-2 and nitric oxide synthase immunoexpression in the skin of hairless mice.

  1. Cyclooxygenase-2 modulates the insulin-like growth factor axis in non-small-cell lung cancer.

    PubMed

    Põld, Mehis; Krysan, Kostyantyn; Põld, Anu; Dohadwala, Mariam; Heuze-Vourc'h, Nathalie; Mao, Jenny T; Riedl, Karen L; Sharma, Sherven; Dubinett, Steven M

    2004-09-15

    Constitutive overexpression of cyclooxygenase-2 (COX-2) occurs frequently in several different malignancies, including lung, colon, breast, and prostate cancer. Clinical studies have established elevated serum insulin-like growth factor (IGF-I) content and IGF-I:IGF-binding protein 3 (IGFBP-3) ratio as risk factors for these same malignancies. Therefore, we sought to determine the link between COX-2 expression and the IGF axis in COX-2 gene-modified human non-small-cell lung cancer (NSCLC) cells. Overexpression of COX-2 in NSCLC cells enhanced the antiapoptotic and mitogenic effects of IGF-I and IGF-II, facilitated the autophosphorylation of the type 1 IGF receptor, increased class IA phosphatidylinositol 3'-kinase activity, and decreased expression of IGFBP-3. Thus, these findings show that COX-2 augments the stimulatory arm of the IGF axis.

  2. Cyclooxygenase-2 in testes of infertile men: evidence for the induction of prostaglandin synthesis by interleukin-1β.

    PubMed

    Matzkin, María Eugenia; Mayerhofer, Artur; Rossi, Soledad Paola; Gonzalez, Betina; Gonzalez, Candela Rocío; Gonzalez-Calvar, Silvia Inés; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo Saúl; Frungieri, Mónica Beatriz

    2010-10-01

    As we previously reported, testes of men suffering from hypospermatogenesis and germ cell arrest or Sertoli cell-only syndrome show a major increase in the number of macrophages expressing interleukin-1β (IL-1β) and abundant expression of cyclooxygenase-2 (COX-2), the inducible isoform of the key enzyme in the biosynthesis of prostaglandins (PGs), in Leydig cells. In the present study we report [1] a positive correlation between IL-1β levels and COX-2 expression in testes of infertile patients, [2] the induction of COX-2 by IL-1β in mouse Leydig cells (TM3) and human macrophages (THP-1), and therefore [3] evidence for an IL-1β-dependent induction of testicular inflammatory states. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Cyclooxygenase-2 Induction by Amino Acid Deprivation Requires p38 Mitogen-Activated Protein Kinase in Human Glioma Cells.

    PubMed

    Li, Zhiwen; Chang, Chi-Ming; Wang, Lanfang; Zhang, Ping; Shu, Hui-Kuo G

    2017-04-21

    Glioblastomas (GBMs) are malignant brain tumors that can outstrip nutrient supplies due to rapid growth. Cyclooxygenase-2 (COX-2) has been linked to GBMs and may contribute to their aggressive phenotypes. Amino acid starvation results in COX-2 mRNA and protein induction in multiple human glioma cell lines in a process requiring p38 mitogen-activated protein kinase (p38-MAPK) and the Sp1 transcription factor. Increased vascular endothelial growth factor expression results from starvation-dependent COX-2 induction. These data suggest that COX-2 induction with amino acid deprivation may be a part of the adaptation of glioma cells to these conditions, and potentially alter cellular response to anti-neoplastic therapy.

  4. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    SciTech Connect

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.; Rade, Jeffrey J.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.

  5. Clinical significance of cyclooxygenase-2 expression in extranodal natural killer (NK)/T-cell lymphoma, nasal type

    SciTech Connect

    Shim, Su Jung; Yang, Woo-Ick; Shin, Eunah; Koom, Woong Sub; Kim, Yong Bae; Cho, Jae Ho; Suh, Chang Ok; Kim, Joo Hang; Kim, Gwi Eon . E-mail: gekim@yumc.yonsei.ac.kr

    2007-01-01

    Purpose: To determine whether there are any differences in therapeutic response, patterns of systemic recurrence, and prognosis of patients with extranodal natural killer (NK)/T-cell lymphoma, nasal type, by the cyclooxygenase-2 (COX-2) expression. Patients and Methods: Thirty-four patients with Ann Arbor Stage I and II extranodal NK/T-cell lymphoma who underwent chemotherapy or radiotherapy, or both, were retrospectively reviewed. These patients were divided into two groups according to their immunohistochemical staining for COX-2 expressions: a COX-2-negative group (n = 10 patients) and a COX-2-positive group (n = 24 patients). The treatment response, patterns of treatment failure, and survival data for the patients were compared between the COX-2-positive and negative groups. Results: There was no significant difference in the clinical profiles between the COX-2-negative and COX-2-positive groups. All patients (100%) in the COX-2-negative group achieved complete response after initial treatment, whereas only 14 patients (58%) in the COX-2-positive group achieved complete response (p = 0.03). Compared with the patients in the COX-2-negative group, those in the COX-2-positive group had a significantly lower 2-year systemic recurrence-free survival rate (100% for the COX-2-negative group vs. 54% for the COX-2-positive group) (p = 0.02) and a decreased 5-year overall survival rate (70% for the COX-2-negative group vs. 32% for the COX-2-positive group) (p = 0.06). Conclusion: Cyclooxygenase-2 expression can serve as a predictive factor for poor treatment response, higher systemic recurrence, and unfavorable prognosis in patients with extranodal NK/T-cell lymphoma, nasal type.

  6. Synthesis of thio-heterocyclic analogues from Baylis-Hillman bromides as potent cyclooxygenase-2 inhibitors.

    PubMed

    Santhoshi, Amlipur; Mahendar, Budde; Mattapally, Saidulu; Sadhu, Partha Sarathi; Banerjee, Sanjay Kumar; Jayathirtha Rao, Vaidya

    2014-04-15

    A series of thio-substituted pyrimidine, benzoxazole, benzothiazole and triazole analogues were synthesized from Baylis-Hillman bromides in a clean and efficient way. The synthesized twenty new compounds were subjected to in vitro COX-1 and COX-2 inhibitory activity. Majority of compounds found to be highly selective COX-2 inhibitor. Seven compounds (16e, 16f, 16k, 16l, 16m, 16r and 16s) displayed anti-inflammatory activity at micromolar concentrations with IC50 values for COX-2 inhibition ranging from 2.93 to 5.34 μM compared to reference drug whose IC50 is 2.66 μM. All these seven compounds had very little COX-1 inhibition property and thus are suitable candidates for anti-inflammatory drugs with less gastrointestinal side effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Does miRNA-155 Promote Cyclooxygenase-2 Expression in Cancer?

    PubMed

    Comer, Brian S

    2015-11-01

    Preclinical Research MicroRNA (miR)-155 and cyclooxygenase (COX)-2 are both elevated in numerous cancers including colorectal cancer. MiR-155 enhances COX-2 expression and is an established regulator of epithelial-mesenchymal transition and inflammation. Inhibition of miR-155 or COX-2 exhibit similar negative effects on tumorigenicity. Thus, it is hypothesized that miR-155 may be a promising target for antagonizing COX-2 expression in colorectal and other cancers.

  8. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate

    PubMed Central

    Xu, Xiao-Ming; Sansores-Garcia, Leticia; Chen, Xian-Ming; Matijevic-Aleksic, Nevenka; Du, Min; Wu, Kenneth K.

    1999-01-01

    The pharmacological action of salicylate cannot be explained by its inhibition of cyclooxygenase (COX) activity. In this report, the effects of aspirin and sodium salicylate on COX-2 expressions in human umbilical vein endothelial cells and foreskin fibroblasts were evaluated. Aspirin and sodium salicylate at therapeutic concentrations equipotently blocked COX-2 mRNA and protein levels induced by interleukin-1β and phorbol 12-myristate 13-acetate. The suppressing effect was more pronounced in cultured cells deprived of fetal bovine serum for 24 h, suggesting that it may be cell cycle related. Salicylate inhibited nascent COX-2 transcript synthesis but had no effect on COX-2 mRNA stability. It inhibited COX-2 promoter activity in a concentration-dependent manner. In mice pretreated with aspirin (10 and 30 mg/kg), followed by challenge with lipopolysaccharide, COX-2 mRNA expression in peritoneal macrophages was markedly suppressed. These findings suggest that salicylate exerts its antiinflammatory action in part by suppressing COX-2 induction, thereby reducing the synthesis of proinflammatory prostaglandins. PMID:10220459

  9. Pyridostigmine bromide protection against acetylcholinesterase inhibition by pesticides.

    PubMed

    Henderson, John D; Glucksman, Gabriela; Leong, Bryan; Tigyi, Andras; Ankirskaia, Anna; Siddique, Imteaz; Lam, Helen; DePeters, Ed; Wilson, Barry W

    2012-01-01

    Pyridostigmine bromide (PB) has been used to protect soldiers from the toxic effects of soman, a chemical warfare agent. Recent research shows that pyridostigmine bromide protects a significant percentage of acetylcholinesterase in isolated human intercostal muscle. Findings presented here indicate that red blood cell acetylcholinesterase is similarly protected by pyridostigmine bromide from the action of diisopropyl fluorophosphate and several organophosphate pesticides including chlorpyrifos-oxon, diazinon-oxon, and paraoxon, but not malaoxon, using the bovine red blood cell as a subject. These findings suggest that pretreatment with PB may protect growers, farmworkers, first responders, and the public, in general, from the effects of selected pesticides. Copyright © 2011 Wiley Periodicals, Inc.

  10. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes.

    PubMed

    Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng

    2012-07-25

    Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.

  11. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    SciTech Connect

    Wu Weidong Silbajoris, Robert A.; Cao Dongsun; Bromberg, Philip A.; Zhang Qiao; Peden, David B.; Samet, James M.

    2008-09-01

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn{sup 2+}. Zn{sup 2+} exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn{sup 2+}-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the {kappa}B-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn{sup 2+}. Inhibition of NF{kappa}B activation did not block Zn{sup 2+}-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn{sup 2+} exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn{sup 2+} exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn{sup 2+}.

  12. The role of cyclooxygenase-2-dependent signaling via cyclic AMP response element activation on aromatase up-regulation by o,p'-DDT in human breast cancer cells.

    PubMed

    Han, Eun Hee; Kim, Hyung Gyun; Hwang, Yong Pil; Choi, Jae Ho; Im, Ji Hye; Park, Bonghwan; Yang, Ji Hye; Jeong, Tae Cheon; Jeong, Hye Gwang

    2010-10-20

    o,p'-Dichlorodiphenyltrichloroethane (o,p'-DDT) is a DDT isomer and xenoestrogen that can induce inflammation and cancer. However, the effect of o,p'-DDT on aromatase is unclear. Thus, we investigated the effects of o,p'-DDT on aromatase expression in human breast cancer cells. We also examined whether cyclooxygenase-2 (COX-2) is involved in o,p'-DDT-mediated aromatase expression. Treatment with o,p'-DDT-induced aromatase protein expression in MCF-7 and MDA-MB-231 human breast cancer cells; enhancing aromatase gene expression, and enzyme and promoter activity. Treatment with ICI 182.780, a estrogen receptor antagonist, did not affect the inductive effects of o,p'-DDT on aromatase expression. In addition, o,p'-DDT increased COX-2 protein levels markedly, increased COX-2 mRNA expression and promoter activity, enhanced the production of prostaglandin E(2) (PGE(2)), induced cyclic AMP response element (CRE) activation, and cAMP levels and binding of CREB. o,p'-DDT also increased the phosphorylation of PKA, Akt, ERK, and JNK in their signaling pathways in MCF-7 and MDA-MB-231 cells. Finally, o,p'-DDT induction of aromatase was inhibited by various inhibitors [COX-2 (by NS-398), PKA (H-89), PI3-K/Akt (LY 294002), EP2 (AH6809), and EP4 receptor (AH23848)]. Together, these results suggest that o,p'-DDT increases aromatase, and that o,p'-DDT-induced aromatase is correlated with COX-2 up-regulation, mediated via the CRE activation and PKA and PI3-kinase/Akt signaling pathways in breast cancer cells.

  13. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells.

    PubMed

    Maloberti, Paula M; Duarte, Alejandra B; Orlando, Ulises D; Pasqualini, María E; Solano, Angela R; López-Otín, Carlos; Podestá, Ernesto J

    2010-11-11

    The acyl-CoA synthetase 4 (ACSL4) is increased in breast cancer, colon and hepatocellular carcinoma. ACSL4 mainly esterifies arachidonic acid (AA) into arachidonoyl-CoA, reducing free AA intracellular levels, which is in contradiction with the need for AA metabolites in tumorigenesis. Therefore, the causal role of ACSL4 is still not established. This study was undertaken to determine the role of ACSL4 in AA metabolic pathway in breast cancer cells. The first novel finding is that ACSL4 regulates the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin in MDA-MB-231 cells. We also found that ACSL4 is significantly up-regulated in the highly aggressive MDA-MB-231 breast cancer cells. In terms of its overexpression and inhibition, ACSL4 plays a causal role in the control of the aggressive phenotype. These results were confirmed by the increase in the aggressive behaviour of MCF-7 cells stably transfected with a Tet-off ACSL4 vector. Concomitantly, another significant finding was that intramitochondrial AA levels are significantly higher in the aggressive cells. Thus, the esterification of AA by ACSL4 compartmentalizes the release of AA in mitochondria, a mechanism that serves to drive the specific lipooxygenase metabolization of the fatty acid. To our knowledge, this is the first report that ACSL4 expression controls both lipooxygenase and cyclooxygenase metabolism of AA. Thus, this functional interaction represents an integrated system that regulates the proliferating and metastatic potential of cancer cells. Therefore, the development of combinatory therapies that profit from the ACSL4, lipooxygenase and COX-2 synergistic action may allow for lower medication doses and avoidance of side effects.

  14. Effect of celecoxib plus standard chemotherapy on serum levels of vascular endothelial growth factor and cyclooxygenase-2 in patients with gastric cancer.

    PubMed

    Han, Xiaopeng; Li, Hongtao; Su, Lin; Zhu, Wankun; Xu, Wei; Li, Kun; Zhao, Qingchuan; Yang, Hua; Liu, Hongbin

    2014-03-01

    Elevated serum levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) are associated with poor prognosis in patients with gastric cancer. Little is known regarding the clinical benefits of combining celecoxib, a selective inhibitor of COX-2, with standard chemotherapy regimens for the treatment of gastric cancer patients. In this study, we investigated the effect of the combinatorial use of celecoxib with standard chemotherapy on the serum levels of VEGF and COX-2 in patients with gastric cancer. In our study, 80 patients with gastric cancer who underwent laparoscopic radical surgery were randomized into two groups, the combination [celecoxib plus standard oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX4) chemotherapy, n=40] and the FOLFOX4 alone (n=40) groups. In the combination group, celecoxib was orally administered to the patients (400 mg, twice daily). The serum levels of VEGF and COX-2 were measured by ELISA prior to and following surgery. We detected no significant difference in the serum levels of VEGF and COX-2 between the combination and FOLFOX4 alone groups prior to chemotherapy (P>0.05). However, after 6 cycles of chemotherapy, there was a greater decrease in the serum levels of VEGF and COX-2 in the combination group compared to those in the FOLFOX4 group (P<0.01). In addition, the serum levels of VEGF and COX-2 were closely correlated in patients with gastric adenocarcinoma prior to treatment. Our data indicated that, when combined with standard chemotherapy, celecoxib may reduce the serum levels of VEGF and COX-2, suggesting that COX-2 inhibitors may be of therapeutic value through the inhibition of tumor angiogenesis and the prevention of recurrence or metastasis. Thus, celecoxib may be a useful adjuvant agent to standard chemotherapy in patients with advanced gastric cancer.

  15. Cyclooxygenase-2 derived PGE2 and PGI2 play an important role via EP2 and PPARdelta receptors in early steps of oil induced decidualization in mice.

    PubMed

    Pakrasi, P L; Jain, A K

    2008-06-01

    Differentiation of endometrial stromal cells into decidual cells (decidualization) is prerequisite for blastocyst implantation. Different prostanoids are shown to be involved in the cascade of events found in implantation and decidualization. Previous reports described that cyclooxygenase-2 (COX2) derived prostacyclin (PGI2) plays an important role via peroxisome proliferator activated receptor (PPARdelta) nuclear receptor in implantation and decidualization. Herein, we investigated the role of COX2 derived PGE2 and PGI2 and examined the protein expression and regulation of COX1, COX2, membrane-bound prostaglandin E synthase (mPGES-1), prostaglandin I synthase (PGIS), PGE2 receptor (EP2) and PPARdelta in hormone primed oil infused uterine horn as well as in non-infused uterine horn (control horn). Our results show that selective COX2 inhibitor (Nimesulide) inhibits decidualization while COX1 inhibitor (SC560) does not affect decidualization. COX2, mPGES-1, PGIS, EP2 and PPARdelta immunostaining are strongly observed at 24 h and 48 h in oil-induced horn and than significantly reduced at 72 h and 120 h and absent in non-infused horn. However COX1 immunostaining is observed in infused as well as in non-infused horn. Our immunohistochemical studies corroborated well with follow up western blotting of the same proteins. PGE2 and PGI2 products were also elevated at 24h and 48 h after oil induction in infused horn in comparison to control horn. Our data suggest that COX2 derived both PGE2 and PGI2 mediate its function via EP2 and PPARdelta receptors in early steps of decidualization in mice.

  16. Transcriptional silencing of Cyclooxygenase-2 by hyper-methylation of the 5' CpG island in human gastric carcinoma cells.

    PubMed

    Song, S H; Jong, H S; Choi, H H; Inoue, H; Tanabe, T; Kim, N K; Bang, Y J

    2001-06-01

    It has been well established that overexpression of Cyclooxygenase-2 (Cox-2) in epithelial cells inhibits apoptosis and increases the invasiveness of malignant cells, favoring tumorigenesis and metastasis. However, the molecular mechanism that regulates Cox-2 expression has not been well defined in gastric carcinoma. In this study, we examined whether the Cox-2 expression could be regulated by hyper-methylation of the Cox-2 CpG island (spanning from -590 to +186 with respect to the transcription initiation site) in human gastric carcinoma cell lines. By Southern analysis, we found that three gastric cells (SNU-601, -620, and -719) without Cox-2 expression demonstrated hyper-methylation at the Cox-2 CpG island. A detailed methylation pattern using bisulfite sequencing analysis revealed that all of the CpG sites were completely methylated in SNU-601. Treatment with demethylating agents effectively reactivated the expression of Cox-2 and restored IL-1beta sensitivity in the previously resistant SNU-601. By transient transfection experiments, we demonstrate that constitutively active Cox-2 promoter activities were exhibited even without an exogenous stimulation in SNU-601. Furthermore, when the motif of the nuclear factor for interleukin-6 expression site, the cyclic AMP response element, or both was subjected to point mutation, the constitutive luciferase activity was markedly reduced. In addition, Cox-2 promoter activity was completely blocked by in vitro methylation of all of the CpG sites in the Cox-2 promoter region with SssI (CpG) methylase in SNU-601. Taken together, these results indicate that transcriptional repression of Cox-2 is caused by hyper-methylation of the Cox-2 CpG island in gastric carcinoma cell lines.

  17. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  18. Effects of cyclooxygenase-2 selective and nitric oxide-releasing nonsteroidal antiinflammatory drugs on mucosal ulcerogenic and healing responses of the stomach.

    PubMed

    Ukawa, H; Yamakuni, H; Kato, S; Takeuchi, K

    1998-09-01

    Effects of selective cyclooxygenase-2 (COX-2) inhibitors (NS-398) and nitric oxide (NO) -releasing aspirin (NO-ASA) on gastric ulcerogenic and healing responses were examined in comparison with nonselective COX inhibitors such as indomethacin and aspirin (ASA). Hypothermic stress (28-30 degrees C, 4 hr) induced gastric lesions in anesthetized rats with an increase of acid secretion. The lesions induced by hypothermic stress were markedly worsened by subcutaneous administration of both indomethacin and ASA but were not affected by either NS-398 or NO-ASA, although the increased acid secretion during hypothermia was not affected by any of the drugs. On the other hand, the healing of gastric ulcers induced in mice by thermal cauterization (70 degrees C, 15 sec) was significantly delayed by daily subcutaneous administration of indomethacin and ASA as well as NS-398, but not by NO-ASA. COX-2 mRNA was not detected in the intact mucosa but was positively expressed in the ulcerated mucosa, most potently on day 3 after ulceration. Prostaglandin contents in the intact mouse stomach were reduced by indomethacin, ASA, and NO-ASA, while the increased prostaglandin generation in the ulcerated mucosa was inhibited by all drugs including NS-398. After subcutaneous administration of NO-ASA to pylorus-ligated rats and mice, high amounts of NOx were detected in both the gastric contents and serum. In addition, both NS-398 and NO-ASA showed an equipotent antiinflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and ASA. These results suggest that both indomethacin and ASA not only increased the mucosal ulcerogenic response to stress but impaired the healing response of gastric ulcers as well. The former action was due to inhibition of COX-1, while the latter effect was accounted for by inhibition of COX-2 and was mimicked by the COX-2-selective inhibitor NS-398. NO-ASA, although it inhibited both COX-1 and COX-2 activity, had no deleterious

  19. Effects of all-trans retinoic acid on signal pathway of cyclooxygenase-2 and Smad3 in transforming growth factor-β-stimulated glomerular mesangial cells.

    PubMed

    Han, Jinyi; Zhang, Li; Chen, Xiaolan; Yang, Bin; Guo, Naifeng; Fan, Yaping

    2014-03-01

    All-trans retinoic acid (ATRA) has been used for the treatment of acute promyelocytic leukemia. It remains unclear, however, whether ATRA affects cyclooxygenase-2 (COX-2; an enzyme involved in prostaglandin production), PGE2, and thromboxane A2 (TXA2) (metabolic products of COX-2) by a transforming growth factor-β/Smad-signaling pathway, which plays important roles in mesangial-cell proliferation and renal fibrosis. In this study, the mRNA and protein of Smad3, Smad7, and COX-2 were detected by reverse transcription-polymerase chain reaction and Western blot, respectively, in mesangial cells stimulated by transforming growth factor-β (TGF-β) and treated with ATRA at various concentrations and times. The protein level of PGE2 and TXA2 was also measured by enzyme-linked immunosorbent assay. The localization of Smad3 and Smand7 was observed by confocal microscope. Cell proliferation was detected by MTT assay, while apoptosis was determined using Hoechest staining. The expression of Smad3, Smad7, and COX-2 mRNA and protein was increased by exogenous TGF-β, but inhibited by pretreatment of ATRA, in dose and time-dependent manners. In addition, the expression of Smad3 and Smad7 was significantly reduced not only by staurosporine, an inhibitor of threonine/serine protein kinases as well as smad, but also by NS-398, an inhibitor of COX-2. PGE2 and TXA2 were raised by TGF-β, but also decreased by ATRA, staurosporine, and NS-398. Moreover, ATRA reversed the translocation of Smad3 and Smad7 induced by TGF-β. Compared with the control, TGF-β also significantly enhanced proliferation and inhibited apoptosis of mesangial cells. ATRA dose-dependently inhibited TGF-β-induced cell proliferation, but had no significant effect on apoptosis in rat mesangial cells. Therefore, ATRA repressed COX-2, PGE2, and TXA2 via the TGF-β/Smad-signaling pathway and inhibited mesangial-cell proliferation, which might subsequently prevent renal fibrosis.

  20. Hypotonicity-Induced Renin Exocytosis from Juxtaglomerular Cells Requires Aquaporin-1 and Cyclooxygenase-2

    PubMed Central

    Madsen, Kirsten; Svenningsen, Per; Hansen, Pernille B.L.; Gulaveerasingam, Ambika; Jørgensen, Finn; Aalkjær, Christian; Skøtt, Ole; Jensen, Boye L.

    2009-01-01

    The mechanism by which extracellular hypotonicity stimulates release of renin from juxtaglomerular (JG) cells is unknown. We hypothesized that osmotically induced renin release depends on water movement through aquaporin-1 (AQP1) water channels and subsequent prostanoid formation. We recorded membrane capacitance (Cm) by whole-cell patch clamp in single JG cells as an index of exocytosis. Hypotonicity increased Cm significantly and enhanced outward current. Indomethacin, PLA2 inhibition, and an antagonist of prostaglandin transport impaired the Cm and current responses to hypotonicity. Hypotonicity also increased exocytosis as determined by a decrease in single JG cell quinacrine fluorescence in an indomethacin-sensitive manner. In single JG cells from COX-2−/ − and AQP1−/ − mice, hypotonicity increased neither Cm nor outward current, but 0.1-μM PGE2 increased both in these cells. A reduction in osmolality enhanced cAMP accumulation in JG cells but not in renin-producing As4.1 cells; only the former had detectable AQP1 expression. Inhibition of protein kinase A blocked the hypotonicity-induced Cm and current response in JG cells. Taken together, our results show that a 5 to 7% decrease in extracellular tonicity leads to AQP1-mediated water influx in JG cells, PLA2/COX-2-mediated prostaglandin-dependent formation of cAMP, and activation of PKA, which promotes exocytosis of renin. PMID:19628672

  1. A Cyclooxygenase-2 Inhibitor (SC-58125) Blocks Growth of Established Human Colon Cancer Xenografts1

    PubMed Central

    Williams, Christopher S; Hongmiao, Sheng; Brockman, Jeffrey A; Armandla, Radhika; Shao, Jinyi; Washington, M Kay; Elkahloun, Abdel G; Dubois, Raymond N

    2001-01-01

    Abstract Selective COX-2 inhibitors reduce adenoma formation and cancer progression in rodent models of colorectal cancer. To assess the therapeutic activity of selective COX-2 inhibitors, we tested the effect of SC-58125 treatment on the growth of human colon carcinoma cells in nude mice. Delaying treatment by 2, 4, or 7 weeks following implantation of the carcinoma cells resulted in a significant inhibition of tumor growth. Furthermore, short-term (48 hours) treatment with SC-58125 was sufficient to attenuate tumor growth for up to 15 days. SC-58125 treatment did not alter the rate at which cells underwent apoptosis, but did result in a delayed progression through the cell cycle at the G2/M transition. Accordingly, p34cdc2 protein levels and activity were decreased following SC-58125 treatment. We conclude that SC-58125 primarily exerts a cytostatic effect in vivo, which is likely to be mediated through inhibition of progression through the G2/M phase of the cell cycle. PMID:11687954

  2. Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system

    PubMed Central

    Kirkby, Nicholas S.; Lundberg, Martina H.; Harrington, Louise S.; Leadbeater, Philip D. M.; Milne, Ginger L.; Potter, Claire M. F.; Al-Yamani, Malak; Adeyemi, Oladipupo; Warner, Timothy D.; Mitchell, Jane A.

    2012-01-01

    Prostacyclin is an antithrombotic hormone produced by the endothelium, whose production is dependent on cyclooxygenase (COX) enzymes of which two isoforms exist. It is widely believed that COX-2 drives prostacyclin production and that this explains the cardiovascular toxicity associated with COX-2 inhibition, yet the evidence for this relies on indirect evidence from urinary metabolites. Here we have used a range of experimental approaches to explore which isoform drives the production of prostacyclin in vitro and in vivo. Our data show unequivocally that under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular system, and that urinary metabolites do not reflect prostacyclin production in the systemic circulation. With the idea that COX-2 in endothelium drives prostacyclin production in healthy individuals removed, we must seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events to move forward with drug discovery and to enable more informed prescribing advice. PMID:23045674

  3. A mechanistic hypothesis for the aspirin-induced switch in lipid mediator production by cyclooxygenase-2.

    PubMed

    Tosco, Paolo

    2013-07-17

    Cyclooxygenase (COX) carries out stereospecific oxygen addition to arachidonic acid to generate prostaglandins, plus smaller amounts of 11- and 15-hydroxyeicosatetraenoic acids. For COX-2, the stereochemistry and relative abundance of generated products is influenced by Ser530 acetylation following aspirin treatment. The molecular bases of the high degree of stereospecificity which characterizes COX-2-catalyzed oxygenations are not yet completely understood, nor are the reasons behind the aspirin-induced shift in lipid mediator production. A mechanistic hypothesis is proposed which identifies steric shielding as the main determinant of oxygenation stereospecificity. This hypothesis is supported by a computational model which accurately reproduces experimental oxygenation patterns on both native and aspirin-inhibited COX-2.

  4. Cyclooxygenase-2, epidermal growth factor receptor, and aromatase signaling in inflammation and mesothelioma.

    PubMed

    Nuvoli, Barbara; Galati, Rossella

    2013-06-01

    Malignant mesothelioma or mesothelioma is a rare form of cancer that develops from transformed cells originating in the mesothelium, the protective lining that covers many of the internal organs of the body. It is directly linked to asbestos exposure, which acts as a carcinogen by initiating the carcinogenic process. Because of their shape, asbestos fibers can cross the membrane barriers inside the body and cause inflammatory and fibrotic reactions. Such reactions are believed to be the mechanism by which asbestos fibers may trigger malignant mesothelioma in the pleural membrane around the lungs. Carcinogens are known to modulate the transcription factors, antiapoptotic proteins, proapoptotic proteins, protein kinases, cell-cycle proteins, cell adhesion molecules, COX-2, and growth factor signaling pathways. This article reviews recent studies regarding some malignant mesothelioma molecular targets not only for cancer prevention but also for cancer therapy. ©2013 AACR

  5. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  6. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  7. The G-765C promoter polymorphism in cyclooxygenase-2 (PTGS2), aspirin utilization and cardiovascular disease risk: the Atherosclerosis Risk in Communities (ARIC) study

    USDA-ARS?s Scientific Manuscript database

    Cyclooxygenase-2 derived prostaglandins modulate cardiovascular disease risk. We sought to determine if the reduced function G-765C promoter polymorphism in PTGS2 was associated with incident coronary heart disease (CHD) or ischemic stroke risk, and if this was modified by aspirin utilization. Usin...

  8. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44.

    PubMed

    Dohadwala, M; Luo, J; Zhu, L; Lin, Y; Dougherty, G J; Sharma, S; Huang, M; Pold, M; Batra, R K; Dubinett, S M

    2001-06-15

    Elevated tumor cyclooxygenase (COX-2) expression is associated with increased angiogenesis, tumor invasion, and suppression of host immunity. We have previously shown that genetic inhibition of tumor COX-2 expression reverses the immunosuppression induced by non-small cell lung cancer (NSCLC). To assess the impact of COX-2 expression in lung cancer invasiveness, NSCLC cell lines were transduced with a retroviral vector expressing the human COX-2 cDNA in the sense (COX-2-S) and antisense (COX-2-AS) orientations. COX-2-S clones expressed significantly more COX-2 protein, produced 10-fold more prostaglandin E(2), and demonstrated an enhanced invasive capacity compared with control vector-transduced or parental cells. CD44, the cell surface receptor for hyaluronate, was overexpressed in COX-2-S cells, and specific blockade of CD44 significantly decreased tumor cell invasion. In contrast, COX-2-AS clones had a very limited capacity for invasion and showed diminished expression of CD44. These findings suggest that a COX-2-mediated, CD44-dependent pathway is operative in NSCLC invasion. Because tumor COX-2 expression appears to have a multifaceted role in conferring the malignant phenotype, COX-2 may be an important target for gene or pharmacologic therapy in NSCLC.

  9. Non-small Cell Lung Cancer Cyclooxygenase-2-dependent Invasion Is Mediated by CD44*

    PubMed Central

    Dohadwala, Mariam; Luo, Jie; Zhu, Li; Lin, Ying; Dougherty, Graeme J.; Sharma, Sherven; Huang, Min; Põld, Mehis; Batra, Raj K.; Dubinett, Steven M.

    2006-01-01

    Elevated tumor cyclooxygenase (COX-2) expression is associated with increased angiogenesis, tumor invasion, and suppression of host immunity. We have previously shown that genetic inhibition of tumor COX-2 expression reverses the immunosuppression induced by non-small cell lung cancer (NSCLC). To assess the impact of COX-2 expression in lung cancer invasiveness, NSCLC cell lines were transduced with a retroviral vector expressing the human COX-2 cDNA in the sense (COX-2-S) and antisense (COX-2-AS) orientations. COX-2-S clones expressed significantly more COX-2 protein, produced 10-fold more prostaglandin E2, and demonstrated an enhanced invasive capacity compared with control vector-transduced or parental cells. CD44, the cell surface receptor for hyaluronate, was overexpressed in COX-2-S cells, and specific blockade of CD44 significantly decreased tumor cell invasion. In contrast, COX-2-AS clones had a very limited capacity for invasion and showed diminished expression of CD44. These findings suggest that a COX-2-mediated, CD44-dependent pathway is operative in NSCLC invasion. Because tumor COX-2 expression appears to have a multifaceted role in conferring the malignant phenotype, COX-2 may be an important target for gene or pharmacologic therapy in NSCLC. PMID:11320076

  10. Cyclooxygenase-2 in Endothelial and Vascular Smooth Muscle Cells Restrains Atherogenesis in Hyperlipidemic Mice

    PubMed Central

    Tang, Soon Yew; Monslow, James; Todd, Leslie; Lawson, John; Puré, Ellen; FitzGerald, Garret A.

    2014-01-01

    Background Placebo controlled trials of nonsteroidal antinflammatory drugs (NSAIDs) selective for inhibition of COX-2 reveal an emergent cardiovascular hazard in patients selected for low risk of heart disease. Postnatal global deletion of COX-2 accelerates atherogenesis in hyperlipidemic mice, a process delayed by selective enzyme deletion in macrophages. Methods and Results Here, selective depletion of COX-2 in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) depressed biosynthesis of prostaglandin (PG)I2 and PGE2, elevated blood pressure and accelerated atherogenesis in Ldlr knockout (KO) mice. Deletion of COX-2 in VSMCs and ECs coincided with an increase in COX-2 expression in lesional macrophages and increased biosynthesis of thromboxane. Increased accumulation of less organized intimal collagen, laminin, α-smooth muscle actin and matrix-rich fibrosis was also apparent in lesions of the mutants. Conclusions Although atherogenesis is accelerated in global COX-2 KOs, consistent with evidence of risk transformation during chronic NSAID administration, this masks the contrasting effects of enzyme depletion in macrophages versus VSMCs and ECs. Targeting delivery of COX-2 inhibitors to macrophages may conserve their efficacy while limiting cardiovascular risk. PMID:24519928

  11. Isoorientin, a Selective Inhibitor of Cyclooxygenase-2 (COX-2) from the Tubers of Pueraria tuberosa.

    PubMed

    Sumalatha, Manne; Munikishore, Rachakunta; Rammohan, Aluru; Gunasekar, Duvvuru; Kumar, Kotha Anil; Reddy, Kakularam Kumar; Azad, Rajaram; Reddanna, Pallu; Bodo, Bernard

    2015-10-01

    Bioassay-guided fraction of the methanol extract of the roots of Pueraria tuberose DC yielded puerarin, an isoflavone C-glycoside (PT-1), isoorientin, a flavone C-glycoside (PT-2) and mangiferin, a xanthone C-glycoside (PT-3). The extracts and the isolated compounds were screened for potent anti-inflammatory components inhibiting the cyclooxygenases (COX-1 and COX-2) and 5-lipoxygenase (5-LOX), the target enzymes of inflammation, by employing spectroscopic/polorographic methods. Among these, isoorientin was found to be a potent inhibitor of COX-2with an IC50 value of 39 μM. Docking studies were carried out to understand the interactions of isorientin (PT-2) with COX-2.The structures of the isolates were determined by mass spectrometry and 2D-NMR techniques including HSQC, HMBC, NOESY and 1H-1H COSY experiments. Although isoorientin and mangiferin have been reported from several plant sources, this is the first report of their isolation from a Pueraria species.

  12. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation.

    PubMed

    Lin, Weiqun; Wang, Wenting; Wang, Dongliang; Ling, Wenhua

    2017-09-01

    Quercetin is a typical flavonol with atheroprotective effects, but the effect of quercetin on dendritic cell (DC) maturation in relation to atherosclerosis has not yet been clearly defined. Thus, we investigated whether quercetin can inhibit DC maturation and evaluated its potential value in atherosclerosis progression in ApoE(-/-) mice. Quercetin consumption inhibited DC activation, inflammatory response and suppressed the progression of atherosclerosis in ApoE(-/-) mice. Subsequently, quercetin treatment inhibited the phenotypic and functional maturation of DCs, as evidenced not only by downregulation of CD80, CD86, MHC-II, IL-6 and IL-12 but also by a reduction in the ability to stimulate T cell allogeneic proliferation. Finally, an in vitro study demonstrated that quercetin inhibited DC maturation via upregulation of Dabs, which then downregulated the Src/PI3K/Akt-NF-κB-inflammatory pathways. Our data indicate that quercetin attenuates atherosclerosis progression by regulating DC activation via Dab2 protein expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dihydrotestosterone alters cyclooxygenase-2 levels in human coronary artery smooth muscle cells

    PubMed Central

    Osterlund, Kristen L.; Handa, Robert J.

    2010-01-01

    Both protective and nonprotective effects of androgens on the cardiovascular system have been reported. Our previous studies show that the potent androgen receptor (AR) agonist dihydrotestosterone (DHT) increases levels of the vascular inflammatory mediator cyclooxygenase (COX)-2 in rodent cerebral arteries independent of an inflammatory stimulus. Little is known about the effects of androgens on inflammation in human vascular tissues. Therefore, we tested the hypothesis that DHT alters COX-2 levels in the absence and presence of induced inflammation in primary human coronary artery smooth muscle cells (HCASMC). Furthermore, we tested the ancillary hypothesis that DHT's effects on COX-2 levels are AR-dependent. Cells were treated with DHT (10 nM) or vehicle for 6 h in the presence or absence of LPS or IL-1β. Similar to previous observations in rodent arteries, in HCASMC, DHT alone increased COX-2 levels compared with vehicle. This effect of DHT was attenuated in the presence of the AR antagonist bicalutamide. Conversely, in the presence of LPS or IL-1β, increases in COX-2 were attenuated by cotreatment with DHT. Bicalutamide did not affect this response, suggesting that DHT-induced decreases in COX-2 levels occur independent of AR stimulation. Thus we conclude that DHT differentially influences COX-2 levels under physiological and pathophysiological conditions in HCASMC. This effect of DHT on COX-2 involves AR-dependent and- independent mechanisms, depending on the physiological state of the cell. PMID:20103743

  14. Geranylgeranylacetone induces cyclooxygenase-2 expression in cultured rat gastric epithelial cells through NF-kappaB.

    PubMed

    Nishida, Tsutomu; Yabe, Yuki; Fu, Hai Ying; Hayashi, Yujiro; Asahi, Kayoko; Eguchi, Hiroshi; Tsuji, Shingo; Tsujii, Masahiko; Hayashi, Norio; Kawano, Sunao

    2007-08-01

    Geranylgeranylacetone (GGA) effectively protects the gastric mucosa against noxious agents. The precise mechanisms underlying the gastroprotective actions of GGA are not known. To elucidate the precise mechanism of GGA, the effect of GGA treatment on COX-2 expression in rat gastric epithelial (RGM1) cells was investigated. We used a prostaglandin E2 (PGE2) enzyme-linked immunoassay kit and Western blot analysis to measure PGE2 production and COX-2 induction by GGA treatment in serum-starved RGM1 cells. Gel-shift assay, Western blot analysis, and a reporter assay were performed to determine which COX-2 promoter was involved in GGA-induced COX-2 expression. GGA treatment dose dependently increased COX-2 expression and PGE2 production. The nuclear factor (NF)-kappaB sites of the COX-2 gene promoter were critical for GGA-mediated COX-2 expression. GGA induces COX-2 expression and increases PGE2 production in serum-starved RGM1 cells via activation of the NF-kappaB sites of COX-2 gene promoters.

  15. A cyclooxygenase-2-dependent prostaglandin E2 biosynthetic system in the Golgi apparatus.

    PubMed

    Yuan, Chong; Smith, William L

    2015-02-27

    Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A2α, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca(2+) mobilization. We propose that cytosolic phospholipase A2α, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.

  16. Chronic elevation of IL-1β induces diuresis via a cyclooxygenase 2-mediated mechanism.

    PubMed

    Boesen, E I

    2013-07-15

    Chronic renal inflammation is an increasingly recognized phenomenon in multiple disease states, but the impact of specific cytokines on renal function is unclear. Previously, we found that 14-day interleukin-1β (IL-1β) infusion increased urine flow in mice. To determine the mechanism by which this occurs, the current study tested the possible involvement of three classical prodiuretic pathways. Chronic IL-1β infusion significantly increased urine flow (6.5 ± 1 ml/day at day 14 vs. 2.3 ± 0.3 ml/day in vehicle group; P < 0.05) and expression of cyclooxygenase (COX)-2, all three nitric oxide synthase (NOS) isoforms, and endothelin (ET)-1 in the kidney (P < 0.05 in all cases). Urinary prostaglandin E metabolite (PGEM) excretion was also significantly increased at day 14 of IL-1β infusion (1.21 ± 0.26 vs. 0.29 ± 0.06 ng/day in vehicle-infused mice; P = 0.001). The selective COX-2 inhibitor celecoxib markedly attenuated urinary PGEM excretion and abolished the diuretic response to chronic IL-1β infusion. In contrast, deletion of NOS3, or inhibition of NOS1 with L-VNIO, did not blunt the diuretic effect of IL-1β, nor did pharmacological blockade of endothelin ETA and ETB receptors with A-182086. Consistent with a primary effect on water transport, IL-1β infusion markedly reduced inner medullary aquaporin-2 expression (P < 0.05) and did not alter urinary Na⁺ or K⁺ excretion. These data indicate a critical role for COX-2 in mediating the effects of chronic IL-1β elevation on the kidney.

  17. Cinnamaldehyde reduces IL-1beta-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells.

    PubMed

    Guo, Jian-You; Huo, Hai-Ru; Zhao, Bao-Sheng; Liu, Hong-Bin; Li, Lan-Fang; Ma, Yue-Ying; Guo, Shu-Ying; Jiang, Ting-Liang

    2006-05-10

    Cinnamaldehyde is a principle compound isolated from Guizhi-Tang, which is a famous traditional Chinese medical formula used to treat influenza, common cold and other pyretic conditions. The aim of the present study was to investigate the effects of cinnamaldehyde on expression and activity of cyclooxygenase (COX) and prostaglandin E(2) (PGE(2)) in rat cerebral microvascular endothelial cells (RCMEC). RCMEC were cultured, and identified by immunohistochemistry for von Willebrand factor in cytoplasm of the cells. Then cells were incubated in M199 medium containing interleukin (IL)-1beta in the presence or absence of cinnamaldehyde. After incubation, the medium was collected and the amount of PGE(2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, mRNA expression and activity of COX were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) with SYBR Green dye and ELISA respectively. Positive immunostaining for von Willebrand factor was present diffusely in the cytoplasm of >95% RCMEC. IL-1beta increased the mRNA expression and activity of COX-2, and production of PGE(2) in a dose- and time-dependent manner in RCMEC, while mRNA and activity of COX-1 were not significantly altered. Cinnamaldehyde significantly decreased IL-1beta-induced COX-2 activity and PGE(2) production in a dose-dependent manner, while it showed no inhibitory effect on IL-1beta-induced COX-2 mRNA expression in cultured RCMEC. In conclusion, cinnamaldehyde reduces IL-1beta-induced COX-2 activity, but not IL-1beta-induced COX-2 mRNA expression, and consequently inhibits production of PGE(2) in cultured RCMEC.

  18. Expression and function of cyclooxygenase-2 is necessary for hamster blastocyst hatching.

    PubMed

    Sen Roy, Shubhendu; Seshagiri, Polani B

    2013-12-01

    Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed that hamster blastocyst hatching is characterized by firstly blastocyst deflation followed by a dissolution of the zona pellucida (zona) and accompanied by trophectodermal projections (TEPs). We also showed that embryo-derived cathepsins (Cat) proteases, specifically Cat-L, -B and -P act as zonalysins and are responsible for hatching. In this study, we show the expression and function of one of the potential regulators of embryogenesis, cyclooxygenase (COX)-2 during blastocyst development and hatching. The expression of COX-2 mRNA and protein was observed in 8-cell through hatched blastocyst stages and it was also localized to blastocyst's TEPs. Specific COX-2 inhibitors, NS-398 and CAY-10404, inhibited blastocyst hatching; percentages achieved were only 28.4 ± 5.3 and 32.3 ± 5.4%, respectively, compared with >90% with untreated embryos. Interestingly, inhibitor-treated blastocysts failed to deflate, normally observed during hatching. Supplementation of prostaglandins (PGs)-E2 or -I2 to cultured embryos reversed the inhibitors' effect on hatching and also the deflation behavior. Importantly, the levels of mRNA and protein of Cat-L, -B and -P showed a significant reduction in the inhibitor-treated embryos compared with untreated embryos, although its mechanism remains to be examined. These data provide the first evidence that COX-2 is critical for blastocyst hatching in the golden hamster.

  19. Promoter methylation regulates Helicobacter pylori-stimulated cyclooxygenase-2 expression in gastric epithelial cells.

    PubMed

    Akhtar, M; Cheng, Y; Magno, R M; Ashktorab, H; Smoot, D T; Meltzer, S J; Wilson, K T

    2001-03-15

    Cyclooxygenase (COX)-2, the inducible form of the rate-limiting enzyme for prostaglandin synthesis, is up-regulated in gastrointestinal cancers and is a key mediator of epithelial cell growth. Helicobacter pylori is causally linked to gastric cancer. In H. pylori gastritis, COX-2 expression localizes to the subepithelial region, with variable levels in the epithelium. In contrast, in gastric cancer, COX-2 strongly predominates in the epithelium, suggesting that the transition to consistent epithelial COX-2 overexpression may be a critical molecular event in gastric carcinogenesis. Because aberrant promoter methylation inhibits expression of a variety of genes in gastrointestinal cancers, we sought to determine whether methylation of the COX-2 promoter could regulate the response to H. pylori in gastric epithelial cells. We assessed COX-2 expression and promoter methylation status in six gastric epithelial cell lines. In all four of the cell lines that exhibited basal expression of COX-2 and a significant increase in expression in response to H. pylori, the COX-2 promoter was unmethylated, whereas in the two cell lines that did not express COX-2, the COX-2 promoter was methylated. Treatment of COX-2-methylated cells with the demethylating agent 5-azacytidine had a modest effect on COX-2 expression, but when 5-azacytidine-treated cells were subsequently stimulated with H. pylori, there was a significant, 5-10-fold enhancement of both COX-2 mRNA and protein expression and release of the COX-2 product, prostaglandin E2. In contrast, in COX-2-expressing cell lines that were unmethylated at the COX-2 promoter, 5-azacytidine had no effect on H. pylori-stimulated COX-2 expression. These findings suggest that loss of COX-2 methylation may facilitate COX-2 expression and promote gastric carcinogenesis associated with H. pylori infection.

  20. A Cyclooxygenase-2-dependent Prostaglandin E2 Biosynthetic System in the Golgi Apparatus*

    PubMed Central

    Yuan, Chong; Smith, William L.

    2015-01-01

    Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A2α, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca2+ mobilization. We propose that cytosolic phospholipase A2α, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis. PMID:25548276

  1. Genetic Variants in Cyclooxygenase-2 Contribute to Post-treatment Pain among Endodontic Patients.

    PubMed

    Applebaum, Elizabeth; Nackley, Andrea G; Bair, Eric; Maixner, William; Khan, Asma A

    2015-08-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have a well-established analgesic efficacy for inflammatory pain. These drugs exert their effect by inhibiting the enzyme cyclooxygenase (COX) and are commonly used for the management of pain after endodontic treatment. There are 2 distinct isoforms of COX: COX-1, which is constitutively expressed, and COX-2, which is primarily induced by inflammation. Previous studies have shown that functional human genetic variants of the COX-2 gene may explain individual variations in acute pain. The present study extends this work by examining the potential contribution of the 2 COX isoforms to pain after endodontic treatment. Ninety-four patients treated by endodontic residents at the University of North Carolina School of Dentistry were enrolled into a prospective cohort study. Data on potential predictors of post-treatment pain were collected, and all patients submitted saliva samples for genetic analysis. Nonsurgical root canal therapy was performed, and participants recorded pain levels for 5 days after. In this study, 63% of patients experienced at least mild pain after root canal therapy, and 24% experienced moderate to severe pain. The presence of pretreatment pain was correlated with higher post-treatment pain (P = .01). Elevated heart rate (P = .02) and higher diastolic blood pressure (P = .024) were also correlated with decreased post-treatment pain. Finally, we identified genetic variants in COX-2 (haplotype composed of rs2383515 G, rs5277 G, rs5275 T, and rs2206593 A) associated with post-treatment pain after endodontic treatment (P = .025). Understanding the genetic basis of pain after endodontic treatment will advance its prevention and management. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats

    PubMed Central

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dose-dependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  3. AIF inhibits tumor metastasis by protecting PTEN from oxidation

    PubMed Central

    Shen, Shao-Ming; Guo, Meng; Xiong, Zhong; Yu, Yun; Zhao, Xu-Yun; Zhang, Fei-Fei; Chen, Guo-Qiang

    2015-01-01

    Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis. PMID:26415504

  4. The functional interaction between Acyl-CoA synthetase 4, 5-lipooxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target.

    PubMed

    Orlando, Ulises D; Garona, Juan; Ripoll, Giselle V; Maloberti, Paula M; Solano, Ángela R; Avagnina, Alejandra; Gomez, Daniel E; Alonso, Daniel F; Podestá, Ernesto J

    2012-01-01

    The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of

  5. Cyclooxygenase 2 in Gastric Carcinoma Is Expressed in Doublecortin- and CaM Kinase-Like-1-Positive Tuft Cells

    PubMed Central

    Mutoh, Hiroyuki; Sashikawa, Miho; Sakamoto, Hirotsugu; Tateno, Tomoko

    2014-01-01

    Background/Aims Doublecortin and CaM kinase-like-1 (DCAMKL1) is a marker of stem cells expressed predominantly in the crypt base in the intestine. However, DCAMKL1-positive cells have been shown to be differentiated tuft cells rather than quiescent progenitors. Tuft cells are the only epithelial cells that express cyclooxygenase 2 (COX-2) in the normal intestinal epithelium. We previously generated Cdx2-transgenic mice as model mice for intestinal metaplasia and gastric carcinoma. In the current study, we investigated the association between COX-2 and DCAMKL1 in gastric carcinoma. Methods We examined the association between COX-2 and DCAMKL1 expression in gastric carcinomas in clinical samples (early gastric well-differentiated adenocarcinoma) and Cdx2-transgenic mice; and the DCAMKL1-transgenic mouse stomach using immunohistochemistry and quantitative real-time polymerase chain reaction. Results The COX-2-expressing cells were scattered, not diffusely expressed, in gastric carcinomas from humans and Cdx2-transgenic mice. DCAMKL1-positive cells were also scattered in the gastric carcinomas, indicating that tuft cells could still be present in gastric carcinoma. COX-2 was expressed in DCAMKL1-positive tuft cells in Cdx2- and DCAMKL1-transgenic mouse stomachs, whereas the Sox9 transcription factor was ubiquitously expressed in gastric carcinomas, including COX-2-positive cells. Conclusions COX-2 is expressed in DCAMKL1-expressing quiescent tuft cells in gastric carcinoma. PMID:25228975

  6. Cyclooxygenase 2 (rs2745557) Polymorphism and the Susceptibility to Benign Prostate Hyperplasia and Prostate Cancer in Egyptians.

    PubMed

    Fawzy, Mohamed S; Elfayoumi, Abdel-Rahman; Mohamed, Randa H; Fatah, Ihab R Abdel; Saadawy, Sara F

    2016-06-01

    Cyclooxygenase-2 (COX-2), an inducible isoform of cyclooxygenase, has been reported to be correlated with tumorigenesis, tumor progression, and metastasis. We aimed to evaluate the association between COX-2 (rs2745557) polymorphism and prostate cancer (PCa), benign prostate hyperplasia (BPH) risk. We also assessed the influence of other risk factors such as obesity, smoking, diabetes in modulating the risk of PCa in Egyptian men. COX-2 (rs2745557) was genotyped in 112 PC patients, 111 BPH and 120 subjects as a control group. COX-2 and PSA levels were measured by ELISA. We found that GG genotype was associated with a 17-fold increased risk for PCa and 20-fold increased the risk for BPH more than AA genotype. Also, G allele carriers of COX-2 were associated with metastatic cancer (OR = 1.3, P < 0.05) and disease aggressiveness (OR = 3.5, P < 0.001). The coexistence of obesity, smoking, or diabetes with GG genotype may lead to increasing the risk of developing BPH (OR = 3.3, 4, and 2.7, respectively) and of developing PCa (OR = 2.9, 4.9, and 3.2, respectively). Our results showed evidence suggesting the involvement of the COX-2 (rs2745557) polymorphism and its protein in PCa or BPH initiation and progression. Also, the coexistence of COX-2 (rs2745557) and obesity, smoking, or diabetes may lead to the development of PCa or BPH.

  7. Levuglandin forms adducts with histone h4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA.

    PubMed

    Carrier, Erica J; Zagol-Ikapitte, Irene; Amarnath, Venkataraman; Boutaud, Olivier; Oates, John A

    2014-04-22

    Inflammation and subsequent cyclooxygenase-2 (COX-2) activity has long been linked with the development of cancer, although little is known about any epigenetic effects of COX-2. A product of COX-2 activation, levuglandin (LG) quickly forms covalent bonds with nearby primary amines, such as those in lysine, which leads to LG-protein adducts. Here, we demonstrate that COX-2 activity causes LG-histone adducts in cultured cells and liver tissue, detectable through LC-MS, with the highest incidence in histone H4. Adduction is blocked by a γ-ketoaldehyde scavenger, which has no effect on COX-2 activity as measured by PGE2 production. Formation of the LG-histone adduct is associated with an increased histone solubility in NaCl, indicating destabilization of the nucleosome structure; this is also reversed with scavenger treatment. These data demonstrate that COX-2 activity can cause histone adduction and loosening of the nucleosome complex, which could lead to altered transcription and contribute to carcinogenesis.

  8. Prolactin (PRL) induction of cyclooxygenase 2 (COX2) expression and prostaglandin (PG) production in hamster Leydig cells.

    PubMed

    Matzkin, María Eugenia; Ambao, Verónica; Carino, Mónica Herminia; Rossi, Soledad Paola; González, Lorena; Turyn, Daniel; Campo, Stella; Calandra, Ricardo Saúl; Frungieri, Mónica Beatriz

    2012-01-02

    Serum prolactin (PRL) variations play a crucial role in the photoperiodic-induced testicular regression-recrudescence transition in hamsters. We have previously shown that cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins (PGs), is expressed mostly in Leydig cells of reproductively active hamsters with considerable circulating and pituitary levels of PRL. In this study, we describe a stimulatory effect of PRL on COX2/PGs in hamster Leydig cells, which is mediated by IL-1β and prevented by P38-MAPK and JAK2 inhibitors. Furthermore, by preparative isoelectric focusing (IEF), we isolated PRL charge analogues from pituitaries of active [isoelectric points (pI): 5.16, 4.61, and 4.34] and regressed (pI: 5.44) hamsters. More acidic PRL charge analogues strongly induced COX2 expression, while less acidic ones had no effect. Our studies suggest that PRL induces COX2/PGs in hamster Leydig cells through IL-1β and activation of P38-MAPK and JAK2. PRL microheterogeneity detected in active/inactive hamsters may be responsible for the photoperiodic variations of COX2 expression in Leydig cells. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Plasma Levels of Cyclooxygenase-2 (COX-2) and Visfatin During Different Stages and Different Subtypes of Migraine Headaches

    PubMed Central

    Li, Chao; Zhu, Qiushi; He, Qiu; Wang, Junwei; Wang, Fengzhi; Zhang, Hemin

    2017-01-01

    Background The aim of this study was to determine the plasma levels of cyclooxygenase-2 (COX-2) and visfatin in different stages and different subtypes of migraine headaches compared to a control group to elucidate the pathological mechanisms involved. Material/Methods We recruited a case-control cohort of 182 adult migraine patients and 80 age-matched and gender-matched healthy controls. The migraine patients were divided into two groups: the headache-attack-period group (Group A, n=77) and the headache-free-period group (Group B, n=105). The two groups were further divided into subgroups according to whether they had aura symptoms. Solid phase double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure the plasma levels of COX-2 and visfatin. Statistical analysis was performed using SPSS 17.0. Results The plasma levels of COX-2 and visfatin in the headache-attack-period group were significantly higher than in the headache-free-period group and the control group; there were no significant differences between the headache-free group and the control group. There were no significant differences in plasma levels of COX-2 and visfatin between the subgroups: headache-attack-period with aura subgroup and the headache-attack-period without aura sub group. Conclusions COX-2 and visfatin participated in the pathogenesis of migraine headaches. The presence of aura had no effect on the serum levels of COX-2 and visfatin. PMID:28044053

  10. Interaction between cyclooxygenase-2 and insulin-like growth factor in breast cancer: A new field for prevention and treatment

    PubMed Central

    TAROMARU, GIULIANA CÁSSIA MORRONE; DE OLIVEIRA, VILMAR MARQUES; SILVA, MARIA ANTONIETA LONGO GALVÃO; MONTOR, WAGNER RICARDO; BAGNOLI, FABIO; RINALDI, JOSÉ FRANCISCO; AOKI, TSUTOMU

    2011-01-01

    The objective of this study was to evaluate the correlation between cyclooxygenase-2 (COX-2) and markers of cell proliferation and apoptosis, including, Bcl-2, Bax, Ki-67 and the type I insulin-like growth factor (IGF) receptor (IGF1-R) in ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC), present in the same surgical specimen. A total of 110 cases were evaluated using tissue microarrays. Cases were classified in scores from 0 to 3 according to pre-defined methods. The results showed that the positivity rates were COX-2 in 87% of cases in DCIS and IDC; Bcl-2 in 55% of cases in DCIS and IDC; Bax in 23% of cases in IDC and 19% in DCIS, IGF-1 in 24% of cases in DCIS and IDC; and Ki-67 in 81% of cases in DCIS and IDC. We also observed a positive correlation between the expression of COX-2 and IGF1-R (p=0.045). Our results demonstrate a positive correlation between the expression of COX-2 and IGF1-R in DCIS and IDC, demonstrating that they are involved in breast cancer carcinogenesis. Further studies are required to prove the effectiveness of COX-2 and IGF1-R inhibitors for the prevention and treatment of breast cancer, as well as to explain their mechanism of action. PMID:22740976

  11. K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions

    PubMed Central

    Chiblak, Sara; Steinbauer, Brigitte; Pohl-Arnold, Andrea; Kucher, Dagmar; Abdollahi, Amir; Schwager, Christian; Höft, Birgit; Esposito, Irene; Müller-Decker, Karin

    2016-01-01

    Mutational activation of K-Ras is an initiating event of pancreatic ductal adenocarcinomas (PDAC) that may develop either from pancreatic intraepithelial neoplasia (PanIN) or intraductal papillary mucinous neoplasms (IPMN). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is causally related to pancreatic carcinogenesis. Here, we deciphered the impact of COX-2, a key modulator of inflammation, in concert with active mutant K-RasG12D on tumor burden and gene expression signature using compound mutant mouse lines. Concomitant activation of COX-2 and K-RasG12D accelerated the progression of pancreatic intraepithelial lesions predominantly with a cystic papillary phenotype resembling human IPMN. Transcriptomes derived from laser capture microdissected preneoplastic lesions of single and compound mutants revealed a signature that was significantly enriched in Notch1 signaling components. In vitro, Notch1 signaling was COX-2-dependent. In line with these findings, human IPMN stratified into intestinal, gastric and pancreatobillary types displayed Notch1 immunosignals with high prevalence, especially in the gastric lesions. In conclusion, a yet unknown link between activated Ras, protumorigenic COX-2 and Notch1 in IPMN onset was unraveled. PMID:27381829

  12. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    PubMed

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  13. Spatiotemporal expression of cyclooxygenase 1 and cyclooxygenase 2 during delayed implantation and the periimplantation period in the Western spotted skunk.

    PubMed

    Das, S K; Wang, J; Dey, S K; Mead, R A

    1999-04-01

    Embryonic development in the western spotted skunk is arrested after blastocyst formation for about 200 days. This developmental arrest is believed to be due to insufficiency of uterine conditions to support continuous development. Implantation and decidualization are defective in cyclooxygenase 2 (Cox2)-, but not Cox1-, deficient mice. We therefore used Northern and in situ hybridization to investigate changes in uterine expression of Cox1 and Cox2 genes during various stages of pregnancy in the spotted skunk. Cox1 was constitutively expressed at all stages of pregnancy examined, but it did exhibit localized up-regulation in the trophoblast and necks of uterine glands at early implantation sites. Cox2 expression was highly regulated with little or no expression during delayed implantation. Cox2 expression was first detected in the uterus and trophoblast prior to blastocyst attachment and remained detectable for 5-6 days after blastocyst attachment. Cox2 expression was also localized in the luminal and glandular epithelia of uterine segments located between implantation chambers. Changes in Cox expression were not correlated with the abrupt increase in uterine weight that occurs simultaneously with renewed embryonic development but was correlated with an influx of serum proteins into the uterus observed in a previous study.

  14. Plasma Levels of Cyclooxygenase-2 (COX-2) and Visfatin During Different Stages and Different Subtypes of Migraine Headaches.

    PubMed

    Li, Chao; Zhu, Qiushi; He, Qiu; Wang, Junwei; Wang, Fengzhi; Zhang, Hemin

    2017-01-03

    BACKGROUND The aim of this study was to determine the plasma levels of cyclooxygenase-2 (COX-2) and visfatin in different stages and different subtypes of migraine headaches compared to a control group to elucidate the pathological mechanisms involved. MATERIAL AND METHODS We recruited a case-control cohort of 182 adult migraine patients and 80 age-matched and gender-matched healthy controls. The migraine patients were divided into two groups: the headache-attack-period group (Group A, n=77) and the headache-free-period group (Group B, n=105). The two groups were further divided into subgroups according to whether they had aura symptoms. Solid phase double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure the plasma levels of COX-2 and visfatin. Statistical analysis was performed using SPSS 17.0. RESULTS The plasma levels of COX-2 and visfatin in the headache-attack-period group were significantly higher than in the headache-free-period group and the control group; there were no significant differences between the headache-free group and the control group. There were no significant differences in plasma levels of COX-2 and visfatin between the subgroups: headache-attack-period with aura subgroup and the headache-attack-period without aura sub group. CONCLUSIONS COX-2 and visfatin participated in the pathogenesis of migraine headaches. The presence of aura had no effect on the serum levels of COX-2 and visfatin.

  15. The cyclooxygenase-2 inhibitor etoricoxib is a potent chemopreventive agent of colon carcinogenesis in the rat model.

    PubMed

    Saini, Manpreet Kaur; Sharma, Pinky; Kaur, Jasmeet; Sanyal, Sankar Nath

    2009-01-01

    Cyclooxygenase-2 (COX-2), an inducible prostaglandin G/H synthase, is overexpressed in several human cancers, including colon cancer, and therefore the potential ability of a selective COX-2 inhibitor, etoricoxib, is considered in the prevention of the 1,2-dimethyl hydrazine (DMH)-induced colon carcinogenesis in the rat model. DMH was injected s.c. for 6 weeks, whereas etoricoxib was fed orally to the rats on a daily basis. The results showed that DMH produced a very high number of multiple plaque lesions (MPLs), putative neoplastic biomarkers, localized throughout the colon, whereas considerable regression was observed with etoricoxib treatment. In addition, the etoricoxib group was the only group that exhibited very few of these lesions. Histopathological analysis revealed extreme dysplasia, a few adenomas, and other carcinogenic changes in the DMH group, which are distinctly absent in the etoricoxib-treated group. COX-2 was also seen to be highly expressed following DMH treatment. The DMH treatment caused very few apoptotic cells, as determined by the TUNEL assay of the colonic mucosa in paraffin sections whose number greatly increased following etoricoxib treatment. Because all these changes were clearly reversed by etoricoxib in DMH-treated animals, and the use of etoricoxib alone did not produce a neoplastic effect per se, it appears that etoricoxib, a selective COX-2 inhibitor, might be a safe and potentially chemopreventive agent in colon cancer.

  16. Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase.

    PubMed

    Knab, Lawrence M; Grippo, Paul J; Bentrem, David J

    2014-08-21

    The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.

  17. Clinicopathological Significance of VEGF-C, VEGFR-3 and Cyclooxygenase-2 in Early-Stage Cervical Cancer

    PubMed Central

    Shi, Xiaoyan; Xi, Ling; Weng, Danhui; Chen, Gang; Song, Xiaohong; Wu, Peng; Wang, Beibei; Wei, Juncheng; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding

    2008-01-01

    To investigate the roles of VEGF-C, VEGFR-3 and cyclooxygenase-2 (COX-2) in tumor progression and lymph node metastasis. The expression of VEGF-C, VEGFR-3 and COX-2 were examined in 93 cases of surgical speciments of cervical diseases by immunohistochemical staining. The correlation between expression of these factors and tumor aggressiveness was evaluated. The expression levels of VEGF-C and COX-2 were much higher in cervical cancer than in cervical intraepithelial neoplasia (CIN) and in chronic cervicitis. VEGF-C expression correlated with lymph node metastases (P<0.01). Multivariate analysis indicated that lymph vessel density (LVD) was associated with the coexpression of VEGF-C and COX-2. Expression of VEGF-C and VEGFR-3 were both in coincidence with lymph node metastasis. VEGF-C and COX-2 may promote the canceration of cervical cancer and that VEGF-C/ VEGFR-3 system had a significant association with the lymphagiogenesis and lymph node metastasis. PMID:23675067

  18. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  19. Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome.

    PubMed

    Ladetto, Marco; Vallet, Sonia; Trojan, Andreas; Dell'Aquila, Maria; Monitillo, Luigia; Rosato, Rosalba; Santo, Loredana; Drandi, Daniela; Bertola, Alessandra; Falco, Patrizia; Cavallo, Federica; Ricca, Irene; De Marco, Federica; Mantoan, Barbara; Bode-Lesniewska, Beata; Pagliano, Gloria; Francese, Roberto; Rocci, Alberto; Astolfi, Monica; Compagno, Mara; Mariani, Sara; Godio, Laura; Marino, Lydia; Ruggeri, Marina; Omedè, Paola; Palumbo, Antonio; Boccadoro, Mario

    2005-06-15

    Cyclooxygenase 2 (COX-2) is an inflammation-associated enzyme involved in the pathogenesis of many solid tumors, but little is known about its presence and role in hematologic neoplasms. Multiple myeloma (MM) is known to involve a deregulated cytokine network with secretion of inflammatory mediators. We thus decided to investigate the involvement of COX-2 in this neoplasm. Western blotting (WB) was used to evaluate 142 bone marrow (BM) specimens, including MM and monoclonal gammopathy of undetermined significance (MGUS). Selected cases under-went further evaluation by WB on purified CD138(+) cells, immunohistochemistry (IC), and real-time polymerase chain reaction (PCR) for mRNA expression. COX-2 was expressed in 11% (2 of 18) of MGUS specimens, 31% (29 of 94) of MM at diagnosis, and 47% (14 of 30) of MM with relapsed/refractory disease. COX-2 positivity was associated with a poor outcome in terms of progression-free (18 vs 36 months; P < .001) and overall survival (28 vs 52 months; P < .05). Real-time PCR showed COX-2 mRNA overexpression. IC and cell separation studies demonstrated COX-2 expression to be restricted to malignant plasma cells. This is the first report of the presence and prognostic role of COX-2 expression in MM. Future studies will assess COX-2 involvement in other hematologic tumors and its potential use as a therapeutic or chemo-preventive target in onco-hematology.

  20. Nuclear factor κB and cyclooxygenase-2 immunoexpression in oral dysplasia and oral squamous cell carcinoma.

    PubMed

    Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Fonseca, Felipe Paiva; de Carvalho, Pedro Luiz; Pereira, Erika Martins; de Abreu, Michelle Carvalho; de Freitas Silva, Brunno Santos; dos Santos Pinto, Décio

    2013-02-01

    Oral leukoplakia is the main potentially malignant oral lesion, and oral squamous cell carcinoma accounts for more than 95% of all malignant neoplasms in the oral cavity. Therefore, the aim of this study was to verify the immunoexpression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) proteins in dysplastic oral lesions and oral squamous cell carcinoma. Immunohistochemical reactions were performed on 6 inflammatory fibrous hyperplasia, 28 oral leukoplakia, and 15 oral squamous cell carcinoma paraffin-embedded samples. Immunoperoxidase reaction for NF-κB and COX-2 was applied on the specimens, and the positivity of the reactions was calculated for 1000 epithelial cells. Using the analysis of variance and the Tukey post hoc statistical analyses, a significantly increased immunoexpression for NF-κB was observed when oral squamous cell carcinoma samples were compared with the other groups studied. However, using the Kruskal-Wallis and the Dunn post hoc tests, a statistically significant result for COX-2 expression was obtained only when the moderate dysplasia group was compared with the inflammatory fibrous hyperplasia group. Nuclear factor κB may participate in the malignant phenotype acquisition process of the oral squamous cell carcinoma in its late stages, whereas COX-2 may be involved in the early stages of oral carcinogenesis process.

  1. Isomeric iodinated analogs of nimesulide: Synthesis, physicochemical characterization, cyclooxygenase-2 inhibitory activity, and transport across Caco-2 cells.

    PubMed

    Yamamoto, Yumi; Arai, Jun; Hisa, Takuya; Saito, Yohei; Mukai, Takahiro; Ohshima, Takashi; Maeda, Minoru; Yamamoto, Fumihiko

    2016-08-15

    Isomeric iodinated derivatives of nimesulide, with an iodine substituent on the phenoxy ring, were prepared with the aim of identifying potential candidate compounds for the development of imaging agents targeting cyclooxygenase-2 (COX-2) in the brain. Both the experimental logP7.4 and pKa values for these iodinated analogs were in the acceptable range for passive brain penetration. The para-iodo-substituted analog was a more potent and selective COX-2 inhibitor than nimesulide, with a potency that was comparable to the reference drug, celecoxib. Iodination at the ortho- or meta-position of the phenoxy ring was associated with a substantial loss of COX-2 inhibitory activity. Transport studies across Caco-2 cell monolayers in the presence and absence of a P-glycoprotein (P-gp) inhibitor, verapamil, indicated that the para-iodo-substituted analog was not a P-gp transport substrate; this feature is a prerequisite for potential in vivo brain imaging compounds. The para-iodo-substituted analog of nimesulide appears to be an attractive candidate for the development of radioiodine-labeled tracers for in vivo brain imaging of COX-2 levels.

  2. Differences in expression of uroplakin III, cytokeratin 7, and cyclooxygenase-2 in canine proliferative urothelial lesions of the urinary bladder.

    PubMed

    Sledge, D G; Patrick, D J; Fitzgerald, S D; Xie, Y; Kiupel, M

    2015-01-01

    The expression of immunohistochemical markers that have been used in diagnosis and/or prognostication of urothelial tumors in humans (uroplakin III [UPIII], cytokeratin 7 [CK7], cyclooxygenase-2 [COX-2], and activated caspase 3) was evaluated in a series of 99 canine proliferative urothelial lesions of the urinary bladder and compared to the lesion classification and grade as defined by the World Health Organization / International Society of Urologic Pathology consensus system. There were significant associations between tumor classification and overall UPIII pattern (P = 1.49 × 10(-18)), loss of UPIII (P = 1.27 × 10(-4)), overall CK7 pattern (P = 4.34 × 10(-18)), and COX-2 pattern (P = 8.12 × 10(-25)). In addition, there were significant associations between depth of neoplastic cell infiltration into the urinary bladder wall and overall UPIII pattern (P = 1.54 × 10(-14)), loss of UPIII (P = 2.07 × 10(-4)), overall CK7 pattern (P = 1.17 × 10(-13)), loss of CK7 expression (P = .0485), and COX-2 pattern (P = 8.23 × 10(-21)). There were no significant associations between tumor classification or infiltration and caspase 3 expression pattern.

  3. The CC-genotype of the cyclooxygenase-2 gene associates with decreased risk of nasopharyngeal carcinoma in a Tunisian population.

    PubMed

    Mamoghli, T; Douik, H; Mehri, S; Ghanem, A; Ben Chaabane, A; Bouassida, J; Kablouti, G; Harzallah, L; Gritli, S; Guemira, F

    2015-02-01

    The cyclooxygenase-2 (cox-2) pathway is now recognized to be important in human cancer development and progression. The gene for cox-2 carries a common single nucleotide polymorphism, T8473C, located within a potential functional region in the 3'-UTR of cox-2 gene was identified. We have investigated the frequencies of cox-2 genotypes in Tunisian population to determine whether that polymorphism was associated with the risk of nasopharyngeal carcinoma (NPC) in Tunisian population. One hundred and eighty-nine NPC patients were compared to 237 healthy controls. The cox-2 T8473C polymorphism was significantly associated with NPC (P=0.031). The CC-genotype and C allele were more frequent in control compared to patients group [CC: OR=0.37; P=0.013; 95% CI: 0.17-0.81; C: OR=0.72; P=0.032; 95% CI: 0.53-0.97]. Multivariate logistic regression analyses revealed that the CC-genotype was associated with a significantly decreased risk of NPC (P=0.013). Tumor sizes, histologic grade, presence of primary lymph node metastases, age or sex were not associated with cox-2 genotypes. We conclude that the CC-genotype and C allele of cox-2 T8473C gene polymorphism are associated with decreased risk of nasopharyngeal carcinoma in a Tunisian population. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Elevation of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Expression in the Mouse Brain after Chronic Nonylphenol Exposure

    PubMed Central

    Zhang, Yan-Qiu; Mao, Zhen; Zheng, Yuan-Lin; Han, Bao-Ping; Chen, Ling-Tong; Li, Jing; Li, Fei

    2008-01-01

    The present study was performed to investigate the effects of chronic administration of nonylphenol (NP) on the expression of inflammation-related genes in the brains of mice. NP was given orally by gavages at 0, 50, 100, and 200 mg/kg/d. The expression of inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), was evaluated by immunohistochemistry and immunoblotting assays. The nitric oxide (NO) level and nitric oxide synthase (NOS) activity were also measured by biochemical analyses. The results showed that NP at a high dose (200 mg/kg/d) significantly increased the expression of iNOS and COX-2 in both the hippocampus and cortex. In parallel with the increase in iNOS expression, the NO level was significantly greater at the dose of 200 mg/kg/d, compared to the control. The activity of NOS was also increased in the brain of mice at the dose of 100 and 200 mg/kg/d. These findings demonstrate that NP may have the potential to induce the chronic inflammation or cause neurotoxicity in the mouse brain. PMID:19325730

  5. Cyclooxygenase-2 selective and nitric oxide-releasing nonsteroidal anti-inflammatory drugs and gastric mucosal responses.

    PubMed

    Takeuchi, K; Suzuki, K; Yamamoto, H; Araki, H; Mizoguchi, H; Ukawa, H

    1998-12-01

    Occurrence of gastrointestinal damage and delayed healing of pre-existing ulcer are commonly observed in association with clinical use of nonsteroidal antiinflammatory drugs (NSAIDs). We examined the effects of NS-398, the cyclooxygenase (COX)-2 selective inhibitor, and nitric oxide (NO)- releasing aspirin (NCX-4016) on gastric mucosal ulcerogenic and healing responses in experimental animals, in comparison with those of nonselective COX inhibitors such as indomethacin and aspirin. Indomethacin and aspirin given orally were ulcerogenic by themselves in rat stomachs, while either NS-398 or NCX-4016 was not ulcerogenic at the doses which exert the equipotent antiinflammatory action with indomethacin or aspirin. Among these NSAIDs, only NCX-4016 showed a dose-dependent protection against gastric lesions induced by HCl/ethanol in rats. On the other hand, the healing of gastric ulcers induced in mice by thermal-cauterization was significantly delayed by repeated administration of these NSAIDs for more than 7 days, except NCX-4016. Gastric mucosal prostaglandin contents were reduced by indomethacin, aspirin and NCX-4016 in both normal and ulcerated mucosa, while NS-398 significantly decreased prostaglandin generation only in the ulcerated mucosa. Oral administration of NCX-4016 in pylorus-ligated rats and mice increased the levels of NO metabolites in the gastric contents. In addition, both NS-398 and NCX-4016 showed an equipotent anti-inflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and aspirin. These results suggest that both indomethacin and aspirin are ulcerogenic by themselves and impair the healing of pre-existing gastric ulcers as well. The former action is due to inhibition of COX-1, while the latter effect may be accounted for by inhibition of COX-2 and mimicked by NS-398, the COX-2 selective NSAID. NCX-4016, despite inhibiting both COX-1 and COX-2, protects the stomach against damage and preserves the healing

  6. Inhibition of retrograde transport protects mice from lethal ricin challenge.

    PubMed

    Stechmann, Bahne; Bai, Siau-Kun; Gobbo, Emilie; Lopez, Roman; Merer, Goulven; Pinchard, Suzy; Panigai, Laetitia; Tenza, Danièle; Raposo, Graça; Beaumelle, Bruno; Sauvaire, Didier; Gillet, Daniel; Johannes, Ludger; Barbier, Julien

    2010-04-16

    Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.

  7. Angiopoietin1 Inhibits Mast Cell Activation and Protects against Anaphylaxis

    PubMed Central

    Li, Meng-Tao; Liu, Yi-Nan; He, Qi-Hua; Xiao, Jun-Jun; Bai, Yun

    2014-01-01

    Since morbidity and mortality rates of anaphylaxis diseases have been increasing year by year, how to prevent and manage these diseases effectively has become an important issue. Mast cells play a central regulatory role in allergic diseases. Angiopoietin1 (Ang-1) exhibits anti-inflammatory properties by inhibiting vascular permeability, leukocyte migration and cytokine production. However, Ang-1's function in mast cell activation and anaphylaxis diseases is unknown. The results of our study suggest that Ang-1 decreased lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production of mast cells by suppressing IκB phosphorylation and NF-κB nuclear translocation. Ang-1 also strongly inhibited compound 48/80 induced and FcεRI-mediated mast cells degranulation by decreasing intracellular calcium levels in vitro. In vivo lentivirus-mediated delivery of Ang-1 in mice exhibited alleviated leakage in IgE-dependent passive cutaneous anaphylaxis (PCA). Furthermore, exogenous Ang-1 intervention treatment prevented mice from compound 48/80-induced mesentery mast cell degranulation, attenuated increases in pro-inflammatory cytokines, relieved lung injury, and improved survival in anaphylaxis shock. The results of our study reveal, for the first time, the important role of Ang-1 in the activation of mast cells, and identify a therapeutic effect of Ang-1 on anaphylaxis diseases. PMID:24586553

  8. Inhibiting an epoxide hydrolase virulence strategy protects CFTR**

    PubMed Central

    Bahl, Christopher D.; Hvorecny, Kelli L.; Bomberger, Jennifer M.; Stanton, Bruce A.; Hammock, Bruce D.; Morisseau, Christophe; Madden, Dean R.

    2015-01-01

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, Cif's mechanism of action has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. Here, we show that Cif's hydrolase activity is strictly required for its effects on CFTR. We also uncover a small-molecule inhibitor that protects this key component of the mucociliary defense system. Our results provide a basis for targeting Cif's distinctive virulence chemistry and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking. PMID:26136396

  9. PI3Kγ Inhibition Protects Against Diabetic Cardiomyopathy in Mice.

    PubMed

    Maffei, Angelo; Cifelli, Giuseppe; Carnevale, Raimondo; Iacobucci, Roberta; Pallante, Fabio; Fardella, Valentina; Fardella, Stefania; Hirsch, Emilio; Lembo, Giuseppe; Carnevale, Daniela

    2017-01-01

    Cardiovascular diseases, including cardiomyopathy, are the major complications in diabetes. A deeper understanding of the molecular mechanisms leading to cardiomyopathy is critical for developing novel therapies. We proposed phosphoinositide3-kinase gamma (PI3Kγ) as a molecular target against diabetic cardiomyopathy, given the role of PI3Kγ in cardiac remodeling to pressure overload. Given the availability of a pharmacological inhibitor of this molecular target GE21, we tested the validity of our hypothesis by inducing diabetes in mice with genetic ablation of PI3Kγ or knock-in for a catalytically inactive PI3Kγ. Mice were made diabetic by streptozotocin. Cardiac function was assessed by serial echocardiographic analyses, while fibrosis and inflammation were evaluated by histological analysis. Diabetes induced cardiac dysfunction in wild-type mice. Systolic dysfunction was completely prevented, and diastolic dysfunction was partially blocked, in both PI3Kγ knock-out and kinase-dead mice. Cardiac dysfunction was similarly rescued by administration of the PI3Kγ inhibitor GE21 in a dose-dependent manner. These actions of genetic and pharmacological PI3Kγ inhibition were associated with a decrease in inflammation and fibrosis in diabetic hearts. Our study demonstrates a fundamental role of PI3Kγ in diabetic cardiomyopathy in mice and the beneficial effect of pharmacological PI3Kγ inhibition, highlighting its potential as a promising strategy for clinical treatment of cardiac complications of diabetic patients. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells.

    PubMed

    Gonzalez, Alexis A; Luffman, Christina; Bourgeois, Camille R T; Vio, Carlos P; Prieto, Minolfa C

    2013-02-01

    During renin-angiotensin system activation, cyclooxygenase-2 (COX-2)-derived prostaglandins attenuate the pressor and antinatriuretic effects of angiotensin II (AngII) in the renal medulla. The (pro)renin receptor (PRR) is abundantly expressed in the collecting ducts (CD) and its expression is augmented by AngII. PRR overexpression upregulates COX-2 via mitogen-activated kinases/extracellular regulated kinases 1/2 in renal tissues; however, it is not clear whether this effect occurs independently or in concert with AngII type 1 receptor (AT1R) activation. We hypothesized that PRR activation stimulates COX-2 expression independently of AT(1)R in primary cultures of rat renal inner medullary cells. The use of different cell-specific immunomarkers (aquaporin-2 for principal cells, anion exchanger type 1 for intercalated type-A cells, and tenascin C for interstitial cells) and costaining for AT(1)R, COX-2, and PRR revealed that PRR and COX-2 were colocalized in intercalated and interstitial cells whereas principal cells did not express PRR or COX-2. In normal rat kidney sections, PRR and COX-2 were colocalized in intercalated and interstitial cells. In rat renal inner medullary cultured cells, treatment with AngII (100 nmol/L) increased COX-2 expression via AT(1)R. In addition, AngII and rat recombinant prorenin (100 nmol/L) treatments increased extracellular regulated kinases 1/2 phosphorylation, independently. Importantly, rat recombinant prorenin upregulated COX-2 expression in the presence of AT(1)R blockade. Inhibition of mitogen-activated kinases/extracellular regulated kinases 1/2 suppressed COX-2 upregulation mediated by either AngII or rat recombinant prorenin. Furthermore, PRR knockdown using PRR-short hairpin RNA blunted the rat recombinant prorenin-mediated upregulation of COX-2. These results indicate that COX-2 expression is upregulated by activation of either PRR or AT(1)R via mitogen-activated kinases/extracellular regulated kinases 1/2 in rat renal

  11. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    PubMed Central

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  12. Immunohistochemical examination of cyclooxygenase-2 and renin in a KK-A(y) mouse model of diabetic nephropathy.

    PubMed

    Yabuki, Akira; Taniguchi, Kazuyuki; Yamato, Osamu

    2010-01-01

    The renin-angiotensin system plays a central role in the pathological mechanisms of diabetic nephropathy and is regulated by renal expression of cyclooxygenase-2 (COX-2). In the present study, the kidneys of diabetic KK-A(y) mice, a model of human type 2 diabetes, were investigated histologically and immunohistochemically at 8, 12, 16, and 20 weeks of age, and changes in renal lesions and expression of COX-2 and renin were evaluated quantitatively. Glomerular damage, characterized by expansion of mesangial matrices and nodular lesions, was observed in the kidneys of these mice. The glomerular sclerosis score gradually increased with age and was significantly higher than those of age-matched control C57BL/6 mice at 12, 16, and 20 weeks of age. Although mild tubulointerstitial damage was observed, there was no significant change in the interstitial fibrosis score. These findings were considered early diabetic nephropathy changes. COX-2-positive signals were consistently detected in the macula densa cells of the thick ascending limbs in all KK-A(y) mice, with a slightly higher score observed at 8 weeks of age. No COX-2-positive signals were detected in C57BL/6 mice. Renin-positive signals were commonly detected in the juxtaglomerular arterioles, and the scores in KK-A(y) mice increased at 16 weeks and decreased at 20 weeks of age. The present study demonstrated activation of renal COX-2 and renin expression in diabetic KK-A(y) mice at different stages. This finding suggests that these two enzymes contribute to the development and progression of diabetic nephropathy via different mechanisms.

  13. Regulation of Cyclooxygenase-2 Expression by Heat: A Novel Aspect of Heat Shock Factor 1 Function in Human Cells

    PubMed Central

    Trotta, Edoardo; Angelini, Mara; Santoro, M. Gabriella

    2012-01-01

    The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position −2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function. PMID:22347460

  14. Predictive value of cyclooxygenase-2 over expression for identifying prostate cancer from benign prostatic hyperplasia in prostate biopsy specimens.

    PubMed

    Ceylan, Yasin; Lekili, Murat; Muezzinoglu, Talha; Nese, Nalan; Isisag, Aydin

    2016-06-01

    We studied cyclooxygenase-2 (COX-2) immunohistochemical staining intensity both in prostatic biopsy and surgical samples of patients with prostate cancer to determine if it might provide prognostic information for the decision of re-biopsy indication. Twenty-eight patients undergone radical prostatectomy whose final pathologic examination revealed prostatic adenocarcinoma were included in the study. Twelve patients with BPH in their pathological examination of both prostatic biopsy and open prostatectomy were considered as a control group. Intensity of COX-2 receptor was examined with immunohistochemical staining according to standard techniques. Positive COX-2 receptor staining was obtained 89.3% of biopsy samples and 93% of surgical samples in all cancer patients. The rate of agreement in COX-2 receptor staining of biopsy samples and radical prostatectomy samples was 76% in same patients (P=0.54). Similarly, the COX-2 receptor levels in biopsy specimens of patients with BPH open surgery compared with samples of the agreement still rate was 41% (P=0.41). Prostate cancer exchanging COX-2 receptor levels in patients with biopsy specimens in patients with BPH were found significantly more (P=0.008). In this study the feasibility of presence of COX-2 receptor staining in biopsy samples was shown. We have also demonstrated that COX-2 staining intensity was higher in prostatic biopsy samples of patients with prostatic cancer than patients with BPH. This leads a conclusion that, higher COX-2 expression levels in biopsy specimens may be used to decide re-biopsy in borderline preoperative PSA levels as well as in the cases with suspicious pathological findings for cancer.

  15. Analgesic Efficacy of Firocoxib, a Selective Inhibitor of Cyclooxygenase 2, in a Mouse Model of Incisional Pain

    PubMed Central

    Reddyjarugu, Balagangadharreddy; Pavek, Todd; Southard, Teresa; Barry, Jason; Singh, Bhupinder

    2015-01-01

    Pain management in laboratory animals is generally accomplished by using opioids and NSAIDs. However, opioid use is hindered by controlled substance requirements and a relatively short duration of action. In this study, we compared the analgesic efficacy of firocoxib (a cyclooxygenase-2-selective NSAID) with that of buprenorphine in the mouse model of plantar incisional pain by objective measurement of mechanical allodynia and thermal hyperalgesia using von Frey and Hargreaves equipment, respectively. Our experimental design included 5 treatment groups: firocoxib at 10 mg/kg IP every 24 h (F10 group); firocoxib at 20 mg/kg IP every 24 h (F20); buprenorphine at 0.2 mg/kg SC every 8 h; intraperitoneal normal saline every 24 h; and sham group (anesthesia, no incision) treated with firocoxib at 20 mg/kg IP every 24 h (sham+F20). All mice underwent nociceptive assays at 24 h before and 4, 24, 48, and 72 h after surgery. Buprenorphine alleviated allodynia at all time points after incision. The F10 treatment alleviated allodynia at 4, 24, and 48 h, whereas F20 alleviated allodynia at 24, 48, and 72 h. None of the treatments alleviated thermal hyperalgesia at 4h. Except for F10 and buprenorphine at 24 h, all treatments alleviated thermal hyperalgesia at 24, 48, and 72 h. No significant differences were noted between the 2 doses of firocoxib and buprenorphine regarding mechanical allodynia and thermal hyperalgesia at all time points. In conclusion, the analgesic efficacy of firocoxib is comparable to that of buprenorphine in this mouse pain model. PMID:26224441

  16. Antiproliferative effects of selective cyclooxygenase-2 inhibitor modulated by nimotuzumab in estrogen-dependent breast cancer cells.

    PubMed

    Wang, Ying-Xue; Gao, Jin-Xiang; Wang, Xiu-Yun; Zhang, Li; Liu, Chang-Mei

    2012-08-01

    Breast cancer is the most common malignancy in women, and many breast cancer patients fail conventional treatment strategies of chemotherapy, radiation, and antiestrogen therapy. Research into the molecular pathways and biomarkers involved in the development of breast cancer should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are involved in the carcinogenesis of breast cancer and exist tight crosstalk with estrogen receptor (ER) pathway. Combination of EGFR and COX-2 inhibitors, therefore, could be an effective strategy for reducing cell growth in estrogen-dependent breast cancer. In order to verify the effects of EGFR and COX-2 inhibitors, breast cancer cells MCF-7 and SKBR-3 were characterized for receptors status and then treated with respective inhibitors (nimotuzumab and celecoxib) alone and in combination. Both cell lines were sensitive to celecoxib, but not to nimotuzumab. However, combination of two drugs demonstrated synergistic effects on cell killing. Moreover, association of two drugs resulted in SKBR-3 cells, a further G0/G1 phase arrest than one drug alone. Downregulation of p-EGFR, p-Akt, p-mTOR, and amplified in breast cancer 1 (AIB1) were observed in both cell lines, and upregulation of E-cadherin was only found in MCF-7, after treatment with single agent or in combination. These studies suggest that nimotuzumab and celecoxib exert synergistic antiproliferation effects in breast cancer, which partly correlates with ER status. Due to Akt/mTOR, EMT and AIB1 pathways participate in this process, therefore, E-cadherin and AIB1 may be considered as possible biomarkers to predict response in ER-positive breast cancer cells treated with EGFR and COX-2 inhibitors.

  17. R(+)-methanandamide induces cyclooxygenase-2 expression in human neuroglioma cells via a non-cannabinoid receptor-mediated mechanism.

    PubMed

    Ramer, R; Brune, K; Pahl, A; Hinz, B

    2001-09-07

    Cannabinoids affect prostaglandin (PG) formation in the central nervous system through as yet unidentified mechanisms. Using H4 human neuroglioma cells, the present study investigates the effect of R(+)-methanandamide (metabolically stable analogue of the endocannabinoid anandamide) on the expression of the cyclooxygenase-2 (COX-2) enzyme. Incubation of cells with R(+)-methanandamide was accompanied by concentration-dependent increases in COX-2 mRNA, COX-2 protein, and COX-2-dependent PGE(2) synthesis. Moreover, treatment of cells with R(+)-methanandamide in the presence of interleukin-1beta led to an overadditive induction of COX-2 expression. The stimulatory effect of R(+)-methanandamide on COX-2 expression was mimicked by the structurally unrelated cannabinoid Delta(9)-tetrahydrocannabinol. Stimulation of both COX-2 mRNA expression and subsequent PGE(2) synthesis by R(+)-methanandamide was not affected by the selective CB(1) receptor antagonist AM-251 or the G(i/o) protein inactivator pertussis toxin. Enhancement of COX-2 expression by R(+)-methanandamide was paralleled by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK. Consistent with the activation of both kinases, R(+)-methanandamide-induced COX-2 mRNA expression and PGE(2) formation were abrogated in the presence of specific inhibitors of p38 MAPK (SB203580) and p42/44 MAPK activation (PD98059). Together, our results demonstrate that R(+)-methanandamide induces COX-2 expression in human neuroglioma cells via a cannabinoid receptor-independent mechanism involving activation of the MAPK pathway. In conclusion, induction of COX-2 expression may represent a novel mechanism by which cannabinoids mediate PG-dependent effects within the central nervous system.

  18. Cyclooxygenase-2 inhibitors for non-small-cell lung cancer: A phase II trial and literature review.

    PubMed

    Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Oizumi, Satoshi; Shinagawa, Naofumi; Sukoh, Noriaki; Harada, Masao; Ogura, Shigeaki; Munakata, Mitsuru; Dosaka-Akita, Hirotoshi; Isobe, Hiroshi; Nishimura, Masaharu

    2014-09-01

    Several preclinical and clinical studies have demonstrated that cyclooxygenase-2 (COX-2) inhibitors are efficient for the treatment of non-small-cell lung cancer (NSCLC). However, two recent phase III clinical trials using COX-2 inhibitors in combination with platinum-based chemotherapy failed to demonstrate a survival benefit. Thus, validation and discussion regarding the usefulness of COX-2 inhibitors for patients with NSCLC are required. We conducted a prospective trial using COX-2 inhibitors for the treatment of 50 NSCLC patients accrued between April, 2005 and July, 2006. Patients with untreated advanced NSCLC received oral meloxicam (150 mg daily), carboplatin (area under the curve = 5 mg/ml × min on day 1) and docetaxel (60 mg/m(2) on day 1) every 3 weeks. The primary endpoint was response rate. The response and disease control rates were 36.0 and 76.0%, respectively. The time-to-progression (TTP) and overall survival (OS) were 5.7 months [95% confidence interval (CI): 4.6-6.7] and 13.7 months (95% CI: 11.4-15.9), respectively. The 1-year survival ratio was 56.0%. Grade 3 neuropathy was observed in only 1 patient. We performed tumor immunohistochemistry for COX-2 and p27 and investigated the correlation between their expression and clinical outcome. COX-2 expression in the tumor tended to correlate with a higher response rate (50.0% in the high- and 18.2% in the low-COX-2 group; P=0.092). Based on our results and previous reports, various trial designs, such as the prospective use of COX-2 inhibitors only for patients with COX-2-positive NSCLC, including the exploratory analysis of biomarkers associated with the COX-2 pathway, may be worth further consideration.

  19. Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin.

    PubMed

    Ansari, Kausar M; Sung, You Me; He, Guobin; Fischer, Susan M

    2007-10-01

    The EP2 prostanoid receptor is one of the four subtypes of receptors for prostaglandin E2 (PGE2). We previously reported that deletion of EP2 led to resistance to chemically induced mouse skin carcinogenesis, whereas overexpression of EP2 resulted in enhanced tumor development. The purpose of this study was to investigate the underlying molecular mechanisms. We found that EP2 knockout mice had reduced cyclooxygenase-2 (COX-2) expression after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment compared with wild-type (WT) mice. Further, primary keratinocytes from EP2 transgenic mice had increased COX-2 expression after either TPA or PGE2 treatment and COX-2 expression was blocked by 10 microM SQ 22,536, an adenylate cyclase inhibitor. EP2 knockout mice had significantly decreased, whereas EP2 transgenic mice had significantly increased PGE2 production in response to a single treatment of TPA. Cyclic AMP response element-binding protein (CREB) phosphorylation was elevated to a greater extent in keratinocytes from EP2 transgenic mice compared with those of WT mice following PGE2 treatment. A protein kinase A (PKA) inhibitor reduced PGE2-mediated CREB phosphorylation in keratinocytes from EP2 transgenic mice. Furthermore, we found that there was no CREB phosphorylation in EP2 knockout mice following PGE2 treatment. PGE2-induced DNA synthesis (cell proliferation) was significantly decreased in keratinocytes from EP2 knockout mice following pretreatment with 10 microM SQ 22,536. Taken together, EP2 activation of the PKA/CREB-signaling pathway is responsible for keratinocyte proliferation and our findings reveal a positive feedback loop between COX-2 and PGE2 that is mediated by the EP2 receptor.

  20. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis

    PubMed Central

    Evans, Iona C.; Barnes, Josephine L.; Garner, Ian M.; Pearce, David R.; Maher, Toby M.; Shiwen, Xu; Renzoni, Elisabetta A.; Wells, Athol U.; Denton, Christopher P.; Laurent, Geoffrey J.; Abraham, David J.

    2016-01-01

    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4. PMID:26744410

  1. [Association between promoter methylation of cyclooxygenase-2 and expression, and precancerous gastric lesions in a high-risk population].

    PubMed

    Nie, Xiao-Rui; Zhang, Yang; Pan, Kai-Feng; Zhang, Lian; Zhou, Tong; Li, Ji-You; You, Wei-Cheng

    2009-07-01

    To evaluate the relationship between cyclooxygenase-2 (COX-2) methylation and expression, and precancerous gastric lesions. Methylation status of COX-2 was evaluated by quantitative denaturing high performance liquid chromatography (DHPLC) in 1201 subjects with different gastric lesions. COX-2 expression was assessed by immunohistochemistry and Helicobacter pylori (H pylori) infection status was determined by 13C-urea breath test (13 C-UBT). The percent of COX-2 methylation was increased steadily with the severity of gastric lesions, showing 10.6% of which with superficial gastritis/chronic atrophic gastritis (SG/CAG), 11.8% with intestinal metaplasia (IM) and 13.8% with indefinite dysplasia/dysplasia (Ind DYS/DYS) (chi2 = 8.312, P = 0.016). Stratified analysis indicated that the percents of COX-2 methylation in subjects with H pylori negative still increased with the severity of gastric lesions,of 8.8% in SG/CAG, 10.6% in IM and 14.1% in Ind DYS/DYS (chi2 = 6.629, P= 0.036). Moreover,the methylated proportion of COX-2 was negatively associated with the expression in gastric lesions, from 13.3% with mild expression to 7.6% with strong expression (chi2 = 10.400, P = 0.015). Our findings indicated that COX-2 methylation was significantly associated with precancerous gastric lesions and H pylori infection, suggesting that promoter methylation of COX-2 might play an important role in the progression of gastric lesions.

  2. Aberrant methylation of the specific CpG island portion regulates cyclooxygenase-2 gene expression in human gastric carcinomas.

    PubMed

    Hur, Keun; Song, Sang Hyun; Lee, Hye Seung; Ho Kim, Woo; Bang, Yung-Jue; Yang, Han-Kwang

    2003-10-24

    Although it has been well established that overexpression of cyclooxygenase-2 (Cox-2) favors tumorigenesis and metastasis, the molecular mechanism that regulates Cox-2 expression has not been well defined in gastric carcinoma. Aberrant methylation of the CpG island is known to be one of the powerful mechanisms for the suppression of gene expression, and usually, CpG islands are very rich in promoter region and exon-1 region. But, it is controversial whether Cox-2 gene expression is regulated by methylation of promoter region or exon-1 region. In this study, we examined whether the hyper-methylation mediated transcriptional silencing of Cox-2 also occurred in human gastric carcinoma tissues and which portion of CpG island methylation is important in Cox-2 gene expression. Genomic DNAs from human gastric carcinoma tissues were treated with three methylation-sensitive restriction enzymes and then Southern blot analysis was performed. Out of 30 primary gastric tumor samples, 26 cases (86.6%) showed overexpression of Cox-2. Four cases (13.3%) with relatively decreased Cox-2 gene expression were associated with the presence of aberrant methylation of Cox-2 CpG island. We also found that methylation of promoter region and not exon-1 region is related with the transcriptional silencing of Cox-2 in gastric carcinoma cancer by detailed methylation mapping using bisulfite sequencing analysis. Our results suggest that the DNA methylation-mediated transcriptional silencing of Cox-2 is a predominant mechanism for the down-regulation of Cox-2 expression in human gastric carcinoma. Furthermore, the results suggest that methylation of not exon-1 region but promoter region is important to regulation of Cox-2 gene expression.

  3. Paradoxical stimulation of cyclooxygenase-2 expression by glucocorticoids via a cyclic AMP response element in human amnion fibroblasts.

    PubMed

    Zhu, X O; Yang, Z; Guo, C M; Ni, X T; Li, J N; Ge, Y C; Myatt, L; Sun, K

    2009-11-01

    Human amnion fibroblasts produce abundant prostaglandins toward the end of gestation, which is one of the major events leading to parturition. In marked contrast to its well-described antiinflammatory effect, glucocorticoids have been shown to up-regulate cyclooxygenase-2 (COX-2) expression in human amnion fibroblasts. The mechanisms underlying this paradoxical induction of COX-2 by glucocorticoids have not been resolved. Using cultured human amnion fibroblasts, we found that the induction of COX-2 mRNA expression by cortisol was a glucocorticoid receptor (GR)-dependent process requiring ongoing transcription. Upon transfection of a COX-2 promoter-driven reporter gene into the amnion fibroblasts, cortisol stimulated the COX-2 promoter activity. This was abolished by mutagenesis of a cAMP response element (CRE) at -53 to approximately -59bp as well as by cotransfection of a plasmid expressing dominant-negative CRE-binding protein (CREB). The phosphorylation level of CREB-1 was significantly increased by cortisol treatment of the amnion fibroblasts, whereas the effect was attenuated either by the protein kinase A inhibitor H89 or the p38 -MAPK inhibitor SB203580. The induction of the COX-2 promoter activity and the phosphorylation of CREB-1 were also blocked by the GR antagonist RU486. Chromatin immunoprecipitation (ChIP) assay revealed that the binding of CREB-1 to the CRE of the COX-2 promoter was increased by cortisol treatment of the amnion fibroblasts. In conclusion, cortisol, via binding to GR, stimulated COX-2 expression by increasing phosphorylated CREB-1 binding to the CRE of the COX-2 gene. Cortisol may phosphorylate CREB-1 by activating either protein kinase A or p38-MAPK in the amnion fibroblasts.

  4. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  5. Regional protein levels of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey brain as a function of age

    PubMed Central

    Weerasinghe, Gayani R.; Coon, Steven L.; Bhattacharjee, Abesh Kumar; Harry, G. Jean; Bosetti, Francesca

    2006-01-01

    Limited evidence suggests that brain cytosolic phospholipase A2 (cPLA2), which selectively releases arachidonic acid (AA) from membrane phospholipids, and cyclooxygenase-2 (COX-2), the rate-limiting enzyme for AA metabolism to prostanoids, change as a function of normal aging. In this study, we examined the protein levels of cPLA2 and COX-2 enzymes in hippocampus, frontal pole and cerebellum from young (2–5 year-old), middle-aged (8–11 year-old) and old (23 year-old) male and female Rhesus monkeys. In the cerebellum, cPLA2 protein level was higher in the young brain as compared to levels seen at both middle-aged and old. Similarly, in the frontal pole, the young brain showed a higher level of COX-2 protein as compared to the levels seen at both older ages. For both, once an animal reached 8–11 years of age the levels appeared to remain relatively constant over the next decade. Immunohistochemistry of COX-2 protein within the brain demonstrated no significant change in the localization to neurons within the frontal pole. In the young brain, the distribution of a low level of COX-2 protein within numerous neurons was different than the decreased number of neurons stained at a greater intensity in the adult brain. Based on the previous reports of localization of cPLA2 and COX-2 at post-synaptic sites in neurons results from the current study suggest that the elevated protein levels of the two enzymes seen in the younger brain is related to the greater potential for synaptic plasticity across multiple neurons as a function of age and that cPLA2 and COX-2 may be considered as post-synaptic markers. PMID:16716827

  6. Release of cyclooxygenase-2 and lipoxin A4 from blood leukocytes in aspirin-exacerbated respiratory disease

    PubMed Central

    Heinemann, Akos; Keck, Tilman

    2016-01-01

    Background: The release of cyclooxygenase-2 (COX-2) and lipoxin A4 (LXA4) from blood mononuclear cells in patients with aspirin-exacerbated respiratory disease (AERD) is only partially understood. Objective: To investigate the presence of COX-2 and LXA4 in peripheral blood mononuclear cells (PBMC) derived from patients with AERD and with nasal polyps (NP) (designated as the AERD-NP group), patients with NP without AERD (the NP group), and healthy controls without sinus disease (the control group). Methods: Blood was taken from 14 patients in the AERD-NP group, 6 patients in the NP group, and 8 healthy subjects in the control group. After culturing of human PBMC, the presence of COX-2 protein and LXA4 (ELISA) was detected in the supernatant, and the results were compared among the groups. Results: COX-2 and LXA4 were detectable after culturing of PBMC in all patients in the AERD-NP and NP groups and in the control subjects. COX-2 was highest in the patients in the AERD-NP group, but the difference was not significant compared with patients with non-AERD polyp and with the control subjects. LXA4 was also highest in the AERD-NP group, but the difference was also not significant compared with the patients who were non-AERD polyp and the control subjects. Conclusion: Neither the release of COX-2 or LXA4 was different between the patients with AERD and with NPs, the patients without AERD and with NPs, and the healthy control group. The release of these proteins in AERD needs further investigation. PMID:28107149

  7. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    PubMed

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-01-31

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  8. Cyclooxygenase-2 Expression in Bladder Cancer and Patient Prognosis: Results from a Large Clinical Cohort and Meta-Analysis

    PubMed Central

    Czachorowski, Maciej J.; Amaral, André F. S.; Montes-Moreno, Santiago; Lloreta, Josep; Carrato, Alfredo; Tardón, Adonina; Morente, Manuel M.; Kogevinas, Manolis; Real, Francisco X.; Malats, Núria

    2012-01-01

    Aberrant overexpression of cyclooxygenase-2 (COX2) is observed in urothelial carcinoma of the bladder (UCB). Studies evaluating COX2 as a prognostic marker in UCB report contradictory results. We determined the prognostic potential of COX2 expression in UCB and quantitatively summarize the results with those of the literature through a meta-analysis. Newly diagnosed UCB patients recruited between 1998–2001 in 18 Spanish hospitals were prospectively included in the study and followed-up (median, 70.7 months). Diagnostic slides were reviewed and uniformly classified by expert pathologists. Clinical data was retrieved from hospital charts. Tissue microarrays containing non-muscle invasive (n = 557) and muscle invasive (n = 216) tumours were analyzed by immunohistochemistry using quantitative image analysis. Expression was evaluated in Cox regression models to assess the risk of recurrence, progression and disease-specific mortality. Meta-hazard ratios were estimated using our results and those from 11 additional evaluable studies. COX2 expression was observed in 38% (211/557) of non-muscle invasive and 63% (137/216) of muscle invasive tumors. Expression was associated with advanced pathological stage and grade (p<0.0001). In the univariable analyses, COX2 expression - as a categorical variable - was not associated with any of the outcomes analyzed. As a continuous variable, a weak association with recurrence in non-muscle invasive tumors was observed (p-value = 0.048). In the multivariable analyses, COX2 expression did not independently predict any of the considered outcomes. The meta-analysis confirmed these results. We did not find evidence that COX2 expression is an independent prognostic marker of recurrence, progression or survival in patients with UCB. PMID:23028744

  9. Effects of cyclooxygenase-2 inhibitor and adenosine triphosphate-sensitive potassium channel opener in syngeneic mouse islet transplantation.

    PubMed

    Juang, J-H; Kuo, C-H

    2010-12-01

    In the initial days after transplantation, islet grafts may be attacked by cytokines via cyclooxygenase-2 (COX-2), producing primary nonfunction. In addition, chronic overstimulation of β-cells may impair insulin secretion. To enhance the function of transplanted islets, the present study investigated the effects of rofecoxib, a COX-2 inhibitor, and NN414 (6-chloro-3-[1-methylcyclopropyl]amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide), an adenosine triphosphate-sensitive potassium channel opener, on islet transplantation. Male inbred C57BL/6 mice were used as donors and recipients. One hundred fifty islets were isolated via collagenase digestion and density gradient, and syngeneically transplanted under the kidney capsule in mice with streptozotocin-induced diabetes. Recipients were treated with or without rofecoxib, 10 mg/kg/d orally, or with or without NN414, 3 mg/kg/d orally, for 4 weeks. After transplantation, recipient body weight, blood glucose concentration, and intraperitoneal glucose tolerance were measured. The grafted kidney was extracted for determination of insulin content at 4 weeks. In the rofecoxib-treated and NN414-treated groups and both control groups, body weight remained stable, and the blood glucose concentration decreased progressively. However, at 4 weeks after transplantation in the groups treated or not treated with rofecoxib or NN414, no significant difference was observed in recipient body weight, blood glucose concentration, and glucose tolerance or in insulin content of the graft. These data indicate that posttransplantation treatment with rofecoxib or NN414 has no beneficial effect on transplantation outcome in diabetic mouse recipients engrafted with a marginal islet mass.

  10. Cyclooxygenase-2 Directs Microglial Activation-Mediated Inflammation and Oxidative Stress Leading to Intrinsic Apoptosis in Zn-Induced Parkinsonism.

    PubMed

    Chauhan, Amit Kumar; Mittra, Namrata; Patel, Devendra Kumar; Singh, Chetna

    2017-03-13

    Inflammation is decisive in zinc (Zn)-induced nigrostriatal dopaminergic neurodegeneration; however, the contribution of cyclooxygenase-2 (COX-2) is not yet known. The present study aimed to explore the role of COX-2 in Zn-induced Parkinsonism and its association with the microglial activation. Male Wistar rats were treated intraperitoneally (i.p.) with Zn as zinc sulphate (20 mg/kg) along with respective controls for 2-12 weeks. In a few sets, animals were also treated with/without celecoxcib (CXB, 20 mg/kg, i.p.), a selective COX-2 inhibitor. Indexes of the nigrostriatal neurodegeneration, oxidative stress, inflammation and apoptosis were measured in the animals/nigrostriatal tissue. Zn induced time-dependent increase in the expression of COX-2 while COX-1 expression was unaltered. Zn reduced the neurobehavioral activities, striatal dopamine content, tyrosine hydroxylase (TH) expression and number of dopaminergic neurons. While oxidative stress; microglial activation; expression of microglial cell surface marker-CD11b; cytochrome c release; caspase-9/3 activation; level of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 and Bcl-2-associated protein x (Bax) translocation from the cytosol to mitochondria were induced in the Zn-treated group, expression of B-cell lymphoma-2 (Bcl-2) was found to be reduced. CXB significantly attenuated Zn-induced increase in COX-2 expression and restored TH-expression, dopamine content, level of inflammatory cytokines and neurobehavioral indexes towards normalcy. Moreover, CXB also attenuated Zn-induced increase in microglial activation, oxidative stress and apoptotic markers towards normal levels. Results of the study thus demonstrate that COX-2 induces microglial activation that provokes the release of inflammatory mediators, which in turn augments oxidative stress and intrinsic apoptosis leading to dopaminergic neurodegeneration in Zn-induced Parkinsonism.

  11. Involvement of cyclooxygenase-1 and cyclooxygenase-2 activity in the therapeutic effect of ghrelin in the course of ethanol-induced gastric ulcers in rats.

    PubMed

    Warzecha, Z; Ceranowicz, P; Dembinski, M; Cieszkowski, J; Ginter, G; Ptak-Belowska, A; Dembinski, A

    2014-02-01

    Previous studies have shown that treatment with ghrelin exhibits protective and therapeutic effects in the gut. Aim of our present investigation was to examine the influence of ghrelin administration on the healing of ethanol-induced gastric ulcers and determine the role of cyclooxygenase-1 and cyclooxygenase-2 in this effect. Our studies were performed on male Wistar rats. Gastric ulcers were induced by intragastric administration of 75% ethanol. Ghrelin alone or in combination with cyclooxygenase inhibitors was administered twice, 1 and 13 hours after ethanol application. Cyclooxygenase-1 (COX-1) inhibitor (SC-560, 10 mg/kg/dose) or COX-2 inhibitor (celecoxib, 10 mg/kg/dose) were given 30 min prior to ghrelin. Twelve or 24 hours after administration of ethanol, rats were anesthetized and experiments were terminated. The study revealed that administration of ethanol induced gastric ulcers in all animals and this effect was accompanied by the reduction in gastric blood flow and mucosal DNA synthesis. Moreover induction of gastric ulcer by ethanol significantly increased mucosal expression of mRNA for COX-2, IL-1β and TNF-α. Treatment with ghrelin significantly accelerated gastric ulcer healing. Therapeutic effect of ghrelin was associated with significant reversion of the ulcer-evoked decrease in mucosal blood flow and DNA synthesis. Ghrelin administration also caused the reduction in mucosal expression of mRNA for IL-1β and TNF-α. Addition of SC-560 slightly reduced the therapeutic effect of ghrelin in the healing of ethanol-induced ulcer and the ulcer area in rats treated SC-560 plus ghrelin was significantly smaller than that observed in rats treated with saline or SC-560 alone. Pretreatment with celecoxib, a COX-2 inhibitor, abolished therapeutic effect of ghrelin. We concluded that treatment with ghrelin increases healing rate of gastric ulcers evoked by ethanol and this effect is related to improvement in mucosal blood flow, an increase in mucosal cell

  12. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy.

    PubMed

    Frenay, Anne-Roos S; Yu, Lili; van der Velde, A Rogier; Vreeswijk-Baudoin, Inge; López-Andrés, Natalia; van Goor, Harry; Silljé, Herman H; Ruifrok, Willem P; de Boer, Rudolf A

    2015-03-01

    Galectin-3 activation is involved in the pathogenesis of renal damage and fibrogenesis. Limited data are available to suggest that galectin-3-targeted intervention is a potential therapeutic candidate for the prevention of chronic kidney disease. Homozygous TGR(mREN)27 (REN2) rats develop severe high blood pressure (BP) and hypertensive end-organ damage, including nephropathy and heart failure. Male REN2 rats were treated with N-acetyllactosamine [galectin-3 inhibitor (Gal3i)] for 6 wk; untreated REN2 and Sprague-Dawley rats served as controls. We measured cardiac function with echocardiogram and invasive hemodynamics before termination. BP and proteinuria were measured at baseline and at 3 and 6 wk. Plasma creatinine was determined at 6 wk. Renal damage was assessed for focal glomerular sclerosis, glomerular desmin expression, glomerular and interstitial macrophages, kidney injury molecule-1 expression, and α-smooth muscle actin expression. Inflammatory cytokines and extracellular matrix proteinases were quantified by quantitative real-time PCR. Systolic BP was higher in control REN2 rats, with no effect of Gal3i treatment. Plasma creatinine and proteinuria were significantly increased in control REN2 rats; Gal3i treatment reduced both. Renal damage (focal glomerular sclerosis, desmin, interstitial macrophages, kidney injury molecule-1, α-smooth muscle actin, collagen type I, and collagen type III) was also improved by Gal3i. All inflammatory markers (CD68, IL-68, galectin-3, and monocyte chemoattractant protein-1) were elevated in control REN2 rats and attenuated by Gal3i. Markers of extracellular matrix turnover were marginally altered in untreated REN2 rats compared with Sprague-Dawley rats. In conclusion, galectin-3 inhibition attenuated hypertensive nephropathy, as indicated by reduced proteinuria, improved renal function, and decreased renal damage. Drugs binding to galectin-3 may be therapeutic candidates for the prevention of chronic kidney disease.

  13. Acetaminophen inhibits neuronal inflammation and protects neurons from oxidative stress

    PubMed Central

    Tripathy, Debjani; Grammas, Paula

    2009-01-01

    Background Recent studies have demonstrated a link between the inflammatory response, increased cytokine formation, and neurodegeneration in the brain. The beneficial effects of anti-inflammatory drugs in neurodegenerative diseases, such as Alzheimer's disease (AD), have been documented. Increasing evidence suggests that acetaminophen has unappreciated anti-oxidant and anti-inflammatory properties. The objectives of this study are to determine the effects of acetaminophen on cultured brain neuronal survival and inflammatory factor expression when exposed to oxidative stress. Methods Cerebral cortical cultured neurons are pretreated with acetaminophen and then exposed to the superoxide-generating compound menadione (5 μM). Cell survival is assessed by MTT assay and inflammatory protein (tumor necrosis factor alpha, interleukin-1, macrophage inflammatory protein alpha, and RANTES) release quantitated by ELISA. Expression of pro- and anti-apoptotic proteins is assessed by western blots. Results Acetaminophen has pro-survival effects on neurons in culture. Menadione, a superoxide releasing oxidant stressor, causes a significant (p < 0.001) increase in neuronal cell death as well as in the release of tumor necrosis factor alpha, interleukin-1, macrophage inflammatory protein alpha, and RANTES from cultured neurons. Pretreatment of neuronal cultures with acetaminophen (50 μM) increases neuronal cell survival and inhibits the expression of these cytokines and chemokines. In addition, we document, for the first time, that acetaminophen increases expression of the anti-apoptotic protein Bcl2 in brain neurons and decreases the menadione-induced elevation of the proapoptotic protein, cleaved caspase 3. We show that blocking acetaminophen-induced expression of Bcl2 reduces the pro-survival effect of the drug. Conclusion These data show that acetaminophen has anti-oxidant and anti-inflammatory effects on neurons and suggest a heretofore unappreciated therapeutic potential for

  14. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression.

    PubMed

    Katsukawa, Michiko; Nakata, Rieko; Koeji, Satomi; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2011-01-01

    We evaluated the effects of rose oil on the peroxisome proliferator-activated receptor (PPAR) and cyclooxygenase-2 (COX-2). Citronellol and geraniol, the major components of rose oil, activated PPARα and γ, and suppressed LPS-induced COX-2 expression in cell culture assays, although the PPARγ-dependent suppression of COX-2 promoter activity was evident only with citronellol, indicating that citronellol and geraniol were the active components of rose oil.

  15. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  16. The inhibition and protection of cholinesterase by physostigmine and pyridostigmine against Soman poisoning in vivo.

    PubMed

    Xia, D Y; Wang, L X; Pei, S Q

    1981-01-01

    It has been shown that some reversible cholinesterase (ChE) inhibitors as physostigmine and pyridostigmine are prophylactically effective in organophosphate poisoning. The inhibition and protection of ChE against Soman poisoning with the above mentioned drugs was investigated in mice. (1) Physostigmine and pyridostigmine significantly inhibited the ChE in whole blood in vivo and their inhibitory potencies with equitoxic doses were approximately equal (1/5LD50 about 30%; 1/2 LD50 about 45% respectively). Physostigmine also significantly inhibited brain ChE and its potency was slightly weaker than that in blood; but pyridostigmine only slightly inhibited brain ChE (17%) with large dose (1/2 LD50). The extent of inhibition was in parallel with the dosage of the drugs used. (2) Physostigmine had definite protection in the blood and brain ChE against Soman poisoning. The extent of protection was in parallel with the dosage used. The protection of blood ChE by pyridostigmine was weaker than that by physostigmine. There was no protection of brain ChE by pyridostigmine. (3) The inhibitory potency of equitoxic doses of physostigmine and pyridostigmine in the ChE of diaphragm muscle was equal too (1/2 LD50 about 45%), and the protective effect of physostigmine was still greater than that of pyridostigmine in Soman poisoning. (4) The time course of blood ChE inhibition by physostigmine in vivo was of short duration. While 30 minutes after administration of physostigmine, the ChE activity gradually recovered and it returned to normal level after 4 hours. The blood ChE inhibition by pyridostigmine reached a peak level after 2 hours, and the ChE activity slowly increased after 4 hours, but there was 30% of ChE activity still inhibited after 8 hours. Physostigmine and pyridostigmine, the reversible ChE inhibitors with carbamate structure, have definite ChE protection against Soman poisoning. The prophylactic efficacy was obviously correlated with their ChE protective potency

  17. EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection.

    PubMed

    Olenchock, Benjamin A; Moslehi, Javid; Baik, Alan H; Davidson, Shawn M; Williams, Jeremy; Gibson, William J; Chakraborty, Abhishek A; Pierce, Kerry A; Miller, Christine M; Hanse, Eric A; Kelekar, Ameeta; Sullivan, Lucas B; Wagers, Amy J; Clish, Clary B; Vander Heiden, Matthew G; Kaelin, William G

    2016-02-25

    Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.

  18. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression

    PubMed Central

    Posadas, Inmaculada; Bucci, Mariarosaria; Roviezzo, Fiorentina; Rossi, Antonietta; Parente, Luca; Sautebin, Lidia; Cirino, Giuseppe

    2004-01-01

    Injection of carrageenan 1% (50 μl) in the mouse paw causes a biphasic response: an early inflammatory response that lasts 6 h and a second late response that peaks at 72 h, declining at 96 h. Only mice 7- or 8-week old, weighing 32–34 g, displayed a consistent response in both phases. In 8-week-old mice, myeloperoxidase (MPO) levels are significantly elevated in the early phase at 6 h and reach their maximum at 24 h to decline to basal value at 48 h. Nitrate+nitrite (NOx) levels in the paw are maximal after 2 h and slowly decline thereafter in contrast to prostaglandin E2 levels that peak in the second phase at the 72 h point. Western blot analysis showed that inducible nitric oxide synthase (iNOS) is detectable at 6 h and cyclooxygenase 2 (COX-2) at 24 h point, respectively. Analysis of endothelial nitric oxide synthase (eNOS), iNOS and COX-2 expression at 6 and 24 h in 3–8-week-old mice demonstrated that both eNOS and iNOS expressions are dependent upon the age–weight of mice, as opposite to COX-2 that is present only in the second phase of the oedema and is not linked to mouse age–weight. Subplantar injection of carrageenan to C57BL/6J causes a biphasic oedema that is significantly reduced by about 20% when compared to CD1 mice. Interestingly, in these mice, iNOS expression is absent up to 6 h, as opposite to CD1, and becomes detectable at the 24 h point. Cyclooxygenase (COX-1) expression is upregulated between 4 and 24 h after carrageenan injection, whereas in CD1 mice COX-1 remains unchanged after irritant agent injection. MPO levels are maximal at the 24 h point and they are significantly lower, at 6 h point, than MPO levels detected in CD1 mice. In conclusion, mouse paw oedema is biphasic and age-weight dependent. The present results are the first report on the differential expressions of eNOS, iNOS, COX-1 and COX-2 in response to carrageenan injection in the two phases of the mouse paw oedema. PMID:15155540

  19. The -765G>C polymorphism in the cyclooxygenase-2 gene and digestive system cancer: a meta-analysis.

    PubMed

    Zhao, Fen; Cao, Yue; Zhu, Hong; Huang, Min; Yi, Cheng; Huang, Ying

    2014-01-01

    Published data regarding associations between the -765G>C polymorphism in cyclooxygenase-2 (COX-2) gene and digestive system cancer risk have been inconclusive. The aim of this study was to comprehensively evaluate the genetic risk of the -765G>C polymorphism in the COX-2 gene for digestive system cancer. A search was performed in Pubmed, Medline (Ovid), Embase, CNKI, Weipu, Wanfang and CBM databases, covering all studies until Feb 10, 2014. Statistical analysis was performed using Revman5.2. A total of 10,814 cases and 16,174 controls in 38 case-control studies were included in this meta-analysis. The results indicated that C allele carriers (GC+CC) had a 20% increased risk of digestive system cancer when compared with the homozygote GG (odds ratio (OR)=1.20, 95% confidence interval (CI), 1.00-1.44 for GC+CC vs GG). In the subgroup analysis by ethnicity, significant elevated risks were associated with C allele carriers (GC+CC) in Asians (OR = 1.46, 95% CI=1.07-2.01, and p=0.02) and Africans (OR=2.12, 95% CI=1.57-2.87, and p< 0.00001), but not among Caucasians, Americans and mixed groups. For subgroup analysis by cancer type (GC+CC vs GG), significant associations were found between the -765G>C polymorphism and higher risk for gastric cancer (OR=1.64, 95% CI=1.03-2.61, and p=0.04), but not for colorectal cancer, oral cancer, esophageal cancer, and others. Regarding study design (GC+CC vs GG), no significant associations were found in then population-based case-control (PCC), hospital-based case-control (HCC) and family-based case-control (FCC) studies. This meta-analysis suggested that the -765G>C polymorphism of the COX-2 gene is a potential risk factor for digestive system cancer in Asians and Africans and gastric cancer overall.

  20. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2.

    PubMed

    Shin, Vivian Y; Wu, William K K; Ye, Yi-Ni; So, Wallace H L; Koo, Marcel W L; Liu, Edgar S L; Luo, Jiing-Chyuan; Cho, Chi-Hin

    2004-12-01

    Early studies revealed that cigarette smoke promotes gastric cancer growth through the induction of cyclooxygenase-2 (COX-2). Nicotine, one of the active ingredients in cigarette smoke, has detrimental effects in the stomach. To date, there is no direct evidence to validate the effect of nicotine on gastric tumor growth and its carcinogenic mechanism(s). We therefore investigated whether nicotine could promote tumor growth and neovascularization in vivo, and the biological mechanism(s) in connection with the signaling cascade involving COX-2 and extracellular signal-regulated protein kinase (ERK). Athymic nude mice, with gastric cancer cells (AGS) orthotopically implanted into the gastric wall, treated with nicotine (50 or 200 microg/ml) in their drinking water for 3 months developed larger tumor areas than mice in the control group. Nicotine further increased proliferating cellular nuclear antigen (PCNA) staining and microvessel density by 70 and 30%, respectively, with concomitant activation of ERK phosphorylation, COX-2 and vascular endothelial growth factor (VEGF) expression in the tumors. Intraperitoneal administration of a selective COX-2 inhibitor (SC-236, 2 mg/kg) prevented the nicotine-induced tumor growth and neovascularization dose-dependently. Consistent with our animal model, an in vitro study also demonstrated that incubation with nicotine (50-200 microg/ml) for 5 h stimulated cell proliferation dose-dependently and increased COX-2 expression, prostaglandin E(2) (PGE(2)) and VEGF release, as well as activation of ERK phosphorylation. Pre-treatment with specific mitogen-activated protein kinase kinase (MEK) inhibitors (U0126 or PD98059) attenuated COX-2 expression and subsequent PGE(2) release by nicotine. Furthermore, the stimulatory action of nicotine on cancer cell growth and angiogenic factor VEGF production was suppressed by inhibitors of MEK (U0126) and COX-2 (SC-236). These findings reveal a direct promoting action of nicotine on the growth of

  1. The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers

    PubMed Central

    Delage, Barbara; Rullier, Anne; Capdepont, Maylis; Rullier, Eric; Cassand, Pierrette

    2007-01-01

    Background Epidemiological studies on risk factors for colorectal cancer (CRC) have mainly focused on diet, and being overweight is now recognized to contribute significantly to CRC risk. Overweight and obesity are defined as an excess of adipose tissue mass and are associated with disorders in lipid metabolism. Peroxisome proliferator-activated receptors (PPARs) and retinoid-activated receptors (RARs and RXRs) are important modulators of lipid metabolism and cellular homeostasis. Alterations in expression and activity of these ligand-activated transcription factors might be involved in obesity-associated diseases, which include CRC. Cyclooxygenase-2 (COX-2) also plays a critical role in lipid metabolism and alterations in COX-2 expression have already been associated with unfavourable clinical outcomes in epithelial tumors. The objective of this study is to examine the hypothesis questioning the relationship between alterations in the expression of nuclear receptors and COX-2 and the weight status among male subjects with CRC. Method The mRNA expression of the different nuclear receptor subtypes and of COX-2 was measured in 20 resected samples of CRC and paired non-tumor tissues. The association between expression patterns and weight status defined as a body mass index (BMI) was statistically analyzed. Results No changes were observed in PPARγ mRNA expression while the expression of PPARδ, retinoid-activated receptors and COX-2 were significantly increased in cancer tissues compared to normal colon mucosa (P ≤ 0.001). The weight status appeared to be an independent factor, although we detected an increased level of COX-2 expression in the normal mucosa from overweight patients (BMI ≥ 25) compared to subjects with healthy BMI (P = 0.002). Conclusion Our findings show that alterations in the pattern of nuclear receptor expression observed in CRC do not appear to be correlated with patient weight status. However, the analysis of COX-2 expression in normal colon

  2. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    SciTech Connect

    Simões, Maylla Ronacher; Aguado, Andrea; Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice; Zhenyukh, Olha; Briones, Ana María; Alonso, María Jesús; Vassallo, Dalton Valentim; Salaices, Mercedes

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  3. Cyclooxygenase 2, pS2, inducible nitric oxide synthase and transforming growth factor alpha in gastric adaptation to stress

    PubMed Central

    Nie, Shi-Nan; Sun, Hai-Chen; Wu, Xue-Hao; Qian, Xiao-Ming

    2004-01-01

    AIM: To determine the role of mucosal gene expression of cyclooxygenase 2 (COX-2), pS2 (belongs to trefoil peptides), inducible nitric oxide synthase (iNOS) and transforming growth factor alpha (TGFα ) in gastric adaptation to water immersion and restraint stress (WRS) in rats. METHODS: Wistar rats were exposed to single or repeated WRS for 4 h every other day for up to 6 d. Gastric mucosal blood flow (GMBF) was measured by laser Doppler flowmeter-3. The extent of gastric mucosal lesions were evaluated grossly and histologically and expressions of COX-2, pS2, iNOS and TGFα were determined by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot. RESULTS: The damage to the surface of gastric epithelium with focal areas of deep haemorrhagic necrosis was induced by repeated WRS.The adaptative cytoprotection against stress was developed with activation of cell proliferation in the neck regions of gastric glands. The ulcer index (UI) in groups II, III and IV was markedly reduced as compared with group I (I: 47.23 ± 1.20; IV: 10.39 ± 1.18,P < 0.01). GMBF significantly decreased after first exposure to WRS with an adaptive increasement of GMBF in experimental groups after repetitive challenges with WRS. After the 4th WRS, the value of GMBF almost restored to normal level (I: 321.87 ± 8.85; IV: 455.95 ± 11.81,P < 0.01). First WRS significantly decreased the expression of pS2 and significantly increased the expressions of COX-2, iNOS and TGFα . After repeated WRS, pS2 and TGFα expressions gradually increased (pS2: I: 0.37 ± 0.02; IV: 0.77 ± 0.01; TGFα : I: 0.86 ± 0.01; IV: 0.93 ± 0.03,P < 0.05) with a decrease in the expressions of COX-2 and iNOS (COX-2: I: 0.45 ± 0.02; IV: 0.22 ± 0.01; iNOS: I: 0.93 ± 0.01; IV: 0.56 ± 0.01, P < 0.01). Expressions of pS2, COX-2, iNOS and TGFα showed regular changes with a good relationship among them. CONCLUSION: Gastric adaptation to WRS injury involves enhanced cell proliferation,increased expression

  4. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia.

    PubMed

    Gomes, Rachel Novaes; Castro-Faria-Neto, Hugo C; Bozza, Patricia T; Soares, Milena B P; Shoemaker, Charles B; David, John R; Bozza, Marcelo T

    2005-12-01

    Calcitonin gene-related peptide (CGRP), a potent vasodilatory peptide present in central and peripheral neurons, is released at inflammatory sites and inhibits several macrophage, dendritic cell, and lymphocyte functions. In the present study, we investigated the role of CGRP in models of local and systemic acute inflammation and on macrophage activation induced by lipopolysaccharide (LPS). Intraperitoneal pretreatment with synthetic CGRP reduces in approximately 50% the number of neutrophils in the blood and into the peritoneal cavity 4 h after LPS injection. CGRP failed to inhibit neutrophil recruitment induced by the direct chemoattractant platelet-activating factor, whereas it significantly inhibited LPS-induced KC generation, suggesting that the effect of CGRP on neutrophil recruitment is indirect, acting on chemokine production by resident cells. Pretreatment of mice with 1 mug of CGRP protects against a lethal dose of LPS. The CGRP-induced protection is receptor mediated because it is completely reverted by the CGRP receptor antagonist, CGRP 8-37. The protective effect of CGRP correlates with an inhibition of TNF-alpha and an induction of IL-6 and IL-10 in mice sera 90 min after LPS challenge. Finally, CGRP significantly inhibits LPS-induced TNF-alpha released from mouse peritoneal macrophages. These results suggest that activation of the CGRP receptor on macrophages during acute inflammation could be part of the negative feedback mechanism controlling the extension of acute inflammatory responses.

  5. Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450

    SciTech Connect

    Verschoyle, R.D.; Dinsdale, D. )

    1990-04-01

    Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P{double bond}S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trimethylphosphorothionate and p-xylene were compared as protective agents against the effect of OOS-trimethylphosphorothiolate and two other lung toxins ipomeanol and 1-nitronaphthalene that are known to be activated by cytochrome P-450. The effects of these protective compounds, in vivo, on pulmonary cytochrome P-450 activity were also determined. Both compounds inhibited pentoxyresorufin O-deethylase activity, but not ethoxyresorufin O-deethylase. The phosphorothionate was most effective against lung injury caused by the phosphorothiolates and 1-nitronaphthalene, whereas p-xylene was much more effective against ipomeanol. {beta}-Naphthoflavone, which induces pulmonary ethoxyresorufin O-deethylase activity, did not protect against phosphorothiolate or 1-nitronaphthalene injury, and it was only marginally effective in decreasing the toxicity or ipomeanol.

  6. Protection from heat-induced protein migration and DNA repair inhibition by cycloheximide.

    PubMed

    Armour, E P; Lee, Y J; Corry, P M; Borrelli, M J

    1988-12-15

    The mechanism by which Cycloheximide (CHM) protects cells from heat induced killing has been investigated. Cycloheximide (10 micrograms/ml) added for 2 hr before and during a 3 hour heating at 43 degrees C prevented a 40% increase of heat-induced protein accumulation in the nucleus and protected cells (0.0001 vs. 0.15 surviving fraction) from heat-induced killing. Heat-induced DNA repair inhibition was also suppressed when cells were treated with CHM in the above manner. This combination of results suggests that protein accumulation in the nucleus and inhibition of DNA repair are related and these events are associated with CHM protection from heat induced cell killing.

  7. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways

    PubMed Central

    Singh, Bhupendra; Shoulson, Rivka; Chatterjee, Anwesha; Ronghe, Amruta; Bhat, Nimee K.; Dim, Daniel C.; Bhat, Hari K.

    2014-01-01

    The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective

  8. Ghrelin protects MES23.5 cells against rotenone via inhibiting mitochondrial dysfunction and apoptosis.

    PubMed

    Yu, Jianhan; Xu, Huamin; Shen, Xiaoli; Jiang, Hong

    2016-04-01

    Ghrelin is an endogenous ligand for the growth hormone secretagogue (GHS) receptor and has several important physiological functions. Recently, particular attention has been paid to its neuroprotective effect. Rotenone is used to investigate the pathogenesis of Parkinson's disease (PD) for its ability to inhibit mitochondrial complex I. The current study was carried out to investigate the neuroprotective effects of ghrelin against rotenone in MES 23.5 dopaminergic cells and explored the possible mechanisms underlying this protection. Our results showed that rotenone induced significant decrease in cell viability which was counteracted by ghrelin treatment. In addition, rotenone challenge reduced mitochondrial membrane potential, inhibited the activity of mitochondrial complex I and depressed cytochrome C release from mitochondria. This mitochondrial dysfunction was reversed by ghrelin treatment. Furthermore, our results demonstrated that ghrelin protected MES23.5 cells against rotenone-induced apoptosis by inhibiting activation of caspase-3. Overall, our findings showed ghrelin provided protective effects on MES23.5 dopaminergic cells against rotenone via restoring mitochondrial dysfunction and inhibiting mitochondrial dependent apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion.

    PubMed

    Rodrigo, G C; Lawrence, C L; Standen, N B

    2002-05-01

    We have investigated the protective effects of pretreatment with the mitochondrial uncoupler 2,4-dinitrophenol on the cellular damage induced by metabolic inhibition (with cyanide and iodoacetic acid) and reperfusion in freshly isolated adult rat ventricular myocytes. Damage was assessed from changes in cell length and morphology measured using video microscopy. Intracellular Ca(2+), mitochondrial membrane potential, and NADH were measured using fura-2, tetramethylrhodamine ethyl ester and autofluorescence, respectively. During metabolic inhibition myocytes developed rigor, and on reperfusion 73.6+/-8.1% hypercontracted and 10.8+/-6.7% recovered contractile function in response to electrical stimulation. Intracellular Ca(2+) increased substantially, indicated by a rise in the fura-2 ratio (340/380 nm) on reperfusion from 0.86+/-0.04 to 1.93+/-0.18. Myocytes pretreated with substrate-free Tyrode containing 50 microm dinitrophenol showed reduced reperfusion injury: 29.0+/-7.4% of cells hypercontracted and 65.3+/-7.3% recovered contractile function (P<0.001 vs control). The fura-2 ratio on reperfusion was also lower at 1.01+/-0.08. Fluorescence measurements showed that dinitrophenol caused mitochondrial depolarisation, and decreased NADH. The presence of the substrates glucose and pyruvate reduced these effects, and abolished the protection against damage by metabolic inhibition and reperfusion. However protection was unaffected by block of ATP-sensitive potassium channels. Thus the protective effects of pretreatment with dinitrophenol may result from a reduction in NADH in response to mitochondrial depolarisation.

  10. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    SciTech Connect

    Cao, Xueming; Chen, Aihua Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  11. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis.

    PubMed

    Zhang, Lei; Cheng, Linfang; Wang, Qiqi; Zhou, Dongchen; Wu, Zhigang; Shen, Ling; Zhang, Li; Zhu, Jianhua

    2015-03-01

    Coronary artery disease (CAD) is a major health problem worldwide. The most severe form of CAD is acute coronary syndrome (ACS). Recent studies have demonstrated the beneficial role of atorvastatin in ACS; however, the mechanisms underlying this effect have not been fully clarified. Growing evidence indicates that activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in oxidative stress-induced cardiomyocyte apoptosis during ACS. In this study, we examined whether atorvastatin inhibits H2O2-induced LOX-1 expression and H9c2 cardiomyocyte apoptosis, and investigated the underlying signaling pathway. Treatment of H9c2 cardiomyocytes with H2O2 resulted in elevated expression of LOX-1 mRNA and protein, as well as increased caspase-3 and -9 protein expression and cell apoptosis. H2O2-induced LOX-1 expression, caspase protein expression, and cardiomyocyte apoptosis were attenuated by pretreatment with atorvastatin. Atorvastatin activated H2O2-inhibited phosphorylation of Akt in a concentration-dependent manner. The Akt inhibitor, LY294002, inhibited the effect of atorvastatin on inducing Akt phosphorylation and on suppressing H2O2-mediated caspase up-regulation and cell apoptosis. These findings indicate that atorvastatin protects cardiomyocyte from oxidative stress via inhibition of LOX-1 expression and apoptosis, and that activation of H2O2-inhibited phosphorylation of Akt may play an important role in the protective function of atorvastatin.

  12. Comparison of selective and non selective cyclo-oxygenase 2 inhibitors in experimental colitis exacerbation: role of leukotriene B4 and superoxide dismutase.

    PubMed

    Breganó, José Wander; Barbosa, Décio Sabbatini; El Kadri, Mirian Zebian; Rodrigues, Maria Aparecida; Cecchini, Rubens; Dichi, Isaias

    2014-01-01

    Nonsteroidal anti-inflammatory drugs are considered one of the most important causes of reactivation of inflammatory bowel disease. With regard to selective cyclo-oxygenase 2 inhibitors, the results are controversial in experimental colitis as well as in human studies. The aim this study is to compare nonsteroidal anti-inflammatory drugs effects, selective and non selective cyclo-oxygenase 2 inhibitors, in experimental colitis and contribute to the understanding of the mechanisms which nonsteroidal anti-inflammatory drugs provoke colitis exacerbation. Six groups of rats: without colitis, with colitis, and colitis treated with celecoxib, ketoprofen, indometacin or diclofenac. Survival rates, hemoglobin, plasmatic albumin, colonic tissue of interleukin-1ß, interleukin-6, tumor necrosis factor alpha, prostaglandin E2, catalase, superoxide dismutase, thiobarbituric acid-reactive substances, chemiluminescence induced by tert-butil hydroperoxides, and tissue and plasmatic leukotriene B4 were determined. The groups treated with diclofenac or indometacin presented lower survival rates, hemoglobin and albumin, higher tissue and plasmatic leukotriene B4 and tissue superoxide dismutase than the group treated with celecoxib. Ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib, concerning to survival rate and albumin. The groups without colitis, with colitis and with colitis treated with celecoxib showed leukotriene B4 and superoxide dismutase lower levels than the groups treated with nonselective cyclo-oxygenase 2 inhibitors. Diclofenac and indometacin presented the highest degree of induced colitis exacerbation with nonsteroidal anti-inflammatory drugs, celecoxib did not show colitis exacerbation, and ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib. These results suggest that leukotriene B4 and superoxide dismutase can be involved in the exacerbation of experimental colitis by nonselective nonsteroidal anti-inflammatory drugs.

  13. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    PubMed

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.

  14. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells.

    PubMed

    Roy, Soumya Sinha; Biswas, Swati; Ray, Manju; Ray, Subhankar

    2003-06-01

    Previous publications from our laboratory have shown that methylglyoxal inhibits mitochondrial respiration of malignant and cardiac cells, but it has no effect on mitochondrial respiration of other normal cells [Biswas, Ray, Misra, Dutta and Ray (1997) Biochem. J. 323, 343-348; Ray, Biswas and Ray (1997) Mol. Cell. Biochem. 171, 95-103]. However, this inhibitory effect of methylglyoxal is not significant in cardiac tissue slices. Moreover, post-mitochondrial supernatant (PMS) of cardiac cells could almost completely protect the mitochondrial respiration against the inhibitory effect of methylglyoxal. A systematic search indicated that creatine present in cardiac cells is responsible for this protective effect. Glutathione has also some protective effect. However, creatine phosphate, creatinine, urea, glutathione disulphide and beta-mercaptoethanol have no protective effect. The inhibitory and protective effects of methylglyoxal and creatine respectively on cardiac mitochondrial respiration were studied with various concentrations of both methylglyoxal and creatine. Interestingly, neither creatine nor glutathione have any protective effect on the inhibition by methylglyoxal on the mitochondrial respiration of Ehrlich ascites carcinoma cells. The creatine and glutathione contents of several PMS, which were tested for the possible protective effect, were measured. The activities of two important enzymes, namely glyoxalase I and creatine kinase, which act upon glutathione plus methylglyoxal and creatine respectively, were also measured in different PMS. Whether mitochondrial creatine kinase had any role in the protective effect of creatine had also been investigated using 1-fluoro-2,4-dinitrobenzene, an inhibitor of creatine kinase. The differential effect of creatine on mitochondria of cardiac and malignant cells has been discussed with reference to the therapeutic potential of methylglyoxal.

  15. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity

    PubMed Central

    Huelsenbeck, J; Henninger, C; Schad, A; Lackner, K J; Kaina, B; Fritz, G

    2011-01-01

    Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. In mice, lovastatin mitigated acute doxorubicin-induced heart and liver damage as indicated by reduced mRNA levels of the pro-fibrotic cytokine connective tissue growth factor (CTGF) and pro-inflammatory cytokines, respectively. Lovastatin also protected from doxorubicin-provoked subacute cardiac damage as shown by lowered mRNA levels of CTGF and atrial natriuretic peptide. Increase in the serum concentration of troponin I and cardiac fibrosis following doxorubicin treatment were also reduced by lovastatin. Whereas protecting the heart from harmful doxorubicin effects, lovastatin augmented its anticancer efficacy in a mouse xenograft model with human sarcoma cells. These data show that statins lower the incidence of cardiac tissue injury after anthracycline treatment in a Rac1-dependent manner, without impairing the therapeutic efficacy. PMID:21833028

  16. Effect of etoricoxib, a cyclooxygenase-2 selective inhibitor on aberrant crypt formation and apoptosis in 1,2 dimethyl hydrazine induced colon carcinogenesis in rat model.

    PubMed

    Sharma, P; Kaur, J; Sanyal, S N

    2010-01-01

    Etoricoxib, a second generation selective cyclooxygenase-2 (COX-2) inhibitor had been studied for the chemopreventive response at its therapeutic anti-inflammatory dose in 1,2-dimethylhydrazine (DMH) induced colon carcinogenesis in rat model. Eight to ten weeks old male rats of Sprague-Dawley strain were divided into four groups. While group 1 served as control and received the vehicle of the drugs, group 2 and 3 were administered freshly prepared DMH in 1mM EDTA-saline (pH 7.0) (30 mg/kg body wt/week, subcutaneously). Group 3 was also given a daily treatment of etoricoxib (0.6 mg/kg body wt orally) while the group 4 received the same amount of etoricoxib only, prepared in 0.5% carboxymethyl cellulose. Animals were sacrificed at the end of 6 weeks, body weight recorded and the colons were subjected to macroscopic and histopathological studies. The maximum number of raised mucosal lesions called the multiple plaque lesions (MPL) were found in the DMH group which significantly reverted back in the DMH + etoricoxib group, while very few MPLs were recorded in the control and etoricoxib only group. Similarly, the number of aberrant crypt foci (ACF), the point of future carcinogenic growth, was recorded more in the DMH group and significantly less in the DMH + etoricoxib group. The histopathological analysis showed the presence of severe hyperplasia, occasional dysplasia and aggregates of lymphoid cells in the localized regions. Etoricoxib group showed near normal histological features with the crypt architecture and the surrounding stromal tissue remaining intact. To ascertain the molecular mechanism of such anti-carcinogenic features the colonocytes were isolated and studied in primary culture for the evidence of apoptosis by fluorescent staining and genotoxic changes by single cell gel electrophoresis assay (comet assay) which shows that the DMH treated animals produced much less apoptotic nuclei but more comet producing cell, while these features were reverted back

  17. Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration.

    PubMed

    Minghetti, Luisa; Greco, Anita; Potenza, Rosa Luisa; Pezzola, Antonella; Blum, David; Bantubungi, Kadiombo; Popoli, Patrizia

    2007-05-01

    Inhibition of adenosine A2A receptors (A2ARs) is neuroprotective in several experimental models of striatal diseases. However, the mechanisms elicited by A2AR blockade are only partially known, and critical aspects about the potential beneficial effects of A2AR antagonism in models of neurodegeneration still await elucidation. In the present study, we analyzed the influence of the selective A2AR antagonist SCH 58261 in a rat model of striatal excitotoxicity obtained by unilateral intrastriatal injection of quinolinic acid (QA). We found that SCH 58261 differently affected the expression of cyclooxygenase-2 (COX-2) induced by QA in cortex and striatum. The antagonist enhanced COX-2 expression in cortical neurons and prevented it in striatal microglia-like cells. Similarly, SCH 58261 differently regulated astrogliosis and microglial activation in the 2 brain regions. In addition, the A2AR antagonist prevented the QA-induced increase in striatal brain-derived neurotrophic factor levels. Because COX-2 activity has been linked to excitotoxic processes and because brain-derived neurotrophic factor depletion has been observed in mouse models as well as in patients with Huntington disease, we suggest that the final outcome of A2AR blockade (namely neuroprotection vs neurodegeneration) is likely to depend on the balance among its various and region-specific effects.

  18. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Downregulates the Expression of Protumor Factors Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in a GM-CSF Receptor-Independent Manner in Cervical Cancer Cells.

    PubMed

    Jiang, Nanyan; Tian, Zhiqiang; Tang, Jun; Ou, Rongying; Xu, Yunsheng

    2015-01-01

    Enhanced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) is associated with the pathogenic processes of various tumor types. COX-2 and iNOS expression in the immunomodulatory dendritic cells is mediated by the granulocyte macrophage-colony stimulating factor (GM-CSF), which is also expressed by cervical cancer cells; however, whether and how GM-CSF regulates COX-2 and iNOS expression in clinical cervical cancer cells remain unknown. In this study, we found that the COX-2 and iNOS expression was upregulated in the cervical cancer tissues and positively correlated with cancer metastasis and stage. About one-half of the cervical cancer tissues showed strong/moderate GM-CSF expression, while the normal cervical tissues showed >80% positive rate; no GM-CSFR protein was detectable on the cervical cancer cells. The GM-CSF expression was negatively correlated with the COX-2 and iNOS expression in the cervical cancer tissues and the functional negative regulatory effect of GM-CSF on COX-2/iNOS expression was demonstrated in various cervical cancer cell lines. Therefore, in cervical cancer cells, GM-CSF might contribute an antitumor response by inhibiting iNOS and COX-2 expression in a GM-CSFR independent manner.

  19. UVB and caffeine: inhibiting the DNA damage response to protect against the adverse effects of UVB.

    PubMed

    Kerzendorfer, Claudia; O'Driscoll, Mark

    2009-07-01

    The incidence of sunlight-induced skin cancer is increasing. Mouse studies indicate that caffeine, administered orally or topically, promotes apoptosis of UVB-irradiated keratinocytes. In this issue, Heffernan and colleagues identify the pathway targeted by caffeine and suggest that inhibition of this DNA damage response may offer a viable therapeutic option for nonmelanoma skin cancer. This potentially represents an important protective or therapeutic option from the most unlikely of sources: your daily coffee.

  20. Ascorbate protects against tert-butyl hydroperoxide inhibition of erythrocyte membrane Ca2+ + Mg2(+)-ATPase.

    PubMed

    Moore, R B; Bamberg, A D; Wilson, L C; Jenkins, L D; Mankad, V N

    1990-05-01

    The incubation of erythrocyte suspensions or isolated membranes containing a residual amount of hemoglobin (0.04% of original cellular hemoglobin) with tert-butyl hydroperoxide (tBHP, 0.5 mM) caused significant inhibition of basal and calmodulin-stimulated Ca2+ + Mg2(+)-ATPase activities and the formation of thiobarbituric acid reactive products measured as malondialdehyde. In contrast, the treatment of white ghosts (membranes not containing hemoglobin) with tBHP (0.5 mM) did not lead to appreciable enzyme inhibition within the first 20 min and did not result in malondialdehyde (MDA) formation. However, the addition of either 10 microM hemin or 100 microM ferrous chloride + 1 mM ADP to white ghosts produced hydroperoxide effects similar to those in pink ghosts (membranes with 0.04% hemoglobin). The concentrations of hemin and ferrous chloride which caused half-maximal inhibition of Ca2+ + Mg2(+)-ATPase activity at 10 min were 0.5 and 30 microM, respectively. The effects of several antioxidants (mannitol, thiourea, hydroxyurea, butylated hydroxytoluene, and ascorbate) were investigated for their protective effects against oxidative changes resulting from tBHP treatment. Over a 30-min incubation period only ascorbate significantly reduced the enzyme inhibition, MDA formation, and protein polymerization. Thiourea and hydroxyurea decreased MDA formation and protein polymerization but failed to protect against the enzyme inhibition. Butylated hydroxytoluene was similar to thiourea and hydroxyurea but with better protection at 10 min. Mannitol, under these conditions, was an ineffective antioxidant for all parameters tested.

  1. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier.

    PubMed

    Zhai, Qixiao; Tian, Fengwei; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-07-15

    The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. Our previous work demonstrated that oral administration of probiotics can significantly inhibit Cd absorption in the intestines of mice, but further evidence is needed to gain insights into the related protection mode. The goal of this study was to evaluate whether probiotics can inhibit Cd absorption through routes other than the Cd binding, with a focus on gut barrier protection. In the in vitro assay, both the intervention and therapy treatments of Lactobacillus plantarum CCFM8610 alleviated Cd-induced cytotoxicity in the human intestinal cell line HT-29 and protected the disruption of tight junctions in the cell monolayers. In a mouse model, probiotics with either good Cd-binding or antioxidative ability increased fecal Cd levels and decreased Cd accumulation in the tissue of Cd-exposed mice. Compared with the Cd-only group, cotreatment with probiotics also reversed the disruption of tight junctions, alleviated inflammation, and decreased the intestinal permeability of mice. L. plantarum CCFM8610, a strain with both good Cd binding and antioxidative abilities, exhibited significantly better protection than the other two strains. These results suggest that along with initial intestinal Cd sequestration, probiotics can inhibit Cd absorption by protecting the intestinal barrier, and the protection is related to the alleviation of Cd-induced oxidative stress. A probiotic with both good Cd-binding and antioxidative capacities can be used as a daily supplement for the prevention of oral Cd exposure. The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. For the general population, food and drinking water are the main sources of Cd exposure due to the biomagnification of Cd within the food chain; therefore, the intestinal tract is the first organ that is susceptible to Cd contamination

  2. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier

    PubMed Central

    Zhai, Qixiao; Tian, Fengwei; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan

    2016-01-01

    ABSTRACT The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. Our previous work demonstrated that oral administration of probiotics can significantly inhibit Cd absorption in the intestines of mice, but further evidence is needed to gain insights into the related protection mode. The goal of this study was to evaluate whether probiotics can inhibit Cd absorption through routes other than the Cd binding, with a focus on gut barrier protection. In the in vitro assay, both the intervention and therapy treatments of Lactobacillus plantarum CCFM8610 alleviated Cd-induced cytotoxicity in the human intestinal cell line HT-29 and protected the disruption of tight junctions in the cell monolayers. In a mouse model, probiotics with either good Cd-binding or antioxidative ability increased fecal Cd levels and decreased Cd accumulation in the tissue of Cd-exposed mice. Compared with the Cd-only group, cotreatment with probiotics also reversed the disruption of tight junctions, alleviated inflammation, and decreased the intestinal permeability of mice. L. plantarum CCFM8610, a strain with both good Cd binding and antioxidative abilities, exhibited significantly better protection than the other two strains. These results suggest that along with initial intestinal Cd sequestration, probiotics can inhibit Cd absorption by protecting the intestinal barrier, and the protection is related to the alleviation of Cd-induced oxidative stress. A probiotic with both good Cd-binding and antioxidative capacities can be used as a daily supplement for the prevention of oral Cd exposure. IMPORTANCE The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. For the general population, food and drinking water are the main sources of Cd exposure due to the biomagnification of Cd within the food chain; therefore, the intestinal tract is the first organ that is susceptible to Cd

  3. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation.

    PubMed

    Rialdi, Alex; Campisi, Laura; Zhao, Nan; Lagda, Arvin Cesar; Pietzsch, Colette; Ho, Jessica Sook Yuin; Martinez-Gil, Luis; Fenouil, Romain; Chen, Xiaoting; Edwards, Megan; Metreveli, Giorgi; Jordan, Stefan; Peralta, Zuleyma; Munoz-Fontela, Cesar; Bouvier, Nicole; Merad, Miriam; Jin, Jian; Weirauch, Matthew; Heinz, Sven; Benner, Chris; van Bakel, Harm; Basler, Christopher; García-Sastre, Adolfo; Bukreyev, Alexander; Marazzi, Ivan

    2016-05-27

    The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response.

  4. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation

    PubMed Central

    Zhao, Nan; Lagda, Arvin Cesar; Pietzsch, Colette; Ho, Jessica Sook Yuin; Martinez-Gil, Luis; Fenouil, Romain; Chen, Xiaoting; Edwards, Megan; Metreveli, Giorgi; Jordan, Stefan; Peralta, Zuleyma; Munoz-Fontela, Cesar; Bouvier, Nicole; Merad, Miriam; Jin, Jian; Weirauch, Matthew; Heinz, Sven; Benner, Chris; van Bakel, Harm; Basler, Christopher; García-Sastre, Adolfo; Bukreyev, Alexander; Marazzi, Ivan

    2016-01-01

    The host innate immune response is the first line of defense against pathogens and is orchestrated by the concerted expression of genes induced by microbial stimuli. Deregulated expression of these genes is linked to the initiation and progression of diseases associated with exacerbated inflammation. We identified topoisomerase 1 (Top1) as a positive regulator of RNA polymerase II transcriptional activity at pathogen-induced genes. Depletion or chemical inhibition of Top1 suppresses the host response against influenza and Ebola viruses as well as bacterial products. Therapeutic pharmacological inhibition of Top1 protected mice from death in experimental models of lethal inflammation. Our results indicate that Top1 inhibition could be used as therapy against life-threatening infections characterized by an acutely exacerbated immune response. PMID:27127234

  5. PHD Inhibition Mitigates and Protects Against Radiation-Induced Gastrointestinal Toxicity via HIF2

    PubMed Central

    Taniguchi, Cullen M.; Miao, Yu Rebecca; Diep, Anh N.; Wu, Colleen; Rankin, Erinn B.; Atwood, Todd F.; Xing, Lei; Giaccia, Amato J.

    2014-01-01

    Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase