Carreras, Javier; Caballero, Ana; Pérez, Pedro J
2018-02-23
A novel, highly enantio- and diastereoselective synthesis of 1-boryl-2,3-disubstituted cyclopropanes has been developed by means of the cyclopropanation of alkenylboronates with ethyl diazoacetate in the presence of catalytic amounts of a chiral copper(I) complex. The products can also be directly accessed from alkynes through an operationally simple, sequential hydroboration-cyclopropanation protocol. The resulting enantioenriched 1-boryl-2,3-disubstituted cyclopropanes are versatile synthetic intermediates that undergo further transformations at the carbon-boron bond. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rao, Vivek; Gao, Feng; Chen, Bing; Jacobs, William R.; Glickman, Michael S.
2006-01-01
Recent studies have shown that fine structural modifications of Mycobacterium tuberculosis cell envelope lipids mediate host cell immune activation during infection. One such alteration in lipid structure is cis-cyclopropane modification of the mycolic acids on trehalose dimycolate (TDM) mediated by proximal cyclopropane synthase of α mycolates (pcaA), a proinflammatory lipid modification during early infection. Here we examine the pathogenetic role and immunomodulatory function of mycolic acid cyclopropane stereochemistry by characterizing an M. tuberculosis cyclopropane–mycolic acid synthase 2 (cmaA2) null mutant (ΔcmaA2) that lacks trans-cyclopropanation of mycolic acids. Although titers of WT and ΔcmaA2 organisms were identical during mouse infection, ΔcmaA2 bacteria were hypervirulent while inducing larger granulomas than WT M. tuberculosis. The hypervirulence of the ΔcmaA2 strain depended on host TNF-α and IFN-γ. Loss of trans-cyclopropanation enhanced M. tuberculosis–induced macrophage inflammatory responses, a phenotype that was transferable with petroleum ether extractable lipids. Finally, purified TDM lacking trans-cyclopropane rings was 5-fold more potent in stimulating macrophages. These results establish cmaA2-dependent trans-cyclopropanation of TDM as a suppressor of M. tuberculosis–induced inflammation and virulence. In addition, cyclopropane stereochemistries on mycolic acids interact directly with host cells to both positively and negatively influence host innate immune activation. PMID:16741578
General Catalytic Enantioselective Access to Monohalomethyl and Trifluoromethyl Cyclopropanes.
Huang, Wei-Sheng; Schlinquer, Claire; Poisson, Thomas; Pannecoucke, Xavier; Charette, André B; Jubault, Philippe
2018-05-29
An efficient catalytic enantioselective access to chiral functionalized trifluoromethyl cyclopropanes from two classes of diazo compounds and alpha-trifluoromethyl styrenes using Rh2((S)-BTPCP)4 as a catalyst is described. This method provides an efficient and practical strategy for the synthesis of highly functionalized CF3-cyclopropanes with excellent diastereoselectivities (up to 20:1) and enantioselectivities (up to 99% ee). The depicted methodology represents up to date the most efficient catalytic enantioselective method to access highly decorated chiral CF3-cyclopropanes. Extension to chiral monohalomethyl cyclopropanes in high ee is also reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coelho, Pedro S.; Brustad, Eric M.; Arnold, Frances H.
The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cellsmore » expressing the heme enzymes are also provided by the present invention.« less
Hydrocarbon and nonhydrocarbon derivatives of cyclopropane
NASA Technical Reports Server (NTRS)
Slabey, Vernon A; Wise, Paul H; Gibbons, Louis C
1953-01-01
The methods used to prepare and purify 19 hydrocarbon derivatives of cyclopropane are discussed. Of these hydrocarbons, 13 were synthesized for the first time. In addition to the hydrocarbons, six cyclopropylcarbinols, five alkyl cyclopropyl ketones, three cyclopropyl chlorides, and one cyclopropanedicarboxylate were prepared as synthesis intermediates. The melting points, boiling points, refractive indices, densities, and, in some instances, heats of combustion of both the hydrocarbon and nonhydrocarbon derivatives of cyclopropane were determined. These data and the infrared spectrum of each of the 34 cyclopropane compounds are presented in this report. The infrared absorption bands characteristic of the cyclopropyl ring are discussed, and some observations are made on the contribution of the cyclopropyl ring to the molecular refractions of cyclopropane compounds.
Sambasivan, Ramya; Ball, Zachary T
2013-09-01
Dirhodium metallopeptides have been developed as selective catalysts for asymmetric cyclopropanation reactions. A selective ligand sequence has been identified by screening on-bead metallopeptide libraries in a 96-well plate format. Efficient ligand synthesis and screening allows a 200-member library to be created and assayed in less than three weeks. These metallopeptides catalyze efficient cyclopropanation of aryldiazoacetates, providing asymmetric access to cyclopropane products in high diastereoselectivity. © 2013 Wiley Periodicals, Inc.
α-Diazo-β-ketonitriles: uniquely reactive substrates for arene and alkene cyclopropanation.
Nani, Roger R; Reisman, Sarah E
2013-05-15
An investigation of the intramolecular cyclopropanation reactions of α-diazo-β-ketonitriles is reported. These studies reveal that α-diazo-β-ketonitriles exhibit unique reactivity in their ability to undergo arene cyclopropanation reactions; other similar acceptor-acceptor-substituted diazo substrates instead produce mixtures of C-H insertion and dimerization products. α-Diazo-β-ketonitriles also undergo highly efficient intramolecular cyclopropanation of tri- and tetrasubstituted alkenes. In addition, the α-cyano-α-ketocyclopropane products are demonstrated to serve as substrates for SN2, SN2', and aldehyde cycloaddition reactions.
Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A.
Huang, Hong-Xiu; Jin, Shuai-Jiang; Gong, Jin; Zhang, Dan; Song, Hao; Qin, Yong
2015-09-14
The bioactive Kopsia alkaloids lundurines A-D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (-)-lundurine A has previously been achieved through a Simmons-Smith cyclopropanation strategy. Here, the total synthesis of (-)-lundurine A was carried out using a metal-catalyzed diazo cyclopropanation strategy. In order to avoid a carbene CH insertion side reaction during cyclopropanation of α-diazo- carboxylates or cyanides, a one-pot, copper-catalyzed Bamford-Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alajarin, Mateo; Egea, Adrian; Orenes, Raul-Angel; Vidal, Angel
2016-11-02
The [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf) 3 , supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.
From the journal archives: cyclopropane: induction and recovery with a bang!
Bokoch, Michael P; Gelb, Adrian W
2014-08-01
To review the history of the early development of cyclopropane Cyclopropane was initially investigated because it was thought to be the toxic element in ethylene. Instead, it turned out to be an excellent anesthetic with very rapid onset and recovery while maintaining stable hemodynamics. Its use was ultimately limited because it was highly explosive. Development required collaboration among laboratory scientists and clinicians in Toronto, Canada, clinicians in Madison, USA, and industry in both countries. The phenomenal success of cyclopropane in over 40 years of clinical use resulted from a lucky, but incorrect, hypothesis that it was a toxic contaminant.
Visible-Light Photocatalytic Intramolecular Cyclopropane Ring Expansion.
Luis-Barrera, Javier; Laina-Martín, Víctor; Rigotti, Thomas; Peccati, Francesca; Solans-Monfort, Xavier; Sodupe, Mariona; Mas-Ballesté, Rubén; Liras, Marta; Alemán, José
2017-06-26
Described herein is a new visible-light photocatalytic strategy for the synthesis of enantioenriched dihydrofurans and cyclopentenes by an intramolecular nitro cyclopropane ring expansion reaction. Mechanistic studies and DFT calculations are used to elucidate the key factors in this new ring expansion reaction, and the need for the nitro group on the cyclopropane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H
The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cellsmore » expressing the heme enzymes are also provided by the present invention.« less
Methods for the synthesis of donor-acceptor cyclopropanes
NASA Astrophysics Data System (ADS)
Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.
2018-03-01
The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.
NASA Astrophysics Data System (ADS)
Mackay, William Daniel
I. Lewis Acid Catalyzed (3+2)-Annulations of Donor-Acceptor Cyclopropanes and Ynamides. The Sc(OTf)3-catalyzed (3+2)-annulation of donor-acceptor cyclopropanes and ynamides is described, providing the corresponding cyclopentene sulfonamides in good to excellent yield. Deprotection and hydrolysis of the resulting cyclopentenesulfonamides delivers 2,3-substituted cyclopentanones with high diastereoselectivity. II. Kinetic Separation and Asymmetric Reactions of Norcaradiene Cycloadducts: Facilitated Access via H2O-Accelerated Cycloaddition. We exploit the Buchner reaction to access 1,2-disubstituted cyclohexadiene synthons (norcaradienes), which participate in H2O-accelerated cycloaddition with dienophiles to provide cyclopropyl-fused [2.2.2]-bicyclooctene derivatives in good yields. Regioisomeric mixtures can be kinetically separated exploiting different reaction rates in Diels-Alder reactions. meso -Diels-Alder products may be enantioselectively desymmetrized, providing highly substituted cyclohexanes with up to seven contiguous stereocenters. III. The Development of Regioisomerically Enriched Buchner Products for Use as Cyclohexadienyl Synthetic Intermediates. We have investigated two conceptual methods to generate highly regioisomerically enriched norcaradienyl intermediates through arene cyclopropanation. Intermolecular Buchner reaction of aryl diazoacetates under either thermolysis or silver(I) catalysis provide expedient routes to single regioisomeric norcaradienes, in some cases favoring the least sterically encumbered site of cyclopropanation. Intramolecular Buchner reaction of benzyl cyanodiazoacetates allow for the site-selective cyclopropanation of the tethered arene, and the installation of an activated cyclopropane for downstream functionalization. Both methods generate norcaradienes that are amenable to further transformations to generate highly stereochemically complex carbocyclic products.
A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.
Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R
2015-09-28
Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yong; Wen, Xin; Cui, Xin; Wojtas, Lukasz; Zhang, X Peter
2017-01-25
Donor-substituted diazo reagents, generated in situ from sulfonyl hydrazones in the presence of base, can serve as suitable radical precursors for Co(II)-based metalloradical catalysis (MRC). The cobalt(II) complex of D 2 -symmetric chiral porphyrin [Co(3,5-Di t Bu-Xu(2'-Naph)Phyrin)] is an efficient metalloradical catalyst that is capable of activating different N-arylsulfonyl hydrazones for asymmetric radical cyclopropanation of a broad range of alkenes, affording the corresponding cyclopropanes in high yields with effective control of both diastereo- and enantioselectivity. This Co(II)-based metalloradical system represents the first catalytic protocol that can effectively utilize donor-type diazo reagents for asymmetric olefin cyclopropanation.
Wang, Tao; Liang, Yong; Yu, Zhi-Xiang
2011-06-22
Asymmetric Simmons-Smith reaction using Charette chiral dioxaborolane ligand is a widely applied method for the construction of enantiomerically enriched cyclopropanes. The detailed mechanism and the origins of stereoselectivity of this important reaction were investigated using density functional theory (DFT) calculations. Our computational studies suggest that, in the traditional Simmons-Smith reaction conditions, the monomeric iodomethylzinc allyloxide generated in situ from the allylic alcohol and the zinc reagent has a strong tendency to form a dimer or a tetramer. The tetramer can easily undergo an intramolecular cyclopropanation to give the racemic cyclopropane product. However, when a stoichiometric amount of Charette chiral dioxaborolane ligand is employed, monomeric iodomethylzinc allyloxide is converted into an energetically more stable four-coordinated chiral zinc/ligand complex. The chiral complex has the zinc bonded to the CH(2)I group and coordinated by three oxygen atoms (one from the allylic alcohol and the other two oxygen atoms from the carbonyl oxygen and the ether oxygen in the dioxaborolane ligand), and it can undergo the cyclopropanation reaction easily. Three key factors influencing the enantioselectivity have been identified through examining the cyclopropanation transition states: (1) the torsional strain along the forming C-C bond, (2) the 1,3-allylic strain caused by the chain conformation, and (3) the ring strain generated in the transition states. In addition, the origin of the high anti diastereoselectivity for the substituent on the zinc reagent and the hydroxymethyl group of the allylic alcohol has been rationalized through analyzing the steric repulsion and the ring strain in the cyclopropanation transition states.
Fatty acid synthesis in Escherichia coli
Knivett, V. A.; Cullen, Julia
1967-01-01
1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mμmoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C17-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO42− or Mg2+, was growth-limiting there was a small accumulation of C17-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH4+ or PO43− was growth-limiting and there were adequate supplies of glycerol, Mg2+ and SO42−, there was a marked accumulation of C17-cyclopropane acid and C19-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C17-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg2+ and SO42− stimulated cyclopropane acid formation in resting cells. PMID:5340364
Silver-Catalyzed Cyclopropanation of Alkenes Using N-Nosylhydrazones as Diazo Surrogates.
Liu, Zhaohong; Zhang, Xinyu; Zanoni, Giuseppe; Bi, Xihe
2017-12-15
An efficient silver-catalyzed [2 + 1] cyclopropanation of sterically hindered internal alkenes with diazo compounds in which room-temperature-decomposable N-nosylhydrazones are used as diazo surrogates is reported. The unexpected unique catalytic activity of silver was ascribed to its dual role as a Lewis acid activating alkene substrates and as a transition metal forming silver carbenoids. A wide range of internal alkenes, including challenging diarylethenes, were suitable for this protocol, thereby affording a variety of cyclopropanes with high efficiency in a stereoselective manner under mild conditions.
Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.
2009-01-01
Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a diverse array of cyclopropyl alcohol building blocks with high enantio- and diastereoselectivities. PMID:19954146
Synthesis, photostability and bioactivity of 2,3-cyclopropanated abscisic acid.
Wenjian, Liu; Xiaoqiang, Han; Yumei, Xiao; Jinlong, Fan; Yuanzhi, Zhang; Huizhe, Lu; Mingan, Wang; Zhaohai, Qin
2013-12-01
The plant hormone abscisic acid (ABA) plays a central role in the regulation of plant development and adaptation to environmental stress. The isomerization of ABA to the biologically inactive 2E-isomer by light considerably limits its applications in agricultural fields. To overcome this shortcoming, an ABA analogue, cis-2,3-cyclopropanated ABA, was synthesized, and its photostability and biological activities were investigated. This compound showed high photostability under UV light exposure, which was 4-fold higher than that of (±)-ABA. cis-2,3-cyclopropanated ABA exhibited high ABA-like activity, including the ability to effectively inhibit seed germination, seedling growth and stomatal movements of Arabidopsis. In some cases, its bioactivity approaches that of (±)-ABA. trans-2,3-cyclopropanated abscisic acid was also prepared, an isomer that was more photostable but which showed weak ABA-like activity. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Tait, Katrina; Horvath, Alysia; Blanchard, Nicolas; Tam, William
2017-01-01
The acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicylic alkene using alcohol nucleophiles were investigated. Although this acid-catalyzed ring-opening reaction did not cleave the cyclopropane unit as planned, this represent the first examples of ring-openings of cyclopropanated 3-aza-2-oxabicyclo[2.2.1]alkenes that lead to the cleavage of the C-O bond instead of the N-O bond. Different acid catalysts were tested and it was found that pyridinium toluenesulfonate in methanol gave the best yields in the ring-opening reactions. The scope of the reaction was successfully expanded to include primary, secondary, and tertiary alcohol nucleophiles. Through X-ray crystallography, the stereochemistry of the product was determined which confirmed an S N 2-like mechanism to form the ring-opened product.
Visualizing Bent Bonds in Cyclopropane
ERIC Educational Resources Information Center
Bertolini, Thomas M.
2004-01-01
A two-minute overhead demonstration using a molecular model kit is employed for illustrating the unique binding of cyclopropane. It is reported that most model kits, much like an sp (super 3) hybridized carbon atom, resist forming 60-degree bond angles.
Cullen, J; Phillips, M C; Shipley, G G
1971-12-01
1. Pseudomonas fluorescens was grown at various temperatures between 5 degrees C and 33 degrees C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5 degrees C and 22 degrees C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure-area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5-22 degrees C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5 degrees C and 22 degrees C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids.
Eras, Jordi; Oró, Robert; Torres, Mercè; Canela, Ramon
2008-07-09
The stability of the cyclopropane ring and the fatty acid composition of microbial cells were determined using chlorotrimethylsilane as reagent with three different conditions 80 degrees C for 1 h, 60 degrees C for 1 h, and 60 degrees C for 2 h. Chlorotrimethylsilane permits a simultaneous extraction and derivatization of fatty acids. A basic method was used as reference. The bacteria, Escherichia coli, Burkholderia cepacia, and Lactobacillus brevis, and fungi Aspergillus niger and Gibberella fujikuroi were used. The stability of the cyclopropane ring on acidic conditions was tested using the cyclopropanecarboxylic acid and a commercial mixture of bacteria fatty acid methyl esters (BAME). Fisher's least significant difference test showed significant differences among the methods. The method using chlorotrimethylsilane and 1-pentanol for 1 h at 80 degrees C gave the best results in cyclopropane, hydroxyl, and total fatty acid recoveries. This procedure allows the fast and easy one-step direct extraction derivatization.
A MRCC study of the isomerisation of cyclopropane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Jakub; Švaňa, Matej; Demel, Ondřej
2017-01-19
Mukherjee’s and Brillouin-Wigner multi-reference coupled cluster methods were used to study the isomerization of cyclopropane to propene through a trimethylene/propylidene diradicals. Main aim was to obtain high quality ab-initio data using advanced methods that treat both static and dynamic correlation in the involved species. The MkCCSD(T)/cc-pVQZ activation energy of cyclopropane isomerization via trimethylene is 65.6 kcal/mol, in a good agreement with experimental values in the range 60-65 kcal/mol. The MkCCSD(T)/cc-pV5Z adiabatic singlet-triplet gap in trimethylene is 0.6 kcal/mol, slightly higher than previous CASPT2 result -0.7 kcal/mol by Skancke et al.
NASA Astrophysics Data System (ADS)
Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.
2017-08-01
Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.
Chirila, Andrei; Gopal Das, Braja; Paul, Nanda D.
2017-01-01
Abstract A new protocol for the catalytic synthesis of cyclopropanes using electron‐deficient alkenes is presented, which is catalysed by a series of affordable, easy to synthesise and highly active substituted cobalt(II) tetraaza[14]annulenes. These catalysts are compatible with the use of sodium tosylhydrazone salts as precursors to diazo compounds in one‐pot catalytic transformations to afford the desired cyclopropanes in almost quantitative yields. The reaction takes advantage of the metalloradical character of the Co complexes to activate the diazo compounds. The reaction is practical and fast, and proceeds from readily available starting materials. It does not require the slow addition of diazo reagents or tosylhydrazone salts or heating and tolerates many solvents, which include protic ones such as MeOH. The CoII complexes derived from the tetramethyltetraaza[14]annulene ligand are easier to prepare than cobalt(II) porphyrins and present a similar catalytic carbene radical reactivity but are more active. The reaction proceeds at 20 °C in a matter of minutes and even at −78 °C in a few hours. The catalytic system is robust and can operate with either the alkene or the diazo reagent as the limiting reagent, which inhibits the dimerisation of diazo compounds totally. The protocol has been applied to synthesise a variety of substituted cyclopropanes. High yields and selectivities were achieved for various substrates with an intrinsic preference for trans cyclopropanes. PMID:28529668
E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique
2013-12-01
We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Cullen, J.; Phillips, M. C.; Shipley, G. G.
1971-01-01
1. Pseudomonas fluorescens was grown at various temperatures between 5°C and 33°C. The extractable lipids from organisms at various stages of growth and grown at different temperatures were examined. 2. The extractable lipids contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an ornithine-containing lipid. The relative amounts of these lipids did not vary significantly during growth or with the changes in growth temperature. 3. The major fatty acids were hexadecanoic, hexadecenoic and octadecenoic acids and the cyclopropane acids methylene-hexadecanoic and methylene-octadecanoic acids. The relative amount of unsaturated acids (including cyclopropane acids) did not change significantly during growth, but increased with decreasing temperature. 4. Phosphatidylethanolamines with different degrees of unsaturation and containing different amounts of cyclopropane acids were isolated from organisms grown at 5°C and 22°C and their surface and phase behaviour in water was investigated. Thermodynamic parameters for fusion and monolayer results for cyclopropane and other fatty acids were examined. 5. The surface pressure–area isotherms of phosphatidylethanolamines containing different amounts of unsaturated fatty acids show small differences but the individual isotherms remain essentially unchanged over the temperature range 5–22°C. X-ray-diffraction methods show that the structures (lamellar+hexagonal) formed in water by phosphatidylethanolamine, isolated from organisms grown at 5°C and 22°C, are identical when compared at the respective growth temperatures. This points to a control mechanism of the physical state of the lipids that is sensitive to the operating temperature of the organism. 6. The molecular packing of cyclopropane acids is intermediate between that of the corresponding cis- and trans-monoenoic acids. However, substitution of a cyclopropane acid for a cis-unsaturated acid has insignificant effects on the molecular packing of phospholipids containing these acids. PMID:5004336
One-Pot Synthesis of Cyclopropane-Fused Cyclic Amidines: An Oxidative Carbanion Cyclization.
Veeranna, Kirana Devarahosahalli; Das, Kanak Kanti; Baskaran, Sundarababu
2017-12-18
A novel and efficient one-pot method has been developed for the synthesis of cyclopropane-fused bicyclic amidines on the basis of a CuBr 2 -mediated oxidative cyclization of carbanions. The usefulness of this unique multicomponent strategy has been demonstrated by the use of a wide variety of substrates to furnish novel cyclopropane-containing amidines with a quaternary center in very good yields. This ketenimine-based approach provides straightforward access to biologically active and pharmaceutically important 3-azabicyclo[n.1.0]alkane frameworks under mild conditions. The synthetic power of this methodology is exemplified in the concise synthesis of the pharmaceutically important antidepressant drug candidate GSK1360707 and key intermediates for the synthesis of amitifadine, bicifadine, and narlaprevir. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tandem cyclopropanation with dibromomethane under Grignard conditions.
Brunner, Gerhard; Eberhard, Laura; Oetiker, Jürg; Schröder, Fridtjof
2008-10-03
Tertiary Grignard reagents and dibromomethane efficiently cyclopropanate allylic (and certain homoallylic) magnesium and lithium alcoholates at ambient temperature in ether solvents. Lithium (homo)allyl alcoholates are directly cyclopropanated with magnesium and CH2Br2 under Barbier conditions at higher temperatures. The reaction rates depend on the substitution pattern of the (homo)allylic alcoholates and on the counterion with lithium giving best results. Good to excellent syn-selectivities are obtained from alpha-substituted substrates, which are in accord with a staggered Houk model. In tandem reactions, cyclopropyl carbinols are obtained from allyloxylithium or -magnesium intermediates, generated in situ by alkylation of conjugated aldehydes, ketones, and esters as well as from allyl carboxylates or vinyloxiranes. Using this methodology, numerous fragrance ingredients and their precursors were efficiently converted to the corresponding cyclopropyl carbinols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu X. H.; Shanklin J.; Rawat, R.
Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants frommore » herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene for CFA accumulation via heterologous expression in production plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Hanna M.; Dydio, Paweł; Liu, Zhennan
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less
Key, Hanna M.; Dydio, Paweł; Liu, Zhennan; ...
2017-04-01
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less
Zhang, Chi; Tian, Jun; Ren, Jun; Wang, Zhongwen
2017-01-26
Aiming to develop efficient and general strategies for construction of complex and diverse polycyclic skeletons, we have successfully developed [4+3]IMPC (intramolecular parallel cycloaddition) of cyclopropane 1,1-diesters with [3]dendralenes. With a combination of the [4+3]IMPC and subsequent [4+n] cycloadditions, trans-[5.3.0]decane skeleton and its corresponding structurally complex and diverse polycyclic variants could be constructed efficiently. This novel [4+3] cycloaddition reaction mode of donor-acceptor cyclopropanes proceeds as a result of the ring-strain relief of a trans-[3.3.0]octane. We strongly believe that the developed methods will demonstrate potential applications in natural products synthesis and drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
(3+3)-Annulation of Donor-Acceptor Cyclopropanes with Diaziridines.
Trushkov, Igor V; Chagarovskiy, Alexey O; Vasin, Vladimir S; Kuznetsov, Vladimir V; Ivanova, Olga A; Rybakov, Victor B; Shumsky, Alexey N; Makhova, Nina N
2018-06-23
The first example of (3+3)-annulation of two different three-membered rings is reported herein. Donor-acceptor cyclopropanes in reaction with diaziridines were found to afford perhydropyridazine derivatives in high yields and diastereoselectivity under mild Lewis acid catalysis. The disclosed reaction is applicable for the broad substrate scope and exhibits an excellent functional group tolerance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sambasivan, Ramya; Ball, Zachary T
2012-08-20
Searching with a beady eye: A high-throughput, on-bead screen of rhodium metallopeptide catalysts was developed in a 96-well format for asymmetric cyclopropanation. Different sequences of natural L-amino acids have been identified that produce opposite product enantiomers. In addition to styrene derivatives, high enantioselectivity is observed for vinyl ether and vinyl amine derivatives. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L
2017-06-16
A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.
Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring
Zha, Li; Jiang, Yindi; Henke, Matthew T.; Wilson, Matthew R.; Wang, Jennifer X.; Kelleher, Neil L.; Balskus, Emily P.
2017-01-01
Despite containing an α-amino acid, the versatile cofactor S-adenosylmethionine (SAM) is not a known building block for non-ribosomal peptide synthetase (NRPS) assembly lines. Here we report an unusual NRPS module from colibactin biosynthesis that uses SAM for amide bond formation and subsequent cyclopropanation. Our findings showcase a new use for SAM and reveal a novel biosynthetic route to a functional group that likely mediates colibactin’s genotoxicity. PMID:28805802
NASA Astrophysics Data System (ADS)
Chi, Le Thi Loan; Chanthamath, Soda; Shibatomi, Kazutaka; Iwasa, Seiji
2018-04-01
The first Ru(II)-catalyzed asymmetric cyclopropanation of diacceptor diazophosphonates with olefins is reported. The Ru(II)-Pheox complex 7e was found to be an efficient catalyst for the asymmetric cyclopropanation of α-cyano diazophosp honate with styrene under mild conditions to give the corresponding chiral diacceptor cyclopropylphosphonate products in high yields (up to 99%) with excellent diastereoselectivities (up to 99/1 dr). However, the enantioselectivity was difficult to control by the C1-symmetric catalyst (up to 68% ee).
Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic
Luo, Chaosheng; Wang, Zhen; Huang, Yong
2015-01-01
Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194
Bell, Franziska; Holland, Jason; Green, Jennifer C.; Gagné, Michel R.
2009-01-01
The mechanism of the (bis(phosphanylethyl)phosphane)Pt2+ catalyzed cyclo-isomerization reaction of 7-methyl-octa-1,6-diene to form 1-isopropylbicyclo[3.1.0]hexane was studied using computational methods. The cyclopropanation step was found to be the turnover-limiting step. The overall reaction proceeds via both a 5-exo and a 6-endo route. W conformations were shown to facilitate cyclopropanation, but do not have any influence on the rate of the 1,2-hydride shifts. PMID:20161262
Enantioselective Synthesis and Profiling of Two Novel Diazabicyclooctanone β-Lactamase Inhibitors
2014-01-01
The enantioselective synthesis of two novel cyclopropane-fused diazabicyclooctanones is reported here. Starting from butadiene monoxide, the key enone intermediate 7 was prepared in six steps. Subsequent stereoselective introduction of the cyclopropane group and further transformation led to compounds 1a and 1b as their corresponding sodium salt. The great disparity regarding their hydrolytic stability was rationalized by the steric interaction between the cyclopropyl methylene and urea carbonyl. These two novel β-lactamase inhibitors were active against class A, C, and D enzymes. PMID:25313328
Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John
2014-01-01
Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024
Ota, Koichiro; Yamazaki, Ikuma; Saigoku, Takahiro; Fukui, Mei; Miyata, Tomoki; Kamaike, Kazuo; Shirahata, Tatsuya; Mizuno, Fumi; Asada, Yoshihisa; Hirotani, Masao; Ino, Chieko; Yoshikawa, Takafumi; Kobayashi, Yoshinori; Miyaoka, Hiroaki
2017-12-01
A new cyclopropane-containing sesquiterpenoid, phellilane L (1), was isolated from the medicinal mushroom Phellinus linteus ("Meshimakobu" in Japanese), a member of the Hymenochaetaceae family and a well-known fungus that is widely used in East Asia. The planar structure of 1 was determined on the basis of spectroscopic analysis. The authors achieved the first total synthesis of 1. Our protecting group-free synthesis features a highly stereoselective one-pot synthesis involving an intermolecular alkylation/cyclization/lactonization strategy for construction of the key cyclopropane-γ-lactone intermediate. Additionally, our synthesis determined the absolute configuration of phellilane L (1).
Barluenga, José; Martínez, Silvia; Suárez-Sobrino, Angel L; Tomás, Miguel
2002-05-29
Pentafulvenes are regioselectively cyclopropanated with group 6 Fischer carbene complexes leading to the homofulvene ring with complete endo selectivity. The homofulvene adducts undergo in turn a further cyclopropanation with ethyl diazoacetate or cyclopentannulation with a Fischer alkenyl carbene complex to provide substituted cyclopentanones after ozonolysis of the exocyclic carbon=carbon double bond. Fischer alkynyl carbene complexes also produce the corresponding alkynyl homofulvenes, albeit the exo stereoisomer is in this case exclusively or preferentially formed. Under moderate CO pressure, tungsten alkynyl carbene complexes cycloadd to pentafulvenes in a [4 + 3] fashion, giving rise to bicyclo[3.2.1]octadien-2-ones.
Schultz, Erica E; Lindsay, Vincent N G; Sarpong, Richmond
2014-09-08
A general method for the formation of fused dihydroazepine derivatives from 1-sulfonyl-1,2,3-triazoles bearing a tethered diene is reported. The process involves an intramolecular cyclopropanation of an α-imino rhodium(II) carbenoid, leading to a transient 1-imino-2-vinylcyclopropane intermediate which rapidly undergoes a 1-aza-Cope rearrangement to generate fused dihydroazepine derivatives in moderate to excellent yields. The reaction proceeds with similar efficiency on gram scale. The use of catalyst-free conditions leads to the formation of a novel [4.4.0] bicyclic heterocycle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis, resolution and biological evaluation of cyclopropyl analogs of abscisic acid.
Han, Xiaoqiang; Fan, Jinlong; Lu, Huizhe; Wan, Chuan; Li, Xiuyun; Li, Hong; Yang, Dongyan; Zhang, Yuanzhi; Xiao, Yumei; Qin, Zhaohai
2015-09-15
cis-2,3-Cyclopropanated abscisic acid (cis-CpABA) has high photostability and good ABA-like activity. To further investigate its activity and action mechanism, 2S,3S-2,3-cyclopropanated ABA (3a) and 2R,3R-2,3-cyclopropanated ABA (3b) were synthesized. Bioassay showed that 3a displayed higher inhibitory activity in germination than that of 3b and ABA at the concentration of 3.0 μM, but 3a and 3b had much weaker inhibitory activity in inhibition seedling growth compared to ABA. The study of photostability revealed that 3a and 3b showed high stability under UV light exposure, which were 4 times and 3 times greater than (±)-ABA, respectively. Action mechanism study showed that 3a presented higher inhibition on phosphatase activity of HAB1 than 3b, although they all inferior to ABA. Molecular docking studies of 3a, 3b and ABA receptor PYL10 were agreement with the bioassay data and confirmed the importance of the configuration of the 2,3-cyclopropyl ABA analogs for their bioactivity in somewhat. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gingell, M.; Mason, N. J.; Walker, I. C.; Marston, G.; Zhao, H.; Siggel, M. R. F.
1999-06-01
Absolute optical (VUV) absorption cross sections for cyclopropane have been measured from 5.0 to 11.2 and 20-40 eV using synchrotron radiation. Also, electron energy-loss (EEL) spectra have been obtained using incident electrons of (a) 150 eV energy scattered through small angles (energy loss 5.0-15 eV) and (b) near-threshold energies scattered through large angles (energy loss 0-10.5 eV). Taken together these confirm that the low-lying excited electronic states of cyclopropane are of Rydberg type and, although spectral bands are diffuse, a known Rydberg series has been extended. Recent computations (Galasso V 1996 Chem. Phys. 206 289) appear to give a good account of the experimental spectrum from threshold to about 11 eV, but these must be extended if valence-excited states are to be characterized. Particular attention has been directed at the evaluation of absolute optical cross sections. These are now believed to be established over the energy ranges 5-15 and 20-40 eV. In the gap region (15-20 eV) second-order radiation may affect the optical measurements. From consideration of second-order effects, and comparison of the present studies with earlier measurements, we propose a best-estimate cross section in this energy region also.
NASA Technical Reports Server (NTRS)
Jahnke, L. L.; Nichols, P. D.
1986-01-01
The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.
Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes.
Bruneau, Christian
2005-04-15
Transformations of enynes in the presence of transition-metal catalysts have played an important role in the preparation of a variety of cyclic compounds. Recent developments in the activation of triple carbon-carbon bonds by electrophilic metal centers have provided a new entry to the selective synthesis of cyclopropane derivatives from enynes. The mechanisms of these reactions involve catalytic species with both ionic and cyclopropylcarbenoid character. This type of activation will undoubtedly be further developed for application to other unsaturated hydrocarbons and inspire new catalytic cascade reaction sequences. This Minireview discusses the recent developments in electrophilic activation of enynes and shows that simple catalysts such as [Ru(3)(CO)(12)], PtCl(2), and cationic gold complexes are efficient precursors to promote the formation of functional polyclic compounds.
Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise
2009-05-31
Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.
NASA Astrophysics Data System (ADS)
Beauchamp, R. N.; Gillies, C. W.; Gillies, J. Z.
1990-12-01
Microwave and RFMDR spectra of cis- overlineCHFCHFCF 2, cis- 13overlineCHFCHFCF 2, cis- overlineCDFCDFCF 2, and cis- 13overlineCDFCDFCF 2 have been measured between 26.5 and 40.0 GHz using an HP 8400C spectrometer. The a- and c-type transitions were assigned and fit to the quartic Watson Hamiltonian giving A = 3450.445(2) MHz, B = 2402.831(3) MHz, C = 2060.247(3) MHz, Δ J = 0.39(3) kHz, Δ JK = 0.26(1) kHz, δK = 1.606(9) kHz, δJ = 0.059(1) kHz, and δJK = -0.58(2) kHz for cis- overlineCHFCHFCF 2. A structure is derived from the moment of inertia data by fixing three parameters associated with the CF 2 group. The rS parameters for the CHFCHF segment of the molecule in the overlineCHFCHFCF 2 isotopic frame are r (C 2C 3) = 1.533(3) Å, r (C 2,3H) = 1.099(3) Å, r (F 2 ⋯ F 3) = 2.775(2) Å, and r (H 2 ⋯ H 3) = 2.622(2) Å. Two algorithms describing the CC and CF bond distances are fitted to gas phase structural data for a series of fluorinated cyclopropane derivatives. A partial test of these algorithms is obtained from the structure of cis- overlineCHFCHFCF 2. The structural results are related to theoretical studies of fluorination effects in cyclopropane derivatives.
Angle-resolved photoelectron spectroscopy of cyclopropane
NASA Astrophysics Data System (ADS)
Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.
1985-10-01
The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.
Fernández González, Davinia; De Simone, Filippo; Brand, Jonathan P; Nicolai, Stefano; Waser, Jérôme
2011-01-01
One of the major challenges faced by organic chemistry is the efficient synthesis of increasingly complex molecules. Since October 2007, the Laboratory of Catalysis and Organic Synthesis (LCSO) at EPFL has been working on the development of catalytic reactions based on the Umpolung of the innate reactivity of functional groups. Electrophilic acetylene synthons have been developed using the exceptional properties of ethynyl benziodoxolone (EBX) hypervalent iodine reagents for the alkynylation of heterocycles and olefins. The obtained acetylenes are important building blocks for organic chemistry, material sciences and chemical biology. The ring-strain energy of donor-acceptor cyclopropanes was then used in the first catalytic formal homo-Nazarov cyclization. In the case of aminocyclopropanes, the method could be applied in the synthesis of the alkaloids aspidospermidine and goniomitine. The developed methods are expected to have a broad potential for the synthesis and functionalization of complex organic molecules, including carbocycles and heterocycles.
Asahara, Haruyasu; Koizumi, Takuya; Mochizuki, Eiko; Oshima, Takumi
2006-03-01
The crystal structures of the two thermally equilibrated conformational isomers of the epoxide 1',5'-dimethylspiro[10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,8'-4'-oxatricyclo[5.1.0.0(3,5)]octane]-2',6'-dione, C23H20O3, have been determined by X-ray diffraction. In the tricyclic dione skeleton, the oxirane and cyclopropane rings adopt an anti structure with respect to the conjunct quinone frame. The spiro-linked 10,11-dihydro-5H-dibenzo[a,d]cycloheptene ring of the major isomer has a fairly twisted boat form, folding opposite to the adjoining cyclopropane methyl substituent, whereas the seven-membered ring of the minor isomer has an almost ideal twist-boat form, inversely folding to the side of the relevant methyl group. The conformational structures of these isomers have been compared with those of the corresponding isomers of the unepoxidized homobenzoquinone.
NASA Technical Reports Server (NTRS)
DeMore, W.; Bayes, K.
1998-01-01
Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.
von Wettstein-Knowles, Penny
2007-01-01
About 15% of the epidermal wax on Hordeum vulgare cv. Bonus barley spikes is n-alkanes. Longer homologues are greatly reduced in the eceriferum mutants, cer-a(6), cer-e(8), cer-n(26), cer-n(53), cer-n(985), cer-x(60), cer-yc(135) and cer-yl(187). Simultaneously hydrocarbons accounting for only traces in the wild-type become prominent in the mutants, although their chain-length distributions remain unchanged. Accordingly several new hydrocarbon series were identified. The two major ones were C(23)-C(35)cis monoenoic alkenes (the major 9-ene isomer was part of a homologous series including 11, 13 and 15-enes), and the novel C(27)-C(31) cyclopropanes (the ring carbons of major isomers were 9,10 and 11,12 with lesser amounts of 13,14). Three minor series included 2- and 3-methylalkanes plus C(25)-C(33) internally branched alkanes (methyls on carbons 9, 11, 13, 15 or 17; shorter homologues dominated by the 9 isomer, longer homologues by 11, 13 or 15 isomers). Acyl chains destined for spike waxes are synthesized via acyl and polyketide elongase systems plus associated reductive and decarbonylative/decarboxylative enzyme systems. Both elongation systems are defective in synthesizing C(32) acyl chains in all nine mutants. The similarities in the position of the chemical groups (primarily on carbon 9, secondarily on carbon 11) of the alkenes, cyclopropanes and internally branched methyl alkanes imply an origin from a common, hitherto unrecognized associated pathway in barley, designated the enoic pathway. The elongation system leading to the enoic derived hydrocarbons differs from the known elongation systems by inclusion of a mechanism for introducing a double bond.
Fatty acid profile of kenaf seed oil
USDA-ARS?s Scientific Manuscript database
The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...
Polyoxygenated ursane and oleanane triterpenes from Siphonodon celastrineus.
Kaweetripob, Wirongrong; Mahidol, Chulabhorn; Thongnest, Sanit; Prawat, Hunsa; Ruchirawat, Somsak
2016-09-01
Twenty polyoxygenated triterpenes, including nineteen ursanes and one oleanane, were characterized from the stem material of Siphonodon celastrineus (Celastraceae) through the application of spectroscopic techniques and chemical transformation. Three of the ursane-type triterpenoids possessed the rare 13,27-cyclopropane ring skeleton. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...
Dake, Gregory R; Fenster, Erik E; Patrick, Brian O
2008-09-05
A synthetic approach to the A-B ring system within the fusicoccane family of diterpenes is presented. Key steps in this approach are a diastereoselective Pauson-Khand reaction, a Norrish 1 photofragmentation, a Charette cyclopropanation, and a ring-closing metathesis process.
Impact of different environmental stimuli on the release of 1-MCP from boron-MCP complexes
USDA-ARS?s Scientific Manuscript database
In our previous report, boron derivatives of methylene cyclopropane complexes (B-MCP) were developed to stabilize the gaseous 1-MCP (1-methylcyclopropene), a commercial plant growth regulator, for eventual release in open crop fields when under humid conditions or in contact with water. To meet the ...
Sernissi, Lorenzo; Trabocchi, Andrea; Scarpi, Dina; Bianchini, Francesca; Occhiato, Ernesto G
2016-02-15
4-Amino- and 5-amino-cyclopropane pipecolic acids (CPAs) with cis relative stereochemistry between the carboxylic and amino groups were used as templates to prepare cyclic peptidomimetics containing the RGD sequence as possible integrin binders. The peptidomimetic c(RGD8) built on the 5-amino-CPA displayed an inhibition activity (IC50=2.4nM) toward the αvβ3 integrin receptor (expressed in M21 human melanoma cell line) comparable to that of the most potent antagonists reported so far and it was ten times more active than the corresponding antagonist c(RGD7) derived from the isomeric 4-amino-CPA. Both compounds were also nanomolar ligands of the α5β1 integrin (expressed in human erythroleukemia cell line K562). These results suggest that the CPA-derived templates are suitable for the preparation of dual αvβ3 and α5β1 ligands to suppress integrin-mediated events as well as for targeted drug delivery in cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vasyurenko, Z P; Opanasenko, L S; Koval', G M; Turyanitsa, A I; Ruban, N M
2001-01-01
The cellular and lipopolysaccharide (LPS) fatty acid compositions of the type strains of Klebsiella pneumoniae, K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" were studied. The cellular fatty acids of klebsiellae were presented by straight-chain saturated and monounsaturated, cyclopropane, and hydroxy fatty acids. Hexadecanoic, methylenehexadecanoic, octadecenoic and hexadecenoic acids prevailed. The K. pneumoniae strain mainly differed from the strains of other species by two and more times lower level of dodecanoic acid in cells. Variations of cyclopropane and unsaturated fatty acid contents in cells were observed. LPS fatty acids profiles of klebsiellae mainly consisted of straight-chain saturated and hydroxy fatty acids with predominance of tetradecanoic and 3-hydroxytetradecanoic acids. LPS fatty acids profiles of K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" strains were very similar and differed from that of the K. pneumoniae strain by higher levels of dodecanoic acid (approximately 5-6 times) and absence of 2-hydroxytetradecanoic acid. The obtained data indicated more close relatedness of K. oxytoca, K. terrigena, and K. planticola and some their remoteness from K. pneumoniae.
Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.
Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei
2018-06-29
The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.
Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M
2006-11-24
The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.
To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle
2011-05-01
Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.
Chen, Yuan Yao; Gänzle, Michael G
2016-04-02
Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (P<0.05). The Δcfa mutant strains did not produce CFAs, and the corresponding substrates C16:1 and C18:1 accumulated in membrane lipids. The deletion of cfa did not alter resistance to H2O2 but increased the lethality of heat, high pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production. Copyright © 2016 Elsevier B.V. All rights reserved.
To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle
2011-01-01
Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...
21 CFR 201.161 - Carbon dioxide and certain other gases.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...
Surface functionalization of metal-organic polyhedron for homogeneous cyclopropanation catalysis.
Lu, Weigang; Yuan, Daqiang; Yakovenko, Andrey; Zhou, Hong-Cai
2011-05-07
A super-paddlewheel (comprised of two paddlewheels) metal-organic polyhedron (MOP) containing surface hydroxyl groups was synthesized and characterized. Condensation reactions with linear alkyl anhydrides lead to new MOPs with enhanced solubility. As a result, the surface-modified MOP 4 was demonstrated as a homogeneous Lewis-acid catalyst. © The Royal Society of Chemistry 2011
Gold(I) Carbenoids: On‐Demand Access to Gold(I) Carbenes in Solution
Sarria Toro, Juan M.; García‐Morales, Cristina; Raducan, Mihai; Smirnova, Ekaterina S.
2017-01-01
Abstract Chloromethylgold(I) complexes of phosphine, phosphite, and N‐heterocyclic carbene ligands are easily synthesized by reaction of trimethylsilyldiazomethane with the corresponding gold chloride precursors. Activation of these gold(I) carbenoids with a variety of chloride scavengers promotes reactivity typical of metallocarbenes in solution, namely homocoupling to ethylene, olefin cyclopropanation, and Buchner ring expansion of benzene. PMID:28090747
Rh(II)-catalyzed reactions of differentially substituted bis(diazo) functionalities.
Bonderoff, Sara A; Padwa, Albert
2013-08-16
The chemoselective reaction of donor/acceptor (D/A) and acceptor/acceptor (A/A) diazo moieties in the same molecule was examined using 3-diazo-1-(ethyl 2-diazomalonyl)indolin-2-one under rhodium(II) catalysis. The D/A diazo group undergoes selective cyclopropanation as well as XH-insertion, leaving behind the second diazo group for a further intramolecular dipolar cycloaddition reaction.
ERIC Educational Resources Information Center
Ciaccio, James A.; Guevara, Elena L.; Alam, Rabeka; D'agrosa, Christina D.
2010-01-01
We introduce students to dimethylsulfoxonium methylide (DMSY) epoxidation of aryl and nonconjugated aliphatic aldehydes and ketones without revealing that DMSY cyclopropanates enones by Michael-initiated ring closure (MIRC). Each student performs the reaction of DMSY with one of nine carbonyl compounds, including four enones, and then analyzes the…
Enzyme stabilization via computationally guided protein stapling.
Moore, Eric J; Zorine, Dmitri; Hansen, William A; Khare, Sagar D; Fasan, Rudi
2017-11-21
Thermostabilization represents a critical and often obligatory step toward enhancing the robustness of enzymes for organic synthesis and other applications. While directed evolution methods have provided valuable tools for this purpose, these protocols are laborious and time-consuming and typically require the accumulation of several mutations, potentially at the expense of catalytic function. Here, we report a minimally invasive strategy for enzyme stabilization that relies on the installation of genetically encoded, nonreducible covalent staples in a target protein scaffold using computational design. This methodology enables the rapid development of myoglobin-based cyclopropanation biocatalysts featuring dramatically enhanced thermostability (Δ T m = +18.0 °C and Δ T 50 = +16.0 °C) as well as increased stability against chemical denaturation [Δ C m (GndHCl) = 0.53 M], without altering their catalytic efficiency and stereoselectivity properties. In addition, the stabilized variants offer superior performance and selectivity compared with the parent enzyme in the presence of a high concentration of organic cosolvents, enabling the more efficient cyclopropanation of a water-insoluble substrate. This work introduces and validates an approach for protein stabilization which should be applicable to a variety of other proteins and enzymes.
Focken, Thilo
2014-01-01
Summary A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents. PMID:25246946
Beginning with a known 3-oxabicyclo[3.1.0]-hexane scaffold, the relocation of the fused cyclopropane ring bond and the shifting of the oxygen atom to an alternative location engendered a new 2-oxabicyclo[3.1.0]hexane template that mimics more closely the tetrahydrofuran ring of conventional nucleosides. The synthesis of this new class of locked nucleosides involved a novel
Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations.
Li, Xiaoxun; Li, Hui; Song, Wangze; Tseng, Po-Sen; Liu, Lingyan; Guzei, Ilia A; Tang, Weiping
2015-10-26
Rhodium(I) carbenes were generated from propargylic alcohol derivatives as the result of a dehydrative indole annulation. Depending on the choice of the electron-withdrawing group on the aniline nitrogen nucleophile, either a cyclopropanation product or dimerization product was obtained chemoselectively. Intramolecular hydroamidation occurred for the same type of propargylic alcohol derivatives when other transition-metal catalysts were employed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Reinvestigation of Transients in the Cyclopropane System by the Variable Encounter Method.
1980-09-15
Code 260 Code AFRPL MKPA Arlingon, VA 22217 Edwards AFB, CA 93523 Attn: Mr. 0. Siegel Attn: Or. F. Roberto Office of Naval Research I AFSC Western Office...Office of Naval Research 2 Scientific Research Eastern Central Regional Directorate of Chemical & Office Atmospheric Sciences 495 Sumer Street Bolling ...I Directorate of Aero- San Francisco Area Office space Sciences One Hallidie Plaza Suite 601 Bolling Air Force Base San Francisco, CA 94102
Ti-Catalyzed Multicomponent Oxidative Carboamination of Alkynes with Alkenes and Diazenes
Davis-Gilbert, Zachary W.; Yao, Letitia J.; Tonks, Ian A.
2017-01-01
The inter- or intramolecular oxidative carboamination of alkynes catalyzed by [py2TiCl2NPh]2 is reported. These multicomponent reactions couple alkenes, alkynes and diazenes to form either α,β-unsaturated imines or α-(iminomethyl)cyclopropanes via a TiII/TiIV redox cycle. Each of these products is formed from a common azatitanacyclohexene intermediate that undergoes either β-H elimination or α,γ-coupling, wherein the selectivity is under substrate control. PMID:27790910
Saneyoshi, Hisao; Deschamps, Jeffrey R; Marquez, Victor E
2010-11-19
Two conformationally locked versions of l-deoxythreosyl phosphonate nucleosides (2 and 3) were synthesized to investigate the preference of HIV reverse transcriptase for a conformation displaying either a fully diaxial or fully diequatorial disposition of substituents. Synthesis of the enantiomeric 4-(6-amino-9H-purin-9-yl)bicyclo[3.1.0]hexan-2-ol carbocyclic nucleoside precursors (diaxially disposed) proceeded straightforwardly from commercially available (1R,4S)-4-hydroxy-2-cyclopent-2-enyl-1-yl acetate employing a hydroxyl-directed Simmons-Smith cyclopropanation that culminated with a Mitsunobu coupling of the purine base. For the more complicated 1-(6-amino-9H-purin-9-yl)bicyclo[3.1.0]hexan-3-ol carbocyclic nucleoside precursors (diequatorially disposed), the obligatory linear approach required the syntheses of key 1-aminobicyclo[3.1.0.]hexan-3-yl benzoate precursors that were assembled via the amide variant of the Kulinkovich reaction involving the intramolecular cyclopropanation of a substituted δ-vinylamide. Completion of the purine ring was achieved by conventional approaches but with much improved yields through the use of a microwave reactor. The syntheses of the phosphonates and the corresponding diphosphates were achieved by conventional means. None of the diphosphates, which were supposed to act as nucleoside triphosphate mimics, could compete with dATP even when present in a 10-fold excess.
Chiral recognition of sandalwood odorants.
Bajgrowicz, J A; Frater, G
2000-01-01
Looking for more efficient sandalwood oil smelling compounds, new campholenic aldehyde derivatives with rigidifying cyclopropane rings were prepared. For some of them, having the lowest odor threshold ever measured for this type of odorants and a very appreciated scent, close to that of the scarce natural sandalwood oils, pure stereoisomers were obtained and their olfactory properties were evaluated. Thus acquired structure-odor relationship data, together with consolidated and completed previous knowledge on structurally different sandalwood-smelling compounds, allowed to propose new models of the sandalwood olfactophore.
Heinrich, Nora; Willis, Anthony C; Cade, Ian A; Ho, Junming; Coote, Michelle L; Banwell, Martin G
2012-10-22
Opening and closing a chemical window: oxidation of the etheno-bridged [4.3.1]propelladienol 1 with pyridinium chlorochromate (PCC) affords oxa[5.6.5.6]fenestratetraene 2. The reduction of 2 with diisobutylaluminum hydride (DIBAl-H) leads to the regeneration of its precursor (1). These transformations most likely involve a [3,5]-sigmatropic rearrangement process. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diastereoselective intermolecular Pauson-Khand reactions of chiral cyclopropenes.
Pallerla, Mahesh K; Fox, Joseph M
2005-08-04
In this Letter, it is demonstrated that the unusual reactivity of cyclopropenes can increase the scope and utility of intermolecular Pauson-Khand reactions. The well-defined chiral environment of cyclopropenes has a powerful influence on the diastereoselectivity of the reactions and leads to the production of a single cyclopentenone in each of the described cases. The cyclopropane ring strongly influences the stereochemistry of reactions at the enone, and the three-membered ring can subsequently be cleaved under mild conditions. [reaction: see text
Iodine-catalyzed diazo activation to access radical reactivity.
Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei
2018-05-17
Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.
Synthesis and P1' SAR exploration of potent macrocyclic tissue factor-factor VIIa inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladziata, Vladimir; Glunz, Peter W.; Zou, Yan
Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.
Tao, Lin; Chen, Mei; Collins, Erin; Lu, Chensheng
2013-02-01
Pyrethroid insecticides are applied in the residential environment, as well as in agricultural crops, for insect control purpose. We developed and validated an accurate, sensitive, and reproducible analytical method to simultaneously detect seven pyrethroid metabolites, namely, 3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid, 3-(2,2-dibromovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid, 3-phenoxybenzoic acid, 4-fluoro-3-phenoxybenzoic acid, 2-methyl-3-phenylbenzoic acid, 4-chloro-α-isoproply benzeneacetic acid, and 3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropanecarboxylic acid, in human urine. This method employs deconjugation with enzyme, SPE using Agilent C18 cartridges on a RapidTrace SPE workstation, derivatization using hexafluoro isopropanol and N,N'-diisopropylcarbodiimide, and compounds separation and identification on GC-MS. The detection limits of seven metabolites were 0.02-0.08 ng/mL in urine. The recoveries of seven metabolites were 81-104%, 85-99%, and 83-99% in urine specimens fortified at 0.1, 0.4, and 3.2 ng/mL concentrations, respectively. The overall coefficient of variation was 4.3-10.8% in two quality control specimens which were repeatedly measured during a period of 2 months. This method was applied to urine samples collected from children living in Boston, MA. The median concentrations of six detected pyrethroid metabolites ranged from 0.06 to 0.86 ng/mL in urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.
Tung, J; Ching, J Y; Ng, Y M; Tew, L S; Khung, Y L
2017-09-13
The grafting of cyclopropylamine onto a silicon (100) hydride (Si-H) surface via a ring-opening mechanism using UV photoionization is described here. In brief, radicals generated from the Si-H surface upon UV irradiation were found to behave in classical hydrogen abstraction theory manner by which the distal amine group was first hydrogen abstracted and the radical propagated down to the cyclopropane moiety. This subsequently liberated the strained bonds of the cyclopropane group and initiated the surface grafting process, producing a thin film approximately 10-15 nm in height. Contact angle measurements also showed that such photoionization irradiation had yielded an extremely hydrophilic surface (∼21.3°) and X-ray photoelectron spectroscopy also confirmed the coupling was through the Si-C linkage. However, when the surface underwent high-temperature hydrosilylation (>160 °C), the reaction proceeded predominantly through the nucleophilic NH 2 group to form a Si-N linkage to the surface. This rendered the surface hydrophobic and hence suggested that the Si-H homolysis model may not be the main process. To the best of our knowledge, this was the first attempt reported in the literature to use photoionization to directly graft cyclopropylamine onto a silicon surface and in due course generate a highly rich NH-terminated surface that was found to be highly bioactive in promoting cell viability on the basis of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide studies.
DeAngelis, Andrew; Panish, Robert; Fox, Joseph M.
2016-01-01
CONSPECTUS Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C–H insertions, heteroatom–H insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. PMID:26689221
Van Humbeck, Jeffrey F; Simonovich, Scott P; Knowles, Robert R; MacMillan, David W C
2010-07-28
The mechanism of a recently reported aldehyde alpha-oxyamination reaction has been studied using a combination of kinetic, spectrometric, and spectrophotometric techniques. Most crucially, the use of a validated cyclopropane-based radical-clock substrate has demonstrated that carbon-oxygen bond formation occurs predominantly through an enamine activation manifold. The mechanistic details reported herein indicate that, as has been proposed for previously studied alcohol oxidations, complexation between TEMPO and a simple metal salt leads to electrophilic ionic reactivity.
VERTICAL DISTRIBUTION OF C{sub 3}-HYDROCARBONS IN THE STRATOSPHERE OF TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cheng; Gao, Peter; Yung, Yuk
2015-04-20
Motivated by the recent detection of propene (C{sub 3}H{sub 6}) in the atmosphere of Titan, we use a one-dimensional Titan photochemical model with an updated eddy diffusion profile to systematically study the vertical profiles of the stable species in the C{sub 3}-hydrocarbon family. We find that the stratospheric volume mixing ratio of propene (C{sub 3}H{sub 6}) peaks at 150 km with a value of 5 × 10{sup −9}, which is in good agreement with recent observations by the Composite Infrared Spectrometer on the Cassini spacecraft. Another important species that is currently missing from the hydrocarbon family in Titan's stratosphere ismore » allene (CH{sub 2}CCH{sub 2}), an isomer of methylacetylene (CH{sub 3}C{sub 2}H). We predict that its mixing ratio in the stratosphere is about 10{sup −9}, which is on the margin of the detection limit. CH{sub 2}CCH{sub 2} and CH{sub 3}C{sub 2}H equilibrate at a constant ratio in the stratosphere by hydrogen-exchanging reactions. Thus, by precisely measuring the ratio of CH{sub 2}CCH{sub 2} to CH{sub 3}C{sub 2}H, the abundance of atomic hydrogen in the atmosphere can be inferred. No direct yield for the production of cyclopropane (c-C{sub 3}H{sub 6}) is available. From the discharge experiments of Navarro-González and Ramírez, the abundance of cyclopropane is estimated to be 100 times less than that of C{sub 3}H{sub 6}.« less
Subramanian, Arunachalam; Gupta, Abhishek; Saxena, Swapnil; Gupta, Ashish; Kumar, Raj; Nigam, Anjali; Kumar, Rashmi; Mandal, Sudhir K; Roy, Raja
2005-06-01
This article describes proton MR spectroscopic analysis of cerebrospinal fluid of 167 children suffering from meningitis and 24 control cases. Quantification of 12 well-separated and commonly observed cerebrospinal fluid metabolites viz., beta-hydroxybutyrate, lactate, alanine, acetate, acetone, acetoacetate, pyruvate, glutamine, citrate, creatine/creatinine, glucose (total) and urea was carried out using Bruker's NMRQUANT software with respect to a known concentration of sodium-3-(trimethylsilyl)-2,2,3,3-d4-propionate (TSP), serving as an external reference. The assignment of urea in CSF is reported for the first time by NMR. The presence of cyclopropane, observed for the first time in tuberculous meningitis overall in 85.1% of cases, acts as a finger-print marker for the differential diagnosis. Multivariate discriminant function analysis was carried out for the proton MR-detected metabolite information and the clinical symptoms data of the meningitis and control cases to find the important descriptors for classification, followed by a re-validation of the entire database. It was found that the control could be differentiated from the disease group with a success rate of 96.4%, followed by the differential diagnosis of tuberculous meningitis with a corresponding value of 77.2%. Excluding the presence of cyclopropane, bacterial meningitis could be classified 84.4% correct and viral meningitis with a rate of 83.3%. It is proposed that the NMR spectroscopic information, along with other routine clinical features, may serve as an additional diagnostic tool for the differential diagnosis of meningitis in children. Copyright 2004 John Wiley & Sons, Ltd
Unusual heme iron-lipid acyl chain coordination in Escherichia coli flavohemoglobin.
D'Angelo, Paola; Lucarelli, Debora; della Longa, Stefano; Benfatto, Maurizio; Hazemann, Jean Louis; Feis, Alessandro; Smulevich, Giulietta; Ilari, Andrea; Bonamore, Alessandra; Boffi, Alberto
2004-06-01
Escherichia coli flavohemoglobin is endowed with the notable property of binding specifically unsaturated and/or cyclopropanated fatty acids both as free acids or incorporated into a phospholipid molecule. Unsaturated or cyclopropanated fatty acid binding to the ferric heme results in a spectral change observed in the visible absorption, resonance Raman, extended x-ray absorption fine spectroscopy (EXAFS), and x-ray absorption near edge spectroscopy (XANES) spectra. Resonance Raman spectra, measured on the flavohemoglobin heme domain, demonstrate that the lipid (linoleic acid or total lipid extracts)-induced spectral signals correspond to a transition from a five-coordinated (typical of the ligand-free protein) to a hexacoordinated, high spin heme iron. EXAFS and XANES measurements have been carried out both on the lipid-free and on the lipid-bound protein to assign the nature of ligand in the sixth coordination position of the ferric heme iron. EXAFS data analysis is consistent with the presence of a couple of atoms in the sixth coordination position at 2.7 A in the lipid-bound derivative (bonding interaction), whereas a contribution at 3.54 A (nonbonding interaction) can be singled out in the lipid-free protein. This last contribution is assigned to the CD1 carbon atoms of the distal LeuE11, in full agreement with crystallographic data on the lipid-free protein at 1.6 A resolution obtained in the present work. Thus, the contributions at 2.7 A distance from the heme iron are assigned to a couple of carbon atoms of the lipid acyl chain, possibly corresponding to the unsaturated carbons of the linoleic acid.
Li, De-Yao; Wei, Yin; Shi, Min
2013-11-11
Diynes containing a cyclopropane group smoothly undergo a novel intramolecular and stereoselective cascade addition/cyclization reaction to produce the corresponding 1-methyleneindene derivatives in moderate to good yields. This interesting transformation is mediated by Grignard reagent/CuI with LiCl as an additive under mild conditions. The obtained product can easily be further functionalized through cyclopropyl ring opening. A plausible reaction mechanism has also been presented on the basis of deuterium labeling and control experiments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glutarimide alkaloids and a terpenoid benzoquinone from Cordia globifera.
Parks, Joshua; Gyeltshen, Thinley; Prachyawarakorn, Vilailak; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat
2010-05-28
Three new compounds, a meroterpene (2) having a cyclopropane moiety named globiferane and glutarimide alkaloids named cordiarimides A (3) and B (4), were isolated from the roots of Cordia globifera. Compounds 2-4 exhibited weak cytotoxic activity. Cordiarimide B (4) exhibited radical scavenging activity, as it inhibited superoxide anion radical formation in the xanthine/xanthine oxidase (XXO) assay, and also suppressed superoxide anion generation in differentiated HL-60 human promyelocytic leukemia cells when induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). This is the first report on the presence of glutarimide alkaloids in the genus Cordia.
Pallerla, Mahesh K; Yap, Glenn P A; Fox, Joseph M
2008-08-15
Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to mu-bonded, five-carbon "flyover" carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes.
Uenishi, Yuko; Fujita, Yukiko; Kusunose, Naoto; Yano, Ikuya; Sunagawa, Makoto
2008-02-01
The mycobacterial cell envelope consists of a characteristic cell wall skeleton (CWS), a mycoloyl arabinogalactan peptidoglycan complex, and related hydrophobic components that contribute to the cell surface properties. Since mycolic acids have recently been reported to play crucial roles in host immune response, detailed molecular characterization of mycolic acid subclasses and sub-subclasses of CWS from Mycobacterium bovis BCG Tokyo 172 (SMP-105) was performed. Mycolic acids were liberated by alkali hydrolysis from SMP-105, and their methyl esters were separated by silica gel TLC into three subclasses: alpha-, methoxy-, and keto-mycolates. Each mycolate subclass was further separated by silver nitrate (AgNO(3))-coated silica gel TLC into sub-subclasses. Molecular weights of individual mycolic acid were determined by MALDI-TOF mass spectrometry. alpha-Mycolates were sub-grouped into cis, cis-dicyclopropanoic (alpha1), and cis-monocyclopropanoic-cis-monoenoic (alpha2) series; methoxy-mycolates were sub-grouped into cis-monocyclopropanoic (m1), trans-monocyclopropanoic (m2), trans-monoenoic (m3), cis-monocyclopropanoic-trans-monoenoic (m4), cis-monoenoic (m5), and cis-monocyclopropanoic-cis-monoenoic (m6) series; and keto-mycolates were sub-grouped into cis-monocyclopropanoic (k1), trans-monocyclopropanoic (k2), trans-monoenoic (k3), cis-monoenoic (k4), and cis-monocyclopropanoic-cis-monoenoic (k5) series. The position of each functional group, including cyclopropane rings and methoxy and keto groups, was determined by analysis of the meromycolates with fast atom bombardment (FAB) mass spectrometry and FAB mass-mass spectrometry, and the cis/trans ratio of cyclopropane rings and double bonds were determined by NMR analysis of methyl mycolates. Mycolic acid subclass and molecular species composition of SMP-105 showed characteristic features including newly-identified cis-monocyclopropanoic-trans-monoenoic mycolic acid (m4).
Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L
2014-03-01
Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.
Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil
Yu, Xiao-Hong; Cahoon, Rebecca E.; Horn, Patrick J.; ...
2017-09-20
Modified fatty acids (mFA) have diverse uses, e.g., cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics, and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. In order to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation, and seedlingmore » development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon coexpression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. Finally, the identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.« less
Sandjo, Louis P; Nascimento, Marcus V P Dos Santos; da Silva, Layzon A L; Munhoz, Antonio C M; Pollo, Luiz A E; Biavatti, Maique W; Ngadjui, Bonaventure T; Opatz, Till; Fröde, Tania S
2017-01-01
Triterpenes are one of the largest secondary metabolites groups spread in the plant kingdom with various skeletons. These metabolites have showed various bioactivities including anti-inflammatory activity. The study aims to explore the mass spectrometry fragmentation of donellanic acids A-C (DA A-C), three compounds identified from Donella ubanguiensis; in addition, the fragmentation behaviour of these metabolites will serve as a fingerprint to search and characterise triterpenes congeners in fruits, bark and wood crude extracts of D. ubanguiensis. This work was prompted by the anti-inflammatory activity on leukocyte migration, exudate concentrations and myeloperoxidase activity obtained for DA A-B. The bioactivity was performed on mouse model of pleurisy induced by carrageenan and the parameters were analysed by veterinarian automated cell counter and colorimetric assays. While the tandem mass analyses of DA A-C were carried out by a direct infusion ESI-QTOF-MS/MS, the extracts were studied by UPLC-ESI-QTOF-MS and UPLC-ESI-QTOF-MS/MS. DA A displayed interesting anti-inflammatory activity by inhibiting leukocyte migration, exudate concentrations and myeloperoxidase activity (p < 0.05) while DA B was weakly active (p > 0.05). Moreover, the diagnostic of the MS 2 behaviour of DA A-C in conjunction with the chromatograms and the obtained MS 2 data of the crude extract led to the characterisation of three cyclopropane triterpenes (T1-T3) and six saponins (T4-T9) from the fruits, the bark, and the wood extracts. Donella species deserve more investigation since metabolites related to the anti-inflammatory compound (DA A) could be identified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiao-Hong; Cahoon, Rebecca E.; Horn, Patrick J.
Modified fatty acids (mFA) have diverse uses, e.g., cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics, and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. In order to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation, and seedlingmore » development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon coexpression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. Finally, the identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.« less
Interfacing Biocompatible Reactions with Engineered Escherichia coli.
Wallace, Stephen; Balskus, Emily P
2017-01-01
Biocompatible chemistry represents a new way of merging chemical and biological synthesis by interfacing nonenzymatic reactions with metabolic pathways. This approach can enable the production of nonnatural molecules directly from renewable starting materials via microbial fermentation. When developing a new biocompatible reaction certain criteria must be satisfied, i.e., the reaction must be (1) functional in aqueous growth media at ambient temperature and pH, (2) nontoxic to the producing microorganism, and (3) have negligible effects on the targeted metabolic pathway. This chapter provides a detailed outline of two biocompatible reaction procedures (hydrogenation and cyclopropanation), and describes some of the chemical and microbiological experiments and considerations required during biocompatible reaction development.
Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe
2012-08-01
Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu
2014-01-01
Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709
Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria.
Zeng, Jun; Zhang, Dong-Bo; Zhou, Pan-Pan; Zhang, Qi-Li; Zhao, Lei; Chen, Jian-Jun; Gao, Kun
2017-08-04
Two unusual normonoterpenoid indole alkaloids rauvomine A (1) and rauvomine B (2), together with two known compounds peraksine (3) and alstoyunine A (4), were isolated from the aerial parts of Rauvolfia vomitoria. The structures with absolute configurations of 1 and 2 were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 2 is a novel C 18 normonoterpenoid indole alkaloid with a substituted cyclopropane ring that forms an unusual 6/5/6/6/3/5 hexcyclic rearranged ring system. The plausible biogenetic pathways of 1 and 2 were proposed. Compound 2 exhibited significant anti-inflammatory activity.
Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.
2009-01-01
Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694
Yuan, Wei; Dong, Xiang; Shi, Min; McDowell, Patrick; Li, Guigen
2012-11-02
An intramolecular Pauson-Khand type cycloaddition reaction of ene-vinylidenecyclopropanes with carbon monoxide has been established by using [Rh(COD)Cl](2) as the catalyst. The reaction was found to be highly efficient in solvents of 1,2-dichloroethane and 1,1,2,2-tetrachloroethane to give excellent yields of 90-99%. The reaction provides easy access to a series of fused 6,5-ring structures containing spiro-cyclopropane units that are useful for drug design and development. A mechanism of this cycloaddition process has been proposed accounting for structures of resulting products that were unambiguously assigned by X-ray diffractional analysis.
DeAngelis, Andrew; Panish, Robert; Fox, Joseph M
2016-01-19
Rh-carbenes derived from α-diazocarbonyl compounds have found broad utility across a remarkable range of reactivity, including cyclopropanation, cyclopropenation, C-H insertions, heteroatom-hydrogen insertions, and ylide forming reactions. However, in contrast to α-aryl or α-vinyl-α-diazocarbonyl compounds, the utility of α-alkyl-α-diazocarbonyl compounds had been moderated by the propensity of such compounds to undergo intramolecular β-hydride migration to give alkene products. Especially challenging had been intermolecular reactions involving α-alkyl-α-diazocarbonyl compounds. This Account discusses the historical context and prior limitations of Rh-catalyzed reactions involving α-alkyl-α-diazocarbonyl compounds. Early studies demonstrated that ligand and temperature effects could influence chemoselectivity over β-hydride migration. However, effects were modest and conflicting conclusions had been drawn about the influence of sterically demanding ligands on β-hydride migration. More recent advances have led to a more detailed understanding of the reaction conditions that can promote intermolecular reactivity in preference to β-hydride migration. In particular, the use of bulky carboxylate ligands and low reaction temperatures have been key to enabling intermolecular cyclopropenation, cyclopropanation, carbonyl ylide formation/dipolar cycloaddition, indole C-H functionalization, and intramolecular bicyclobutanation with high chemoselectivity over β-hydride migration. Cyclic α-diazocarbonyl compounds have been shown to be particularly resilient toward β-hydride migration and are the first class of compounds that can engage in intermolecular reactivity in the presence of tertiary β-hydrogens. DFT calculations were used to propose that for cyclic α-diazocarbonyl compounds, ring constraints relieve steric interaction for intermolecular reactions and thereby accelerate the rate of intermolecular reactivity relative to intramolecular β-hydride migration. Enantioselective reactions of α-alkyl-α-diazocarbonyl compounds have been developed using bimetallic N-imido-tert-leucinate-derived complexes. The most effective complexes were found by computation and X-ray crystallography to adopt a "chiral crown" conformation in which all of the imido groups are presented on one face of the paddlewheel complex in a chiral arrangement. Insight from computational studies guided the design and synthesis of a mixed ligand paddlewheel complex, Rh2(S-PTTL)3TPA, the structure of which bears similarity to the chiral crown complex Rh2(S-PTTL)4. Rh2(S-PTTL)3TPA engages substrate classes (aliphatic alkynes, silylacetylenes, α-olefins) that are especially challenging in intermolecular reactions of α-alkyl-α-diazoesters and catalyzes enantioselective cyclopropanation, cyclopropenation, and indole C-H functionalization with yields and enantioselectivities that are comparable or superior to Rh2(S-PTTL)4. The work detailed in this Account describes progress toward enabling a more general utility for α-alkyl-α-diazo compounds in Rh-catalyzed carbene reactions. Further studies on ligand design and synthesis will continue to broaden the scope of their selective reactions.
Copper-Catalyzed Chan-Lam Cyclopropylation of Phenols and Azaheterocycles.
Derosa, Joseph; O'Duill, Miriam L; Holcomb, Matthew; Boulous, Mark N; Patman, Ryan L; Wang, Fen; Tran-Dubé, Michelle; McAlpine, Indrawan; Engle, Keary M
2018-04-06
Small molecules containing cyclopropane-heteroatom linkages are commonly needed in medicinal chemistry campaigns yet are problematic to prepare using existing methods. To address this issue, a scalable Chan-Lam cyclopropylation reaction using potassium cyclopropyl trifluoroborate has been developed. With phenol nucleophiles, the reaction effects O-cyclopropylation, whereas with 2-pyridones, 2-hydroxybenzimidazoles, and 2-aminopyridines the reaction brings about N-cyclopropylation. The transformation is catalyzed by Cu(OAc) 2 and 1,10-phenanthroline and employs 1 atm of O 2 as the terminal oxidant. This method is operationally convenient to perform and provides a simple, strategic disconnection toward the synthesis of cyclopropyl aryl ethers and cyclopropyl amine derivatives bearing an array of functional groups.
Gallardo, Mercedes; Delgado, María del Mar; Sánchez-Calle, Isabel María; Matilla, Angel Jesús
1991-01-01
The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity. PMID:16668358
Yuan, Wei; Dong, Xiang; McDowell, Patrick
2012-01-01
An intramolecular Pauson-Khand type cycloaddition reaction of ene-vinylidenecyclopropanes with carbon monoxide has been established by using [Rh(COD)Cl]2 as the catalyst. The reaction was found to be highly efficient in solvents of 1,2-dichloroethane and 1,1,2,2-tetrachloroethane to give excellent yields of 90 – 99%. The reaction provides easy access to a series of fused 6,5-ring structures containing spiro-cyclopropane units that are useful for drug design and development. A mechanism of this cycloaddition process has been proposed accounting for structures of resulting products that were unambiguously assigned by X-ray diffractional analysis. PMID:23098194
Conformations and charge distributions of diazocyclopropanes
NASA Astrophysics Data System (ADS)
Borges, Itamar, Jr.
Three diazo-substituted cyclopropane compounds, which have been suggested as new potential high energy compounds, were studied employing the B3LYP-DFT/6-31G(d,p) method. Geometries were optimized. Distributed multipole analysis, computed from the B3LYP-DFT/6-31G(d,p) density matrix, was used to describe the details of the molecular charge distribution of the three molecules. It was verified that electron withdrawing from the C ring atoms and charge build-up on the N atoms bonded to the ring increased with the number of diazo groups. These effects were related to increased sensitivity to impact and easiness of C bond N bond breaking in the three compounds.
NASA Astrophysics Data System (ADS)
Zolghadr, Amin Reza; Boroomand, Samaneh
2017-02-01
Drug absorption at an acceptable dose depends on the pair of solubility and permeability. There are many potent therapeutics that are not active in vivo, presumably due to the lack of capability to cross the cell membrane. Molecular dynamics simulation of radicicol, diol-radicicol, cyclopropane-radicicol and 17-DMAG were performed at water/octanol interface to suggest interfacial activity as a physico-chemical characteristic of these heat shock protein 90 (HSP90) inhibitors. We have observed that orally active HSP90 inhibitors form aggregates at the water/octanol and DPPC-lipid/water interfaces by starting from an initial configuration with HSP90 inhibitors embedded in the water matrix.
Spirocyclopropane-type sesquiterpene hydrocarbons from Schinus terebinthifolius Raddi.
Richter, Rita; von Reuss, Stephan H; König, Wilfried A
2010-08-01
The essential oil of Schinus terebinthifolius fruits was reinvestigated using GC and GC-MS techniques. Apart from several known compounds three sesquiterpene hydrocarbons with a carbon skeleton exhibiting the rare spiro(cyclopropane) moiety could be isolated by a combination of column chromatography and GLC. Structure assignments were carried out by NMR spectroscopy. These natural products are 9-spiro(cyclopropa)-4,4,8-trimethyl-2-methylenbicyclo[4.3.0]non-1(6)-ene (terebanene), 9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]nona-1,5-diene (teredenene), and (6R*,8R*)-9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]non-1-ene (terebinthene). Copyright 2010 Elsevier Ltd. All rights reserved.
Thermochemical Studies of Epoxides and Related Compounds
Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna
2013-01-01
Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240
Wipf, Peter; Xiao, Jingbo; Stephenson, Corey R. J.
2010-01-01
Peptides are natural ligands and substrates for receptors and enzymes and exhibit broad physiological effects. However, their use as therapeutic agents often suffers from poor bioavailability and insufficient membrane permeability. The success of peptide mimicry hinges on the ability of bioisosteres, in particular peptide bond replacements, to adopt suitable secondary structures relevant to peptide strands and position functional groups in equivalent space. This perspective highlights past and ongoing studies in our group that involve new methods development as well as specific synthetic library preparations and applications in chemical biology, with the goal to enhance the use of alkene and cyclopropane peptide bond isosteres. PMID:20725595
Lipidomics as an important key for the identification of beer-spoilage bacteria.
Řezanka, T; Matoulková, D; Benada, O; Sigler, K
2015-06-01
Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was used for characterizing intact plasmalogen phospholipid molecules in beer-spoilage bacteria. Identification of intact plasmalogens was carried out using collision-induced dissociation and the presence of suitable marker molecular species, both qualitative and quantitative, was determined in samples containing the anaerobic bacteria Megasphaera and Pectinatus. Using selected ion monitoring (SIM), this method had a limit of detection at 1 pg for the standard, i.e. 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine and be linear in the range of four orders of magnitude from 2 pg to 20 ng. This technique was applied to intact plasmalogen extracts from the samples of contaminated and uncontaminated beer without derivatization and resulted in the identification of contamination of beer by Megasphaera and Pectinatus bacteria. The limit of detection was about 830 cells of anaerobic bacteria, i.e. bacteria containing natural cyclopropane plasmalogenes (c-p-19:0/15:0), which is the majority plasmalogen located in both Megasphaera and Pectinatus. The SIM ESI-MS method has been shown to be useful for the analysis of low concentration of plasmalogens in all biological samples, which were contaminated with anaerobic bacteria, e.g. juice, not only in beer. Significance and impact of the study: Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) using collision-induced dissociation was used to characterize intact plasmalogen phospholipid molecules in beer-spoilage anaerobic bacteria Megasphaera and Pectinatus. Using selected ion monitoring (SIM), this method has a detection limit of 1 pg for the standard 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine and is linear within four orders of magnitude (2 pg to 20 ng). The limit of detection was about 830 cells of bacteria containing natural cyclopropane plasmalogen (c-p-19:0/15:0). SIM ESI-MS method is useful for analyzing low concentrations of plasmalogens in biological samples contaminated with anaerobic bacteria, e.g. beer or juice. © 2015 The Society for Applied Microbiology.
Survival of Salmonella enterica in poultry feed is strain dependent
Andino, Ana; Pendleton, Sean; Zhang, Nan; Chen, Wei; Critzer, Faith; Hanning, Irene
2014-01-01
Feed components have low water activity, making bacterial survival difficult. The mechanisms of Salmonella survival in feed and subsequent colonization of poultry are unknown. The purpose of this research was to compare the ability of Salmonella serovars and strains to survive in broiler feed and to evaluate molecular mechanisms associated with survival and colonization by measuring the expression of genes associated with colonization (hilA, invA) and survival via fatty acid synthesis (cfa, fabA, fabB, fabD). Feed was inoculated with 1 of 15 strains of Salmonella enterica consisting of 11 serovars (Typhimurium, Enteriditis, Kentucky, Seftenburg, Heidelberg, Mbandanka, Newport, Bairely, Javiana, Montevideo, and Infantis). To inoculate feed, cultures were suspended in PBS and survival was evaluated by plating samples onto XLT4 agar plates at specific time points (0 h, 4 h, 8 h, 24 h, 4 d, and 7 d). To evaluate gene expression, RNA was extracted from the samples at the specific time points (0, 4, 8, and 24 h) and gene expression measured with real-time PCR. The largest reduction in Salmonella occurred at the first and third sampling time points (4 h and 4 d) with the average reductions being 1.9 and 1.6 log cfu per g, respectively. For the remaining time points (8 h, 24 h, and 7 d), the average reduction was less than 1 log cfu per g (0.6, 0.4, and 0.6, respectively). Most strains upregulated cfa (cyclopropane fatty acid synthesis) within 8 h, which would modify the fluidity of the cell wall to aid in survival. There was a weak negative correlation between survival and virulence gene expression indicating downregulation to focus energy on other gene expression efforts such as survival-related genes. These data indicate the ability of strains to survive over time in poultry feed was strain dependent and that upregulation of cyclopropane fatty acid synthesis and downregulation of virulence genes were associated with a response to desiccation stress. PMID:24570467
Survival of Salmonella enterica in poultry feed is strain dependent.
Andino, Ana; Pendleton, Sean; Zhang, Nan; Chen, Wei; Critzer, Faith; Hanning, Irene
2014-02-01
Feed components have low water activity, making bacterial survival difficult. The mechanisms of Salmonella survival in feed and subsequent colonization of poultry are unknown. The purpose of this research was to compare the ability of Salmonella serovars and strains to survive in broiler feed and to evaluate molecular mechanisms associated with survival and colonization by measuring the expression of genes associated with colonization (hilA, invA) and survival via fatty acid synthesis (cfa, fabA, fabB, fabD). Feed was inoculated with 1 of 15 strains of Salmonella enterica consisting of 11 serovars (Typhimurium, Enteriditis, Kentucky, Seftenburg, Heidelberg, Mbandanka, Newport, Bairely, Javiana, Montevideo, and Infantis). To inoculate feed, cultures were suspended in PBS and survival was evaluated by plating samples onto XLT4 agar plates at specific time points (0 h, 4 h, 8 h, 24 h, 4 d, and 7 d). To evaluate gene expression, RNA was extracted from the samples at the specific time points (0, 4, 8, and 24 h) and gene expression measured with real-time PCR. The largest reduction in Salmonella occurred at the first and third sampling time points (4 h and 4 d) with the average reductions being 1.9 and 1.6 log cfu per g, respectively. For the remaining time points (8 h, 24 h, and 7 d), the average reduction was less than 1 log cfu per g (0.6, 0.4, and 0.6, respectively). Most strains upregulated cfa (cyclopropane fatty acid synthesis) within 8 h, which would modify the fluidity of the cell wall to aid in survival. There was a weak negative correlation between survival and virulence gene expression indicating downregulation to focus energy on other gene expression efforts such as survival-related genes. These data indicate the ability of strains to survive over time in poultry feed was strain dependent and that upregulation of cyclopropane fatty acid synthesis and downregulation of virulence genes were associated with a response to desiccation stress.
Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses
Winkler, James; Kao, Katy C.
2011-01-01
Background The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks. Methodology and Principal Findings This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19∶1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance. Conclusions Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors to enable facile production of biofuels from lignocellulosic biomass. PMID:21829598
Petersen, Søren O; Roslev, Peter; Bol, Roland
2004-11-01
Within grazed pastures, urine patches are hot spots of nitrogen turnover, since dietary N surpluses are excreted mainly as urea in the urine. This short-term experiment investigated 13C uptake in microbial lipids after simulated deposition of cattle urine at 10.0 and 17.1 g of urea C m(-2). Confined field plots without or with cattle urine amendment were sampled after 4 and 14 days, and soil from 0- to 5-cm and 10- to 20-cm depths was analyzed for content and composition of phospholipid fatty acids (PLFAs) and for the distribution of urea-derived 13C among individual PLFAs. Carbon dioxide emissions were quantified, and the contributions derived from urea were assessed. Initial changes in PLFA composition were greater at the lower level of urea, as revealed by a principal-component analysis. At the higher urea level, osmotic stress was indicated by the dynamics of cyclopropane fatty acids and branched-chain fatty acids. Incorporation of 13C from [13C]urea was low but significant, and the largest amounts of urea-derived C were found in common fatty acids (i.e., 16:0, 16:1omega7c, and 18:1omega7) that would be consistent with growth of typical NH4(+)-oxidizing (Nitrosomonas) and NO2(-)-oxidizing (Nitrobacter) bacteria. Surprisingly, a 20 per thousand depletion of 13C in the cyclopropane fatty acid cy17:0 was observed after 4 days, which was replaced by a 10 to 20 per thousand depletion of that in cy19:0 after 14 days. Possible reasons for this pattern are discussed. Autotrophic nitrifiers could not be implicated in urea hydrolysis to any large extent, but PLFA dynamics and the incorporation of urea-derived 13C in PLFAs indicated a response of nitrifiers which differed between the two urea concentrations.
Petersen, Søren O.; Roslev, Peter; Bol, Roland
2004-01-01
Within grazed pastures, urine patches are hot spots of nitrogen turnover, since dietary N surpluses are excreted mainly as urea in the urine. This short-term experiment investigated 13C uptake in microbial lipids after simulated deposition of cattle urine at 10.0 and 17.1 g of urea C m−2. Confined field plots without or with cattle urine amendment were sampled after 4 and 14 days, and soil from 0- to 5-cm and 10- to 20-cm depths was analyzed for content and composition of phospholipid fatty acids (PLFAs) and for the distribution of urea-derived 13C among individual PLFAs. Carbon dioxide emissions were quantified, and the contributions derived from urea were assessed. Initial changes in PLFA composition were greater at the lower level of urea, as revealed by a principal-component analysis. At the higher urea level, osmotic stress was indicated by the dynamics of cyclopropane fatty acids and branched-chain fatty acids. Incorporation of 13C from [13C]urea was low but significant, and the largest amounts of urea-derived C were found in common fatty acids (i.e., 16:0, 16:1ω7c, and 18:1ω7) that would be consistent with growth of typical NH4+-oxidizing (Nitrosomonas) and NO2−-oxidizing (Nitrobacter) bacteria. Surprisingly, a 20‰ depletion of 13C in the cyclopropane fatty acid cy17:0 was observed after 4 days, which was replaced by a 10 to 20‰ depletion of that in cy19:0 after 14 days. Possible reasons for this pattern are discussed. Autotrophic nitrifiers could not be implicated in urea hydrolysis to any large extent, but PLFA dynamics and the incorporation of urea-derived 13C in PLFAs indicated a response of nitrifiers which differed between the two urea concentrations. PMID:15528493
EFFECT OF RADIATION ON RESPONSE TO ANESTHETIC AGENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauder, H.L.; Orkin, L.R.
1963-07-01
An attempt was made to determine if prior irradiation modified the response to anesthesia or if any anesthetic or anesthetics are associated with an abnormally high or low mortality, following irradiation. Swiss mice were irradiated by a conventional radiotherapy machine utilizing 250-kv x rays with 1- mm aluiminum and 0.5 mm copper filtration. The half-value layer was 1.5 mm of copper, and with a target-skin distance of 70 cm; the dose rate in air was 52 r/ min. A dose-response curve, relating mortality at 30 days to the amount of radiation delivered gave an LD/sub 5/ of 350 r, LD/submore » 25/ of 450 r, and LD/sub 95/ of 750 r. A chamber for the anesthetization of small animals with a known, reproducible concentration of anesthetic agent was designed providing for constant circulation of the gas mixtures, explosive or nonexplosive. Utilizing this apparatus, groups of mice were andesthetized with 6% divinyl ether, 6% diethyl ether, 1.5% halothane, 1.8% trichlorethylene, and 18% cyclopropane. With the latter, oxygen was added to the chamber in sufficient quandtity to provide a concentration of 20 to 25%. Pentobarbital (Nembutal) 30 mg/kg, thiopental sodium (Pentothal) 70 mg/kg, or meperidine hydrochloride (Demerol) 25 mg/kg was injected intraperitoneally into mice with and without prior x radiation. There was no mortality associated with these dosages in the control animals. All drugs were administered to the irradiated animals on the 1st to 28th day postirradiation. In mice irradiated with an LD/sub 5/ (350 r) and anesthetized subsequently with divinyl ether, diethyl ether, or halothane, an increase in the mortality over control values was observed. This increase was greatest following divinyl ether; its administration 7 or more days following irradiation resulted in the death of 10 to 30% of the animals during the 45-min period of anesthetization. After 350 r, meperidine and pentobarbital did not increase montality, but thiopental increased markedly the number of deaths when administered on the 2nd, 4th, or 21st day postirradiation. After 450 r the mortality rate was increased markedly, but cyclopropane was associated with the least increase. As with the volatile agents, mortality following the parenterally administered agents increased as the dose of radiation increased, but no difference wss demonstrated between pentobarbital and its thio derivative. Sleeping time following both drugs was increased 3-fold over that in controls. The mortality following anesthesia in mice who received 750-r (LD/sub 95/) made it impossible to anesthetize these animals beyond the 7th day postirradiation. Again, a significant number of deaths under anesthesia occurred with divinyl ether, and sleeping time following the barbiturates was prolonged, but not beyond the 3-fold increase which was seen at 450 r. It is concluded that divinyl ether is associated with the highest overall mortality and cyclopropane with the lowest; decreasing the concentration of diethyl ether decreases the mortality. The cause of the increased mortality is unknown, since gross and microscopic examinations of autopsy material failed to reveal any differences accounting for these results. (BBB)« less
Recent developments in the metal-catalyzed reactions of metallocarbenoids from propargylic esters.
Marco-Contelles, José; Soriano, Elena
2007-01-01
The transition-metal-catalyzed intramolecular cycloisomerization of propargylic carboxylates provides functionalized bicyclo[n.1.0]enol esters in a very diastereoselective manner and, depending on the structure, with partial or complete transfer of chirality from enantiomerically pure precursors. The subsequent methanolysis gives bicyclo[n.1.0] ketones, hence resulting in a very efficient two-step protocol for the syntheses of alpha,beta-unsaturated cyclopropyl ketones, key intermediates for the preparation of natural products. The results from mechanistic computational studies suggest that they probably proceed through cyclopropyl metallocarbenoids, formed by endo-cyclopropanation, that undergo a 1,2-acyl migration. Finally, the potential of the intermolecular reaction and the related pentannulation of propargylic esters bearing pendant aromatic rings are also discussed.
Evolution of structure and reactivity in a series of iconic carbenes.
Zhang, Min; Moss, Robert A; Thompson, Jack; Krogh-Jespersen, Karsten
2012-01-20
We present experimental activation parameters for the reactions of six carbenes (CCl(2), CClF, CF(2), ClCOMe, FCOMe, and (MeO)(2)C) with six alkenes (tetramethylethylene, cyclohexene, 1-hexene, methyl acrylate, acrylonitrile, and α-chloroacrylonitrile). Activation energies range from -1 kcal/mol for the addition of CCl(2) to tetramethylethylene to 11 kcal/mol for the addition of FCOMe to acrylonitrile. A generally satisfactory analysis of major trends in the evolution of carbenic structure and reactivity is afforded by qualitative applications of frontier molecular orbital theory, although the observed entropies of activation appear to fall in a counterintuitive pattern. An analysis of computed cyclopropanation transition state parameters reveals significant nucleophilic selectivity of (MeO)(2)C toward α-chloroacrylonitrile.
Gianino, Joseph B; Campos, Catherine A; Lepore, Antonio J; Pinkerton, David M; Ashfeld, Brandon L
2014-12-19
A titanocene-catalyzed multicomponent coupling is described herein. Using catalytic titanocene, phosphine, and zinc dust, zinc acetylides can be generated from the corresponding iodoalkynes to affect sequential nucleophilic additions to aromatic aldehydes. The intermediate propargylic alkoxides are trapped in situ with acetic anhydride, which are susceptible to a second nucleophilic displacement upon treatment with a variety of electron-rich species, including acetylides, allyl silanes, electron-rich aromatics, silyl enol ethers, and silyl ketene acetals. Additionally, employing cyclopropane carboxaldehydes led to ring-opened products resulting from iodine incorporation. Taken together, these results form the basis for a new mode of three-component coupling reactions, which allows for rapid access to value added products in a single synthetic operation.
Nosworthy, M D
1941-06-01
Problems in chest surgery: Cases with prolonged toxaemia or amyloid disease require an anaesthetic agent of low toxicity. When sputum or blood are present in the tracheobronchial tree the anaesthesia should abolish reflex distrubances and excessive sputum be removed by suction. The technique should permit the use of a high oxygen atmosphere; controlled respiration with cyclopropane or ether fulfil these requirements. Open pneumothorax is present when a wound of the chest wall allows air to pass in and out of the pleural cavity. The lung on the affected side collapses and the mediastinum moves over and partly compresses the other lung.The dangers of an open pneumothorax: (1) Paradoxical respiration-the lung on the affected side partially inflates on expiration and collapses on inspiration. Part of the air entering the good lung has been shuttled back from the lung on the affected side and is therefore vitiated. Full expansion of the sound lung is handicapped by the initial displacement of the mediastinum which increases on inspiration. The circulation becomes embarrassed.(2) Vicious circle coughing. During a paroxysm of coughing dyspnoea will occur. This accentuates paradoxical respiration and starts a vicious circle. Death from asphyxia may result.Special duties of the anaesthetist: (1) To carry out or supervise continuous circulatory resuscitation. During a thoracotomy a drip blood transfusion maintains normal blood-pressure and pulse-rate.(2) To maintain effcient respiration.Positive pressure anaesthesia: Risk of impacting secretions in smaller bronchi with subsequent atelectasis; eventual risk of CO(2) poisoning without premonitory signs.Controlled respiration: (1) How it is produced. (2) Its uses in chest surgery.Controlled respiration means that the anaesthetist, having abolished the active respiratory efforts of the patient, maintains an efficient tidal exchange by rhythmic squeezing of the breathing bag. This may be done mechanically by Crafoord's modification of Frenkner's spiropulsator or by hand.Active respiration will cease (i) if the patient's CO(2) is lowered sufficiently by hyperventilation, (ii) if the patient's respiratory centre is depressed sufficiently by sedative and anaesthetic drugs, and (iii) by a combination of (i) and (ii) of less degree.The author uses the second method, depressing the respiratory centre with omnoponscopolamine, pentothal sodium, and then cyclopropane. The CO(2) absorption method is essential for this technique, and this and controlled respiration should be mastered by the anaesthetist with a familiar agent and used at first only in uncomplicated cases.The significance of cardiac arrhythmias occuring with cyclopropane is discussed.The place of the other available anaesthetic agents is discussed particularly on the advisability of using local anaesthesia for the drainage of empyema or lung abscess.Pharyngeal airway or endotracheal tube? Anaesthesia may be maintained with a pharyngeal airway in many cases but intubation must be used when tracheobronchial suction may be necessary and when there may be difficulty in maintaining an unobstructed airway.A one-lung anaesthesia is ideal for pneumonectomy. This may be obtained by endotracheal anaesthesia after bronchial tamponage of the affected side (Crafoord, v. fig. 6b) or by an endobronchial intubation of the sound side (v. figs. 9b and 9c). Endobronchial placing of the breathing tube may be performed "blind". Before deciding on blind bronchial intubation, the anaesthetist must examine X-ray films for any abnormality deviating the trachea or bronchi. Though the right bronchus may be easily intubated blindly as a rule, there is the risk of occluding the orifice of the upper lobe bronchus (fig. 9d) when the patient will become cyanosed. If the tube bevel is facing its orifice the risk of occlusion will be decreased (fig. 9c).Greater accuracy in placing the tube can be effected by inserting it under direct vision. Instruments for performing this manoeuvre are described.In lobectomy for bronchiectasis the anaesthetist must try to prevent the spread of infection to other parts. Ideally, the bronchus of the affected lobe should be plugged with ribbon gauze (Crafoord, v. fig. 6c) or a suction catheter with a baby balloon on it placed in the affected bronchus. In the presence of a large bronchopleural fistula controlled respiration cannot be established during operation. As the surgeon is rarely able to plug the fistula, if pneumonectomy is to be performed intubation for a one-lung anaesthesia is the best method. During other procedures it is essential to maintain quiet respiration.In war casualties it is almost always possible, with the technique described, to leave the lung on the affected side fully expanded and thus frequently to restore normal respiratory physiology. Co-operation between surgeon and anaesthetist is essential.
Design and Synthesis of a Library of Tetracyclic Hydroazulenoisoindoles
Brummond, Kay M.; Mao, Shuli; Shinde, Sunita N.; Johnston, Paul J.; Day, Billy W.
2009-01-01
Forty-four tetracyclic hydroazulenoisoindoles were synthesized via a tandem cyclopropanation/Cope rearrangement followed by a Diels-Alder sequence from easily available five-membered cyclic cross-conjugated trienones. These trienones were obtained from two different routes depending upon whether R1 and R2 are alkyl or amino acid derived functional groups, via a rhodium(I)-catalyzed cycloisomerization reaction. In order to increase diversity, four maleimides and two 1,2,4-triazoline-3,5-diones were used as dienophiles in the Diels-Alder step. Several Diels-Alder adducts were further reacted under palladium-catalyzed hydrogenation conditions, leading to a diastereoselective reduction of the trisubstituted double bond. This library has demonstrated rapid access to a variety of structurally complex natural product-like compounds via stereochemical diversity and building block diversity approaches. PMID:19366169
Ghandi, Mehdi; Mashayekhi, Gholamreza
2007-10-30
Monobromination of 1,5-cyclooctadiene, followed by cyclopropanation with ethyl diazoacetate, led to the formation of endo and exo ethyl 4,5-dibromobicyclo[6.1.0]nonane-9-carboxylates 3a and 3b. Bis-dehydrobromination of 3a and 3b using 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) afforded the endo and exo ethyl bicyclo[6.1.0]nona-3,5-diene-9-carboxylates 4a and 4b. Reduction of these compounds to the corresponding alcohols 5a and 5b and subsequent oxidation with pyridinium chlorochromate (PCC) resulted in the formation of the target compounds endo and exo bicyclo[6.1.0]nona-3,5-diene-9-carboxaldehydes 6a and 6b.
Illy, Nicolas; Majonis, Daniel; Herrera, Isaac; Ornatsky, Olga; Winnik, Mitchell A
2012-08-13
Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.
A comparative study of warheads for design of cysteine protease inhibitors.
Silva, Daniel G; Ribeiro, Jean F R; De Vita, Daniela; Cianni, Lorenzo; Franco, Caio Haddad; Freitas-Junior, Lucio H; Moraes, Carolina Borsoi; Rocha, Josmar R; Burtoloso, Antonio C B; Kenny, Peter W; Leitão, Andrei; Montanari, Carlos A
2017-11-15
The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.
Klaus, Verena; Wittmann, Stéphane; Senn, Hans M; Clark, J Stephen
2018-05-15
A novel method for the stereoselective construction of hexahydroazuleno[4,5-b]furans from simple precursors has been developed. The route involves the use of our recently developed Brønsted acid catalysed cyclisation reaction of acyclic ynenones to prepare fused 1-furanyl-2-alkenylcyclopropanes that undergo highly stereoselective thermal Cope rearrangement to produce fused tricyclic products. Substrates possessing an E-alkene undergo smooth Cope rearrangement at 40 °C, whereas the corresponding Z-isomers do not react at this temperature. Computational studies have been performed to explain the difference in behaviour of the E- and Z-isomers in the Cope rearrangement reaction. The hexahydroazuleno[4,5-b]furans produced by Cope rearrangement have potential as advanced intermediates for the synthesis of members of the guaianolide family of natural products.
The nature of chemical innovation: new enzymes by evolution.
Arnold, Frances H
2015-11-01
I describe how we direct the evolution of non-natural enzyme activities, using chemical intuition and information on structure and mechanism to guide us to the most promising reaction/enzyme systems. With synthetic reagents to generate new reactive intermediates and just a few amino acid substitutions to tune the active site, a cytochrome P450 can catalyze a variety of carbene and nitrene transfer reactions. The cyclopropanation, N-H insertion, C-H amination, sulfimidation, and aziridination reactions now demonstrated are all well known in chemical catalysis but have no counterparts in nature. The new enzymes are fully genetically encoded, assemble and function inside of cells, and can be optimized for different substrates, activities, and selectivities. We are learning how to use nature's innovation mechanisms to marry some of the synthetic chemists' favorite transformations with the exquisite selectivity and tunability of enzymes.
Cytotoxic and Antimicrobial Activity of Dehydrozingerone based Cyclopropyl Derivatives.
Burmudžija, Adrijana Z; Muškinja, Jovana M; Kosanić, Marijana M; Ranković, Branislav R; Novaković, Slađana B; Đorđević, Snežana B; Stanojković, Tatjana P; Baskić, Dejan D; Ratković, Zoran R
2017-08-01
A small series of 1-acetyl-2-(4-alkoxy-3-methoxyphenyl)cyclopropanes was prepared, starting from dehydrozingerone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and its O-alkyl derivatives. Their microbiological activities toward some strains of bacteria and fungi were tested, as well as their in vitro cytotoxic activity against some cancer cell lines (HeLa, LS174 and A549). All synthesized compounds showed significant antimicrobial activity and expressed cytotoxic activity against tested carcinoma cell lines, but they showed no significant influence on normal cell line (MRC5). Butyl derivative is the most active on HeLa cells (IC 50 = 8.63 μm), while benzyl one is active against LS174 and A549 cell lines (IC 50 = 10.17 and 12.15 μm, respectively). © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Rat urinary metabolites of [9,10-methylene-14C] sterculic acid.
Eisele, T A; Yoss, J K; Nixon, J E; PAwlowski, N E; Libbey, L M; Sinnhuber, R O
1977-07-20
1. The metabolism of [9,10-methylene-14C] sterculic acid was studied in corn oil and Stercula foetida oil fed rats. The majority of the radioactivity was excreted into the urine as short chain dicarboxylic acids. The main urinary metabolites were cis-3,4-methylene adipic acid, cis-3,4-methylene suberic acid, trans-3,4-methylene adipic acid, cis-3,4-methylene pimelic acid, and cis-3,4-methylene azelic acid. 2. Formation of these urinary metabolites requires alpha-, beta-, and omega-oxidation plus reduction of the cyclopropene ring to a cyclopropane ring. Sterculic acid must be transported through both mitochondrial and microsomal systems. 3. Other non-radioactive urinary compounds were also identified. A proposed pathway for the metabolism of sterculic acid and possible detrimental effects caused by these metabolites is discussed.
Total Synthesis of Spirotenuipesines A and B
2008-01-01
Spirotenuipesines A and B, isolated from the entomopathogenic fungus Paecilomyces tenuipes by Oshima and co-workers, have been synthesized. The synthesis features the highly stereoselective construction of two vicinal all-carbon quaternary centers (C5 and C6) via an intramolecular cyclopropanation/radical initiated fragmentation sequence and a diastereoselective intermolecular Diels−Alder reaction between α-methylenelactone dienophile 20 and synergistic diene 6a. Installation of the C9 tertiary alcohol occurred via nucleophilic methylation. An RCM reaction to produce a tetrasubstituted double bond in the presence of free allylic alcohol and homoallylic oxygenated functional group is also described. This route shortened the synthesis of 11 from 9 steps to 3 steps. We have further developed a strategy to gain access to optically active spirotenuipesines A and B through the synthesis of enantioenriched 10 from commercially available R-(−)-epichlorohydrin. PMID:18973385
Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.
Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J
2018-01-07
A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .
Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A
NASA Astrophysics Data System (ADS)
Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen
2017-01-01
Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.
Photochemically Switching Diamidocarbene Spin States Leads to Reversible Büchner Ring Expansions.
Perera, Tharushi A; Reinheimer, Eric W; Hudnall, Todd W
2017-10-18
The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ 1 p π 1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.
Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.
Sandoval, Nicholas R; Papoutsakis, Eleftherios T
2016-10-01
Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.
Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi
2017-03-01
Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.
Brodesser, Susanne; Kolter, Thomas
2011-01-01
Most mammalian sphingolipids contain a 4,5-(E)-double bond. We report on the chemical synthesis of a dihydroceramide derivative that prevents the introduction of the double bond into sphingolipids. Minimal alteration of the parent structure by formally replacing the hydrogen atoms in the 5- and in the 6-position of the sphinganine backbone by a methylene group leads to an inhibitor of dihydroceramide desaturase in cultured cells. In the presence of 10-50 μM of compound (1), levels of biosynthetically formed dihydroceramide and-surprisingly-also of phytoceramide are elevated at the expense of ceramide. The cells respond to the lack of unsaturated sphingolipids by an elevation of mRNAs of enzymes required for sphingosine formation. At the same time, the analysis of proliferation and differentiation markers indicates that the sphingolipid double bond is required to keep the cells in a differentiated state.
Brodesser, Susanne; Kolter, Thomas
2011-01-01
Most mammalian sphingolipids contain a 4,5-(E)-double bond. We report on the chemical synthesis of a dihydroceramide derivative that prevents the introduction of the double bond into sphingolipids. Minimal alteration of the parent structure by formally replacing the hydrogen atoms in the 5- and in the 6-position of the sphinganine backbone by a methylene group leads to an inhibitor of dihydroceramide desaturase in cultured cells. In the presence of 10–50 μM of compound (1), levels of biosynthetically formed dihydroceramide and—surprisingly—also of phytoceramide are elevated at the expense of ceramide. The cells respond to the lack of unsaturated sphingolipids by an elevation of mRNAs of enzymes required for sphingosine formation. At the same time, the analysis of proliferation and differentiation markers indicates that the sphingolipid double bond is required to keep the cells in a differentiated state. PMID:21490810
Sarafin, Yesurethinam; Donio, Mariathasan Birdilla Selva; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu
2014-01-01
Biosurfactant screening was made among the eight halophilic bacterial genera isolated from Kovalam solar salt works in Kanyakumari of India. After initial screening, Kocuria sp. (Km), Kurthia sp. (Ku) and Halococcus sp. (Hc) were found to have positive biosurfactant activity. Biosurfactant derived from Kocuria sp. emulsified more than 50% of the crude oil, coconut oil, sunflower oil, olive oil and kerosene when compared to the other strains. Further, Kocuria marina BS-15 derived biosurfactant was purified and characterized by TLC, FTIR and GC–MS analysis. The TLC analysis revealed that, the purified biosurfactants belong to the lipopeptide group. The IR spectrum results revealed that functional groups are R2C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 NN, alkenes and N–H. The GC–MS analysis confirmed the compound as Nonanoic acid and Cyclopropane with the retention time of 12.78 and 24.65, respectively. PMID:25473358
Starr, James M; Graham, Stephen E; Ross, David G; Tornero-Velez, Rogelio; Scollon, Edward J; Devito, Michael J; Crofton, Kevin M; Wolansky, Marcelo J; Hughes, Michael F
2014-06-05
National surveys of United States households and child care centers have demonstrated that pyrethroids are widely distributed in indoor habited dwellings and this suggests that co-exposure to multiple pyrethroids occurs in nonoccupational settings. The purpose of this research was to use an environmentally relevant mixture of pyrethroids to assess their cumulative effect on motor activity and develop kinetic profiles for these pyrethroids and their hydrolytic metabolites in brain and blood of rats. Rats were dosed orally at one of two levels (1.5× or 5.0× the calculated dose that decreases rat motor activity by 30%) with a mixture of cypermethrin, deltamethrin, esfenvalerate, cis-/trans-permethrin, and β-cyfluthrin in corn oil. At 1, 2, 4, 8, or 24h after dosing, the motor activity of each animal was assessed and the animals sacrificed. Concentrations of pyrethroids in brain and blood, and the following metabolites: cis-/trans-dichlorovinyl-dimethylcyclopropane-carboxylic acid, 3-phenoxybenzoic acid, 3-phenoxybenzyl alcohol, 4-fluoro-3-phenoxybenzoic acid, and cis-dibromovinyl-dimethylcyclopropane-carboxylic acid were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS). Using this pyrethroid mixture in rats, the results suggest there is greater metabolism of trans-permethrin prior to entering the systemic circulatory system. All pyrethroids had tissue half-lives (t1/2) of less than 5h, excepting esfenvalerate in brain. At early time points, relative pyrethroid brain concentrations approximated their dose mixture proportions and a sigmoidal Emax model described the relationship between motor activity decrease and total pyrethroid brain concentration. In blood, the t1/2's of the cyclopropane metabolites were longer than the phenoxybenzoic metabolites. However, relative to their respective precursors, concentrations of the phenoxybenzoic acids were much higher than concentrations of the cyclopropane metabolites. Brain concentrations of all metabolites were low relative to blood concentrations. This implies limited metabolite penetration of the blood-brain barrier and little metabolite formation within the brain. toxicokinetic differences between the pyrethroids did not appear to be important determinants of their relative potency and their effect on motor activity was consistent with a pyrethroid dose additive model. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Gauss, Jürgen; Kraka, Elfi; Stanton, John F.; Bartlett, Rodney J.
1993-07-01
A CCSD and CCSD (T) investigation of carbonyl oxide ( 1) and its cyclic isomer dioxirane ( 2) has been carried out employing DZ + P and TZ + 2P basis sets. Calculated geometries, charge distributions, and dipole moments suggest that 1 possesses more zwitterionic character (CCSD (T) dipole moment 4 D) than has been predicted. 1 can be distinguished from 2 by its infrared spectrum as indicated by CCSD (T) frequencies, intensities, and isotopic shifts. The heats of formation Δ H0f (298) for 1 and 2 are 30.2 and 6.0 kcal/mol, respectively; the CCSD (T) barrier to isomerization from 1 to 2 is 19.2 kcal/mol. Decomposition of 1 and 2 can lead to CO, CO 2, H 2O, H 2 but not to free CH 2, O 2 or O. Both isomers should be powerful epoxidation agents in the presence of alkenes, but they should differ in their ability to form cyclopropanes with alkenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.
2015-06-27
Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.« less
Further Studies of Porcine Malignant Hyperthermia
Hall, L. W.; Trim, Cynthia M.; Woolf, N.
1972-01-01
A non-lethal procedure for identifying pigs apt to develop malignant hyperthermia is described. Susceptible animals were exposed to a variety of anaesthetic and other agents and it was shown that thiopentone sodium and CT 1341 (Glaxo) afforded a measure of protection against the development of the syndrome. Pretreatment with procaine did not prevent the onset of the condition and the administration of procaine when muscle rigidity was present failed to prevent a fatal outcome. The syndrome was induced in susceptible animals by halothane, chloroform, and a combination of halothane with suxamethonium. The effects of cyclopropane in susceptible pigs could not be predicted, and other tests showed that suxamethonium alone would not induce muscle contracture. Pretreatment with lignocaine failed to prevent induction of the syndrome by halothane. We believe that the porcine syndrome may result from more than one defect and that in one particular type the most effective treatment is immediate cooling coupled with the administration of sodium bicarbonate. PMID:5017306
Calabro, Kevin; Kalahroodi, Elaheh Lotfi; Rodrigues, Daniel; Díaz, Caridad; de la Cruz, Mercedes; Cautain, Bastien; Laville, Rémi; Reyes, Fernando; Pérez, Thierry; Soussi, Bassam; Thomas, Olivier P.
2017-01-01
The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A–G (1–7). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A–D (1–4) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2′, poecillastrosides E–G (5–7) are characterized by a cyclopropane on the side-chain and a connection at O-3′ between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus. PMID:28672858
Dubois-Brissonnet, Florence; Naïtali, Murielle; Mafu, Akier Assanta; Briandet, Romain
2011-01-01
To enhance food safety and stability, the food industry tends to use natural antimicrobials such as plant-derived compounds as an attractive alternative to chemical preservatives. Nonetheless, caution must be exercised in light of the potential for bacterial adaptation to these molecules, a phenomenon previously observed with other antimicrobials. The aim of this study was to characterize the adaptation of Salmonella enterica serovar Typhimurium to sublethal concentrations of four terpenes extracted from aromatic plants: thymol, carvacrol, citral, and eugenol, or combinations thereof. Bacterial adaptation in these conditions was demonstrated by changes in membrane fatty acid composition showing (i) limitation of the cyclization of unsaturated fatty acids to cyclopropane fatty acids when cells entered the stationary phase and (ii) bacterial membrane saturation. Furthermore, we demonstrated an increased cell resistance to the bactericidal activity of two biocides (peracetic acid and didecyl dimethyl ammonium bromide). The implications of membrane modifications in terms of hindering the penetration of antimicrobials through the bacterial membrane are discussed. PMID:21131520
Evolving artificial metalloenzymes via random mutagenesis
NASA Astrophysics Data System (ADS)
Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.
2018-03-01
Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu
2015-02-01
Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pest controllers: a high-risk group for Multiple Chemical Sensitivity (MCS)?
Bornschein, Susanne; Hausteiner, Constanze; Pohl, Corina; Jahn, Thomas; Angerer, Jürgen; Foerstl, Hans; Zilker, Thomas
2008-03-01
Based on the assumption that professional groups with frequent chemical exposure are at an increased risk for developing Multiple Chemical Sensitivity (MCS), a sample of 45 professional pest controllers was investigated. The examination of the pest controllers consisted of a physical and laboratory examination with urine screening for pyrethroid metabolites, a psychiatric interview, a neuropsychological test battery, and a chemical sensitivity questionnaire. Persistent or serious work related health problems and chemical sensitivity were not reported. In urine, cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br(2)CA) was detected in 11%, 4-fluoro-3-phenoxybenzoic acid (F-PBA) in 7%. 3-phenoxybenzoic acid (3-PBA) exceeded the reference range in 9%, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (Cl(2)CA) in 20%. Increased liver enzymes and blood count deviations were rather common. 38% had psychiatric disorders. With few exceptions, neuropsychological testing results were normal. The results do not support the hypothesis that work-related insecticide exposure promotes chemical sensitivity.
Calabro, Kevin; Kalahroodi, Elaheh Lotfi; Rodrigues, Daniel; Díaz, Caridad; Cruz, Mercedes de la; Cautain, Bastien; Laville, Rémi; Reyes, Fernando; Pérez, Thierry; Soussi, Bassam; Thomas, Olivier P
2017-06-26
The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A-G ( 1 - 7 ). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A-D ( 1 - 4 ) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2', poecillastrosides E-G ( 5 - 7 ) are characterized by a cyclopropane on the side-chain and a connection at O-3' between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus .
A short history of fires and explosions caused by anaesthetic agents.
MacDonald, A G
1994-06-01
The first recorded fire resulting from the use of an anaesthetic agent occurred in 1850, when ether caught fire during a facial operation. Many subsequent fires and explosions have been reported, caused by ether, acetylene, ethylene and cyclopropane, and there has been one reported explosion involving halothane. Although some of the earlier incidents caused more consternation than injury, many of the later ones caused much death and destruction, particularly after the practice of administering oxygen, instead of air, became established. Many incidents have never been reported and many of those which have reached publication do not record essential details. The use of flammable agents has decreased significantly in recent years and although fires and explosions from nonanaesthetic causes, for example gastrointestinal gases, skin sterilizing agents and laser surgery, may continue to occur, those from gaseous and volatile anaesthetic agents may now be of historical interest only. This article reviews some of the more relevant and enlightening reports of the past 150 yr.
Medical Gas Containers and Closures; Current Good Manufacturing Practice Requirements. Final rule.
2016-11-18
The Food and Drug Administration (FDA or the Agency) is amending its current good manufacturing practice (CGMP) and labeling regulations regarding medical gases. FDA is requiring that portable cryogenic medical gas containers not manufactured with permanent gas use outlet connections have gas-specific use outlet connections that cannot be readily removed or replaced except by the manufacturer. FDA is also requiring that portable cryogenic medical gas containers and high-pressure medical gas cylinders meet certain labeling, naming, and color requirements. These requirements are intended to increase the likelihood that the contents of medical gas containers are accurately identified and reduce the likelihood of the wrong gas being connected to a gas supply system or container. FDA is also revising an existing regulation that conditionally exempts certain medical gases from certain otherwise-applicable labeling requirements in order to add oxygen and nitrogen to the list of gases subject to the exemption, and to remove cyclopropane and ethylene from the list.
Conforte, Valeria P; Echeverria, Mariela; Sánchez, Cintia; Ugalde, Rodolfo A; Menéndez, Ana B; Lepek, Viviana C
2010-08-01
Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.
Greene, Samuel M; Shan, Xiao; Clary, David C
2016-02-28
We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.
Asymmetric total synthesis of onoseriolide, bolivianine, and isobolivianine.
Du, Biao; Yuan, Changchun; Yu, Tianzi; Yang, Li; Yang, Yang; Liu, Bo; Qin, Song
2014-02-24
In this article, we describe our efforts on the total synthesis of bolivianine (1) and isobolivianine (2), involving the synthesis of onoseriolide (3). The first generation synthesis of bolivianine was completed in 21 steps by following a chiral resolution strategy. Based on the potential biogenetic relationship between bolivianine (1), onoseriolide (3), and β-(E)-ocimene (8), the second generation synthesis of bolivianine was biomimetically achieved from commercially available (+)-verbenone in 14 steps. The improved total synthesis features an unprecedented palladium-catalyzed intramolecular cyclopropanation through an allylic metal carbene, for the construction of the ABC tricyclic system, and a Diels-Alder/intramolecular hetero-Diels-Alder (DA/IMHDA) cascade for installation of the EFG tricyclic skeleton with the correct stereochemistry. Transformation from bolivianine to isobolivianine was facilitated in the presence of acid. The biosynthetic mechanism and the excellent regio- and endo selectivities in the cascade are well supported by theoretical chemistry based on the DFT calculations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural elucidation of a novel phosphoglycolipid isolated from six species of Halomonas.
Giordano, Assunta; Vella, Filomena M; Romano, Ida; Gambacorta, Agata
2007-08-01
The structure of a new phosphoglycolipid from the halophilic Gram-negative bacteria Halomonas elongata ATCC 33173(T), Halomonas eurihalina ATCC 49336(T), Halomonas almeriensis CECT 7050(T), strain Sharm (AM238662), Halomonas halophila DSM 4770(T), and Halomonas salina ATCC 49509(T) was elucidated by NMR and mass spectroscopy studies. In all of the species examined, the polar lipid composition consisted of 1,2-diacylglycero-3-phosphorylethanolamine, 1,2-diacylglycero-3-phosphoryl-glycerol, bisphosphatidyl glycerol, and the new phosphoglycolipid PGL1. The structure of PGL1 was established to be (2-(alpha-D-glucopyranosyloxy)-3-hydroxy-propyl)-phosphatidyl diacylglycerol. C16:0;C18:1 and C16:0;C19:cyclopropane are the most abundant acyl chains linked to the phosphatidylglycerol moiety of each isolated PGL1. All of the species presenting the lipid PGL1 belong to Halomonas rRNA group 1, suggesting that the new phosphoglycolipid could be a chemotaxonomic marker of this phylogenetic group.
Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex
2017-01-01
A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093
Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V
2005-01-01
Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.
Gunasekera, Sarath P; Li, Yang; Ratnayake, Ranjala; Luo, Danmeng; Lo, Jeannette; Reibenspies, Joseph H; Xu, Zhengshuang; Clare-Salzler, Michael J; Ye, Tao; Paul, Valerie J; Luesch, Hendrik
2016-06-06
A new dimeric macrolide xylopyranoside, cocosolide (1), was isolated from the marine cyanobacterium preliminarily identified as Symploca sp. from Guam. The structure was determined by a combination of NMR spectroscopy, HRMS, X-ray diffraction studies and Mosher's analysis of the base hydrolysis product. Its carbon skeleton closely resembles that of clavosolides A-D isolated from the sponge Myriastra clavosa, for which no bioactivity is known. We performed the first total synthesis of cocosolide (1) along with its [α,α]-anomer (26) and macrocyclic core (28), thus leading to the confirmation of the structure of natural 1. The convergent synthesis featured Wadsworth-Emmons cyclopropanation, Sakurai annulation, Yamaguchi macrocyclization/dimerization reaction, α-selective glycosidation and β-selective glycosidation. Compounds 1 and 26 potently inhibited IL-2 production in both T-cell receptor dependent and independent manners. Full activity requires the presence of the sugar moiety as well as the intact dimeric structure. Cocosolide also suppressed the proliferation of anti-CD3-stimulated T-cells in a dose-dependent manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How strained are carbomeric-cycloalkanes?
Wodrich, Matthew D; Gonthier, Jérôme F; Steinmann, Stephan N; Corminboeuf, Clémence
2010-06-24
The ring strain energies of carbomeric-cycloalkanes (molecules with one or more acetylene spacer units placed into carbon single bonds) are assessed using a series of isodesmic, homodesmotic, and hyperhomodesmotic chemical equations. Isodesmic bond separation reactions and other equations derived from the explicitly defined hierarchy of homodesmotic equations are insufficient for accurately determining these values, since not all perturbing effects (i.e., conjugation and hyperconjugation) are fully balanced. A set of homodesmotic reactions is proposed, which succeeds in balancing all stereoelectronic effects present within the carbomeric rings, allowing for a direct assessment of the strain energies. Values calculated from chemical equations are validated using an increment/additivity approach. The ring strain energy decreases as acetylene units are added, manifesting from the net stabilization gained by opening the C-CH(2)-C angle around the methylene groups and the destabilization arising from bending the C-C identical withC angles of the spacer groups. This destabilization vanishes with increasing parent ring size (i.e., the angle distortion is less in the carbomeric-cyclobutanes than in the carbomeric-cyclopropanes), leading to strain energies near zero for carbo(n)-cyclopentanes and carbo(n)-cyclohexanes.
Development of Catalysts and Ligands for Enantioselective Gold Catalysis
Wang, Yi-Ming; Lackner, Aaron D.; Toste, F. Dean
2014-01-01
CONSPECTUS The use of Au(I) complexes for the catalytic activation of C-C π-bonds has been the subject of intense investigation in the last decade or so. The facile formation of carbon-carbon and carbon-heteroatom bonds facilitated by gold naturally led to efforts to render these transformations enantioselective. Early examples of enantioselective gold-catalyzed transformations have focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, careful choice of the weakly coordinating ligand (or counterion) was needed to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, a new class of mononuclear phosphite and phosphoramidite ligands was developed to supplement the previously widely utilized phosphines. Finally carbene ligands, in particular, the acyclic diaminocarbenes, have also been successfully applied to enantioselective transformations. PMID:24228794
NASA Astrophysics Data System (ADS)
Senthil Raj, P.; Shoba, D.; Ramalingam, S.; Periandy, S.
2015-08-01
All the computational calculations were made in the ground state using the HF and DFT (B3LYP) methods with 6-31++G (d,p) and 6-311++G (d,p) basis sets. Making use of the recorded data, the complete vibrational assignments were made and analysis of the observed fundamental bands of molecule was carried out. The shifting of the frequencies in the vibrational pattern of the title molecule due to the substitutions; sbnd CHdbnd CH2 and F were deeply investigated by the vibrational analysis. Moreover, 13C NMR and 1H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF/B3LYP methods with 6-311++G (d,p). A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Mulliken charges of the 1DF2VCP were also calculated and interpreted. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.
The origin of light hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mango, F.D.
2000-04-01
The light hydrocarbons (LHs) are probably intermediates in the catalytic decomposition of oil to gas. Two lines of evidence support this possibility. First, the reaction was duplicated experimentally under moderate conditions. Second, natural LHs exhibit the characteristics of catalytic products, in particular a proportionality between isomers: (xy{sub i})/(x{sub i}y) = {alpha} (where x and x{sub i} are isomers; y and y{sub i} are isomers that are structurally similar to x and x{sub i}; and {alpha} is a constant). All oils exhibit this relationship with coefficients of correlation reaching 0.99. Isomer ratios change systematically with concentrations, some approaching thermodynamic equilibrium, othersmore » not. The correlations reported are the strongest yet disclosed for the LHs. Isomers are related in triads (e.g., n-hexane {leftrightarrow} 2-methylpentane {leftrightarrow} 3-methylpentane), consistent with cyclopropane precursors. The LHs obtained experimentally are indistinguishable from natural LHs in (xy{sub i})/(x{sub i}y). These relationships are not explained by physical fractionations, equilibrium control, or noncatalytic modes of origin. A catalytic origin, on the other hand, has precedence, economy and experimental support.« less
Johnston, Jason W.; Gunaseelan, Kularajathaven; Pidakala, Paul; Wang, Mindy; Schaffer, Robert J.
2009-01-01
In this study, it is shown that anti-sense suppression of Malus domestica 1-AMINO-CYCLOPROPANE-CARBOXYLASE OXIDASE (MdACO1) resulted in fruit with an ethylene production sufficiently low to be able to assess ripening in the absence of ethylene. Exposure of these fruit to different concentrations of exogenous ethylene showed that flesh softening, volatile biosynthesis, and starch degradation, had differing ethylene sensitivity and dependency. Early ripening events such as the conversion of starch to sugars showed a low dependency for ethylene, but a high sensitivity to low concentrations of ethylene (0.01 μl l−1). By contrast, later ripening events such as flesh softening and ester volatile production showed a high dependency for ethylene but were less sensitive to low concentrations (needing 0.1 μl l−1 for a response). A sustained exposure to ethylene was required to maintain ripening, indicating that the role of ethylene may go beyond that of ripening initiation. These results suggest a conceptual model for the control of individual ripening characters in apple, based on both ethylene dependency and sensitivity. PMID:19429839
Marinozzi, Maura; Pertusati, Fabrizio; Serpi, Michaela
2016-11-23
The compounds characterized by the presence of a λ 5 -phosphorus functionality at the α-position with respect to the diazo moiety, here referred to as λ 5 -phosphorus-containing α-diazo compounds (PCDCs), represent a vast class of extremely versatile reagents in organic chemistry and are particularly useful in the preparation of phosphonate- and phosphinoxide-functionalized molecules. Indeed, thanks to the high reactivity of the diazo moiety, PCDCs can be induced to undergo a wide variety of chemical transformations. Among them are carbon-hydrogen, as well as heteroatom-hydrogen insertion reactions, cyclopropanation, ylide formation, Wolff rearrangement, and cycloaddition reactions. PCDCs can be easily prepared from readily accessible precursors by a variety of different methods, such as diazotization, Bamford-Stevens-type elimination, and diazo transfer reactions. This evidence along with their relative stability and manageability make them appealing tools in organic synthesis. This Review aims to demonstrate the ongoing utility of PCDCs in the modern preparation of different classes of phosphorus-containing compounds, phosphonates, in particular. Furthermore, to address the lack of precedent collective papers, this Review also summarizes the methods for PCDCs preparation.
Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, R.G.
1979-01-01
Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less
Khudyakov, Jane I; D'haeseleer, Patrik; Borglin, Sharon E; Deangelis, Kristen M; Woo, Hannah; Lindquist, Erika A; Hazen, Terry C; Simmons, Blake A; Thelen, Michael P
2012-08-07
To process plant-based renewable biofuels, pretreatment of plant feedstock with ionic liquids has significant advantages over current methods for deconstruction of lignocellulosic feedstocks. However, ionic liquids are often toxic to the microorganisms used subsequently for biomass saccharification and fermentation. We previously isolated Enterobacter lignolyticus strain SCF1, a lignocellulolytic bacterium from tropical rain forest soil, and report here that it can grow in the presence of 0.5 M 1-ethyl-3-methylimidazolium chloride, a commonly used ionic liquid. We investigated molecular mechanisms of SCF1 ionic liquid tolerance using a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies. Potential modes of resistance to 1-ethyl-3-methylimidazolium chloride include an increase in cyclopropane fatty acids in the cell membrane, scavenging of compatible solutes, up-regulation of osmoprotectant transporters and drug efflux pumps, and down-regulation of membrane porins. These findings represent an important first step in understanding mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering microbial tolerance.
Behavior of short silica monolithic columns in high pressure gas chromatography.
Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme
2016-08-19
In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. Copyright © 2016 Elsevier B.V. All rights reserved.
Gilissen, L J; Hoekstra, F A
1984-06-01
Pollination or wounding of the stigma of Petunia hybrida flowers led to the generation of a wilting factor and its transfer to the corolla within 4 hours. This was concluded from the effects of time course removal of whole styles. In this 4-hour period, pollen tubes traversed only a fraction of the total distance to the ovaries. Both pollination and wounding of the stigma immediately resulted in an increase of ethylene evolution. Accelerated wilting, however, occured only when treated styles remained connected with the ovaries, and not when they were detached and left in the flower. A wilting factor was found in eluates collected from the ovarian end of the styles, only in the case of previous pollination or wounding. In such eluates, the level of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid was below detection.These observations suggest a material nature of the wilting factor in Petunia flowers, which rapidly passes through the style to the corolla, but which is different from 1-aminocyclopropane-1-carboxylic acid.
A soil alteration index based on phospholipid fatty acids.
Puglisi, Edoardo; Nicelli, Marco; Capri, Ettore; Trevisan, Marco; Del Re, Attilio A M
2005-12-01
Phospholipid fatty acid (PLFA) analysis has gained great importance in the study of soil microbial community structure. This structure can give indication of the soil status. Purpose of the present paper is to analyse PLFA patterns in altered agricultural soils in order to develop a soil status alteration index. Soils subjected either to intensive agricultural exploitation, or to overflow by municipal and industrial wastes, or to irrigation with saline waters were analysed for PLFA content and compared to adjacent untreated soils by means of different statistical techniques. Principal component analysis separated PLFAs in three groups: unsaturated PLFAs (first axis, 48% of total variance), monounsaturated and cyclopropane PLFAs (second axis, 28% of total variance) and polyunsaturated PLFAs (third axis, 24% of total variance). By means of canonical discriminant analysis, a soil alteration index (SAI) was produced from 15 PLFAs using two data sets. A third data set was used to test the SAI general validity together with other data sets reported in literature. The index validity was confirmed in most cases: SAI gave higher scores for control soils and was generally able to classify soils according to their reported degree of alteration.
Wheel-like Ln18 Cluster Organic Frameworks for Magnetic Refrigeration and Conversion of CO2.
Song, Tian-Qun; Dong, Jie; Yang, An-Fei; Che, Xue-Jing; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin
2018-03-19
Two isostructural 2D MOFs ([Ln 7 (CDA) 6 (HCOO) 3 (μ 3 -OH) 6 (H 2 O) 8 ] n , abbreviated as 1-Gd and 2-Dy) were successfully synthesized under solvothermal conditions. The self-assembly of lanthanide(III) nitrate and 1,1'-cyclopropane-dicarboxylic acid (H 2 CDA) resulted in wheel-like Ln 18 cluster second building units (SBU), which are further linked to six neighboring wheels to generate a 2D ordered honeycomb array. Both 1-Gd and 2-Dy exhibit high thermal stability and decompose above 330 °C. Moreover, they have good solvent stability in ten common solvents and pH stability with pH values from 1 to 13. Magnetic studies reveal that 1-Gd exhibits weak antiferromagnetic coupling between adjacent Gd 3+ ions and has a large magnetocaloric effect of 47.30 J kg -1 K -1 (Δ H = 7.0 T at 2 K), while 2-Dy shows ferromagnetic interaction between adjacent Dy 3+ ions. Interestingly, 1-Gd and 2-Dy can catalyze the cycloaddition of CO 2 to epoxides under mild conditions and can be reused at least five rounds with negligible loss of catalytic performance.
Ohmiya, Hirohisa; Tsuji, Takashi; Yorimitsu, Hideki; Oshima, Koichiro
2004-11-05
Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.
A small RNA activates CFA synthase by isoform-specific mRNA stabilization
Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg
2013-01-01
Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880
A small RNA activates CFA synthase by isoform-specific mRNA stabilization.
Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg
2013-11-13
Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.
Ludek, Olaf R; Marquez, Victor E
2012-01-20
Beginning with a known 3-oxabicyclo[3.1.0]hexane scaffold (I), the relocation of the fused cyclopropane ring bond and the shifting of the oxygen atom to an alternative location engendered a new 2-oxabicyclo[3.1.0]hexane template (II) that mimics more closely the tetrahydrofuran ring of conventional nucleosides. The synthesis of this new class of locked nucleosides involved a novel approach that required the isocyanate II (B = NCO) with a hydroxyl-protected scaffold as a pivotal intermediate that was obtained in 11 steps from a known dihydrofuran precursor. The completion of the nucleobases was successfully achieved by quenching the isocyanate with the lithium salts of the corresponding acrylic amides that led to the uracil and thymidine precursors in a single step. Ring closure of these intermediates led to the target, locked nucleosides. The anti-HIV activity of 29 (uridine analogue), 31 (thymidine analogue), and 34 (cytidine analogue) was explored in human osteosarcoma (HOS) cells or modified HOS cells (HOS-313) expressing the herpes simplex virus 1 thymidine kinase (HSV-1 TK). Only the cytidine analogue showed moderate activity in HOS-313 cells, which means that the compounds are not good substrates for the cellular kinases.
Doronina, N V; Trotsenko, Y A; Krausova, V I; Boulygina, E S; Tourova, T P
1998-10-01
A new genus, Methylopila, and one new species are described for a group of seven strains of facultatively methylotrophic bacteria with the serine pathway of C1 assimilation. These bacteria are aerobic, Gram-negative, non-spore--forming, motile, colourless rods that multiply by binary fission. Their DNA base content ranges from 66 to 70 mol % G + C. Their cellular fatty acid profile consists primarily of C18:1 omega 7 cis-vaccenic and C19:0 cyclopropane acids. The major hydroxy acid is 3-OH C14:0. The main ubiquinone is Q-10. The dominant cellular phospholipids are phosphatidylethanolamine and phosphatidylcholine. The new isolates have a low level of DNA-DNA homology (5-10%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Hyphomicrobium and Methylorhabdus. Another approach, involving 16S rRNA gene sequence analysis of strain IM1T, has shown that the new isolates represent a separate branch within the alpha-2 subclass of the Proteobacteria. The type species of the new genus is Methylopila capsulata sp. nov., with the type strain IM1T (= VKM B-1606T).
Li, Xin; Liao, Tao; Chung, Lung Wa
2017-11-22
The photoinduced Zimmerman di-π-methane (DPM) rearrangement of polycyclic molecules to form synthetically useful cyclopropane derivatives was found experimentally to proceed in a triplet excited state. We have applied state-of-the-art quantum mechanical methods, including M06-2X, DLPNO-CCSD(T) and variational transition-state theory with multidimensional tunneling corrections, to an investigation of the reaction rates of the two steps in the triplet DPM rearrangement of dibenzobarrelene, benzobarrelene and barrelene. This study predicts a high probability of carbon tunneling in regions around the two consecutive transition states at 200-300 K, and an enhancement in the rates by 104-276/35-67% with carbon tunneling at 200/300 K. The Arrhenius plots of the rate constants were found to be curved at low temperatures. Moreover, the computed 12 C/ 13 C kinetic isotope effects were affected significantly by carbon tunneling and temperature. Our predictions of electronically excited-state carbon tunneling and two consecutive carbon tunneling are unprecedented. Heavy-atom tunneling in some photoinduced reactions with reactive intermediates and narrow barriers can be potentially observed at relatively low temperature in experiments.
NASA Astrophysics Data System (ADS)
Höfle, Gerhard
Epothilone is a microbial product, and thus its history may be traced back to the discovery of the respective microbe, Sorangium cellulosum, a bacterium belonging to the taxonomic group of myxobacteria, which originally has been described by Roland Thaxter in 1892 (1). Today this group of organisms comprises around 40 species, one of which is Sorangium cellulosum. For a long time, myxobacteria were only known for their gliding motility and sophisticated life cycle, although it had been occasionally speculated that they might produce secondary metabolites like actinomycetes or bacilli (2). In 1975 Hans Reichenbach and his group at the German Centre for Biotechnology (GBF; now called the Helmholtz Centre for Infection Research) set out to isolate strains of myxobacteria from soil samples collected all over the world, and to examine their secondary metabolism. In 1978, while work was already ongoing, I joined them and took over the chemistry part. In the same year the first structure of a myxobacterial metabolite, ambruticin, was published by a group from Warner-Lambert (3) making us very confident of being on the right track. Ambruticin had been isolated from a Sorangium cellulosum strain, and was identified as a unique cyclopropane polyketide structure exhibiting potentially useful antifungal properties. Ambruticin and its derivatives had been developed for medical application for some time, and recently gained new interest (4).
Ty, Nancy; Pontikis, Renée; Chabot, Guy G; Devillers, Emmanuelle; Quentin, Lionel; Bourg, Stéphane; Florent, Jean-Claude
2013-03-01
To evaluate the influence of stereochemistry on biological activities of cis-cyclopropyl combretastatin A4 (CA4) analogues, we have prepared several cyclopropyl compounds in their pure enantiomeric forms. The key reactions in our synthesis are the cyclopropanation of a (Z)-alkenylboron compound bearing a chiral auxiliary, and the cross-coupling of both enantiomeric cyclopropyl trifluoroborate salts with aryl and olefinic halides. Three pairs of cis-cyclopropyl CA4 analogues were evaluated for their potential antivascular activities. The diarylcyclopropyl compounds with SR-configuration (-)-1b, (-)-2b and the cyclopropylvinyl enantiomer (+)-3a with RR-configuration were the most potent tubulin polymerization inhibitors. A correlation was noted between anti-tubulin activity and rounding up activity of endothelial cells. The cytotoxic activity on B16 melanoma cells was in the submicromolar range for most compounds, but unlike the anti-tubulin activity, there was no difference in cytotoxic activity between racemic and enantiomerically pure forms for the three series of compounds. Molecular docking studies within the colchicine binding site of tubulin were in good agreement with the tubulin polymerization inhibitory data and confirmed the importance of the configuration of the synthesized cis-cyclopropyl CA4 analogues for potential antivascular activities. Copyright © 2013. Published by Elsevier Ltd.
Liu, Songling; Ren, Fazheng; Jiang, Jingli; Zhao, Liang
2016-07-28
The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Corey; Holmes, Joshua; Nibler, Joseph W.
2013-05-16
Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis ofmore » electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.« less
Ludek, Olaf R.; Marquez, Victor E.
2011-01-01
Beginning with a known 3-oxabicyclo[3.1.0]hexane scaffold (I), the relocation of the fused cyclopropane ring bond and the shifting of the oxygen atom to an alternative location engendered a new 2-oxabicyclo[3.1.0]hexane template (II) that mimics more closely the tetrahydrofuran ring of conventional nucleosides. The synthesis of this new class of locked nucleosides involved a novel approach that required the isocyanate II (B = NCO) with a hydroxyl-protected scaffold as a pivotal intermediate that was obtained in eleven steps from a known dihydrofuran precursor. The completion of the nucleobases was successfully achieved by quenching the isocyanate with the lithium salts of the corresponding acrylic amides that led to the uracil and thymidine precursors in a single step. Ring closure of these intermediates led to the target, locked nucleosides. The anti-HIV activity of 29 (uridine analogue), 31 (thymidine analogue), and 34 (cytidine analogue) was explored in human osteosarcoma (HOS) cells or modified HOS cells (HOS-313) expressing the herpes simplex virus 1 thymidine kinase (HSV-1 TK). Only the cytidine analogue showed moderate activity in HOS-313 cells, which means that the compounds are not good substrates for the cellular kinases. PMID:22026578
Thermal decomposition and isomerization of cis-permethrin and beta-cypermethrin in the solid phase.
González Audino, Paola; Licastro, Susana A; Zerba, Eduardo
2002-02-01
The stability to heart of cis-permethrin and beta-cypermethrin in the solid phase was studied and the decomposition products identified. Samples heated at 210 degrees C in an oven in the dark showed that, in the absence of potassium chlorate (the salt present in smoke-generating formulations of these pyrethroids), cis-permethrin was not isomerized, although in the presence of that salt, decomposition was greater and thermal isomerization occurred. Other salts of the type KXO3 or NaXO3, with X being halogen or nitrogen, also led to a considerable thermal isomerization. Heating the insecticides in solution in the presence of potassium chlorate did not produce isomerization in any of the solvents assayed. Salt-catalysed thermal cis-trans isomerization was also found for other pyrethroids derived from permethrinic or deltamethrinic acid but not for those derived from chrysanthemic acid. The main thermal degradation processes of cis-permethrin and beta-cypermethrin decomposition when potassium chlorate was present were cyclopropane isomerization, ester cleavage and subsequent oxidation of the resulting products. Permethrinic acid, 3-phenoxybenzyle chloride, alcohol, aldehyde and acid were identified in both cases, as well as 3-phenoxybenzyl cyanide from beta-cypermethrin. A similar decomposition pattern occurred after combustion of pyrethroid fumigant formulations.
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI
Marr, Allen G.; Ingraham, John L.
1962-01-01
Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982
Nosworthy, M D
1941-06-01
Problems in chest surgery: Cases with prolonged toxæmia or amyloid disease require an anæsthetic agent of low toxicity. When sputum or blood are present in the tracheobronchial tree the anæsthesia should abolish reflex distrubances and excessive sputum be removed by suction. The technique should permit the use of a high oxygen atmosphere; controlled respiration with cyclopropane or ether fulfil these requirements. Open pneumothorax is present when a wound of the chest wall allows air to pass in and out of the pleural cavity. The lung on the affected side collapses and the mediastinum moves over and partly compresses the other lung.The dangers of an open pneumothorax: (1) Paradoxical respiration-the lung on the affected side partially inflates on expiration and collapses on inspiration. Part of the air entering the good lung has been shuttled back from the lung on the affected side and is therefore vitiated. Full expansion of the sound lung is handicapped by the initial displacement of the mediastinum which increases on inspiration. The circulation becomes embarrassed.(2) Vicious circle coughing. During a paroxysm of coughing dyspnœa will occur. This accentuates paradoxical respiration and starts a vicious circle. Death from asphyxia may result.Special duties of the anæsthetist: (1) To carry out or supervise continuous circulatory resuscitation. During a thoracotomy a drip blood transfusion maintains normal blood-pressure and pulse-rate.(2) To maintain effcient respiration.Positive pressure anæsthesia: Risk of impacting secretions in smaller bronchi with subsequent atelectasis; eventual risk of CO(2) poisoning without premonitory signs.Controlled respiration: (1) How it is produced. (2) Its uses in chest surgery.Controlled respiration means that the anæsthetist, having abolished the active respiratory efforts of the patient, maintains an efficient tidal exchange by rhythmic squeezing of the breathing bag. This may be done mechanically by Crafoord's modification of Frenkner's spiropulsator or by hand.Active respiration will cease (i) if the patient's CO(2) is lowered sufficiently by hyperventilation, (ii) if the patient's respiratory centre is depressed sufficiently by sedative and anæsthetic drugs, and (iii) by a combination of (i) and (ii) of less degree.The author uses the second method, depressing the respiratory centre with omnoponscopolamine, pentothal sodium, and then cycloprȯpane. The CO(2) absorption method is essential for this technique, and this and controlled respiration should be mastered by the anæsthetist with a familiar agent and used at first only in uncomplicated cases.The significance of cardiac arrhythmias occuring with cyclopropane is discussed.The place of the other available anæsthetic agents is discussed particularly on the advisability of using local anæsthesia for the drainage of empyema or lung abscess.Pharyngeal airway or endotracheal tube? Anæsthesia may be maintained with a pharyngeal airway in many cases but intubation must be used when tracheobronchial suction may be necessary and when there may be difficulty in maintaining an unobstructed airway.A one-lung anæsthesia is ideal for pneumonectomy. This may be obtained by endotracheal anæsthesia after bronchial tamponage of the affected side (Crafoord, v. fig. 6b) or by an endobronchial intubation of the sound side (v. figs. 9b and 9c). Endobronchial placing of the breathing tube may be performed "blind". Before deciding on blind bronchial intubation, the anæsthetist must examine X-ray films for any abnormality deviating the trachea or bronchi. Though the right bronchus may be easily intubated blindly as a rule, there is the risk of occluding the orifice of the upper lobe bronchus (fig. 9d) when the patient will become cyanosed. If the tube bevel is facing its orifice the risk of occlusion will be decreased (fig. 9c).Greater accuracy in placing the tube can be effected by inserting it under direct vision. Instruments for performing this manœuvre are described.In lobectomy for bronchiectasis the anæsthetist must try to prevent the spread of infection to other parts. Ideally, the bronchus of the affected lobe should be plugged with ribbon gauze (Crafoord, v. fig. 6c) or a suction catheter with a baby balloon on it placed in the affected bronchus. In the presence of a large bronchopleural fistula controlled respiration cannot be established during operation. As the surgeon is rarely able to plug the fistula, if pneumonectomy is to be performed intubation for a one-lung anæsthesia is the best method. During other procedures it is essential to maintain quiet respiration.In war casualties it is almost always possible, with the technique described, to leave the lung on the affected side fully expanded and thus frequently to restore normal respiratory physiology. Co-operation between surgeon and anæsthetist is essential.
Anæsthesia in Chest Surgery, with Special Reference to Controlled Respiration and Cyclopropane
Nosworthy, M. D.
1941-01-01
Problems in chest surgery: Cases with prolonged toxæmia or amyloid disease require an anæsthetic agent of low toxicity. When sputum or blood are present in the tracheobronchial tree the anæsthesia should abolish reflex distrubances and excessive sputum be removed by suction. The technique should permit the use of a high oxygen atmosphere; controlled respiration with cyclopropane or ether fulfil these requirements. Open pneumothorax is present when a wound of the chest wall allows air to pass in and out of the pleural cavity. The lung on the affected side collapses and the mediastinum moves over and partly compresses the other lung. The dangers of an open pneumothorax: (1) Paradoxical respiration—the lung on the affected side partially inflates on expiration and collapses on inspiration. Part of the air entering the good lung has been shuttled back from the lung on the affected side and is therefore vitiated. Full expansion of the sound lung is handicapped by the initial displacement of the mediastinum which increases on inspiration. The circulation becomes embarrassed. (2) Vicious circle coughing. During a paroxysm of coughing dyspnœa will occur. This accentuates paradoxical respiration and starts a vicious circle. Death from asphyxia may result. Special duties of the anæsthetist: (1) To carry out or supervise continuous circulatory resuscitation. During a thoracotomy a drip blood transfusion maintains normal blood-pressure and pulse-rate. (2) To maintain effcient respiration. Positive pressure anæsthesia: Risk of impacting secretions in smaller bronchi with subsequent atelectasis; eventual risk of CO2 poisoning without premonitory signs. Controlled respiration: (1) How it is produced. (2) Its uses in chest surgery. Controlled respiration means that the anæsthetist, having abolished the active respiratory efforts of the patient, maintains an efficient tidal exchange by rhythmic squeezing of the breathing bag. This may be done mechanically by Crafoord's modification of Frenkner's spiropulsator or by hand. Active respiration will cease (i) if the patient's CO2 is lowered sufficiently by hyperventilation, (ii) if the patient's respiratory centre is depressed sufficiently by sedative and anæsthetic drugs, and (iii) by a combination of (i) and (ii) of less degree. The author uses the second method, depressing the respiratory centre with omnoponscopolamine, pentothal sodium, and then cycloprȯpane. The CO2 absorption method is essential for this technique, and this and controlled respiration should be mastered by the anæsthetist with a familiar agent and used at first only in uncomplicated cases. The significance of cardiac arrhythmias occuring with cyclopropane is discussed. The place of the other available anæsthetic agents is discussed particularly on the advisability of using local anæsthesia for the drainage of empyema or lung abscess. Pharyngeal airway or endotracheal tube? Anæsthesia may be maintained with a pharyngeal airway in many cases but intubation must be used when tracheobronchial suction may be necessary and when there may be difficulty in maintaining an unobstructed airway. A one-lung anæsthesia is ideal for pneumonectomy. This may be obtained by endotracheal anæsthesia after bronchial tamponage of the affected side (Crafoord, v. fig. 6b) or by an endobronchial intubation of the sound side (v. figs. 9b and 9c). Endobronchial placing of the breathing tube may be performed “blind”. Before deciding on blind bronchial intubation, the anæsthetist must examine X-ray films for any abnormality deviating the trachea or bronchi. Though the right bronchus may be easily intubated blindly as a rule, there is the risk of occluding the orifice of the upper lobe bronchus (fig. 9d) when the patient will become cyanosed. If the tube bevel is facing its orifice the risk of occlusion will be decreased (fig. 9c). Greater accuracy in placing the tube can be effected by inserting it under direct vision. Instruments for performing this manœuvre are described. In lobectomy for bronchiectasis the anæsthetist must try to prevent the spread of infection to other parts. Ideally, the bronchus of the affected lobe should be plugged with ribbon gauze (Crafoord, v. fig. 6c) or a suction catheter with a baby balloon on it placed in the affected bronchus. In the presence of a large bronchopleural fistula controlled respiration cannot be established during operation. As the surgeon is rarely able to plug the fistula, if pneumonectomy is to be performed intubation for a one-lung anæsthesia is the best method. During other procedures it is essential to maintain quiet respiration. In war casualties it is almost always possible, with the technique described, to leave the lung on the affected side fully expanded and thus frequently to restore normal respiratory physiology. Co-operation between surgeon and anæsthetist is essential. PMID:19992357
Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma
WANG, DONGCHUN; WANG, CHANGSONG; PI, XIN; GUO, LEI; WANG, YUE; LI, MINGJUAN; FENG, YUE; LIN, ZIWEI; HOU, WEI; LI, ENYOU
2016-01-01
Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC. PMID:27347408
Beyond Ether and Chloroform-A Major Breakthrough With Halothane.
Huang, Lisa; Sang, Christine N; Desai, Manisha S
2017-07-01
The use of equipment powered by electricity in the operating room increased the risk of fires in the presence of flammable agents such as ether and cyclopropane. Chloroform was associated with cardiac arrhythmias and liver damage. The introduction of halothane in the late 1950s was heralded as a solution to many problems facing the specialty of anesthesia. We explore whether the manufacturer promptly reported halothane's adverse effects to regulatory agencies and practitioners. We consulted documents submitted by Ayerst Laboratories to federal authorities through the Freedom of Information Act, promotional advertisements, package inserts, published articles, and textbooks. Two major complications associated with the use of halothane, cardiac arrhythmias and the risk of hepatotoxicity, were disclosed by the manufacturer when the drug was first introduced to the US market. Reports appeared timely and complete; there was no apparent attempt to conceal or otherwise downplay these risks. The process of drug discovery and approval for clinical use has always been a lengthy, complex, and extremely expensive undertaking, with only a small minority of compounds receiving approval. The risk of adverse effects or drug interaction directly impacts commercial viability. In the case of halothane, the manufacturer disclosed major adverse effects, and the drug enjoyed decades of popularity until it was replaced by agents with a better drug profile. Copyright © 2017 Elsevier Inc. All rights reserved.
Renata, Hans; Wang, Z. Jane
2015-01-01
High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts. Examples of new enzyme functions include epoxide opening reactions with non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries of non-native catalytic functions that may provide future opportunities for expanding the enzyme universe. PMID:25649694
Ariyawutthiphan, Orapin; Ose, Toyoyuki; Minami, Atsushi; Shinde, Sandip; Sinde, Sandip; Tsuda, Muneya; Gao, Yong-Gui; Yao, Min; Oikawa, Hideaki; Tanaka, Isao
2012-11-01
In the typical isoprenoid-biosynthesis pathway, condensation of the universal C(5)-unit precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) occurs via the common intermediates prenyl pyrophosphates (C(10)-C(20)). The diversity of isoprenoids reflects differences in chain length, cyclization and further additional modification after cyclization. In contrast, the biosynthesis of 2-methylisonorneol (2-MIB), which is responsible for taste and odour problems in drinking water, is unique in that it primes the enzymatic methylation of geranyl pyrophosphate (GPP) before cyclization, which is catalyzed by an S-adenosyl-L-methionine-dependent methyltransferase (GPPMT). The substrate of GPPMT contains a nonconjugated olefin and the reaction mechanism is expected to be similar to that of the steroid methyltransferase (SMT) family. Here, structural analysis of GPPMT in complex with its cofactor and substrate revealed the mechanisms of substrate recognition and possible enzymatic reaction. Using the structures of these complexes, methyl-group transfer and the subsequent proton-abstraction mechanism are discussed. GPPMT and SMTs contain a conserved glutamate residue that is likely to play a role as a general base. Comparison with the reaction mechanism of the mycolic acid cyclopropane synthase (MACS) family also supports this result. This enzyme represented here is the first model of the enzymatic C-methylation of a nonconjugated olefin in the isoprenoid-biosynthesis pathway. In addition, an elaborate system to avoid methylation of incorrect substrates is proposed.
Alabugin, Igor V; Bresch, Stefan; Manoharan, Mariappan
2014-05-22
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Zhao, Xin; Liu, Rui; Tang, Hao; Osei-Adjei, George; Xu, Shungao; Zhang, Ying; Huang, Xinxiang
2018-05-08
Bacterial non-coding RNAs (ncRNAs) are widely studied and found to play important roles in regulating various cellular processes. Recently, many ncRNAs have been discovered to be transcribed or processed from 3' untranslated regions (3' UTRs). Here we reported a novel 3' UTR-derived ncRNA, RibS, which could influence biofilm formation of Salmonella enterica serovar Typhi (S. Typhi). RibS was confirmed to be a ∼700 nt processed product produced by RNase III-catalyzed cleavage from the 3' UTR of riboflavin synthase subunit alpha mRNA, RibE. Overexpression of RibS increased the expression of the cyclopropane fatty acid synthase gene, cfa, which was located at the antisense strand. Biofilm formation of S. Typhi was enhanced by overexpressing RibS both in the wild type strain and cfa deletion mutant. Deletion of cfa attenuated biofilm formation of S. Typhi, while complementation of cfa partly restored the phenotype. Moreover, overexpressing cfa enhanced the biofilm formation of S. Typhi. In summary, RibS has been identified as a novel ncRNA derived from the 3' UTR of RibE that promotes biofilm formation of S. Typhi, and it appears to do so, at least in part, by increasing the expression of cfa. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T
2001-05-01
A novel genus, Albibacter, with one species, Albibacter methylovorans sp. nov., is proposed for a facultatively chemolithotrophic and methylotrophic bacterium (strain DM10T) with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. The bacterium is a Gram-negative, aerobic, asporogenous, nonmotile, colourless rod that multiplies by binary fission. The organism utilizes dichloromethane, methanol, methylamine, formate and CO2/H2, as well as a variety of polycarbon compounds, as carbon and energy sources. It is neutrophilic and mesophilic. The major cellular fatty acids are straight-chain unsaturated C18:1, saturated C16:0 and cyclopropane C19:0 acids. The main ubiquinone is Q-10. The dominant phospholipids are phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl choline and cardiolipin. The DNA G+C content is 66.7 mol%. Strain DM10T has a very low degree of DNA-DNA hybridization (4-7%) with the type species of the genera Paracoccus, Xanthobacter, Blastobacter, Angulomicrobium, Ancylobacter and Ralstonia of RuBP pathway methylobacteria. Another approach, involving comparative 16S rDNA analysis, has shown that the novel isolate represents a separate branch within the alpha-2 subgroup of the Proteobacteria. The type species of the new genus is Albibacter methylovorans sp. nov.; the type strain is DM10T (= VKM B-2236T = DSM 13819T).
Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.; ...
2015-06-27
Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified Caenorhabditis elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols is rich in fatty acid species obtained from the dietary Escherichia coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a very similar proteome in both strains, except that the most abundant protein in the C. elegans lipid droplet proteome, MDT-28, is relatively less abundant in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans. Finally, we confirmed the localization of one of the newly identified lipid droplet proteins, ACS-4. We found that ACS-4 localizes to the surface of lipid droplets in the C. elegans intestine and skin. This study bolsters C. elegans as a model to study the dynamics and functions of lipid droplets in a multicellular organism.« less
Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza
2013-10-01
In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.
Generation of N-Heterocycles via Tandem Reactions of N '-(2-Alkynylbenzylidene)hydrazides.
Qiu, Guanyinsheng; Wu, Jie
2016-02-01
As a powerful synthon, N '-(2-alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N-heterocycles. Since N '-(2-alkynylbenzylidene)hydrazides can easily undergo intramolecular 6-endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium-2-yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen-containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H-pyrazolo[5,1-a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium-2-yl amide followed by aromatization also produced H-pyrazolo[5,1-a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N '-(2-alkynylbenzylidene)hydrazides. A tandem 6-endo cyclization and [3 + 3] cycloaddition of cyclopropane-1,1-dicarboxylates with N '-(2-alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC-PTP, HCT-116, and PTP1B. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua
2016-02-01
Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
van Es, Sam W; Silveira, Sylvia R; Rocha, Diego I; Bimbo, Andrea; Martinelli, Adriana P; Dornelas, Marcelo C; Angenent, Gerco C; Immink, Richard G H
2018-06-01
The flowers of most dicotyledons have petals that, together with the sepals, initially protect the reproductive organs. Later during development petals are required to open the flower and to attract pollinators. This diverse set of functions demands tight temporal and spatial regulation of petal development. We studied the functioning of the Arabidopsis thaliana TCP5-like transcription factors (TFs) in petals. Overexpression of TCP5 in petal epidermal cells results in smaller petals, whereas tcp5 tcp13 tcp17 triple knockout lines have wider petals with an increased surface area. Comprehensive expression studies revealed effects of TCP5-like TFs on the expression of genes related to the cell cycle, growth regulation and organ growth. Additionally, the ethylene biosynthesis genes 1-amino-cyclopropane-1-carboxylate (ACC) synthase 2 (ACS2) and ACC oxidase 2 (ACO2) and several ETHYLENE RESPONSE FACTORS (ERFs) are found to be differentially expressed in TCP5 mutant and overexpression lines. Chromatin immunoprecipitation-quantitative PCR showed direct binding of TCP5 to the ACS2 locus in vivo. Ethylene is known to influence cell elongation, and the petal phenotype of the tcp5 tcp13 tcp17 mutant could be complemented by treatment of the plants with an ethylene pathway inhibitor. Taken together, this reveals a novel role for TCP5-like TFs in the regulation of ethylene-mediated petal development and growth. © 2018 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Romano, Ida; Lama, Licia; Orlando, Pierangelo; Nicolaus, Barbara; Giordano, Assunta; Gambacorta, Agata
2007-11-01
An alkalitolerant and halotolerant bacterium, designated strain Sharm was isolated from a salt lake inside Ras Muhammad. The morphological, physiological and genetic characteristics were compared with those of related species of the genus Halomonas. The isolate grew optimally at pH 7.0, 5-15% NaCl at 35 degrees C. The cells were Gram-negative rods, facultative anaerobes. They accumulated glycine-betaine, as a major osmolyte, and ectoine and glutamate as minor components. The strain Sharm(T) biosynthetised alpha-glucosidase. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and a novel phosphoglycolipid as major components. Ubiquinone with nine repetitive unities (Q9) was the only quinone found and, nC16:0 and C19:0 with cyclopropane were the main cellular fatty acids, accounting for 87.3% of total fatty acids. The G + C content of the genomic DNA was 64.7 mol %. The 16S rRNA sequence analysis indicated that strain Sharm was a member of the genus Halomonas. The closest relatives of the strain Sharm were Halomonas elongata and Halomonas eurihalina. However, DNA-DNA hybridisation results clearly indicated that strain Sham was a distinct species of Halomonas. On the basis of the evidence, we propose to assign strain Sharm as a new species of the genus Halomonas, H. sinaiensis sp. nov, with strain Sharm(T) as the type strain (DSM 18067(T); ATCC BAA-1308(T)).
Trusov, Yuri; Botella, José Ramón
2006-01-01
Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z.; Espenson, J.H.
1996-10-16
Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The usemore » of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.« less
Chang, Pearl; Gerhardt, Karen E; Huang, Xiao-Dong; Yu, Xiao-Ming; Glick, Bernard R; Gerwing, Perry D; Greenberg, Bruce M
2014-01-01
Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino-cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a ) salt-impacted ( 50 dS/m) farm field, and their ability to promote plant growth of barley 1): and oats in saline soil was investigated in pouch assays (1% NaCI), greenhouse trials (9.4 dS/m), and field trials (6-24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%-150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt
Measuring Intermolecular Binding Energies by Laser Spectroscopy.
Knochenmuss, Richard; Maity, Surajit; Féraud, Géraldine; Leutwyler, Samuel
2017-02-22
The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.
Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli.
Ng, Tsz Wai; Chan, Wing Lam; Lai, Ka Man
2018-04-01
Finding ways to predict and control the survival of bacterial aerosols can contribute to the development of ways to alleviate a number of crucial microbiological problems. Significant damage in the membrane integrity of Escherichia coli during aerosolization and airborne suspension has been revealed which has prompted the question of how the membrane fatty acid composition and fluidity influence the survival of airborne bacteria. Two approaches of using isogenic mutants and different growth temperatures were selected to manipulate the membrane fatty acid composition of E. coli before challenging the bacteria with different relative humidity (RH) levels in an aerosol chamber. Among the mutants (fabR - , cfa. fadA - ), fabR - had the lowest membrane fluidity index (FI) and generally showed a higher survival than the parental strain. Surprisingly, its resistance to airborne stress was so strong that its viability was fully maintained even after airborne suspension at 40% RH, a harsh RH level to bacterial survival. Moreover, E. coli cultured at 20 °C with a higher FI than that at 30 and 37 °C generally had a lower survival after aerosolization and airborne suspension. Unlike FI, individual fatty acid and cyclopropane fatty acid composition did not relate to the bacterial survival. Lipid peroxidation of the membrane was undetected in all the bacteria. Membrane fluidity plays a stronger role in determining the bacteria survival during airborne suspension than during aerosolization. Certain relationships between FI and bacteria survival were identified, which could help predict the transmission of bacteria under different conditions.
Collard, Charles D; Anton, James M; Cooper, John R; Giesecke, N Martin
2008-04-01
Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion. By B. A. Wells, A. S. Keats, and D. A. Cooley. Surgery 1963; 54:216-23. Local anesthesia with little or no preoperative sedation is currently recommended as the anesthetic of choice for temporary carotid occlusion during carotid endarterectomy. Purported advantages include minimal circulatory and respiratory changes from the local anesthetic, and constant verbal contact can be maintained with the patient so that neurologic changes are promptly recognized. However, local anesthesia may not be satisfactory in uncooperative or semiconscious patients. We therefore undertook a trial of general anesthesia in 56 consecutive patients undergoing carotid endarterectomy. Patients were induced in standardized fashion using intravenous thiopental (100-400 mg), atropine (0.2 mg), and succinylcholine (40-80 mg). Cyclopropane, along with deliberate hypercapnia and hypertension, was used for anesthesia maintenance. All patients tolerated carotid occlusion for periods of up to 30 min during general anesthesia without shunt, bypass, or hypothermia. Except for one patient, electroencephalogram evidence of cerebral ischemia was not apparent during occlusion, and no patient suffered postoperative neurologic sequela. Twenty percent of patients who had their carotid arteries occluded preoperatively for 30-60 s without general anesthesia suffered convulsions. These data suggest that general anesthesia increased the tolerance to cerebral ischemia. Potential mechanisms involved might include: 1) decreased cerebral metabolic rate for oxygen; 2) increased cerebral blood flow from hypercapnia; 3) increased arterial oxygen tension; and 4) recruitment of new routes of collateral circulation.
Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran
2013-10-15
The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maki, Arthur; Masiello, Tony; Blake, Thomas A
2009-05-01
For symmetric top molecules, the normal Δk = 0, Δl = 0 and Δk = ±1, Δl = ±1 selection rules for parallel and perpendicular bands, respectively, do not allow the determination of the K-dependent rotational constants, C 0 (or A 0), D 0 K, and H 0 K. However, we show here that several different combinations of allowed and apparently unperturbed rovibrational infrared transitions can give access to those constants. A necessary ingredient for the application of this technique is a band with selection rules Δk = ±1 (or Δk = 0), Δl = ∓2, such as an overtonemore » or difference band, and appropriate other bands. Bands with selection rules Δk = ±2, Δl = ∓1 are also useful but are seldom found. As a general rule, more than one vibrational transition is needed. Examples are given for boron trifluoride (BF 3), sulfur trioxide (SO 3), and cyclopropane (C 3H 6) for which there are microwave measurements that provide a check on the derived constants. The technique is also extended to a D 2d molecule, allene, even though we have no measurements to use as an example. Examples are also given for the determination of dark states from difference bands, and/or hot bands, and also whole forbidden bands that arise from mixing with distant energy levels.« less
Wu, Vivian C H; Qiu, Xujian; de los Reyes, Benildo G; Lin, Chih-Sheng; Pan, Yingjie
2009-02-01
The possible use of cranberry concentrate (CC) as a natural food preservative was studied by examining its antimicrobial effect on the growth of Escherichia coli O157:H7 inoculated in ground beef, its organoleptical effect on beef patties, and its antimicrobial mechanism on the gene regulation level. Inoculated ground beef was added with CC and stored at 4 degrees C for 5 days. Bacteria were detected on day 0, 1, 3, and 5. Cranberry concentrate (2.5%, 5%, and 7.5% w/w) reduced total aerobic bacteria 1.5 log, 2.1 log, and 2.7 log CFU/g and E. coli O157:H7 0.4 log, 0.7 log, and 2.4 log CFU/g, respectively, when compared to the control on day 5. Fifty panelists evaluated the burgers supplemented with CC. No differences in appearance, flavor, and taste were found among burgers with 0%, 2.5%, and 5% CC. The expression of E. coli O157:H7 cyclopropane fatty acyl phospholipid synthase (cfa), hypothetical protein (hdeA), outer membrane porin protein C (ompC), hyperosmotically inducible periplasmic protein (osmY), and outer membrane protein induced after carbon starvation (slp) genes with or without CC (2.5% v/v) treatment was investigated by quantitative real-time PCR. Compared to the control, slp, hdeA, and cfa were markedly downregulated, ompC was slightly downregulated, while osmY was slightly affected.
Willemin, M-E; Kadar, A; de Sousa, G; Leclerc, E; Rahmani, R; Brochot, C
2015-06-01
In vitro metabolism of permethrin, a pyrethroid insecticide, was assessed in primary human hepatocytes. In vitro kinetic experiments were performed to estimate the Michaelis-Menten parameters and the clearances or formation rates of the permethrin isomers (cis- and trans-) and three metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA) and 3-phenoxybenzoic acid (3-PBA). Non-specific binding and the activity of the enzymes involved in permethrin's metabolism (cytochromes P450 and carboxylesterases) were quantified. Trans-permethrin was cleared more rapidly than cis-permethrin with a 2.6-factor (25.7±0.6 and 10.1±0.3 μL/min/10(6) cells respectively). A 3-factor was observed between the formation rates of DCCA and 3-PBA obtained from trans- and cis-permethrin. For both isomers, the rate of formation of DCCA was higher than the one of 3-PBA. The metabolism of the isomers in mixture was also quantified. The co-incubation of isomers at different ratios showed the low inhibitory potential of cis- and trans-permethrin on each other. The estimates of the clearances and the formation rates in the co-incubation condition did not differ from the estimates obtained with a separate incubation. These metabolic parameters may be integrated in physiologically based pharmacokinetic (PBPK) models to predict the fate of permethrin and metabolites in the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kushad, Mosbah M.; Richardson, Daryl G.; Ferro, Adolph J.
1985-01-01
5′-Methylthioadenosine (MTA) nucleosidase and 5-methylthioribose (MTR) kinase activities were measured in crude extracts of tomato fruits (Lycopersicon esculentum Mill cv Rutgers) during fruit development and ripening. The highest activity of MTA nucleosidase (1.2 nanomoles per milligram protein per minute) was observed in small green fruits. The activity decreased during ripening; at the overripe stage only 6.5% of the peak activity remained. MTR kinase activity was low at the small green stage and increased thereafter until it reached peak activity at the breaker stage (0.7 nanomoles per milligram protein per minute) followed by a sharp decline at the later stages of fruit ripening. 1-Amino-cyclopropane-1-carboxylic acid (ACC) levels peaked at the red stage, while ethylene reached its highest level at the light-red stage. Several analogs of MTA and MTR were tested as both enzyme and ethylene inhibitors. Of the MTA analogs examined for their ability to inhibit MTA nucleosidase, 5′-chloroformycin reduced enzyme activity 89%, whereas 5′-chloroadenosine, 5′-isobutylthioadenosine, 5′-isopropylthioadenosine, and 5′-ethylthioadenosine inhibited the reaction with MTA by about 40%. 5′-Chloroformycin and 5′-chloroadenosine inhibited ethylene production over a period of 24 hours by about 64 and 42%, respectively. Other analogs of MTA were not effective inhibitors of ethylene production, whereas aminoethoxyvinylglycine showed a 34% inhibition over the same period of time. Of the MTR analogs tested, 5-isobutylthioribose was the most effective inhibitor of both MTR-kinase (41%) and ethylene production (35%). PMID:16664444
Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun
2018-02-01
1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.
Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea
2014-01-01
Background Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that mediate the transduction of extracellular stimuli via receptors/sensors into intracellular responses and play key roles in plant immunity against pathogen attack. However, the function of tomato MAPK kinases, SlMKKs, in resistance against Botrytis cinerea remains unclear yet. Results A total of five SlMKK genes with one new member, SlMKK5, were identified in tomato. qRT-PCR analyses revealed that expression of SlMKK2 and SlMKK4 was strongly induced by B. cinerea and by jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual SlMKKs and disease assays identified that SlMKK2 and SlMKK4 but not other three SlMKKs (SlMKK1, SlMKK3 and SlMKK5) are involved in resistance against B. cinerea. Silencing of SlMKK2 or SlMKK4 resulted in reduced resistance to B. cinerea, increased accumulation of reactive oxygen species and attenuated expression of defense genes after infection of B. cinerea in tomato plants. Furthermore, transient expression of constitutively active phosphomimicking forms SlMKK2DD and SlMKK4DD in leaves of Nicotiana benthamiana plants led to enhanced resistance to B. cinerea and elevated expression of defense genes. Conclusions VIGS-based knockdown of SlMKK2 and SlMKK4 expression in tomato and gain-of-function transient expression of constitutively active phosphomimicking forms SlMKK2DD and SlMKK2DD in N. benthamiana demonstrate that both SlMKK2 and SlMKK4 function as positive regulators of defense response against B. cinerea. PMID:24930014
Charoenwong, Duangkamol; Andrews, Simon; Mackey, Bernard
2011-01-01
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary-phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure sensitive and took up more PI than the parent strain, with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY, and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment, and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure sensitive, was unaffected in membrane resealing, implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA, and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells. PMID:21705547
Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe
2015-01-01
In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.
Harold Griffith Memorial Lecture. The Griffith legacy.
Sykes, K
1993-04-01
1992 was the anniversary of Crawford Long's use of ether in 1842, and Griffith and Johnson's introduction of Intocostrin into anaesthetic practice in 1942. Harold Randall Griffith was born in Montreal in 1894 and died in 1985. He interrupted his medical studies to serve in the first world war and was awarded the Military Medal for gallantry at the battle of Vimy Ridge. Griffith qualified from McGill University in 1922. After spending a year studying homoeopathic medicine, he joined his father's general practice and became the anaesthetist to the Homoeopathic Hospital in Montreal. He succeeded his father as Medical Director of the hospital (now renamed the Queen Elizabeth Hospital) in 1936 and retired in 1966. Griffith was a superb clinical anaesthetist. He was an early advocate of detailed anaesthetic records, and was responsible for the introduction of both ethylene and cyclopropane into Canadian practice, later teaching himself to intubate under these two agents. Griffith was one of the first to be concerned with standards of patient care. He introduced postoperative recovery and intensive care units into Canadian practice and played a major role in postgraduate teaching. He was unstinting in his support of organisations designed to further the progress of anaesthesia and was the first President of the Canadian Anaesthetist's Society. He was one of those responsible for inaugurating the World Federation of Societies of Anaesthesiology and was President of the First World Congress of Anaesthesiology in 1955. It is remarkable that the introduction of curare into anaesthetic practice was delayed until 1942, since curare had been used in anaesthesia some 30 years previously. However, it was probably Griffith's confidence in his own clinical abilities which enabled him to seize the opportunity when it was offered.
Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal
2013-11-01
A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.
Farag, Mohamed A; Porzel, Andrea; Al-Hammady, Montasser A; Hegazy, Mohamed-Elamir F; Meyer, Achim; Mohamed, Tarik A; Westphal, Hildegard; Wessjohann, Ludger A
2016-04-01
Marine life has developed unique metabolic and physiologic capabilities and advanced symbiotic relationships to survive in the varied and complex marine ecosystems. Herein, metabolite composition of the soft coral genus Sarcophyton was profiled with respect to its species and different habitats along the coastal Egyptian Red Sea via (1)H NMR and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) large-scale metabolomics analyses. The current study extends the application of comparative secondary metabolite profiling from plants to corals revealing for metabolite compositional differences among its species via a comparative MS and NMR approach. This was applied for the first time to investigate the metabolism of 16 Sarcophyton species in the context of their genetic diversity or growth habitat. Under optimized conditions, we were able to simultaneously identify 120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS) were used to define both similarities and differences among samples. For a compound based classification of coral species, UPLC-MS was found to be more effective than NMR. The main differentiations emanate from cembranoids and oxylipids. The specific metabolites that contribute to discrimination between soft corals of S. ehrenbergi from the three different growing habitats also belonged to cembrane type diterpenes, with aquarium S. ehrenbergi corals being less enriched in cembranoids compared to sea corals. PCA using either NMR or UPLC-MS data sets was found equally effective in predicting the species origin of unknown Sarcophyton. Cyclopropane containing sterols observed in abundance in corals may act as cellular membrane protectant against the action of coral toxins, that is, cembranoids.
Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe
2015-01-01
Introduction In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. Materials and Methods In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). Results and Discussion The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Conclusion Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides. PMID:26694029
Charoenwong, Duangkamol; Andrews, Simon; Mackey, Bernard
2011-08-01
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary-phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure sensitive and took up more PI than the parent strain, with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY, and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment, and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure sensitive, was unaffected in membrane resealing, implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA, and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.
Grandvalet, Cosette; Assad-García, Juan Simón; Chu-Ky, Son; Tollot, Marie; Guzzo, Jean; Gresti, Joseph; Tourdot-Maréchal, Raphaëlle
2008-09-01
Cyclopropane fatty acid (CFA) synthesis was investigated in Oenococcus oeni. The data obtained demonstrated that acid-grown cells or cells harvested in the stationary growth phase showed changes in fatty acid composition similar to those of ethanol-grown cells. An increase of the CFA content and a decrease of the oleic acid content were observed. The biosynthesis of CFAs from unsaturated fatty acid phospholipids is catalysed by CFA synthases. Quantitative real-time-PCR experiments were performed on the cfa gene of O. oeni, which encodes a putative CFA synthase. The level of cfa transcripts increased when cells were harvested in stationary phase and when cells were grown in the presence of ethanol or at low pH, suggesting transcriptional regulation of the cfa gene under different stress conditions. In contrast to Escherichia coli, only one functional promoter was identified upstream of the cfa gene of O. oeni. The function of the cfa gene was confirmed by complementation of a cfa-deficient E. coli strain. Nevertheless, the complementation remained partial because the conversion percentage of unsaturated fatty acids into CFA of the complemented strain was much lower than that of the wild-type strain. Moreover, a prevalence of cycC19 : 0 was observed in the membrane of the complemented strain. This could be due to a specific affinity of the CFA synthase from O. oeni. In spite of this partial complementation, the complemented strain of E. coli totally recovered its viability after ethanol shock (10 %, v/v) whereas its viability was only partly recovered after an acid shock at pH 3.0.
Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang
2016-06-01
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
Li, Haoxin; Cowie, Andrew; Johnson, John A; Webster, Duncan; Martyniuk, Christopher J; Gray, Christopher A
2016-08-11
The treatment of microbial infections is becoming increasingly challenging because of limited therapeutic options and the growing number of pathogenic strains that are resistant to current antibiotics. There is an urgent need to identify molecules with novel modes of action to facilitate the development of new and more effective therapeutic agents. The anti-mycobacterial activity of the C17 diyne natural products falcarinol and panaxydol has been described previously; however, their mode of action remains largely undetermined in microbes. Gene expression profiling was therefore used to determine the transcriptomic response of Mycobacterium smegmatis upon treatment with falcarinol and panaxydol to better characterize the mode of action of these C17 diynes. Our analyses identified 704 and 907 transcripts that were differentially expressed in M. smegmatis after treatment with falcarinol and panaxydol respectively. Principal component analysis suggested that the C17 diynes exhibit a mode of action that is distinct to commonly used antimycobacterial drugs. Functional enrichment analysis and pathway enrichment analysis revealed that cell processes such as ectoine biosynthesis and cyclopropane-fatty-acyl-phospholipid synthesis were responsive to falcarinol and panaxydol treatment at the transcriptome level in M. smegmatis. The modes of action of the two C17 diynes were also predicted through Prediction of Activity Spectra of Substances (PASS). Based upon convergence of these three independent analyses, we hypothesize that the C17 diynes inhibit fatty acid biosynthesis, specifically phospholipid synthesis, in mycobacteria. Based on transcriptomic responses, it is suggested that the C17 diynes act differently than other anti-mycobacterial compounds in M. smegmatis, and do so by inhibiting phospholipid biosynthesis.
Cardinali, Alessandra; Otto, Stefan; Vischetti, Costantino; Brown, Colin; Zanin, Giuseppe
2010-01-01
Compost biobeds can promote biodegradation of pesticides. The microbial community structure changes during the composting process, and simple methods can potentially be used to follow these changes. In this study the microbial identification (MIDI) and ester-linked (EL) procedures were used to determine the composition of fatty acid methyl esters (FAMEs) in composts aged 3 and 12 months, inoculated with 3 recalcitrant pesticides (azoxystrobin, chlorotoluron, and epoxyconazole and a coapplication of all three) after 0, 56, and 125 days of degradation. Pesticide persistence was high, and after 125 days the residue was 22 to 70% of the applied amount depending mostly on the composting age. Seventy-one FAMEs belonging to nine groups were detected. The EL method provided three times as many detections as did the MIDI method and was more sensitive for all FAME groups except alcohol. Thirty-six and five FAMEs were unique to the EL and MIDI methods, respectively. The extraction method was of importance. The EL method provided a higher number of detections for 57 FAMEs, and the MIDI method provided a higher number for 9 FAMEs, while the two methods were equal for 5 FAMEs; thus, the EL method provided a more uniform overall FAME profile. Effects of the other factors were not always clear. Inoculation with pesticide did not influence the FAME profile with the MIDI method, while it influenced cyclopropane and monounsaturated content with the EL method. Composting age and degradation time had an effect on some groups of FAMEs, and this effect was greater with the EL method. The use of some FAMEs as biomarkers to follow microbial community succession was likely influenced by the type of compost and other factors. PMID:20693445
Liscombe, David K; Facchini, Peter J
2007-05-18
S-Adenosyl-l-methionine:tetrahydroprotoberberine cis-N-methyltransferase (EC 2.1.1.122) catalyzes the conversion of (S)-stylopine to the quaternary ammonium alkaloid, (S)-cis-N-methylstylopine, as a key step in the biosynthesis of protopine and benzophenanthridine alkaloids in plants. A full-length cDNA encoding a protein exhibiting 45 and 48% amino acid identity with coclaurine N-methyltransferase from Papaver somniferum (opium poppy) and Coptis japonica, respectively, was identified in an elicitor-treated opium poppy cell culture expressed sequence tag data base. Phylogenetic analysis showed that the protein belongs to a unique clade of enzymes that includes coclaurine N-methyltransferase, the predicated translation products of the Arabidopsis thaliana genes, At4g33110 and At4g33120, and bacterial S-adenosyl-L-methionine-dependent cyclopropane fatty acid synthases. Expression of the cDNA in Escherichia coli produced a recombinant enzyme able to convert the protoberberine alkaloids stylopine, canadine, and tetrahydropalmatine to their corresponding N-methylated derivatives. However, the protoberberine alkaloids tetrahydroxyberbine and scoulerine, and simple isoquinoline, benzylisoquinoline, and pavine alkaloids were not accepted as substrates, demonstrating the strict specificity of the enzyme. The apparent K(m) values for (R,S)-stylopine and S-adenosyl-L-methionine were 0.6 and 11.5 microm, respectively. TNMT gene transcripts and enzyme activity were detected in opium poppy seedlings and all mature plant organs and were induced in cultured opium poppy cells after treatment with a fungal elicitor. The enzyme was detected in cell cultures of other members of the Papaveraceae but not in species of related plant families that do not accumulate protopine and benzophenanthridine alkaloids.
Kavvalakis, Matthaios P; Tzatzarakis, Manolis N; Alegakis, Athanasios K; Vynias, Dionysios; Tsakalof, Andreas K; Tsatsakis, Aristidis M
2014-06-01
Cypermethrin (CPMN) is a synthetic pyrethroid used as an insecticide in large-scale commercial agricultural applications as well as for domestic purposes. In the present study a gas chromatography-mass spectrometry (GC-MS) based method was developed and validated for the quantitation of CPMN metabolites, 3-phenoxybenzoic acid (3-PBA) and cis- and trans- 3-(2,2-dichlorovinyl)-2,2-dimethyl-1-cyclopropane (cis- and trans- Cl2 CA). The developed method was applied for the monitoring of CPMN metabolites in hair of laboratory animals (rabbits) intentionally exposed per os to CPMN at 40 (low dose) and 80 (high dose) mg/kg weight/day for 16 weeks. The analytical method comprises three main steps: isolation of analytes from hair, analytes derivatization, and subsequent instrumental analysis by GC-MS. The limits of detection ensured by the method are 4.0, 3.9 and 1.0 pg/mg hair for cis-Cl2 CA, trans-Cl2 CA and 3-PBA, respectively. The instrument responce is linear (r(2) > 0.99) in the investigated concentrations range from 25 to 1000 pg/mg. With and between-run precision as well as accuracy were estimated and found satisfactory. Analytes were efficiently isolated by solid-liquid extraction from hair with recoveries greater than 84.8% for cis-Cl2 CA, 87.2% for trans-Cl2 CA and 96.4% for 3-PBA. Rabbit's hair showed increasing levels for all metabolites (metabolites accumulation in a time and dose dependent manner) over time and in a dose-dependent manner. The developed experimental procedure could be used for biomonitoring of population exposure to CPMN. Copyright © 2014 John Wiley & Sons, Ltd.
Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage
Royce, Liam A.; Boggess, Erin; Fu, Yao; Liu, Ping; Shanks, Jacqueline V.; Dickerson, Julie; Jarboe, Laura R.
2014-01-01
Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic. PMID:24586888
Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E
2014-11-14
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Zhang, Qian; Zhou, Wei; Liang, Guoqing; Wang, Xiubin; Sun, Jingwen; He, Ping; Li, Lujiu
2015-01-01
This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, β-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, β-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on β-xylosidase, β-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile. PMID:25879759
Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia
2016-01-01
Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.
Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia
2016-01-01
Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087
Zhang, Qian; Zhou, Wei; Liang, Guoqing; Wang, Xiubin; Sun, Jingwen; He, Ping; Li, Lujiu
2015-01-01
This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, β-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, β-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on β-xylosidase, β-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile.
Hirshfield, Irvin
2016-01-01
Small colony variants (SCVs) can be defined as a naturally occurring sub-population of bacteria characterized by their reduced colony size and distinct biochemical properties. SCVs of Staphylococcus aureus have been studied extensively over the past two decades due to their role in recurrent human infections. However, little work has been done on SCVs of Escherichia coli, and this work has focused on the physiology and morphology that define these colonies of E. coli, such as small size and slow growth. E. coli strain JW0623, has a null lipA mutation in the lipoic acid synthase gene (lipA), and is a lipoic acid auxotroph. When the mutant was grown in LB medium to log phase, it showed remarkable resistance to acid (pH 3), hydrogen peroxide, heat and osmotic stress compared to its parent BW25113. Using RT-PCR and real time RT-PCR, the expression of certain genes was compared in the two strains in an attempt to create a molecular profile of Escherichia coli SCVs. These include genes involved in glycolysis, TCA cycle, electron transport, iron acquisition, biofilm formation and cyclopropane fatty acid synthesis. It was also demonstrated that the addition of 5 μg/ml of lipoic acid to LB medium allows for the phenotypic rescue of the mutant; reversing its slow growth, its resistance characteristics, and elevated gene expression. These results indicate that the mutation in lipA leads to an E. coli SCV that resembles an electron transport defective SCV of S. aureus These strains are typically auxotrophs, and are phenotypically rescued by adding the missing metabolite to rich medium. There are global shifts in gene expression which are reversible and depend on whether the auxotrophic molecule is absent or present. Looking at the E. coli SCV from an evolutionary point of view, it becomes evident that its path to survival is to express genes that confer stress resistance. PMID:27310825
NASA Astrophysics Data System (ADS)
Carnes, Corrie Leigh
The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.
Doronina, N V; Trotsenko, Y A; Tourova, T P
2000-09-01
A new genus, Methylarcula, with two new species, Methylarcula marina and Methylarcula terricola, are proposed for strains h1T and h37T of moderately halophilic facultatively methylotrophic bacteria isolated from the coastal saline habitats. These methylobacteria are aerobic, Gram-negative, asporogenous, non-motile, colourless rods that multiply by binary fission. Their cellular fatty acids profiles consist primarily of straight-chain unsaturated (C18:1; 70-80%), saturated (C18:0; 14-16%) and cyclopropane (C19:0; 5-6%) acids. The major ubiquinone is Q-10. The dominant phospholipids are phosphatidylethanolamine and phosphatidylcholine. Both strains could use methylamine, some sugars and organic acids as carbon and energy sources. They grew well under optimal conditions (29-35 degrees C, pH 7.5-8.5, 0.5-1.0 M NaCl) and accumulated intracellularly poly-beta-hydroxybutyrate and the compatible solute ectoine. The ectoine pool was found to increase upon increasing the external NaCl concentration and accounted for 18% of the dry cellular weight. Both strains oxidized methylamine by the N-methylglutamate (N-MG) pathway enzymes (gamma-glutamylmethylamide synthetase/lyase and N-MG synthetase/lyase) to formaldehyde and assimilated it via the icl- serine pathway. The DNA G+C content was 60-4 mol% for Methylarcula marina h1T and 57.1 mol% for Methylarcula terricola h37T. The DNA-DNA hybridization value between strains hl and h37 was 25-30%, although they had a low level of DNA relatedness (5-7%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Methylorhabdus and Methylopila. A comparative 16S rDNA sequence-based phylogenetic analysis placed the two species of Methylarcula into a separate branch of the alpha-3 subclass of the Proteobacteria. The type strains of the new species are Methylarcula marina h1T (= VKM B-2159T) and Methylarcula terricola h37T (= VKM B-2160T).
Nickels, Janet S.; Bobbie, Ronald J.; Lott, Dan F.; Martz, Robert F.; Benson, Peter H.; White, David C.
1981-01-01
Metals exposed to rapidly flowing seawater are fouled by microbes that increase heat transfer resistance. In this study, results of biochemical test methods quantitatively relating the biomass and community structure of the microfouling film on aluminum and titanium to heat transfer resistance across the metal surface during three cycles of free fouling and manual brushing showed that cleaning accelerates the rate of fouling measured as the loss of heat transfer efficiency and as microfouling film biomass. The results also showed that the rate of fouling, measured as an increase in heat transfer resistance, is faster on titanium than on aluminum but that the titanium surface is more readily cleaned. In three cycles of free fouling and cleaning with a stiff-bristle nylon brush, the free-fouling communities re-forming on aluminum became enriched in bacteria containing short-branched fatty acids as the cycling progressed. The free-fouling community on titanium revealed an increasingly diverse morphology under scanning electron microscopy that was enriched in a portion of the microeucaryotes. Brushing removed most of the biomass, but left a residual community that was relatively enriched in a portion of the bacterial assembly containing cyclopropane fatty acids on aluminum and in a more diverse community on the titanium surface. The residual communities left after cleaning of titanium revealed an increase in bacteria with short-branched fatty acids and in microeucaryotes as cleaning continued. No significant changes occurred in the residual microbial community structure left on aluminum with cleaning; it was, again, less diverse than that remaining on titanium. The residual communities secreted a twofold-larger amount of extracellular polymer, measured as the ratio of total organic carbon to lipid phosphate, than did the free-fouling community on both surfaces. Images PMID:16345798
Li, Dayong; Zhang, Huijuan; Song, Qiuming; Wang, Lu; Liu, Shixia; Hong, Yongbo; Huang, Lei; Song, Fengming
2015-06-14
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive. A total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells. VIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.
Fujita, Yukiko; Naka, Takashi; Doi, Takeshi; Yano, Ikuya
2005-05-01
Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 microg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+ of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (alpha, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from Mycobacterium tuberculosis showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) alpha-mycolates besides dicyclopropanoic mycolate, ranging from C75 to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83 to C94 and even- and odd-carbon-numbered ketomycolates ranging from C83 to C90. In contrast, TMM from Mycobacterium bovis (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic alpha-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the Mycobacterium avium-intracellulare group, M. phlei and M. flavescens. The M. avium-intracellulare group possessed predominantly C85 and C87 wax ester-mycoloyl TMM, while M. phlei and the rapid growers tested contained C80, C81, C82 and C83 wax ester-mycoloyl TMM. This technique has marked advantages in the rapid analysis of not only intact glycolipid TMM, but also the mycolic acid composition of each mycobacterial species, since it does not require any degradation process.
Aouey, Bakhta; Derbali, Mohamed; Chtourou, Yassine; Bouchard, Michèle; Khabir, Abdelmajid; Fetoui, Hamadi
2017-02-01
Lambda-cyhalothrin (LTC) [α-cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclo-propanecarboxylate] is a synthetic type II pyrethroid insecticide commonly used in residential and agricultural areas. The potential hepatotoxicity of pyrethroids remains unclear and could easily be assessed by measuring common clinical indicators of liver disease. To understand more about the potential risks for humans associated with LTC exposure, male adult rats were orally exposed to 6.2 and 31.1 mg/kg bw of LTC for 7, 30, 45, and 60 days. Histopathological changes and alterations of main parameters related to oxidative stress and inflammatory responses in the liver were evaluated. Further, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] in the liver tissues were identified and quantified by ultra-high-performance liquid chromatography coupled to quadripole time-of-flight mass spectrometry (UHPLC-MS-Q-ToF). Results revealed that LTC exposure significantly increased markers of hepatic oxidative stress in a time-dependent and dose-dependent manner, and this was associated with an accumulation of CFMP and 3-PBA in the liver tissues. In addition, the levels of tumor necrosis factor-α (TNF-α) and interleukin (IL-6 and IL-1β) gene expressions were significantly increased in the liver of exposed rats compared to controls. Correlation analyses revealed that CFMP and 3-PBA metabolite levels in the liver tissues were significantly correlated with the indexes of oxidative stress, redox status, and inflammatory markers in rats exposed to lambda-cyhalothin. Overall, this study provided novel evidence that hepatic damage is likely due to increased oxidative stress and inflammation under the condition of acute and subchronic exposure to lambda-cyhalothrin and that LTC metabolites (CFMP and 3-PBA) could be used as potential biomarker in human biomonitoring studies.
A test house study of pesticides and pesticide degradation products following an indoor application.
Starr, J M; Gemma, A A; Graham, S E; Stout, D M
2014-08-01
Preexisting pesticide degradates are a concern for pesticide biomonitoring studies as exposure to them may result in overestimation of pesticide exposure. The purpose of this research was to determine whether there was significant formation and movement, of pesticide degradates over a 5-week period in a controlled indoor setting after insecticide application. Movement of the pesticides during the study was also evaluated. In a simulated crack and crevice application, commercially available formulations of fipronil, propoxur, cis/trans-permethrin, and cypermethrin were applied to a series of wooden slats affixed to the wall in one room of an unoccupied test house. Floor surface samples were collected through 35 days post-application. Concentrations of the pesticides and the following degradates were determined: 2-iso-propoxyphenol, cis/trans 3-(2,2-dichlorovinyl)-3-3-dimethyl-(1-cyclopropane) carboxylic acid, 3-phenoxybenzoic acid, fipronil sulfone, fipronil sulfide, and fipronil desulfinyl. Deltamethrin, which had never been applied, and chlorpyrifos, which had been applied several years earlier, and their degradation products, cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid, and, 3,5,6-trichloro-2-pyridinol, respectively, were also measured. Propoxur was the only insecticide with mass movement away from the application site. There was no measurable formation or movement of the degradates. However, all degradates were present at low levels in the formulated product. These results indicate longitudinal repetitive sampling of indoor degradate levels during short-term studies, is unnecessary. Exposure to preexisting pesticide degradates may inflate estimates of exposure in biomonitoring studies where these compounds are used as biomarkers. To date, there is no published information on formation of pesticide degradates following an indoor application. We found that the study pesticides have low rates of degradation and are unlikely to be a significant factor affecting results of short-term (weeks) biomonitoring studies. Therefore, relatively few indoor samples are needed to estimate background levels of degradation products resulting from a recent pesticide application. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
de Meijere, Armin; Chaplinski, Vladimir; Winsel, Harald; Kordes, Markus; Stecker, Björn; Gazizova, Vesta; Savchenko, Andrei I; Boese, Roland; Schill, Farina
2010-12-10
Thirty-three different N,N-dialkyl- and N-alkyl-N-phosphorylalkyl-substituted carboxamides 9-17 were treated with unsubstituted as well as with 2-alkyl-, 2,2-dialkyl-, and 3-alkenyl-substituted ethylmagnesium bromides 6 in the presence of stoichiometric amounts of titanium tetraisopropoxide or methyltitanium triisopropoxide to furnish substituted cyclopropylamines 20-25 in 20-98% yield, depending on the substituents with no (1:1) to excellent (>25:1) diastereoselectivities. Generally higher yields (up to 98%) of the cyclopropylamines 20-28 without loss of the diastereoselectivity were obtained with methyltitanium triisopropoxide as the titanium mediator. Under these conditions, even dioxolane-protected ketones and halogen-substituted and chiral as well as achiral alkyloxyalkyl-substituted carboxamides could be converted to the correspondingly substituted cyclopropylamines with unsubstituted as well as phenyl- and a variety of alkyl-substituted ethylmagnesium bromides in addition to numerous heteroatom-containing (e.g., halogen-, trityloxy-, tetrahydropyranyloxy-substituted) Grignard reagents (62 examples altogether). The transformation of N,N-diformylalkylamines 54 with ethylmagnesium bromide in the presence of methyltitanium triisopropoxide to N,N-dicyclopropyl-N-alkylamines 55 can be brought about in up to 82% yield (6 examples). An asymmetric variant of the titanium-mediated cyclopropanation of N,N-dialkylcarboxamides has been developed by applying chiral titanium mediators generated from stoichiometric amounts of titanium tetraisopropoxide and chiral diamino or diol ligands, respectively. The most efficient chiral mediators turned out to be titanium bistaddolates that provided the corresponding cyclopropylamines with enantiomeric excesses (ee) of up to 84%. Evaluation of several silyl-based additives revealed that the reaction can also efficiently be carried out with substoichiometric amounts (down to 25 mol%) of the titanium reagent, as long as 2-aryl- or 2-ethenyl-substituted ethylmagnesium halides are used and a concomitant slight decrease in yields is accepted. The newly developed methodology was successfully applied for the preparation of analogues with cyclopropylamine moieties of known drugs and natural products such as the nicotine metabolite (S)-Cotinine as well as the insecticides Dinotefuran and Imidacloprid.
New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinhua
2004-12-19
The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I 2, ICl, PhSeCl, PhSCl and p-O 2NC 6H 4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellentmore » yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed C-H activation reactions parallel electrophilic aromatic substitution. A relatively efficient synthesis of cyclopropanes has been developed using palladium-catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a single step. This method involves the palladium-catalyzed activation of relatively unreactive C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolo[1,2-a]indoles, analogues of the mitomycin antibiotics.« less
Kanno, Manabu; Tamaki, Hideyuki; Mitani, Yasuo; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi
2015-01-01
Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. We investigated the pH effect on butanol tolerance of a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. The strain grew over a broad pH range (pH 4.0 to 12.0) and preferred alkaline pH (pH 8.0 and 10.0) in the absence of butanol. However, in the presence of butanol, strain CM4A grew better under acidic and neutral pH conditions (pH 6.0 and 6.8). Membrane fatty acid analysis revealed that the cells exposed to butanol exhibited increased cyclopropane and saturated fatty acids, which contribute to butanol tolerance of the strain by decreasing membrane fluidity, more evidently at acidic and neutral pH than at alkaline pH. Meanwhile, the strain grown under alkaline pH without butanol increased short chain fatty acids, which is involved in increasing membrane fluidity for alkaline adaptation. Such a change was not observed in the cells grown under alkaline pH with butanol. These results suggested that strain CM4A simultaneously exposed to butanol and alkali stresses was not likely able to properly adjust membrane fluidity due to the opposite response to each stress and thereby showed low butanol tolerance under alkaline pH. Indeed, the cells exposed to butanol at alkaline pH showed an irregular shape with disrupted membrane structure under transmission electron microscopy observation, which also indicated the impact of butanol and alkali stresses on functioning of cellular membrane. The study clearly demonstrated the alkaline pH-induced increase of cell susceptibility to butanol in the tested strain. Our findings indicate the non-negligible impact of pH on microbial butanol tolerance, providing a new insight into efficient butanol production.
Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.
Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A
1992-02-01
In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines. Some cytotoxic analogues also significantly suppressed the growth of mammary and prostate cancers in vivo in animal models.
Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.
Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A
1992-01-01
In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines. Some cytotoxic analogues also significantly suppressed the growth of mammary and prostate cancers in vivo in animal models. PMID:1310542
PBPK modeling of the cis- and trans-permethrin isomers and their major urinary metabolites in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willemin, Marie-Emilie; Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319,60203 Compiègnee Cedex; Desmots, Sophie
2016-03-01
Permethrin, a pyrethroid insecticide, is suspected to induce neuronal and hormonal disturbances in humans. The widespread exposure of the populations has been confirmed by the detection of the urinary metabolites of permethrin in biomonitoring studies. Permethrin is a chiral molecule presenting two forms, the cis and the trans isomers. Because in vitro studies indicated a metabolic interaction between the trans and cis isomers of permethrin, we adapted and calibrated a PBPK model for trans- and cis-permethrin separately in rats. The model also describes the toxicokinetics of three urinary metabolites, cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- and trans-DCCA), 3-phenoxybenzoic acidmore » (3-PBA) and 4′OH-phenoxybenzoic acid (4′-OH-PBA). In vivo experiments performed in Sprague–Dawley rats were used to calibrate the PBPK model in a Bayesian framework. The model captured well the toxicokinetics of permethrin isomers and their metabolites including the rapid absorption, the accumulation in fat, the extensive metabolism of the parent compounds, and the rapid elimination of metabolites in urine. Average hepatic clearances in rats were estimated to be 2.4 and 5.7 L/h/kg for cis- and trans-permethrin, respectively. High concentrations of the metabolite 4′-OH-PBA were measured in urine compared to cis- and trans-DCCA and 3-PBA. The confidence in the extended PBPK model was then confirmed by good predictions of published experimental data obtained using the isomers mixture. The extended PBPK model could be extrapolated to humans to predict the internal dose of exposure to permethrin from biomonitoring data in urine. - Highlights: • A PBPK model of isomers of permethrin and its urinary metabolites was developed. • A quantitative link was established for permethrin and its biomarkers of exposure. • The bayesian framework allows getting confidence interval on the estimated parameters. • The PBPK model can be extrapolated to human and used in a reverse dosimetry context.« less
THE RADIATION-INDUCED POLYMERIZATION OF ISOBUTENE: A LIQUID PHASE IONIC REACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collinson, E.; Dainton, F.S.; Gillis, H.A.
1959-06-01
New evidence is presented in support of the suggestion that the gamma - ray-induced polymerization of liquid isobutene at -78 deg C proceeds solely by a cationic mechanism. Attempts to polymerize isobutene at -78 deg C with free radicals from the photolysis of diacetyl, benzoin and benzil were unsuccessful but the benzil solution irradiated with ultraviolet light at 77 deg K was shown by electron spin resonance measurements to give rise to radicals from the isobutene. Isobutene irradiated in the pure state at a gamma -ray dose rate of 7 x 10/sup 17/ e.v. ml/sup -1/ min/sup -1/ polymerized withmore » G(-C/sub 4/H/sub 8/) = 3.0 plus or minus 1.7 x 10/sup 2/. Solutions of FeCl/sub 3/, DPPH, benzoquinone and iodine in isobutene were also irradiated with gamma -rays. Of these solutes, only benzoquinone reduced the polymerization rate to zero, and DPPH had no significant effect. The effects of FeCl/sub 3/ and I/2 on the polymerization were complicated by other factors. The measured yields of conversion of the solutes after irradiation were G(-DPPH) =3.7 plus or minus 0.2, G(Fe(II)) = 3.0 plus or minus 0.5 and G(-Q) = 1.5 plus or minus 0.2. The electron spin resonance spectrum of isobutene irradiated with gamma -rays at 77 deg K showed the presence of H atoms which disappeared rapidly, and a more stable radical, the spectrum of which consisted of 6 peaks having an over-all spacing of 158 gauss at the operating frequency of 9400 Mc sec./sup -1/. The same six peak pattern was obtained from cyclopropane irradiated with gamma rays at 77 deg K and from a solution of benzil in isoDutene irradiated with ultraviolet light at 77 deg K. It is concluded that the radical responsible for this spectrum is either the cyclopropyl radical or the methyl substituted allyl radical, the latter being the less likely. The most likely initiating ion is considered to be (CH/sub 3/)/sub 3/C/sup +/, and a mechanism consistent with the available data is proposed. (auth)« less
Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I
2016-01-15
Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic generation of this ester-linked chain in R. sphaeroides. Copyright © 2015 Elsevier B.V. All rights reserved.
Transition state-finding strategies for use with the growing string method.
Goodrow, Anthony; Bell, Alexis T; Head-Gordon, Martin
2009-06-28
Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G(*)). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VO(x)/SiO(2) catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)(2)(TFA)(3) catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the modified-GSM. The applicability of the substring strategy has been extended to three additional examples: cyclopropane rearrangement to propylene, isomerization of methylcyclopropane to four different stereoisomers, and the bimolecular Diels-Alder condensation of 1,3-butadiene and ethylene to cyclohexene. Thus, the substring strategy used in combination with the modified-GSM has been demonstrated to be an efficient transition state-finding strategy for a wide range of types of reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Guodong
In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl 2 (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti(η 2-PhC≡CPh), with aromatic aldehydes or aryl ketones resulted in reductive couplingmore » of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti(η 2-PhC≡CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph) 2C(Ph) 2O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti(η 2-PhC≡CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and α-hydroxy ketones to benzaldehyde and α-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of α-ketols to α-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.« less
Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya
2009-08-18
The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the catalytic asymmetric Strecker reaction. Rational design identified a related ligand, FujiCAPO, which exhibits superior performance in catalytic asymmetric conjugate addition of cyanide to enones and a catalytic asymmetric Diels-Alder-type reaction. The combination of an amide-based ligand with a rare earth metal constitutes a unique catalytic system: the ligand-metal association is in equilibrium because of structural flexibility. These catalytic systems are effective for asymmetric amination of highly coordinative substrate as well as for Mannich-type reaction of alpha-cyanoketones, in which hydrogen bonding cooperatively contributes to substrate activation and stereodifferentiation. Most of the reactions described here generate stereogenic tetrasubstituted carbons or quaternary carbons, noteworthy accomplishments even with modern synthetic methods. Several reactions have been incorporated into the asymmetric synthesis of therapeutics (or their candidate molecules) such as Tamiflu, AS-3201 (ranirestat), GRL-06579A, and ritodrine, illustrating the usefulness of bifunctional asymmetric catalysis.
Wang, Yi; Yu, Zhi-Xiang
2015-08-18
Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been synthesized using the [5 + 2 + 1] cycloaddition as the key step. In the latter case, excellent asymmetric induction was obtained using a chiral substrate. The efficiency of the [5 + 2 + 1] reaction was further demonstrated by the synthesis of four sesquiterpene natural products, (±)-pentalenene, (+)-hirsutene, (±)-1-desoxyhypnophilin, and (±)-hirsutic acid C, containing linear or branched triquinane skeletons utilizing the tandem or stepwise [5 + 2 + 1] cycloaddition/aldol reaction strategy. With the success of [5 + 2 + 1] cycloaddition in natural product synthesis, application of the [7 + 1] and benzo/[7 + 1] cycloadditions in target- and function-oriented syntheses can be envisioned.
Schettgen, Thomas; Dewes, Petra; Kraus, Thomas
2016-08-01
Synthetic pyrethroids are highly effective, widespread insecticides applied worldwide for different purposes. Among the possible sources of exposure for the general population, pyrethroid residues in food and their prominent use for the conservation of wool carpets or in indoor pest control might play a major role. On the basis of previous works, we have developed and validated a highly sensitive and specific GC/MS/MS-method to simultaneously quantify the metabolites of the most common synthetic pyrethroids in urine, namely cis- and trans-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (DCCA), cis-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylic acid (DBCA), 4-fluoro-3-phenoxybenzoic acid (F-PBA), 3-phenoxybenzoic acid (3-PBA) as well as the metabolites cis-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropanecarboxylic acid (ClF3CA, λ-cyhalothrin/bifenthrin), 4-chloro-α-isopropylbenzene acetic acid (CPBA, esfenvalerate), and 2-methyl-3-phenylbenzoic acid (MPB, bifenthrin). After acidic hydrolysis to cleave conjugates in urine, the analytes are subjected to a pH-controlled extraction into n-hexane. After concentration, the analytes are derivatised using MTBSTFA and finally quantified by GC/MS/MS in EI-mode using d6-trans-DCCA and (13)C6-3-PBA as internal standards. The limit of quantification for these metabolites was 0.01 μg/L urine. Precision within and between series was determined to range between 1.6 and 10.7 % using a native quality control sample as well as a urine sample spiked with 0.3 μg/L of the analytes. To investigate possible background excretions, we analysed spot urine samples of 38 persons of the general population in a pilot study. cis- and trans-DCCA as well as 3-PBA could be quantified in every urine sample investigated, while MPB and F-PBA could only be detected in two samples. The median levels for excretion of cis-DCCA, trans-DCCA, 3-PBA, ClF3CA, DBCA, CPBA, F-PBA and MPA were 0.08, 0.17, 0.22, 0.04, 0.04, <0.01, <0.01 and < 0.01 μg/L urine, respectively. The excretion of metabolites revealed excellent correlations between cyclopropane carboxylic acids and 3-PBA. Our method is highly suitable for human biomonitoring of exposures to synthetic pyrethroids in environmental medicine. Remarkable are the high detection rates for the metabolites ClF3CA (90 %) and CPBA (40 %), proving that their parent pyrethroids have entered the market in Germany.
McArthur, D A; Knowles, N R
1992-09-01
In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis to plant growth decreased and root infection was lower. The in vivo ACC(ox) activity was also greater in roots of plants grown on high levels of P compared with those grown on low levels, although the influence of VAM infection was partially to counteract the nutritional effect of P on ACC(ox) activity. Similar to ACC(ox) activity, extracellular peroxidase activity of roots increased linearly with increasing abiotic P supply, thus indicating a greater potential for resistance to VAM infection. These findings suggest that VAM fungi may alter phenolic metabolism of roots so as to hinder ethylene production and the root's ability to invoke a defense response. Raising the abiotic P supply to plants at least partially restores the capacity of roots to produce ethylene and may, in this way, increase the root's resistance to VAM infection.
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide
Chen, Yuan Yao; Temelli, Feral
2017-01-01
ABSTRACT High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (aW) of 1.0 were reduced by more than 3 log10 (CFU/ml) after supercritical CO2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 ΔgadAB. E. coli AW1.7 Δcfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO2 at any temperature. Treatments with gaseous CO2 at 65°C were more bactericidal than those with supercritical CO2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δcfa when subjected to the gaseous CO2 treatment. This study identified CO2-induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO2. IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO2 and the mechanisms of CO2-mediated inactivation of dry E. coli depended on the physical state of CO2. Liquid and supercritical CO2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO2 was related to the diffusivity of CO2. Results provide a novel and alternative method for the food industry to enhance the safety of low aW products. PMID:28283526
McArthur, David A. J.; Knowles, N. Richard
1992-01-01
In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACCox) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis to plant growth decreased and root infection was lower. The in vivo ACCox activity was also greater in roots of plants grown on high levels of P compared with those grown on low levels, although the influence of VAM infection was partially to counteract the nutritional effect of P on ACCox activity. Similar to ACCox activity, extracellular peroxidase activity of roots increased linearly with increasing abiotic P supply, thus indicating a greater potential for resistance to VAM infection. These findings suggest that VAM fungi may alter phenolic metabolism of roots so as to hinder ethylene production and the root's ability to invoke a defense response. Raising the abiotic P supply to plants at least partially restores the capacity of roots to produce ethylene and may, in this way, increase the root's resistance to VAM infection. Images Figure 1 PMID:16652967
Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation
Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn
2017-01-01
ABSTRACT Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system. PMID:28916558
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.
Chen, Yuan Yao; Temelli, Feral; Gänzle, Michael G
2017-05-15
High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO 2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO 2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (a W ) of 1.0 were reduced by more than 3 log 10 (CFU/ml) after supercritical CO 2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 Δ gadAB E. coli AW1.7 Δ cfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO 2 at any temperature. Treatments with gaseous CO 2 at 65°C were more bactericidal than those with supercritical CO 2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δ cfa when subjected to the gaseous CO 2 treatment. This study identified CO 2 -induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO 2 IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO 2 and the mechanisms of CO 2 -mediated inactivation of dry E. coli depended on the physical state of CO 2 Liquid and supercritical CO 2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO 2 was related to the diffusivity of CO 2 Results provide a novel and alternative method for the food industry to enhance the safety of low a W products. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Cioce, Christian R.
Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene sigma donates, and subsequent back-bonding occurs into a pi* antibonding orbital. This is a different type of interaction not seen in the three existing classes of metal-carbene complexes, namely Fischer, Schrock, and Grubbs. Finally, the virtual engineering of enhanced chemical warfare agent (CWA) detection systems is discussed. As part of a U.S. Department of Defense supported research project, in silico chemical modifications to a previously synthesized zinc-porphyrin, ZnCS1, were made to attempt to achieve preferential binding of the nerve agent sarin versus its simulant, DIMP (diisopropyl methylphosphonate). Upon modification, a combination of steric effects and induced hydrogen bonding allowed for the selective binding of sarin. The success of this work demonstrates the role that high performance computing can play in national security research, without the associated costs and high security required for experimentation.
Thomas, John Meurig; Raja, Robert
2008-06-01
In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to sophisticated, high-sensitivity chiral chromatographic facilities and automated high-throughput combinatorial test rigs so as to optimize the reaction conditions (e.g., H(2) pressure, temperature, time on-stream, pH, and choice of ligand and central metal ion) for high enantioselectivity. This Account reports our discoveries of selective hydrogenations and aminations of synthetic, pharmaceutical, and biological significance, and the findings of other researchers who have achieved similar success in oxidations, dehydrations, cyclopropanations, and hydroformylations. Although the practical advantages and broad general principles governing the enhancement of enantioselectivity through spatial confinement are clear, we require a deeper theoretical understanding of the details pertaining to the phenomenology involved, particularly through molecular dynamics simulations. Ample scope exists for the general exploitation of nanospace in asymmetric hydrogenations with transition metal complexes and for its deployment for the formation of C-N, C-C, C-O, C-S, and other bonds.
Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.
Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung
2017-11-15
Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice ( Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO 3 , NH 4 NO 3 , or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean ( Vigna radiata ) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system. Copyright © 2017 American Society for Microbiology.
Barbier Saint Hilaire, Pierre; Warnet, Anna; Gimbert, Yves; Hohenester, Ulli Martin; Giorgi, Gianluca; Olivier, Marie-Françoise; Fenaille, François; Colsch, Benoît; Junot, Christophe; Tabet, Jean-Claude
2017-03-15
The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms. Therefore, we compared fragmentations of deprotonated aspartic and glutamic acids generated in negative electrospray ionization. Energy-resolved mass spectrometry breakdown curves were recorded and MS 3 experiments performed on an Orbitrap Fusion for high-resolution and high-mass accuracy measurements. Activated fragmentations were performed using both the resonant and non-resonant excitation modes (i.e., CID and HCD, respectively) in order to get complementary information on the competitive and consecutive dissociative pathways. These experiments showed a specific loss of ammonia from the activated aspartate but not from the activated glutamate. We mainly focused on this specific observed loss from aspartate. Two different mechanisms based on intramolecular reactions (similar to those occurring in organic chemistry) were proposed, such as intramolecular elimination (i.e. Ei-like) and nucleophilic substitution (i.e. SNi-like) reactions, respectively, yielding anions as fumarate and α lactone from a particular conformation with the lowest steric hindrance (i.e. with antiperiplanar carboxyl groups). The detected deaminated aspartate anion can then release CO 2 as observed in the MS 3 experimental spectra. However, quantum calculations did not indicate the formation of such a deaminated aspartate product ion without loss of carbon dioxide. Actually, calculations displayed the double neutral (NH 3 +CO 2 ) loss as a concomitant pathway (from a particular conformation) with relative high activation energy instead of a consecutive process. This disagreement is apparent since the concomitant pathway may be changed into consecutive dissociations according to the collision energy i.e., at higher collision energy and at lower excitation conditions, respectively. The latter takes place by stabilization of the deaminated aspartate solvated with two residual molecules of water (present in the collision cell). This desolvated anion formed is an α lactone substituted by a methylene carboxylate group. The vibrational excitation acquired by [(D-H)-NH 3 ] - during its isolation is enough to allow its prompt decarboxylation with a barrier lower than 8.4kJ/mol. In addition, study of glutamic acid-like diastereomers constituted by a cyclopropane, hindering any side chain rotation, confirms the impact of the three-dimensional geometry on fragmentation pathways. A significant specific loss of water is only observed for one of these diastereomers. Other experiments, such as stable isotope labeling, need to be performed to elucidate all the observed losses from activated aspartate and glutamate anions. These first mechanistic interpretations enhance understanding of this dissociative pathway and underline the necessity of studying fragmentation of a large number of various compounds to implement properly new algorithms for de novo elucidation of unknown metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.
Morgan, Marsha K; Sobus, Jon R; Barr, Dana Boyd; Croghan, Carry W; Chen, Fu-Lin; Walker, Richard; Alston, Lillian; Andersen, Erik; Clifton, Matthew S
2016-01-01
Pyrethroid insecticides are widely used to control insects in both agricultural and residential settings worldwide. Few data are available on the temporal variability of pyrethroid metabolites in the urine of non-occupationally exposed adults. In this work, we describe the study design and sampling methodology for the Pilot Study to Estimate Human Exposures to Pyrethroids using an Exposure Reconstruction Approach (Ex-R study). Two major objectives were to quantify the concentrations of several pyrethroid metabolites in bedtime, first morning void (FMV), and 24-h urine samples as concentration (wet weight), specific-gravity (SG) corrected, creatinine (CR) corrected, and excretion rate values for 50 Ex-R adults over a six-week monitoring period and to determine if these correction approaches for urine dilution reduced the variability of the biomarker levels. The Ex-R study was conducted at the United States Environmental Protection Agency's Human Studies Facility in Chapel Hill, North Carolina USA and at participants' homes within a 40-mile radius of this facility. Recruitment of participants and field activities occurred between October 2009 and May 2011. Participants, ages 19-50 years old, provided daily food, activity, and pesticide-use diaries and collected their own urine samples (bedtime, FMV, and 24-h) during weeks 1, 2, and 6 of a six-week monitoring period. A total of 2503 urine samples were collected from the study participants. These samples were analyzed for the pyrethroid metabolites 3-phenoxybenzoic acid (3-PBA), cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (cis/trans-DCCA), and 2-methyl-3-phenylbenzoic acid (MPA) using high performance liquid chromatography/tandem mass spectrometry. Only 3-PBA was frequently detected (>50%) in the adult urine samples. Median urinary 3-PBA levels were 0.88 ng/mL, 0.96 ng/mL-SG, 1.04 ng/mg, and 1.04 ng/min for concentration, SG-corrected, CR-corrected, and excretion rate values, respectively, across all urine samples. The results showed that median urinary 3-PBA concentrations were consistently the lowest in FMV samples (0.77 ng/mL, 0.68 ng/mL-SG, 0.68 ng/mg, and 0.58 ng/min) and the highest in 24-h samples (0.92 ng/mL, 1.06 ng/mL-SG, 1.18 ng/mg, and 1.19 ng/min) across all four methods. Intraclass correlation coefficient (ICC) estimates for 3-PBA indicated poor reproducibility (<0.22) for all urine sample types and methods over a day, week, and six weeks. Correcting for urine sample dilution, based on either SG, CR or urine output, introduced additional measurement variability both between- and within-individuals. These results indicate that a single measure of urinary 3-PBA was not sufficient to characterize average exposure regardless of sample type, correction method, and time frame of collection. In addition, the study results can be used to inform the design of exposure characterization strategies in relevant environmental epidemiology studies in the future. Published by Elsevier Inc.
Soriano, Elena; Marco-Contelles, José
2009-08-18
Organometallic chemistry provides powerful tools for the stereocontrolled synthesis of heterocycles and carbocycles. The electrophilic transition metals Pt(II) and Au(I, III) are efficient catalysts in these transitions and promote a variety of organic transformations of unsaturated precursors. These reactions produce functionalized cyclic and acyclic scaffolds for the synthesis of natural and non-natural products efficiently, under mild conditions, and with excellent chemoselectivity. Because these transformations are strongly substrate-dependent, they are versatile and may yield diverse molecular scaffolds. Therefore, synthetic chemists need a mechanistic interpretation to optimize this reaction process and design a new generation of catalysts. However, so far, no intermediate species has been isolated or characterized, so the formulated mechanistic hypotheses have been primarily based on labeling studies or trapping reactions. Recently, theoretical DFT studies have become a useful tool in our research, giving us insights into the key intermediates and into a variety of plausible reaction pathways. In this Account, we present a comprehensive mechanistic overview of transformations promoted by Pt and Au in a non-nucleophilic medium based on quantum-mechanical studies. The calculations are consistent with the experimental observations and provide fundamental insights into the versatility of these reaction processes. The reactivity of these metals results from their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the pi-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. 1,n-Enynes (n = 3-8) are particularly important precursors, and their transformation may yield a variety of cycloadducts depending on the molecular structure. However, the calculations suggest that these different cyclizations would have closely related reaction mechanisms, and we propose a unified mechanistic picture. The intramolecular nucleophilic attack of the double bond on the activated alkyne takes place by an endo-dig or exo-dig pathway to afford a cyclopropyl-metallocarbenoid. Through divergent routes, the cyclopropyl intermediate formed by exo-cyclopropanation could yield the metathesis adduct or bicyclic compounds. The endo-cyclization may be followed by a [1,2]-migration of the propargyl moiety to the internal acetylenic position to afford bicyclic [n.1.0] derivatives. This reaction mechanism is applicable for functional groups ranging from H to carboxylate propargyl substituents (Rautenstrauch reaction). In intramolecular reactions in which a shorter enyne bears a propargyl ester or in intermolecular reactions of an ester with an alkene, the ester preferentially attacks the activated alkyne because of enthalpic (ring strain) and entropic effects. Our calculations can predict the correct stereochemical outcome, which may aid the rational design of further stereoselective syntheses. The alkynes activated by electrophilic species can also react with other nucleophiles, such as aromatic rings. The calculations account for the high endo-selectivity observed and suggest that this transformation takes place through a Friedel-Crafts-type alkenylation mechanism, where the endo-dig cyclization promoted by PtCl(2) may involve a cyclopropylmetallacarbene as intermediate before the formation of the expected Wheland-type intermediate. These comparisons of the computational approach with experiment demonstrate the value of theory in the development of a solid mechanistic understanding of these reaction processes.
Iodine(III) Reagents in Radical Chemistry
2017-01-01
Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313
A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation
2015-01-01
For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The intermolecular approach offers excellent synthetic flexibility because no tethering of the oxidant is required, and its reduced form is not tangled with the product. We were the first research group to develop this strategy, through the use of pyridine/quinolone N-oxides as the external oxidants. In this manner, we can effectively make a C–C triple bond a surrogate of an α-diazo carbonyl moiety in various gold catalyses. With terminal alkynes, we demonstrated that we can efficiently trap exclusively formed terminal carbene centers by internal nucleophiles en route to the formation of cyclic products, including strained oxetan-3-ones and azetidin-3-ones, and by external nucleophiles when a P,N-bidentate ligand is coordinated to gold. With internal alkynes, we generated synthetically useful regioselectivities in the generation of the α-oxo gold carbene moiety, which enables expedient formation of versatile enone products. Other research groups have also applied this strategy en route to versatile synthetic methods. The α-oxo gold carbenes appear to be more electrophilic than their Rh counterpart, which many chemists have focused on in a large array of excellent work on metal carbene chemistry. The ease of accessing the reactive gold carbenes opens up a vast area for developing new synthetic methods that would be distinctively different from the known Rh chemistry and promises to generate a new round of “gold rush”. PMID:24428596
A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.
Zhang, Liming
2014-03-18
For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The intermolecular approach offers excellent synthetic flexibility because no tethering of the oxidant is required, and its reduced form is not tangled with the product. We were the first research group to develop this strategy, through the use of pyridine/quinolone N-oxides as the external oxidants. In this manner, we can effectively make a C-C triple bond a surrogate of an α-diazo carbonyl moiety in various gold catalyses. With terminal alkynes, we demonstrated that we can efficiently trap exclusively formed terminal carbene centers by internal nucleophiles en route to the formation of cyclic products, including strained oxetan-3-ones and azetidin-3-ones, and by external nucleophiles when a P,N-bidentate ligand is coordinated to gold. With internal alkynes, we generated synthetically useful regioselectivities in the generation of the α-oxo gold carbene moiety, which enables expedient formation of versatile enone products. Other research groups have also applied this strategy en route to versatile synthetic methods. The α-oxo gold carbenes appear to be more electrophilic than their Rh counterpart, which many chemists have focused on in a large array of excellent work on metal carbene chemistry. The ease of accessing the reactive gold carbenes opens up a vast area for developing new synthetic methods that would be distinctively different from the known Rh chemistry and promises to generate a new round of "gold rush".