Sample records for cyclopentadienyliron dicarbonyl dimer

  1. From Bench Top to Market: Growth of Multi-Walled Carbon Nanotubes by Injection CVD Using Fe Organometallics - Production of a Commercial Reactor

    NASA Technical Reports Server (NTRS)

    Rowsell, J.; Hepp, A. F.; Harris, J. D.; Raffaelle, R. P.; Cowen, J. C.; Scheiman, D. A.; Flood, D. M.; Flood, D. J.

    2009-01-01

    Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cyclooctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth (i.e., MWNT orientation) of the nanotubes, as well as the amount of iron in the deposited material. As deposited, the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and a preferred orientation. Subsequently, a small start-up was founded to commercialize the deposition equipment. The contrast between the research and entrepreneurial environments will be discussed.

  2. Methods for preparation of cyclopentadienyliron (II) arenes

    DOEpatents

    Keipert, Steven J.

    1991-01-01

    Two improved methods for preparation of compounds with the structure shown in equation X [(Cp)--Fe--(Ar)].sup.+.sub.b X.sup.b- (X) where Cp is an eta.sup.5 complexed, substituted or unsubstituted, cyclopentadienyl or indenyl anion, Ar is an eta.sup.6 complexed substituted or unsubstituted, pi-arene ligand anad X is a b-valent anion where b is an integer between 1 and 3. The two methods, which differ in the source of the cyclopentadienyl anion - Lewis acid complex, utilize a Lewis acid assisted ligand transfer reaction. The cyclopentadienyl anion ligand, assisted by a Lewis acid is transferred to ferrous ion in the presence of an arene. In the first method, the cyclopentadienyl anion is derived from ferrocene and ferrous chloride. In this reaction, the cyclopentadienyliron (II) arene product is derived partially from ferrocene and partially from the ferrous salt. In the second method, the cyclopentadienyl anion - Lewis acid complex is formed by direct reaction of the Lewis acid with an inorganic cyclopentadienide salt. The cyclopentadienyliron (II) arene product of this reaction is derived entirely from the ferrous salt. Cyclopentadienyliron (II) arene cations are of great interest due to their utility as photoactivatable catalysts for a variety of polymerization reactions.

  3. Energy restriction and Roux-en-Y gastric bypass reduce postprandial α-dicarbonyl stress in obese women with type 2 diabetes.

    PubMed

    Maessen, Dionne E; Hanssen, Nordin M; Lips, Mirjam A; Scheijen, Jean L; Willems van Dijk, Ko; Pijl, Hanno; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-09-01

    Dicarbonyl compounds are formed as byproducts of glycolysis and are key mediators of diabetic complications. However, evidence of postprandial α-dicarbonyl formation in humans is lacking, and interventions to reduce α-dicarbonyls have not yet been investigated. Therefore, we investigated postprandial α-dicarbonyl levels in obese women without and with type 2 diabetes. Furthermore, we evaluated whether a diet very low in energy (very low calorie diet [VLCD]) or Roux-en-Y gastric bypass (RYGB) reduces α-dicarbonyl stress in obese women with type 2 diabetes. In lean (n = 12) and obese women without (n = 27) or with type 2 diabetes (n = 27), we measured the α-dicarbonyls, methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG), and glucose in fasting and postprandial plasma samples obtained during a mixed meal test. Obese women with type 2 diabetes underwent either a VLCD or RYGB. Three weeks after the intervention, individuals underwent a second mixed meal test. Obese women with type 2 diabetes had higher fasting and particularly higher postprandial plasma α-dicarbonyl levels, compared with those without diabetes. After three weeks of a VLCD, postprandial α-dicarbonyl levels in diabetic women were significantly reduced (AUC MGO -14%, GO -16%, 3-DG -25%), mainly through reduction of fasting plasma α-dicarbonyls (MGO -13%, GO -13%, 3-DG -33%). Similar results were found after RYGB. This study shows that type 2 diabetes is characterised by increased fasting and postprandial plasma α-dicarbonyl stress, which can be reduced by improving glucose metabolism through a VLCD or RYGB. These data highlight the potential to reduce reactive α-dicarbonyls in obese individuals with type 2 diabetes. ClinicalTrials.gov NCT01167959.

  4. Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase.

    PubMed

    Lankin, V Z; Shumaev, K B; Tikhaze, A K; Kurganov, B I

    2017-07-01

    Se-containing glutathione peroxidase (GSH-Px) is one of the key enzymes of the body's antioxidant system. The kinetic characteristics of GSH-Px (substrate is tert-butyl hydroperoxide) after modification of the enzyme by various concentrations of natural dicarbonyls (glyoxal, methylglyoxal, malonic dialdehyde) were studied. It was shown that dicarbonyls affected both K m and V max for GSH-Px. It is suggested that the effect of various dicarbonyls on GSH-Px depends on the molecular mechanisms of their interaction with the amino acid residues of the enzyme.

  5. Catalyst-Dependent Chemoselective Formal Insertion of Diazo Compounds into C-C or C-H Bonds of 1,3-Dicarbonyl Compounds.

    PubMed

    Liu, Zhaohong; Sivaguru, Paramasivam; Zanoni, Giuseppe; Anderson, Edward A; Bi, Xihe

    2018-05-08

    A catalyst-dependent chemoselective one-carbon insertion of diazo compounds into the C-C or C-H bonds of 1,3-dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)-C bond of the 1,3-dicarbonyl substrate leads to a 1,4-dicarbonyl product containing an all-carbon α-quaternary center. This reaction constitutes the first example of an insertion of diazo-derived carbenoids into acyclic C-C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C-H insertion, affording 2-alkylated 1,3-dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst-dependent chemoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gold/copper-catalyzed activation of the aci-form of nitromethane in the synthesis of methylene-bridged bis-1,3-dicarbonyl compounds.

    PubMed

    Balamurugan, Rengarajan; Manojveer, Seetharaman

    2011-10-21

    Activation of the aci-form of nitromethane using Lewis acids for the attack of carbon nucleophiles was studied. 1,3-Dicarbonyl compounds in the presence of catalytic amounts of AuCl(3) or Cu(OTf)(2) in nitromethane solvent could be converted into methylene-bridged bis-1,3-dicarbonyl compounds.

  7. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression.

    PubMed

    Lin, Jer-An; Wu, Chi-Hao; Lu, Chi-Cheng; Hsia, Shih-Min; Yen, Gow-Chin

    2016-08-01

    In recent years, glycative stress from exogenous or endogenous advanced glycation end products (AGEs) and highly reactive dicarbonyls has gained great attention for its putative effects on cancer development. AGEs are a group of compounds formed from the complex chemical reaction of reducing sugars with compounds containing an amino group. AGEs bind to and activate the receptor for AGEs (RAGE), which is a predominant modulator of inflammation-associated cancer, and AGEs induce reactive oxygen species that are an important regulator of the hallmarks of cancer. Dicarbonyls, which are formed during glycolysis, lipid oxidation, or protein degradation, include glyoxal, methylglyoxal, and 3-deoxyglucosone and are regarded as major precursors of AGEs. These dicarbonyls not only fuel the AGE pool in living organisms but also evoke carbonyl stress, which may contribute to the carbonylative damage of carbohydrates, lipids, proteins, or DNA. Carbonylative damage then leads to many lesions, some of which are implicated in the pathogenesis of cancer. In this review, studies regarding the effects of AGEs and dicarbonyls on cancer onset or progression are systematically discussed, and the utilization of AGE inhibitors and dicarbonyl scavengers in cancer therapy are noted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dicarbonyls stimulate cellular protection systems in primary rat hepatocytes and show anti-inflammatory properties.

    PubMed

    Buetler, Timo M; Latado, Hélia; Baumeyer, Alexandra; Delatour, Thierry

    2008-04-01

    Advanced glycation endproducts (AGEs) and their precursor dicarbonyls are generally perceived as having adverse health effects. They are also considered to be initiators and promoters of disease and aging. However, proof for a causal relationship is lacking. On the other hand, it is known that AGEs and melanoidins possess beneficial properties, such as antioxidant and metal-chelating activities. Furthermore, some AGEs may stimulate the cellular detoxification system, generally known as the phase II drug metabolizing system. We show here that several reactive dicarbonyl intermediates have the capability to stimulate the cellular phase II detoxification systems in both a reporter cell line and primary rat hepatocytes. In addition, we demonstrate that dicarbonyls can attenuate the inflammatory signaling induced by tumor necrosis factor-alpha in a reporter cell system.

  9. Sources and formation processes of water-soluble dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, and major ions in summer aerosols from eastern central India

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Deb, Manas K.; Boreddy, Suresh K. R.

    2017-03-01

    The sources and formation processes of dicarboxylic acids are still under investigation. Size-segregated aerosol (nine-size) samples collected in the urban site (Raipur: 21.2°N and 82.3°E) in eastern central India during summer of 2013 were measured for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), α-dicarbonyls (C2-C3), and inorganic ions to better understand their sources and formation processes. Diacids showed the predominance of oxalic acid (C2), whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2), and glyoxal (Gly) was a major α-dicarbonyl in all the sizes. Diacids, ω-oxoacids, and α-dicarbonyls as well as SO42

  10. Study of an Unusual Advanced Glycation End-Product (AGE) Derived from Glyoxal Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lopez-Clavijo, Andrea F.; Duque-Daza, Carlos A.; Romero Canelon, Isolda; Barrow, Mark P.; Kilgour, David; Rabbani, Naila; Thornalley, Paul J.; O'Connor, Peter B.

    2014-04-01

    Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition.

  11. Measurement of Glyoxal Using an Incoherent Broadband Cavity Enhanced Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-12-01

    Glyoxal (CHOCHO) is the simplest alpha-dicarbonyl and one of the most prevalent dicarbonyls in the atmosphere. It is formed from the photooxidation of anthropogenic hydrocarbons (e.g. aromatics and acetylene), and is a minor oxidation product of isoprene and other biogenic species. Photolysis of glyoxal is a significant source of HOx (OH + HO2), and there is growing evidence that heterogeneous reactions of glyoxal play an important role in the formation of secondary organic aerosol. We present a novel technique for measurement of glyoxal using cavity enhanced absorption spectroscopy with a broadband light source (IBBCEAS). The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge- coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2 + O2). We use least-squares fitting with published reference spectra to simultaneous retrieve glyoxal, nitrogen dioxide (NO2), oxygen dimer (O4) and water (H2O) in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. We present laboratory measurements of synthetic and real air samples containing CHOCHO and NO2, and discuss the potential for field measurements.

  12. Profiling of alpha-dicarbonyl content of commercial honeys from different botanical origins: identification of 3,4-dideoxyglucoson-3-ene (3,4-DGE) and related compounds.

    PubMed

    Marceau, Eric; Yaylayan, Varoujan A

    2009-11-25

    The alpha-dicarbonyl contents of commercial honey samples from different botanical origins were analyzed as their quinoxaline derivatives using HPLC-DAD, HPLC-MS, HPLC-MS/MS, and HPLC-TOF-MS. A total of nine such compounds were detected, of which five were previously reported in honey (glucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, and 2,3-butanedione) and three were reported only from sources other than honey [3-deoxypentulose, 1,4-dideoxyhexulose, and 3,4-dideoxyglucoson-3-ene (3,4-DGE)]. An unknown alpha-dicarbonyl compound was also tentatively identified as an oxidation product of 3,4-DGE and was termed 3,4-dideoxyglucosone-3,5-diene (3,4-DGD). Only glyoxal (0.3-1.3 mg/kg), methylglyoxal (0.8-33 mg/kg), and 2,3-butanedione (0-4.3 mg/kg) were quantified in all honey samples. Furthermore, analysis of the alpha-dicarbonyl profile of various honey samples indicated that certain alpha-dicarbonyl compounds are found in specific honey samples in much higher proportions relative to the average amounts. The free radical scavenging activity as measured by DPPH method has also indicated that the darker honey samples such as buckwheat, manuka, blueberry, and eucalyptus had higher antioxidant properties compared to lighter-colored samples.

  13. Modification of β-Defensin-2 by Dicarbonyls Methylglyoxal and Glyoxal Inhibits Antibacterial and Chemotactic Function In Vitro.

    PubMed

    Kiselar, Janna G; Wang, Xiaowei; Dubyak, George R; El Sanadi, Caroline; Ghosh, Santosh K; Lundberg, Kathleen; Williams, Wesley M

    2015-01-01

    Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO). The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells. MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO. Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.

  14. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle.

    PubMed

    Mey, Jacob T; Blackburn, Brian K; Miranda, Edwin R; Chaves, Alec B; Briller, Joan; Bonini, Marcelo G; Haus, Jacob M

    2018-02-01

    Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m 2 ) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m 2 ). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m -2 ·min -1 )-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.

  15. Bioconjugation of Oligodeoxynucleotides Carrying 1,4-Dicarbonyl Groups via Reductive Amination with Lysine Residues.

    PubMed

    Yang, Bo; Jinnouchi, Akiko; Usui, Kazuteru; Katayama, Tsutomu; Fujii, Masayuki; Suemune, Hiroshi; Aso, Mariko

    2015-08-19

    We evaluated the efficacy of bioconjugation of oligodeoxynucleotides (ODNs) containing 1,4-dicarbonyl groups, a C4'-oxidized abasic site (OAS), and a newly designed 2'-methoxy analogue, via reductive amination with lysine residues. Dicarbonyls, aldehyde and ketone at C1- and C4-positions of deoxyribose in the ring-opened form of OAS allowed efficient reaction with amines. Kinetic studies indicated that reductive amination of OAS-containing ODNs with a proximal amine on the complementary strand proceeded 10 times faster than the corresponding reaction of an ODN containing an abasic site with C1-aldehyde. Efficient reductive amination between the DNA-binding domain of Escherichia coli DnaA protein and ODNs carrying OAS in the DnaA-binding sequence proceeded at the lysine residue in proximity to the phosphate group at the 5'-position of the OAS, in contrast to unsuccessful conjugation with abasic site ODNs, even though they have similar aldehydes. Theoretical calculation indicated that the C1-aldehyde of OAS was more accessible to the target lysine than that of the abasic site. These results demonstrate the potential utility of cross-linking strategies that use dicarbonyl-containing ODNs for the study of protein-nucleic acid interactions. Conjugation with a lysine-containing peptide that lacked specific affinity for ODN was also successful, further highlighting the advantages of 1,4-dicarbonyls.

  16. Catalyst-free and solvent-free Michael addition of 1,3-dicarbonyl compounds to nitroalkenes by a grinding method

    PubMed Central

    Xie, Zong-Bo; Wu, Ming-Yu; He, Ting; Le, Zhang-Gao

    2012-01-01

    Summary An environmentally benign, fast and convenient protocol has been developed for the Michael addition of 1,3-dicarbonyl compounds to β-nitroalkenes in good to excellent yields by a grinding method under catalyst- and solvent-free conditions. PMID:22563352

  17. Liquid Chromatographic Analysis of α-Dicarbonyls Using Girard-T Reagent Derivatives.

    PubMed

    Lawrence, Glen D; Rahmat, Rozaiha; Makahleh, Ahmad; Saad, Bahruddin

    2017-11-01

    The measurement of α-dicarbonyls and other degradation products of sugars has become important in view of their toxicity. Although there are several methods used for their analysis, most require long reaction times to form UV absorbing or fluorescent derivatives and the nonpolar nature of commonly used derivatives necessitates relatively high concentrations of organic solvents for elution in reverse phase liquid chromatography. The present method describes the use of Girard-T reagent in a simple, one step derivatization of α-dicarbonyls and conjugated aldehydes and analysis using ion-pair reverse phase liquid chromatography. The limit of detection was in the range of 0.06-0.09 μM (4-12 ng/mL) for glyoxal, methylglyoxal, 3-deoxyglucosone and 5-hydroxymethylfurfural with good linear response and reproducibility using UV detection. The hydrazone derivatives were stable for several days in solution. The method was used to study degradation of several sugars and quantification of the target α-dicarbonyls and 5-hydroxymethylfurfural in several soft drinks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Electrospray ionization mass spectrometric investigations of [alpha]-dicarbonyl compounds--Probing intermediates formed in the course of the nonenzymatic browning reaction of l-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.

    2007-05-01

    A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.

  19. Dicarbonyl stress in clinical obesity.

    PubMed

    Masania, Jinit; Malczewska-Malec, Malgorzata; Razny, Urszula; Goralska, Joanna; Zdzienicka, Anna; Kiec-Wilk, Beata; Gruca, Anna; Stancel-Mozwillo, Julita; Dembinska-Kiec, Aldona; Rabbani, Naila; Thornalley, Paul J

    2016-08-01

    The glyoxalase system in the cytoplasm of cells provides the primary defence against glycation by methylglyoxal catalysing its metabolism to D-lactate. Methylglyoxal is the precursor of the major quantitative advanced glycation endproducts in physiological systems - arginine-derived hydroimidazolones and deoxyguanosine-derived imidazopurinones. Glyoxalase 1 of the glyoxalase system was linked to anthropometric measurements of obesity in human subjects and to body weight in strains of mice. Recent conference reports described increased weight gain on high fat diet-fed mouse with lifelong deficiency of glyoxalase 1 deficiency, compared to wild-type controls, and decreased weight gain in glyoxalase 1-overexpressing transgenic mice, suggesting a functional role of glyoxalase 1 and dicarbonyl stress in obesity. Increased methylglyoxal, dicarbonyl stress, in white adipose tissue and liver may be a mediator of obesity and insulin resistance and thereby a risk factor for development of type 2 diabetes and non-alcoholic fatty liver disease. Increased methylglyoxal formation from glyceroneogenesis on adipose tissue and liver and decreased glyoxalase 1 activity in obesity likely drives dicarbonyl stress in white adipose tissue increasing the dicarbonyl proteome and related dysfunction. The clinical significance will likely emerge from on-going clinical evaluation of inducers of glyoxalase 1 expression in overweight and obese subjects. Increased transcapillary escape rate of albumin and increased total body interstitial fluid volume in obesity likely makes levels of glycation of plasma protein unreliable indicators of glycation status in obesity as there is a shift of albumin dwell time from plasma to interstitial fluid, which decreases overall glycation for a given glycemic exposure.

  20. Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration.

    PubMed

    Cornelis, Tom; Eloot, Sunny; Vanholder, Raymond; Glorieux, Griet; van der Sande, Frank M; Scheijen, Jean L; Leunissen, Karel M; Kooman, Jeroen P; Schalkwijk, Casper G

    2015-08-01

    Protein-bound uraemic toxins (PBUT), dicarbonyl stress and advanced glycation end products (AGEs) associate with cardiovascular disease in dialysis. Intensive haemodialysis (HD) may have significant clinical benefits. The aim of this study was to evaluate the acute effects of conventional and extended HD and haemodiafiltration (HDF) on reduction ratio (RR) and total solute removal (TSR) of PBUT, dicarbonyl stress compounds and AGEs. Thirteen stable conventional HD patients randomly completed a single study of 4-h HD (HD4), 4-h HDF (HDF4), 8-h HD (HD8) and 8-h HDF (HDF8) with a 2-week interval between the study sessions. RR and TSR of PBUT [indoxyl sulphate (IS), p-cresyl sulphate (PCS), p-cresyl glucuronide, 3-carboxyl-4-methyl-5-propyl-2-furanpropionic acid (CMPF), indole-3-acetic acid (IAA) and hippuric acid] of free and protein-bound AGEs [N(ε)-(carboxymethyl)lysine (CML), N(ε)-(carboxyethyl)lysine (CEL), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine, pentosidine], as well as of dicarbonyl compounds [glyoxal, methylglyoxal, 3-deoxyglucosone], were determined. Compared with HD4, HDF4 resulted in increased RR of total and/or free fractions of IAA and IS as well as increased RR of free CML and CEL. HD8 and HDF8 showed a further increase in TSR and RR of PBUT (except CMPF), as well as of dicarbonyl stress and free AGEs compared with HD4 and HDF4. Compared with HD8, HDF8 only significantly increased RR of total and free IAA and free PCS, as well as RR of free CEL. Dialysis time extension (HD8 and HDF8) optimized TSR and RR of PBUT, dicarbonyl stress and AGEs, whereas HDF8 was superior to HD8 for only a few compounds. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. Assaying Alpha-Dicarbonyl Compounds in Wine: A Complementary GC-MS, HPCL, and Visible Spectrophotometric Analysis

    ERIC Educational Resources Information Center

    Dwyer, Tammy J.; Fillo, Jeremiah D.

    2006-01-01

    The analytical system to teach the subtleties of assaying alpha-dicarbonyl compounds in wine is described. Spectrophotometry is determined to be minimally useful in the experiment where the GC-MS (methyglyoxal) method proved to be ideal to confirm that the compounds analyzed in the wine samples were indeed the glyoxals based on the formation of…

  2. RhII -Catalyzed β-C(sp2 )-H Alkylation of Enol Ethers, Enamides and Enecarbamates with α-Diazo Dicarbonyl Compounds.

    PubMed

    McLarney, Brett D; Cavitt, Marchello A; Donnell, Theodore M; Musaev, Djamaladdin G; France, Stefan

    2017-01-23

    A Rh II -catalyzed method for intermolecular alkylation of the β-C(sp 2 )-H bond of enol ethers, enamides, and enecarbamates with α-diazo-1,3-dicarbonyl compounds is reported. The products are formed in up to 99 % yield and can be readily derivatized under a variety of conditions. By utilizing a combination of experimental and computational studies, the presumptive addition-elimination reaction mechanism was investigated and found to proceed under thermodynamic control at higher temperature. The acquired fundamental knowledge was translated into a strategic reaction design and yielded the first example of the β-C-H functionalizations of acyclic enol ethers using α-diazo-1,3-dicarbonyl compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles.

    PubMed

    Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A

    2017-11-01

    The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.

  4. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    PubMed Central

    Abidi, Ahlem; Oueslati, Yosra

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308

  5. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species.

    PubMed

    Shao, Xi; Bai, Naisheng; He, Kan; Ho, Chi-Tang; Yang, Chung S; Sang, Shengmin

    2008-10-01

    Reactive dicarbonyl species, such as methylglyoxal (MGO) and glyoxal (GO), have received extensive attention recently due to their high reactivity and ability to form advanced glycation end products (AGEs) with biological substances such as proteins, phospholipids, and DNA. In the present study, we found that both phloretin and its glucoside, phloridzin, the major bioactive apple polyphenols, could efficiently trap reactive MGO or GO to form mono- and di-MGO or GO adducts under physiological conditions (pH 7.4, 37 degrees C). More than 80% MGO was trapped within 10 min, and 68% GO was trapped within 24 h by phloretin. Phloridzin also had strong trapping efficiency by quenching more than 70% MGO and 60% GO within 24 h. The glucosylation of the hydroxyl group at position 2 could significantly slow down the trapping rate and the formation of MGO or GO adducts. The products formed from phloretin (or phloridzin) and MGO (or GO), combined at different ratios, were analyzed using LC/MS. We successfully purified the major mono-MGO adduct of phloridzin and found that it was a mixture of tautomers based on the one- and two-dimensional NMR spectra. Our LC/MS and NMR data showed that positions 3 and 5 of the phloretin or phloridzin A ring were the major active sites for trapping reactive dicarbonyl species. We also found that phloretin was more reactive than lysine and arginine in terms of trapping reactive dicarbonyl species, MGO or GO. Our results suggest that dietary flavonoids that have the same A ring structure as phloretin may have the potential to trap reactive dicarbonyl species and therefore inhibit the formation of AGEs.

  6. Extending the spectrum of α-dicarbonyl compounds in vivo.

    PubMed

    Henning, Christian; Liehr, Kristin; Girndt, Matthias; Ulrich, Christof; Glomb, Marcus A

    2014-10-10

    Maillard α-dicarbonyl compounds are known as central intermediates in advanced glycation end product (AGE) formation. Glucose is the primary source of energy for the human body, whereas l-threo-ascorbic acid (vitamin C) is an essential nutrient, involved in a variety of enzymatic reactions. Thus, the Maillard degradation of glucose and ascorbic acid is of major importance in vivo. To understand the complex mechanistic pathways of AGE formation, it is crucial to extend the knowledge on plasma concentrations of reactive key α-dicarbonyl compounds (e.g. 1-deoxyglucosone). With the present work, we introduce a highly sensitive LC-MS/MS multimethod for human blood plasma based on derivatization with o-phenylenediamine under acidic conditions. The impact of workup and reaction conditions, particularly of pH, was thoroughly evaluated. A comprehensive validation provided the limit of detection, limit of quantitation, coefficients of variation, and recovery rates. The method includes the α-dicarbonyls 1-deoxyglucosone, 3-deoxyglucosone, glucosone, Lederer's glucosone, dehydroascorbic acid, 2,3-diketogulonic acid, 1-deoxypentosone, 3-deoxypentosone, 3,4-dideoxypentosone, pentosone, 1-deoxythreosone, 3-deoxythreosone, threosone, methylglyoxal, glyoxal; the α-keto-carboxylic acids pyruvic acid and glyoxylic acid; and the dicarboxylic acid oxalic acid. The method was then applied to the analyses of 15 healthy subjects and 24 uremic patients undergoing hemodialysis. The comparison of the results revealed a clear shift in the product spectrum. In most cases, the plasma levels of target analytes were significantly higher. Thus, this is the first time that a complete spectrum of α-dicarbonyl compounds relevant in vivo has been established. The results provide further insights into the chemistry of AGE formation and will be helpful to find specific markers to differentiate between the various precursors of glycation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Determination of Solvent Effects on Keto-Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR: Revisiting a Classic Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Cook, A. Gilbert; Feltman, Paul M.

    2007-01-01

    The use of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents has been a classic physical chemistry experiment. We are presenting an expansion of the excellent description of this experiment by Garland, Shoemaker, and Nibler. Often the assumption is made that the keto tautomer is always the…

  8. Long-chain aliphatic beta-diketones from epicuticular wax of Vanilla bean species. Synthesis of nervonoylacetone.

    PubMed

    Ramaroson-Raonizafinimanana, B; Gaydou, E M; Bombarda, I

    2000-10-01

    Analysis of the neutral lipids from Vanilla fragrans and Vanilla tahitensis (Orchidaceae) without saponification resulted in the isolation and identification of a new product family in this plant: beta-dicarbonyl compounds. The compound structures are composed of a long aliphatic chain with 2,4-dicarbonyl carbons and a cis double bond at the n-9 position. They represent approximately 28% of the neutral lipids, that is, 1.5%, in immature beans, and approximately 10% of the neutral lipids, that is, 0.9%, in mature beans. Using retention indices, gas chromatography-mass spectrometry, derivatization reactions, and chemical degradation, five beta-dicarbonyl compounds have been identified including 16-pentacosene-2,4-dione, 18-heptacosene-2,4-dione, 20-nonacosene-2, 4-dione, 22-hentriacontene-2,4-dione, and 24-tritriacontene-2, 4-dione. Among them (Z)-18-heptacosene-2,4-dione, or nervonoylacetone, has been synthesized in two steps starting from nervonic acid. The major constituent, nervonoylacetone, represented 74.5% of the beta-dicarbonyl fraction. The range of these compounds has been studied in relation with bean maturity for V. fragrans and V. tahitensis species. This compound family has not been found in the leaves or stems of any of the three vanilla species studied and is markedly absent in the beans of V. madagascariensis.

  9. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.

    PubMed

    Zhao, Di; Le, Thao T; Larsen, Lotte Bach; Li, Lin; Qin, Dan; Su, Guoying; Li, Bing

    2017-12-01

    α-Dicarbonyl compounds, which are widely found in common consumed food, are one of the precursors of advanced glycation end products (AGEs). In this study, the effect of glycation derived from glyoxal (GO), methylglyoxal (MGO) or butanedione (BU) on the in vitro digestibility of β-casein (β-CN) and β-lactoglobulin (β-Lg) was investigated. Glycation from α-dicarbonyl compounds reduced the in vitro digestibility of studied proteins in both gastric and intestinal stage. In addition, glycation substantially altered the peptides released through gastric and gastrointestinal digestion, as detected by liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-MS/MS). Crosslinked glycation structures derived from BU considerably reduced the sensitivity of glycated β-Lg towards digestive proteases, albeit to a lesser degree in glycated β-CN due to its intrinsic unordered structure. By contrast, non-crosslinked AGEs that formed adjacent to enzymatic cleavage sites did not block the enzymatic reaction in several cases, as evidenced by the corresponding digested peptides modified with glycation structures. These findings expand our understanding of the nutritional influence of α-dicarbonyl compounds and health impact of relevant dietary AGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.

    PubMed

    Park, Jihye; Han, Sang Hoon; Sharma, Satyasheel; Han, Sangil; Shin, Youngmi; Mishra, Neeraj Kumar; Kwak, Jong Hwan; Lee, Cheong Hoon; Lee, Jeongmi; Kim, In Su

    2014-05-16

    A copper-catalyzed oxidative coupling of 2-carbonyl-substituted phenols and 1,3-dicarbonyl compounds with a wide range of dibenzyl or dialkyl ethers is described. This protocol provides an efficient preparation of phenol esters and enol esters in good yields with high chemoselectivity. This method represents an alternative protocol for classical esterification reactions.

  11. Uranyl Coordination Polymers Incorporating η5-Cyclopentadienyliron-Functionalized η6-Phthalate Metalloligands: Syntheses, Structures and Photophysical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, Andrew T.; Kumalah, Sayon A.; Holman, K. T.

    2013-10-06

    The reaction of two η5-cyclopentadienyliron(II)-functionalized terephthalate and phthalate metalloligands, namely [(η5-C5H5)FeII(η6-1,4-HO2CC6H4CO2H)][(η5-C5H5)FeII(η6-1,4-HO2CC6H4CO2)][PF6] and [(η5-C5H5)FeII(η6-1,2-HO2CC6H4CO2H)][(η5-C5H5)FeII(η6-1,2-HO2CC6H4CO2)][PF6]—hereafter [H2 CpFeTP][HCpFeTP][PF6] and [H2 CpFeP][HCpFeP][PF6], respectively—with [UO2(NO3)2]·6H2O under hydrothermal conditions yielded four new coordination polymers; (1) [(UO2)F(HCpFeTP)(PO4H2)]·2H2O, (2) [(UO2)2(CpFeTP)4]·5H2O, (3) [(UO2)2F3(H2O)(CpFeP)], and (4) [H2 CpFeP][UO2F3]. The use of metalloligands has proven to be a viable route towards the incorporation of a secondary metal center into uranyl bearing materials. Depending upon the protonation state, the iron sandwich metalloligands may vary from zwitterionic neutral or monoanionic coordinating species as observed in compounds 1–3, or a positively charged species that hydrogen bonds with anionic [UO2F3]- chains as observed in 4.more » Further, the hydrolysis of the charge balancing PF6 - anion increases the diversity of UO2 2+ coordinating species by contributing both F- and PO4 3- anions (1, 3, 4). The luminescent properties of 1–4 were also studied and revealed the absence of uranyl emission, suggestive of a possible energy transfer from the uranyl cation to the iron(II) metal center.« less

  12. Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(diimine)(CO)3Cl incorporated in a MOF.

    PubMed

    Easun, Timothy L; Jia, Junhua; Calladine, James A; Blackmore, Danielle L; Stapleton, Christopher S; Vuong, Khuong Q; Champness, Neil R; George, Michael W

    2014-03-03

    The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an alkane and both solution data and calculations suggest that the ν(CO) band positions in the photoproduced dicarbonyl intermediates of ReMn are consistent with DMF binding.

  13. Chromatographic analysis of methylglyoxal and other α-dicarbonyls using gas-diffusion microextraction.

    PubMed

    Santos, Christiane M; Valente, Inês M; Gonçalves, Luís M; Rodrigues, José A

    2013-12-07

    Many α-dicarbonyl compounds such as methylglyoxal, diacetyl and pentane-2,3-dione are important quality markers of processed foods. They are produced by enzymatic and chemical processes, the Maillard reaction is the most known chemical route for α-dicarbonyl formation. In the case of methylglyoxal, there are obstacles to be overcome when analysing this compound due to its high reactivity, low volatility and low concentration. The use of extraction techniques based on the volatilization of methylglyoxal (like solid-phase microextraction) showed to be ineffective for the methylglyoxal extraction from aqueous solutions. Therefore, derivatization is typically applied to increase analyte's volatility. In this work a new methodology for the extraction and analysis of methylglyoxal and also diacetyl and pentane-2,3-dione from selected food matrices is presented. It is based on a gas-diffusion microextraction step followed by high performance liquid chromatographic analysis. It was successfully applied to port wines, black tea and soy sauce. Methylglyoxal, diacetyl and pentane-2,3-dione were quantified in the following concentration ranges: 0.24-1.74 mg L(-1), 0.1-1.85 mg L(-1) and 0.023-0.15 mg L(-1), respectively. The main advantages over existing methodologies are its simplicity in terms of sample handling, not requiring any chemical modification of the α-dicarbonyls prior to the extraction, low reagent consumption and short time of analysis.

  14. Vitreous advanced glycation endproducts and α-dicarbonyls in retinal detachment patients with type 2 diabetes mellitus and non-diabetic controls

    PubMed Central

    Mulder, Douwe J.; Schalkwijk, Casper G.; Scheijen, Jean L.; Smit, Andries J.; Los, Leonoor I.

    2017-01-01

    Purpose Advanced glycation endproducts (AGEs) and their precursors α-dicarbonyls are implicated in the progression of diabetic retinopathy. The purpose of this study was to assess AGEs and α-dicarbonyls in the vitreous of patients with type 2 diabetes mellitus (T2DM) with early stages or absence of diabetic retinopathy. Methods We examined vitreous samples obtained during vitrectomy from 31 T2DM patients presenting themselves with rhegmatogenous retinal detachment and compared these to 62 non-diabetic rhegmatogenous retinal detachment patients, matched on age, estimated glomerular filtration rate, smoking, intra-ocular lens implantation, and proliferative vitreoretinopathy. AGEs (pentosidine, Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and 5-hydro-5-methylimidazolone) and α-dicarbonyls (3-deoxyglucosone, methylglyoxal, and glyoxal) were measured by ultra performance liquid chromatography or high performance liquid chromatography. Skin autofluorescence was measured by the AGE Reader. Results Mean age was 64 ± 7.6 years for T2DM patients and 63 ± 8.1 years for controls. For T2DM patients, median diabetes duration was 2.2 (0.3–7.4) years. Non-proliferative diabetic retinopathy was present in 1 patient and classified as absent or background retinopathy in 30 patients. Vitreous levels of pentosidine (2.20 vs. 1.59 μmol/mol lysine, p = 0.012) and 3-deoxyglucosone (809 vs. 615 nmol/L, p = 0.001) were significantly elevated in T2DM patients compared to controls. Other AGEs and α-dicarbonyls in the vitreous were not significantly different. There was a trend for increased skin autofluorescence in T2DM patients as compared to controls (p = 0.07). Conclusions Pentosidine and 3-deoxyglucosone concentrations were increased in the vitreous of rhegmatogenous retinal detachment patients with a relatively short duration of diabetes compared to non-diabetic rhegmatogenous retinal detachment patients. PMID:28264049

  15. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    NASA Astrophysics Data System (ADS)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  16. Seasonal variations of diacids, ketoacids, and α-dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during long-range transport

    NASA Astrophysics Data System (ADS)

    Kundu, Shuvashish; Kawamura, Kimitaka; Lee, Meehye

    2010-10-01

    Aerosol samples (n = 84) were collected continuously from April 2003 to April 2004 at Gosan site in Jeju Island, South Korea. The samples were analyzed for diacids, ketoacids, and α-dicarbonyls, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and water-soluble inorganic ions. Oxalic acid (C2) was the most abundant followed by malonic acid (C3) in all the seasons. The mean concentration (784 ng m-3) of total diacids (C2-C12) and their relative abundances in total organic species detected, OC and WSOC were found to be the highest in summer, whereas those of ketoacids and dicarbonyls were the highest in winter. The annual mean contributions of diacids, ketoacids, and dicarbonyls to WSOC are 12, 1, and 0.4%, respectively. They are several times higher than those reported in East Asia from which air masses are transported to Gosan, indicating an importance of photochemical processing of aerosols during a long-range transport. Diacids and related compounds show different seasonal variations, suggesting their season-specific sources and photochemical processing. This study demonstrates an enhanced photochemical production and degradation of water-soluble organics in summer. In contrast, higher positive correlations between combustion tracers (non-sea-salt K+ and EC) and diacids and related compounds were observed in the winter, pointing out higher emission of diacids and related compounds or their precursors from fossil fuel/biomass burning.

  17. Patterned Functionalization of Gold and Single Crystal Silicon via Photochemical Reaction of Surface-Confined Derivatives of (Eta5-C5H5)MN(CO)3

    DTIC Science & Technology

    1990-11-01

    output at -355 nm) until significant conversion of the tricarbonyl to the dicarbonyl phosphine was achieved, as determined by IR. The disubstitited product...forms rapidly once the dicarbonyl phosphine is present in solution so care was taken to stop the irradiation prior to extensive formation of...photochemical behavior and yields photoproducts analogous to those formed upon irradiation of (T5 -C 5 H4 )Mn(CO) 3 in the presence of phosphines . 7 UV

  18. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    NASA Astrophysics Data System (ADS)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148. Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.F. (2009): Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2, 479-483. Pöschl, U. (2003): Aerosol particle analysis: challanges and progress. Analytical and Bioanalytical Chemistry, 375, 30-32.

  19. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  20. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production.

    PubMed

    Hong, Pui Khoon; Betti, Mirko

    2016-12-01

    Glucosamine (GlcN, 5% w/v) was incubated in either phosphate buffer or ammonium hydroxide solutions at 40 and 60°C for up to 48h in order to yield caramel solutions. Non-enzymatic browning was monitored via changes in absorption at 280, 320 and 420nm and the physico-chemical properties as well as the generation of short chain α-dicarbonyl compounds were evaluated. Accumulation of GlcN autocondensation products (280nm) proceeded in parallel with the development of pre-melanoidins (320nm) and melanoidins (420nm). The reactive α-dicarbonyls were detected at temperature as low as 40°C within 3h with a maximum level of diacetyl recorded at 6h. The caramel solutions showed a high efficacy in scavenging DPPH and ABTS radicals in accordance with the increasing browning intensity. The results suggest that GlcN browning can be modulated according to the specific desired properties to produce a multi-functional food ingredient that has health-promoting effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-08-17

    This study aimed to investigate the kinetics of α-dicarbonyl compound formation in glucose and glucose-sodium chloride mixture during heating under caramelization conditions. Changes in the concentrations of glucose, fructose, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural (HMF), glyoxal, methylglyoxal, and diacetyl were determined. A comprehensive reaction network was built, and the multiresponse model was compared to the experimentally observed data. Interconversion between glucose and fructose became 2.5 times faster in the presence of NaCl at 180 and 200 °C. The effect of NaCl on the rate constants of α-dicarbonyl compound formation varied across the precursor and the compound itself and temperature. A decrease in rate constants of 3-deoxyglucosone and 1-deoxyglucosone formations by the presence of NaCl was observed. HMF formation was revealed to be mainly via isomerization to fructose and dehydration over cyclic intermediates, and the rate constants increase 4-fold in the presence of NaCl.

  2. Digestibility of Bovine Serum Albumin and Peptidomics of the Digests: Effect of Glycation Derived from α-Dicarbonyl Compounds.

    PubMed

    Sheng, Bulei; Larsen, Lotte Bach; Le, Thao T; Zhao, Di

    2018-03-21

    α-Dicarbonyl compounds, which are widely generated during sugar fragmentation and oil oxidation, are important precursors of advanced glycation end products (AGEs). In this study, the effect of glycation derived from glyoxal (GO), methylglyoxal (MGO) and diacetyl (DA) on the in vitro digestibility of bovine serum albumin (BSA) was investigated. Glycation from α-dicarbonyl compounds reduced digestibility of BSA in both gastric and intestinal stage of digestion according to measurement of degree of hydrolysis. Changes in peptide composition of digests induced by glycation were displayed, showing absence of peptides, occurrence of new peptides and formation of peptide-AGEs, based on the results obtained using liquid chromatography electron-spray-ionization tandem mass spectrometry (LC-ESI-MS/MS). Crosslinked glycation structures derived from DA largely reduced the sensitivity of glycated BSA towards digestive proteases based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results. Network structures were found to remain in the digests of glycated samples by transmission electron microscope (TEM), thus the impact of AGEs in unabsorbed digests on the gut flora should be an interest for further studies.

  3. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.

    PubMed

    Kanzler, Clemens; Schestkowa, Helena; Haase, Paul T; Kroh, Lothar W

    2017-10-11

    In this study, the Maillard reaction of maltose and d-glucose in the presence of l-alanine was investigated in aqueous solution at 130 °C and pH 5. The reactivity of both carbohydrates was compared in regards of their degradation, browning, and antioxidant activity. In order to identify relevant differences in the reaction pathways, the concentrations of selected intermediates such as 1,2-dicarbonyl compounds, furans, furanones, and pyranones were determined. It was found, that the degradation of maltose predominantly yields 1,2-dicarbonyls that still carry a glucosyl moiety and thus subsequent reactions to HMF, furfural, and 2-acetylfuran are favored due to the elimination of d-glucose, which is an excellent leaving group in aqueous solution. Consequently, higher amounts of these heterocycles are formed from maltose. 3-deoxyglucosone and 3-deoxygalactosone represent the only relevant C 6 -1,2-dicarbonyls in maltose incubations and are produced in nearly equimolar amounts during the first 60 min of heating as byproducts of the HMF formation.

  4. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  5. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    NASA Astrophysics Data System (ADS)

    Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.

    2016-01-01

    Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  6. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  7. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  8. Readily Available Chiral Benzimidazoles-Derived Guanidines as Organocatalysts in the Asymmetric α-Amination of 1,3-Dicarbonyl Compounds.

    PubMed

    Benavent, Llorenç; Puccetti, Francesco; Baeza, Alejandro; Gómez-Martínez, Melania

    2017-08-11

    The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di- t -butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from ( R )-1-phenylethan-1-amine ( 1 ) and ( S )-1-(2-naphthyl)ethan-1-amine ( 3 ) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products.

  9. Effects of Sodium Chloride, Potassium Chloride and Calcium Chloride on the Formation of α-Dicarbonyl Compounds, Furfurals and Development of Browning in Cookies during Baking.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-10-02

    Effect of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, 2-furfural and browning were investigated in cookies. Presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in heated glucose-glycine system. Usage of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar rich bakeries.

  10. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyu; Kawamura, Kimitaka; Yue, Siyao; Wei, Lianfang; Ren, Hong; Yan, Yu; Kang, Mingjie; Li, Linjie; Ren, Lujie; Lai, Senchao; Li, Jie; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-02-01

    This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m-3, whereas oxoacids (9.50-353 ng m-3) and dicarbonyls (1.50-85.9 ng m-3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m-3) and tPh (48.7 ± 51.1 ng m-3) were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 / C4) were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of -17.1 ± 3.9 ‰ (winter) and -17.1 ± 2.0 ‰ (spring), while malonic acid is more enriched in 13C than others in autumn (-17.6 ± 4.6 ‰) and summer (-18.7 ± 4.0 ‰). The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids, oxocarboxylic acids and α-dicarbonyls in Beijing are largely associated with anthropogenic primary emissions, such as biomass burning, fossil fuel combustion and plastic waste burning.

  11. Derivatization of beta-dicarbonyl compound with 2,4-dinitrophenylhydrazine to enhance mass spectrometric detection: application in quantitative analysis of houttuynin in human plasma.

    PubMed

    Duan, Xiaotao; Zhong, Dafang; Chen, Xiaoyan

    2008-06-01

    Houttuynin (decanoyl acetaldehyde), a beta-dicarbonyl compound, is the major antibacterial constituent in the volatile oil of Houttuynina cordata Thunb. In the present work, detection of houttuynin in human plasma based on the chemical derivatization with 2,4-dinitrophenylhydrazine (DNPH) coupled with liquid chromatography/tandem mass spectrometry was described. The primary reaction products between the beta-dicarbonyl compound and DNPH in aqueous phase were identified as heterocyclic structures, of which the mass spectrometric ionization and fragmentation behavior were characterized with the aid of high-resolution multistage mass spectral analysis. For quantification, houttuynin and internal standard (IS, benzophenone) in plasma were firstly converted to their DNPH derivatives without sample purification, then extracted from human plasma with n-hexane and detected by liquid chromatography tandem mass spectrometry performed in selected reaction monitoring (SRM) mode. This method allowed for a lower limit of quantification (LLOQ) of 1.0 ng/ml using 100-microl plasma. The validation results showed high accuracy (%bias < 2.1) and precision (%CV < 7.2) at broad linear dynamic range (1.0-5000 ng/ml). The simple and quantitative derivatization coupled with tandem mass spectrometric analysis facilitates a sensitive and robust method for the determination of plasma houttuynin in pharmacokinetic studies.

  12. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.

    PubMed

    Hu, Xiao-Qian; Guo, Peng-Chao; Ma, Jin-Di; Li, Wei-Fang

    2013-11-01

    The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,β-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Å resolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/β)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.

  13. Pathways of the Maillard reaction under physiological conditions.

    PubMed

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  14. Kinetic and mechanistic study of bimetallic Pt-Pd/Al 2O 3 catalysts for CO and C 3H 6 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, Melanie J.; Moses-Debusk, Melanie; Parks, III, James E.

    2016-09-21

    Low temperature combustion (LTC) diesel engines are being developed to meet increased fuel economy demands. However, some LTC engines emit higher levels of CO and hydrocarbons and therefore diesel oxidation catalyst (DOC) efficiency will be critical. Here, CO and propylene oxidation were studied, as representative LTC exhaust components, over model bimetallic Pt-Pd/γ-Al 2O 3 catalysts. During CO oxidation tests, monometallic Pt suffered the most extensive inhibition which was correlated to a greater extent of dicarbonyl species formation. Pd and Pd-rich bimetallics were inhibited by carbonate formation at higher temperatures. The 1:1 and 3:1 Pt:Pd bimetallic catalysts did not form themore » dicarbonyl species to the same extent as the monometallic Pt sample, and therefore did not suffer from the same level of inhibition. Similarly they also did not form carbonates to as large an extent as the Pd-rich samples and were therefore not as inhibited from this intermediate surface species at higher temperature. The Pd-rich samples were relatively poor propylene oxidation catalysts; and partial oxidation product accumulation deactivated these catalysts. Byproducts observed include acetone, ethylene, acetaldehyde, acetic acid, formaldehyde and CO. For CO and propylene co-oxidation, the onset of propylene oxidation was not observed until complete CO oxidation was achieved, and the bimetallics showed higher activity. In conclusion, this was again related to less extensive poisoning, less dicarbonyl species formation and less overall partial oxidation product accumulation.« less

  15. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2014-08-01

    Dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in late summer (February-March) over the Chatham Rise in the South West Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in late winter (August-September) 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim, and 24 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 12 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent MAX-DOAS observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim, suggesting different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 11 and 17% of the observed glyoxal and 28 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Glyoxal surface observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter, however satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption, or use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much needed data to verify the presence of these short lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  16. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2015-01-01

    The dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high-performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in summer (February-March) over the Chatham Rise in the south-west Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in the late winter (August-September) of 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim and 23 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 10 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim suggest that a different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper-estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 10% and 17% of the observed glyoxal and 29 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Surface-level glyoxal observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter; however, satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or it may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption or the use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much-needed data to verify the presence of these short-lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  17. Glyoxalase 1 Modulation in Obesity and Diabetes.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2018-01-02

    Obesity and type 2 diabetes mellitus are increasing globally. There is also increasing associated complications, such as non-alcoholic fatty liver disease (NAFLD) and vascular complications of diabetes. There is currently no licensed treatment for NAFLD and no recent treatments for diabetic complications. New approaches are required, particularly those addressing mechanism-based risk factors for health decline and disease progression. Recent Advances: Dicarbonyl stress is the abnormal accumulation of reactive dicarbonyl metabolites such as methylglyoxal (MG) leading to cell and tissue dysfunction. It is a potential driver of obesity, diabetes, and related complications that are unaddressed by current treatments. Increased formation of MG is linked to increased glyceroneogenesis and hyperglycemia in obesity and diabetes and also down-regulation of glyoxalase 1 (Glo1)-which provides the main enzymatic detoxification of MG. Glo1 functional genomics studies suggest that increasing Glo1 expression and activity alleviates dicarbonyl stress; slows development of obesity, related insulin resistance; and prevents development of diabetic nephropathy and other microvascular complications of diabetes. A new therapeutic approach constitutes small-molecule inducers of Glo1 expression-Glo1 inducers-exploiting a regulatory antioxidant response element in the GLO1 gene. A prototype Glo1 inducer, trans-resveratrol (tRES)-hesperetin (HESP) combination, in corrected insulin resistance, improved glycemic control and vascular inflammation in healthy overweight and obese subjects in clinical trial. tRES and HESP synergize pharmacologically, and HESP likely overcomes the low bioavailability of tRES by inhibition of intestinal glucuronosyltransferases. Glo1 inducers may now be evaluated in Phase 2 clinical trials for treatment of NAFLD and vascular complications of diabetes. Antioxid. Redox Signal. 00, 000-000.

  18. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountain aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-02-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (> 6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8-11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.

  19. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in PM2.5 from Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Kawamura, K.; Fu, P.

    2016-12-01

    Low molecular weight (LMW) dicarboxylic acids and related polar compounds comprise a significant fraction of atmospheric aerosols. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls, as well as organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and inorganic ionic species, were determined to better understand the sources and photochemical aging processes of carbonaceous aerosols in urban Beijing from Sept. 2013 to Jul. 2014 (n=65). Concentrations of total diacids ranged from 110-2580 ng m-3, while ketoacids (9.5-353 ng m-3) and dicarbonyls (1.5-85.9 ng m-3) were less abundant. Higher ambient concentrations of phthalic (Ph) (37.9±27.3 ng m-3), terephthalic (tPh) (48.7±51.1 ng m-3), and glyoxylic (ωC2) (44.3±69 ng m-3) acids were found in winter than other seasons. The temporal variations of malonic acid to succinic acid (C3/C4) ratios were relatively low throughout the whole year, most of which were less than or equal to unity, even in summer, implying more contributions of dicarboxylic acids from primary emissions, rather than aging processes during long-range atmospheric transport. The δ13C mean values of malonic acid (-18.7% to -17.3%) and succinic acid (-28.6% to -17.1%) were larger than those of oxalic acid (-22.9% to -20.1%) in both seasons, except for δ13C of succinic acid in summer. Lower δ13C values of these compounds in Beijing than those in marine areas may be mainly associated with primary emissions, such as biomass burning, vehicular exhaust, incomplete fossil fuel combustion and plastic wastes.

  20. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation.

    PubMed

    Hrynets, Yuliya; Ndagijimana, Maurice; Betti, Mirko

    2015-01-01

    The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure.

  1. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation

    PubMed Central

    2015-01-01

    The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure. PMID:26406447

  2. Time-resolved distributions of bulk parameters, diacids, ketoacids and α-dicarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2015-02-01

    To better understand the photochemical production and diurnal distributions of organic and inorganic aerosols in the tropical coastal Indian atmosphere, the aerosol (TSP) samples were collected every 3 h during 30-31 January, 14-15 February and 28-29 May 2007 from Chennai and studied for total carbon (TC) and nitrogen (TN) and their stable isotope ratios (δ13CTC and δ15NTN), carbonaceous components, inorganic ions, diacids, ketoacids and α-dicarbonyls. Time-resolved distributions of bulk parameters, inorganic ions, and diacids and related compounds, except for few species, did not show any clear diurnal trend but showed peaks at 6-9 h during all the study periods, except for the peak at 15-18 h on 28 May. SO42-, C2 - C6 diacids, ketoacids and α-dicarbonyls in February and on 29 May showed a diurnal trend. δ13CTC and δ15NTN stayed relatively constant during the study periods but showed 13C depletion (in January) and 15 N enrichment when TC and TN peaked. Based on these results together with air mass trajectories, we found that the diurnal distributions of Chennai aerosols are mainly influenced by land/sea breeze and the aged (photochemically processed) air masses, although in situ photochemical production and nighttime chemistry of secondary aerosol species, particularly C2-C4 diacids and SO42-, are significant. The characteristics of seasonal variations of carbonaceous components, and diacids and related compounds and comparisons of δ13CTC and δ15NTN of Chennai aerosols with the isotopic signatures of the point sources inferred that biofuel/biomass burning in South and Southeast Asia are the major sources of aerosols (TSP).

  3. Ligand iron catalysts for selective hydrogenation

    DOEpatents

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  4. Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems.

    PubMed

    Amrein, Thomas M; Andres, Luca; Manzardo, Giuseppe G G; Amado, Renato

    2006-12-27

    NH4HCO3 is known to promote acrylamide formation in sweet bakery products. This effect was investigated with respect to sugar fragmentation and formation of acrylamide from asparagine and sugar fragments in model systems under mild conditions. The presence of NH4HCO3 led to increases in acrylamide and alpha-dicarbonyls from glucose and fructose, respectively. As compared to glucose or fructose, sugar fragments such as glyoxal, hydroxyethanal, and glyceraldehyde formed much higher amounts of acrylamide in reaction with asparagine. The enhancing effect of NH4HCO3 is explained by (1) the action of NH3 as base in the retro-aldol reactions leading to sugar fragments, (2) facilitated retro-aldol-type reactions of imines in their protonated forms leading to sugar fragments, and (3) oxidation of the enaminols whereby glyoxal and other reactive sugar fragments are formed. These alpha-dicarbonyl and alpha-hydroxy carbonyl compounds may play a key role in acrylamide formation, especially under mild conditions.

  5. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  6. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation.

    PubMed

    Seufert, Knud; Bocquet, Marie-Laure; Auwärter, Willi; Weber-Bargioni, Alexander; Reichert, Joachim; Lorente, Nicolás; Barth, Johannes V

    2011-02-01

    Diatomic molecules attached to complexed iron or cobalt centres are important in many biological processes. In natural systems, metallotetrapyrrole units carry respiratory gases or provide sensing and catalytic functions. Conceiving synthetic model systems strongly helps to determine the pertinent chemical foundations for such processes, with recent work highlighting the importance of the prosthetic groups' conformational flexibility as an intricate variable affecting their functional properties. Here, we present simple model systems to investigate, at the single molecule level, the interaction of carbon monoxide with saddle-shaped iron- and cobalt-porphyrin conformers, which have been stabilized as two-dimensional arrays on well-defined surfaces. Using scanning tunnelling microscopy we identified a novel bonding scheme expressed in tilted monocarbonyl and cis-dicarbonyl configurations at the functional metal-macrocycle unit. Modelling with density functional theory revealed that the weakly bonded diatomic carbonyl adduct can effectively bridge specific pyrrole groups with the metal atom as a result of the pronounced saddle-shape conformation of the porphyrin cage.

  7. Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde)phenylenediimine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Ali, Omayma A. M.

    2018-06-01

    Bis-(salicylaldehyde)phenylenediimine Schiff base (H2salphen) reacted oxidatively with the triruthenium dodecacarbonyl complex, [Ru3(CO)12] to give the dicarbonyl derivative [Ru(CO)2(salphen)], 1. In presence of a secondary ligand L (L = pyridine, triphenyl phosphine, 2-aminobenzimidazole or thiourea), the monocarbonyl derivatives [Ru(CO)(salphen)L], 2-5, were isolated. When the bipyridine (bpy) ligand was used as a secondary ligand, the dicarbonyl complex [Ru(CO)2(Hsalphen)(bpy)], 6, was obtained. In complexes 1-5, the Schiff base ligand acted as a tetradentate, while it coordinated as a bidentate in complex 6. The structure and stoichiometry of the complexes were investigated by the conventional analytical and spectroscopic techniques, which revealed that they have several structural arrangements. The structures of ligand and complexes were verified by theoretical calculations based on accurate DFT approximations. The relative reactivities were estimated using chemical descriptors analysis. Biological activities of the complexes against the Escherchia coli and Staphylococcus aureus bacteria were screened.

  8. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning as well as dark ozonolysis of volatile organic compounds and other organics, accretion reactions and oxidation of nonvolatile organics such as unsaturated fatty acids. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.

  9. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices.

    PubMed

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2014-02-28

    Ice mixtures of methane and carbon monoxide were exposed to ionizing radiation in the form of energetic electrons at 5.5 K to investigate the formation of carbonyl bearing molecules in extraterrestrial ices. The radiation induced chemical processing of the mixed ices along with their isotopically labeled counterparts was probed online and in situ via infrared spectroscopy (solid state) aided with reflectron time-of-flight mass spectrometry (ReTOFMS) coupled to single photon photoionization (PI) at 10.49 eV (gas phase). Deconvolution of the carbonyl absorption feature centered at 1727 cm(-1) in the processed ices and subsequent kinetic fitting to the temporal growth of the newly formed species suggests the formation of acetaldehyde (CH3CHO) together with four key classes of carbonyl-bearing molecules: (i) alkyl aldehydes, (ii) alkyl ketones, (iii) α,β-unsaturated ketones/aldehydes and (iv) α,β,γ,δ-unsaturated ketones/α,β-dicarbonyl compounds in keto-enol form. The mechanistical studies indicate that acetaldehyde acts as the key building block of higher aldehydes (i) and ketones (ii) with unsaturated ketones/aldehydes (iii) and/or α,β-dicarbonyl compounds (iv) formed from the latter. Upon sublimation of the newly synthesized molecules, ReTOFMS together with isotopic shifts of the mass-to-charge ratios was exploited to identify eleven product classes containing molecules with up to six carbon atoms, which can be formally derived from C1-C5 hydrocarbons incorporating up to three carbon monoxide building blocks. The classes are (i) saturated aldehydes/ketones, (ii) unsaturated aldehydes/ketones, (iii) doubly unsaturated aldehydes/ketones, (iv) saturated dicarbonyls (aldehydes/ketones), (v) unsaturated dicarbonyls (aldehydes/ketones), (vi) saturated tricarbonyls (aldehydes/ketones), molecules containing (vii) one carbonyl - one alcohol (viii), two carbonyls - one alcohol, (ix) one carbonyl - two alcohol groups along with (x) alcohols and (xi) diols. Reaction pathways to synthesize these classes were derived as well. The present experiments provide clear evidence for the formation of key organic molecules--acetaldehyde, acetone, and potentially vinylalcohol--which are among the 15 carbonyl containing organic molecules detected in the interstellar medium. Despite numerous previous experimental investigations probing the effect of ionizing radiation on simple astrophysical ice representatives, our results suggest that more complex organic molecules can be formed in extraterrestrial ices than previously suggested. An outlook on further identification of individual isomers is also presented.

  10. Hygroscopicity of dicarbonyl-amine secondary organic aerosol products investigated with HTDMA

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; de Haan, D. O.

    2010-12-01

    Recent studies have shown the importance of amine-dicarbonyl chemistry as a secondary organic aerosol (SOA) formation pathway, producing imines, imidazoles, and N-containing oligomers. Preliminary work in our group has suggested that some of these products may be surface active. Therefore, the presence of these products may result in important changes to submicron particle hygroscopicity that affect aerosol scattering and cloud condensation nuclei (CCN) activity, especially in regions with significant amine-containing particles. To investigate their hygroscopicity, we have designed a hygroscopicity tandem differential mobility analyzer (HTDMA) system around a 300 L Teflon chamber that allows for longer humidification times needed for some organic aerosol components that are only slightly hygroscopic. This modification provides a range of residence times from 2.5 minutes up to 1 hour, unlike previously published systems that vary from 2-30 seconds. Using the modified hygroscopicity tandem differential mobility analyzer (HTDMA), we have measured the hygroscopic growth factor (HGF) of SOA formed from reactions of glyoxal (and methylglyoxal) with methylamine, ammonium sulfate, and several amino acids. Changes to inorganic aerosol HGF in response to the presence of SOA products are also investigated.

  11. Misconceptions about high-fructose corn syrup: is it uniquely responsible for obesity, reactive dicarbonyl compounds, and advanced glycation endproducts?

    PubMed

    White, John S

    2009-06-01

    Misconceptions about high-fructose corn syrup (HFCS) abound in the scientific literature, the advice of health professionals to their patients, media reporting, product advertising, and the irrational behavior of consumers. Foremost among these is the misconception that HFCS has a unique and substantive responsibility for the current obesity crisis. Inaccurate information from ostensibly reliable sources and selective presentation of research data gathered under extreme experimental conditions, representing neither the human diet nor HFCS, have misled the uninformed and created an atmosphere of distrust and avoidance for what, by all rights, should be considered a safe and innocuous sweetener. In the first part of this article, common misconceptions about the composition, functionality, metabolism, and use of HFCS and its purported link to obesity are identified and corrected. In the second part, an emerging misconception, that HFCS in carbonated soft drinks contributes materially to physiological levels of reactive dicarbonyl compounds and advanced glycation endproducts, is addressed in detail, and evidence is presented that HFCS does not pose a unique dietary risk in healthy individuals or diabetics.

  12. Azidoimidazolinium Salts: Safe and Efficient Diazo-transfer Reagents and Unique Azido-donors.

    PubMed

    Kitamura, Mitsuru

    2017-07-01

    2-Azido-1,3-dimethylimidazolinium chloride (ADMC) and its corresponding hexafluorophosphate (ADMP) were found to be efficient diazo-transfer reagents to various organic compounds. ADMC was prepared by the reaction of 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and sodium azide. ADMP was isolated as a crystal having good thermal stability and low explosibility. ADMC and ADMP reacted with 1,3-dicarbonyl compounds under mild basic conditions to give 2-diazo-1,3-dicarbonyl compounds in high yields, which were easily isolated in virtue of the high water solubility of the by-products. ADMP showed high diazo-transfer ability to primary amines even in the absence of metal salt such as Cu(II). Using this diazotization approach, various alkyl/aryl azides were directly obtained from their corresponding primary amines in high yields. Furthermore, naphthols reacted with ADMC to give the corresponding diazonaphthoquinones in good to high yields. In addition, 2-azido-1,3-dimethylimidazolinium salts were employed as azide-transfer and migratory amidation reagents. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition*

    PubMed Central

    Zhou, Jilin; Ueda, Keiko; Zhao, Jin; Sparrow, Janet R.

    2015-01-01

    Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration. PMID:26400086

  14. Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions

    ERIC Educational Resources Information Center

    Nichols, Michael A.; Waner, Mark J.

    2010-01-01

    An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be…

  15. Dithiolato-bridged nickel-iron complexes as models for the active site of [NiFe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Yang, Xi-Yue; Cao, Meng; Gao, Xiu-Yun; Liu, Bei-Bei; Zhu, Liang; Jiang, Feng

    2017-03-30

    The structural and functional modeling of the active site of [NiFe]-hydrogenases has been proved to be challenging to a great extent. Herein, we report the synthesis, structures, and some properties of the NiFe-based dicarbonyl, terminal hydride, and μ-hydroxo models for the active site of [NiFe]-hydrogenases.

  16. Gold-catalyzed synthesis of benzil derivatives and α-keto imides via oxidation of alkynes.

    PubMed

    Xu, Cheng-Fu; Xu, Mei; Jia, Yi-Xia; Li, Chuan-Ying

    2011-03-18

    An efficient process based on the gold-catalyzed redox reaction has been developed to oxidize 1,2-diarylacetylene or ynamide to 1,2-diaryldiketone or α-keto imide respectively. This process can tolerate a variety of functional groups and affords 1,2-dicarbonyl compounds in excellent yields under mild reaction conditions.

  17. Water-tolerant and reusable Lewis acid catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions.

    PubMed

    Wang, Min; Song, Zhiguo; Jiang, Heng; Gong, Hong

    2010-01-01

    3,4-Dihydropyrimidin-2-(1H)-ones were synthesized in high yields by a one-pot cyclocondensation of an aldehyde, a 1,3-dicarbonyl compound, and urea using copper methanesulfonate (2 mol%) as a recyclable catalyst under solvent-free conditions in short reaction time (1-2 h).

  18. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems

    PubMed Central

    Mesías, Marta; Morales, Francisco J.

    2017-01-01

    Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety. PMID:28231092

  19. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems.

    PubMed

    Mesías, Marta; Morales, Francisco J

    2017-02-16

    Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety.

  20. Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion.

    PubMed

    Papetti, Adele; Mascherpa, Dora; Gazzani, Gabriella

    2014-12-01

    α-Dicarbonyl (α-DC) compounds were characterised in roasted (coffee, barley coffee) and in fermented (soy sauce) food matrices. Glyoxal (GO), methylglyoxal (MGO), diacetyl (DA) and 3-deoxyglucosone (3-DG) were found in all samples, and hydroxypyruvaldehyde and 5-hydroxypentane-2,3-dione in barley and soy. Cis and trans 3,4-dideoxyglucosone-3-ene (3,4-DGE) isomers and 4-glucosyl-5,6-dihydroxy-2-oxohexanal (4-G,3-DG) were found only in barley, and 3,4-DGE only in soy sauce with molasses. GO, MGO, and DA were quantified. Findings indicate that i) α-DC profiles depend on the food matrix and any technological treatments applied; ii) α-DC quantitation by HPLC requires matrix-specific, validated methods; iii) GO and MGO were the most abundant α-DCs; and iv) barley coffee was the matrix richest in α-DCs both qualitatively and quantitatively. In vitro simulated digestion reduced (coffee) or strongly increased (barley, soy sauce) free α-DC content. These findings suggest that α-DC bioavailability could actually depend not on food content but rather on reactions occurring during digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Contribution of Glyoxal to Secondary Organic Aerosol Formation in Los Angeles

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Young, C. J.; Brown, S. S.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.

    2010-12-01

    Glyoxal (CHOCHO) is the simplest alpha-dicarbonyl and one of the most prevalent dicarbonyls in the atmosphere. It is an oxidation product of isoprene, and is also formed from the photooxidation of anthropogenic hydrocarbons, including aromatics and ethyne. In addition to its importance as a source of HOx, previous studies indicate that glyoxal reacts heterogeneously to form secondary organic aerosol. For the CalNex field campaign during summer 2010, we deployed a new glyoxal field instrument in Pasadena, California. This instrument consists of a broadband LED light source coupled to a cavity enhanced absorption spectrometer (IBBCEAS). The effective pathlength of the instrument is approximately 18 km. The measurement precision of the glyoxal instrument allows us to observe diurnal variability and trends. The glyoxal measurements were co-located with a comprehensive set of hydrocarbon measurements. These included the important photochemical precursors for CHOCHO, with measurements of isoprene, ethyne, ethene, monoterpenes, aromatics, and methylbutenol. We use the precursor concentrations to evaluate expected glyoxal concentrations. The difference between the expected gas-phase production of glyoxal and the measured concentrations indicates the contribution that glyoxal makes to secondary organic aerosol formation in Los Angeles.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Markus, E-mail: appel@ill.eu; Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble; Frick, Bernhard

    We report on quasielastic neutron spectroscopy experiments on ferrocene (bis(η{sup 5}-cyclopentadienyl)iron) in its three different crystalline phases: the disordered monoclinic crystalline phase (T > 164 K), the metastable triclinic phase (T < 164 K), and the stable orthorhombic phase (T < 250 K). The cyclopentadienyl rings in ferrocene are known to undergo rotational reorientations for which the analysis of our large data set suggests partially a revision of the known picture of the dynamics and allows for an extension and completion of previous studies. In the monoclinic phase, guided by structural information, we propose a model for rotational jumps amongmore » non-equivalent sites in contrast to the established 5-fold jump rotation model. The new model takes the dynamical disorder into account and allows the cyclopentadienyl rings to reside in two different configurations which are found to be twisted by an angle of approximately 30°. In the triclinic phase, our analysis demands the use of a 2-ring model accounting for crystallographically independent sites with different barriers to rotation. For the orthorhombic phase of ferrocene, we confirm a significantly increased barrier of rotation using neutron backscattering spectroscopy. Our data analysis includes multiple scattering corrections and presents a novel approach of simultaneous analysis of different neutron scattering data by combining elastic and inelastic fixed window temperature scans with energy spectra, providing a very robust and reliable mean of extracting the individual activation energies of overlapping processes.« less

  3. First example of a heterobimetallic 'Pd-Sn' catalyst for direct activation of alcohol: efficient allylation, benzylation and propargylation of arenes, heteroarenes, active methylenes and allyl-Si nucleophiles.

    PubMed

    Das, Debjit; Pratihar, Sanjay; Roy, Ujjal Kanti; Mal, Dipakranjan; Roy, Sujit

    2012-06-21

    Arenes, heteroarenes, 1,3-dicarbonyls and organosilicon nucleophiles undergo highly efficient alkylation with allylic, propargylic and benzylic alcohols in the presence of a new 'Pd-Sn' bimetallic catalyst in nitromethane; water being the sole byproduct. The plausible mechanism of alkylation and the intermediacy of ether has been enumerated.

  4. Praseodymium methanesulfonate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones.

    PubMed

    Wang, Min; Song, Zhiguo; Gong, Hong; Jiang, Heng

    2008-01-01

    A series of 3,4-dihydropyrimidin-2-(1H)-ones compounds was synthesized efficiently by a one-pot cyclocondensation of an aldehyde, 1,3-dicarbonyl compound, and urea in absolute ethanol under refluxing temperature using praseodymium methanesulfonate as catalyst. After the reaction, the catalyst can be easily recovered and reused several times without distinct decrease in reaction yields.

  5. Long-term trend of dicarboxylic acids, ketoacids and dicarbonyls in the marine aerosols over the western North Pacific in 2001-2006

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Mochida, M.

    2006-12-01

    To understand a long-range atmospheric transport of water-soluble organics in the western North Pacific, remote marine aerosols were collected on weekly basis at a subtropical island (Chichijima, 142E; 27N) from 2001 to 2006 using a high volume air sampler and pre-combusted quartz filter. The island is located in the boundary of westerly and trade wind regimes. The aerosols were analyzed for dicarboxylic acids, ketoacids and dicarbonyls employing butyl ester derivatization followed by GC determination. Homologous saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids as well as unsaturated diacids, including maleic (M), fumaric (F), phthalic acids. Ketoacids and dicarbonyls were also detected. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The winter/spring maximum can be explained by a combinattion of enhanced emissions of polluted aerosols and their precursors in Asia and the intensified westerlies over the North Pacific in the season. Seasonal trends of the molecular compositions were also found. For example, concentration ratios of C3 to C4 acid showed a maximum in summer, indicating more oxidation of longer-chain diacids to shorter ones. M/F ratios increased from summer to winter as a result of photochemically-induced isomerization of cis and trans configuration of unsaturated diacids. On the other hand, azelaic acid (C9) relative to other diacids showed a sharp increase in summer. Because C9 is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid, this demonstrates an enhanced sea-to- air emission of unsaturated fatty acids in summer followed by photochemical oxidation. Long-term trends of diacids and related compounds in the aerosols will be discussed for 2001 to 2006. The results will also be compared with those obtained at the same site for 1990 to 1993 to detect long-term changes in the organic aerosol compositions that might be happened over the western North Pacific due to the enhanced human activity in East Asia.

  6. Molecular compositions and decadal trends of dicarboxylic acids, ketoacids, α-dicarbonyls in the marine aerosols from Chichi-Jima Island in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.

    2010-12-01

    A rapid industrial development in China and East Asian countries for last two decades may have seriously changed the air quality of the North Pacific. To better understand a long-term atmospheric changes of organic aerosols in the western North Pacific, we collected marine aerosol samples on weekly basis at a remote island, Chichijima (27°04'E; 142°13'N) in 2001-2010. The island is located in the boundary of westerly and easterly wind regimes. The aerosol samples were analyzed for dicarboxylic acids, ketoacids and α-dicarbonyls employing butyl ester derivatization followed by GC determination, together with total carbon (TC) and water-soluble organic carbon (WSOC). Homologous series of saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Unsaturated diacids, including maleic (M), fumaric (F), phthalic, and iso-/tere-phthalic acids, were also detected together with ketoacids and α-dicarbonyls. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The maximum was explained by a combination of enhanced emissions of polluted aerosols and their precursors in Asia and enhanced atmospheric transport to the North Pacific due to the intensified westerly winds in winter/spring. Concentration ratios of C3 to C4 diacid (range 0.2-28, av. 2.8) showed a maximum during summer, indicating more oxidation of longer-chain diacids to shorter ones. Azelaic acid (C9) that is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid showed a sharp increase relative to other diacids in summer, suggesting enhanced sea-to-air emission of unsaturated fatty acids followed by photochemical oxidation during summer. On the other hand, M/F ratios (range 0-8.7, av. 1.1) significantly decreased from winter to summer due to photochemical cis-to-trans isomerization. We also discuss decadal trends in the concentrations of diacids and related compounds as well as TC and WSOC, and their compositions and relative abundances.

  7. Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2010-06-01

    Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m-3), ketoacids (16-105 ng m-3), and dicarbonyls (4-23 ng m-3) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is weakened due to the dispersion caused by dynamic land/sea breeze on the coast.

  8. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-03-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using Andersen impactor sampler with 5 size bins: <1.1, 1.1-2.0, 2.0-3.3, 3.3-7.0, >7.0 μm. Samples were analyzed for the molecular compositions of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectory and chemical tracers, we found that during campaign, the air masses were arrived from Siberia (biomass burning source region) on 8-9 August, China (anthropogenic source region) on 9-10 August and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions, i.e., SO42-, NH42+ and K+ were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO4

  9. Improved glycemic control induced by both metformin and repaglinide is associated with a reduction in blood levels of 3-deoxyglucosone in nonobese patients with type 2 diabetes.

    PubMed

    Engelen, Lian; Lund, Søren S; Ferreira, Isabel; Tarnow, Lise; Parving, Hans-Henrik; Gram, Jørgen; Winther, Kaj; Pedersen, Oluf; Teerlink, Tom; Barto, Rob; Stehouwer, Coen D A; Vaag, Allan A; Schalkwijk, Casper G

    2011-03-01

    Metformin has been reported to reduce α-dicarbonyls, which are known to contribute to diabetic complications. It is unclear whether this is due to direct quenching of α-dicarbonyls or to an improvement in glycemic control. We therefore compared the effects of metformin versus repaglinide, an antihyperglycemic agent with an insulin-secreting mechanism, on the levels of the α-dicarbonyl 3-deoxyglucosone (3DG). We conducted a single-center, double-masked, double-dummy, crossover study involving 96 nonobese patients with type 2 diabetes. After a 1-month run-in on diet-only treatment, patients were randomized to either repaglinide (6 mg daily) followed by metformin (2 g daily) or vice versa each during 4 months with a 1-month washout between interventions. 3DG levels decreased after both metformin (-19.3% (95% confidence interval (CI): -23.5, -14.8)) and repaglinide (-20.8% (95% CI: -24.9, -16.3)) treatments, but no difference was found between treatments (1.8% (95% CI: -3.8, 7.8)). Regardless of the treatment, changes in glycemic variables were associated with changes in 3DG. Specifically, 3DG decreased by 22.7% (95% CI: 19.0, 26.5) per s.d. decrease in fasting plasma glucose (PG), by 20.0% (95% CI: 16.2, 23.9) per s.d. decrease in seven-point mean plasma glucose, by 22.5% (95% CI: 18.6, 26.6) per s.d. decrease in area under the curve for PG, by 17.2% (95% CI: 13.8, 20.6) per s.d. decrease in HbAlc, and by 10.9% (95% CI: 6.4, 15.5) per s.d. decrease in Amadori albumin. In addition, decreases in 3DG were associated with decreases in advanced glycation endproducts and endothelial markers. Improved glycemic control induced by both metformin and repaglinide is associated with a reduction in 3DG levels in nonobese individuals with type 2 diabetes. This may constitute a shared metabolic pathway through which both treatments have a beneficial impact on the cardiovascular risk.

  10. Divergent Total Syntheses of Rhodomyrtosones A and B

    PubMed Central

    Gervais, Anais; Lazarski, Kiel E.; Porco, John A.

    2015-01-01

    Herein, we report total syntheses of the tetramethyldihydroxanthene natural product rhodomyrtosone B and the related bis-furan β-triketone natural product rhodomyrtosone A. Nickel-(II)-catalyzed 1,4-conjugate addition of an α-alkylidene-β-dicarbonyl substrate was developed to access the congener rhodomyrtosone B, and oxygenation of the same monoalkylidene derivative followed by cyclization was employed to obtain the bis-furan natural product rhodomyrtosone A. PMID:26351970

  11. CuI/L-proline-catalyzed coupling reactions of aryl halides with activated methylene compounds.

    PubMed

    Xie, Xiaoan; Cai, Guorong; Ma, Dawei

    2005-10-13

    [reaction: see text] The arylation of ethyl acetoacetate, ethyl benzoyl acetate, and diethyl malonate under the catalysis of CuI/L-proline in DMSO proceeds smoothly at 40-50 degrees C in the presence of Cs2CO3 to provide the 2-aryl-1,3-dicarbonyl compounds in good yields. Both aryl iodides and aryl bromides are compatible with these reaction conditions.

  12. Voltammetric detection of the α-dicarbonyl compound: methylglyoxal as a flavoring agent in wine and beer.

    PubMed

    Chatterjee, Sanghamitra; Chen, Aicheng

    2012-11-02

    A simple, rapid and highly selective method for the determination of the most abundant α-dicarbonyl compound in wine and beer has been developed for the first time by employing square wave voltammetry. A novel electrochemical sensor, based on the electrodeposition of platinum nanoparticles onto single wall carbon nanotubes that were cast on a glassy carbon electrode (GCE) substrate, is presented in this paper. This modified electrode exhibited excellent catalytic activity in the electroreduction of methylglyoxal, showing much higher peak currents than those measured on an unmodified GCE. The effects of different experimental and instrumental parameters, such as solution pH and square wave frequency, were examined. The reduction peak current showed a linear range of from 0.1×10(-6) to 100×10(-6)M with a 0.9979 correlation coefficient; and a low detection limit of 2.8×10(-9)M was also obtained. The proposed methodology was successfully applied to the quantitative analysis of methylglyoxal in wine and beer samples. The developed sensor possesses advantageous properties such as a high active surface area, stability, and rapid electron transfer rate, which cumulatively demonstrate high performance toward the electrocatalytic reduction and detection of methylglyoxal. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Basic-functionalized recyclable ionic liquid catalyst: A solvent-free approach for Michael addition of 1,3-dicarbonyl compounds to nitroalkenes under ultrasound irradiation.

    PubMed

    Narayanaperumal, Senthil; da Silva, Rodrigo César; Feu, Karla Santos; de la Torre, Alexander Fernández; Corrêa, Arlene G; Paixão, Márcio Weber

    2013-05-01

    A task-specific ionic liquid (TSIL) has been introduced as a recyclable catalyst in Michael addition. A series of nitroalkenes and various C-based nucleophiles were reacted in the presence of 30mol% of recyclable basic-functionalized ionic liquid. Good to excellent yields were obtained in 30min under ultrasound irradiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Trypsin-catalyzed tandem reaction: one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones by in situ formed acetaldehyde.

    PubMed

    Xie, Zong-Bo; Wang, Na; Wu, Wan-Xia; Le, Zhang-Gao; Yu, Xiao-Qi

    2014-01-20

    A simple, mild, one-pot tandem method catalyzed by trypsin was developed for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones by the Biginelli reaction of urea, β-dicarbonyl compounds, and in situ-formed acetaldehyde. Trypsin was found to display dual promiscuous functions to catalyze transesterification and the Biginelli reaction in sequence. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Citrus Juice: Green and Natural Catalyst for the Solvent-free Silica Supported Synthesis of β-Enaminones Using Grindstone Technique.

    PubMed

    Marvi, Omid; Fekri, Leila Zare

    2018-01-01

    Citrus Juice as an efficient, cost-effective and green catalyst employed for one-pot synthesis of various β-substituted enaminones through the reaction of β- dicarbonyl compounds with different primary amines in a solvent-free conditions on silica gel as solid surface using grindstone technique in high yields and short reaction times. The presented procedure is operationally simple, practical and green. The wide application of this procedure is demonstrated by the use of various substituted amines to react with β-dicarbonyl compounds. The method was successfully applied for primary amines (15 entries) and the related enaminones were well synthesized in good to excellent yields. Melting points were measured on an Electro thermal 9100 apparatus. 1HNMR and 13C NMR spectra were recorded on a FTNMR BRUKER DRX 500 Avence spectrometer. Chemical shifts were given in ppm from TMS as internal references and CDCl3 was used as the solvent as well. The IR spectra were recorded on a Perkin Elmer FT-IR GX instrument. The chemicals used in this work were purchased from Merck and Fluka chemical companies. Grinding synthesis of citrus juice catalyzed enamination of 1,3-dicarbonyls (acetylacetone, methyl and ethyl-3-oxobutanoate) with various primary amines (aromatic and aliphatic) under solvent-free silica supported conditions was examined and studied (15 entries) and the obtained enaminones were well synthesized in good to excellent yields. Furthermore, the effect of various catalysts on the yield and reaction time for grinding synthesis of 3-phenylamino- but- 2- enoic acid ethyl ester (1) by this method has evaluated as well. A novel, efficient and green protocol for the grinding synthesis of enaminones using citrus juice as natural catalyst has been presented. This methodology is user friendly, green and low cost procedure under mild reaction condition with faster reaction rates. The citrus juice is inexpensive and non-toxic which makes the process convenient, more economic and benign. Furthermore, applying grindstone technique in solvent-free conditions, use of silica gel as a solid and heterogeneous surface in reaction, high yields of products, cleaner reaction profiles, and availability of the reagents makes this method a better choice for synthetic chemists. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Aggarwal, S. G.; Okuzawa, K.; Kawamura, K.

    2010-07-01

    To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp<1.1, 1.1-2.0, 2.0-3.3, 3.3-7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8-9 August, from China (an anthropogenic source region) on 9-10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10-11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42-, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl- peaked in coarse sizes (>1.1 μm). Interestingly, OC, most sugar compounds and NO3- showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m-3) were more abundant than those in the aerosols originating from China (209 ng m-3) and ocean (142 ng m-3), whereas SO42- concentrations were highest in the aerosols from China (mean: 3970 ng m-3) followed by marine- (2950 ng m-3) and biomass burning-influenced (1980 ng m-3) aerosols. Higher loadings of WSOC (2430 ng m-3) and OC (4360 ng m-3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.

  17. Sigma- versus Pi-Dimerization Modes of Triangulene.

    PubMed

    Mou, Zhongyu; Kertesz, Miklos

    2018-04-20

    We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  19. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Ham, Jason E.

    2014-12-01

    A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butylhydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OHrad) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  20. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications.

  1. Phosphine/Sulfoxide-Supported Carbon(0) Complex.

    PubMed

    Lozano González, Mariana; Bousquet, Laura; Hameury, Sophie; Alvarez Toledano, Cecilio; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Maerten, Eddy; Baceiredo, Antoine

    2018-02-21

    A new carbon(0) complex 2 with two different L ligands, a phosphine and a sulfoxide, was synthesized and fully characterized. This new type of carbone exhibits excellent coordination ability, in contrast to the related phosphine/sulfide-supported carbon(0) complexes. Several organometallic complexes were isolated and, of special interest, the ν av (CO) value of Rh I -dicarbonyl complex indicates that 2 has a donor capability superior to classical NHCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  3. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Schubenel, Robert; Schmidt, Boris

    2007-01-01

    Curcumin-derived oxazoles and pyrazoles were synthesized in order to minimize the metal chelation properties of curcumin. The reduced rotational freedom and the absence of stereoisomers was anticipated to enhance the inhibition of gamma-secretase. Accordingly, the replacement of the 1,3-dicarbonyl moiety by isosteric heterocycles turned curcumin analogue oxazoles and pyrazoles into potent gamma-secretase inhibitors. Compounds 4a-i were found to be potent inhibitors of gamma-secretase and displayed activity in the low micromolar range. 2007 S. Karger AG, Basel

  4. Three-component access to pyrroles promoted by the CAN-silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis.

    PubMed

    Estévez, Verónica; Villacampa, Mercedes; Menéndez, J Carlos

    2013-01-21

    A sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, β-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.

  5. Original Synthesis of Fluorenyl Alcohol Derivatives by Reductive Dehalogenation Initiated by TDAE.

    PubMed

    Giuglio-Tonolo, Alain Gamal; Terme, Thierry; Vanelle, Patrice

    2016-10-24

    We report here a novel and easy-to-handle reductive dehalogenation of 9-bromofluorene in the presence of arylaldehydes and dicarbonyl derivatives to give the corresponding fluorenyl alcohol derivatives and Darzens epoxides as by-products in tetrakis(dimethylamino)ethylene (TDAE) reaction conditions. The reaction is believed to proceed via two successive single electron transfers to generate the fluorenyl anion which was able to react with different electrophiles. A mechanistic study was conducted to understand the formation of the epoxide derivatives.

  6. Copper-catalyzed domino reactions for the synthesis of cyclic compounds.

    PubMed

    Liao, Qian; Yang, Xianghua; Xi, Chanjuan

    2014-09-19

    Copper-catalyzed domino reactions are one of the most useful strategies for the construction of various cyclic compounds. In this Synopsis, we mainly focus on the latest advances in copper-catalyzed cross-coupling or addition-initiated domino reactions in the synthesis of cyclic compounds, including double alkenylation of N- or S-nucleophiles, alkenylation or alkynlation followed by cyclization of amides or amines, addition and cyclization of heteroallenes affording heterocycles, and coupling and cyclization of 1,3-dicarbonyl compounds toward heterocycles.

  7. Synthesis of zwitterionic salts of pyridinium-Meldrum acid and barbiturate through unique four-component reactions.

    PubMed

    Wang, Qi-Fang; Hui, Li; Hou, Hong; Yan, Chao-Guo

    2010-03-08

    An efficient synthetic procedure for the preparation of the unusual charge-separated pyridinium-Meldrum acid and N,N-dimethylbarbiturate acid zwitterionic salts was developed though a unique one-pot four-component reaction involving pyridine, aromatic aldehyde, Meldrum acid or N,N-dimethylbarbituric acid, and p-nitrobenzyl bromide in acetonitrile. By varying combinations of four components involving nitrogen-containing heterocycles, we conveniently established reactive alpha-halomethylene compounds, aldehydes and beta-dicarbonyl compounds a library of zwitterionic salts.

  8. Vinyl azides derived from allenes: thermolysis leading to multisubstituted 1,4-pyrazines and Mn(III)-catalyzed photochemical reaction leading to pyrroles.

    PubMed

    Sajna, K V; Kumara Swamy, K C

    2012-10-05

    Thermolysis of phosphorus-based vinyl azides under solvent- and catalyst-free conditions furnished a new route for 1,4-pyrazines. A simple one-pot, Mn(III)-catalyzed photochemical route has been developed for multisubstituted pyrroles starting from allenes and 1,3-dicarbonyls via in situ-generated vinyl azides. The utility of new phosphorus-based pyrroles is also demonstrated in the Horner reaction. The structures of key products are unequivocally confirmed by X-ray crystallography.

  9. Synthesis, Reactivity, and Characterization of (-Hexacarbocyclic) Manganese Dicarbonyl Complexes with Sulfur and Phosphorus Ligands

    DTIC Science & Technology

    1993-05-01

    Coupling of SCHS (6 221) and ring methyls (6 16.8) in 52 in (a)13C[’H) and (b) 13C NMR Spectra ......................... 128 14. Low- energy collision...spectrum of 51 (m/z 351) .................. 136 15. Low- energy collision spectrum of 52 (m/z 593) .................. 138 16. Low- energy collision...spectrum of 53 (m/z 390) .................. 139 17. Low- energy collision spectrum of 54 (m/z 410) .................. 140 18. Low- energy collision spectrum of

  10. Atom loss resonances in a Bose-Einstein condensate.

    PubMed

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2013-07-12

    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  11. D-dimer test

    MedlinePlus

    ... vein thrombosis - D-dimer; Pulmonary embolism - D-dimer; Blood clot to the lungs - D-dimer ... dimer test if you are showing symptoms of blood clots, such as: Swelling, pain, warmth, and changes in ...

  12. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  13. Effects of Dimers on Cooperation in the Spatial Prisoner's Dilemma Game

    NASA Astrophysics Data System (ADS)

    Li, Hai-Hong; Cheng, Hong-Yan; Dai, Qiong-Lin; Ju, Ping; Zhang, Mei; Yang, Jun-Zhong

    2011-11-01

    We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which information between communities is communicated by the requirement that two players in a dimer hold a same strategy.

  14. Biophysical Characterization of the Dimer and Tetramer Interface Interactions of the Human Cytosolic Malic Enzyme

    PubMed Central

    Murugan, Sujithkumar; Hung, Hui-Chih

    2012-01-01

    The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers. PMID:23284632

  15. Synthesis and photophysical properties of a single bond linked tetracene dimer

    NASA Astrophysics Data System (ADS)

    Sun, Tingting; Shen, Li; Liu, Heyuan; Sun, Xuan; Li, Xiyou

    2016-07-01

    A tetracene dimer linked directly by a single bond has been successfully prepared by using electron withdrawing groups to improve the stability. The molecular structure of this dimer is characterized by 1H NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The minimized molecular structure and X-ray crystallography reveal that the tetracene subunits of this dimer adopt an orthogonal configuration. Its absorption spectrum differs significantly from that of its monomeric counterpart, suggesting the presence of strong interactions between the two tetracene subunits. The excited state of this dimer is delocalized on both two tetracene subunits, which is significantly different from that of orthogonal anthracene dimers, but similar with that observed for orthogonal pentacene dimer. Most of the excited states of this dimer decay by radioactive channels, which is different from the localized twisted charge transfer state (LTCT) channel of anthracene dimers and the singlet fission (SF) channel of pentacene dimers. The results of this research suggest that similar orthogonal configurations caused different propertied for acene dimers with different conjugation length.

  16. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  17. Infrared spectroscopy investigation of Fe-promoted Rh catalysts supported on Titania and Ceria for CO hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, Joseph W.; Palomino, Robert M.; White, Michael G.

    2016-07-04

    The nature of the promotional effect of Fe addition to Rh/TiO 2 and Rh/CeO 2 catalysts for CO hydrogenation was investigated using FT-IR spectroscopy in an ultrahigh vacuum compatible transmission IR cell. CO adsorption experiments on Rh and FeRh showed vibrational signatures characteristic of linear and bridge bound CO on Rh0 as well as geminal-dicarbonyl species associated with Rh +. Compared to TiO 2, the CeO 2-supported catalysts show increased dispersion, reflected by decreased particle size, and a lower signal for linear versus geminal-dicarbonyl bonded CO. The absorption frequencies for CO on Rh/CeO 2 are also redshifted relative to Rh/TiOmore » 2, which results from a weaker Rh–CO interaction, likely due to the increased reducibility of the CeO 2 support. Upon addition of Fe, a new spectral feature is observed and attributed to CO bound to Rh in close contact with Fe, likely as a surface alloy. CO hydrogenation on (Fe)Rh catalysts on both supports was also studied. Compared to bare Rh, Fe containing catalysts promote formate and methoxy species on the surface at lower temperature (180 °C), which suggests an enhancement in methanol selectivity by Fe addition. Furthermore, at higher temperatures (220 °C), the spectral features appear similar, further confirming the role of Fe as a disrupter of large Rh o crystallites and regulator of CO dissociation and CH 4 formation.« less

  18. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  19. Molecular action mechanism against apoptosis by aqueous extract from guava budding leaves elucidated with human umbilical vein endothelial cell (HUVEC) model.

    PubMed

    Hsieh, Chiu-Lan; Huang, Chien-Ning; Lin, Yuh-Charn; Peng, Robert Y

    2007-10-17

    Chronic cardiovascular and neurodegenerative complications induced by hyperglycemia have been considered to be associated most relevantly with endothelial cell damages (ECD). The protective effects of the aqueous extract of Psidium guajava L. budding leaves (PE) on the ECD in human umbilical vein endothelial cell (HUVEC) model were investigated. Results revealed that glyoxal (GO) and methylglyoxal (MGO) resulting from the glycative and autoxidative reactions of the high blood sugar glucose (G) evoked a huge production of ROS and NO, which in turn increased the production of peroxynitrite, combined with the activation of the nuclear factor kappaB (NFkappaB), leading to cell apoptosis. High plasma glucose activated p38-MAPK, and high GO increased the expressions of p38-MAPK and JNK-MAPK, whereas high MGO levels induced the activity of ERK-MAPK. Glucose and dicarbonyl compounds were all found to be good inducers of intracellular PKCs, which together with MAPK acted as the upstream triggering factor to activate NFkappaB. Conclusively, high plasma glucose together with dicarbonyl compounds can trigger the signaling pathways of MAPK and PKC and induce cell apoptosis through ROS and peroxynitrite stimulation and finally by NFkappaB activation. Such effects of PE were ascribed to its high plant polyphenolic (PPP) contents, the latter being potent ROS inhibitors capable of blocking the glycation of proteins, which otherwise could have brought forth severe detrimental effects to the cells.

  20. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology-Involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy.

    PubMed

    Rabbani, Naila; Xue, Mingzhan; Weickert, Martin O; Thornalley, Paul J

    2018-04-01

    Glyoxalase 1 (Glo1) is part of the glyoxalase system in the cytoplasm of all human cells. It catalyses the glutathione-dependent removal of the endogenous reactive dicarbonyl metabolite, methylglyoxal (MG). MG is formed mainly as a side product of anaerobic glycolysis. It modifies protein and DNA to form mainly hydroimidazolone MG-H1 and imidazopurinone MGdG adducts, respectively. Abnormal accumulation of MG, dicarbonyl stress, increases adduct levels which may induce apoptosis and replication catastrophe. In the non-malignant state, Glo1 is a tumour suppressor protein and small molecule inducers of Glo1 expression may find use in cancer prevention. Increased Glo1 expression is permissive for growth of tumours with high glycolytic activity and is thereby a biomarker of tumour growth. High Glo1 expression is a cause of multi-drug resistance. It is produced by over-activation of the Nrf2 pathway and GLO1 amplification. Glo1 inhibitors are antitumour agents, inducing apoptosis and necrosis, and anoikis. Tumour stem cells and tumours with high flux of MG formation and Glo1 expression are sensitive to Glo1 inhibitor therapy. It is likely that MG-induced cell death contributes to the mechanism of action of current antitumour agents. Common refractory tumours have high prevalence of Glo1 overexpression for which Glo1 inhibitors may improve therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Human NRDRB1, an alternatively spliced isoform of NADP(H)-dependent retinol dehydrogenase/reductase enhanced enzymatic activity of benzil.

    PubMed

    Yan, Yinxia; Song, Xuhong; Liu, Gefei; Su, Zhongjing; Du, Yongming; Sui, Xuxia; Chang, Xiaolan; Huang, Dongyang

    2012-01-01

    Human NRDRB1, a 226 amino acid alternatively spliced isoform of the NADP(H)- dependent retinol dehydrogenase/reductase (NRDR), lacks the complete coding region of exon 3, but preserves all the important functional motifs for NRDR catalytic activity. Nevertheless, its tissue distribution and physiological function remain to be elucidated. Expression of NRDRB1 and NRDR in cells and tissues was analyzed by semi-quantitative polymerase chain reaction (PCR) and western blot. NRDRB1 was expressed as a His(6) fusion protein and subjected to kinetics assays. Recombinant NRDRB1 had 1.2 to 8.6 fold higher k(cat)/K(m) values than recombinant NRDR, depending on the substrate. NRDRB1 catalyzed the NADPH-dependent reduction of α-dicarbonyl compounds, such as isatin, 9,10-phenanthrenequinone, and especially benzil. The significantly high catalytic activity and the relatively high expression in human liver of NRDRB1 conferred cellular resistance to benzil-induced cell toxicity and over-expression of NRDRB1 in low expressing Ec109 cells significantly enhanced cell tolerance toward benzil. Based on its substrate specificity, catalytic activity and relatively high expression in human liver tissue, our results suggest that NRDRB1, an alternatively spliced isoform of NRDR in vivo functions better than NRDR as a dicarbonyl reductase for xenobiotics containing reactive carbonyls. Our study is the first reporting this phenomenon of the enzymes involved in biochemical reactions. Copyright © 2012 S. Karger AG, Basel.

  2. Gold(III) chloride catalyzed synthesis of chiral substituted 3-formyl furans from carbohydrates: application in the synthesis of 1,5-dicarbonyl derivatives and furo[3,2-c]pyridine.

    PubMed

    Mal, Kanchan; Sharma, Abhinandan; Das, Indrajit

    2014-09-08

    This report describes a gold(III)-catalyzed efficient general route to densely substituted chiral 3-formyl furans under extremely mild conditions from suitably protected 5-(1-alkynyl)-2,3-dihydropyran-4-one using H2 O as a nucleophile. The reaction proceeds through the initial formation of an activated alkyne-gold(III) complex intermediate, followed by either a domino nucleophilic attack/anti-endo-dig cyclization, or the formation of a cyclic oxonium ion with subsequent attack by H2 O. To confirm the proposed mechanistic pathway, we employed MeOH as a nucleophile instead of H2 O to result in a substituted furo[3,2-c]pyran derivative, as anticipated. The similar furo[3,2-c]pyran skeleton with a hybrid carbohydrate-furan derivative has also been achieved through pyridinium dichromate (PDC) oxidation of a substituted chiral 3-formyl furan. The corresponding protected 5-(1-alkynyl)-2,3-dihydropyran-4-one can be synthesized from the monosaccharides (both hexoses and pentose) following oxidation, iodination, and Sonogashira coupling sequences. Furthermore, to demonstrate the potentiality of chiral 3-formyl furan derivatives, a TiBr4 -catalyzed reaction of these derivatives has been shown to offer efficient access to 1,5-dicarbonyl compounds, which on treatment with NH4 OAc in slightly acidic conditions afforded substituted furo[3,2-c]pyridine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Intracellular formation of ”undisruptable” dimers of inducible nitric oxide synthase

    PubMed Central

    Kolodziejski, Pawel J.; Rashid, Mohammad B.; Eissa, N. Tony

    2003-01-01

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are ”undisruptable” by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo. PMID:14614131

  4. Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase.

    PubMed

    Kolodziejski, Pawel J; Rashid, Mohammad B; Eissa, N Tony

    2003-11-25

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are "undisruptable" by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo.

  5. Ligand regulation of a constitutively dimeric EGF receptor

    NASA Astrophysics Data System (ADS)

    Freed, Daniel M.; Alvarado, Diego; Lemmon, Mark A.

    2015-06-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers.

  6. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  7. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed Central

    Darlix, J L; Gabus, C; Allain, B

    1992-01-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein. Images PMID:1331519

  8. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  9. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed Central

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-01-01

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process. Images PMID:1645868

  10. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Charriére, B.; Sempéré, R.

    2012-11-01

    Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice was retreating. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m-3), except for one sample (up to 70 ng m-3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coast of Antarctica. Because the marine aerosols that showed a depletion of C2 were collected under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed -26.5‰ (range: -29.7 to -24.7‰, suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: -20.9‰, range: -24.7‰ to -17.0‰) than those of bulk aerosol carbon. Interestingly, δ13C values of oxalic acid were higher than C3 (av. -26.6‰) and C4 (-25.8‰) diacids, suggesting that oxalic acid is enriched with 13C due to its photochemical processing (aging) in the marine atmosphere.

  11. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Charriére, B.; Sempéré, R.

    2012-08-01

    Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice is retreated. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m-3), except for one sample (up to 70 ng m-3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coastal Antarctica. Because the marine aerosols that showed a depletion of C2 were observed under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed -26.5‰ (range: -29.7‰ to -24.7‰), suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: -20.9‰, range: -24.7‰ to -17.0‰) than those of bulk aerosol carbon. Interestingly, δ13C values of oxalic acid were higher than C3 (av. -26.6‰) and C4 (-25.8‰) diacids, suggesting that oxalic acid is enriched with 13C due to its photochemical processing (aging) in the marine atmosphere.

  12. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006)

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Ho, Steven Sai Hang; Kawamura, Kimitaka; Tachibana, Eri; Cheng, Y.; Zhu, Tong

    2010-10-01

    Ground-based studies of PM2.5 were conducted for determination of 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid, during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006; 21 August to 4 September 2006) at urban (Peking University, PKU) and suburban (Yufa) sites of Beijing. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species, followed by phthalic acid (Ph) and succinic acid (C4) at both sites. The sum of three dicarboxylic acids accounted for 71% and 74% of total quantified water-soluble organics (327-1552 and 329-1124 ng m-3) in PKU and Yufa, respectively. Positive correlation was found between total quantified water-soluble species and water-soluble organic compounds (WSOC). On a carbon basis, total quantified dicarboxylic acids and ketocarboxylic acids and dicarbonyls account for up to 14.2% and 30.4% of the WSOC in PKU and Yufa, respectively, suggesting that they are the major WSOC fractions in Beijing. The distributions of fatty acids are characterized by a strong even carbon number predominance with maximum at hexadecanoic acid (C16:0). The ratio of octadecanoic acid (C18:0) to hexadecanoic acid (C16:0) (0.39-0.85, with an average of 0.36) suggests that in addition to vehicular emissions, an input from cooking emissions is important, as is biogenic emission. Benzoic acid that has been proposed as a primary pollutant from vehicular exhaust and a secondary product from photochemical reactions was found to be abundant: 72.2 ± 58.1 ng m-3 in PKU and 78.0 ± 47.3 ng m-3 in Yufa. According to the 72 hour back trajectory analysis, when the air mass passed over the southern or southeastern part of Beijing (24-25 August and 1-2 September), the highest concentrations of organic compounds were observed. On the contrary, when the clean air masses came straight from the north during 3-4 September, the lowest levels of organic compounds were recorded. This study demonstrates that pollution episodes in Beijing were strongly controlled by wind direction; that is, air quality in Beijing is good when air masses originate from the north and northwest, whereas it deteriorates when the air mass originates from the south and southeast.

  13. One-pot synthesis of high molecular weight synthetic heteroprotein dimers driven by charge complementarity electrostatic interactions.

    PubMed

    Hvasanov, David; Nam, Ekaterina V; Peterson, Joshua R; Pornsaksit, Dithepon; Wiedenmann, Jörg; Marquis, Christopher P; Thordarson, Pall

    2014-10-17

    Despite the importance of protein dimers and dimerization in biology, the formation of protein dimers through synthetic covalent chemistry has not found widespread use. In the case of maleimide-cysteine-based dimerization of proteins, we show here that when the proteins have the same charge, dimerization appears to be inherently difficult with yields around 1% or less, regardless of the nature of the spacer used or whether homo- or heteroprotein dimers are targeted. In contrast, if the proteins have opposing (complementary) charges, the formation of heteroprotein dimers proceeds much more readily, and in the case of one high molecular weight (>80 kDa) synthetic dimer between cytochrome c and bovine serum albumin, a 30% yield of the purified, isolated dimer was achieved. This represents at least a 30-fold increase in yield for protein dimers formed from proteins with complementary charges, compared to when the proteins have the same charge, under otherwise similar conditions. These results illustrate the role of ionic supramolecular interactions in controlling the reactivity of proteins toward bis-functionalized spacers. The strategy here for effective synthetic dimerization of proteins could be very useful for developing novel approaches to study the important role of protein-protein interactions in chemical biology.

  14. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface.

    PubMed

    Bjørk, Alexandra; Dalhus, Bjørn; Mantzilas, Dimitrios; Eijsink, Vincent G H; Sirevåg, Reidun

    2003-12-05

    Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.

  15. Fluxional σ-Bonds of the 2,5,8-Trimethylphenalenyl Dimer: Direct Observation of the Sixfold σ-Bond Shift via a π-Dimer.

    PubMed

    Uchida, Kazuyuki; Mou, Zhongyu; Kertesz, Miklos; Kubo, Takashi

    2016-04-06

    Direct evidence for σ-bond fluxionality in a phenalenyl σ-dimer was successfully obtained by a detailed investigation of the solution-state dynamics of 2,5,8-trimethylphenalenyl (TMPLY) using both experimental and theoretical approaches. TMPLY formed three diamagnetic dimers, namely, the σ-dimer (RR/SS), σ-dimer (RS), and π-dimer, which were fully characterized by (1)H NMR spectroscopy and electronic absorption measurements. The experimental findings gave the first quantitative insights into the essential preference of these competitive and unusual dimerization modes. The spectroscopic analyses suggested that the σ-dimer (RR/SS) is the most stable in terms of energy, whereas the others are metastable; the energy differences between these three isomers are less than 1 kcal mol(-1). Furthermore, the intriguing dynamics of the TMPLY dimers in the solution state were fully revealed by means of (1)H-(1)H exchange spectroscopy (EXSY) measurements and variable-temperature (1)H NMR studies. Surprisingly, the σ-dimer (RR/SS) demonstrated a sixfold σ-bond shift between the six sets of α-carbon pairs. This unusual σ-bond fluxionality is ascribed to the presence of a direct interconversion pathway between the σ-dimer (RR/SS) and the π-dimer, which was unambiguously corroborated by the EXSY measurements. The proposed mechanism of the sixfold σ-bond shift based on the experimental findings was well-supported by theoretical calculations.

  16. Ultrasound-assisted synthesis of novel 4-(2-phenyl-1,2,3-triazol-4-yl)-3,4-dihydropyrimidin-(1H)-(thio)ones catalyzed by Sm(ClO(4))(3).

    PubMed

    Liu, Chen-Jiang; Wang, Ji-De

    2010-03-24

    An efficient synthesis of novel 4-(2-phenyl-1,2,3-triazol-4-yl)-3,4-dihydro-pyrimidin-2(1H)-(thio)ones from 1,3-dicarbonyl compounds, 2-phenyl-1,2,3-triazole-4-carbaldehyde and urea or thiourea under ultrasound irradiation and using samarium perchlorate as catalyst is described. Compared with conventional methods, the main advantages of the present methodology are milder conditions, shorter reaction times and higher yields.

  17. Extractant composition

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1990-01-01

    An organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  18. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    PubMed

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-11

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.

  19. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    PubMed Central

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12. Images PMID:2155394

  20. Plasma D-dimer as a predictor of the progression of abdominal aortic aneurysm.

    PubMed

    Vele, E; Kurtcehajic, A; Zerem, E; Maskovic, J; Alibegovic, E; Hujdurovic, A

    2016-11-01

    Essentials D-dimer could provide important information about abdominal aortic aneurysm (AAA) progression. The greatest diameter of the infrarenal aorta and the value of plasma D-dimer were determined. AAA progression is correlated with increasing plasma D-dimer levels. The increasing value of plasma D-dimer could be a predictor of aneurysm progression. Background The natural course of abdominal aortic aneurysm (AAA) is mostly asymptomatic and unpredictable. D-dimer could provide potentially important information about subsequent AAA progression. Objectives The aims of this study were to establish the relationship between the progression of an abdominal aortic aneurysm (AAA) and plasma D-dimer concentration over a 12-month period and determine the value of plasma D-dimer in patients with sub-aneurysmal aortic dilatation. Patients/Methods This was a prospective observational study that involved 33 patients with an AAA, 30 patients with sub-aneurysmal aortic dilatation and 30 control subjects. The greatest diameter of the infrarenal aorta, which was assessed by ultrasound, and the value of plasma D-dimer were determined for all subjects at baseline assessment, as well as after 12 months for those with an AAA. Results A positive correlation was found between the diameter of an AAA and plasma D-dimer concentration at the baseline and the control measurement stages. There was a strong positive correlation between AAA progression and increasing plasma D-dimer concentration over a 12-month period. Among patients with sub-aneurysmal aortic dilatation (n = 30), the value of plasma D-dimer was higher compared with matched controls (n = 30). Conclusions There is a strongly positive correlation between AAA progression and increasing plasma D-dimer concentration. The value of plasma D-dimer is higher in patients with sub-aneurysmal aortic dilatation than in control subjects. © 2016 International Society on Thrombosis and Haemostasis.

  1. Unexpected dimerization of isoprene in a gas chromatography inlet. A study by gas chromatography/mass spectrometry coupling.

    PubMed

    Estevez, Yannick; Gardrat, Christian; Berthelot, Karine; Grau, Etienne; De Jeso, Bernard; Ouardad, Samira; Peruch, Frédéric

    2014-02-28

    During analysis of pure isoprene by gas chromatography/mass spectrometry (GC-MS) using a programmed temperature vaporization (PTV) inlet, the presence of several isoprene dimers was detected in the total ion chromatograms (TICs). This study intends to determine the part of the instrument where dimerization occurs and the relative importance of the dimer amounts under different experimental conditions. The reference thermal dimerization of isoprene gives four six-membered cyclic dimers and two eight-membered ones. In all samples containing different amounts of freshly distilled isoprene, only peaks corresponding to the former appeared in TICs. For the same temperature, their amounts increase as the concentration of injected isoprene increases. The main products are diprene (from 80 to 100%) of the total dimers and dipentene (from 1 to 14%). The sum of the two other dimers is never higher than 6%. In conclusion, isomeric dimers are produced through a dimerization in the inlet. No dimerization of isoprene occurs in the mass spectrometer source. Then care is needed when analyzing terpenic compounds in the presence of isoprene by GC-MS because structures, retention times and mass spectra of diprene and dipentene are close. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-02-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.

  3. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed Central

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation. Images PMID:2153242

  4. D-dimer concentration outliers are not rare in at-term pregnant women.

    PubMed

    Wang, Yu; Gao, Jie; Du, Juan

    2016-06-01

    To determine the D-dimer levels in pregnant women at term and the differences between pregnant women with different D-dimer levels. The plasma D-dimer concentrations in pregnant women at term were identified in a cross-sectional study. The clinical indicators that are potentially relevant to D-dimer levels were compared between the pregnant women with different D-dimer levels (i.e., normal, mildly increased, and severely increased). There were always some D-dimer concentration outliers in the pregnant women at term regardless of the presence or absence of complications, and there were no significant differences in maternal age, gestational age, gravidity, parity, blood count, blood coagulation, or liver function between the pregnant women with different D-dimer levels. D-dimer levels may vary significantly during pregnancy for unknown reasons. This variation, particularly in pregnant women at term, might lead to questionable diagnostic information regarding coagulation. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2

    DOE PAGES

    Yu, Runze; Banerjee, S.; Lei, H. C.; ...

    2018-06-01

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less

  6. Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Runze; Banerjee, S.; Lei, H. C.

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less

  7. Absence of local fluctuating dimers in superconducting Ir1 -x(Pt,Rh ) xTe2

    NASA Astrophysics Data System (ADS)

    Yu, Runze; Banerjee, S.; Lei, H. C.; Sinclair, Ryan; Abeykoon, M.; Zhou, H. D.; Petrovic, C.; Guguchia, Z.; Bozin, E. S.

    2018-05-01

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir0 :95Pt0 :05Te2 and Ir0 :8Rh0 :2Te2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model down to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.

  8. Structural insights into the intertwined dimer of fyn SH2.

    PubMed

    Huculeci, Radu; Garcia-Pino, Abel; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico

    2015-12-01

    Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand. © 2015 The Protein Society.

  9. D-dimer as marker for microcirculatory failure: correlation with LOD and APACHE II scores.

    PubMed

    Angstwurm, Matthias W A; Reininger, Armin J; Spannagl, Michael

    2004-01-01

    The relevance of plasma d-dimer levels as marker for morbidity and organ dysfunction in severely ill patients is largely unknown. In a prospective study we determined d-dimer plasma levels of 800 unselected patients at admission to our intensive care unit. In 91% of the patients' samples d-dimer levels were elevated, in some patients up to several hundredfold as compared to normal values. The highest mean d-dimer values were present in the patient group with thromboembolic diseases, and particularly in non-survivors of pulmonary embolism. In patients with circulatory impairment (r=0.794) and in patients with infections (r=0.487) a statistically significant correlation was present between d-dimer levels and the APACHE II score (P<0.001). The logistic organ dysfunction score (LOD, P<0.001) correlated with d-dimer levels only in patients with circulatory impairment (r=0.474). On the contrary, patients without circulatory impairment demonstrated no correlation of d-dimer levels to the APACHE II or LOD score. Taking all patients together, no correlations of d-dimer levels with single organ failure or with indicators of infection could be detected. In conclusion, d-dimer plasma levels strongly correlated with the severity of the disease and organ dysfunction in patients with circulatory impairment or infections suggesting that elevated d-dimer levels may reflect the extent of microcirculatory failure. Thus, a therapeutic strategy to improve the microcirculation in such patients may be monitored using d-dimer plasma levels.

  10. First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid.

    PubMed

    Pham, Hieu H; Taylor, Christopher D; Henson, Neil J

    2013-01-24

    We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.

  11. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization.

    PubMed

    Fossé, P; Motté, N; Roumier, A; Gabus, C; Muriaux, D; Darlix, J L; Paoletti, J

    1996-12-24

    Retroviral genomes consist of two identical RNA molecules joined noncovalently near their 5'-ends. Recently, two models have been proposed for RNA dimer formation on the basis of results obtained in vitro with human immunodeficiency virus type 1 RNA and Moloney murine leukemia virus RNA. It was first proposed that viral RNA dimerizes by forming an interstrand quadruple helix with purine tetrads. The second model postulates that RNA dimerization is initiated by a loop-loop interaction between the two RNA molecules. In order to better characterize the dimerization process of retroviral genomic RNA, we analyzed the in vitro dimerization of avian sarcoma-leukosis virus (ASLV) RNA using different transcripts. We determined the requirements for heterodimer formation, the thermal dissociation of RNA dimers, and the influence of antisense DNA oligonucleotides on dimer formation. Our results strongly suggest that purine tetrads are not involved in dimer formation. Data show that an autocomplementary sequence located upstream from the splice donor site and within a major packaging signal plays a crucial role in ASLV RNA dimer formation in vitro. This sequence is able to form a stem-loop structure, and phylogenetic analysis reveals that it is conserved in 28 different avian sarcoma and leukosis viruses. These results suggest that dimerization of ASLV RNA is initiated by a loop-loop interaction between two RNA molecules and provide an additional argument for the ubiquity of the dimerization process via loop-loop interaction.

  12. Graded-index optical dimer formed by optical force

    DOE PAGES

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria; ...

    2016-05-30

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  13. Graded-index optical dimer formed by optical force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  14. Theoretical investigation on the 2e/12c bond and second hyperpolarizability of azaphenalenyl radical dimers: strength and effect of dimerization.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Sun, Shi-Ling; Qiu, Yong-Qing; Zhao, Liang; Su, Zhong-Min

    2013-09-28

    An increasing number of chemists have focused on the investigations of two-electron/multicenter bond (2e/mc) that was first introduced to describe the structure of radical dimers. In this work, the dimerization of two isoelectronic radicals, triazaphenalenyl (TAP) and hexaazaphenalenyl (HAP) has been investigated in theory. Results show TAP2 is a stable dimer with stronger 2e/12c bond and larger interaction energy, while HAP2 is a less stable dimer with larger diradical character. Interestingly, the ultraviolet-visible absorption spectra suggest that the dimerization induces a longer wavelength absorption in visible area, which is dependent on the strength of dimerization. Significantly, the amplitude of second hyperpolarizability (γ(yyyy)) of HAP2 is 1.36 × 10(6) a.u. that is larger than 7.79 × 10(4) a.u. of TAP2 because of the larger diradical character of HAP2. Therefore, the results indicate that the strength of radical dimerization can be effectively detected by comparing the magnitude of third order non-linear optical response, which is beneficial for further theoretical and experimental studies on the properties of complexes formed by radical dimerization.

  15. Formic acid dimers in a nitrogen matrix

    NASA Astrophysics Data System (ADS)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-01

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  16. Formic acid dimers in a nitrogen matrix.

    PubMed

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-21

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  17. Factors Associated with D-Dimer Levels in HIV-Infected Individuals

    PubMed Central

    Borges, Álvaro H.; O’Connor, Jemma L.; Phillips, Andrew N.; Baker, Jason V.; Vjecha, Michael J.; Losso, Marcelo H.; Klinker, Hartwig; Lopardo, Gustavo; Williams, Ian; Lundgren, Jens D.

    2014-01-01

    Background Higher plasma D-dimer levels are strong predictors of mortality in HIV+ individuals. The factors associated with D-dimer levels during HIV infection, however, remain poorly understood. Methods In this cross-sectional study, participants in three randomized controlled trials with measured D-dimer levels were included (N = 9,848). Factors associated with D-dimer were identified by linear regression. Covariates investigated were: age, gender, race, body mass index, nadir and baseline CD4+ count, plasma HIV RNA levels, markers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6]), antiretroviral therapy (ART) use, ART regimens, co-morbidities (hepatitis B/C, diabetes mellitus, prior cardiovascular disease), smoking, renal function (estimated glomerular filtration rate [eGFR] and cystatin C) and cholesterol. Results Women from all age groups had higher D-dimer levels than men, though a steeper increase of D-dimer with age occurred in men. Hepatitis B/C co-infection was the only co-morbidity associated with higher D-dimer levels. In this subgroup, the degree of hepatic fibrosis, as demonstrated by higher hyaluronic acid levels, but not viral load of hepatitis viruses, was positively correlated with D-dimer. Other factors independently associated with higher D-dimer levels were black race, higher plasma HIV RNA levels, being off ART at baseline, and increased levels of CRP, IL-6 and cystatin C. In contrast, higher baseline CD4+ counts and higher high-density lipoprotein cholesterol were negatively correlated with D-dimer levels. Conclusions D-dimer levels increase with age in HIV+ men, but are already elevated in women at an early age due to reasons other than a higher burden of concomitant diseases. In hepatitis B/C co-infected individuals, hepatic fibrosis, but not hepatitis viral load, was associated with higher D-dimer levels. PMID:24626096

  18. Photochemical dimerization of organic compounds

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.

    1992-01-01

    At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

  19. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.

    PubMed

    Hao, Qi; Huang, Hao; Fan, Xingce; Yin, Yin; Wang, Jiawei; Li, Wan; Qiu, Teng; Ma, Libo; Chu, Paul K; Schmidt, Oliver G

    2017-10-18

    We report on design and fabrication of patterned plasmonic dimer arrays by using an ultrathin anodic aluminum oxide (AAO) membrane as a shadow mask. This strategy allows for controllable fabrication of plasmonic dimers where the location, size, and orientation of each particle in the dimer pairs can be independently tuned. Particularly, plasmonic dimers with ultrasmall nanogaps down to the sub-10 nm scale as well as a large dimer density up to 1.0 × 10 10 cm -2 are fabricated over a centimeter-sized area. The plasmonic dimers exhibit significant surface-enhanced Raman scattering (SERS) enhancement with a polarization-dependent behavior, which is well interpreted by finite-difference time-domain (FDTD) simulations. Our results reveal a facile approach for controllable fabrication of large-area dimer arrays, which is of fundamental interest for plasmon-based applications in surface-enhanced spectroscopy, biochemical sensing, and optoelectronics.

  20. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions

    PubMed Central

    Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai

    2003-01-01

    The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946

  1. D-dimer: An Overview of Hemostasis and Fibrinolysis, Assays, and Clinical Applications.

    PubMed

    Olson, John D

    2015-01-01

    D-dimer is the smallest fibrinolysis-specific degradation product found in the circulation. The origins, assays, and clinical use of D-dimer will be addressed. Hemostasis (platelet and vascular function, coagulation, fibrinolysis, hemostasis) is briefly reviewed. D-dimer assays are reviewed. The D-dimer is very sensitive to intravascular thrombus and may be markedly elevated in disseminated intravascular coagulation, acute aortic dissection, and pulmonary embolus. Because of its exquisite sensitivity, negative tests are useful in the exclusion venous thromboembolism. Elevations occur in normal pregnancy, rising two- to fourfold by delivery. D-dimer also rises with age, limiting its use in those >80 years old. There is a variable rise in D-dimer in active malignancy and indicates increased thrombosis risk in active disease. Elevated D-dimer following anticoagulation for a thrombotic event indicates increased risk of recurrent thrombosis. These and other issues are addressed. © 2015 Elsevier Inc. All rights reserved.

  2. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    NASA Astrophysics Data System (ADS)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  3. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  4. mRNA Molecules Containing Murine Leukemia Virus Packaging Signals Are Encapsidated as Dimers

    PubMed Central

    Hibbert, Catherine S.; Mirro, Jane; Rein, Alan

    2004-01-01

    Prior work by others has shown that insertion of ψ (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3′ untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV ψ or with ψ sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the ψ region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Ψ+ mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops. PMID:15452213

  5. Preferential recognition of undisruptable dimers of inducible nitric oxide synthase by a monoclonal antibody directed against an N-terminal epitope.

    PubMed

    Mazumdar, Tuhina; Eissa, N Tony

    2005-02-15

    Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.

  6. Diagnostic implication of fibrin degradation products and D-dimer in aortic dissection

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Duan, Xianli; Feng, Rui; Zhao, Zhiqing; Feng, Xiang; Lu, Qingsheng; Jing, Qing; Zhou, Jian; Bao, Junmin; Jing, Zaiping

    2017-03-01

    Fibrin degradation products (FDP) and D-dimer have been considered to be involved in many vascular diseases. In this study we aimed to explore the diagnostic implication of FDP and D-dimer in aortic dissection patients. 202 aortic dissection patients were collected as the case group, 150 patients with other cardiovascular diseases, including myocardial infarction (MI, n = 45), pulmonary infarction (n = 51) and abdominal aortic aneurysm (n = 54) were collected as non-dissection group, and 27 healthy people were in the blank control group. The FDP and D-dimer levels were detected with immune nephelometry. Logist regression analysis was performed to evaluate the influence of FDP and D-dimer for the aortic dissection patients. ROC curve was used to determine the diagnostic value of FDP and D-dimer. The FDP and D-dimer levels were significantly higher in aortic dissection patients than in non-dissection patients and the healthy controls. FDP and D-dimer were both the risk factors for patients with aortic dissection. From the ROC analysis, diagnostic value of FDP and D-dimer were not high to distinguish aortic dissection patients from the non-dissection patients. However FDP and D-dimer could be valuable diagnostic marker to differentiate aortic dissection patients and healthy controls with both AUC 0.863.

  7. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics.

    PubMed

    Denison, Fiona C; Gökirmak, Tufan; Ferl, Robert J

    2014-01-01

    14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The two-state dimer receptor model: a general model for receptor dimers.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  9. Association of different biomarkers of renal function with D-dimer levels in patients with type 1 diabetes mellitus (renal biomarkers and D-dimer in diabetes).

    PubMed

    Domingueti, Caroline Pereira; Fóscolo, Rodrigo Bastos; Dusse, Luci Maria S; Reis, Janice Sepúlveda; Carvalho, Maria das Graças; Gomes, Karina Braga; Fernandes, Ana Paula

    2018-02-01

    Objective This study aimed to evaluate the association between different renal biomarkers with D-Dimer levels in diabetes mellitus (DM1) patients group classified as: low D-Dimer levels (< 318 ng/mL), which included first and second D-Dimer tertiles, and high D-Dimer levels (≥ 318 ng/mL), which included third D-Dimer tertile. Materials and methods D-Dimer and cystatin C were measured by ELISA. Creatinine and urea were determined by enzymatic method. Estimated glomerular filtration rate (eGFR) was calculated using CKD-EPI equation. Albuminuria was assessed by immunoturbidimetry. Presence of renal disease was evaluated using each renal biomarker: creatinine, urea, cystatin C, eGFR and albuminuria. Bivariate logistic regression analysis was performed to assess which renal biomarkers are associated with high D-Dimer levels and odds ratio was calculated. After, multivariate logistic regression analysis was performed to assess which renal biomarkers are associated with high D-Dimer levels (after adjusting for sex and age) and odds ratio was calculated. Results Cystatin C presented a better association [OR of 9.8 (3.8-25.5)] with high D-Dimer levels than albuminuria, creatinine, eGFR and urea [OR of 5.3 (2.2-12.9), 8.4 (2.5-25.4), 9.1 (2.6-31.4) and 3.5 (1.4-8.4), respectively] after adjusting for sex and age. All biomarkers showed a good association with D-Dimer levels, and consequently, with hypercoagulability status, and cystatin C showed the best association among them. Conclusion Therefore, cystatin C might be useful to detect patients with incipient diabetic kidney disease that present an increased risk of cardiovascular disease, contributing to an early adoption of reno and cardioprotective therapies.

  10. Comparison of clinical probability-adjusted D-dimer and age-adjusted D-dimer interpretation to exclude venous thromboembolism.

    PubMed

    Takach Lapner, Sarah; Julian, Jim A; Linkins, Lori-Ann; Bates, Shannon; Kearon, Clive

    2017-10-05

    Two new strategies for interpreting D-dimer results have been proposed: i) using a progressively higher D-dimer threshold with increasing age (age-adjusted strategy) and ii) using a D-dimer threshold in patients with low clinical probability that is twice the threshold used in patients with moderate clinical probability (clinical probability-adjusted strategy). Our objective was to compare the diagnostic accuracy of age-adjusted and clinical probability-adjusted D-dimer interpretation in patients with a low or moderate clinical probability of venous thromboembolism (VTE). We performed a retrospective analysis of clinical data and blood samples from two prospective studies. We compared the negative predictive value (NPV) for VTE, and the proportion of patients with a negative D-dimer result, using two D-dimer interpretation strategies: the age-adjusted strategy, which uses a progressively higher D-dimer threshold with increasing age over 50 years (age in years × 10 µg/L FEU); and the clinical probability-adjusted strategy which uses a D-dimer threshold of 1000 µg/L FEU in patients with low clinical probability and 500 µg/L FEU in patients with moderate clinical probability. A total of 1649 outpatients with low or moderate clinical probability for a first suspected deep vein thrombosis or pulmonary embolism were included. The NPV of both the clinical probability-adjusted strategy (99.7 %) and the age-adjusted strategy (99.6 %) were similar. However, the proportion of patients with a negative result was greater with the clinical probability-adjusted strategy (56.1 % vs, 50.9 %; difference 5.2 %; 95 % CI 3.5 % to 6.8 %). These findings suggest that clinical probability-adjusted D-dimer interpretation is a better way of interpreting D-dimer results compared to age-adjusted interpretation.

  11. EDEM1 targets misfolded HLA-B27 dimers for endoplasmic reticulum associated degradation

    PubMed Central

    Guiliano, David B.; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J.; Campbell, Elaine C.; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J.; Kellam, Paul; Hebert, Daniel N.; Gould, Keith; Powis, Simon J.; Antoniou, Antony N.

    2015-01-01

    Objective HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We wanted to define the role of the UPR induced ER associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. Methods HeLa cell lines expressing only two copies of a carboxy terminally Sv5 tagged HLA-B27 were generated. The ER stress induced EDEM1 protein was over expressed by transfection and dimer levels monitored by immunoblotting. EDEM1, the UPR associated transcription factor XBP-1, the E3 ubiquitin ligase HRD1, the degradation associated derlin 1 and 2 proteins were inhibited by either short hairpin RNA or dominant negative mutants. The UPR associated ERAD of HLA-B27 was confirmed using ER stress inducing pharamacological agents in kinetic and pulse chase assays. Results We demonstrate that UPR induced machinery can target HLA-B27 dimers, and that dimer formation can be controlled by alterations to expression levels of components of the UPR induced ERAD pathway. HLA-B27 dimers and misfolded MHC class I monomeric molecules were detected bound to EDEM1, with overexpression of EDEM1 inhibiting HLA-B27 dimer formation. EDEM1 inhibition resulted in upregulation of HLA-B27 dimers, whilst UPR induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1 and derlin1/2. Conclusion The UPR ERAD pathway as described here can dispose of HLA-B27 dimers and presents a potential novel therapeutic target for the modulation of HLA-B27 associated inflammatory disease. PMID:25132672

  12. Model-based Analysis of HER Activation in Cells Co-Expressing EGFR, HER2 and HER3.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Zhang, Yi; Tan, Yunbing

    2013-08-22

    The HER/ErbB family of receptor tyrosine kinases drive critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panelmore » of human mammary epithelial cells expressing varying levels of EGFR, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of epithelial cells lines with known HER expression levels. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1/1 and HER1/2 dimers, and not HER1/3 dimers, ii) HER1/2 and HER2/3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2/3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.« less

  13. Inhibitory effects of p-cresol and p-hydroxy anisole dimers on expression of the cyclooxygenase-2 gene and lipopolysaccharide-stimulated activation of nuclear factor-κB in RAW264.7 cells.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Ito, Shigeru; Katayama, Tadashi; Fujisawa, Seiichiro

    2014-01-01

    Phenolic compounds, particularly dihydroxybiphenyl-related compounds, possess efficient anti-oxidative and anti-inflammatory activity. We investigated the anti-inflammatory activity of 2,2'-dihydroxy-5,5'-dimethylbiphenol (p-cresol dimer), 2,2'-dihydroxy-5,5'-dimethoxybiphenol (pHA dimer), p-cresol, p-hydroxyanisole (pHA) and 2-t-butyl-4-hydroxyanisole (BHA). The cytotoxicity of the investigated compounds against RAW264.7 cells was determined using a cell counting kit (CCK-8). Their inhibitory effects on cyclooxygenase-2 (Cox2) mRNA expression stimulated by lipopolysaccharide (LPS) were determined using northern blot analysis, and their inhibition of LPS-stimulated nuclear factor-kappa B (Nf-κb) activation was evaluated using enzyme-linked immunosorbent assay-like microwell colorimetric transcription factor activity assay. The molecular orbital energy was calculated on the basis of density function theory BLYP/6-31G*. The cytotoxicity of the compounds declined in the order pHA dimer > p-cresol dimer > BHA > p-cresol > pHA. The inhibitory effect on Cox2 expression and Nf-κb activation was enhanced by p-cresol dimer and pHA dimer, particularly the former, suggesting potent anti-inflammatory activity, whereas p-cresol and pHA showed weak activity, and BHA no activity. Both p-cresol dimer and pHA dimer were highly electronegative, as determined by quantum chemical calculations. Dimerization of p-cresol and pHA enhances their anti-inflammatory activity. p-Cresol dimer and pHA dimer, particularly the former, are potent anti-inflammatory agents. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    PubMed Central

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-01-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA. PMID:7884897

  15. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    PubMed

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-04-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA.

  16. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    PubMed Central

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  17. Structural Characterization of Amyloid β17-42 Dimer by Potential of Mean Force Analysis: Insights from Molecular Dynamics Simulations.

    PubMed

    Dutta, Mary; Chutia, Rajkalyan; Mattaparthi, Venkata Satish Kumar

    2017-01-01

    Recent experiments with Amyloid β1-42 peptide have indicated that the initial dimerization of Aβ1-42 monomers to form amyloid dimers stand out as a key event in the generation of toxic oligomers. However, the structural characterization of Aβ1-42 dimer at the atomistic level and the dimerization mechanism by which Aβ1-42 peptides co-aggregate still remains not clear. In the present study, the process of Aβ17-42 peptide dimerization which is known to play an important role in the plaque formation in Alzheimer's disease was evaluated in terms of potential of mean force. The Aβ17-42 dimer was constructed using PatchDock server. We have used molecular dynamics (MD) simulation with the umbrella sampling methodology to compute the Potential of Mean Force for the dimerization of Aβ17-42. The global minima structure at the minimum distance of separation was isolated from the calculated free energy profile and the interactions involved in the formation of the dimer structure were examined. Protein-protein interfaces and the residueresidue interactions vital for generation of the dimer complexes were also evaluated. The simulation results elucidated the interaction between the monomeric units to be governed primarily by the hydrophobic and hydrogen bonds. The resultant Aβ17-42 dimer was found to have an increased β-strands propensity at the hydrophobic regions encompassing the CHC region. Furthermore, specific hydrophobic residues were found to play a vital role in the formation of the dimer complex. From the results we may therefore conclude hydrophobic region encompassing the CHC region to be crucial in dimerization process. The findings from this study provide detailed information for the complex process of early events of Aβ aggregation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Dipole Approximation to Predict the Resonances of Dimers Composed of Dielectric Resonators for Directional Emission: Dielectric Dimers Dipole Approximation

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

    2017-09-29

    In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less

  19. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    NASA Astrophysics Data System (ADS)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  20. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates.

    PubMed

    Assar, Zahra; Nossoni, Zahra; Wang, Wenjing; Santos, Elizabeth M; Kramer, Kevin; McCornack, Colin; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-09-06

    Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Li, Sazi; Li, Wei; Chen, Ziyu

    2014-11-01

    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v ) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ , we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v -T and μ -T . Moreover, for the noninteracting monomer-dimer model (setting μ =ν =0 ), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h2) as f =-0.662 798 972 833 746 with the dimer density n =0.638 123 109 228 547 , both of 15 correct digits.

  2. Detectability of Noble Gases in Jovian Atmospheres Utilizing Dimer Spectral Structures

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Min, Y.; Kim, Y.; Lee, Y.; Trafton, L.; Miller, S.; McKellar, A. R. W.

    1997-07-01

    The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window (Kim et al. 1995; Trafton et al. 1997) suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres, it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if adequate S/N is obtained. However, these dimer structures should be much weaker than the nearby hydrogen-hydrogen features because noble gases are expected to be minor constituents of these atmospheres. We will discuss the detectability of these dimers based on laboratory measurements (McKellar, 1994; 1996), and current technology of infrared observations.

  3. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  4. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    PubMed

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  5. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Michael Additions of Highly Basic Enolates to ortho-Quinone Methides

    PubMed Central

    Lewis, Robert S.; Garza, Christopher J.; Dang, Ann T.; Pedro, Te Kie A.; Chain, William J.

    2015-01-01

    A protocol by which ketone or ester enolates and ortho-quinone methides (o-QMs) are generated in situ in a single reaction flask from silylated precursors under the action of anhydrous fluoride is reported. The reaction partners are joined to give a variety of β-(2-hydroxyphenyl)-carbonyl compounds in 32–94% yield in a single laboratory operation. The intermediacy of o-QMs is supported by control experiments utilizing enolate precursors and conventional alkyl halides as competitive alkylating agents and the isolation of 1,5-dicarbonyl products resulting from conjugate additions that do not restore the aromatic system. PMID:25906358

  7. Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer's disease?

    PubMed

    Narlawar, Rajeshwar; Pickhardt, Marcus; Leuchtenberger, Stefanie; Baumann, Karlheinz; Krause, Sabine; Dyrks, Thomas; Weggen, Sascha; Mandelkow, Eckhard; Schmidt, Boris

    2008-01-01

    Curcumin binds to the amyloid beta peptide (Abeta) and inhibits or modulates amyloid precursor protein (APP) metabolism. Therefore, curcumin-derived isoxazoles and pyrazoles were synthesized to minimize the metal chelation properties of curcumin. The decreased rotational freedom and absence of stereoisomers was predicted to enhance affinity toward Abeta(42) aggregates. Accordingly, replacement of the 1,3-dicarbonyl moiety with isosteric heterocycles turned curcumin analogue isoxazoles and pyrazoles into potent ligands of fibrillar Abeta(42) aggregates. Additionally, several compounds are potent inhibitors of tau protein aggregation and depolymerized tau protein aggregates at low micromolar concentrations.

  8. Separation of actinides from lanthanides

    DOEpatents

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  9. Separation of actinides from lanthanides

    DOEpatents

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  10. Dimerization of the keto tautomer of acetohydroxamic acid—infrared matrix isolation and theoretical study

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena; Mielke, Zofia

    2005-05-01

    Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH 3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO···H sbnd ON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO···H sbnd N hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular N sbnd H···O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies ( ΔEZPECPI, II = -7.02, -6.34 kcal mol -1) being less stable than calculated structures III and IV ( ΔEZPECPIII, IV = -9.50, -8.87 kcal mol -1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO···H sbnd ON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA) 2 dimers in the studied matrixes indicates that the formation of (AHA) 2 is kinetically and not thermodynamically controlled.

  11. Economic evaluation of different screening alternatives for patients with clinically suspected acute deep vein thrombosis.

    PubMed

    Bogavac-Stanojević, Natasa; Dopsaj, Violeta; Jelić-Ivanović, Zorana; Lakić, Dragana; Vasić, Dragan; Petrova, Guenka

    2013-01-01

    We examined the cost-effectiveness of the three different D-dimer measurements in the screening of DVT in models with and without calculation of pre-test probability (PTP) score. Moreover, we calculated the minimal cost in DVT detection. In the group of 192 patients with clinically suspected acute DVT, we examined the three different D-dimer measurements (Innovance D-dimer, Hemosil D-dimer HS and Vidas D-dimer Exclusion II) in combination with and without PTP assessment. The diagnostic alternative employing Vidas D-dimer Exclusion II assay without and with PTP calculation gave lower incremental cost-effectiveness ratio (ICER) than the alternative employing Hemosil D-dimer HS assay (0.187 Euros vs. 0.998 Euros per one additional DVT positive patient selected for CUS in model without PTP assessment and 0.450 vs. 0.753 Euros per one DVT positive patient selected for CUS in model with PTP assessment). According to sensitivity analysis, the Hemosil D-dimer HS assay was the most cost effective alternative when one patient was admitted to the vascular ambulance per day. Vidas D-dimer Exclusion II assay was the most cost effective alternative when more than one patient were admitted to the vascular ambulance per day. Cost minimisation analysis indicated that selection of patients according to PTP score followed by D-dimer analysis decreases the cost of DVT diagnosis. ICER analysis enables laboratories to choose optimal laboratory tests according to number of patients admitted to laboratory. Results support the feasibility of using PTP scoring and D-dimer measurement before CUS examination in DVT screening.

  12. Photodissociable dimer reduction products of 2-thiopyrimidine derivatives.

    PubMed Central

    Wrona, M; Giziewicz, J; Shugar, D

    1975-01-01

    Both 4,6-dimethyl-2-thipyrimidine and its 1-methyl derivative undergo polarographic reduction in aqueous medium, via a 1e/1H+ reduction to a free radical which rapidly dimerizes to products isolates and identified as 4,4'-bis-(4,6-dimethyl-3,4-dihydropyrimidin-2-thione) and the corresponding 1-methyl dimer. The dimers may be oxidized electrolytically to regenerate the parent monomers. Both dimers also undergo photodissociation to quantitatively regenerate the parent monomers, in high quantum yield, 0.23 and 0.35 M/Einstein. The correlation between electrochemical and photochemical reductions of 2-thiopyrimidines are discussed, as well as the significance of the dimer photodissociation reactions in relation to nucleic acid photochemistry. PMID:28516

  13. Ultrafast photodimerization dynamics in α-cyano-4-hydroxycinnamic and sinapinic acid crystals

    NASA Astrophysics Data System (ADS)

    Hoyer, Theo; Tuszynski, Wilfried; Lienau, Christoph

    2007-07-01

    We report a sub-picosecond time-resolved fluorescence spectroscopic study of different cinnamic acid crystals, model systems for solid-state photodimerization reactions. For α-cyano-4-hydroxycinnamic acid (α-CHC), we identify the emission spectra of both monomers and dimers, allowing us to directly probe the photoinduced dynamics of both species. The dimerization occurs on a timescale of 10 ps and results in a long-lived dimer product, stable for hours. For sinapinic acid, we find an extremely fast, sub-picosecond dimerization reaction and a short-lived dimer. This first sub-picosecond time-resolved dimerization study in cinnamic acid crystals provides a new basis for relating their structural properties and microscopic reaction dynamics.

  14. A HeI photoelectron spectrum of the [Al(CH 3) 3] 2 dimer

    NASA Astrophysics Data System (ADS)

    Wang, Dianxun; Qian, Ximei; Zheng, Shijun; Shi, Yizhong

    1997-10-01

    The HeI photoelectron spectrum (PES) of the [Al(CH 3) 3] 2 dimer is recorded for the first time. To assign the PES bands, an ab initio SCF MO calculation for the dimer has also been performed. The four splitting peaks of the first PE band are respectively designated to electron ionization of the four frontier 8b u, 13a g, 7b g, and 7b u orbitals of the dimer. They originate from the recombination of the two HOMO (5e') of the two monomers in the forming of the dimer. That is to say, during the formation of the dimer from the two monomers, the reduction of molecular symmetry (from the C 3h symmetry of the monomer to the C 2h symmetry of the dimer) leads to the undegeneration of the degenerate orbitals.

  15. Solitary waves in dimer binary collision model

    NASA Astrophysics Data System (ADS)

    Ahsan, Zaid; Jayaprakash, K. R.

    2017-01-01

    Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.

  16. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    NASA Technical Reports Server (NTRS)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  17. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  18. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  19. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  20. The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer.

    PubMed

    O'Malley, Tiernan T; Witbold, William M; Linse, Sara; Walsh, Dominic M

    2016-11-08

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.

  1. The aggregation paths and products of Aβ42 dimers are distinct from Aβ42 monomer

    PubMed Central

    O'Malley, Tiernan T.; Witbold, William M.; Linse, Sara; Walsh, Dominic M.

    2017-01-01

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be SDS-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated from Aβ monomer, consist primarily of Aβ42 and resist denaturation by powerful chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in only one of two different ways - either by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then applied a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by Aβ monomer. These results suggest that Aβ dimers allow the formation of soluble aggregates akin to those in aqueous extracts of AD brain. Thus it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates. PMID:27750419

  2. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    NASA Astrophysics Data System (ADS)

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-09-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.

  3. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification.

    PubMed

    Osipov, Alexey V; Kasheverov, Igor E; Makarova, Yana V; Starkov, Vladislav G; Vorontsova, Olga V; Ziganshin, Rustam Kh; Andreeva, Tatyana V; Serebryakova, Marina V; Benoit, Audrey; Hogg, Ronald C; Bertrand, Daniel; Tsetlin, Victor I; Utkin, Yuri N

    2008-05-23

    Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.

  4. Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazehoski, Kristina O., E-mail: pazehosk@pitt.edu; Cobine, Paul A., E-mail: pac0006@auburn.edu; Winzor, Donald J.

    2011-03-11

    Research highlights: {yields} A metal-binding protein domain is directly involved in protein dimerization. {yields} Fusing the metal-binding domain to a monomeric protein induces dimerization. {yields} Frontal size-exclusion chromatography measures the strength of dimer interaction. {yields} Ultracentrifugation studies confirm the influence of metal binding on dimerization. -- Abstract: Metal binding to the C-terminal region of the copper-responsive repressor protein CopY is responsible for homodimerization and the regulation of the copper homeostasis pathway in Enterococcus hirae. Specific involvement of the 38 C-terminal residues of CopY in dimerization is indicated by zonal and frontal (large zone) size-exclusion chromatography studies. The studies demonstrate thatmore » the attachment of these CopY residues to the immunoglobulin-binding domain of streptococcal protein G (GB1) promotes dimerization of the monomeric protein. Although sensitivity of dimerization to removal of metal from the fusion protein is smaller than that found for CopY (as measured by ultracentrifugation studies), the demonstration that an unrelated protein (GB1) can be induced to dimerize by extending its sequence with the C-terminal portion of CopY confirms the involvement of this region in CopY homodimerization.« less

  5. Studies on the Dissociation and Urea-Induced Unfolding of FtsZ Support the Dimer Nucleus Polymerization Mechanism

    PubMed Central

    Montecinos-Franjola, Felipe; Ross, Justin A.; Sánchez, Susana A.; Brunet, Juan E.; Lagos, Rosalba; Jameson, David M.; Monasterio, Octavio

    2012-01-01

    FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (Kd = 9 μM) indicates a significant fraction (∼10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization. PMID:22824282

  6. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    PubMed

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  7. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  8. Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mao, Qian; Ren, Yihua; Luo, K. H.; van Duin, Adri C. T.

    2017-12-01

    Physical dimerization of polycyclic aromatic hydrocarbons (PAHs) has been investigated via molecular dynamics (MD) simulation with the ReaxFF reactive force field that is developed to bridge the gap between the quantum mechanism and classical MD. Dynamics and kinetics of homo-molecular PAH collision under different temperatures, impact parameters, and orientations are studied at an atomic level, which is of great value to understand and model the PAH dimerization. In the collision process, the enhancement factors of homo-molecular dimerizations are quantified and found to be larger at lower temperatures or with smaller PAH instead of size independent. Within the capture radius, the lifetime of the formed PAH dimer decreases as the impact parameter increases. Temperature and PAH characteristic dependent forward and reverse rate constants of homo-molecular PAH dimerization are derived from MD simulations, on the basis of which a reversible model is developed. This model can predict the tendency of PAH dimerization as validated by pyrene dimerization experiments [H. Sabbah et al., J. Phys. Chem. Lett. 1(19), 2962 (2010)]. Results from this study indicate that the physical dimerization cannot be an important source under the typical flame temperatures and PAH concentrations, which implies a more significant role played by the chemical route.

  9. A multimode vibronic treatment of absorption, resonance Raman, and hyper-Rayleigh scattering of excitonically coupled molecular dimers

    NASA Astrophysics Data System (ADS)

    Myers Kelley, Anne

    2003-08-01

    The linear absorption spectra, resonance Raman excitation profiles and depolarization dispersion curves, and hyper-Rayleigh scattering profiles are calculated for excitonically coupled homodimers of a model electron donor-acceptor "push-pull" conjugated chromophore as a function of dimer geometry. The vibronic eigenstates of the dimer are calculated by diagonalizing the matrix of transition dipole couplings among the vibronic transitions of the constituent monomers. The absorption spectra show the usual red- or blueshifted transitions for J-type or H-type dimers, respectively. When the electronic coupling is large compared with the vibronic width of the monomer spectrum, the dimer absorption spectra exhibit simple Franck-Condon progressions having reduced vibronic intensities compared with the monomer, and the resonance Raman excitation profiles are shifted but otherwise only weakly perturbed. When the coupling is comparable to the vibronic width, the H-dimer absorption spectra exhibit irregular vibronic frequency spacings and intensity patterns and the effects on the Raman excitation profiles are larger. There is strong dispersion in the Raman depolarization ratios for dimer geometries in which both transitions carry oscillator strength. The first hyperpolarizabilities are somewhat enhanced in J-dimers and considerably reduced in H-dimers. These effects on the molecular β will amplify the effects of dimerization on the ground-state dipole moment in electro-optic materials formed from chromophore-doped polymers that must be electric field poled to obtain the net alignment needed for a macroscopic χ(2).

  10. Making structural sense of dimerization interfaces of delta opioid receptor homodimers.

    PubMed

    Johnston, Jennifer M; Aburi, Mahalaxmi; Provasi, Davide; Bortolato, Andrea; Urizar, Eneko; Lambert, Nevin A; Javitch, Jonathan A; Filizola, Marta

    2011-03-15

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed "4" dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed "4/5" dimer) in an explicit lipid-water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer.

  11. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.

    PubMed

    Zheng, Xiaoxu; Ying, Lei; Liu, Juan; Dou, Dou; He, Qiong; Leung, Susan Wai Sum; Man, Ricky Y K; Vanhoutte, Paul M; Gao, Yuansheng

    2011-06-01

    Soluble guanylyl cyclase (sGC) is a heterodimer. The dimerization of the enzyme is obligatory for its function in mediating actions caused by agents that elevate cyclic guanosine monophosphate (cGMP). The present study aimed to determine whether sGC dimerization is modulated by thiol-reducing agents and whether its dimerization influences relaxations in response to nitric oxide (NO). The dimers and monomers of sGC and cGMP-dependent protein kinase (PKG) were analysed by western blotting. The intracellular cGMP content was measured by enzyme-linked immunosorbent assay. Changes in isometric tension were determined in organ chambers. In isolated porcine coronary arteries, the protein levels of sGC dimer were decreased by the thiol reductants dithiothreitol, l-cysteine, reduced l-glutathione and tris(2-carboxyethyl) phosphine. The effect was associated with reduced cGMP elevation and attenuated relaxations in response to nitric oxide donors. The dimerization of sGC and activation of the enzyme were also decreased by dihydrolipoic acid, an endogenous thiol antioxidant. Dithiothreitol at concentrations markedly affecting the dimerization of sGC had no significant effect on the dimerization of PKG or relaxation in response to 8-Br-cGMP. Relaxation of the coronary artery in response to a NO donor was potentiated by hypoxia when sGC was partly inhibited, coincident with an increase in sGC dimer and enhanced cGMP production. These effects were prevented by dithiothreitol and tris(2-carboxyethyl) phosphine. These results demonstrate that the dimerization of sGC is exquisitely sensitive to thiol reductants compared with that of PKG, which may provide a novel mechanism for thiol-dependent modulation of NO-mediated vasodilatation in conditions such as hypoxia.

  12. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  13. Binding Energies of Proton-Bound Dimers of Imidazole and n-Acetylalanine Methyl Ester Obtained by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Jockusch, Rebecca A.; Williams*, Evan R.

    2005-01-01

    The dissociation kinetics of protonated n-acetyl-L-alanine methyl ester dimer (AcAlaMEd), imidazole dimer, and their cross dimer were measured using blackbody infrared radiative dissociation (BIRD). Master equation modeling of these data was used to extract threshold dissociation energies (Eo) for the dimers. Values of 1.18 ± 0.06, 1.11 ± 0.04, and 1.12 ± 0.08 eV were obtained for AcAlaMEd, imidazole dimer, and the cross dimer, respectively. Assuming that the reverse activation barrier for dissociation of the ion–molecule complex is negligible, the value of Eo can be compared to the dissociation enthalpy (ΔHd°) from HPMS data. The Eo values obtained for the imidazole dimer and the cross dimer are in agreement with HPMS values; the value for AcAlaMEd is somewhat lower. Radiative rate constants used in the master equation modeling were determined using transition dipole moments calculated at the semiempirical (AM1) level for all dimers and compared to ab initio (RHF/3-21G*) calculations where possible. To reproduce the experimentally measured dissociation rates using master equation modeling, it was necessary to multiply semiempirical transition dipole moments by a factor between 2 and 3. Values for transition dipole moments from the ab initio calculations could be used for two of the dimers but appear to be too low for AcAlaMEd. These results demonstrate that BIRD, in combination with master equation modeling, can be used to determine threshold dissociation energies for intermediate size ions that are in neither the truncated Boltzmann nor the rapid energy exchange limit. PMID:16604163

  14. Deuteration Effect on the Nh/nd Stretch Band of the Jet-Cooled 7-AZAINDOLE and its Tautomeric Dimers: Relation to the Ground-State Double Proton-Transfer Reaction

    NASA Astrophysics Data System (ADS)

    Ishikawa, Haruki; Nakano, Takumi; Takashima, Tsukiko; Yabuguchi, Hiroki; Fuke, Kiyokazu

    2013-06-01

    In order to investigate the deuteration effect on the vibrational dynamics of the NH and/or ND stretch excited levels of the 7-azaindole (7-AI) normal dimer and its tautomeric dimer, we have carried out infrared spectroscopy of three isotopic species for each dimers; undeuterated one (NH-NH) and one or two hydrogen atom(s) of the NH groups is deuterated ones (NH-ND and ND-ND, respectively). It is found that the ND stretch band profiles of the NH-ND and ND-ND tautomeric dimers are very similar with each other. This result is very distinct from the result of the comparison of the NH stretch band profiles of the NH-NH and NH-ND dimers in our previous study. For a further discussion, we have examined the deuteration effect in the case of the 7-AI normal dimer. It is found that the NH stretch band profiles of the NH-NH and the NH-ND dimers and also the ND stretch band profiles of the NH-ND and the ND-ND dimers exhibit similar patterns, respectively. These facts indicates that the vibrational relaxation from the NH/ND stretch level of the normal dimer basically proceed within a monomer unit. The large deuteration effect of the NH stretch band profile observed previously is found to be characteristic of the tautomeric dimer. This behavior is related to a large anharmonicity of the potential energy surface originating from an existence of the double-proton transfer reaction barrier. H. Ishikawa, H. Yabuguchi, Y. Yamada, A. Fujihara, K. Fuke, J. Phys. Chem. A 114, 3199 (2010).

  15. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission

    PubMed Central

    Lees, Jonathan P. B.; Manlandro, Cara Marie; Picton, Lora K.; Ebie Tan, Alexandra Z.; Casares, Salvador; Flanagan, John M.; Fleming, Karen G.; Hill, R. Blake

    2012-01-01

    Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide-like repeat (TPR) protein whose role in assembly of the fission machinery remains obscure. Two non-functional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild type Fis1. A72P also disrupts dimerization of non-functional variants indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is non-functional in fission consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR containing proteins may reversibly self-associate. PMID:22789569

  16. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hideki; Maruta, Shinsaku, E-mail: maruta@soka.ac.jp

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesinmore » monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.« less

  17. Circulating D-dimer level correlates with disease characteristics in hepatoblastoma patients

    PubMed Central

    Zhang, BinBin; Liu, GongBao; Liu, XiangQi; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2017-01-01

    Abstract Objectives: Hepatoblastoma (HB) is the most common pediatric liver malignancy, typically affecting children within the first 4 years of life. However, only a few validated blood biomarkers are used in clinical evaluation. The current study explored the clinical application and significance of D-dimer levels in patients with HB. Method: Forty-four patients with HB were included in this retrospective study. D-dimer and plasma fibrinogen levels were examined, and their correlation with other clinical features was analyzed. D-dimer and plasma fibrinogen levels were examined between HB and other benign hepatic tumors. Results: D-dimer levels were significantly associated with high-risk HB features, such as advanced stage and high α-fetoprotein (AFP) levels. Higher D-dimer levels were observed in stage 4 patients compared with stage 1/2/3 patients (P = .028). Higher D-dimer levels were also observed in patients with higher AFP levels before chemotherapy compared with patients with lower AFP levels after chemotherapy (P< 0.001). In addition, higher D-dimer levels were observed in HB compared with other benign hepatic tumors such as hepatic hemangioma and hepatocellular adenoma (P = .012). No significant difference in D-dimer levels was found between sex (P = .503) and age (≥12 vs <12 months, P = .424). There was no significant difference in plasma fibrinogen levels between sex or age and high-risk HB features, such as advanced stage and high AFP levels. Conclusions: Elevated D-dimer levels could be a useful determinant biomarker for high-risk features in patients with HB. This finding also supports the clinical application of D-dimer in HB. PMID:29381980

  18. Can very high level of D-dimer exclusively predict the presence of thromboembolic diseases?

    PubMed

    Ho, Chao-Hung

    2011-04-01

    D-dimer quantitative test is mainly used to rule out the presence of thromboembolic diseases (TEDs). Whether very high D-dimer (100 times above the cutoff point) can exclusively indicate the presence of TED should be known. D-dimer was detected by a quantitative immunoturbidimetric assay. The normal value is 0.2-0.7 mg/L fibrinogen equivalent units (FEUs). During the year of 2009, 1,053 D-dimer tests were performed. We analyzed the results of these patients to find out the causes of very high D-dimer. The mean value of D-dimer in the 1,053 tests was 8.56 mg/L FEU, ranging from <0.2 mg/L to 563.2 mg/L FEU. Of them, 28 samples from 21 patients had very high D-dimer value: >50 mg/L FEU. Of the 21 patients, 9 (43%) had TED, 1 had suspected TED, but not proved by computed tomographic (CT) angiogram, 3 had massive gastrointestinal or other site bleeding, 3 patients had cardiac arrest with samples taken immediately after recovery from cardiopulmonary resuscitation (CPR), 2 had sepsis with disseminated intravascular coagulation (DIC), 1 had postpartum hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome with acute pulmonary edema and renal failure, 1 had multiple traumatic injury, and 1 received thrombolytic therapy. Although TED was the most frequently seen disorder in patients with very high D-dimer value, very high D-dimer was not necessary exclusively the marker of TED. Other disorders such as massive bleeding, status post CPR, sepsis with DIC, multiple traumatic injuries, hyperfibrinolysis and HELLP syndrome can also have very high D-dimer. Copyright © 2011. Published by Elsevier B.V.

  19. Endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 1 targets misfolded HLA-B27 dimers for endoplasmic reticulum-associated degradation.

    PubMed

    Guiliano, David B; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J; Campbell, Elaine C; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J; Kellam, Paul; Hebert, Daniel N; Gould, Keith G; Powis, Simon J; Antoniou, Antony N

    2014-11-01

    HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). This study was undertaken to define the role of the UPR-induced ER-associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. HeLa cell lines expressing only 2 copies of a carboxy-terminally Sv5-tagged HLA-B27 were generated. The ER stress-induced protein ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) was overexpressed by transfection, and dimer levels were monitored by immunoblotting. EDEM1, the UPR-associated transcription factor X-box binding protein 1 (XBP-1), the E3 ubiquitin ligase hydroxymethylglutaryl-coenzyme A reductase degradation 1 (HRD1), and the degradation-associated proteins derlin 1 and derlin 2 were inhibited using either short hairpin RNA or dominant-negative mutants. The UPR-associated ERAD of HLA-B27 was confirmed using ER stress-inducing pharamacologic agents in kinetic and pulse chase assays. We demonstrated that UPR-induced machinery can target HLA-B27 dimers and that dimer formation can be controlled by alterations to expression levels of components of the UPR-induced ERAD pathway. HLA-B27 dimers and misfolded major histocompatibility complex class I monomeric molecules bound to EDEM1 were detected, and overexpression of EDEM1 led to inhibition of HLA-B27 dimer formation. EDEM1 inhibition resulted in up-regulation of HLA-B27 dimers, while UPR-induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1, and derlins 1 and 2. The present findings indicate that the UPR ERAD pathway can dispose of HLA-B27 dimers, thus presenting a potential novel therapeutic target for modulation of HLA-B27-associated inflammatory disease. Copyright © 2014 by the American College of Rheumatology.

  20. Bioluminescence Resonance Energy Transfer Studies Reveal Constitutive Dimerization of the Human Lutropin Receptor and a Lack of Correlation between Receptor Activation and the Propensity for Dimerization*

    PubMed Central

    Guan, Rongbin; Feng, Xiuyan; Wu, Xueqing; Zhang, Meilin; Zhang, Xuesen; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904–5914). In this study, bioluminescence resonance energy transfer (BRET2) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET2 to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET2 analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET2 signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR. PMID:19147490

  1. An ion mobility-mass spectrometry investigation of monocyte chemoattractant protein-1

    NASA Astrophysics Data System (ADS)

    Schenauer, Matthew R.; Leary, Julie A.

    2009-10-01

    In the present article we describe the gas-phase dissociation behavior of the dimeric form of monocyte chemoattractant protein-1 (MCP-1) using quadrupole-traveling wave ion mobility spectrometry-time of flight mass spectrometry (q-TWIMS-TOF MS) (Waters Synapt(TM)). Through investigation of the 9+ charge state of the dimer, we were able to monitor dissociation product ion (monomer) formation as a function of activation energy. Using ion mobility, we were able to observe precursor ion structural changes occurring throughout the activation process. Arrival time distributions (ATDs) for the 5+ monomeric MCP-1 product ions, derived from the gas-phase dissociation of the 9+ dimer, were then compared with ATDs obtained for the 5+ MCP-1 monomer isolated directly from solution. The results show that the dissociated monomer is as compact as the monomer arising from solution, regardless of the trap collision energy (CE) used in the dissociation. The solution-derived monomer, when collisionally activated, also resists significant unfolding within measure. Finally, we compared the collisional activation data for the MCP-1 dimer with an MCP-1 dimer non-covalently bound to a single molecule of the semi-synthetic glycosaminoglycan (GAG) analog Arixtra(TM); the latter a therapeutic anti-thrombin III-activating pentasaccharide. We observed that while dimeric MCP-1 dissociated at relatively low trap CEs, the Arixtra-bound dimer required much higher energies, which also induced covalent bond cleavage in the bound Arixtra molecule. Both the free and Arixtra-bound dimers became less compact and exhibited longer arrival times with increasing trap CEs, albeit the Arixtra-bound complex at slightly higher energies. That both dimers shifted to longer arrival times with increasing activation energy, while the dissociated MCP-1 monomers remained compact, suggests that the longer arrival times of the Arixtra-free and Arixtra-bound dimers may represent a partial breach of non-covalent interactions between the associated MCP-1 monomers, rather than extensive unfolding of individual subunits. The fact that Arixtra preferentially binds MCP-1 dimers and prevents dimer dissociation at comparable activation energies to the Arixtra-free dimer, may suggest that the drug interacts across the two monomers, thereby inhibiting their dissociation.

  2. Design and Preparation of Nanoparticle Dimers for SERS Detection

    DTIC Science & Technology

    2012-09-10

    sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were synthesized that incorporate SERS reporters...and antigens, based on the remarkable sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were...Potma, V. A._Apkarian. High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers, The Journal of

  3. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...

  4. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...

  5. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.

  6. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  7. A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiona, Paige K.; Lee, Hyun Ji; Lin, Peng

    “Brown Carbon” (BrC) is a type of organic particulate matter that absorbs visible and near ultraviolet radiation. Reactions of carbonyls in secondary organic aerosol (SOA) produced from limonene with ammonia (NH3) or ammonium sulfate (AS) are known to produce BrC with a distinctive absorption band at 500 nm. Although the general mechanism for this process has been proposed in previous studies, the specific molecular structures of the light-absorbing species remain unclear. This study examined the browning processes occurring in aqueous solutions of AS and 4-oxopentanal (4-OPA), which has a 1,4-dicarbonyl structural motif present in many limonene SOA compounds. The reactionmore » of 4-OPA with AS in a bulk aqueous solution produces a 2-methyl pyrrole (2-MP) intermediate, which is not a strong light absorber by itself, but can react further with carbonyl compounds leading to the eventual formation of BrC chromophores. The direct involvement of 2-MP in the browning process was demonstrated by reacting 2-MP with 4-OPA and with limonene SOA, both of which produced BrC chromophores with distinctive absorption bands at visible wavelengths. The formation of BrC in reaction of 4-OPA with AS and ammonium nitrate (AN) was found to be accelerated by evaporation of the solution suggesting an important role of the dehydration processes in BrC formation from 1,4- dicarbonyls. 4-OPA was also found to produce BrC in aqueous reactions with a broad spectrum of amino acids and amines. The results suggest that 4-OPA may be the smallest atmospherically relevant compound capable of browning by the same mechanism as limonene SOA.« less

  8. Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ambarish; Kawamura, Kimitaka; Ono, Kaori; Seki, Osamu; Fu, Pingqing; Matoba, Sumio; Shiraiwa, Takayuki

    2016-04-01

    Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C18:1) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere.

  9. Recognizing occupational effects of diacetyl: What can we learn from this history?

    PubMed Central

    Kreiss, Kathleen

    2017-01-01

    For half of the 30-odd years that diacetyl-exposed workers have developed disabling lung disease, obliterative bronchiolitis was unrecognized as an occupational risk. Delays in its recognition as an occupational lung disease are attributable to the absence of a work-related temporal pattern of symptoms; failure to recognize clusters of cases; complexity of exposure environments; and absence of epidemiologic characterization of workforces giving rise to case clusters. Few physicians are familiar with this rare disease, and motivation to investigate the unknown requires familiarity with what is known and what is anomalous. In pursuit of the previously undescribed risk, investigators benefited greatly from multi-disciplinary collaboration, in this case including physicians, epidemiologists, environmental scientists, toxicologists, industry representatives, and worker advocates. In the 15 years since obliterative bronchiolitis was described in microwave popcorn workers, α-dicarbonyl-related lung disease has been found in flavoring manufacturing workers, other food production workers, diacetyl manufacturing workers, and coffee production workers, alongside case reports in other industries. Within the field of occupational health, impacts include new ventures in public health surveillance, attention to spirometry quality for serial measurements, identifying other indolent causes of obliterative bronchiolitis apart from accidental over-exposures, and broadening the spectrum of diagnostic abnormalities in the disease. Within toxicology, impacts include new attention to appropriate animal models of obliterative bronchiolitis, pertinence of computational fluid dynamic-physiologically based pharmacokinetic modeling, and contributions to mechanistic understanding of respiratory epithelial necrosis, airway fibrosis, and central nervous system effects. In these continuing efforts, collaboration between laboratory scientists, clinicians, occupational public health practitioners in government and industry, and employers remains critical for improving the health of workers inhaling volatile α-dicarbonyl compounds. PMID:27326900

  10. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

    PubMed

    Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed

    2016-02-15

    Methylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. In this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epithelial (H-RPE) cells treated with MGO. Among the eight specific compounds evaluated, (-)-epigallocatechin 3-gallate (EGCG) from tea, phloretin in apple, and [6]-shogaol and [6]-gingerol from ginger were found to be most effective in preventing MGO-induced cytotoxicity in the epithelial cells. Investigation of possible underlying mechanisms suggests that that these compounds could act by modulating key regulative detoxifying enzymes via modifying nuclear factor-erythroid 2-related factor 2 (Nrf2) function. MGO-induced cytotoxicity led to increased levels of AGEs causing increase in Nε-(Carboxymethyl) lysine (CML) and glutathione (GSH) levels and over expression of receptor for advanced glycation end products (RAGE). Data also showed that translocation of Nrf2 from cytosol to nucleus was inhibited, which decreased the expression of detoxifying enzyme like heme oxygenase-1 (HO-1). The most potent bioactive compounds scavenged dicarbonyl compounds, inhibited AGEs formation and significantly reduced carbonyl stress by Nrf2 related pathway and restoration of HO-1 expression. These findings demonstrated the protective effect of bioactive compounds derived from food sources against MGO-induced carbonyl stress through activation of the Nrf2 related defense pathway, which is of significant importance for therapeutic interventions in complementary treatment/management of diabetes-related complications. Copyright © 2016. Published by Elsevier GmbH.

  11. Molecular distributions and isotopic compositions of marine aerosols over the western North Atlantic: Dicarboxylic acids, ketoacids, α-dicarbonyls (glyoxal and methylglyoxal), fatty acids, sugars, and SOA tracers

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosols were collected over the western North Atlantic from off the coast of Boston to Bermuda during the WACS (Western Atlantic Climate Study) cruise of R/V Ronald H. Brown in August 2012 using a high volume air sampler and pre-combusted quartz fiber filters. Aerosol filter samples (n=5) were analyzed for OC/EC, major inorganic ions, low molecular weight dicarboxylic acids and various secondary organic aerosol (SOA) tracers using carbon analyzer, ion chromatograph, GC/FID and GC/MS, respectively. Homologous series (C2-C12) of dicarboxylic acids (31-335 ng m-3) were detected with a predominance of oxalic acid. Total carbon and nitrogen and their stable isotope ratios were determined as well as stable carbon isotopic compositions of individual diacids using IRMS. Diacids were found to be the most abundant compound class followed by monoterpene-SOA tracers > isoprene-SOA tracers > sugar compounds > ketoacids > fatty alcohols > fatty acids > α-dicarbonyls > aromatic acids > n-alkanes. The concentrations of these compounds were higher in the coastal site and decreased in the open ocean. However, diacids stayed relatively high even in the remote ocean. Interestingly, contributions of oxalic acid to total aerosol carbon increased from the coast (2.3%) to the remote ocean (5.6%) during long-range atmospheric transport. Stable carbon isotopic composition of oxalic acid increased from the coast (-17.5‰) to open ocean (-12.4‰), suggesting that photochemical aging of organic aerosols occurred during the atmospheric transport over the ocean. Stable carbon isotope ratios of bulk aerosol carbon also increased from the coast near Boston to the open ocean near Bermuda.

  12. Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-). Theoretical evidence for a competitive charge transfer mechanism.

    PubMed

    Hu, Zhenming; Boyd, Russell J; Nakatsuji, Hiroshi

    2002-03-20

    Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.

  13. Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    2010-11-01

    Water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C6, C9), and α-dicarbonyls (glyoxal and methylglyoxal) were determined in the Arctic aerosols collected in winter to early summer, as well as aerosol total carbon (TC) and water-soluble organic carbon (WSOC). Concentrations of TC and WSOC gradually decreased from late February to early June with a peak in spring, indicating a photochemical formation of water-soluble organic aerosols at a polar sunrise. We found that total (C2-C11) diacids (7-84 ng m-3) increased at polar sunrise by a factor of 4 and then decreased toward summer. Their contributions to TC (average 4.0%) peaked in early April and mid-May. The contribution of total diacids to WSOC was on average 7.1%. It gradually increased from February (5%) to a maximum in April (12.7%) with a second peak in mid-May (10.4%). Although oxalic acid (C2) is the dominant diacid until April, its predominance was replaced by succinic acid (C4) after polar sunrise. This may indicate that photochemical production of C2 was overwhelmed by its degradation when solar radiation was intensified and the atmospheric transport of its precursors from midlatitudes to the Arctic was ended in May. Interestingly, the contributions of azelaic (C9) and ω-oxobutanoic acids to WSOC increased in early summer possibly due to an enhanced emission of biogenic unsaturated fatty acids from the ocean followed by photochemical oxidation in the atmosphere. An enhanced contribution of diacids to TC and WSOC at polar sunrise may significantly alter the hygroscopic properties of organic aerosols in the Arctic.

  14. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  15. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro

    2015-05-01

    In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.

  16. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Meng, Jingjing; Wang, Qiyuan; Cao, Junji; Li, Jianjun; Wang, Jiayuan

    2015-07-01

    Size-segregated (9-stages) airborne particles during winter in Chengdu city of China were collected on a day/night basis and determined for dicarboxylic acids (diacids), ketocarboxylic acids (ketoacids), α-dicarbonyls, inorganic ions, and water-soluble organic carbon and nitrogen (WSOC and WSON). Diacid concentration was higher in nighttime (1831 ± 607 ng m- 3) than in daytime (1532 ± 196 ng m- 3), whereas ketoacids and dicarbonyls showed little diurnal difference. Most of the organic compounds were enriched in the fine mode (< 2.1 μm) with a peak at the size range of 0.7-2.1 μm. In contrast, phthalic acid (Ph) and glyoxal (Gly) presented two equivalent peaks in the fine and coarse modes, which is at least in part due to the gas-phase oxidation of precursors and a subsequent partitioning into pre-existing particles. Liquid water content (LWC) of the fine mode particles was three times higher in nighttime than in daytime. The calculated in-situ pH (pHis) indicated that all the fine mode aerosols were acidic during the sampling period and more acidic in daytime than in nighttime. Robust correlations of the ratios of glyoxal/oxalic acid (Gly/C2) and glyoxylic acid/oxalic acid (ωC2/C2) with LWC in the samples suggest that the enhancement of LWC is favorable for oxidation of Gly and ωC2 to produce C2. Abundant K+ and Cl- in the fine mode particles and the strong correlations of K+ with WSOC, WSON and C2 indicate that secondary organic aerosols in the city are significantly affected by biomass burning emission.

  17. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  18. Recognizing occupational effects of diacetyl: What can we learn from this history?

    PubMed

    Kreiss, Kathleen

    2017-08-01

    For half of the 30-odd years that diacetyl-exposed workers have developed disabling lung disease, obliterative bronchiolitis was unrecognized as an occupational risk. Delays in its recognition as an occupational lung disease are attributable to the absence of a work-related temporal pattern of symptoms; failure to recognize clusters of cases; complexity of exposure environments; and absence of epidemiologic characterization of workforces giving rise to case clusters. Few physicians are familiar with this rare disease, and motivation to investigate the unknown requires familiarity with what is known and what is anomalous. In pursuit of the previously undescribed risk, investigators benefited greatly from multi-disciplinary collaboration, in this case including physicians, epidemiologists, environmental scientists, toxicologists, industry representatives, and worker advocates. In the 15 years since obliterative bronchiolitis was described in microwave popcorn workers, α-dicarbonyl-related lung disease has been found in flavoring manufacturing workers, other food production workers, diacetyl manufacturing workers, and coffee production workers, alongside case reports in other industries. Within the field of occupational health, impacts include new ventures in public health surveillance, attention to spirometry quality for serial measurements, identifying other indolent causes of obliterative bronchiolitis apart from accidental over-exposures, and broadening the spectrum of diagnostic abnormalities in the disease. Within toxicology, impacts include new attention to appropriate animal models of obliterative bronchiolitis, pertinence of computational fluid dynamic-physiologically based pharmacokinetic modeling, and contributions to mechanistic understanding of respiratory epithelial necrosis, airway fibrosis, and central nervous system effects. In these continuing efforts, collaboration between laboratory scientists, clinicians, occupational public health practitioners in government and industry, and employers remains critical for improving the health of workers inhaling volatile α-dicarbonyl compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling.

    PubMed

    Qiu, Yue; Ogawa, Haruo; Miyagi, Masaru; Misono, Kunio S

    2004-02-13

    The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.

  20. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    NASA Astrophysics Data System (ADS)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  1. Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers†

    PubMed Central

    2011-01-01

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5” dimer) in an explicit lipid−water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer. PMID:21261298

  2. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain.

    PubMed

    Bianchetti, Laurent; Wassmer, Bianca; Defosset, Audrey; Smertina, Anna; Tiberti, Marion L; Stote, Roland H; Dejaegere, Annick

    2018-04-30

    Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research. Copyright © 2018. Published by Elsevier B.V.

  3. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1.

    PubMed

    Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F

    1990-12-05

    The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.

  4. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: Insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Seema; Banerjee, Ramanuj; Sen, Udayaditya, E-mail: udayaditya.sen@saha.ac.in

    Highlights: • VcLMWPTP-1 forms dimer in solution. • The dimer is catalytically active unlike other reported dimeric LMWPTPs. • The formation of extended dimeric surface excludes the active site pocket. • The surface bears closer resemblance to eukaryotic LMWPTPs. - Abstract: Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization inmore » a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45 Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme.« less

  5. Differential action of small molecule HER kinase inhibitors on receptor heterodimerization: therapeutic implications.

    PubMed

    Sánchez-Martín, M; Pandiella, A

    2012-07-01

    Deregulation of ErbB/HER receptor tyrosine kinases has been linked to several types of cancer. The mechanism of activation of these receptors includes establishment of receptor dimers. Here, we have analyzed the action of different small molecule HER tyrosine kinase inhibitors (TKIs) on HER receptor dimerization. Breast cancer cell lines were treated with distinct TKIs and the formation of HER2-HER3 dimers was analyzed by coimmunoprecipitation and western blot or by Förster resonance energy transfer assays. Antibody-dependent cellular cytotoxicity was analyzed by measuring the release of lactate dehydrogenase and cell viability. Lapatinib and neratinib interfered with ligand-induced dimerization of HER receptors; while pelitinib, gefitinib, canertinib or erlotinib did not. Moreover, lapatinib and neratinib were able to disrupt previously formed receptor dimers. Structural analyses allowed the elucidation of the mechanism by which some TKIs prevent the formation of HER receptor dimers, while others do not. Experiments aimed at defining the functional importance of dimerization indicated that TKIs that impeded dimerization prevented down-regulation of HER2 receptors, and favored the action of trastuzumab. We postulate that TKIs that prevent dimerization and down-regulation of HER2 may augment the antitumoral action of trastuzumab, and this mechanism of action should be considered in the treatment of HER2 positive tumors which combine TKIs with antireceptor antibodies. Copyright © 2011 UICC.

  6. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Proline Substitution of Dimer Interface β-strand Residues as a Strategy for the Design of Functional Monomeric Proteins

    PubMed Central

    Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna

    2013-01-01

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001

  8. Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    PubMed Central

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664

  9. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    PubMed

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The Far Infrared Vibration-Rotation Spectrum of the Ammonia Dimer.

    NASA Astrophysics Data System (ADS)

    Loeser, Jennifer Gertrud

    1995-11-01

    The ammonia dimer has been shown to exhibit unusual weak bonding properties relative to those of the other prototypical second row systems, the hydrogen fluoride dimer and the water dimer. The ultimate goal of the work initiated in this dissertation is to determine a complete intermolecular potential energy surface for the ammonia dimer. It is first necessary to observe its far infrared vibration-rotation-tunneling (VRT) spectrum and to develop a group theoretical model that explains this spectrum in terms of the internal dynamics of the ammonia dimer. These first steps are the subject of this dissertation. First, the current understanding of the ammonia dimer system is reviewed. Group theoretical descriptions of the nature of the ammonia dimer VRT states are explained in detail. An overview of the experimental and theoretical studies of the ammonia dimer made during the last decade is presented. Second, progress on the analysis of the microwave and far infrared spectrum of (ND_3)_2 below 13 cm^{-1} is reported. These spectra directly measure the 'donor -acceptor' interchange splittings in (ND_3) _2, and determine some of the monomer umbrella inversion tunneling splittings. Third, new 80-90 cm^{-1} far infrared spectra of (NH_3)_2 are presented and a preliminary analysis is proposed. Most of the new excited VRT states have been assigned as tunneling sublevels of an out-of-plane intermolecular vibration.

  11. Structural features of the KPI domain control APP dimerization, trafficking, and processing.

    PubMed

    Ben Khalifa, Naouel; Tyteca, Donatienne; Marinangeli, Claudia; Depuydt, Mathieu; Collet, Jean-François; Courtoy, Pierre J; Renauld, Jean-Christophe; Constantinescu, Stefan; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2012-02-01

    The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.

  12. The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain

    PubMed Central

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-01-01

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. PMID:21193411

  13. Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: dimerization and antioxidant activity.

    PubMed

    Arrieta-Baez, Daniel; Dorantes-Álvarez, Lidia; Martinez-Torres, Rocio; Zepeda-Vallejo, Gerardo; Jaramillo-Flores, Maria Eugenia; Ortiz-Moreno, Alicia; Aparicio-Ozores, Gerardo

    2012-10-01

    Some phenolic compounds, such as ferulic acid and p-coumaric acid, exist in the form of free acids, in fruits, rice, corn and other grains. Thermal treatment (121 °C at 15-17 psi) for different times on ferulic, p-coumaric and cinnamic acids as well as equimolar mixtures of these acids was investigated. Ferulic and p-coumaric acids underwent decarboxylation, yielding dimeric products formed through their corresponding radical intermediates, while cinnamic acid was recovered unreacted. High-performance liquid chromatography analysis showed no cross-dimerization when equimolar mixtures of pairs of hydroxycinnamic acids were treated under the same conditions. Dimers were characterized as (E)-4',4″-(but-1-ene-1,3-diyl)bis(2'-methoxyphenol)) (dimer of 4-vinylguaiacol) and (E)-4,4'-(but-1-ene-1,3-diyl)diphenol) (dimer of 4-vinylphenol) by nuclear magnetic resonance and mass spectrometry. Sterilization by thermal processing produced dimers of ferulic and coumaric acid. The antioxidant activity of these dimers was greater than that of the respective hydroxycinnamic acids. These results may be relevant for fruits and grains that contain hydroxycinnamic acids and undergo sterilization processes such as canning. Copyright © 2012 Society of Chemical Industry.

  14. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    PubMed

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  15. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    PubMed Central

    2013-01-01

    Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. PMID:23731667

  16. Fano-like resonance in symmetry-broken gold nanotube dimer.

    PubMed

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2012-11-19

    The influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum. The Fano dip shows a red-shift and becomes deep with the increase of the offset-value. In the strong coupling model of the SBGNT dimer, the coupling between two SBGNTs induces giant electric field enhancement at the gap of the dimer, which is much larger than that in the symmetry gold nanotube dimer. The SBGNT with larger offset-value exhibits stronger near-field at the "hot spot".

  17. The Reach of Linear Protein-DNA Dimerizers

    PubMed Central

    Stafford, Ryan L.; Dervan, Peter B.

    2008-01-01

    A protein-DNA dimerizer constructed from a DNA-binding pyrrole-imidazole polyamide and the peptide FYPWMK facilitates binding of the natural transcription factor Exd to an adjacent DNA site. Previous dimerizers have been constructed with the peptide attached to an internal pyrrole monomer in an overall branched oligomer. Linear oligomers constructed by attaching the peptide to the polyamide C-terminus expand the range of protein-DNA dimerization to six additional DNA sites. Replacing the FYPWMK hexapeptide with a WM dipeptide, which was previously functional in branched compounds, does not lead to a functional linear dimerizer. Instead, inserting an additional lysine generates a minimal, linear WMK tripeptide conjugate that maintains the activity of the larger FYPWMK dimerizers in a single DNA-binding site orientation. These studies provide insight into the importance of linker length and composition, binding site spacing and orientation, and the protein-binding domain content that are important for the optimization of protein DNA-dimerizers suitable for biological experiments. PMID:17949089

  18. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  19. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Yuan, H; Kong, Y

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) andmore » two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved. Given that CXCL12 is in the CXC family, the CXC dimer is considered the physiologic dimer in all previous studies based on crystallographic evidence. NMR and mutational studies agree with the CXC dimer form in solution. The CXC form of the dimer is seen in recent structures of CXCL12 bound to a heparin disaccharide and several CXCR4 peptides. In one case, crystals of the CXC-type dimer were soaked in a heparin disaccharide solution to determine the interactions between this dimer and bound disaccharide. In another case, in order to overcome NMR chemical shift line broadening when CXCR4 peptides are added, a 'locked' dimer was constructed by introducing a cysteine mutant that linked subunits as a CXC dimer through an inter-subunit disulfide bond. The solution structures of the locked CXC dimer with CXCR4 peptides were determined. The locked CXC dimer retained Ca{sup 2+} mobilization yet lost chemotaxis activity, presumably because the monomer is the active form. In addition to existing as a monomer and CXC dimer, CXCL12 is now demonstrated to have the capacity to form CC type dimers in the presence of a CXCR4 peptide.« less

  20. Oligomerization of deoxynucleoside-biphosphate dimers - Template and linkage specificity

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Van Der Woerd, R.; Bakker, C. G.; Schwartz, Alan W.

    1989-01-01

    The oligomerization of the activated 3-prime-5-prime pyrophosphate-linked dimer, pdAppdAp, is presently noted to be selectively favored by a poly(U) template over the 3-prime-3-prime and 5-prime-5-prime linked dimers. Both overall yields and the production of the longest oligomers were markedly stimulated by poly(U)'s presence; in its absence, the 5-prime-5-prime linked dimer became the most reactive, yielding chains of the order of 60 monomer-unit lengths. Remarkable self-organization properties are noted for the 5-prime-5-prime dimer of pdAp.

  1. Unique and Highly Selective Anticytomegalovirus Activities of Artemisinin-Derived Dimer Diphenyl Phosphate Stem from Combination of Dimer Unit and a Diphenyl Phosphate Moiety

    PubMed Central

    He, Ran; Forman, Michael; Mott, Bryan T.; Venkatadri, Rajkumar; Posner, Gary H.

    2013-01-01

    We report that the artemisinin-derived dimer diphenyl phosphate (DPP; dimer 838) is the most selective inhibitor of human cytomegalovirus (CMV) replication among a series of artemisinin-derived monomers and dimers. Dimer 838 was also unique in being an irreversible CMV inhibitor. The peroxide unit within artemisinins' chemical structures is critical to their activities, and its absence results in loss of anti-CMV activities. Surprisingly, the deoxy dimer of 838 retained modest anti-CMV activity, suggesting that the DPP moiety of dimer 838 contributes to its anti-CMV activities. DPP alone did not inhibit CMV replication, but triphenyl phosphate (TPP) had modest CMV inhibition, although its selectivity index was low. Artemisinin DPP derivatives dimer 838 and monomer diphenyl phosphate (compound 558) showed stronger CMV inhibition and a higher selectivity index than their analogs lacking the DPP unit. An add-on and removal assay revealed that removing DPP derivatives (compounds 558 and 838) but not the non-DPP backbones (artesunate and compound 606) at 24 h postinfection (hpi) already resulted in dominant CMV inhibition. CMV inhibition was fully irreversible with 838 and partially irreversible with 558, while non-DPP artemisinins were reversible inhibitors. While all artemisinin derivatives and TPP reduced the expression of the CMV immediate early 2 (IE2), UL44, and pp65 proteins at or after 48 hpi, only TPP inhibited the expression of both IE1 and IE2. Combination of a non-DPP dimer (compound 606) with TPP was synergistic in CMV inhibition, while ganciclovir and TPP were additive. Although TPP shared structural similarity with monomer DPP (compound 558) and dimer DPP (compound 838), its pattern of CMV inhibition was significantly different from the patterns of the artemisinins. These findings demonstrate that the DPP group contributes to the unique activities of compound 838. PMID:23774439

  2. D-Dimer in African Americans: Whole Genome Sequence Analysis and Relationship to Cardiovascular Disease Risk in the Jackson Heart Study.

    PubMed

    Raffield, Laura M; Zakai, Neil A; Duan, Qing; Laurie, Cecelia; Smith, Joshua D; Irvin, Marguerite R; Doyle, Margaret F; Naik, Rakhi P; Song, Ci; Manichaikul, Ani W; Liu, Yongmei; Durda, Peter; Rotter, Jerome I; Jenny, Nancy S; Rich, Stephen S; Wilson, James G; Johnson, Andrew D; Correa, Adolfo; Li, Yun; Nickerson, Deborah A; Rice, Kenneth; Lange, Ethan M; Cushman, Mary; Lange, Leslie A; Reiner, Alex P

    2017-11-01

    Plasma levels of the fibrinogen degradation product D-dimer are higher among African Americans (AAs) compared with those of European ancestry and higher among women compared with men. Among AAs, little is known of the genetic architecture of D-dimer or the relationship of D-dimer to incident cardiovascular disease. We measured baseline D-dimer in 4163 AAs aged 21 to 93 years from the prospective JHS (Jackson Heart Study) cohort and assessed association with incident cardiovascular disease events. In participants with whole genome sequencing data (n=2980), we evaluated common and rare genetic variants for association with D-dimer. Each standard deviation higher baseline D-dimer was associated with a 20% to 30% increased hazard for incident coronary heart disease, stroke, and all-cause mortality. Genetic variation near F3 was associated with higher D-dimer (rs2022030, β=0.284, P =3.24×10 -11 ). The rs2022030 effect size was nearly 3× larger among women (β=0.373, P =9.06×10 -13 ) than among men (β=0.135, P =0.06; P interaction =0.009). The sex by rs2022030 interaction was replicated in an independent sample of 10 808 multiethnic men and women ( P interaction =0.001). Finally, the African ancestral sickle cell variant ( HBB rs334) was significantly associated with higher D-dimer in JHS (β=0.507, P =1.41×10 -14 ), and this association was successfully replicated in 1933 AAs ( P =2.3×10 -5 ). These results highlight D-dimer as an important predictor of cardiovascular disease risk in AAs and suggest that sex-specific and African ancestral genetic effects of the F3 and HBB loci contribute to the higher levels of D-dimer among women and AAs. © 2017 American Heart Association, Inc.

  3. Molecular determinants and thermodynamics of the amyloid precursor protein transmembrane domain implicated in Alzheimer's disease

    PubMed Central

    Wang, Hao; Barreyro, Laura; Provasi, Davide; Djemil, Imane; Torres-Arancivia, Celia; Filizola, Marta; Ubarretxena-Belandia, Iban

    2011-01-01

    The deposition of toxic amyloid-β peptide (Aβ) aggregates in the brain is a hallmark of Alzheimer's disease. The intramembrane proteolysis by γ-secretase of the amyloid precursor protein carboxy-terminal fragment (APP-βCTF) constitutes the final step in the production of Aβs. Mounting evidence suggests that APP-βCTF is a transmembrane domain (TMD) dimer, and that dimerization might modulate the production of Aβ species that are prone to aggregation, and therefore most toxic. We combined experimental and computational approaches to study the molecular determinants and thermodynamics of APP-βCTF dimerization, and produced a unifying structural model that reconciles much of the published data. Using a cell assay, which exploits a dimerization-dependent activator of transcription, we identified specific dimerization-disrupting mutations located mostly at the N-terminus of the TMD of APP-βCTF. The ability of selected mutants to disrupt the dimerization of full length APP-βCTF was confirmed by fluorescence resonance energy transfer experiments. Free-energy estimates of wild-type (WT) and mutants of the TMD of APP-βCTF derived from enhanced molecular dynamics simulations showed that the dimeric state is comprised of different arrangements, in which either 709GXXXA713 or 700GXXXG704GXXXG708 interaction motifs can engage in symmetric or asymmetric associations. Mutations along the TMD of APP-βCTF were found to modulate the relative free energy of the dimeric configurations, and to differently affect the distribution of interfaces within the dimeric state. This observation might have important biological implications, since dimers with a different arrangement of the transmembrane helices are likely to be recognized differently by γ-secretase and lead to a variation of Aβ levels. PMID:21440556

  4. Base Pair Opening in a Deoxynucleotide Duplex Containing a cis-syn Thymine Cyclobutane Dimer Lesion

    PubMed Central

    Wenke, Belinda B.; Huiting, Leah N.; Frankel, Elisa B.; Lane, Benjamin F.; Núñez, Megan E.

    2014-01-01

    The cis-syn thymine cyclobutane dimer is a DNA photoproduct implicated in skin cancer. We compared the stability of individual base pairs in thymine dimer-containing duplexes to undamaged parent 10-mer duplexes. UV melting thermodynamic measurements, CD spectroscopy, and 2D NOESY NMR spectroscopy confirm that the thymine dimer lesion is locally and moderately destabilizing within an overall B-form duplex conformation. We measured the rates of exchange of individual imino protons by NMR using magnetization transfer from water and determined the equilibrium constant for the opening of each base pair Kop. In the normal duplex Kop decreases from the frayed ends of the duplex toward the center, such that the central TA pair is the most stable with a Kop of 8×10−7. In contrast, base pair opening at the 5’T of the thymine dimer is facile. The 5’T of the dimer has the largest equilibrium constant (Kop =3×10−4) in its duplex, considerably larger than even the frayed penultimate base pairs. Notably, base pairing by the 3’T of the dimer is much more stable than by the 5’T, indicating that the predominant opening mechanism for the thymine dimer lesion is not likely to be flipping out into solution as a single unit. The dimer asymmetrically affects the stability of the duplex in its vicinity, destabilizing base pairing on its 5’ side more than on the 3’ side. The striking differences in base pair opening between parent and dimer duplexes occur independently of the duplex-single strand melting transitions. PMID:24328089

  5. Structural insight into GRIP1-PDZ6 in Alzheimer's disease: study from protein expression data to molecular dynamics simulations.

    PubMed

    Chatterjee, Paulami; Roy, Debjani

    2017-08-01

    Protein-protein interaction domain, PDZ, plays a critical role in efficient synaptic transmission in brain. Dysfunction of synaptic transmission is thought to be the underlying basis of many neuropsychiatric and neurodegenerative disorders including Alzheimer's disease (AD). In this study, Glutamate Receptor Interacting Protein1 (GRIP1) was identified as one of the most important differentially expressed, topologically significant proteins in the protein-protein interaction network. To date, very few studies have analyzed the detailed structural basis of PDZ-mediated protein interaction of GRIP1. In order to gain better understanding of structural and dynamic basis of these interactions, we employed molecular dynamics (MD) simulations of GRIP1-PDZ6 dimer bound with Liprin-alpha and GRIP1-PDZ6 dimer alone each with 100 ns simulations. The analyses of MD simulations of Liprin-alpha bound GRIP1-PDZ6 dimer show considerable conformational differences than that of peptide-free dimer in terms of SASA, hydrogen bonding patterns, and along principal component 1 (PC1). Our study also furnishes insight into the structural attunement of the PDZ6 domains of Liprin-alpha bound GRIP1 that is attributed by significant shift of the Liprin-alpha recognition helix in the simulated peptide-bound dimer compared to the crystal structure and simulated peptide-free dimer. It is evident that PDZ6 domains of peptide-bound dimer show differential movements along PC1 than that of peptide-free dimers. Thus, Liprin-alpha also serves an important role in conferring conformational changes along the dimeric interface of the peptide-bound dimer. Results reported here provide information that may lead to novel therapeutic approaches in AD.

  6. Membrane association and localization dynamics of the Ebola virus matrix protein VP40.

    PubMed

    Gc, Jeevan B; Gerstman, Bernard S; Chapagain, Prem P

    2017-10-01

    The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP 2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP 2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  8. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

  9. Interaction investigations of HipA binding to HipB dimer and HipB dimer + DNA complex: a molecular dynamics simulation study.

    PubMed

    Li, Chaoqun; Wang, Yaru; Wang, Yan; Chen, Guangju

    2013-11-01

    We carried out molecular dynamics simulations and free energy calculations for a series of ternary and diplex models for the HipA protein, HipB dimer, and DNA molecule to address the mechanism of HipA sequestration and the binding order of events from apo HipB/HipA to 2HipA + HipB dimer + DNA complex. The results revealed that the combination of DNA with the HipB dimer is energetically favorable for the combination of HipB dimer with HipA protein. The binding of DNA to HipB dimer induces a long-range allosteric communication from the HipB2 -DNA interface to the HipA-HipB2 interface, which involves the closeness of α1 helices of HipB dimer to HipA protein and formations of extra hydrogen bonds in the HipA-HipB2 interface through the extension of α2/3 helices in the HipB dimer. These simulated results suggested that the DNA molecule, as a regulative media, modulates the HipB dimer conformation, consequently increasing the interactions of HipB dimer with the HipA proteins, which explains the mechanism of HipA sequestration reported by the previous experiment. Simultaneously, these simulations also explored that the thermodynamic binding order in a simulated physiological environment, that is, the HipB dimer first bind to DNA to form HipB dimer + DNA complex, then capturing strongly the HipA proteins to form a ternary complex, 2HipA + HipB dimer + DNA, for sequestrating HipA in the nucleoid. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Plaquette order in a dimerized frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Shlagman, Ofer; Shimshoni, Efrat

    2014-11-01

    We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.

  11. Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells

    PubMed Central

    RAINA, DEEPAK; AHMAD, REHAN; RAJABI, HASAN; PANCHAMOORTHY, GOVIND; KHARBANDA, SURENDER; KUFE, DONALD

    2012-01-01

    The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas and contributes to the malignant phenotype. The MUC1-C transmembrane subunit contains a CQC motif in the cytoplasmic domain that has been implicated in the formation of dimers and in its oncogenic function. The present study demonstrates that MUC1-C forms dimers in human breast and lung cancer cells. MUC1-C dimerization was detectable in the cytoplasm and was independent of MUC1-N, the N-terminal mucin subunit that extends outside the cell. We show that the MUC1-C cytoplasmic domain forms dimers in vitro that are disrupted by reducing agents. Moreover, dimerization of the MUC1-C subunit in cancer cells was blocked by reducing agents and increased by oxidative stress, supporting involvement of the CQC motif in forming disulfide bonds. In support of these observations, mutation of the MUC1-C CQC motif to AQA completely blocked MUC1-C dimerization. Importantly, this study was performed with MUC1-C devoid of fluorescent proteins, such as GFP, CFP and YFP. In this regard, we show that GFP, CFP and YFP themselves form dimers that are readily detectable with cross-linking agents. The present results further demonstrate that a cell-penetrating peptide that targets the MUC1-C CQC cysteines blocks MUC1-C dimerization in cancer cells. These findings provide definitive evidence that: i) the MUC1-C cytoplasmic domain cysteines are necessary and sufficient for MUC1-C dimerization, and ii) these CQC motif cysteines represent an Achilles’ heel for targeting MUC1-C function. PMID:22200620

  12. Predictors of 30-day mortality and the risk of recurrent systemic thromboembolism in cancer patients suffering acute ischemic stroke.

    PubMed

    Nam, Ki-Woong; Kim, Chi Kyung; Kim, Tae Jung; An, Sang Joon; Oh, Kyungmi; Mo, Heejung; Kang, Min Kyoung; Han, Moon-Ku; Demchuk, Andrew M; Ko, Sang-Bae; Yoon, Byung-Woo

    2017-01-01

    Stroke in cancer patients is not rare but is a devastating event with high mortality. However, the predictors of mortality in stroke patients with cancer have not been well addressed. D-dimer could be a useful predictor because it can reflect both thromboembolic events and advanced stages of cancer. In this study, we evaluate the possibility of D-dimer as a predictor of 30-day mortality in stroke patients with active cancer. We included 210 ischemic stroke patients with active cancer. The 30-day mortality data were collected by reviewing medical records. We also collected follow-up D-dimer levels in 106 (50%) participants to evaluate the effects of treatment response on D-dimer levels. Of the 210 participants, 30-day mortality occurred in 28 (13%) patients. Higher initial NIHSS scores, D-dimer levels, and CRP levels as well as frequent cryptogenic mechanism, systemic metastasis, multiple vascular territory lesion, hemorrhagic transformation, and larger infarct volume were related to 30-day mortality. In the multivariate analysis, D-dimer [adjusted OR (aOR) = 2.19; 95% CI, 1.46-3.28, P < 0.001] predicted 30-day mortality after adjusting for confounders. The initial NIHSS score (aOR = 1.07; 95% CI, 1.00-1.14, P = 0.043) and hemorrhagic transformation (aOR = 3.02; 95% CI, 1.10-8.29, P = 0.032) were also significant independent of D-dimer levels. In the analysis of D-dimer changes after treatment, the mortality group showed no significant decrease in D-dimer levels, despite treatment, while the survivor group showed the opposite response. D-dimer levels may predict 30-day mortality in acute ischemic stroke patients with active cancer.

  13. Predictors of 30-day mortality and the risk of recurrent systemic thromboembolism in cancer patients suffering acute ischemic stroke

    PubMed Central

    Kim, Tae Jung; An, Sang Joon; Oh, Kyungmi; Mo, Heejung; Kang, Min Kyoung; Han, Moon-Ku; Demchuk, Andrew M.; Ko, Sang-Bae; Yoon, Byung-Woo

    2017-01-01

    Background Stroke in cancer patients is not rare but is a devastating event with high mortality. However, the predictors of mortality in stroke patients with cancer have not been well addressed. D-dimer could be a useful predictor because it can reflect both thromboembolic events and advanced stages of cancer. Aim In this study, we evaluate the possibility of D-dimer as a predictor of 30-day mortality in stroke patients with active cancer. Methods We included 210 ischemic stroke patients with active cancer. The 30-day mortality data were collected by reviewing medical records. We also collected follow-up D-dimer levels in 106 (50%) participants to evaluate the effects of treatment response on D-dimer levels. Results Of the 210 participants, 30-day mortality occurred in 28 (13%) patients. Higher initial NIHSS scores, D-dimer levels, and CRP levels as well as frequent cryptogenic mechanism, systemic metastasis, multiple vascular territory lesion, hemorrhagic transformation, and larger infarct volume were related to 30-day mortality. In the multivariate analysis, D-dimer [adjusted OR (aOR) = 2.19; 95% CI, 1.46–3.28, P < 0.001] predicted 30-day mortality after adjusting for confounders. The initial NIHSS score (aOR = 1.07; 95% CI, 1.00–1.14, P = 0.043) and hemorrhagic transformation (aOR = 3.02; 95% CI, 1.10–8.29, P = 0.032) were also significant independent of D-dimer levels. In the analysis of D-dimer changes after treatment, the mortality group showed no significant decrease in D-dimer levels, despite treatment, while the survivor group showed the opposite response. Conclusions D-dimer levels may predict 30-day mortality in acute ischemic stroke patients with active cancer. PMID:28282388

  14. Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers.

    PubMed

    Dong, Xiao-qian; Zou, Bo; Zhang, Ying; Ge, Zhen-zhen; Du, Jing; Li, Chun-mei

    2013-12-01

    We have established a simple method for preparing large quantities of A-type dimers from peanut skin and persimmon for further structure-activity relationship study. Peanut skins were defatted with hexane and oligomeric proanthocyanidins were extracted from it with 20% of methanol, and the extract was fractionated with ethyl acetate. Persimmon tannin was extracted from persimmon with methanol acidified with 1% hydrochloric acid, after removing the sugar and small phenols, the high molecular weight persimmon tannin was partially cleaved with 6.25% hydrochloric acid in methanol. The ethyl acetate fraction from peanut skins and persimmon tannin cleaved products was chromatographed on AB-8 macroporous resin followed by Toyopearl HW-50F resin to yield about 378.3mg of A-type (epi)catechin (EC) dimer from 1 kg dry peanut skins and 34.3mg of A-type (epi)catechin-3-O-gallate (ECG) dimer and 37.7 mg of A-type (epi)gallocatechin-3-O-gallate (EGCG) dimer from 1 kg fresh persimmon fruit. The antioxidant properties of the A-type and B-type dimers were compared in five different assays, namely, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, lipid peroxidation in mice liver homogenate and erythrocyte hemolysis in rat blood. Our results showed that both A-type and B-type dimers showed high antioxidant potency in a dose-dependent manner. In general, B-type dimers showed higher radical scavenging potency than A-type ones with the same subunits in aqueous systems. But in tissue or lipid systems, A-type dimers showed similar or even higher antioxidant potency than B-type ones. © 2013.

  15. Vibrational dynamic and spectroscopic molecular parameters of trans-Methylglyoxal, a gaseous precursor of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Bteich, S.; Goubet, M.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2018-06-01

    Methylglyoxal is a secondary product of oxidation of isoprene and as such one of the most abundant α -dicarbonyls present in the atmosphere. Due to its low vapor pressure, it is highly suspected to be a secondary organic aerosols precursor. The rotational spectrum of Methylglyoxal in its vibrational ground state has been reinvestigated in the 4-500 GHz range and fitted to instrumental accuracies using a model taking into account the methyl group internal rotation motion and with the support of quantum chemistry calculations. Reliability of the line assignments and extracted molecular parameters is confirmed by the good agreement between experiments and calculations.

  16. Physico-chemical study of some areas of fundamental significance to biophysics. Annual report, 1975--1976. [Chemistry Dept. , Louisiana State University, Baton Rouge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlynn, S.P.

    1976-05-15

    Lists of titles published, symposia attended, laboratory guests, departing personnel, and equipment purchased are presented in the first part of this report. It is to be emphasized that completed work already published is mentioned only by title. Reports are provided for research recently completed or in progress in the following areas: Rydberg spectroscopy, intermediate-coupling model for linear molecules, atomic correlation lines, electronic structure of dicarbonyl compounds, absorption and emission characteristics of highly polar aromatics, valence-bond description of metal--anion interaction, and matrix elements of mono-excited Slater determinants constructed from axial spin-orbitals. (RWR)

  17. Gas-phase chemiluminescent reactions of ozone with monoterpenes

    NASA Astrophysics Data System (ADS)

    Arora, P. K.; Chatha, J. P. S.; Vohra, K. G.

    1983-08-01

    Chemiluminescent reactions of ozone with monoterpenes such as linallol, geraniol, d-limonene and α-pinene have been studied in the gas phase at low pressures. Methylglyoxal phosphorescence has been observed in the first two reactions. Emissions from HCHO( 1A 2) and glyoxal ( 3A u) are observed in the reaction of ozone with d-limonene and formation of excited glyoxal is found to be first order in ozone. The reaction of ozone with β-pinene gives rise to emission from a α-dicarbonyl compound and this is found to be first order in ozone. The mechanisms for the formation of excited species are proposed.

  18. Direct Assessment of the Effect of the Gly380Arg Achondroplasia Mutation on FGFR3 Dimerization Using Quantitative Imaging FRET

    PubMed Central

    Placone, Jesse; Hristova, Kalina

    2012-01-01

    The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand. PMID:23056398

  19. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties.

    PubMed

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-03

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.

  20. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.

    PubMed

    Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia

    2011-12-27

    We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.

  1. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  2. Study of structural stability and damaging effect on membrane for four Aβ42 dimers

    PubMed Central

    Feng, Wei; Lei, Huimin; Si, Jiarui; Zhang, Tao

    2017-01-01

    Increasing evidence shows that Aβ oligomers are key pathogenic molecules in Alzheimer’s disease. Among Aβ oligomers, dimer is the smallest aggregate and toxic unit. Therefore, understanding its structural and dynamic properties is quite useful to prevent the formation and toxicity of the Aβ oligomers. In this study, we performed molecular dynamic simulations on four Aβ42 dimers, 2NCb, CNNC, NCNC and NCCN, within the hydrated DPPC membrane. Four Aβ42 dimers differ in the arrangements of two Aβ42 peptides. This study aims to investigate the impact of aggregation pattern of two Aβ peptides on the structural stability of the Aβ42 dimer and its disruption to the biological membrane. The MD results demonstrate that the NCCN, CNNC and NCNC have the larger structural fluctuation at the N-terminus of Aβ42 peptide, where the β-strand structure converts into the coil structure. The loss of the N-terminal β-strand further impairs the aggregate ability of Aβ42 dimer. In addition, inserting Aβ42 dimer into the membrane can considerably decrease the average APL of DPPC membrane. Moreover this decrease effect is largely dependent on the distance to the location of Aβ42 dimer and its secondary structure forms. Based on the results, the 2NCb is considered as a stable dimeric unit for aggregating the larger Aβ42 oligomer, and has a potent ability to disrupt the membrane. PMID:28594887

  3. Skin sensitization potency of isoeugenol and its dimers evaluated by a non-radioisotopic modification of the local lymph node assay and guinea pig maximization test.

    PubMed

    Takeyoshi, Masahiro; Iida, Kenji; Suzuki, Keiko; Yamazaki, Shunsuke

    2008-05-01

    Allergic contact dermatitis is the serious unwanted effect arising from the use of consumer products such as cosmetics. Isoeugenol is a fragrance chemical with spicy, carnation-like scent, is used in many kinds of cosmetics and is a well-known moderate human sensitizer. It was previously reported that the dimerization of eugenol yielded two types of dimer possessing different sensitization potencies. This study reports the differences in skin sensitization potencies for isoeugenol and two types of dimer, beta-O-4-dilignol and dehydrodiisoeugenol (DIEG), as evaluated by the non-radioisotopic local lymph node assay (non-RI LLNA) and guinea pig maximization test. In the guinea pig maximization test, isoeugenol, beta-O-4-dilignol and DIEG were classified as extreme, weak and moderate sensitizers, respectively. As for the results of non-RI LLNA, the EC3 for isoeugenol, beta-O-4-dilignol and DIEG were calculated as 12.7%, >30% and 9.4%, respectively. The two types of isoeugenol dimer showed different sensitizing activities similar to the case for eugenol dimers. A reduction of sensitization potency achieved by dimerization may lead to developing safer cosmetic ingredients. Isoeugenol dimers are not currently used for fragrance chemicals. However, the dimerization of isoeugenol may yield a promising candidate as a cosmetic ingredient with low sensitization risk. The data may also provide useful information for the structure-activity relationship (SAR) in skin sensitization. Copyright (c) 2007 John Wiley & Sons, Ltd.

  4. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins.

    PubMed

    Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna

    2013-09-17

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. High D-dimer levels after stopping anticoagulants in pulmonary embolism with sleep apnoea.

    PubMed

    García Suquia, Angela; Alonso-Fernández, Alberto; de la Peña, Mónica; Romero, David; Piérola, Javier; Carrera, Miguel; Barceló, Antonia; Soriano, Joan B; Arque, Meritxell; Fernández-Capitán, Carmen; Lorenzo, Alicia; García-Río, Francisco

    2015-12-01

    Obstructive sleep apnoea is a risk factor for pulmonary embolism. Elevated D-dimer levels and other biomarkers are associated with recurrent pulmonary embolism. The objectives were to compare the frequency of elevated D-dimer levels (>500 ng·mL(-1)) and further coagulation biomarkers after oral anticoagulation withdrawal in pulmonary embolism patients, with and without obstructive sleep apnoea, including two control groups without pulmonary embolism.We performed home respiratory polygraphy. We also measured basic biochemical profile and haemogram, and coagulation biomarkers (D-dimer, prothrombin fragment 1+2, thrombin-antithrombin complex, plasminogen activator inhibitor 1, and soluble P-selectin).64 (74.4%) of the pulmonary embolism cases and 41 (46.11%) of the controls without pulmonary embolism had obstructive sleep apnoea. Plasmatic D-dimer was higher in PE patients with OSA than in those without obstructive sleep apnoea. D-dimer levels were significantly correlated with apnoea-hypopnoea index, and nocturnal hypoxia. There were more patients with high D-dimer after stopping anticoagulants in those with pulmonary embolism and obstructive sleep apnoea compared with PE without obstructive sleep apnoea (35.4% versus 19.0%, p=0.003). Apnoea-hypopnoea index was independently associated with high D-dimer.Pulmonary embolism patients with obstructive sleep apnoea had higher rates of elevated D-dimer levels after anticoagulation discontinuation for pulmonary embolism than in patients without obstructive sleep apnoea and, therefore, higher procoagulant state that might increase the risk of pulmonary embolism recurrence. Copyright ©ERS 2015.

  6. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru

    2016-08-07

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

  7. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    NASA Astrophysics Data System (ADS)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  8. Rapid detection of D-Dimers with mLabs® whole blood method for venous thromboembolism exclusion. Comparison with Vidas® D-Dimers assay.

    PubMed

    Gerotziafas, Grigoris T; Ray, Patrick; Gkalea, Vasiliki; Benzarti, Ahlem; Khaterchi, Amir; Cast, Claire; Pernet, Julie; Lefkou, Eleftheria; Elalamy, Ismail

    2016-12-01

    Easy to use point of care assays for D-Dimers measurement in whole blood from patients with clinical suspicion of venous thromboembolism (VTE) will facilitate the diagnostic strategy in the Emergency Department (ED) setting. We prospectively evaluated the diagnostic performance of the point-of-care mLabs® Whole Blood D-Dimers test and we compared it with the Vidas® D-Dimers assay. As part of the diagnostic algorithm applied in patients with clinical suspicion of VTE, the VIDAS® D-Dimers Test was prescribed by the emergency physician in charge. The mLabs® Whole Blood D-Dimers Test was used on the same samples. All patients had undergone exploration with the recommended imaging techniques for VTE diagnosis. Both assays were performed, on 99 emergency patients (mean age was 65 years) with clinical suspicion of VTE. In 3% of patients, VTE was documented with a reference imaging technique. The Bland and Altman test showed significant agreement between the two methods. Both assays showed equal sensitivity and negative predictive value for VTE. The mLabs whole blood assay is a promising point of care method for measurement of D-Dimers and exclusion of VTE diagnosis in the emergency setting which should be validated in a larger prospective study.

  9. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn; Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polarmore » 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.« less

  10. Chloroplast Preproteins Bind to the Dimer Interface of the Toc159 Receptor during Import1[OPEN

    PubMed Central

    Chen, Lih-Jen; Yeh, Yi-Hung; Hsiao, Chwan-Deng

    2017-01-01

    Most chloroplast proteins are synthesized in the cytosol as higher molecular weight preproteins and imported via the translocons in the outer (TOC) and inner (TIC) envelope membranes of chloroplasts. Toc159 functions as a primary receptor and directly binds preproteins through its dimeric GTPase domain. As a first step toward a molecular understanding of how Toc159 mediates preprotein import, we mapped the preprotein-binding regions on the Toc159 GTPase domain (Toc159G) of pea (Pisum sativum) using cleavage by bound preproteins conjugated with the artificial protease FeBABE and cysteine-cysteine cross-linking. Our results show that residues at the dimer interface and the switch II region of Toc159G are in close proximity to preproteins. The mature portion of preproteins was observed preferentially at the dimer interface, whereas the transit peptide was found at both regions equally. Chloroplasts from transgenic plants expressing engineered Toc159 with a cysteine placed at the dimer interface showed increased cross-linking to bound preproteins. Our data suggest that, during preprotein import, the Toc159G dimer disengages and the dimer interface contacts translocating preproteins, which is consistent with a model in which conformational changes induced by dimer-monomer conversion in Toc159 play a direct role in facilitating preprotein import. PMID:28250068

  11. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  12. Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization.

    PubMed

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Popov, Mary; Khara, Dinesh C; Nir, Eyal

    2018-06-01

    Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single-molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the "sticky end" and "weaving welding" attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self-dimerization of the origami monomers, likely via blunt-end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fibulin 5 Forms a Compact Dimer in Physiological Solutions*

    PubMed Central

    Jones, Richard P. O.; Wang, Ming-Chuan; Jowitt, Thomas A.; Ridley, Caroline; Mellody, Kieran T.; Howard, Marjorie; Wang, Tao; Bishop, Paul N.; Lotery, Andrew J.; Kielty, Cay M.; Baldock, Clair; Trump, Dorothy

    2009-01-01

    Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin. PMID:19617354

  14. Appearance of Sodium Dodecyl Sulfate-Stable Amyloid β-Protein (Aβ) Dimer in the Cortex During Aging

    PubMed Central

    Enya, Miho; Morishima-Kawashima, Maho; Yoshimura, Masahiro; Shinkai, Yasuhisa; Kusui, Kaoru; Khan, Karen; Games, Dora; Schenk, Dale; Sugihara, Shiro; Yamaguchi, Haruyasu; Ihara, Yasuo

    1999-01-01

    We previously noted that some aged human cortical specimens containing very low or negligible levels of amyloid β-protein (Aβ) by enzyme immunoassay (EIA) provided prominent signals at 6∼8 kd on the Western blot, probably representing sodium dodecyl sulfate (SDS)-stable Aβ dimer. Re-examination of the specificity of the EIA revealed that BAN50- and BNT77-based EIA, most commonly used for the quantitation of Aβ, capture SDS-dissociable Aβ but not SDS-stable Aβ dimer. Thus, all cortical specimens in which the levels of Aβ were below the detection limits of EIA were subjected to Western blot analysis. A fraction of such specimens contained SDS-stable dimer at 6∼8 kd, but not SDS-dissociable Aβ monomer at ∼4 kd, as judged from the blot. This Aβ dimer is unlikely to be generated after death, because (i) specimens with very short postmortem delay contained the Aβ dimer, and (ii) until 12 hours postmortem, such SDS-stable Aβ dimer is detected only faintly in PDAPP transgenic mice. The presence of Aβ dimer in the cortex may characterize the accumulation of Aβ in the human brain, which takes much longer than that in PDAPP transgenic mice. PMID:9916941

  15. Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers

    NASA Astrophysics Data System (ADS)

    Prakash, Priyanka; Sayyed-Ahmad, Abdallah; Cho, Kwang-Jin; Dolino, Drew M.; Chen, Wei; Li, Hongyang; Grant, Barry J.; Hancock, John F.; Gorfe, Alemayehu A.

    2017-01-01

    Recent studies found that membrane-bound K-Ras dimers are important for biological function. However, the structure and thermodynamic stability of these complexes remained unknown because they are hard to probe by conventional approaches. Combining data from a wide range of computational and experimental approaches, here we describe the structure, dynamics, energetics and mechanism of assembly of multiple K-Ras dimers. Utilizing a range of techniques for the detection of reactive surfaces, protein-protein docking and molecular simulations, we found that two largely polar and partially overlapping surfaces underlie the formation of multiple K-Ras dimers. For validation we used mutagenesis, electron microscopy and biochemical assays under non-denaturing conditions. We show that partial disruption of a predicted interface through charge reversal mutation of apposed residues reduces oligomerization while introduction of cysteines at these positions enhanced dimerization likely through the formation of an intermolecular disulfide bond. Free energy calculations indicated that K-Ras dimerization involves direct but weak protein-protein interactions in solution, consistent with the notion that dimerization is facilitated by membrane binding. Taken together, our atomically detailed analyses provide unique mechanistic insights into K-Ras dimer formation and membrane organization as well as the conformational fluctuations and equilibrium thermodynamics underlying these processes.

  16. C-terminal Lysine-Linked Magainin 2 with Increased Activity Against Multidrug-Resistant Bacteria.

    PubMed

    Lorenzón, Esteban N; Santos-Filho, Norival A; Ramos, Matheus A S; Bauab, Tais M; Camargo, Ilana L B C; Cilli, Eduardo M

    2016-01-01

    Due to the growing problem of antibiotic-resistant microorganisms, the development of novel antimicrobial agents is a very important challenge. Dimerization of cationic antimicrobial peptides (cAMPs) is a potential strategy for enhancing antimicrobial activity. Here, we studied the effects of magainin 2 (MG2) dimerization on its structure and biological activity. Lysine and glutamic acid were used to synthesize the C- and N-terminal dimers of MG2, respectively, in order to evaluate the impact of linker position used to obtain the dimers. Both MG2 and its dimeric versions showed a random coil structure in aqueous solution. However, in the presence of a structure-inducing solvent or a membrane mimetic, all peptides acquired helical structure. N-terminal dimerization did not affect the biological activity of the peptide. On the other hand, the C-terminal dimer, (MG2)2K, showed antimicrobial activity 8-16 times higher than that of MG2, and the time required to kill Escherichia coli was lower. The enhanced antimicrobial activity was related to membrane permeabilization. (MG2)2K was also more active against multidrug-resistant bacteria of clinical origin. Overall, the results presented here demonstrate that C-terminal lysine-linked dimerization improve the activity of MG2, and (MG2)2K can be considered as a potential antimicrobial agent.

  17. Elucidation of the active conformation of vancomycin dimers with antibacterial activity against vancomycin-resistant bacteria.

    PubMed

    Nakamura, Jun; Yamashiro, Hidenori; Hayashi, Sayaka; Yamamoto, Mami; Miura, Kenji; Xu, Shu; Doi, Takayuki; Maki, Hideki; Yoshida, Osamu; Arimoto, Hirokazu

    2012-10-01

    Covalently linked vancomycin dimers have attracted a great deal of attention among researchers because of their enhanced antibacterial activity against vancomycin-resistant strains. However, the lack of a clear insight into the mechanisms of action of these dimers hampers rational optimization of their antibacterial potency. Here, we describe the synthesis and antibacterial activity of novel vancomycin dimers with a constrained molecular conformation achieved by two tethers between vancomycin units. Conformational restriction is a useful strategy for studying the relationship between the molecular topology and biological activity of compounds. In this study, two vancomycin units were linked at three distinct positions of the glycopeptide (vancosamine residue (V), C terminus (C), and N terminus (N)) to form two types of novel vancomycin cyclic dimers. Active NC-VV-linked dimers with a stable conformation as indicated by molecular mechanics calculations selectively suppressed the peptidoglycan polymerization reaction of vancomycin-resistant Staphylococcus aureus in vitro. In addition, double-disk diffusion tests indicated that the antibacterial activity of these dimers against vancomycin-resistant enterococci might arise from the inhibition of enzymes responsible for peptidoglycan polymerization. These findings provide a new insight into the biological targets of vancomycin dimers and the conformational requirements for efficient antibacterial activity against vancomycin-resistant strains. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  20. Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study.

    PubMed

    Sun, Hao; Lee, Hui Hui; Blakey, Idriss; Dargaville, Bronwin; Chirila, Traian V; Whittaker, Andrew K; Smith, Sean C

    2011-09-29

    In the present work, the electronic structures and properties of a series of 2-ureido-4[1H]-pyrimidinone(UPy)-based monomers and dimers in various environments (vacuum, chloroform, and water) are studied by density functional theoretical methods. Most dimers prefer to form a DDAA-AADD (D, H-bond donor; A, H-bond acceptor) array in both vacuum and solvents. Topological analysis proved that intramolecular and intermolecular hydrogen bonds coexist in the dimers. Frequency and NBO calculations show that all the hydrogen bonds exhibit an obvious red shift in their stretching vibrational frequencies. Larger substituents at position 6 of the pyrimidinone ring with stronger electron-donating ability favor the total binding energy and free energy of dimerization. Calculations on the solvent effect show that dimerization is discouraged by the stronger polarity of the solvent. Further computations show that Dimer-1 may be formed in chloroform, but water molecules may interact with the donor or acceptor sites and hence disrupt the hydrogen bonds of Dimer-1. © 2011 American Chemical Society

  1. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  2. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  3. A test of the significance of intermolecular vibrational coupling in isotopic fractionation

    DOE PAGES

    Herman, Michael F.; Currier, Robert P.; Peery, Travis B.; ...

    2017-07-15

    Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrationalmore » coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. Finally, the results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.« less

  4. The dimerization equilibrium of a ClC Cl−/H+ antiporter in lipid bilayers

    PubMed Central

    Chadda, Rahul; Krishnamani, Venkatramanan; Mersch, Kacey; Wong, Jason; Brimberry, Marley; Chadda, Ankita; Kolmakova-Partensky, Ludmila; Friedman, Larry J; Gelles, Jeff; Robertson, Janice L

    2016-01-01

    Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers a new approach to the problem, as individual subunits adopt a stable and functionally verifiable fold that constrains the system to two states – monomer or dimer. Here, we use single-molecule photobleaching analysis to measure the probability of ClC-ec1 subunit capture into liposomes during extrusion of large, multilamellar membranes. The capture statistics describe a monomer to dimer transition that is dependent on the subunit/lipid mole fraction density and follows an equilibrium dimerization isotherm. This allows for the measurement of the free energy of ClC-ec1 dimerization in lipid bilayers, revealing that it is one of the strongest membrane protein complexes measured so far, and introduces it as new type of dimerization model to investigate the physical forces that drive membrane protein association in membranes. DOI: http://dx.doi.org/10.7554/eLife.17438.001 PMID:27484630

  5. Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH4+, molecular crowding environment and jatrorrhizine derivatives.

    PubMed

    Tan, Wei; Yi, Long; Zhu, Zhentao; Zhang, Lulu; Zhou, Jiang; Yuan, Gu

    2018-03-01

    A guanine-rich human mature microRNA, miR-1587, was discovered to form stable intramolecular G-quadruplexes in the presence of K + , Na + and low concentration of NH 4 + (25mM) by electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism (CD) spectroscopy. Furthermore, under high concentration of NH 4 + (100mM) or molecular crowding environments, miR-1587 formed a dimeric G-quadruplex through 3'-to-3' stacking of two monomeric G-quadruplex subunits with one ammonium ion sandwiched between the interfaces. Specifically, two synthesized jatrorrhizine derivatives with terminal amine groups could also induce the dimerization of miR-1587 G-quadruplex and formed 1:1 and 2:1 complexes with the dimeric G-quadruplex. In contrast, jatrorrhizine could bind with the dimeric miR-1587 G-quadruplex, but could not induce dimerization of miR-1587 G-quadruplex. These results provide a new strategy to regulate the functions of miR-1587 through induction of G-quadruplex formation and dimerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Infrared spectroscopy and structure of (NO) n clusters

    DOE PAGES

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; ...

    2016-01-12

    Nitrogen oxide clusters (NO) n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν 1 and ν 5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm –1, respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm –1 close to the band origin of single molecules was assigned tomore » van der Waals bound dimers of (NO) 2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. As a result, experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers.« less

  7. D-dimer as an applicable test for detection of posttraumatic deep vein thrombosis in lower limb fracture.

    PubMed

    Bakhshi, Hooman; Alavi-Moghaddam, Mostafa; Wu, Karin C; Imami, Mohammad; Banasiri, Mohammad

    2012-06-01

    Measuring the plasma levels of D-dimer is an accurate and easy modality to detect deep vein thrombosis (DVT) in nontraumatic settings. However, the diagnostic reliability of D-dimer assays in detecting posttraumatic DVT among patients with lower limb fracture undergoing orthopedic surgery is not validated. In this study, 141 patients with lower limb fracture admitted through the emergency department and undergoing orthopedic surgery were enrolled. Postoperative venous blood samples for D-dimer assay were taken on the 1st, 7th, and 28th postoperative days. Color Doppler sonography examination of both lower limbs was performed at the same time as a standard test. Eight out of the 141 patients (6%) had acute DVT based on Color Doppler sonography. Mean D-dimer was 2160 ng/mL in DVT positive patients and 864 in DVT negative patients. D-dimer levels greater than 1000 ng/mL were 100% sensitive and 71% specific for detecting postoperative DVT. D-dimer assay is a useful and sensitive test for detecting posttraumatic DVT.

  8. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  9. Dimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2014-04-01

    The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high-NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimers. A total of eight carboxylic acids and four dimers were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimers was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimers correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimers. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimers. The results support the formation of the high-molecular weight dimers through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimers formed in the gas phase may explain increased particle number concentration as a result of homogenous nucleation. Since three of these dimers (i.e. pinyl-diaterpenyl dimer (MW 358), pinyl-diaterebyl dimer (MW 344) and pinonyl-pinyl dimer (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimers observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility dimers result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  10. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

    In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less

  12. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2014-04-09

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to the relativistic electronic structure of free and supported dimers and it is demonstrated that the existence of a partially occupied quasi-degenerate state at the Fermi level favors the formation of a large magnetic anisotropy.

  13. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase.

    PubMed

    Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2017-11-01

    The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins.

    PubMed

    Ritter, Christian; Bobylev, Ilja; Lehmann, Helmar C

    2015-08-14

    Intravenous immunoglobulin (IVIg) is an effective treatment in chronic inflammatory demyelinating polyneuropathy (CIDP). In most patients, the optimal IVIg dose and regime is unknown. Polyvalent immunoglobulin (Ig) G form idiotypic/anti-idiotypic antibody pairs in serum and IVIg preparations. We determined IgG dimer levels before and after IVIg treatment in CIDP patients with the aim to explore their utility to serve as a surrogate marker for treatment response. IgG was purified from serum of five controls without treatment, as well as from serum of 16 CIDP patients, two patients with Miller Fisher syndrome (MFS), and one patient with myasthenia gravis before and after treatment with IVIg. IgG dimer levels were determined by size exclusion chromatography. IgG dimer formation was correlated with clinical response to IVIg treatment in CIDP. Re-monomerized IgG dimer fractions were analyzed for immunoreactivity against peripheral nerve tissue. IgG dimer levels were significantly higher in post- compared to pre-IVIg infusion samples. Low post-treatment IgG dimer levels in CIDP patients were associated with clinical worsening during IVIg treatment. Re-monomerized IgG dimer fractions from CIDP patients showed immunoreactivity against peripheral nerve tissue, whereas similarly treated samples from MFS patients showed immunoreactivity against GQ1b. Assessment of IgG dimer levels could be a novel approach to monitor CIDP patients during IVIg treatment, but further studies in larger cohorts are warranted to explore their utility to serve as a potential therapeutic biomarker for IVIg treatment response in CIDP.

  15. Mapping energetics of atom probe evaporation events through first principles calculations.

    PubMed

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding

    PubMed Central

    Liko, Idlir; Degiacomi, Matteo T.; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V.

    2016-01-01

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance. PMID:27364008

  17. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach.

    PubMed

    Khavani, Mohammad; Izadyar, Mohammad; Housaindokht, Mohammad Reza

    2015-10-14

    In this article, cyclic peptides (CP) with lipid substituents were theoretically designed. The dynamical behavior of the CP dimers and the cyclic peptide nanotube (CPNT) without lipid substituents in the solution (water and chloroform) during the 50 ns molecular dynamic (MD) simulations has been investigated. As a result, the CP dimers and CPNT in a non-polar solvent are more stable than in a polar solvent and CPNT is a good container for non-polar small molecules such as chloroform. The effect of the lipid substituents on the CP dimers and CPNT has been investigated in the next stage of our studies. Accordingly, these substituents increase the stability of the CP dimers and CPNT, significantly, in polar solvents. MM-PBSA and MM-GBSA calculations confirm that substitution has an important effect on the stability of the CP dimers and CPNT. Finally, the dynamical behavior of CPNT with lipid substituents in a fully hydrated DMPC bilayer shows the high ability of this structure for molecule transmission across the lipid membrane. This structure is stable enough to be used as a molecular channel. DFT calculations on the CP dimers in the gas phase, water and chloroform, indicate that H-bond formation is the driving force for dimerization. CP dimers are more stable in the gas phase in comparison to in solution. HOMO-LUMO orbital analysis indicates that the interaction of the CP units in the dimer structures is due to the molecular orbital interactions between the NH and CO groups.

  18. Different Epidermal Growth Factor (EGF) Receptor Ligands Show Distinct Kinetics and Biased or Partial Agonism for Homodimer and Heterodimer Formation*

    PubMed Central

    Macdonald-Obermann, Jennifer L.; Pike, Linda J.

    2014-01-01

    The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers. PMID:25086039

  19. Structural Determinants Underlying Constitutive Dimerization of Unoccupied Human Follitropin Receptors

    PubMed Central

    Guan, Rongbin; Wu, Xueqing; Feng, Xiuyan; Zhang, Meilin; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr110 in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269–277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr110 to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr110 of the ECD. PMID:19800402

  20. Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation.

    PubMed

    Pavankumar, Asalapuram R; Kayathri, Rajarathinam; Murugan, Natarajan A; Zhang, Qiong; Srivastava, Vaibhav; Okoli, Chuka; Bulone, Vincent; Rajarao, Gunaratna K; Ågren, Hans

    2014-01-01

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  1. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  2. Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry.

    PubMed

    Ishida, Riyoko; Iwahashi, Hideo

    2018-03-01

    Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).

  3. Structural Basis for a Reciprocating Mechanism of Negative Cooperativity in Dimeric Phosphagen Kinase Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, X.; Ye, S; Guo, S

    Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 {angstrom}, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand-free protomer in a ligand-bound dimer opens more widelymore » than the protomers in a ligand-free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand-free protomer in a ligand-bound dimer should be relayed from the ligand-binding-induced allostery of its adjacent protomer. Mutations that weaken the interprotomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase. - Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.« less

  4. NUCLEAR-MAGNETIC-RESONANCE STUDIES OF HYDROGEN BONDING (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.C. Jr.

    1959-10-26

    The nuclear-magnetic-resonance spectra of hydrogen bonding systems in noninteracting solvents were studied at several concentrations at 20 to 100 deg C. Chemical shifts mic, acetic, and benzoic acids in benzene. The shifts characteristic of the monomer and dimer species were calculated. Shieldings of the monomer species were calculated to be of the same order as those of alcohol monomers. The dimer shieldings were found to be in the range of 300 to 400 cps below the benzene reference. The dimer shieldings increase with the strength of the hydrogen bond. Chemical shifts were also measured for methanol, etanol, isopropanol, and tertiarymore » butanol in carbon tetrschloride and for ethanol in benzene. The enthalpies of dimerization were estimated from the change in the limiting slopes of shift vs. concentration curves with temperature and found to be --9.3 plus or minus 2.5, --7.4 plus or minus 2.0, --6.5 plus or minus 1.5, --5.4 plus or minus 1.8, and--5.6 plu11.6 kcal per mole of dimer, respectively. At 22 deg C, the dimerization constant for ethanol in carbon tetrachloride is 11.0 for a cyclic dimer and twice this for a linear dimer. Probable higher polymers were estimated for the ethanol system, and the experimental data were fitted by adjusting polymer shieldings and equilibrium constants. (auth)« less

  5. Crystal structure and function of an unusual dimeric Hsp20.1 provide insight into the thermal protection mechanism of small heat shock proteins.

    PubMed

    Liu, Liang; Chen, Jiyun; Yang, Bo; Wang, Yonghua

    2015-03-06

    Small heat shock proteins (sHSPs) are ubiquitous chaperones that play a vital role in protein homeostasis. sHSPs are characterized by oligomeric architectures and dynamic exchange of subunits. The flexible oligomeric assembling associating with function remains poorly understood. Based on the structural data, it is certainly agreed that two dimerization models depend on the presence or absence of a β6 strand to differentiate nonmetazoan sHSPs from metazoan sHSPs. Here, we report the Sulfolobus solfataricus Hsp20.1 ACD dimer structure, which shows a distinct dimeric interface. We observed that, in the absence of β6, Hsp20.1 dimer does not depend on β7 strand for forming dimer interface as metazoan sHSPs, nor dissociates to monomers. This is in contrast to other published sHSPs. Our structure reveals a variable, highly polar dimer interface that has advantages for rapid subunits exchange and substrate binding. Remarkably, we find that the C-terminal truncation variant has chaperone activity comparable to that of wild-type despite lack of the oligomer structure. Our further study indicates that the N-terminal region is essential for the oligomer and dimer binding to the target protein. Together, the structure and function of Hsp20.1 give more insight into the thermal protection mechanism of sHSPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Intra- and intermolecular H-bond mediated tautomerization and dimerization of 3-methyl-1,2-cyclopentanedione: Infrared spectroscopy in argon matrix and CCl 4 solution

    NASA Astrophysics Data System (ADS)

    Samanta, Amit K.; Pandey, Prasenjit; Bandyopadhyay, Biman; Mukhopadhyay, Anamika; Chakraborty, Tapas

    2011-05-01

    Mid-infrared spectra of 3-methyl-1,2-cyclopentanedione (3-MeCPD) have been recorded by isolating the molecule in a cold argon matrix (8 K) and also in CCl 4 solution at room temperature. The spectral features reveal that in both media, the molecule exists exclusively in an enol tautomeric form, which is stabilized by an intramolecular O sbnd H⋯O hydrogen bond. NBO analysis shows that the preferred conformer is further stabilized because of hyperconjugation interaction between the methyl and vinyl group of the enol tautomer. In CCl 4 solution, the molecule undergoes extensive self association and generates a doubly hydrogen bonded centrosymmetric dimer. The dimerization constant ( K d) is estimated to have a value of ˜9 L mol -1 at room temperature (25 °C) and the thermodynamic parameters, Δ H°, Δ S° and Δ G°, of dimerization are estimated by measuring K d at several temperatures within the range 22-60 °C. The same dimer is also produced when the matrix is annealed at a higher temperature. In addition, a non-centrosymmetric singly hydrogen bonded dimer is also identified in the argon matrix. A comparison between the spectral features of the two dimers indicates that the dimerization effect on doubly H-bonded case is influenced by cooperative interaction between the two H-bonds.

  7. The Role of Water in the Stability of Wild Type and Mutant Insulin Dimers.

    PubMed

    Raghunathan, Shampa; El Hage, Krystel; Desmond, Jasmine; Zhang, Lixian; Meuwly, Markus

    2018-06-19

    Insulin dimerization and aggregation play important roles in the endogenous delivery of the hormone. One of the important residues at the insulin dimer interface is Phe B24 which is an invariant aromatic anchor that packs towards its own monomer inside a hydrophobic cavity formed by Val B12 , Leu B15 , Tyr B16 , Cys B19 and Tyr B26 . Using molecular dynamics and free energy simulations in explicit solvent, the structural and dynamical consequences of mutations of Phe at position B24 to Gly, Ala, and d-Ala and the des-PheB25 variant are quantified. Consistent with experiments it is found that the Gly and Ala modifications lead to insulin dimers with reduced stability by 4 and 5 kcal/mol from thermodynamic integration and 4 and 8 kcal/mol from results using MM-GBSA, respectively. Given the experimental difficulties to quantify the thermodynamic stability of modified insulin dimers, such computations provide a valuable complement. Interestingly, the Gly-mutant exists as a strongly and a weakly interacting dimer. Analysis of the molecular dynamics simulations shows that this can be explained by water molecules that replace direct monomer-monomer H-bonding contacts at the dimerization interface involving residues B24 to B26. It is concluded that such solvent molecules play an essential role and must be included in future insulin dimerization studies.

  8. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.

    PubMed

    Kinoshita, Ryo; Ishima, Yu; Chuang, Victor T G; Nakamura, Hideaki; Fang, Jun; Watanabe, Hiroshi; Shimizu, Taro; Okuhira, Keiichiro; Ishida, Tatsuhiro; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2017-09-01

    In the latest trend of anticancer chemotherapy research, there were many macromolecular anticancer drugs developed based on enhanced permeability and retention (EPR) effect, such as albumin bound paclitaxel nanoparticle (nab- PTX, also called Abraxane ® ). However, cancers with low vascular permeability posed a challenge for these EPR based therapeutic systems. Augmenting the intrinsic EPR effect with an intrinsic vascular modulator such as nitric oxide (NO) could be a promising strategy. S-nitrosated human serum albumin dimer (SNO-HSA Dimer) shown promising activity previously was evaluated for the synergistic effect when used as a pretreatment agent in nab-PTX therapy against various tumor models. In the high vascular permeability C26 murine colon cancer subcutaneous inoculation model, SNO-HSA Dimer enhanced tumor selectivity of nab-PTX, and attenuated myelosuppression. SNO-HSA Dimer also augmented the tumor growth inhibition of nab-PTX in low vascular permeability B16 murine melanoma subcutaneous inoculation model. Furthermore, nab-PTX therapy combined with SNO-HSA Dimer showed higher antitumor activity and improved survival rate of SUIT2 human pancreatic cancer orthotopic model. In conclusion, SNO-HSA Dimer could enhance the therapeutic effect of nab-PTX even in low vascular permeability or intractable pancreatic cancers. The possible underlying mechanisms of action of SNO-HSA Dimer were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The E2 Domains of APP and APLP1 Share a Conserved Mode of Dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lee; Y Xue; J Hulbert

    2011-12-31

    Amyloid precursor protein (APP) is genetically linked to Alzheimer's disease. APP is a type I membrane protein, and its oligomeric structure is potentially important because this property may play a role in its function or affect the processing of the precursor by the secretases to generate amyloid {beta}-peptide. Several independent studies have shown that APP can form dimers in the cell, but how it dimerizes remains controversial. At least three regions of the precursor, including a centrally located and conserved domain called E2, have been proposed to contribute to dimerization. Here we report two new crystal structures of E2, onemore » from APP and the other from APLP1, a mammalian APP homologue. Comparison with an earlier APP structure, which was determined in a different space group, shows that the E2 domains share a conserved and antiparallel mode of dimerization. Biophysical measurements in solution show that heparin binding induces E2 dimerization. The 2.1 {angstrom} resolution electron density map also reveals phosphate ions that are bound to the protein surface. Mutational analysis shows that protein residues interacting with the phosphate ions are also involved in heparin binding. The locations of two of these residues, Arg-369 and His-433, at the dimeric interface suggest a mechanism for heparin-induced protein dimerization.« less

  10. Members of the DAN family are BMP antagonists that form highly stable noncovalent dimers.

    PubMed

    Kattamuri, Chandramohan; Luedeke, David M; Nolan, Kristof; Rankin, Scott A; Greis, Kenneth D; Zorn, Aaron M; Thompson, Thomas B

    2012-12-14

    Signaling of bone morphogenetic protein (BMP) ligands is antagonized by a number of extracellular proteins, including noggin, follistatin and members of the DAN (differential screening selected gene abberative in neuroblastoma) family. Structural studies on the DAN family member sclerostin (a weak BMP antagonist) have previously revealed that the protein is monomeric and consists of an eight-membered cystine knot motif with a fold similar to transforming growth factor-β ligands. In contrast to sclerostin, certain DAN family antagonists, including protein related to DAN and cerberus (PRDC), have an unpaired cysteine that is thought to function in covalent dimer assembly (analogous to transforming growth factor-β ligands). Through a combination of biophysical and biochemical studies, we determined that PRDC forms biologically active dimers that potently inhibit BMP ligands. Furthermore, we showed that PRDC dimers, surprisingly, are not covalently linked, as mutation of the unpaired cysteine does not inhibit dimer formation or biological activity. We further demonstrated that the noncovalent PRDC dimers are highly stable under both denaturing and reducing conditions. This study was extended to the founding family member DAN, which also forms noncovalent dimers that are highly stable. These results demonstrate that certain DAN family members can form both monomers and noncovalent dimers, implying that biological activity of DAN family members might be linked to their oligomeric state. Published by Elsevier Ltd.

  11. Rapid Reversion from Monomer to Dimer Regenerates the Ultraviolet-B Photoreceptor UV RESISTANCE LOCUS8 in Intact Arabidopsis Plants1[W][OA

    PubMed Central

    Heilmann, Monika; Jenkins, Gareth I.

    2013-01-01

    Arabidopsis (Arabidopsis thaliana) UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor that specifically mediates photomorphogenic responses to ultraviolet (UV)-B in plants. UV-B photoreception induces the conversion of the UVR8 dimer into a monomer that interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) protein to regulate gene expression. However, it is not known how the dimeric photoreceptor is regenerated in plants. Here, we show, by using inhibitors of protein synthesis and degradation via the proteasome, that the UVR8 dimer is not regenerated by rapid de novo synthesis following destruction of the monomer. Rather, regeneration occurs by reversion from the monomer to the dimer. However, regeneration of dimeric UVR8 in darkness following UV-B exposure occurs much more rapidly in vivo than in vitro with illuminated plant extracts or purified UVR8, indicating that rapid regeneration requires intact cells. Rapid dimer regeneration in vivo requires protein synthesis, the presence of a carboxyl-terminal 27-amino acid region of UVR8, and the presence of COP1, which is known to interact with the carboxyl-terminal region. However, none of these factors can account fully for the difference in regeneration kinetics in vivo and in vitro, indicating that additional proteins or processes are involved in UVR8 dimer regeneration in vivo. PMID:23129206

  12. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing

    PubMed Central

    Xu, Tian-Jiao; Wang, Qi; Ma, Xiao-Wen; Zhang, Zhen; Zhang, Wei; Xue, Xiao-Chang; Zhang, Cun; Hao, Qiang; Li, Wei-Na; Zhang, Ying-Qi; Li, Meng

    2013-01-01

    Objective Thymosin beta 4 (Tβ4) is a peptide with 43 amino acids that is critical for repair and remodeling tissues on the skin, eye, heart, and neural system following injury. To fully realize its utility as a treatment for disease caused by injury, the authors constructed a cost-effective novel Tβ4 dimer and demonstrated that it was better able to accelerate tissue repair than native Tβ4. Methods A prokaryotic vector harboring two complete Tβ4 genes with a short linker was constructed and expressed in Escherichia coli. A pilot-scale fermentation (10 L) was performed to produce engineered bacteria and the Tβ4 dimer was purified by one-step hydrophobic interaction chromatography. The activities of the Tβ4 dimer to promote endothelial cell proliferation, migration, and sprouting were assessed by tetramethylbenzidine (methylthiazol tetrazolium), trans-well, scratch, and tube formation assays. The ability to accelerate dermal healing was assessed on rats. Results After fermentation, the Tβ4 dimer accounted for about 30% of all the bacteria proteins. The purity of the Tβ4 dimer reached 98% after hydrophobic interaction chromatography purification. An average of 562.4 mg/L Tβ4 dimer was acquired using a 10 L fermenter. In each assay, the dimeric Tβ4 exhibited enhanced activities compared with native Tβ4. Notably, the ability of the dimeric Tβ4 to promote cell migration was almost two times higher than that of Tβ4. The rate of dermal healing in the dimeric Tβ4-treated rats was approximately 1 day faster than with native Tβ4-treated rats. Conclusion The dimeric Tβ4 exhibited enhanced activity on wound healing than native Tβ4, and the purification process was simple and cost-effective. This data could be of significant benefit for the high pain and morbidity associated with chronic wounds disease. A better strategy to develop Tβ4 as a treatment for other diseases caused by injuries such as heart attack, neurotrophic keratitis, and multiple sclerosis was also described. PMID:24109178

  13. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation--observations from the ARISTOTLE trial.

    PubMed

    Christersson, C; Wallentin, L; Andersson, U; Alexander, J H; Ansell, J; De Caterina, R; Gersh, B J; Granger, C B; Hanna, M; Horowitz, J D; Huber, K; Husted, S; Hylek, E M; Lopes, R D; Siegbahn, A

    2014-09-01

    D-dimer is related to adverse outcomes in arterial and venous thromboembolic diseases. To evaluate the predictive value of D-dimer level for stroke, other cardiovascular events, and bleeds, in patients with atrial fibrillation (AF) treated with oral anticoagulation with apixaban or warfarin; and to evaluate the relationship between the D-dimer levels at baseline and the treatment effect of apixaban vs. warfarin. In the ARISTOTLE trial, 18 201 patients with AF were randomized to apixaban or warfarin. D-dimer was analyzed in 14 878 patients at randomization. The cohort was separated into two groups; not receiving vitamin K antagonist (VKA) treatment and receiving VKA treatment at randomization. Higher D-dimer levels were associated with increased frequencies of stroke or systemic embolism (hazard ratio [HR] [Q4 vs. Q1] 1.72, 95% confidence interval [CI] 1.14-2.59, P = 0.003), death (HR [Q4 vs. Q1] 4.04, 95% CI 3.06-5.33) and major bleeding (HR [Q4 vs. Q1] 2.47, 95% CI 1.77-3.45, P < 0.0001) in the no-VKA group. Similar results were obtained in the on-VKA group. Adding D-dimer level to the CHADS2 score improved the C-index from 0.646 to 0.655 for stroke or systemic embolism, and from 0.598 to 0.662 for death, in the no-VKA group. D-dimer level improved the HAS-BLED score for prediction of major bleeds, with an increase in the C-index from 0.610 to 0.641. There were no significant interactions between efficacy and safety of study treatment and D-dimer level. In anticoagulated patients with AF, the level of D-dimer is related to the risk of stroke, death, and bleeding, and adds to the predictive value of clinical risk scores. The benefits of apixaban were consistent, regardless of the baseline D-dimer level. © 2014 International Society on Thrombosis and Haemostasis.

  14. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF (360 ns), whereas those of PcD-4Ph were quite similar in both solvent.

  15. Receptor signaling: when dimerization is not enough.

    PubMed

    Jiang, G; Hunter, T

    Activation of receptors that signal via tyrosine kinase domains has been thought to involve receptor dimerization and transphosphorylation of juxtaposed catalytic domains. Recent results suggest things might be more complex - specific intersubunit conformational changes within a dimer can also be important.

  16. Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation

    PubMed Central

    Roy, Sujayita; He, Ran; Kapoor, Arun; Forman, Michael; Mazzone, Jennifer R.; Posner, Gary H.

    2015-01-01

    Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition. PMID:25870074

  17. Impact of D-Dimer for Prediction of Incident Occult Cancer in Patients with Unprovoked Venous Thromboembolism

    PubMed Central

    Han, Donghee; ó Hartaigh, Bríain; Lee, Ji Hyun; Cho, In-Jeong; Shim, Chi Young; Chang, Hyuk-Jae; Hong, Geu-Ru; Ha, Jong-Won; Chung, Namsik

    2016-01-01

    Background Unprovoked venous thromboembolism (VTE) is related to a higher incidence of occult cancer. D-dimer is clinically used for screening VTE, and has often been shown to be present in patients with malignancy. We explored the predictive value of D-dimer for detecting occult cancer in patients with unprovoked VTE. Methods We retrospectively examined data from 824 patients diagnosed with deep vein thrombosis or pulmonary thromboembolism. Of these, 169 (20.5%) patients diagnosed with unprovoked VTE were selected to participate in this study. D-dimer was categorized into three groups as: <2,000, 2,000–4,000, and >4,000 ng/ml. Cox regression analysis was employed to estimate the odds of occult cancer and metastatic state of cancer according to D-dimer categories. Results During a median 5.3 (interquartile range: 3.4–6.7) years of follow-up, 24 (14%) patients with unprovoked VTE were diagnosed with cancer. Of these patients, 16 (67%) were identified as having been diagnosed with metastatic cancer. Log transformed D-dimer levels were significantly higher in those with occult cancer as compared with patients without diagnosis of occult cancer (3.5±0.5 vs. 3.2±0.5, P-value = 0.009, respectively). D-dimer levels >4,000 ng/ml was independently associated with occult cancer (HR: 4.12, 95% CI: 1.54–11.04, P-value = 0.005) when compared with D-dimer levels <2,000 ng/ml, even after adjusting for age, gender, and type of VTE (e.g., deep vein thrombosis or pulmonary thromboembolism). D-dimer levels >4000 ng/ml were also associated with a higher likelihood of metastatic cancer (HR: 9.55, 95% CI: 2.46–37.17, P-value <0.001). Conclusion Elevated D-dimer concentrations >4000 ng/ml are independently associated with the likelihood of occult cancer among patients with unprovoked VTE. PMID:27073982

  18. Impact of D-Dimer for Prediction of Incident Occult Cancer in Patients with Unprovoked Venous Thromboembolism.

    PubMed

    Han, Donghee; ó Hartaigh, Bríain; Lee, Ji Hyun; Cho, In-Jeong; Shim, Chi Young; Chang, Hyuk-Jae; Hong, Geu-Ru; Ha, Jong-Won; Chung, Namsik

    2016-01-01

    Unprovoked venous thromboembolism (VTE) is related to a higher incidence of occult cancer. D-dimer is clinically used for screening VTE, and has often been shown to be present in patients with malignancy. We explored the predictive value of D-dimer for detecting occult cancer in patients with unprovoked VTE. We retrospectively examined data from 824 patients diagnosed with deep vein thrombosis or pulmonary thromboembolism. Of these, 169 (20.5%) patients diagnosed with unprovoked VTE were selected to participate in this study. D-dimer was categorized into three groups as: <2,000, 2,000-4,000, and >4,000 ng/ml. Cox regression analysis was employed to estimate the odds of occult cancer and metastatic state of cancer according to D-dimer categories. During a median 5.3 (interquartile range: 3.4-6.7) years of follow-up, 24 (14%) patients with unprovoked VTE were diagnosed with cancer. Of these patients, 16 (67%) were identified as having been diagnosed with metastatic cancer. Log transformed D-dimer levels were significantly higher in those with occult cancer as compared with patients without diagnosis of occult cancer (3.5±0.5 vs. 3.2±0.5, P-value = 0.009, respectively). D-dimer levels >4,000 ng/ml was independently associated with occult cancer (HR: 4.12, 95% CI: 1.54-11.04, P-value = 0.005) when compared with D-dimer levels <2,000 ng/ml, even after adjusting for age, gender, and type of VTE (e.g., deep vein thrombosis or pulmonary thromboembolism). D-dimer levels >4000 ng/ml were also associated with a higher likelihood of metastatic cancer (HR: 9.55, 95% CI: 2.46-37.17, P-value <0.001). Elevated D-dimer concentrations >4000 ng/ml are independently associated with the likelihood of occult cancer among patients with unprovoked VTE.

  19. 99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand.

    PubMed

    Wang, Jianjun; Kim, Young-Seung; Liu, Shuang

    2008-03-01

    In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.

  20. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Hiroshi, E-mail: hirotake@sapmed.ac.jp

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation ofmore » cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.« less

  1. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution.

    PubMed Central

    Chang, B S; Beauvais, R M; Arakawa, T; Narhi, L O; Dong, A; Aparisio, D I; Carpenter, J F

    1996-01-01

    The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the protein surface. PMID:8968609

  2. The ratio of D-dimer to brain natriuretic peptide may help to differentiate between cerebral infarction with and without acute aortic dissection.

    PubMed

    Okazaki, Toshiyuki; Yamamoto, Yoko; Yoda, Keishi; Nagahiro, Shinji

    2014-05-15

    Previous studies reported that the plasma d-dimer level reflects the activity of thrombus formation in the left atrium of patients with acute cerebral infarction and acute aortic dissection (AAD). Brain natriuretic peptide (BNP) is considered to be a marker of chronic heart failure. The differential diagnosis in the emergency room between stroke due to cardioembolism and AAD is difficult but important for early treatment especially in patients requiring intravenous thrombolysis with a recombinant tissue-type plasminogen activator. We aimed to investigate the association between the plasma d-dimer and BNP levels in patients with cerebral infarction and AAD. We identified 115 consecutive patients with ischemic stroke who were admitted within 72 h of symptom onset and 15 consecutive patients with AAD and measured the level of plasma d-dimer and BNP and the d-dimer:BNP ratio. In patients with AAD the d-dimer level was significantly higher than that in patients with any other stroke subtypes and their BNP level was significantly lower than that in patients with cardioembolic stroke. The d-dimer:BNP ratio was significantly higher in patients with AAD than in those with any other stroke subtype. Compared to patients with a cardioembolic stroke subtype they manifested significantly higher d-dimer levels and d-dimer:BNP ratios suggesting that this ratio may help to diagnose cerebral infarction due to AAD (sensitivity 80%, specificity 93.5%, cut-off 0.074). When the population was limited to patients within 6h of onset, the ratio had higher sensitivity and specificity at the same cut-off value (sensitivity 81.8%, specificity 96.4%). We found that the d-dimer:BNP ratio may be helpful in distinguishing between cerebral infarction with and without AAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Photochemical pathways of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt(III) and iron(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraudi, G.

    1979-04-01

    The photochemical reactivity of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt (III) and iron (II) was investigated by steady-state and flash irradiations. The dimeric species photodissociated into sulfophthalocyanine radicals which were coordinated to either Co(III) or Fe(II) metal centers. Reactions of such intermediates were investigated by interception with alcohols and O/sub 2/. Also, photoredox reactions were detected with monomeric acidocobalt(III) sulfophtahlocyanines. These processes produce the oxidation of the acido ligands (Cl/sup -/, Br/sup -/, N/sub 3//sup -/, I/sup -/) and the reduction of the metal center. The photoredox dissociation was also investigated by using mixed dimers of themore » cobalt sulfophthalocyanines with Cr(bpy)/sub 3//sup 3 +/ and Ru(bpy)/sub 3//sup 2 +/. The photogeneration of sulfophthalocyanine radicals was observed as a general reaction which was produced by excitation of either the Cr(bby)/sub 3//sup 3 +/ or Ru(bpy)/sub 3//sup 2 +/ units in the mixed dimer. The nature of the reactive excited states involved in the various photochemical reactions of the sulfophthalocyanines of Co(II), Co(III), Cu(II), and Fe(II) is discussed.« less

  4. Light activation of the LOV protein vivid generates a rapidly exchanging dimer.

    PubMed

    Zoltowski, Brian D; Crane, Brian R

    2008-07-08

    The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.

  5. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  6. Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K

    NASA Astrophysics Data System (ADS)

    Jag, M.; Cetina, M.; Lous, R. S.; Grimm, R.; Levinsen, J.; Petrov, D. S.

    2016-12-01

    We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our 40K-6Li system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.

  7. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  8. Lifecourse social position and D-dimer; findings from the 1958 British birth cohort.

    PubMed

    Tabassum, Faiza; Kumari, Meena; Rumley, Ann; Power, Chris; Strachan, David P; Lowe, Gordon

    2014-01-01

    The aim is to examine the association of lifecourse socioeconomic position (SEP) on circulating levels of D-dimer. Data from the 1958 British birth cohort were used, social class was determined at three stages of respondents' life: at birth, at 23 and at 42 years. A cumulative indicator score of SEP (CIS) was calculated ranging from 0 (always in the highest social class) to 9 (always in the lowest social class). In men and women, associations were observed between CIS and D-dimer (P<0.05). Thus, the respondents in more disadvantaged social classes had elevated levels of D-dimer compared to respondents in less disadvantaged social class. In multivariate analyses, the association of disadvantaged social position with D-dimer was largely explained by fibrinogen, C-reactive protein and von Willebrand Factor in women, and additionally by smoking, alcohol consumption and physical activity in men. Socioeconomic circumstances across the lifecourse at various stages also contribute independently to raised levels of D-dimer in middle age in women only. Risk exposure related to SEP accumulates across life and contributes to raised levels of D-dimer. The association of haemostatic markers and social differences in health may be mediated by inflammatory and other markers.

  9. Adenylyl cyclase G is activated by an intramolecular osmosensor.

    PubMed

    Saran, Shweta; Schaap, Pauline

    2004-03-01

    Adenylyl cyclase G (ACG) is activated by high osmolality and mediates inhibition of spore germination by this stress factor. The catalytic domains of all eukaryote cyclases are active as dimers and dimerization often mediates activation. To investigate the role of dimerization in ACG activation, we coexpressed ACG with an ACG construct that lacked the catalytic domain (ACGDeltacat) and was driven by a UV-inducible promoter. After UV induction of ACGDeltacat, cAMP production by ACG was strongly inhibited, but osmostimulation was not reduced. Size fractionation of native ACG showed that dimers were formed between ACG molecules and between ACG and ACGDeltacat. However, high osmolality did not alter the dimer/monomer ratio. This indicates that ACG activity requires dimerization via a region outside the catalytic domain but that dimer formation does not mediate activation by high osmolality. To establish whether ACG required auxiliary sensors for osmostimulation, we expressed ACG cDNA in a yeast adenylyl cyclase null mutant. In yeast, cAMP production by ACG was similarly activated by high osmolality as in Dictyostelium. This strongly suggests that the ACG osmosensor is intramolecular, which would define ACG as the first characterized primary osmosensor in eukaryotes.

  10. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    PubMed

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic single amino acid mutations that cause skeletal and cranial dysplasias, as well as cancer, we also study the effects of these mutations on dimerization. First, we show that the A391E mutation, linked to Crouzon syndrome with acanthosis nigricans and to bladder cancer, significantly enhances FGFR3 dimerization in the absence of ligand and thus induces aberrant receptor interactions. Second, we present results about the effect of three cysteine mutations that cause thanatophoric dysplasia, a lethal phenotype. Such cysteine mutations have been hypothesized previously to cause constitutive dimerization, but we find instead that they have a surprisingly modest effect on dimerization. Most of the studied pathogenic mutations also altered FGFR3 dimer structure, suggesting that both increases in dimerization propensities and changes in dimer structure contribute to the pathological phenotypes. The results acquired with the QI-FRET method further our understanding of the interactions between FGFR3 molecules and RTK molecules in general. Since RTK dimerization regulates RTK signaling, our findings advance our knowledge of RTK activity in health and disease. The utility of the QI-FRET method is not restricted to RTKs, and we thus hope that in the future the QI-FRET method will be applied to other classes of membrane proteins, such as channels and G protein-coupled receptors.

  11. Novel Isochroman Dimers from Stachybotrys sp. PH30583: Fermentation, Isolation, Structural Elucidation and Biological Activities.

    PubMed

    Li, Wei; Yang, Ya-Bin; Yang, Xue-Qiong; Xie, Hui-Ding; Shao, Zhi-Hui; Zhou, Hao; Miao, Cui-Ping; Zhao, Li-Xing; Ding, Zhong-Tao

    2017-05-01

    The rare anishidiol and five new isochromans, including three novel dimers with unprecedented skeletons, were isolated from Stachybotrys sp. PH30583. Their structures were determined by spectral analyses. The bioactivities of these compounds were also investigated. The dimers ( 6 - 10 ) inhibited acetylcholinesterase at 50 µM, but the monomers did not. To investigate the biogenesis of the novel dimers, a time-course investigation of metabolite production was undertaken. Georg Thieme Verlag KG Stuttgart · New York.

  12. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  13. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  14. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-04

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation.

  15. Repair of cyclobutyl pyrimidine dimers in human skin: variability among normal humans in nucleotide excision and in photorepair.

    PubMed

    Sutherland, Betsy M; Hacham, Haim; Bennett, Paula; Sutherland, John C; Moran, Michael; Gange, R W

    2002-06-01

    Photoreactivation (PR) of cyclobutyl pyrimidine dimers (CPD) in human skin remains controversial. Recently Whitmore et al. (1) reported negative results of experiments using two photorepair light (PRL) sources on UV-irradiated skin of volunteers. However, their PRL sources induced substantial levels of dimers in skin, suggesting that the additional dimers formed could have obscured PR. We met a similar problem of dimer induction by a PRL source. We designed and validated a PRL source of sufficient intensity to catalyse PR, but that did not induce CPD, and used it to measure photorepair in human skin. Using a solar simulator filtered with three types of UV-filters, we found significant dimer formation in skin, quantified by number average length analysis using electrophoretic gels of isolated skin DNA. To prevent scattered UV from reaching the skin, we interposed shields between the filters and skin, and showed that the UV-filtered/shielded solar simulator system did not induce damage in isolated DNA or in human skin. We exposed skin of seven healthy human volunteers to 302 nm radiation, then to the improved PRL source (control skin areas were kept in the dark for measurement of excision repair). Using a high intensity PRL source that did not induce dimers in skin, we found that three of seven subjects carried out rapid photorepair of dimers; two carried out moderate or slow dimer photorepair, and three did not show detectable photorepair. Excision repair was similarly variable in these volunteers. Subjects with slower excision repair showed rapid photorepair, whereas those with rapid excision generally showed little or no photoreactivation.

  16. Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.

    PubMed

    Cressman, William J; Beckett, Dorothy

    2016-01-19

    Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.

  17. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency.

    PubMed

    Au, S W; Gover, S; Lam, V M; Adams, M J

    2000-03-15

    Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first committed step in the pentose phosphate pathway; the generation of NADPH by this enzyme is essential for protection against oxidative stress. The human enzyme is in a dimer<-->tetramer equilibrium and its stability is dependent on NADP(+) concentration. G6PD deficiency results from many different point mutations in the X-linked gene encoding G6PD and is the most common human enzymopathy. Severe deficiency causes chronic non-spherocytic haemolytic anaemia; the usual symptoms are neonatal jaundice, favism and haemolytic anaemia. We have determined the first crystal structure of a human G6PD (the mutant Canton, Arg459-->Leu) at 3 A resolution. The tetramer is a dimer of dimers. Despite very similar dimer topology, there are two major differences from G6PD of Leuconostoc mesenteroides: a structural NADP(+) molecule, close to the dimer interface but integral to the subunit, is visible in all subunits of the human enzyme; and an intrasubunit disulphide bond tethers the otherwise disordered N-terminal segment. The few dimer-dimer contacts making the tetramer are charge-charge interactions. The importance of NADP(+) for stability is explained by the structural NADP(+) site, which is not conserved in prokaryotes. The structure shows that point mutations causing severe deficiency predominate close to the structural NADP(+) and the dimer interface, primarily affecting the stability of the molecule. They also indicate that a stable dimer is essential to retain activity in vivo. As there is an absolute requirement for some G6PD activity, residues essential for coenzyme or substrate binding are rarely modified.

  18. Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*

    PubMed Central

    Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh

    2013-01-01

    Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643

  19. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    PubMed

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  20. In vitro resolution of the dimer bridge of the minute virus of mice (MVM) genome supports the modified rolling hairpin model for MVM replication.

    PubMed

    Liu, Q; Yong, C B; Astell, C R

    1994-06-01

    Previous characterization of the terminal sequences of the minute virus of mice (MVM) genome demonstrated that the right hand palindrome contains two sequences, each the inverted complement of the other. However, the left hand palindrome was shown to exist as a unique sequence [Astell et al., J. Virol. 54: 179-185 (1985)]. The modified rolling hairpin (MRH) model for MVM replication provided an explanation of how the right hand palindrome could undergo hairpin transfer to generate two sequences, while the left end palindrome within the dimer bridge could undergo asymmetric resolution and retain the unique left end sequence. This report describes in vitro resolution of the wild-type dimer bridge sequence of MVM using recombinant (baculovirus) expressed NS-1 and a replication extract from LA9 cells. The resolution products are consistent with those predicted by the MRH model, providing support for this replication mechanism. In addition, mutant dimer bridge clones were constructed and used in the resolution assay. The mutant structures included removal of the asymmetry in the hairpin stem, inversion of the sequence at the initiating nick site, and a 2-bp deletion within one stem of the dimer bridge. In all cases, the mutant dimer bridge structures are resolved; however, the resolution pattern observed with the mutant dimer bridge compared with the wild-type dimer bridge is shifted toward symmetrical resolution. These results suggest that sequences within the left hand hairpin (and hence dimer bridge sequence) are responsible for asymmetric resolution and conservation of the unique sequence within the left hand palindrome of the MVM genome.

  1. Brief Report: Racial Comparison of D-Dimer Levels in US Male Military Personnel Before and After HIV Infection and Viral Suppression.

    PubMed

    OʼBryan, Thomas A; Agan, Brian K; Tracy, Russell P; Freiberg, Matthew S; Okulicz, Jason F; So-Armah, Kaku; Ganesan, Anuradha; Rimland, David; Lalani, Tahaniyat; Deiss, Robert G; Tramont, Edmund C

    2018-04-15

    D-dimer blood levels in persons with HIV infection are associated with risk of serious non-AIDS conditions and death. Black race has been correlated with higher D-dimer levels in several studies. We examined the effects of race and HIV on D-dimer over time and the impact of viral load suppression by longitudinally comparing changes in levels among healthy young adult male African Americans and whites before HIV seroconversion and before and after initiation of antiretroviral therapy (ART). We analyzed D-dimer levels and clinical and laboratory data of 192 participants enrolled in the US Military HIV Natural History Study, a 30-year cohort of military personnel infected with HIV. D-dimer levels were measured on stored sera from each participant at 3 time points: (1) before HIV seroconversion (Pre-SC), (2) ≥6 months after HIV seroconversion but before ART initiation (Post-SC), and (3) ≥6 months after ART with documented viral suppression (Post-ART). Levels were compared at each time point using nonparametric and logistic regression analysis. Compared with whites (n = 106), African Americans (n = 86) had higher D-dimer levels post-SC (P = 0.007), but in the same individuals, pre-SC baseline and post-ART levels were similar (P = 0.40 and P = 0.99, respectively). There were no racial differences in CD4 cell counts, HIV RNA viral load, time from estimated seroconversion to ART initiation, and duration on ART. Observed longitudinally, racial differences in D-dimer levels were seen only during HIV viremia. Higher levels of D-dimer commonly observed in African Americans are likely due to factors in addition to race.

  2. Age-adjusted versus clinical probability-adjusted D-dimer to exclude pulmonary embolism.

    PubMed

    Takach Lapner, Sarah; Stevens, Scott M; Woller, Scott C; Snow, Gregory; Kearon, Clive

    2018-05-05

    A low D-dimer can exclude suspected pulmonary embolism (PE) in cases with low or intermediate clinical probability of disease. Yet D-dimer is nonspecific, so many cases without PE require imaging. D-dimer's specificity is improved by increasing the threshold for a positive test with age (age × 10 ng/mL; age-adjusted D-dimer; AADD) or clinical probability of PE (1000 ng/mL if low and 500 ng/mL if intermediate clinical probability; clinical probability-adjusted D-dimer; CPADD). It is unclear which approach is preferable. We report the sensitivity, specificity and negative predictive value (NPV) of AADD compared to CPADD in suspected PE. A retrospective cohort of 3500 consecutive cases imaged for suspected PE at two U.S. emergency departments was assembled. We analyzed cases with low or intermediate clinical probability of PE (Revised Geneva Score) who had a D-dimer. The outcome was acute PE on imaging at presentation. Of the 3500 cases, 1745 were eligible. 37% were low, and 63% were intermediate clinical probability of PE. PE was present in 145 (8.3%) cases. Sensitivity of CPADD was 87.5% vs. 96.6% for AADD (difference 9.1%; 95% CI 4.3% to 14.0%). NPV of CPADD was 97.1% vs. 99.0% for AADD (difference 1.9%; 95% CI, 0.7% to 3.1%). Specificity of CPADD was 37.5% vs. 30.2% for AADD (difference -7.3%; 95% CI -9.4% to -5.1%). D-dimer was negative in 35.4% of cases using CPADD vs. 28.0% using AADD. CPADD modestly improved the specificity of D-dimer, but had a lower NPV than AADD. AADD appears preferable in this analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The nature of the [TTF]˙+···[TTF]˙+ interactions in the [TTF]2(2+) dimers embedded in charged [3]catenanes: room-temperature multicenter long bonds.

    PubMed

    Capdevila-Cortada, Marçal; Novoa, Juan J

    2012-04-23

    The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction.

    PubMed

    Chang, Chih-Kang; Teng, Kuo-Hsun; Lin, Sheng-Wei; Chang, Tao-Hsin; Liang, Po-Huang

    2013-04-23

    Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.

  5. Tea Catechin Auto-oxidation Dimers are Accumulated and Retained by Caco-2 Human Intestinal Cells

    PubMed Central

    Neilson, Andrew P.; Song, Brian J.; Sapper, Teryn N.; Bomser, Joshua A.; Ferruzzi, Mario G.

    2010-01-01

    Despite the presence of bioactive catechin B-ring auto-oxidation dimers in tea, little is known regarding their absorption in humans. Our hypothesis for this research is that catechin auto-oxidation dimers are present in teas and are absorbable by human intestinal epithelial cells. Dimers [theasinensins (THSNs) and P-2 analogs) were quantified in commercial teas by HPLC-MS. (−)-Epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) homodimers were present at 10–43 and 0–62 µmol/g leaf, respectively. EGC-EGCG heterodimers were present at 0–79 µmol/g. The potential intestinal absorption of these dimers was assessed using Caco-2 intestinal cells. Catechin monomers and dimers were detected in cells exposed to media containing monomers and preformed dimers. Accumulation of dimers was significantly greater than monomers from test media. Three h accumulation of EGC and EGCG was 0.19– 0.55% and 1.24–1.35% respectively. Comparatively, 3h accumulation of the EGC P-2 analog, and THSNs C/E was 0.89 ± 0.28% and 1.53 ± 0.36%. Accumulation of P-2, and THSNs A/D was 6.93 ± 2.1%, and 10.1 ± 3.6%. EGCG-EGC heterodimer P-2 analog, and THSN B 3h accumulation was 4.87 ± 2.2%, and 4.65 ± 2.8% respectively. One h retention of P-2, and THSNs A/D was 171 ± 22%, and 29.6 ± 9.3% of accumulated amount suggesting intracellular oxidative conversion of THSNs to P-2. These data suggest that catechin dimers present in the gut lumen may be readily absorbed by intestinal epithelium. PMID:20579525

  6. Dynamics and asymmetry in the dimer of the norovirus major capsid protein.

    PubMed

    Tubiana, Thibault; Boulard, Yves; Bressanelli, Stéphane

    2017-01-01

    Noroviruses are the major cause of non-bacterial acute gastroenteritis in humans and livestock worldwide, despite being physically among the simplest animal viruses. The icosahedral capsid encasing the norovirus RNA genome is made of 90 dimers of a single ca 60-kDa polypeptide chain, VP1, arranged with T = 3 icosahedral symmetry. Here we study the conformational dynamics of this main building block of the norovirus capsid. We use molecular modeling and all-atom molecular dynamics simulations of the VP1 dimer for two genogroups with 50% sequence identity. We focus on the two points of flexibility in VP1 known from the crystal structure of the genogroup I (GI, human) capsid and from subsequent cryo-electron microscopy work on the GII capsid (also human). First, with a homology model of the GIII (bovine) VP1 dimer subjected to simulated annealing then classical molecular dynamics simulations, we show that the N-terminal arm conformation seen in the GI crystal structure is also favored in GIII VP1 but depends on the protonation state of critical residues. Second, simulations of the GI dimer show that the VP1 spike domain will not keep the position found in the GII electron microscopy work. Our main finding is a consistent propensity of the VP1 dimer to assume prominently asymmetric conformations. In order to probe this result, we obtain new SAXS data on GI VP1 dimers. These data are not interpretable as a population of symmetric dimers, but readily modeled by a highly asymmetric dimer. We go on to discuss possible implications of spontaneously asymmetric conformations in the successive steps of norovirus capsid assembly. Our work brings new lights on the surprising conformational range encoded in the norovirus major capsid protein.

  7. Molecular interactions investigated with DFT calculations of QTAIM and NBO analyses: An application to dimeric structures of rice α-amylase/subtilisin inhibitor

    NASA Astrophysics Data System (ADS)

    Astani, Elahe K.; Hadipour, Nasser L.; Chen, Chun-Jung

    2017-03-01

    Characterization of the dimer interactions at the dimeric interface of the crystal structure of rice α-amylase/subtilisin inhibitor (RASI) were performed using the quantum theory of atoms in molecules (QTAIM) and natural bonding orbital (NBO) analyses at the density-functional theory (DFT) level. The results revealed that Gly27 and Arg151 of chain A are the main residues involved in hydrogen bonds, dipole-dipole, and charge-dipole interactions with Gly64, Ala66, Ala67 and Arg81 of chain B at the dimeric interface. Calcium ion of chain A plays the significant role in the stability of the dimeric structure through a strong charge-charge interaction with Ala66.

  8. Relative stabilities and the spectral signatures of stacked and hydrogen-bonded dimers of serotonin

    NASA Astrophysics Data System (ADS)

    Dev, S.; Giri, K.; Majumder, M.; Sathyamurthy, N.

    2015-10-01

    The O-HṡṡṡN hydrogen-bonded dimer of serotonin is shown to be more stable than the stacked dimer in its ground electronic state, by using the Møller-Plesset second-order perturbation theory (MP2) and the 6-31g** basis set. The vertical excitation energy for the lowest π → π* transition for the monomer as well as the dimer is predicted by time-dependent density functional theory. The experimentally observed red shift of excitation wavelength on oligomerisation is explained in terms of the change in the HOMO-LUMO energy gap due to complex formation. The impact of dimer formation on the proton magnetic resonance spectrum of serotonin monomer is also examined.

  9. Infrared spectra of C2H4 dimer and trimer

    NASA Astrophysics Data System (ADS)

    Barclay, A. J.; Esteki, K.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2018-05-01

    Spectra of ethylene dimers and trimers are studied in the ν11 and (for the dimer) ν9 fundamental band regions of C2H4 (≈2990 and 3100 cm-1) using a tunable optical parametric oscillator source to probe a pulsed supersonic slit jet expansion. The deuterated trimer has been observed previously, but this represents the first rotationally resolved spectrum of (C2H4)3. The results support the previously determined cross-shaped (D2d) dimer and barrel-shaped (C3h or C3) trimer structures. However, the dimer spectrum in the ν9 fundamental region of C2H4 is apparently very perturbed and a previous rotational analysis is not well verified.

  10. Detecting specific cytotoxic T lymphocytes against SARS-coronavirus with DimerX HLA-A2:Ig fusion protein.

    PubMed

    Wang, Yue-Dan; Chen, Wei Feng

    2004-11-01

    To assess specific cytotoxic T lymphocytes (CTLs) against Severe acute respiratory syndrome (SARS)-coronavirus, a modified DimerX flow cytometry assay was performed with peripheral blood mononuclear cell (PBMC) from HLA-A2+ SARS-recovered donors at different time points post disease. CD8+DimerX-S1203+ CTLs were detected in the PBMC from these donors up to 3 months after recovery. The percentages of CD8+DimerX-S1203+ cells paralleled the numbers of interferon-gamma-positive spots in an ELISPOT assay using the same antigenic peptide. In conclusion, DimerX-based flow cytometry staining may prove to be a real-time method to screen for CTL directed at epitopes from a newly identified virus.

  11. Caspase enzymology and activation mechanisms.

    PubMed

    Mace, Peter D; Riedl, Stefan J; Salvesen, Guy S

    2014-01-01

    Apical caspases 8, 9, and 10 are only active as dimers. These dimers are unstable, and to characterize their activity they need to be maintained in vitro in a dimeric state. We provide updated methods for those looking to characterize various aspects of caspase function. We describe full methods for those looking to activate caspases in vitro using kosmotropic reagents, an essential step in characterizing upstream (apical) caspases. We detail methods for fusion of caspase domains to engineered dimerization domains as an alternative method to trigger regulated dimerization of caspases. We also describe methods to determine caspase activity profiles in cells and provide methods for studying the ability of SMAC-mimetic reagents to release inhibition of caspases by IAPs. © 2014 Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Vasquez-Del Carpio; T Silverstein; S Lone

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure revealsmore » a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.« less

  13. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  14. Improvement of Aptamer Affinity by Dimerization

    PubMed Central

    Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori

    2008-01-01

    To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754

  15. Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun

    2016-05-01

    Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.

  16. Competition between inter- and intra-molecular hydrogen bonding: An infrared spectroscopic study of jet-cooled amino-ethanol and its dimer

    NASA Astrophysics Data System (ADS)

    Asselin, Pierre; Madebène, Bruno; Soulard, Pascale; Georges, Robert; Goubet, Manuel; Huet, Thérèse R.; Pirali, Olivier; Zehnacker-Rentien, Anne

    2016-12-01

    The Fourier transform IR vibrational spectra of amino-ethanol (AE) and its dimer have been recorded at room temperature and under jet-cooled conditions over the far and mid infrared ranges (50-4000 cm-1) using the White-type cell and the supersonic jet of the Jet-AILES apparatus at the synchrotron facility SOLEIL. Assignment of the monomer experimental frequencies has been derived from anharmonic frequencies calculated at a hybrid CCSD(T)-F12/MP2 level. Various thermodynamical effects in the supersonic expansion conditions including molar dilution of AE and nature of carrier gas have been used to promote or not the formation of dimers. Four vibrational modes of the observed dimer have been unambiguously assigned using mode-specific scaling factors deduced from the ratio between experimental and computed frequencies for the monomer. The most stable g'Gg' monomer undergoes strong deformation upon dimerization, leading to a homochiral head to head dimer involving two strong hydrogen bonds.

  17. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals

    NASA Astrophysics Data System (ADS)

    Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias

    2018-05-01

    We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.

  18. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    PubMed

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fibrin d-dimer concentration, deep vein thrombosis symptom duration, and venous thrombus volume.

    PubMed

    Kurklinsky, Andrew K; Kalsi, Henna; Wysokinski, Waldemar E; Mauck, Karen F; Bhagra, Anjali; Havyer, Rachel D; Thompson, Carrie A; Hayes, Sharonne N; McBane, Robert D

    2011-04-01

    To determine the relationship between fibrin D-dimer levels, symptom duration, and thrombus volume, consecutive patients with incident deep venous thrombosis (DVT) were evaluated. In a cross-sectional study design, patient symptom onset was determined by careful patient questioning. Venous thrombosis was confirmed by compression duplex ultrasonography. Thrombus volume was estimated based on patient's femur length using a forensic anthropology method. Fibrin D-dimer was measured by latex immunoassay. 72 consecutive patients with confirmed leg DVT agreed to participate. The median symptom duration at the time of diagnosis was 10 days. The median D-dimer concentration was 1050 ng/dL. The median thrombus volume was 12.92 cm(3). D-Dimer levels correlated with estimated thrombus volume (P < .0006 CI 0.12-0.41; R(2) (adjusted) = .15) but not symptom duration, patient's age, or gender. Despite varying symptom duration prior to diagnosis, fibrin D-dimer remains a sensitive measure of venous thrombosis and correlates with thrombus volume.

  20. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism.

    PubMed

    Kudo, Shota; Caaveiro, Jose M M; Tsumoto, Kouhei

    2016-09-06

    Orderly assembly of classical cadherins governs cell adhesion and tissue maintenance. A key event is the strand-swap dimerization of the extracellular ectodomains of two cadherin molecules from apposing cells. Here we have determined crystal structures of P-cadherin in six different conformational states to elaborate a motion picture of its adhesive dimerization at the atomic level. The snapshots revealed that cell-adhesive dimerization is facilitated by several intermediate states collectively termed X-dimer in analogy to other classical cadherins. Based on previous studies and on the combined structural, kinetic, thermodynamic, biochemical, and cellular data reported herein, we propose that the adhesive dimerization of human P-cadherin is achieved by a stepwise mechanism analogous to that of assembly chaperones. This mechanism, applicable to type I classical cadherins, confers high specificity and fast association rates. We expect these findings to guide innovative therapeutic approaches targeting P-cadherin in cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental study of transport of a dimer on a vertically oscillating plate

    PubMed Central

    Wang, Jiao; Liu, Caishan; Ma, Daolin

    2014-01-01

    It has recently been shown that a dimer, composed of two identical spheres rigidly connected by a rod, under harmonic vertical vibration can exhibit a self-ordered transport behaviour. In this case, the mass centre of the dimer will perform a circular orbit in the horizontal plane, or a straight line if confined between parallel walls. In order to validate the numerical discoveries, we experimentally investigate the temporal evolution of the dimer's motion in both two- and three-dimensional situations. A stereoscopic vision method with a pair of high-speed cameras is adopted to perform omnidirectional measurements. All the cases studied in our experiments are also simulated using an existing numerical model. The combined investigations detail the dimer's dynamics and clearly show that its transport behaviours originate from a series of combinations of different contact states. This series is critical to our understanding of the transport properties in the dimer's motion and related self-ordered phenomena in granular systems. PMID:25383029

  2. Naproxen Interferes with the Assembly of Aβ Oligomers Implicated in Alzheimer's Disease

    PubMed Central

    Kim, Seongwon; Chang, Wenling E.; Kumar, Rashmi; Klimov, Dmitri K.

    2011-01-01

    Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer's disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer's disease. PMID:21504739

  3. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity.

    PubMed

    Torres, Eduardo; Aburto, Jorge

    2005-05-15

    A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.

  4. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy.

    PubMed

    Chadda, R; Robertson, J L

    2016-01-01

    Dimerization of membrane protein interfaces occurs during membrane protein folding and cell receptor signaling. Here, we summarize a method that allows for measurement of equilibrium dimerization reactions of membrane proteins in lipid bilayers, by measuring the Poisson distribution of subunit capture into liposomes by single-molecule photobleaching analysis. This strategy is grounded in the fact that given a comparable labeling efficiency, monomeric or dimeric forms of a membrane protein will give rise to distinctly different photobleaching probability distributions. These methods have been used to verify the dimer stoichiometry of the Fluc F - ion channel and the dimerization equilibrium constant of the ClC-ec1 Cl - /H + antiporter in lipid bilayers. This approach can be applied to any membrane protein system provided it can be purified, fluorescently labeled in a quantitative manner, and verified to be correctly folded by functional assays, even if the structure is not yet known. © 2016 Elsevier Inc. All rights reserved.

  5. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance.

    PubMed

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-03-18

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem-haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer.

  6. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance

    PubMed Central

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-01-01

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem–haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer. PMID:26988023

  7. Water Dimer Concentrations in The Atmosphere

    NASA Astrophysics Data System (ADS)

    Saykally, R. J.

    2000-03-01

    The water dimer concentration present in water vapor under equilibrium conditions is rigorously determined as a function of temperature, pressure, and relative humidity via explicit calculations of partition functions on the VRT (ASP-W) potential surface using the SWPS method. Dimer vapor fractions as large as 4.6x10*3 are calculated under tropospheric conditions, and should have observable consequences on chemistry and physical properties of the atmosphere. There has been much recent interest and speculation regarding possible effects of water clusters on the chemistry and radiation balance of the atmosphere. For example, it has been proposed that vibrational overtones of the water dimer absorb solar radiation and account for a significant part of the *anomalous absorption* of the atmosphere, although recent measurements do not support this claim. Similarly, the presence of water dimers has been predicted to accelerate the formation of acid rain, and homogeneous nucleation of raindrops. In all of these contexts, the crucial unknown is the concentration of water dimers present under the specified conditions of temperature, pressure, and relative humidity.

  8. Can Vitamin A be Improved to Prevent Blindness due to Age-Related Macular Degeneration, Stargardt Disease and Other Retinal Dystrophies?

    PubMed

    Saad, Leonide; Washington, Ilyas

    2016-01-01

    We discuss how an imperfect visual cycle results in the formation of vitamin A dimers, thought to be involved in the pathogenesis of various retinal diseases, and summarize how slowing vitamin A dimerization has been a therapeutic target of interest to prevent blindness. To elucidate the molecular mechanism of vitamin A dimerization, an alternative form of vitamin A, one that forms dimers more slowly yet maneuvers effortlessly through the visual cycle, was developed. Such a vitamin A, reinforced with deuterium (C20-D3-vitamin A), can be used as a non-disruptive tool to understand the contribution of vitamin A dimers to vision loss. Eventually, C20-D3-vitamin A could become a disease-modifying therapy to slow or stop vision loss associated with dry age-related macular degeneration (AMD), Stargardt disease and retinal diseases marked by such vitamin A dimers. Human clinical trials of C20-D3-vitamin A (ALK-001) are underway.

  9. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging

    PubMed Central

    2012-01-01

    Background Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Methods Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. Results NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Conclusion Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding. PMID:22333272

  10. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging.

    PubMed

    Fournier, Patrick; Dumulon-Perreault, Véronique; Ait-Mohand, Samia; Langlois, Réjean; Bénard, François; Lecomte, Roger; Guérin, Brigitte

    2012-02-14

    Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding.

  11. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  12. An Alternative Mechanism for the Dimerization of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Nicole R.; Tschumper, Gregory; Yan, Ge

    Gas-phase formic acid exists primarily as a cyclic dimer. The mechanism of dimerization has been traditionally considered to be a synchronous process; however, recent experimental findings suggest a possible alternative mechanism by which two formic acid monomers proceed through an acyclic dimer to the cyclic dimer in a stepwise process. To investigate this newly proposed process of dimerization in formic acid, density functional theory and second-order Moeller-Plesset perturbation theory (MP2) have been used to optimize cis and trans monomers of formic acid, the acyclic and cyclic dimers, and the acyclic and cyclic transition states between minima. Single-point energies of themore » trans monomer, dimer minima, and transition states at the MP2/TZ2P+diff optimized geometries were computed at the coupled-cluster level of theory including singles and doubles with perturbatively applied triple excitations [CCSD(T)] with an aug-cc-pVTZ basis set to obtain an accurate determination of energy barriers and dissociation energies. A counterpoise correction was performed to determine an estimate of the basis set superposition error in computing relative energies. The explicitly correlated MP2 method of Kutzelnigg and Klopper (MP2-R12) was used to provide an independent means for obtaining the MP2 one-particle limit. The cyclic minimum is predicted to be 6.3 kcal/mol more stable than the acyclic minimum, and the barrier to double proton transfer is 7.1 kcal/mol.« less

  13. Hydrogen Dimers in Giant-planet Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Gustafsson, Magnus; Orton, Glenn S.

    2018-03-01

    Despite being one of the weakest dimers in nature, low-spectral-resolution Voyager/IRIS observations revealed the presence of (H2)2 dimers on Jupiter and Saturn in the 1980s. However, the collision-induced H2–H2 opacity databases widely used in planetary science have thus far only included free-to-free transitions and have neglected the contributions of dimers. Dimer spectra have both fine-scale structure near the S(0) and S(1) quadrupole lines (354 and 587 cm‑1, respectively), and broad continuum absorption contributions up to ±50 cm‑1 from the line centers. We develop a new ab initio model for the free-to-bound, bound-to-free, and bound-to-bound transitions of the hydrogen dimer for a range of temperatures (40–400 K) and para-hydrogen fractions (0.25–1.0). The model is validated against low-temperature laboratory experiments, and used to simulate the spectra of the giant planets. The new collision-induced opacity database permits high-resolution (0.5–1.0 cm‑1) spectral modeling of dimer spectra near S(0) and S(1) in both Cassini Composite Infrared Spectrometer observations of Jupiter and Saturn, and in Spitzer Infrared Spectrometer (IRS) observations of Uranus and Neptune for the first time. Furthermore, the model reproduces the dimer signatures observed in Voyager/IRIS data near S(0) on Jupiter and Saturn, and generally lowers the amount of para-H2 (and the extent of disequilibrium) required to reproduce IRIS observations.

  14. Microtubules as mechanical force sensors.

    PubMed

    Karafyllidis, Ioannis G; Lagoudas, Dimitris C

    2007-03-01

    Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.

  15. Development and validation of a high-content bimolecular fluorescence complementation assay for small-molecule inhibitors of HIV-1 Nef dimerization.

    PubMed

    Poe, Jerrod A; Vollmer, Laura; Vogt, Andreas; Smithgall, Thomas E

    2014-04-01

    Nef is a human immunodeficiency virus 1 (HIV-1) accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to nonfluorescent, complementary fragments of yellow fluorescent protein (YFP) and coexpressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus a monomeric red fluorescent protein (mRFP) reporter were expressed from a single vector, separated by picornavirus "2A" linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type versus dimerization-defective Nef were very clearly separated, with Z factors consistently in the 0.6 to 0.7 range. A fully automated pilot screen of the National Cancer Institute Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.

  16. Development and Validation of a High-Content Bimolecular Fluorescence Complementation Assay for Small Molecule Inhibitors of HIV-1 Nef Dimerization

    PubMed Central

    Poe, Jerrod A.; Vollmer, Laura; Vogt, Andreas; Smithgall, Thomas E.

    2014-01-01

    Nef is an HIV-1 accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to non-fluorescent, complementary fragments of YFP and co-expressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus an mRFP reporter were expressed from a single vector, separated by picornavirus ‘2A’ linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type vs. dimerization-defective Nef were very clearly separated, with Z-factors consistently in the 0.6–0.7 range. A fully automated pilot screen of the NIH Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function. PMID:24282155

  17. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids.

    PubMed

    Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun

    2017-09-11

    Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.

  18. 76 FR 8895 - Polymerized Fatty Acid Esters With Aminoalcohol Alkoxylates; Exemption From the Requirement of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ..., reaction products with fatty acid dimers (CAS Reg. No. 1173188-38-9); dimethylaminoethanol, ethoxylated, propoxylated, reaction products with fatty acid dimers (CAS Reg. No. 1173188-42-5 diethylaminoethanol, ethoxylated, reaction product with fatty acid dimers (CAS Reg. No. 1173188-72-1); diethylaminoethanol...

  19. Excitation Localization/Delocalization Isomerism in a Strongly Coupled Covalent Dimer of 1,3-Diphenylisobenzofuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrauben, Joel N.; Akdag, Akin; Wen, Jin

    Two isomers of both the lowest excited singlet (S1) and triplet (T1) states of the directly para, para'-connected covalent dimer of the singlet-fission chromophore 1,3-diphenylisobenzofuran have been observed. In one isomer, excitation is delocalized over both halves of the dimer, and in the other, it is localized on one or the other half. For a covalent dimer in solution, such 'excitation isomerism' is extremely rare. The vibrationally relaxed isomers do not interconvert, and their photophysical properties, including singlet fission, differ significantly.

  20. Identification of two conformationally trapped n-propanol-water dimers in a supersonic expansion

    NASA Astrophysics Data System (ADS)

    Mead, Griffin J.; Alonso, Elena R.; Finneran, Ian A.; Carroll, P. Brandon; Blake, Geoffrey A.

    2017-05-01

    Two conformers of the n-propanol-water dimer have been observed in a supersonic expansion using chirped-pulse Fourier-transform microwave (CPFTMW) spectroscopy. Structural assignments reveal the n-propanol sub-unit is conformationally trapped, with its methyl group in both Gauche and Trans orientations. Despite different carbon backbone conformations, both dimers display the same water-donor/alcohol-acceptor hydrogen bonding motif. This work builds upon other reported alcohol-water dimers and upon previous work detailing the trapping of small molecules into multiple structural minima in rare gas supersonic expansions.

  1. Quantum dimer model for the pseudogap metal

    PubMed Central

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-01-01

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S=1/2, charge +e fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments. PMID:26195771

  2. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  3. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  4. One-dimensional Kondo lattice model at quarter filling

    NASA Astrophysics Data System (ADS)

    Xavier, J. C.; Miranda, E.

    2008-10-01

    We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.

  5. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  6. Dimer-based model for heptaspanning membrane receptors.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferré, Sergi; Fuxe, Kjell; Cortés, Antonio; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2005-07-01

    The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.

  7. Exact exchange and Wilson-Levy correlation: a pragmatic device for studying complex weakly-bonded systems.

    PubMed

    Walsh, T R

    2005-02-07

    The Wilson-Levy (WL) correlation functional is used together with Hartree-Fock (HF) theory to evaluate interaction energies at intermediate separations (i.e. around equilibrium separation) for several weakly-bonded systems. The HF+WL approach reproduces binding trends for all complexes studied: selected rare-gas dimers, isomers of the methane dimer, benzene dimer and naphthalene dimer, and base-pair stacking structures for pyrimidine, cytosine, uracil and guanine dimers. These HF+WL data are contrasted against results obtained from some popular functionals (including B3LYP and PBE), as well as two newly-developed functionals, X3LYP and xPBE. The utility of HF+WL, with reference to exact-exchange (EXX) density-functional theory, is discussed in terms of a suggested EXXWL exchange-correlation functional.

  8. Dimerization of the Bacterial Biotin Carboxylase Subunit Is Required for Acetyl Coenzyme A Carboxylase Activity In Vivo

    PubMed Central

    Smith, Alexander C.

    2012-01-01

    Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807–818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function. PMID:22037404

  9. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization.

    PubMed

    Donderis, Jorge; Bowring, Janine; Maiques, Elisa; Ciges-Tomas, J Rafael; Alite, Christian; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R; Marina, Alberto

    2017-09-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.

  10. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization

    PubMed Central

    Ciges-Tomas, J. Rafael; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R.

    2017-01-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules. PMID:28892519

  11. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  12. Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths.

    PubMed

    Mohapatra, Swagat K; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared H; Timofeeva, Tatiana V; Brédas, Jean-Luc; Marder, Seth R; Barlow, Stephen

    2014-11-17

    The dimers of some Group 8 metal cyclopentadienyl/arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the X-ray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central CC σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these CC bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2 ]2 , rather similar (-1.97 to -2.15 V vs. FeCp2 (+/0) in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Designed Angiopoietin-1 Variant, Dimeric CMP-Ang1 Activates Tie2 and Stimulates Angiogenesis and Vascular Stabilization in N-glycan Dependent Manner

    PubMed Central

    Oh, Nuri; Kim, Kangsan; Jin Kim, Soo; Park, Intae; Lee, Jung-Eun; Suk Seo, Young; Joo An, Hyun; Min Kim, Ho; Young Koh, Gou

    2015-01-01

    Angiopoietin-1 (Ang1), a potential growth factor for therapeutic angiogenesis and vascular stabilization, is known to specifically cluster and activate Tie2 in high oligomeric forms, which is a unique and essential process in this ligand-receptor interaction. However, highly oligomeric native Ang1 and Ang1 variants are difficult to produce, purify, and store in a stable and active form. To overcome these limitations, we developed a simple and active dimeric CMP-Ang1 by replacing the N-terminal of native Ang1 with the coiled-coil domain of cartilage matrix protein (CMP) bearing mutations in its cysteine residues. This dimeric CMP-Ang1 effectively increased the migration, survival, and tube formation of endothelial cells via Tie2 activation. Furthermore, dimeric CMP-Ang1 induced angiogenesis and suppressed vascular leakage in vivo. Despite its dimeric structure, the potencies of such Tie2-activation-induced effects were comparable to those of a previously engineered protein, COMP-Ang1. We also revealed that these effects of dimeric CMP-Ang1 were affected by specified N-glycosylation in its fibrinogen-like domain. Taken together, our results indicate that dimeric CMP-Ang1 is capable of activating Tie2 and stimulating angiogenesis in N-glycan dependent manner. PMID:26478188

  14. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.

    PubMed Central

    Wright, J K; Tschopp, J; Jaton, J C; Engel, J

    1980-01-01

    The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362

  15. Enhancing action of positive allosteric modulators through the design of dimeric compounds.

    PubMed

    Drapier, Thomas; Geubelle, Pierre; Bouckaert, Charlotte; Nielsen, Lise; Laulumaa, Saara; Goffin, Eric; Dilly, Sébastien; Francotte, Pierre; Hanson, Julien; Pochet, Lionel; Kastrup, Jette Sandholm; Pirotte, Bernard

    2018-05-18

    The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs co-crystallized with the GluA2o ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (16 and 22) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2o(Q) (calcium flux experiment). These compounds were found to be about 10,000 times more potent than their respective monomers, the most active dimeric compound being the bis-4-cyclopropyl-substituted compound 22 [6,6'-(ethane-1,2-diyl)bis(4-cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide], with an EC50 value of 1.4 nM. As a proof of concept, the bis-4-methyl-substituted dimeric compound 16 (EC50 = 13 nM) was successfully co-crystallized with the GluA2o-LBD and was found to occupy the two BTD binding sites at the LBD dimer interface.

  16. Sub-nanometer pore formation in single-molecule-thick polyurea molecular-sieving membrane: a computational study.

    PubMed

    Park, Seongjin; Lansac, Yves; Jang, Yun Hee

    2018-06-07

    A polymeric network of 1-(4-tritylphenyl)urea (TPU) built via layer-by-layer cross-linking polymerization has been proposed to be an excellent mesh equipped with single-molecule-thick pores (i.e., cyclic poly-TPU rings), which can sieve glucose (∼0.7 nm) out of its mixture with urea for hemodialysis applications. Monte Carlo search for the lowest-energy conformation of various sizes of poly-TPU rings unravels the origin of narrow pore size distribution, which is around the sizes of dimer and trimer rings (0.3-0.8 nm). Flexible rings larger than the dimer and trimer rings, in particular tetramer rings, prefer a twisted conformation in the shape of the infinity symbol (∞, which looks like two dimer rings joined together) locked by a hydrogen bond between diphenylurea linker groups facing each other. Translocation energy profiles across these TPU rings reveal their urea-versus-glucose sieving mechanism: glucose is either too large (to enter dimers and twisted tetramers) or too perfectly fit (to exit trimers), leaving only a dimer-sized free space in the ring, whereas smaller-sized urea and water pass through these effective dimer-sized rings (bare dimers, twisted tetramers, and glucose-filled trimers) without encountering a substantial energy barrier or trap.

  17. Computational Equilibrium Thermodynamic and Kinetic Analysis of K-Ras Dimerization through an Effector Binding Surface Suggests Limited Functional Role.

    PubMed

    Sayyed-Ahmad, Abdallah; Cho, Kwang-Jin; Hancock, John F; Gorfe, Alemayehu A

    2016-08-25

    Dimer formation is believed to have a substantial impact on regulating K-Ras function. However, the evidence for dimerization and the molecular details of the process are scant. In this study, we characterize a K-Ras pseudo-C2-symmetric dimerization interface involving the effector interacting β2-strand. We used structure matching and all-atom molecular dynamics (MD) simulations to predict, refine, and investigate the stability of this interface. Our MD simulation suggested that the β2-dimer is potentially stable and remains relatively close to its initial conformation due to the presence of a number of hydrogen bonds, ionic salt bridges, and other favorable interactions. We carried out potential of mean force calculations to determine the relative binding strength of the interface. The results of these calculations indicated that the β2 dimerization interface provides a weak binding free energy in solution and a dissociation constant that is close to 1 mM. Analyses of Brownian dynamics simulations suggested an association rate kon ≈ 10(5)-10(6) M(-1) s(-1). Combining these observations with available literature data, we propose that formation of auto-inhibited β2 K-Ras dimers is possible but its fraction in cells is likely very small under normal physiologic conditions.

  18. Observation of Solvent Penetration during Cold Denaturation of E. coli Phosphofructokinase-2

    PubMed Central

    Ramírez-Sarmiento, César A.; Baez, Mauricio; Wilson, Christian A.M.; Babul, Jorge; Komives, Elizabeth A.; Guixé, Victoria

    2013-01-01

    Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner. PMID:23708365

  19. Dehaloperoxidase-Hemoglobin from Amphitrite ornata Is Primarily a Monomer in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Thompson; S Franzen; M Davis

    2011-12-31

    The crystal structures of the dehaloperoxidase-hemoglobin from A. ornata (DHP A) each report a crystallographic dimer in the unit cell. Yet, the largest dimer interface observed is 450 {angstrom}{sup 2}, an area significantly smaller than the typical value of 1200-2000 {angstrom}{sup 2} and in contrast to the extensive interface region of other known dimeric hemoglobins. To examine the oligomerization state of DHP A in solution, we used gel permeation by fast protein liquid chromatography and small-angle X-ray scattering (SAXS). Gel permeation experiments demonstrate that DHP A elutes as a monomer (15.5 kDa) and can be separated from green fluorescent protein,more » which has a molar mass of 27 kDa, near the 31 kDa expected for the DHP A dimer. By SAXS, we found that DHP A is primarily monomeric in solution, but with a detectable level of dimer (10%), under all conditions studied up to a protein concentration of 3.0 mM. These concentrations are likely 10-100-fold lower than the K{sub d} for dimer formation. Additionally, there was no significant effect either on the overall conformation of DHP A or its monomer-dimer equilibrium upon addition of the DHP A inhibitor, 4-iodophenol.« less

  20. Light activation of the LOV protein Vivid generates a rapidly exchanging dimer†‡

    PubMed Central

    Zoltowski, Brian D.; Crane, Brian R.

    2009-01-01

    The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (Light, Oxygen, Voltage) protein, couples light-induced cysteinyl-adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal β-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-to-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of Neurospora crassa, and indicate that LOV:LOV homo or hetero dimerization may be a mechanism for regulating light-activated gene expression. PMID:18553928

  1. Observation of solvent penetration during cold denaturation of E. coli phosphofructokinase-2.

    PubMed

    Ramírez-Sarmiento, César A; Baez, Mauricio; Wilson, Christian A M; Babul, Jorge; Komives, Elizabeth A; Guixé, Victoria

    2013-05-21

    Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Primary and secondary dimer interfaces of the fibroblast growth factor receptor 3 transmembrane domain: characterization via multiscale molecular dynamics simulations.

    PubMed

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A; Chetwynd, Alan; Sansom, Mark S P

    2014-01-21

    Receptor tyrosine kinases are single-pass membrane proteins that form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. Fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of the cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface that is more highly populated in heterodimer and mutant configurations that may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer to allow interactions of the arginine side chain with lipid headgroup phosphates.

  3. Primary and Secondary Dimer Interfaces of the FGFR3 Transmembrane Domain: Characterization via Multiscale Molecular Dynamics Simulations

    PubMed Central

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A.; Chetwynd, Alan; Sansom, Mark S.P.

    2016-01-01

    Receptor tyrosine kinases are single pass membrane proteins which form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. The fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position relative of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface which is more highly populated in heterodimer and mutant configurations which may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer so as to enable interactions of the arginine sidechain with lipid head group phosphates. PMID:24397339

  4. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo.

    PubMed

    Capra, Valérie; Mauri, Mario; Guzzi, Francesca; Busnelli, Marta; Accomazzo, Maria Rosa; Gaussem, Pascale; Nisar, Shaista P; Mundell, Stuart J; Parenti, Marco; Rovati, G Enrico

    2017-01-15

    Thromboxane A 2 is a potent mediator of inflammation and platelet aggregation exerting its effects through the activation of a G protein-coupled receptor (GPCR), termed TP. Although the existence of dimers/oligomers in Class A GPCRs is widely accepted, their functional significance still remains controversial. Recently, we have shown that TPα and TPβ homo-/hetero-dimers interact through an interface of residues in transmembrane domain 1 (TM1) whose disruption impairs dimer formation. Here, biochemical and pharmacological characterization of this dimer deficient mutant (DDM) in living cells indicates a significant impairment in its response to agonists. Interestingly, two single loss-of-function TPα variants, namely W29C and N42S recently identified in two heterozygous patients affected by bleeding disorders, match some of the residues mutated in our DDM. These two naturally occurring variants display a reduced potency to TP agonists and are characterized by impaired dimer formation in transfected HEK-293T cells. These findings provide proofs that lack of homo-dimer formation is a crucial process for reduced TPα function in vivo, and might represent one molecular mechanism through which platelet TPα receptor dysfunction affects the patient(s) carrying these mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Overall conformation of covalently stabilized domain-swapped dimer of human cystatin C in solution

    NASA Astrophysics Data System (ADS)

    Murawska, Magdalena; Szymańska, Aneta; Grubb, Anders; Kozak, Maciej

    2017-11-01

    Human cystatin C (HCC), a small protein, plays a crucial role in inhibition of cysteine proteases. The most common structural form of human cystatin C in crystals is a dimer, which has been evidenced both for the native protein and its mutants. In these structures, HCC dimers were formed through the mechanism of domain swapping. The structure of the monomeric form of human cystatin C was determined for V57N mutant and the mutant with the engineered disulfide bond (L47C)-(G69C) (known as stab1-HCC). On the basis of stab1-HCC, a number of covalently stabilized oligomers, including also dimers have been obtained. The aim of this study was to analyze the structure of the covalently stabilized dimer HCC in solution by the small angle X-ray scattering (SAXS) technique and synchrotron radiation. Experimental data confirmed that in solution this protein forms a dimer, which is characterized by the radius of gyration RG = 3.1 nm and maximum intramolecular distance Dmax = 10.3 nm. Using the ab initio method and program DAMMIN, we propose a low resolution structure of stabilized covalently cystatin C in solution. Stab-HCC dimer adopts in solution an elongated conformation, which is well reconstructed by the ab initio model.

  6. Surface characterization and orientation interaction between diamond- like carbon layer structure and dimeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.

    2017-01-01

    Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.

  7. I222 crystal form of despentapeptide (B26-B30) insulin provides new insights into the properties of monomeric insulin.

    PubMed

    Whittingham, Jean L; Youshang, Zhang; Záková, Lenka; Dodson, Eleanor J; Turkenburg, Johan P; Brange, Jens; Dodson, G Guy

    2006-05-01

    Despentapeptide (des-B26-B30) insulin (DPI), an active modified insulin, has been crystallized in the presence of 20% acetic acid pH 2. A crystal structure analysis to 1.8 A spacing (space group I222) revealed that the DPI molecule, which is unable to make beta-strand interactions for physiological dimer formation and is apparently monomeric in solution, formed an alternative lattice-generated dimer. The formation of this dimer involved interactions between surfaces which included the B9-B19 alpha-helices (usually buried by the dimer-dimer contacts within the native hexamer). The two crystallographically independent molecules within the dimer were essentially identical and were similar in conformation to T-state insulin as seen in the T(6) insulin hexamer. An unusual feature of each molecule in the dimer was the presence of two independent conformations at the B-chain C-terminus (residues B20-B25). Both conformations were different from that of native insulin, involving a 3.5 A displacement of the B20-B23 beta-turn and a repositioning of residue PheB25 such that it made close van der Waals contact with the main body of the molecule, appearing to stabilize the B-chain C-terminus.

  8. Differential speciation of ferriprotoporphyrin IX in the presence of free base and diprotic 4-aminoquinoline antimalarial drugs

    NASA Astrophysics Data System (ADS)

    Gildenhuys, Johandie; Müller, Ronel; le Roex, Tanya; de Villiers, Katherine A.

    2017-03-01

    The crystal structures of the μ-propionato dimer and π-π dimer of ferriprotoporphyrin IX (Fe(III)PPIX) have been determined by single crystal X-ray diffraction (SCD). Both species were obtained in the presence of the synthetic 4-aminoquinoline antimalarial drug, amodiaquine (AQ). The solution that afforded the μ-propionato dimer contained AQ as a free base (i.e. with both quinoline and terminal amine nitrogen atoms neutral). On the other hand, when the diprotic salt of AQ was included in the crystallization medium, the Fe(III)PPIX π-π dimer was obtained. The structure of the μ-propionato dimer, which is the discrete structural unit that constitutes haemozoin (malaria pigment), is identical to that obtained previously in presence of chloroquine free base. We suspect that the drug, via its two available basic sites, facilitates dissociation of one of the two Fe(III)PPIX propionic acid groups to yield a propionate group that is required for reciprocal coordination of the metal centre to form the centrosymmetric dimer. On the other hand, this proton transfer is not possible when the drug is present as a diprotic salt. In this case, the π-π dimer of Fe(III)PPIX is obtained. In the current study, the π-π dimer of haemin (chloro-Fe(III)PPIX) was obtained as a DMF solvate from non-aqueous aprotic solution (dimethyl formamide and chloroform), however the π-π dimer is also known to exist in aqueous solution (as aqua- or hydroxo-Fe(III)PPIX), where it is purportedly involved in the nucleation of haemozoin. We have been able to unambiguously determine the positions of all non-hydrogen atoms, as well as locate or assign all hydrogen atoms in the structure of the π-π dimer, which was not possible in the SCD structure of haemin reported by Koenig in 1965 owing to disorder in the vinyl and methyl substituents. Interestingly, no disorder in the methyl and vinyl groups is observed in the current structure. Both the π-π and μ-propionato dimers of Fe(III)PPIX are important species in the haem detoxification pathway in the malaria parasite and other blood-feeding organisms, and the structural insight gained in this study may assist target-driven design of new chemotherapeutic agents.

  9. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR. PMID:27295348

  10. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    PubMed

    Corrada, Dario; Soshilov, Anatoly A; Denison, Michael S; Bonati, Laura

    2016-06-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR.

  11. Effect of dimer dissociation on activity and thermostability of the alpha-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases.

    PubMed

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-10-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. alpha-Glucuronidases are family 67 glycosidases that cleave the alpha-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of alpha-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the alpha-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial alpha-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in alpha-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35 degrees C, compared to 65 degrees C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9 degrees C, was almost identical to that of the wild-type, 73.4 degrees C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region and reduce the activity. Structural and mechanistic explanations for these effects are discussed.

  12. Effect of Dimer Dissociation on Activity and Thermostability of the α-Glucuronidase from Geobacillus stearothermophilus: Dissecting the Different Oligomeric Forms of Family 67 Glycoside Hydrolases

    PubMed Central

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-01-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. α-Glucuronidases are family 67 glycosidases that cleave the α-1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of α-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the α-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial α-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in α-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35°C, compared to 65°C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9°C, was almost identical to that of the wild-type, 73.4°C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region and reduce the activity. Structural and mechanistic explanations for these effects are discussed. PMID:15466046

  13. Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics

    PubMed Central

    Motta, Stefano

    2018-01-01

    Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix−loop−helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local effects allosterically propagate to perturb the correlated motions of the domains and inter-domain communication. These findings will guide the design of improved inhibitors to contrast cell survival in tumor masses. PMID:29489822

  14. D-dimers (DD) in CVST.

    PubMed

    Wang, Hui Fang; Pu, Chuan Qiang; Yin, Xi; Tian, Cheng Lin; Chen, Ting; Guo, Jun Hong; Shi, Qiang

    2017-06-01

    We were interested in further confirming whether D-dimers (DD) are indeed elevated in cerebral venous sinus thrombosis (CVST) as reported in those studies. CVST patients who had a plasma D-dimer test (139 cases) were included and divided into two groups: elevated D-dimer group (EDG) (>0.5 μg/mL; 65 cases) and normal D-dimer group (NDG) (≤0.5 μg/mL; 74 cases). The two groups were compared in terms of demographic data, clinical manifestation, laboratory and imaging data, using inferential statistical methods. The chi-squared and Fisher exact test showed that, compared to the NDG (74 cases), patients with elevated D-dimer levels were more likely to have a shorter symptom duration (SD) (30 ± 83.9 versus 90 ± 58.9 d, p = 0.003), more risk factors (75.4% versus 52.7%, p = 0.006), higher multiple venous sinus involvement (75.4% versus 59.5%, p = 0.037), increased fibrinogen (43.1% versus 18.9%, p = 0.037) and higher levels of blood glucose (18.3% versus 11%, p = 0.037). According to correlation analyses, D-dimer levels were positively correlated with number of venous sinuses involvement (NVS) (r = 0.321, p = 0.009) in the EDG. Multivariate logistic regression analysis showed that SD (OR, 0.025; 95% CI, 1.324-6.043; p = 0.000), NVS (OR, 1.573; 95% CI, 1.15-2.151; p = 0.005) and risk factors (OR, 3.321; 95% CI, 1.451-7.564; p = 0.004) were significantly different between the two groups. D-dimer is elevated in patients with acute/subacute CVST.

  15. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  16. Role of D-dimer in the Development of Portal Vein Thrombosis in Liver Cirrhosis: A Meta-analysis

    PubMed Central

    Dai, Junna; Qi, Xingshun; Li, Hongyu; Guo, Xiaozhong

    2015-01-01

    Background and Aims: A meta-analysis was performed to explore the role of the D-dimer in the development of portal vein thrombosis (PVT) in liver cirrhosis. Methods: All papers were searched via PubMed, EMBASE, China National Knowledge Infrastructure, Wan Fang, and VIP databases. A standardized mean difference (SMD) with 95% confidence interval (CI) was pooled. Results: Overall, 284 studies were initially identified, of which 21 were included. Cirrhotic patients with PVT had a significantly higher D-dimer concentration than those without PVT (pooled SMD = 1.249, 95%CI = 0.740–1.758). After the portal hypertension-related surgery, cirrhotic patients with PVT had a similar preoperative D-dimer concentration to those without PVT (pooled SMD = 0.820, 95%CI = −0.122–0.286), but a higher postoperative value of D-dimer concentration than those without PVT (pooled SMD = 2.505, 95%CI = 0.975–4.036). Notably, the D-dimer concentration at the 1st postoperative day was similar between cirrhotic patients with and without PVT (pooled SMD = 0.137, 95%CI = −0.827–1.101), but that at the 7th post-operative day was higher in cirrhotic patients with PVT than in those without PVT (pooled SMD = 1.224, 95%CI = 0.277–2.171). Conclusion: D-dimer might be regarded as a diagnostic marker for PVT in liver cirrhosis. In addition, postoperative D-dimer testing is worthwhile for the diagnosis of PVT after portal hypertension-related surgery. PMID:26021776

  17. Dimer covering and percolation frustration.

    PubMed

    Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M

    2015-09-01

    Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.

  18. Variations in the heterogeneity of the decay of the fluorescence in six procyanidin dimers

    Treesearch

    Donghwan Cho; Rujiang Tian; Lawrence J. Porter; Richard W. Hemingway; Wayne L. Mattice

    1990-01-01

    The decay of the fluorescence has been measured in 1,4-dioxane for six dimers of (2R,3R)-(-)-epicatechin and (2R,3S)-(+)-catechin, hereafter denoted simply epicatechin and catechin. The dimers are epicatechin-(4β→8)-catechin, epicatechin-(4β→8)-epicatechin...

  19. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices

    NASA Astrophysics Data System (ADS)

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.

  20. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer.

    PubMed

    Sanchez, Jacint G; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M; Sundquist, Wesley I; Pornillos, Owen

    2014-02-18

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication.

  1. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    PubMed Central

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  2. Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex.

    PubMed

    Schiering, N; Casale, E; Caccia, P; Giordano, P; Battistini, C

    2000-11-07

    Src homology 2 (SH2) domains are key modules in intracellular signal transduction. They link activated cell surface receptors to downstream targets by binding to phosphotyrosine-containing sequence motifs. The crystal structure of a Grb2-SH2 domain-phosphopeptide complex was determined at 2.4 A resolution. The asymmetric unit contains four polypeptide chains. There is an unexpected domain swap so that individual chains do not adopt a closed SH2 fold. Instead, reorganization of the EF loop leads to an open, nonglobular fold, which associates with an equivalent partner to generate an intertwined dimer. As in previously reported crystal structures of canonical Grb2-SH2 domain-peptide complexes, each of the four hybrid SH2 domains in the two domain-swapped dimers binds the phosphopeptide in a type I beta-turn conformation. This report is the first to describe domain swapping for an SH2 domain. While in vivo evidence of dimerization of Grb2 exists, our SH2 dimer is metastable and a physiological role of this new form of dimer formation remains to be demonstrated.

  3. Macromolecular organization of ATP synthase and complex I in whole mitochondria

    PubMed Central

    Davies, Karen M.; Strauss, Mike; Daum, Bertram; Kief, Jan H.; Osiewacz, Heinz D.; Rycovska, Adriana; Zickermann, Volker; Kühlbrandt, Werner

    2011-01-01

    We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F1 heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis. PMID:21836051

  4. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  5. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    PubMed

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  6. Oligomerization of a molecular chaperone modulates its activity

    PubMed Central

    Kawagoe, Soichiro; Ishimori, Koichiro

    2018-01-01

    Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell. PMID:29714686

  7. Relativistic potential energy surfaces of initial oxidations of Si(100) by atomic oxygen: The importance of surface dimer triplet state

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Rae; Shin, Seokmin; Choi, Cheol Ho

    2012-06-01

    The non-relativistic and relativistic potential energy surfaces (PESs) of the symmetric and asymmetric reaction paths of Si(100)-2×1 oxidations by atomic oxygen were theoretically explored. Although only the singlet PES turned out to exist as a major channel leading to "on-dimer" product, both the singlet and triplet PESs leading to "on-top" products are attractive. The singlet PESs leading to the two surface products were found to be the singlet combinations (open-shell singlet) of the low-lying triplet state of surface silicon dimer and the ground 3P state of atomic oxygen. The triplet state of the "on-top" product can also be formed by the ground singlet state of the surface silicon dimer and the same 3P oxygen. The attractive singlet PESs leading to the "on-dimer" and "on-top" products made neither the intersystem crossings from triplet to singlet PES nor high energy 1D of atomic oxygen necessary. Rather, the low-lying triplet state of surface silicon dimer plays an important role in the initial oxidations of silicon surface.

  8. Structure of the dimerization domain of DiGeorge Critical Region 8

    PubMed Central

    Senturia, Rachel; Faller, Michael; Yin, Sheng; Loo, Joseph A; Cascio, Duilio; Sawaya, Michael R; Hwang, Daniel; Clubb, Robert T; Guo, Feng

    2010-01-01

    Maturation of microRNAs (miRNAs, ∼22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298–352) at 1.7 Å resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis. PMID:20506313

  9. Dimerization of tetracationic porphyrins: ionic strength dependence.

    PubMed

    Dixon, D W; Steullet, V

    1998-02-01

    Cationic porphyrins are under study in a number of contexts including their interaction with biological targets, as possible therapeutic agents and as building blocks for molecular devices such as molecular photodiodes and solar cells. Many cationic porphyrins dimerize readily in aqueous solution. Dimerization in turn can control the properties of the porphyrin as well as its binding to its target. The propensity of a porphyrin to dimerize in aqueous solution can be estimated by recording the optical spectrum of the solution as a function of the concentration of added salt. Analysis of the data in terms of the Debye-Hückel formalism gives an estimate of the extent of dimerization as a function of ionic strength. Data for TMPyP4 [meso-tetrakis(4-N-methylpyridinium)porphyrin] and its butyl and octyl homologs; TMAP [meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin]; T theta PP [meso-tetrakis[4-N-[(3-(trimethyl-ammonio)propyl)oxy]phenyl]porphyrin] and the ferrocenyl porphyrin P3Fc are discussed. Dimerization may affect binding of the cationic porphyrins to their targets, e.g., DNA.

  10. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth: Ambient Observations of Gas-Phase Dimers

    DOE PAGES

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; ...

    2017-03-28

    Here, we present ambient observations of dimeric monoterpene oxidation products (C 16–20H yO 6–9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10 -15 to 10 -6 µg m -3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10 -3 to 10 -2 µg m -3 (~10more » 6–10 7 molecules cm -3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of ~5% to early stage particle growth from the ~60 gaseous dimer compounds.« less

  11. Structural analysis of the Quaking homodimerization interface

    PubMed Central

    Beuck, Christine; Qu, Song; Fagg, W. Samuel; Ares, Manuel; Williamson, James R.

    2012-01-01

    Quaking is a prototypical member of the STAR protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and bind to bipartite RNA sequences, however, the structural and functional roles of homo- and hetero-dimerization are still unclear. Here, we present the crystal structure of the QkI dimerization domain, which adopts a similar stacked helix-turn-helix arrangement as its homologs GLD-1 and Sam68, but differs by an additional helix inserted in the dimer interface. Variability of the dimer interface residues likely ensures selective homodimerization by preventing association with non-cognate STAR family proteins in the cell. Mutations that inhibit dimerization also significantly impair RNA binding in vitro, alter QkI-5 protein levels, and impair QkI function in a splicing assay in vivo. Together our results indicate that a functional Qua1 homodimerization domain is required for QkI-5 function in mammalian cells. PMID:22982292

  12. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth: Ambient Observations of Gas-Phase Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina

    Here, we present ambient observations of dimeric monoterpene oxidation products (C 16–20H yO 6–9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10 -15 to 10 -6 µg m -3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10 -3 to 10 -2 µg m -3 (~10more » 6–10 7 molecules cm -3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of ~5% to early stage particle growth from the ~60 gaseous dimer compounds.« less

  13. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less

  14. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less

  15. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds

    PubMed Central

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko

    2014-01-01

    Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451

  16. Stabilization of EphA2 dimers as a novel anti-cancer strategy

    NASA Astrophysics Data System (ADS)

    Singh, Deo; Ahmed, Fozia; Salloto, Matt; Hristova, Kalina

    We have recently shown that EphA2 receptors exist in a monomer-dimer equilibrium in the absence of ligand. The monomers promote tumorigenic activity and thus a therapeutic strategy that minimizes the monomer population may be beneficial in the clinic. The YSA peptide is an EphA2-targeting peptide that effectively delivers anticancer agents to cancer tumors. The quantitative measurements of the dimerization of EphA2 receptors in the presence of these peptides using quantitative spectral Forster resonance transfer (QS-FRET) methodology in conjunction with two-photon microscopy that has been developed recently in our lab suggests that this peptide stabilizes the EphA2 dimers. Thus, such peptides that stabilize the EphA2 dimers may be used for the treatment of some cancers that overexpress EphA2.

  17. Ortho and para hydrogen dimers on G/SiC(0001): combined STM and DFT study.

    PubMed

    Merino, P; Švec, M; Martínez, J I; Mutombo, P; Gonzalez, C; Martín-Gago, J A; de Andres, P L; Jelinek, P

    2015-01-01

    The hydrogen (H) dimer structures formed upon room-temperature H adsorption on single layer graphene (SLG) grown on SiC(0001) are addressed using a combined theoretical-experimental approach. Our study includes density functional theory (DFT) calculations for the full (6√3 × 6√3)R30° unit cell of the SLG/SiC(0001) substrate and atomically resolved scanning tunneling microscopy images determining simultaneously the graphene lattice and the internal structure of the H adsorbates. We show that H atoms normally group in chemisorbed coupled structures of different sizes and orientations. We make an atomic scale determination of the most stable experimental geometries, the small dimers and ellipsoid-shaped features, and we assign them to hydrogen adsorbed in para dimers and ortho dimers configuration, respectively, through comparison with the theory.

  18. Effect of berberine on the yield of pyrimidine dimers in uv-irradiated DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, M.; Sevcikova, P.; Pidra, M.

    1973-01-01

    From international conference on the bases of the biological effects of ultraviolet radiation; Brno, Czechoslovakia (2 Oct The effect of berberine on the yield of thymine dimers produced by uv light in DNA isolated from mouse leukemic cells and in DNA within irradiated cells was investigated. In solutions of isolated DNA the complete inhibition of thynnine dimerization was found at the concentration of berberine equal to 2 x 10/sup -3M/. However, in the cells inhibition of dimerization by berberine was never complete. In L cells a pronounced decrease in the intensity of DNA synthesis was found in cells treated withmore » berberine, dependent on berberine concentration used. But despite the presence of berberine in cell nuclei, no inhibition of pyrimidine dimerization in uv irradiated cells could be established. (auth)« less

  19. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    PubMed

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-09

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class.

  20. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-07

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    PubMed

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  2. Genetic predictors of fibrin D-dimer levels in healthy adults

    PubMed Central

    Smith, Nicholas L.; Huffman, Jennifer E.; Strachan, David P.; Huang, Jie; Dehghan, Abbas; Trompet, Stella; Lopez, Lorna M.; Shin, So-Youn; Baumert, Jens; Vitart, Veronique; Bis, Joshua C.; Wild, Sarah H.; Rumley, Ann; Yang, Qiong; Uitterlinden, Andre G; Stott, David. J.; Davies, Gail; Carter, Angela M.; Thorand, Barbara; Polašek, Ozren; McKnight, Barbara; Campbell, Harry; Rudnicka, Alicja R.; Chen, Ming-Huei; Buckley, Brendan M.; Harris, Sarah E.; Williams, Frances M. K.; Peters, Annette; Pulanic, Drazen; Lumley, Thomas; de Craen, Anton J.M.; Liewald, David C.; Gieger, Christian; Campbell, Susan; Ford, Ian; Gow, Alan J.; Luciano, Michelle; Porteous, David J.; Guo, Xiuqing; Sattar, Naveed; Tenesa, Albert; Cushman, Mary; Slagboom, P. Eline; Visscher, Peter M.; Spector, Tim D.; Illig, Thomas; Rudan, Igor; Bovill, Edwin G.; Wright, Alan F.; McArdle, Wendy L.; Tofler, Geoffrey; Hofman, Albert; Westendorp, Rudi G.J.; Starr, John M.; Grant, Peter J.; Karakas, Mahir; Hastie, Nicholas D.; Psaty, Bruce M.; Wilson, James F.; Lowe, Gordon D. O.; O’Donnell, Christopher J; Witteman, Jacqueline CM; Jukema, J. Wouter; Deary, Ian J.; Soranzo, Nicole; Koenig, Wolfgang; Hayward, Caroline

    2011-01-01

    Background Fibrin fragment D-dimer is one of several peptides produced when cross-linked fibrin is degraded by plasmin, and is the most widely-used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wide association search. Methods and Results A genome-wide investigation of the genomic correlates of plasma D-dimer levels was conducted among 21,052 European-ancestry adults. Plasma levels of D-dimer were measured independently in each of 13 cohorts. Each study analyzed the association between ~2.6 million genotyped and imputed variants across the 22 autosomal chromosomes and natural-log transformed D-dimer levels using linear regression in additive genetic models adjusted for age and sex. Among all variants, 74 exceeded the genome-wide significance threshold and marked 3 regions. At 1p22, rs12029080 (p-value 6.4×10−52) was 46.0 kb upstream from F3, coagulation factor III (tissue factor). At 1q24, rs6687813 (p-value 2.4×10−14) was 79.7 kb downstream of F5, coagulation factor V. At 4q32, rs13109457 (p-value 2.9×10−18) was located between 2 fibrinogen genes: 10.4 kb downstream from FGG and 3.0 kb upstream from FGA. Variants were associated with a 0.099, 0.096, and 0.061 unit difference, respectively, in natural-log transformed D-dimer and together accounted for 1.8% of the total variance. When adjusted for non-synonymous substitutions in F5 and FGA loci known to be associated with D-dimer levels, there was no evidence of an additional association at either locus. Conclusions Three genes were associated with fibrin D-dimer levels, of which the F3 association was the strongest and has not been previously reported. PMID:21502573

  3. Density functional Gaussian-type-orbital approach to theoretical study of nitric oxide dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursic, B.S.; Zdravkovski, Z.

    Structure and total energies of the cis NO dimer, the trans NO dimer, and the NO monomer were calculated by ab initio methods (UHF, UMP2, and MP3) and density functional theory methods (LSDA and BLYP) with different basis sets [from 3-21G* to 6-311++(3df,3pd)]. The system is especially hard to model because two NO molecules are weakly associated in a dimer that has very long N-N bond. The results obtained by different methods are compared and the necessity of correlational methods for studying these systems is discussed.

  4. Visualizing the Impurity Depletion Zone Around Holoferritin Crystals Growing in Gel with Ferritin Dimers

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Garcia-Ruiz, J. M.; Thomas, B. R.

    2000-01-01

    Colorless transparent apoferritin (Mr = 450KDa) crystals have been grown from gel with Cd(2+) as precipitant in the presence of reddish brown-colored ferritin dimers (Mr = 900KDa). In agreement with our previous measurements, showing preferential trapping of dimers (distribution coefficient K = 4), the apoferritin crystals become strongly colored while the gel solution around them became nearly colorless. The depth of the depletion with respect to the colored dimer impurity allowed us to visualize the impurity depletion zone. Depletion with respect to impurity as compared to the crystallizing protein is discussed.

  5. Dimeric Matrine-Type Alkaloids from the Roots of Sophora flavescens and Their Anti-Hepatitis B Virus Activities.

    PubMed

    Zhang, Yu-Bo; Zhan, Li-Qin; Li, Guo-Qiang; Wang, Feng; Wang, Ying; Li, Yao-Lan; Ye, Wen-Cai; Wang, Guo-Cai

    2016-08-05

    Six unusual matrine-type alkaloid dimers, flavesines A-F (1-6, respectively), together with three proposed biosynthetic intermediates (7-9) were isolated from the roots of Sophora flavescens. Compounds 1-5 were the first natural matrine-type alkaloid dimers, and compound 6 represented an unprecedented dimerization pattern constructed by matrine and (-)-cytisine. Their structures were elucidated by NMR, MS, single-crystal X-ray diffraction, and a chemical method. The hypothetical biogenetic pathways of 1-6 were also proposed. Compounds 1-9 exhibited inhibitory activities against hepatitis B virus.

  6. Special Features of Light Absorption by the Dimer of Bilayer Microparticles

    NASA Astrophysics Data System (ADS)

    Geints, Yu. É.; Panina, E. K.; Zemlyanov, A. A.

    2018-05-01

    Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.

  7. Synthesis and evaluation of a dimer of 2-(4-pyridylmethyl)-1-indanone as a novel nonsteroidal aromatase inhibitor.

    PubMed

    Gupta, Ranju; Jindal, Dharam Paul; Jit, Birinder; Narang, Gaurav; Palusczak, Anja; Hartmann, Rolf W

    2004-07-01

    A novel dimer of 2-(4-pyridylmethyl)-1-indanone (2) was obtained while carrying out aldol condensation of 1-indanone with pyridine-4-carboxaldehyde in potassium hydroxide. The structure of dimer 3 has been established using various spectral techniques and was screened for its ability to inhibit the cytochrome P(450) enzyme aromatase. The dimer showed strong inhibition of human placental aromatase and was found 3 times more potent (RP = 3, IC(50) = 10.2 microM) as compared to aminoglutethimide (RP = 1, IC(50) = 18.5 microM.

  8. Coherent stimulated light emission (lasing) in covalently linked chlorophyll dimers

    PubMed Central

    Hindman, James C.; Kugel, Roger; Wasielewski, Michael R.; Katz, Joseph J.

    1978-01-01

    The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules. Images PMID:16592524

  9. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  10. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Chun; Palek, Jiri

    1980-06-01

    The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

  11. Crosslinking Evidence for Motional Constraints within Chemoreceptor Trimers of Dimers

    PubMed Central

    Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2011-01-01

    Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In E. coli, chemoreceptors show higher order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer of dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo crosslinking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed crosslinks, whereas reporters lying at different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernable effect on the crosslinking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced crosslinking at most of the reporter sites, indicating that individual dimers may move closer together under this condition. PMID:21174433

  12. Thermodynamics study of the dimerization equilibria of rhodamine B and 6G in different ionic strengths by photometric titration and chemometrics method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael

    2005-11-01

    The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 °C at different total concentrations of rhodamine B (5.89 × 10 -6 to 2.36 × 10 -4 M) and rhodamine 6G (2.34 × 10 -5 to 5.89 × 10 -4 M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TΔ S°-Δ H° plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).

  13. Thermodynamics study of the dimerization equilibria of rhodamine B and 6G in different ionic strengths by photometric titration and chemometrics method.

    PubMed

    Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael

    2005-11-01

    The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 degrees C at different total concentrations of rhodamine B (5.89 x 10(-6) to 2.36 x 10(-4)M) and rhodamine 6G (2.34 x 10(-5) to 5.89 x 10(-4)M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TDeltaS degrees -DeltaH degrees plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).

  14. Determination of Abraham model solute descriptors for the monomeric and dimeric forms of trans-cinnamic acid using measured solubilities from the Open Notebook Science Challenge.

    PubMed

    Bradley, Jean-Claude; Abraham, Michael H; Acree, William E; Lang, Andrew Sid; Beck, Samantha N; Bulger, David A; Clark, Elizabeth A; Condron, Lacey N; Costa, Stephanie T; Curtin, Evan M; Kurtu, Sozit B; Mangir, Mark I; McBride, Matthew J

    2015-01-01

    Calculating Abraham descriptors from solubility values requires that the solute have the same form when dissolved in all solvents. However, carboxylic acids can form dimers when dissolved in non-polar solvents. For such compounds Abraham descriptors can be calculated for both the monomeric and dimeric forms by treating the polar and non-polar systems separately. We illustrate the method of how this can be done by calculating the Abraham descriptors for both the monomeric and dimeric forms of trans-cinnamic acid, the first time that descriptors for a carboxylic acid dimer have been obtained. Abraham descriptors were calculated for the monomeric form of trans-cinnamic acid using experimental solubility measurements in polar solvents from the Open Notebook Science Challenge together with a number of water-solvent partition coefficients from the literature. Similarly, experimental solubility measurements in non-polar solvents were used to determine Abraham descriptors for the trans-cinnamic acid dimer. Abraham descriptors were calculated for both the monomeric and dimeric forms of trans-cinnamic acid. This allows for the prediction of further solubilities of trans-cinnamic acid in both polar and non-polar solvents with an error of about 0.10 log units. Graphical abstractMolar concentration of trans-cinnamic acid in various polar and non-polar solvents.

  15. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor.

    PubMed

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-07-25

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  16. A complete assignment of the vibrational spectra of 2-furoic acid based on the structures of the more stable monomer and dimer

    NASA Astrophysics Data System (ADS)

    Ghalla, Houcine; Issaoui, Noureddine; Castillo, María Victoria; Brandán, Silvia Antonia; Flakus, Henryk T.

    2014-03-01

    The structural and vibrational properties of cyclic dimer of 2-furoic acid (2FA) were predicted by combining the available experimental infrared and Raman spectra in the solid phase and ab initio calculations based on density functional theory (DFT) with Pople's basis sets. The calculations show that there are two cyclic dimers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, cis conformer, is present in the solid phase. The complete assignment of the 66 normal vibrational modes for the cis cyclic dimer was performed using the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Four strong bands in the infrared spectrum at 1583, 1427, 1126 and 887 cm-1 and the group of bands in the Raman spectrum at 1464, 1452, 1147, 1030, 885, 873, 848, 715 and 590 cm-1 are characteristic of the dimeric form of 2FA in the solid phase. In this work, the calculated structural and vibrational properties of both dimeric species were analyzed and compared between them. In addition, three types of atomic charges, bond orders, possible charge transfer, topological properties of the furan rings, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theory calculations were employed to study the stabilities and intermolecular interactions of the both dimers of 2FA.

  17. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  18. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  19. Simulation chamber studies of the atmospheric degradation of xylene oxidation products

    NASA Astrophysics Data System (ADS)

    Clifford, G.; Rea, G.; Thuener, L.; Wenger, J.

    2003-04-01

    Aromatic compounds are emitted to the atmosphere from their use in automobile fuels and solvents. In addition to being important primary pollutants, many aromatics, including the xylenes, possess high photochemical reactivity and make a major contribution to the formation of oxidants, such as ozone and nitrates, in the troposphere. The atmospheric oxidation of aromatics produces a wide variety of products and the atmospheric reactivity of many of these species is unknown. The aim of this work was to study the atmospheric degradation processes for dimethylphenols, tolualdehydes and dicarbonyl compounds which are produced from the hydroxyl radical initiated oxidation of the xylenes. Experiments on the hydroxyl (OH) and nitrate radical initiated oxidation of dimethylphenols and tolualdehydes have been performed in a large atmospheric simulation chamber in our laboratory. The chamber is made of FEP foil and has a volume of about 4750 litres. It is equipped with gas chromatography, GC-MS, and in situ FTIR spectroscopy for chemical analysis and a scanning mobility particle sizer for aerosol measurements. Rate coefficients have been determined for the reactions of hydroxyl and nitrate radicals with dimethylphenols and tolualdehydes. Gas-phase products and the yield of secondary organic aerosol have also been determined for the OH-initiated oxidation of these compounds. Mechanisms for the formation of the products are proposed. The photolysis of the unsaturated dicarbonyls, butenedial and 4-oxo-pent-2-enal, has been studied using real sunlight at the European Photoreactor (EUPHORE) in Valencia, Spain. Photolysis rates were measured and indicate that photolysis by sunlight is the major atmospheric degradation process for these compounds. Product studies show the formation of a ketene intermediate that decays to form five membered ring compounds such as furanones and maleic anhydride. Mechanisms for the formation of the products are proposed. Finally, the data obtained in this work is used to access the atmospheric impact of xylene oxidation products and to provide valuable information on their pollution forming potential.

  20. Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: Sources and formation pathways

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo

    2015-05-01

    The present study aims to assess the molecular distributions of water-soluble dicarboxylic acids (diacids: C2-C12), oxocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal) in aerosols collected over the western North Pacific (WNP) during a summer cruise (August to September 2008). The measured water-soluble organics show pronounced latitudinal distributions with higher concentrations in the region of 30°N-45°N (average 63 ng m-3) than 10°N-30°N (18 ng m-3). Mass fraction of oxalic acid (C2) in total aliphatic diacids (ΣC2-C12) showed higher values (72 ± 10%) in lower latitude (10°N-30°N) than that (56 ± 16%) in higher latitude (30°N-45°N), suggesting a photochemical production of C2 due to an increased insolation over the tropical WNP. A similar trend was found in other diagnostic ratios such as oxalic to succinic (C2/C4) and oxalic to glyoxylic acid (C2/ωC2), which further corroborate an enhanced photochemical aging over the WNP. In addition, relative abundances of oxalic acid in total diacids showed a marked increase as a function of ambient temperature, supporting their photochemical production. Constantly low concentration ratios of adipic and phthalic acids relative to azelaic acid suggest a small contribution of anthropogenic sources and an importance of oceanic sources during the study period. Significant production of C2 through oxidation of biogenic volatile organic compounds emitted from the sea surface is also noteworthy, as inferred from the strong linear correlations among water-soluble organic carbon, methanesulphonic acid, and oxalic acid. Sea-to-air emission of unsaturated fatty acids also contributes to formation of diacids over the WNP.

  1. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  2. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport

    NASA Astrophysics Data System (ADS)

    Aggarwal, Shankar G.; Kawamura, Kimitaka

    2008-07-01

    Molecular and stable carbon isotopic (δ13C value) compositions of dicarboxylic acids, ketoacids, and dicarbonyls in aerosol samples (i.e., total suspended particles) collected in Sapporo, northern Japan during spring and summer were determined to better understand the photochemical aging of organic aerosols during long-range transport from East Asia and Siberia. Their molecular distributions were characterized by the predominance of oxalic acid (C2) followed by malonic (C3) or occasionally succinic (C4) acids. Concentrations of total diacids ranged from 106-787 ng m-3 with ketoacids (13-81 ng m-3) and dicarbonyls (2.6-28 ng m-3) being less abundant. Water-soluble organic carbon (WSOC) comprised 23-69% of aerosol organic carbon (OC). OC to elemental carbon (EC) ratios were high (3.6-19, mean: 8.7). The ratios of C3/C4 and WSOC/OC did not show significant diurnal changes, suggesting that the Sapporo aerosols were not seriously affected by local photochemical processes and instead they were already aged. δ13C values of the dominant diacids (C2 - C4) ranged from -14.0 to -25.3‰. Largest δ13C values (-14.0 to -22.4‰, mean: -18.8‰) were obtained for C2, whereas smallest values (-25.1 to -31.4‰, mean: -28.1‰) were for azelaic acid (C9). In general, δ13C values of C2 - C4 diacids became less negative with aerosol aging (i.e., WSOC/OC), presumably due to isotopic fractionation during photochemical degradation of diacids. By comparing the δ13C values of diacids in the Sapporo aerosols with different air mass source regions, we suggest that although initial δ13C values of diacids depend on their precursor sources, the enrichment in 13C can be ascribed to aerosol photochemical aging.

  3. Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Mozammel Haque, Md.; Kawamura, Kimitaka; Kim, Yongwon

    2018-04-01

    The presence of water-soluble dicarboxylic acids in atmospheric aerosols has a significant influence on the regional radiative forcing through direct aerosol effect and cloud formation process. Fine aerosol (PM2.5) samples collected in central Alaska (Fairbanks: 64.51°N and 147.51°W) during summer of 2009 were measured for water-soluble diacids (C2-C12), oxoacids (C2-C9) and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC) and water-soluble OC (WSOC) to assess their sources and formation processes. We found the predominance of oxalic acid (C2) followed by malonic (C3) and succinic acid (C4) in Alaskan aerosols. Higher C3/C4 diacid ratios (ave. 1.2) in Alaskan aerosols than those reported for fresh aerosols emitted from fossil fuel combustion (ave. 0.35) and biomass burning (0.51-0.66) suggest that organic aerosols in central Alaska were photochemically processed. The relatively high correlations of major diacids and related compounds with levoglucosan (r = 0.80-0.99) than those with 2-methylglyceric acid (r = 0.59-0.98) suggest that they were significantly produced from biomass burning emission. Strong correlations of C2 with normal-chain saturated diacids (C3-C9: r = 0.80-0.98), glyoxylic acid (ωC2: r = 0.95) and methylglyoxal (MeGly: r = 0.88), together with strong correlations of solar radiation with ratio of C2 to C2-C12 diacids (r = 0.83), ωC2 (r = 0.80) and MeGly (r = 0.82) suggest that oxalic acid in PM2.5 aerosol was produced by the photooxidation of higher homologous diacids, glyoxylic acid and methylglyoxal in the atmosphere of central Alaska. These results reveal that photochemical processing of organic precursors mainly produced from biomass burning control the water-soluble organic chemical composition of fine aerosols in central Alaska.

  4. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    Normal saturated (C 2C 11) and unsaturated (C 4C 5, C 8) dicarboxylic acids were measured in arctic aerosol samples collected weekly at Alert, Canada in 1987-1988. In all seasons, oxalic (C 2) acid was usually the dominant diacid species (1.8-70 ng m -3, av. 14 ± 12 ng m -3) followed by malonic (C 3; 0.05-19 ng m -3, av. 2.5 ± 3.3 ng m -3) and succinic (C 4; 0.51-18 ng m -3, av. 3.8 ± 3.5 ng m -3) acids. The total concentrations of dicarboxylic acids showed a seasonal variation (4.3-97 ng m -3, av. 25 ± 20 ng m -3),with two maxima in September to October and in March to April. The autumn peak is characterized by high concentrations of oxalic acid and azelaic (C 9) acids, which were probably caused by enhanced contributions from anthropogenic and biogenic sources, respectively, followed by photochemical reactions. This is consistent with higher concentrations of n-alkanes from terrestrial plant waxes and of soil-derived aluminum in the autumn aerosol samples. On the other hand, during "Arctic Sunrise" in March to April, oxalic, malonic and succinic acids as well as some other (C 5C 6) diacids were 5 to 20 times more abundant than in the preceding dark winter months, suggesting that diacids are produced in situ by secondary photochemical oxidation of organic pollutants carried to the Arctic. ω-Oxocarboxylic acids (C 2C 5, C 9), pyruvic acid and α-dicarbonyls (methylglyoxal and glyoxal) were also detected in the arctic aerosols. Their concentration also showed spring maxima; however, they were observed a few weeks earlier than the spring peak of diacids. The ω-oxoacids are likely intermediates to the production of α,ω-dicarboxylic acids at the polar sunrise.

  5. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup.

    PubMed

    Gensberger, Sabrina; Mittelmaier, Stefan; Glomb, Marcus A; Pischetsrieder, Monika

    2012-07-01

    High-fructose corn syrup (HFCS) is a widely used liquid sweetener produced from corn starch by hydrolysis and partial isomerization of glucose to fructose. During these processing steps, sugars can be considerably degraded, leading, for example, to the formation of reactive α-dicarbonyl compounds (α-DCs). The present study performed targeted screening to identify the major α-DCs in HFCS. For this purpose, α-DCs were selectively converted with o-phenylendiamine to the corresponding quinoxaline derivatives, which were analyzed by liquid chromatography with hyphenated diode array-tandem mass spectrometry (LC-DAD-MS/MS) detection. 3-Deoxy-D-erythro-hexos-2-ulose (3-deoxyglucosone), D-lyxo-hexos-2-ulose (glucosone), 3-deoxy-D-threo-hexos-2-ulose (3-deoxygalactosone), 1-deoxy-D-erythro-hexos-2,3-diulose (1-deoxyglucosone), 3,4-dideoxyglucosone-3-ene, methylglyoxal, and glyoxal were identified by enhanced mass spectra as well as MS/MS product ion spectra using the synthesized standards as reference. Addition of diethylene triamine pentaacetic acid and adjustment of the derivatization conditions ensured complete derivatization without de novo formation for all identified α-DCs in HFCS matrix except for glyoxal. Subsequently, a ultra-high performance LC-DAD-MS/MS method was established to quantify 3-deoxyglucosone, glucosone, 3-deoxygalactosone, 1-deoxyglucosone, 3,4-dideoxyglucosone-3-ene, and methylglyoxal in HFCS. Depending on the α-DC compound and concentration, the recovery ranged between 89.2% and 105.8% with a relative standard deviation between 1.9% and 6.5%. Subsequently, the α-DC profiles of 14 commercial HFCS samples were recorded. 3-Deoxyglucosone was identified as the major α-DC with concentrations up to 730 μg/mL HFCS. The total α-DC content ranged from 293 μg/mL to 1,130 μg/mL HFCS. Significantly different α-DC levels were not detected between different HFCS specifications, but between samples of various manufacturers indicating that the α-DC load is influenced by the production procedures.

  6. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    NASA Astrophysics Data System (ADS)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  7. On-road vehicle emissions of glyoxal and methylglyoxal from tunnel tests in urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Wen, Sheng; Herrmann, Hartmut; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; George, Christian

    2016-02-01

    Glyoxal and methylglyoxal, the two smallest yet most abundant dicarbonyls, play vital roles in forming secondary organic aerosols (SOA) in the ambient air. The direct sources for glyoxal and methylglyoxal from vehicles are still unclear because of only a few investigations in the USA. Here we carried out tests in the Zhujiang tunnel in urban Guangzhou in south China to obtain emission factors (EFs) of glyoxal and methylglyoxal for on-road vehicles. Measured EFs for glyoxal and methylglyoxal averaged 1.18 ± 0.43 and 0.52 ± 0.26 mg km-1 veh-1, and were about 6.6 and 2.3 times those measured in the Tuscarora Mountain Tunnel in 1999 (Grosjean et al., 2001), respectively. Multiple linear regressions further resolved glyoxal EFs of 1.64 ± 1.03, 0.10 ± 3.49 and 0.58 ± 2.37 mg km-1 and methylglyoxal EFs of 0.17 ± 0.33, 1.68 ± 1.20 and 0.70 ± 0.66 mg km-1, respectively, for gasoline, diesel and liquefied petroleum gas (LPG) vehicles. The fuel-based EFs for glyoxal and methylglyoxal were estimated to be 28.1 and 2.9 mg kg-1 for gasoline vehicles, and 1.5 and 26.3 mg kg-1 for diesel vehicles, respectively. Based on available SOA yields, SOA formed from vehicle-emitted glyoxal and methylglyoxal could attain 25-50% of that formed from vehicle-emitted toluene. With the EFs from this study, the vehicle emission of the two dicarbonyls in China and in the world were roughly estimated. Either the CO-tracer-based or the fuel-based global estimates are below 0.1 Tg a-1 and therefore vehicle emission could be negligible in their global total sources, yet they might play vital roles in urban areas in forming SOA, particularly in the early chemical evolution of vehicle exhausts in the ambient.

  8. A general correction to initial rates determined for nonprocessive exo-depolymerases acting on both substrate and product

    USDA-ARS?s Scientific Manuscript database

    We recently reported on the kinetics of the polygalacturonase TtGH28 acting on trimer and dimer substrates. When the starting substrate for hydrolysis is the trimer, the product dimer is also subject to hydrolysis, resulting in discrepancies when either the concentration of dimer or monomer product ...

  9. Structural and Thermodynamic Properties of the Argon Dimer: A Computational Chemistry Exercise in Quantum and Statistical Mechanics

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2010-01-01

    Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…

  10. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  11. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1982-03-01

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  12. Two Populations Mean-Field Monomer-Dimer Model

    NASA Astrophysics Data System (ADS)

    Alberici, Diego; Mingione, Emanuele

    2018-04-01

    A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

  13. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  14. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement

    NASA Astrophysics Data System (ADS)

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-01

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05544f

  15. Prediction of extravasation in pelvic fracture using coagulation biomarkers.

    PubMed

    Aoki, Makoto; Hagiwara, Shuichi; Tokue, Hiroyuki; Shibuya, Kei; Kaneko, Minoru; Murata, Masato; Nakajima, Jun; Sawada, Yusuke; Isshiki, Yuta; Ichikawa, Yumi; Oshima, Kiyohiro

    2016-08-01

    To evaluate the usefulness of coagulation biomarkers, which are easy and quick to analyze in emergency settings, for prediction of arterial extravasation due to pelvic fracture. The medical records of pelvic fracture patients transferred to the emergency department of Gunma University Hospital between December 2009 and May 2015 were reviewed. Patients were divided into two groups, those with (Extra(+)) and without (Extra(-)) arterial extravasation on enhanced CT or angiography. Levels of fibrin degradation products (FDP), D-dimer, fibrinogen, the ratio of FDP to fibrinogen, the ratio of D-dimer to fibrinogen, systolic blood pressure, heart rate, the Glasgow Coma Scale, pH, base excess, hemoglobin and lactate levels, the pattern of pelvic injury, and injury severity score were measured at hospital admission, and compared between the two groups. Parameters with a significant difference between the two groups were used to construct receiver operating characteristic (ROC) curves. The study included 29 patients with pelvic fracture. FDP, D-dimer, the ratio of FDP to fibrinogen and the ratio of D-dimer to fibrinogen were the most useful parameters for predicting arterial extravasation due to pelvic fracture. FDP, D-dimer, the ratio of FDP to fibrinogen, the ratio of D-dimer to fibrinogen, and hemoglobin and lactate levels were significantly higher in the Extra(+) group than in the Extra(-) group (FDP, 354.8μg/mL [median] versus 96.6μg/mL; D-dimer, 122.3μg/mL versus 42.1μg/mL; the ratio of FDP to fibrinogen, 3.39 versus 0.42; the ratio of D-dimer to fibrinogen, 1.14 versus 0.18; hemoglobin, 10.5g/dL versus 13.5g/dL; lactate, 3.5mmol/L versus 1.7mmol/L). The area under the ROC curves for FDP, D-dimer, the ratio of FDP to fibrinogen, the ratio of D-dimer to fibrinogen, hemoglobin and lactate levels were 0.900, 0.882, 0.918, 0.900, 0.815 and 0.765, respectively. Coagulation biomarkers, and hemoglobin and lactate levels could be useful to predict the existence of arterial extravasation due to pelvic fracture. The ratio of FDP to fibrinogen and the ratio of D-dimer to fibrinogen were the most accurate markers. Coagulation biomarkers may enable more rapid and specific treatment for pelvic fracture. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stogios, Peter J.; Cuesta-Seijo, Jose Antonio; Chen, Lu

    2010-09-22

    The BTB domain is a widely distributed protein-protein interaction motif that is often found at the N-terminus of zinc finger transcription factors. Previous crystal structures of BTB domains have revealed tightly interwound homodimers, with the N-terminus from one chain forming a two-stranded anti-parallel {beta}-sheet with a strand from the other chain. We have solved the crystal structures of the BTB domains from Fanconi anemia zinc finger (FAZF) and Miz1 (Myc-interacting zinc finger 1) to resolutions of 2.0 {angstrom} and 2.6 {angstrom}, respectively. Unlike previous examples of BTB domain structures, the FAZF BTB domain is a nonswapped dimer, with each N-terminalmore » {beta}-strand associated with its own chain. As a result, the dimerization interface in the FAZF BTB domain is about half as large as in the domain-swapped dimers. The Miz1 BTB domain resembles a typical swapped BTB dimer, although it has a shorter N-terminus that is not able to form the interchain sheet. Using cysteine cross-linking, we confirmed that the promyelocytic leukemia zinc finger (PLZF) BTB dimer is strand exchanged in solution, while the FAZF BTB dimer is not. A phylogenic tree of the BTB fold based on both sequence and structural features shows that the common ancestor of the BTB domain in BTB-ZF (bric a brac, tramtrack, broad-complex zinc finger) proteins was a domain-swapped dimer. The differences in the N-termini seen in the FAZF and Miz1 BTB domains appear to be more recent developments in the structural evolution of the domain.« less

  17. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity

    PubMed Central

    Dey, Sanjay

    2017-01-01

    Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31. PMID:28235098

  18. Plasma D-dimer as a Prognostic Marker in ICU Admitted Egyptian Children with Traumatic Brain Injury.

    PubMed

    Foaud, Hala Mohamed Amin; Labib, John Rene; Metwally, Hala Gabr; El-Twab, Khaled Mohamed Abd

    2014-09-01

    Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children. This study aimed at evaluation of the D-dimer blood levels as a new marker to predict prognosis and outcome of traumatic brain injuries among children. This case control study was conducted at the Paediatric Intensive Care Unit (ICU), Alharm Hospital in Giza, Egypt during 2012-2013, on 46 Paediatric cases admitted to ICU with head injury and 20 normal age-matched controls. Clinical data and venous blood samples were prospectively collected at 1(st), 3(rd) and 14(th) day of admission, in addition to examination finding as Glasgow coma scale (GCS), cranial brain computed tomography (CT), routine laboratory investigations (CBC, CRP, SGOT, SGPT, urea, creatinine, random blood glucose, Na, K and arterial blood gases) plasma D-dimer, INR, PT, aPTT and PC. Data analysis was carried out accordingly and ROC curve was performed to explore the discriminating ability of D-dimer through estimation of its accuracy in differentiating temporal survivorship of those with TBI. Cases were classified according to outcome into survivors and non-survivors. Significant difference was observed between cases and controls and between survivors and non-survivors during 1(st), 3(rd) and 14(th) day of the follow up including GCS, blood levels of D-dimer, PT and aPTT. ROC curve analysis for D-dimer showed decline in both sensitivity from 89.5% to 73.7% and specificity from 100% to 81.5% along the study days respectively. D-dimer time measurements showed significant decline among survivors from 4.2 to 0.7, while in the non survivor group this decline was much higher from 27.9 to 1.4. Low plasma D-dimer suggests the absence of brain injury, and good prognosis.

  19. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions

    PubMed Central

    Joseph, Prem Raj B.; Mosier, Philip D.; Desai, Umesh R.; Rajarathnam, Krishna

    2015-01-01

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function. PMID:26371375

  20. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.

    PubMed

    Peter, Bradley; Polyansky, Anton A; Fanucchi, Sylvia; Dirr, Heini W

    2014-01-14

    Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.

Top