Science.gov

Sample records for cyclotron beam intensity

  1. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  2. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  3. Advances in intense beams, beam delivery, targetry, and radiochemistry at advanced cyclotron systems

    NASA Astrophysics Data System (ADS)

    Johnson, R. R.; Watt, R.; Kovac, B.; Zyuzin, A.; Van Lier, E.; Erdman, K. L.; Gyles, Wm.; Sabaiduc, V.; McQuarrie, S. A.; Wilson, J.; Backhouse, C.; Gelbart, Wm.; Kuo, T.

    2007-08-01

    The increasing demand for radionuclides for PET and SPECT has resulted in ACSI system improvements starting from the cyclotron and proceeding to the Radiochemistry Modules. With more TR30 cyclotrons installed and operating at full capacity, emphasis has been placed on improving the operational components to reduce both the incidence of failure and subsequent maintenance time. A cyclotron system has been developed that meets the needs of a regional radiopharmacy that supplies both positron and single photon emitters that would not otherwise be available. This new system has been named the TR24. In order to deal with some of the challenges of high currents, a method has been developed for passivating the entrance window foil during high current irradiation of a water target used to produce F-18. A method has been developed for passivating the entrance window foil to reduce unwanted chemical species that interfere with radiopharmaceutical production. Preliminary results for novel radioiodine production technique using the TR19/9 are also discussed.

  4. High intensity beams from electron cyclotron resonance ion sources: A study of efficient extraction and transport system (invited)

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.; Celona, L.; Andò, L.; Passarello, S.; Zhang, X. Zh.; Spädtke, P.; Winkler, M.

    2004-05-01

    A study of the design of extraction and transport system for high intensity beams that will be produced by the next generation electron cyclotron resonance ion source (ECRIS) was carried out in the frame of a European collaboration devoted to the definition of the main parameters of third generation ECRIS. High intensity production tests carried out in the previous years at INFN-LNS have shown evidence for the need to review the main concepts of the beam analysis and transport when high currents of low energy highly charged ions are extracted from the source. The transport of such low energy beams becomes critical as soon as the total current exceeds a few mA. The study reported here is based on the calculated parameters for the GyroSERSE source and the computer simulations have been carried out to obtain low emittance beams. The design of the extraction system was carried out by means of the KOBRA (three dimensional) code. The study of the beam line has been carried out with the codes GIOS, GICO, and TRANSPORT by taking into account both the phase space growth due to space charge and to the aberrations inside the magnets. The description of some different beam line options will be also given.

  5. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  6. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  7. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  8. Development of a fast cyclotron gas stopper for intense rare isotope beams from projectile fragmentation: Study of ion extraction with a radiofrequency carpet

    SciTech Connect

    Bollen, Georg; Morrissey, David

    2011-01-16

    Research and development has been performed in support of the design of a future rare isotope beam facility in the US. An important aspect of plans for earlier RIA (Rare Isotope Accelerator) and a requirement of FRIB (Facility of Rare Isotope Beams) to be built at Michigan State University are the availability of so-called “stopped beams” for research that contributes to answering questions like how elements in the universe are created and to provide better insight into the nature of Fundamental Interactions. In order to create “stopped beams” techniques are required that transform fast rare isotopes beams as they are available directly after addresses questions like the origin of that will allow and High priority is given to the evaluation of intensity limitations and the efficiency of stopping of fast fragment beams in gas cells and to the exploration of options to increase the efficiency and the reduction of space charge effects. Systematic studies performed at MSU as part of the RIA R&D with a linear gas cell under conditions close to those expected at RIA and related simulations confirm that the efficiency of stopping and extracting ions decreases with increasing beam intensity. Similar results have also been observed at RIKEN in Japan. These results indicate the concepts presently under study will not be able to cover the full range of intensities of fast beams expected at RIA without major losses. The development of a more robust concept is therefore critical to the RIA concept. Recent new beam simulation studies performed at the NSCL show that the stopping of heavy ions in a weakly focusing gas-filled magnetic field can overcome the intensity limitation of present systems while simultaneously providing a much faster ion extraction. We propose to design and build such a cyclotron gas stopper and to test it at the NSCL under conditions as close as possible to those found at RIA.

  9. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu

    2014-02-01

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10-9-10-6 ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a 12C5+ beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  10. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  11. Emittance improvement of the electron cyclotron resonance high intensity light ion source proton beam by gas injection in the low energy beam transport

    NASA Astrophysics Data System (ADS)

    Beauvais, P.-Y.; Ferdinand, R.; Gobin, R.; Lagniel, J. M.; Leroy, P.-A.; Celona, L.; Ciavola, G.; Gammino, S.; Pottin, B.; Sherman, J.

    2000-03-01

    SILHI is the ECR high intensity light ion source studied in France at C.E.A. Saclay. This is the source for the injector of the high intensity proton injector prototype developed by a CNRS-IN2P3 collaboration. 80 mA at 95 keV beams with a rms normalized r-r' emittance lower than 0.3 π mm mrad and a proton fraction better than 85% are currently produced. Recently, it has been found that the injection in the low energy beam transport of a buffer gas had a strong effect on the emittance measured 1 m downstream of the focusing solenoid. By adding several gases (H2, N2, Ar, Kr), improvements as great as a factor of 3 have been observed. The emittance has been measured by means of an r-r' emittance measurement unit equipped with a sampling hole and a wire profile monitor, both moving across the beam. Simultaneously, the space charge compensation factor is measured using a four-grid analyzer unit. In this article all results of these experiments are presented and discussed. A first explanation of the emittance reduction phenomenon and possible consequences on the injector operation is given.

  12. Effect of frequency tuning on bremsstrahlung spectra, beam intensity, and shape in the 10 GHz NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Rodrigues, G. Mal, Kedar; Kumar, Narender; Lakshmy, P. S.; Mathur, Y.; Kumar, P.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2014-02-15

    Studies on the effect of the frequency tuning on the bremsstrahlung spectra, beam intensities, and beam shape of various ions have been carried out in the 10 GHz NANOGAN ECR ion source. The warm and cold components of the electrons were found to be directly correlated with beam intensity enhancement in case of Ar{sup 9+} but not so for O{sup 5+}. The warm electron component was, however, much smaller compared to the cold component. The effect of the fine tuning of the frequency on the bremsstrahlung spectrum, beam intensities and beam shape is presented.

  13. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  14. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    SciTech Connect

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  15. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  16. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  17. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    PubMed

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  18. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  19. A real-time beam-profile monitor for a PET cyclotron

    SciTech Connect

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-19

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.

  20. A real-time beam-profile monitor for a PET cyclotron

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-01

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.

  1. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide

    NASA Astrophysics Data System (ADS)

    Hummelt, J. S.; Lu, X.; Xu, H.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J.

    2016-12-01

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  2. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  3. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  4. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  5. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  6. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron.

    PubMed

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  7. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  8. Pencil Beam Scanning System Based On A Cyclotron

    SciTech Connect

    Tachikawa, Toshiki; Nonaka, Hideki; Kumata, Yukio; Nishio, Teiji; Ogino, Takashi

    2011-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed a new pencil beam scanning system (PBS) for proton therapy in collaboration with National Cancer Center Hospital East (NCCHE). Taking advantage of the continuous beam from the cyclotron P235, the line scanning method is employed in order to realize continuous irradiation with high dose rate. 3D uniform and sphere field was irradiated and compared with the simulation.

  9. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    SciTech Connect

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M. Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.; Franzen, K. Y.

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  10. Production of high intensity 48Ca for the 88-Inch Cyclotron and other updates

    NASA Astrophysics Data System (ADS)

    Benitez, J. Y.; Franzen, K. Y.; Hodgkinson, A.; Lyneis, C. M.; Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.

    2014-02-01

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity 48Ca11+ beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of 48Ca11+ beam current was impressive. The consumption of 48Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of 48Ca11+, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  11. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  12. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Pardo, R.; Scott, R.

    2013-11-15

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of {sup 202}Hg{sup 29+} and 3.0 eμA of {sup 202}Hg{sup 31+} from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  13. Note: Production of a mercury beam with an electron cyclotron resonance ion source.

    PubMed

    Vondrasek, R; Pardo, R; Scott, R

    2013-11-01

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of (202)Hg(29+) and 3.0 eμA of (202)Hg(31+) from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  14. Production of molecular ion beams using an electron cyclotron resonance ion source

    SciTech Connect

    Draganić, I. N.; Bannister, M. E.; Meyer, F. W.; Vane, C. R.; Havener, C. C.

    2011-06-01

    An all-permanent magnet electron cyclotron resonance (ECR) ion source is tuned to create a variety of intense molecular ion beams for basic energy research. Based on simultaneous injection of several gases with spectroscopic high purity or enriched isotope content (e.g., H2, D2, N2, O2, or CO) and lower power microwave heating, the ECR ion source produces diatomic molecular ion beams of H2+, D2+, HD+, HO+, DO+, NH+, ND+, and more complex polyatomic molecular ions such as H3+, D3+, HD2+, H2O+, D2O+, H3O+, D3O+, and NHn+, NDn+ with n=2,3,4 and possibly higher. Molecular ion beams have been produced with very high current intensities compared to other molecular beam sources. The recorded molecular ion beam spectra are discussed.

  15. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  16. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    SciTech Connect

    Singh, N.; Conrad, J.R.; Schunk, R.W.

    1985-06-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves. 39 references.

  17. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  18. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide.

    PubMed

    Hummelt, J S; Lu, X; Xu, H; Mastovsky, I; Shapiro, M A; Temkin, R J

    2016-12-02

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  19. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  20. The new bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector

    NASA Astrophysics Data System (ADS)

    Braccini, Saverio

    2013-04-01

    The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.

  1. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  2. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  3. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    SciTech Connect

    Thomae, R. Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  4. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  5. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  6. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  7. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  8. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-11-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime.

  9. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  10. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    NASA Astrophysics Data System (ADS)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  11. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  12. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  13. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  14. The beam commissioning of BRIF and future cyclotron development at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Yang, Jianjun

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200-500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3-4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  15. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  16. A real-time intercepting beam-profile monitor for a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C.

    2013-11-01

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  17. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  18. 150 μA 18F- target and beam port upgrade for the IBA 18/9 cyclotron

    NASA Astrophysics Data System (ADS)

    Stokely, M. H.; Peeples, J. L.; Poorman, M. C.; Magerl, M.; Siemer, T.; Brisard, P.; Wieland, B. W.

    2012-12-01

    A high power (˜3 kW) target platform has been developed for the IBA 18/9 cyclotron. New designs for the airlock, collimator and target subsystems have been fabricated and deployed. The primary project goal is reliable commercial production of 18F- at 150 μA or greater, while secondary goals include improving serviceability and extending service intervals relative to OEM systems. Reliable operation in a production environment has been observed at beam currents up to 140 μA. Challenges include ion source lifetime and localized peaking in the beam intensity distribution.

  19. 150 {mu}A 18F{sup -} target and beam port upgrade for the IBA 18/9 cyclotron

    SciTech Connect

    Stokely, M. H.; Peeples, J. L.; Poorman, M. C.; Magerl, M.; Siemer, T.; Brisard, P.; Wieland, B. W.

    2012-12-19

    A high power ({approx}3 kW) target platform has been developed for the IBA 18/9 cyclotron. New designs for the airlock, collimator and target subsystems have been fabricated and deployed. The primary project goal is reliable commercial production of 18F{sup -} at 150 {mu}A or greater, while secondary goals include improving serviceability and extending service intervals relative to OEM systems. Reliable operation in a production environment has been observed at beam currents up to 140 {mu}A. Challenges include ion source lifetime and localized peaking in the beam intensity distribution.

  20. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    NASA Astrophysics Data System (ADS)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  1. Beam-driven ion cyclotron harmonic resonances in the terrestrial foreshock

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Goldstein, M. L.; Gary, S. P.; Russell, C. T.

    1985-01-01

    A terrestrial upstream wave event which demonstrates multiple, ion cyclotron harmonic resonances between the interplanetary wave population and an observed proton beam is analyzed. The techniques and parameters employed in the data analysis are discussed, including the use of differential and band-pass filters. An upstream wave event demonstrating multiple harmonic waves is examined, and the instability analysis relevant to the ion beam observations thought to be responsible for that event is discussed. It is shown that an observed bi-Maxwellian ion beam is capable of generating right and left-hand polarized waves through ion cyclotron harmonic resonance.

  2. Monitoring and managing of cyclotron beam distribution on the surface of irradiated targets

    NASA Astrophysics Data System (ADS)

    Kirsanov, B. N.; Obleukhov, A. B.; Razbash, A. A.

    2016-12-01

    A system for monitoring and managing of the proton-beam distribution on the surface of the targets in the cyclotrons of the Cyclotron Co. is presented in this report. Parameters of proton beams, designs of the target and target devices, used for isotope production, and the system of the managing of the beam distribution on the target are given. The control is fulfilled via monitoring of the temperature distributions using infrared radiation from the target surface. The need in such system for increasing of the isotope productivity and reducing of the likelihood of the target damage is substantiated.

  3. A generalised formulation of beam-shadow measurement in spiral-sector superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Pradhan, Jedidiah; Dey, Malay Kanti; Chakrabarti, Alok

    2014-06-01

    A generalised analysis of coherent radial oscillation through shadow measurements on the beam in a spiral-sector, superconducting cyclotron is discussed here. Experimental measurements of shadow cast by one beam-probe on another have been used to study beam behaviour at different radial positions of the K500 superconducting cyclotron at this institute. The correlation of radial oscillation and shadow measurements as well as the motion of orbit centre are also described. The modulation of turn separation by coherent radial oscillation is used to estimate the oscillation amplitude and dee voltage.

  4. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  5. Simulation of slow cyclotron wave growth on a scattered relativistic electron beam

    SciTech Connect

    Shanahan, W.R.; Faehl, R.J.

    1981-06-01

    Simulations demonstrating effective growth of slow cyclotron waves on a beam exhibiting a scattered distribution of particle velocities are described. No dramatic changes from the cold beam results for the dispersive properties are observed, but significant modifications of radial eigenmode structure appear.

  6. A 600 MeV cyclotron for radioactive beam production

    SciTech Connect

    Clark, D.J.

    1993-05-17

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA.

  7. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    SciTech Connect

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J.; Potkins, D.; Stewart, T.; Dehnel, M. P.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  8. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the “hot liner” method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  9. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  10. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  11. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-01

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV N20e7+ beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0°, top of the energy gain of cosine wave, and the beam phase width was about 6° in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h =1 and h =2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h =1, while phase compressions by a factor of about 3 were confirmed for h =2.

  12. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    SciTech Connect

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-15

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV {sup 20}Ne{sup 7+} beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0 deg., top of the energy gain of cosine wave, and the beam phase width was about 6 deg. in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h=1 and h=2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h=1, while phase compressions by a factor of about 3 were confirmed for h=2.

  13. Beam experiments towards high-intensity beams in RHIC

    SciTech Connect

    Montag C.; Ahrens, L.; Brennan, J.M.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Hayes, T.; Huang, H.; Mernick, K.; Robert-Demolaize, G.; Smith, K.; Than, R.; Thieberger, P.; Yip, K.; Zeno, K.; Zhang, S.Y.

    2012-05-20

    Proton bunch intensities in RHIC are planned to be increased from 2 {center_dot} 10{sup 11} to 3 {center_dot} 10{sup 11} protons per bunch to increase the luminosity, together with head-on beam-beam compensation using electron lenses. To study the feasibility of the intensity increase, beam experiments are being performed. Recent experimental results are presented.

  14. Plasma ion dynamics and beam formation in electron cyclotron resonance ion sources

    SciTech Connect

    Mascali, D.; Neri, L.; Miracoli, R.; Gammino, S.; Celona, L.; Ciavola, G.; Gambino, N.; Chikin, S.

    2010-02-15

    In electron cyclotron resonance ion sources it has been demonstrated that plasma heating may be improved by means of different microwave to plasma coupling mechanisms, including the ''frequency tuning'' and the ''two frequency heating''. These techniques affect evidently the electron dynamics, but the relationship with the ion dynamics has not been investigated in details up to now. Here we will try to outline these relations: through the study of ion dynamics we may try to understand how to optimize the electron cyclotron resonance ion sources brightness. A simple model of the ion confinement and beam formation will be presented, based on particle-in-cell and single particle simulations.

  15. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    SciTech Connect

    Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-09-02

    Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.

  16. Beam Splitter Intensities Are Preselected

    NASA Technical Reports Server (NTRS)

    Campbell, W.; Owen, R. B.

    1982-01-01

    New beam splitter is a block of optically clear material with two parallel polish faces. Some of area of one surface is coated with totally reflecting layer, which may be metal or dielectric. On opposite surface, a metal coating of stepped thickness offers a different reflectivity at each step. Width and spacing of reflecting zones are chosen to accommodate angle of spacing of incidence of input beam and desired spacing of ouput beams.

  17. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  18. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  19. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  20. Intense Relativistic Electron Beam Investigations

    DTIC Science & Technology

    1979-04-01

    flashover and other undetermined physical processes which create a plasma at the liner surface . The ions are drawn toward the Uiner axis by the...dielectric wall and causing surface flashover and the liberation of ions. These ions provide sufficient charge neutralization for the beam to propagate a...beam-induced surface flashover process which produces the ions to be accelerated. Alternative methods are proposed in Section III for next year’s

  1. A kinetic cyclotron maser instability associated with a hollow beam of electrons

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Freund, H. P.

    1984-01-01

    A kinetic cyclotron maser instability associated with a hollow-beam distribution function is studied. The instability differs from that discussed for the gyrotron device in two respects: in the present case the momentum dispersion is substantial, and furthermore there exists a low-energy background plasma. On the basis of physical arguments it can be demonstrated that the hollow-beam distribution is far more unstable than the loss cone distribution which has been extensively investigated in recent years. A criterion for maximum growth rate is established on the basis of consideration of the resonance ellipse. The validity of this criterion is supported by the results of numerical calculation.

  2. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  3. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    NASA Astrophysics Data System (ADS)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  4. Intense Electron Beam Cyclotron Masers with Microsecond Pulselengths

    DTIC Science & Technology

    1991-12-20

    undesired oscillations, M412l absolute instability, TB1 Igyro-BWO, TESI second and Oird harmonic), were te most serious competing modes in the prsent Bragg...high harmonic interactions such as the second harmonic TESI gyrotron interaction and the third harmonic TE51 absolute instability interaction. We...We ruled out the TE31 CARM and high harmonic gyrotron modes such as a second harmonic TBE5 or third harmonic TESI in interpreting the breakdown pattern

  5. Preliminary design of a RFQ direct injection scheme for the IsoDAR high intensity H₂⁺ cyclotron.

    PubMed

    Winklehner, D; Hamm, R; Alonso, J; Conrad, J M; Axani, S

    2016-02-01

    IsoDAR (Isotope Decay-At-Rest) is a novel experiment designed to measure neutrino oscillations through ν̄(e) disappearance, thus providing a definitive search for sterile neutrinos. In order to generate the necessary anti-neutrino flux, a high intensity primary proton beam is needed. In IsoDAR, H2(+) is accelerated and is stripped into protons just before the target, to overcome space charge issues at injection. As part of the design, we have refined an old proposal to use a RFQ to axially inject bunched H2(+) ions into the driver cyclotron. This method has several advantages over a classical low energy beam transport (LEBT) design: (1) The bunching efficiency is higher than for the previously considered two-gap buncher and thus the overall injection efficiency is higher. This relaxes the constraints on the H2(+) current required from the ion source. (2) The overall length of the LEBT can be reduced. (3) The RFQ can also accelerate the ions. This enables the ion source platform high voltage to be reduced from 70 kV to 15 kV, making underground installation easier. We are presenting the preliminary RFQ design parameters and first beam dynamics simulations from the ion source to the spiral inflector entrance.

  6. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  7. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  8. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  9. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    SciTech Connect

    Cohen, B.I.

    1987-10-12

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs.

  10. External beam's nozzle design for the CRC cyclotron PIXE/PIGE

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-02-01

    Recently, 13-MeV proton cyclotrons have been applied to non-destructive trace element analytical techniques, such as proton-induced X-ray emission (PIXE) and proton-induced gamma-ray emission (PIGE). A new extended beam line has been designed for PIXE/PIGE measurements in order to deliver protons to the target with minimal losses, thus reducing secondary radiation. A target chamber for PIXE/PIGE measurements is installed at the end of the extended beam line, and the beam size may be optimized by using a series of collimators that are located in front of the target. The optimized proton beam, with low currents (˜nA) for PIXE/PIGE experiments, requires a small beam size with variable energies from ˜10 keV to 3 MeV. Based on the ionization cross-section curve, a 3-MeV proton beam has been determined to be suitable for PIXE/PIGE measurements. Therefore, the 13-MeV protons extracted from the cyclotron must be reduced to 3 MeV, and this is achieved through the incorporation of an energy degrader. The appropriate thickness of the energy degrader has been estimated by using the stopping range in matter (SRIM) program. Also, suitable materials must be used for the construction of the collimator and the energy degrader in order to meet the requirements of low neutron activation due to the application of protons. In this study, we evaluated a number of suitable materials with low neutron yields and with little energy spread as the beam passes through the energy degrader and collimator. The appropriate thickness of the energy degrader for the reduction of the proton energy from 13 MeV to 3 MeV was determined using the SRIM code. Also, the neutron yield at the nozzle was estimated using the MCNPX code.

  11. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    SciTech Connect

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  12. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  13. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  14. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    SciTech Connect

    Nicolosi, Dario Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  15. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  16. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  17. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  18. Delivering the world's most intense muon beam

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  19. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  20. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  1. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  2. Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam

    SciTech Connect

    Zhao Ding; Ding Yaogen; Wang Yong; Ruan Cunjun

    2010-11-15

    A linear theory for a rectangular waveguide cyclotron maser with a sheet electron beam is developed by using the Laplace transformation approach. This theory can be applied to any TE{sub mn} rectangular waveguide mode. The corresponding equations for the TM{sub mn} mode in the rectangular waveguide are also derived as a useful reference. Especially, the effect from the coupling between degenerate modes, which is induced by the nonideal rectangular waveguide walls, on the dispersion relation is considered in order to provide a more accurate model for the real devices. Through numerical calculations, the linear growth rate, launching loss, and spontaneous oscillations (caused by the absolute instability and backward wave oscillation) of this new structure can be analyzed in detail. It is worthwhile to point out that the operation at higher power levels of the rectangular waveguide sheet beam system is possible.

  3. The effect of electron beams on cyclotron maser emission excited by lower-energy cutoffs

    NASA Astrophysics Data System (ADS)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.

    2016-05-01

    Electron-cyclotron maser (ECM) is one of the most important emission mechanisms in astrophysics and can be excited efficiently by lower-energy cutoffs of power-law electrons. These non-thermal electrons probably propagate as a directed collimated beam along ambient magnetic fields. This paper investigates the ECM, in which the effect of electron beams is emphasized. Results show the dependence of emission properties of the ECM on the beam feature. The maximum growth rate of the extraordinary mode (X2) rapidly decreases as the beam momentum increases, while the growth rate of the ordinary mode (O1) changes slightly. In particular, the ordinary mode can overcome the extraordinary mode and becomes the fastest growth mode once the beam momentum is large enough. This research presents an extension of the conventional studies on ECM driven by lower-energy cutoffs and may be helpful to understand better the emission process of solar type I radio bursts, which are dominated by the ordinary mode emission.

  4. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  5. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  6. Model for the description of ion beam extraction from electron cyclotron resonance ion sources.

    PubMed

    Spädtke, P

    2010-02-01

    The finite difference method trajectory code KOBRA3-INP has been developed now for 25 years to perform the simulation of ion beam extraction in three dimensions. Meanwhile, the code has been validated for different applications: high current ion beam extraction from plasma sources for ion implantation technology, neutral gas heating in fusion devices, or ion thrusters for space propulsion. One major issue of the development of this code was to improve the flexibility of the applied model for the simulation of different types of particle sources. Fixed emitter sources might be simulated with that code as well as laser ion sources, Penning ion sources, electron cyclotron resonance ion sources (ECRISs), or H(-) sources, which require the simulation of negative ions, negative electrons, and positive charges simultaneously. The model which has been developed for ECRIS has now been used to explore the conditions for the ion beam extraction from a still nonexisting ion source, a so called ARC-ECRIS [P. Suominen and F. Wenander, Rev. Sci. Instrum. 79, 02A305 (2008)]. It has to be shown whether the plasma generator has similar properties like regular ECRIS. However, the emittance of the extracted beam seems to be much better compared to an ECRIS equipped with a hexapole.

  7. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    SciTech Connect

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-15

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  8. Plating Processes Utilizing High Intensity Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor); Denofrio, Charles (Inventor)

    2002-01-01

    A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.

  9. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Küchler, D.

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  10. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  11. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Watanabe, Takeyoshi; Matsui, Yuuki; Hirai, Yoshiaki; Kutsumi, Osamu; Sakamoto, Naoki; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  12. Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  13. Proton Core Heating and Beam Formation via Parametrically Unstable Alfven-Cyclotron Waves

    SciTech Connect

    Araneda, Jaime A.; Marsch, Eckart F.; Vinas, Adolfo

    2008-03-28

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities Alfven-cyclotron waves have on proton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfven speed and is maintained until the end of the simulation. The main part of the distribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that, even in the parameter regime where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  14. A new and simple calibration-independent method for measuring the beam energy of a cyclotron.

    PubMed

    Gagnon, Katherine; Jensen, Mikael; Thisgaard, Helge; Publicover, Julia; Lapi, Suzanne; McQuarrie, Steve A; Ruth, Thomas J

    2011-01-01

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  15. Coherent light in intense spatiospectral twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan

    2016-06-01

    Intense spatio-spectral twin beams generated in the regime with pump depletion are analyzed applying a suggested quantum model that treats the signal, idler, and pump fields in the same way. The model assumes the signal and idler fields in the form of the generalized superposition of signal and noise and reveals nonzero signal coherent components in both fields, contrary to the models developed earlier. The influence of coherent components on the properties of intense twin beams is elucidated. The interference pattern formed in the process of sum-frequency generation and that of the Hong-Ou-Mandel interferometer are shown to be able to experimentally confirm the presence of coherent components.

  16. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  17. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  18. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  19. Design of large vacuum chamber for VEC superconducting cyclotron beam line switching magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumantra; Nandi, Chinmoy; Gayen, Subhasis; Roy, Suvadeep; Mishra, Santosh Kumar; Ramrao Bajirao, Sanjay; Pal, Gautam; Mallik, C.

    2012-11-01

    VEC K500 superconducting cyclotron will be used to accelerate heavy ion. The accelerated beam will be transported to different beam halls by using large switching magnets. The vacuum chamber for the switching magnet is around 1000 mm long. It has a height of 85 mm and width varying from 100 mm to 360 mm. The material for the chamber has been chosen as SS304.The material for the vacuum chamber for the switching magnet has been chosen as SS304. Design of the vessel was done as per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. It was observed that primary stress values exceed the allowable limit. Since, the magnet was already designed with a fixed pole gap; increase of the vacuum chamber plate thickness restricts the space for beam transport. Design was optimized using stress analysis software ANSYS. Analysis was started using plate thickness of 4 mm. The stress was found higher than the allowable level. The analysis was repeated by increasing plate thickness to 6 mm, resulting in the reduction of stress level below the allowable level. In order to reduce the stress concentration due to sharp bend, chamfering was done at the corner, where the stress level was higher. The thickness of the plate at the corner was increased from 6 mm to 10 mm. These measures resulted in reduction of localized stress.

  20. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  1. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  2. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Maughan, R. L.; Yudelev, M.; Kota, C.

    1996-08-01

    The value of a commercially available miniature energy compensated Geiger - Müller (GM) detector has been determined using the modified lead attenuation method of Hough. The measurements were made in a d(48.5) - Be neutron beam produced by the superconducting cyclotron based neutron therapy facility at Harper Hospital. The unique problems associated with making measurements in a 2 ms duration pulsed beam with a 20% duty cycle are discussed. The beam monitoring system, which allows the beam pulse shape at low beam intensities to be measured, is described. By gating the GM output with a discriminator pulse derived from the beam pulse shape, the gamma-ray count rates and dead-time corrections within the 2 ms pulse and between pulses can be measured separately. The value of determined for this GM detector is consistent with the values measured by other workers with identical and similar detectors in neutron beams with comparable, but not identical, neutron spectra.

  3. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  4. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    NASA Astrophysics Data System (ADS)

    Dendy, R. O.; McClements, K. G.; Lashmore-Davies, C. N.; Cottrell, G. A.; Majeski, R.; Cauffman, S.

    1995-12-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR, and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio vbirth/cA where vbirth is the fusion product birth speed and cA is the local Alfven speed for fusion products in the outer midplane edge of TFTR supershots, vbirth < cA for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. Moreover, the time evolution of the maximum growth rate, obtained using the Sigmar model for the alpha particle distribution and TFTR data for the fusion product source rate, closely follows the observed time evolution of the ICE amplitude in TFTR supershot discharges. Other observed features of fusion product driven ICE that match the linear instability include the scaling with fusion product density, doublet splitting of spectral peaks, the

  5. A 2D simulation study of Langmuir, whistler, and cyclotron maser instabilities induced by an electron ring-beam distribution

    SciTech Connect

    Lee, K. H.; Lee, L. C.; Omura, Y.

    2011-09-15

    We carried out a series of 2D simulations to study the beam instability and cyclotron maser instability (CMI) with the initial condition that a population of tenuous energetic electrons with a ring-beam distribution is present in a magnetized background plasma. In this paper, weakly relativistic cases are discussed with the ring-beam kinetic energy ranging from 25 to 100 keV. The beam component leads to the two-stream or beam instability at an earlier stage, and the beam mode is coupled with Langmuir or whistler mode, leading to excitation of beam-Langmuir or beam-whistler waves. When the beam velocity is large with a strong beam instability, the initial ring-beam distribution is diffused in the parallel direction rapidly. The diffused distribution may still support CMI to amplify the X1 mode (the fundamental X mode). On the contrary, when the beam velocity is small and the beam instability is weak, CMI can amplify the Z1 (the fundamental Z mode) effectively while the O1 (the fundamental O mode) and X2 (the second harmonic X mode) modes are very weak and the X1 mode is not excited. In this report, different cases with various parameters are presented and discussed for a comprehensive understanding of ring-beam instabilities.

  6. Adaptive Vlasov Simulations of Intense Beams

    SciTech Connect

    Sonnendruecker, Eric; Gutnic, Michael; Haefele, Matthieu; Lemaire, Jean-Louis

    2005-06-08

    Most simulations of intense particle beams are performed nowadays using Particle In Cell (PIC) techniques. Direct grid based Vlasov methods have also been used but mostly for 1D simulations as they become very costly in higher dimensions when using uniform phase space grids. We have recently introduced adaptive mesh refinement techniques that allow us to automatically concentrate the grid points at places where the distribution function is varying most. In this paper we shall introduce this technique and show how it can be used to improve the efficiency of grid based Vlasov solvers.

  7. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    PubMed

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  8. Beam loss studies in high-intensity heavy-ion linacs

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Aseev, V. N.; Mustapha, B.

    2004-09-01

    The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4GV driver linac and a 140MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400kW primary beams of any ion from hydrogen to uranium. Because of the high intensity of the primary beams the beam losses must be minimized to avoid radioactivation of the accelerator equipment. To keep the power deposited by the particles lost on the accelerator structures below 1 W/m, the relative beam losses per unit length should be less than 10-5, especially along the high-energy section of the linac. A new beam dynamics simulation code TRACK has been developed and used for beam loss studies in the RIA driver linac. In the TRACK code, ions are tracked through the three-dimensional electromagnetic fields of every element of the linac starting from the electron cyclotron resonance (ECR) ion source to the production target. The simulation starts with a multicomponent dc ion beam extracted from the ECR. The space charge forces are included in the simulations. They are especially important in the front end of the driver linac. Beam losses are studied by tracking a large number of particles (up to 106) through the whole linac considering all sources of error such us element misalignments, rf field errors, and stripper thickness fluctuations. For each configuration of the linac, multiple sets of error values have been randomly generated and used in the calculations. The results are then combined to calculate important beam parameters, estimate beam losses, and characterize the corresponding linac configuration. To track a large number of particles for a comprehensive number of error sets (up to 500), the code TRACK was parallelized and run on the Jazz computer cluster at ANL.

  9. Progress toward a microsecond duration, repetitively pulsed, intense- ion beam

    SciTech Connect

    Davis, H.A.; Olson, J.C.; Reass, W.A.; Coates, D.M.; Hunt, J.W.; Schleinitz, H.M.; Lovberg, R.H.; Greenly, J.B.

    1996-07-01

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. We are developing a 200-250 keV, 15 kA, 1 {mu}s duration, 1-30 Hz intense ion beam accelerator to address these applications.

  10. Cyclotrons: From Science to Human Health

    NASA Astrophysics Data System (ADS)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  11. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory.

    PubMed

    Newhauser, Wayne D; Myers, Karla D; Rosenthal, Stanley J; Smith, Alfred R

    2002-04-21

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60Co radiation and a calculated correction in order to take into account the differences in response to 60Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery.

  12. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne D.; Myers, Karla D.; Rosenthal, Stanley J.; Smith, Alfred R.

    2002-04-01

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60Co radiation and a calculated correction in order to take into account the differences in response to 60Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery.

  13. Cyclotron resonance in epitaxial Bi1-xSbx films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Thrush, C. M.; Karczewski, G.; Richardson, M. S.; Furdyna, J. K.

    1993-10-01

    The far-infrared magnetotransmission of thin films of semiconducting and semimetallic Bi1-xSbx alloys grown by molecular-beam epitaxy has been measured at fixed photon energies between 2.5 and 21.4 meV in magnetic fields up to 6 T, at T=1.8 K. The samples, grown on BaF2 substrates with composition 0<=x<=22.5%, were monocrystalline, with the trigonal axis perpendicular to the surface plane. The measurements were carried out in Faraday and Voigt geometries, with the magnetic field oriented parallel to binary, bisectrix, and trigonal axes of the films. Cyclotron-resonance lines of both electrons and holes were observed. From them, we establish the composition dependence of the effective-mass tensor, of the direct L-point band gap, and of the energy overlap in the semimetallic samples. We conclude that all band-structure parameters are the same in the films as in bulk Bi1-xSbx alloys, except for the energy overlap, which is increased by 16 meV independently of composition, possibly because of the strain induced by the substrate.

  14. Intense ion beam optimization and characterization with thermal imaging

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Rej, D.J.; Waganaar, W.J.

    1994-08-01

    The authors have developed thermal imaging of beam targets to optimize and characterize intense ion beams. The technique, which measures the beam energy-density distribution on each machine firing, has been used to rapidly develop and characterize two very different beams--a 400 kV beam used to study materials processing, and an 80 kV beam use for magnetic fusion diagnostics.

  15. Intense muon beams and neutrino factories

    SciTech Connect

    Parsa, Z.

    2000-10-05

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy {mu}{sup +}{mu}{sup {minus}} colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings ({mu}SR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included.

  16. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  17. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  18. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  19. Transverse Beam Shape Measurements of Intense Proton Beams Using Optical Transition Radiation

    NASA Astrophysics Data System (ADS)

    Scarpine, Victor E.

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  20. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  1. Far-field intensity of Lorentz related beams

    NASA Astrophysics Data System (ADS)

    Peng, Xi; Chen, Chidao; Chen, Bo; Peng, Yulian; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei

    2016-12-01

    We introduce a sufficient condition under which the Lorentz beam convolution with other beams constitutes valid cross-spectral densities. Two examples are given to show how the Lorentz related beam can be used for generation of a far field being a modulated version of another one. The far-field intensity patterns in the Cartesian symmetries by the convolution operation of the Lorentz beams with multi-sinc beams, and the convolution operation of the Lorentz beams with multi-sinc Gaussian beams, are shown respectively. We find that different beam order can result distinct far field changes.

  2. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  3. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams.

    PubMed

    Kato, Yushi; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  4. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  5. Longitudinal Density Modulation and Energy Conversion in Intense Beams

    SciTech Connect

    Harris, J; Neumann, J; Tian, K; O'Shea, P

    2006-02-17

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  6. Intense beams: The past, present, and future

    SciTech Connect

    Yonas, G.; Sweeney, M.A.

    1998-06-01

    Nobody could have predicted the circuitous course of the last 30 years of progress in intense beams and pulsed power. There were many discoveries and twists and turns along the way, but the steady flow of understanding and technological advances has sustained the field. Pulsed power research began in the early 1960s with the development of the technology to test the reliability of nuclear weapons in a pulsed radiation environment. Because of the effort in the 1970s on an electron beam approach to inertial confinement fusion (ICF) at Sandia National Laboratories and at the Kurchatov Institute, simulation codes, diagnostics, and innovative pulsed power techniques such as self-magnetic insulation were developed. The electron approach ended in 1979, and the more promising ion approach continued. At the same time, z pinches, used since the early 1970s to evaluate the response of materials to keV X rays, were considered as an alternative to drive ICF capsules. The use of z pinches for ICF was discontinued in 1984 because of budget cuts and the belief that ions offered a route to the standoff requirement for energy applications. Now, in 1998, because of budget limitations and the 1995 discovery that the soft x-ray power achievable in a z-pinch implosion can be greatly enhanced, the ion approach has been suspended, and a new facility, X-1, proposed to achieve high yield in the laboratory with z pinches. In this paper the authors review the research paths that led to these changes, describe the present status of z pinches, and predict what the future holds. Although nobody can predict the future, the past 30 years have taught us some lessons that can be applied to the next 30 years. The paper concludes with some of these lessons learned.

  7. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  8. Intense beams from gases generated by a permanent magnet ECR ion source at PKUa)

    NASA Astrophysics Data System (ADS)

    Ren, H. T.; Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y.; Chen, J. E.

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O+, H+, and D+ to N+, Ar+, and He+. Up to now, about 120 mA of H+, 83 mA of D+, 50 mA of O+, 63 mA of N+, 70 mA of Ar+, and 65 mA of He+ extracted at 50 kV through a ϕ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H+ or He+ beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He+ beam injector for coupled radio frequency quadruple and SFRFQ cavity, He+ beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He+ beam.

  9. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    SciTech Connect

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y.

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  10. The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST

    NASA Astrophysics Data System (ADS)

    Chang, Pengxiang; Wu, Bin; Wang, Jinfang; Li, Yingying; Wang, Xiaoguang; Xu, Handong; Wang, Xiaojie; Liu, Yong; Zhao, Hailin; Hao, Baolong; Yang, Zhen; Zheng, Ting; Hu, Chundong

    2016-11-01

    Both neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) have been applied on the Experimental Advanced Superconducting Tokamak (EAST) in the 2015 campaign. In order to achieve more effective heating and current drive, the effects of NBI on the heating and current drive with electron cyclotron wave (ECW) are analyzed utilizing the code TORAY and experimental data in the shot #54411 and #54417. According to the experimental and simulated results, for the heating with ECW, NBI can improve the heating efficiency and move the power deposition place towards the inside of the plasma. On the other hand, for the electron cyclotron current drive (ECCD), NBI can also improve the efficiency of ECCD and move the place of ECCD inward. These results will be valuable for the center heating, the achievement of fully non-inductive current drive operation and the suppression of magnetohydrodynamic (MHD) instabilities with ECW on EAST or ITER with many auxiliary heating methods. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2014DFG61950) and National Natural Science Foundation of China (Nos. 11405212 and 11175211)

  11. On-line measurements of proton beam current from a PET cyclotron using a thin aluminum foil

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; do Carmo, S. J. C.; Ferreira Marques, R.; Fraga, F. A. F.; Simões, H.; Alves, F.; Crespo, P.

    2013-07-01

    The number of cyclotrons capable of accelerating protons to about 20 MeV is increasing throughout the world. Originally aiming at the production of positron emission tomography (PET) radionuclides, some of these facilities are equipped with several beam lines suitable for scientific research. Radiobiology, radiophysiology, and other dosimetric studies can be performed using these beam lines. In this work, we measured the Bragg peak of the protons from a PET cyclotron using a stacked target consisting of several aluminum foils interleaved with polyethylene sheets, readout by in-house made transimpedance electronics. The measured Bragg peak is consistent with simulations performed using the SRIM/TRIM simulation toolkit. Furthermore, we report on experimental results aiming at measuring proton beam currents down to 10 pA using a thin aluminum foil (20-μm-thick). The aluminum was chosen for this task because it is radiation hard, it has low density and low radiation activity, and finally because it is easily available at negligible cost. This method allows for calculating the dose delivered to a target during an irradiation with high efficiency, and with minimal proton energy loss and scattering.

  12. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  13. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  14. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  15. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  16. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  17. Intense microwave and particle beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-19, 1990

    SciTech Connect

    Brandt, H.E.

    1990-01-01

    Various papers on intense microwave and particle beams are presented. Individual topics addressed include: influence of beam loading on the operation of the relativistic klystron amplifier, gain and efficiency studies of a high-power traveling-wave-tube amplifier, relativistic O-type oscillator-amplifier systems, stability of mutually coupled oscillators, effects of a dense background plasma on the dispersion of backward wave oscillators, scalarized photon analysis of spontaneous emission in the uniform magnetic field FEL, tunable 200-GHz electron cyclotron maser, plasma-filled dielectric Cerenkov maser, MIT 35-GHz cyclotron autoresonance maser amplifier, array feed/reflector antenna design for intense microwave beams, propagation of an intense microwave beam from a phased array. Also discussed are: electromagnetic missile from a nonuniform aperture field, backscattering of electromagnetic missiles, plasma waveguide, electromagnetic missiles from currents on fractal sets, effects of high-power RF fields in the atmosphere and the ionosphere, pulsed sources and currents for acoustic and electromagnetic bullets, digital transmitter array for producing enhanced ionization.

  18. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  19. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  20. Monte Carlo simulation to evaluate the contamination in an energy modulated carbon ion beam for hadron therapy delivered by cyclotron

    NASA Astrophysics Data System (ADS)

    Morone, M. Cristina; Calabretta, Luciano; Cuttone, Giacomo; Fiorini, Francesca

    2008-11-01

    Protons and carbon ion beams for hadron therapy can be delivered by cyclotrons with a fixed energy. In order to treat patients, an energy degrader along the beam line will be used to match the particle range with the target depth. Fragmentation reactions of carbon ions inside the degrader material could introduce a small amount of unwanted contaminants to the beam, giving additional dose to the patient out of the target volume. A simulation study using the FLUKA Monte Carlo code has been carried out by considering three different materials as the degrader. Two situations have been studied: a realistic one, lowering the carbon beam energy from 300 MeV/n to 220 MeV/n, corresponding to a range of 10 cm in water, and the worst possible case, lowering the carbon energy to 50 MeV/n, corresponding to the millimeter range. The main component of the contaminant is represented by alpha particles and protons, with a typical momentum after the degrader greater than that of the primary beam, and can be eliminated by the action of a momentum analyzing system and slits, and by a second thin absorber. The residual component of fragments reaching the patient is negligible with respect to the fragment quantity generated by the primary beam inside the patient before arriving at the end of the target volume.

  1. An intense polarized beam by a laser ionization injection

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of: (1) producing the neutral hydrogen beam by Lorentz stripping; (2) excitation of the neutral hydrogen beam with a laser; and (3) ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98 percent and a polarization of 80 percent can be expected by an intense laser beam from a free electron laser (FEL).

  2. Gridded Electron Guns and Modulation of Intense Beams

    SciTech Connect

    Harris, J R; O'Shea, P G

    2006-05-02

    Gridded guns are useful for producing modulated electron beams. This modulation is generally limited to simple gating of the beam, but may be used to apply structure to the beam pulse shape. In intense beams, this structure spawns space charge waves whose dynamics depend in part on the relative strengths of the velocity and density variations which comprise the initial current modulation. In this paper, we calculate the strengths of beam current and velocity modulation produced in a gridded electron gun, and show that under normal conditions the initial modulation is dominated by density variation rather than velocity variation.

  3. Anisotropy-driven collective instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-12-01

    The classical electrostatic Harris instability is generalized to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space charge. For a long, coasting beam, the eigenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A simple theoretical model is developed which describes the essential features of the linear stage of the instability. Both the simulations and the analytical theory clearly show that moderately intense beams are linearly unstable to short-wavelength perturbations provided the ratio of the longitudinal temperature to the transverse temperature is smaller than some threshold value. The delta-f particle-in-cell code BEST has been used to study the detailed nonlinear evolution and saturation of the instability.

  4. High intensity production of high and medium charge state uranium and other heavy ion beams with VENUS

    SciTech Connect

    Leitner, D.; Galloway, M. L.; Loew, T. J.; Lyneis, C. M.; Castro Rodriguez, I.; Todd, D. S.

    2008-02-15

    The next generation, superconducting electron cyclotron resonance (ECR) ion source VENUS (versatile ECR ion source for nuclear science) started operation with 28 GHz microwave heating in 2004. Since then it has produced world record ion beam intensities. For example, 2850 e {mu}A of O{sup 6+}, 200 e {mu}A of U{sup 33+} or U{sup 34+}, and in respect to high charge state ions, 1 e {mu}A of Ar{sup 18+}, 270 e {mu}A of Ar{sup 16+}, 28 e {mu}A of Xe{sup 35+}, and 4.9 e {mu}A of U{sup 47+} have been produced. A brief overview of the latest developments leading to these record intensities is given and the production of high intensity uranium beams is discussed in more detail.

  5. Intense electron beam propagation across a magnetic field

    SciTech Connect

    Zhang, X.; Striffler, C.D.; Yao, R.L.; Destler, W.W.; Reiser, M.P.

    1989-01-01

    In this paper we consider the propagation of an intense electron-ion beam across an applied magnetic field. In the absence of the applied field, the beam system is in a Bennett equilibrium state that involves electrons with both large axial and thermal velocities and a cold stationary space-charge neutralizing ion species. Typical parameters under consideration are V{sub o} {approximately} 1 MV, I {approximately} 5 kA, T{sub e} {approximately} 100 keV, and beam radii {approximately} 1 cm. We find that in the intense beam regime, the propagation is limited due to space-charge depression caused by the deflection of the electron beam by the transverse field. This critical field is of the order of the peak self-magnetic field of the electron beam which is substantially higher than the single particle cut-off field. 8 refs., 3 figs.

  6. Intense e-beam interaction with matter

    SciTech Connect

    Ritchie, R.H.; Crawford, O.H.

    1984-01-01

    This document describes work done in this period on certain nonlinear processes of potential importance at high energy densities in condensed matter, and on the theory of the electron slowing-down-cascade spectrum engendered in solids by e-beams.

  7. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  8. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  9. Low Intensity Beam Imaging - Position Sensitive Avalanche Counter

    SciTech Connect

    Mas, J.; Shapira, D; T.A. Lewis

    1998-11-04

    Monitors of this type are mostly intended for the lowest intensity beams at the HRIBF at ORNL. They are used to aid the accelerator operator in focusing and steering the beam and by the experimenters at the focal plane of the spectrometers.

  10. Development of a high intensity 48Ca ion beam for the heavy element program

    SciTech Connect

    Wutte, Daniela; Leitner, Mattheus; Lyneis, Claude

    2002-02-02

    A high intensity {sup 48}Ca ion beam has been developed at the 88 Inch Cyclotron for the synthesis of {sup 283}112 using the reaction {sup 238}U({sup 48}Ca, 3n). An ion beam intensity of {approx} 700 pnA was delivered on target, resulting in a total dose of 2 x 10{sup 18} ions over a six day period. Since {sup 48}Ca is a very expensive and rare isotope minimal consumption is essential. Therefore a new oven [1] and special tantalum liner [2] have been developed for the AECR-U ion source during the last year to improve the metal ion beam efficiency. Both the LBL ECR and the AECR-U ion sources are built with radial access. Six radial slots between the sextupole magnet bars provide additional pumping and easy access to the plasma chamber for ovens and feedthroughs. Two types of radial ovens have been used at LBNL in the past, operating at temperatures up to 2100 C.

  11. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  12. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  13. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trapa)

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  14. Compact antenna for two-dimensional beam scan in the JT-60U electron cyclotron heating/current drive system

    SciTech Connect

    Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.

    2005-11-15

    A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68x0.54x0.2 m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.

  15. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  16. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  17. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  18. Raman conversion in intense femtosecond Bessel beams in air

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel

    2014-05-01

    We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.

  19. Stopping intense beams of internally cold molecules via centrifugal forces

    NASA Astrophysics Data System (ADS)

    Wu, Xing; Gantner, Thomas; Zeppenfeld, Martin; Chervenkov, Sotir; Rempe, Gerhard

    2016-05-01

    Cryogenic buffer-gas cooling produces intense beams of internally cold molecules. It offers a versatile source for studying collision dynamics and reaction pathways in the cold regime, and could open new avenues for controlled chemistry, precision spectroscopy, and exploration of fundamental physics. However, an efficient deceleration of these beams still presents a challenge. Here, we demonstrate that intense and continuous beams of electrically guided molecules produced by a cryogenic buffer-gas cell can be brought to a halt by the centrifugal force in a rotating frame. Various molecules (e.g. CH3F and CF3CCH) are decelerated to below 20m /s at a corresponding output intensity of ~ 6 ×109mm-2 .s-1 . In addition, our RF-resonant depletion detection shows that up to 90 % rotational-state purity can be achieved in the so-produced slow molecular beams.

  20. Applications with Intense OTR Images II: Microbunched Electron Beams

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Dejus, R. J.; Rule, D. W.

    2004-12-01

    In this second application for intense images we take advantage of the coherent enhancement of optical transition radiation (OTR) due to self-amplified spontaneous emission (SASE) free-electron laser (FEL)-induced microbunching of the beam. A much smaller number of total particles is involved, but the microbunched fraction (NB) gives a NB2 enhancement. We report measurements on the z-dependent growth of the coherent OTR (COTR) and the effects of beam size and electron beam/photon beam coalignment in the COTR interferograms.

  1. Diagnostic Tools For Low Intensity Ion Micro-Beams

    SciTech Connect

    Finocchiaro, P.; Cosentino, L.; Pappalardo, A.; Vervaeke, M.; Volckaerts, B.; Vynck, P.; Hermanne, A.; Thienpont, H.

    2003-08-26

    We have developed two techniques for microscopic ion beam imaging and profiling, both based on scintillators, particularly suitable for applications in Deep Lithography with Protons (DLP) or with heavier ions. The first one employs a scintillating fiberoptic plate and a CCD camera with suitable lenses, the second makes use of a small scintillator optically coupled to a compact photomultiplier. We have proved the possibility of spanning from single beam particles counting up to several nA currents. Both devices are successfully being exploited for on-line control of low and very low intensity proton beams, down to a beam size of less than 50{mu}m.

  2. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  3. New techniques in hadrontherapy: intensity modulated proton beams.

    PubMed

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  4. Excitation of the surface flute waves in electron cyclotron frequency range by internal rotating electron beam in a coaxial waveguide

    NASA Astrophysics Data System (ADS)

    Blednov, O.; Girka, I.; Girka, V.; Pavlenko, I.; Sydora, R.

    2014-12-01

    The initial stage of interaction between a gyrating beam of electrons, which move along Larmor orbits in a narrow gap between a cylindrical plasma layer and an internal screen of a metal coaxial waveguide and electromagnetic eigen waves, is studied theoretically. These waves are extraordinary polarized ones; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that the excitation process is stable enough in respect to changing plasma waveguide parameters. The wider the plasma layer, the broader the range of plasma waveguide parameters within which effective wave excitation takes place. The main influence on the excitation of these modes is performed by the applied axial magnetic field, namely: its increase leads to an increase of growth rate and a broadening of the range of the waveguide parameters within which wave excitation is effective.

  5. Emittance Growth in Intense Non-Circular Beams

    NASA Astrophysics Data System (ADS)

    Anderson, O. A.

    1997-05-01

    The electrostatic energy of intense beams in linear uniform focusing channels is minimized when the initial beam configuration is both uniform and round.(In the case of quadrupole focusing, this means round on the average.) Deviations from either uniformity or roundness produce free energy and emittance growth. Over the past 25 years, the consequences of beam nonuniformity have been thoroughly investigated for the case of round beams. Recently, there has been interest in more complex beam configurations such as those that occur in Heavy Ion Fusion (HIF) combiners or splitters. We discuss free energy and emittance growth for a variety of cases: (a) square beams, (b) hexagonal beams, (c) beams bounded by a quadrant or sextant of a circle, (d) rectangular beams, (e) elliptical beams, (f) pairs of beamlets, and (g) arrays of many beamlets. Cases (a) and (b) are approximations for large arrays of beamlets as proposed for HIF combiners or for negative-ion sources. Beam splitting, suggested for a particular HIF final focus scheme, leads to (c). The large emittance growth in cases (d)-(f), calculated by a new method,(O.A. Anderson, Proceedings of EPAC 96 conference.) illustrates the importance of maintaining symmetry. Practical examples are given for several cases.

  6. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  7. 88-Inch Cyclotron newsletter

    SciTech Connect

    Stokstad, R.

    1987-02-01

    Activities at the 88-Inch Cyclotron are discussed. Increased beam time demand and operation of the ECR source and cyclotron are reported. Experimental facility improvements are reported, including improvements to the High Energy Resolution Array and to the Recoil Atom Mass Analyzer, a new capture beamline, development of a low background counting facility. Other general improvements are reported that relate to the facility computer network and electronics pool. Approved heavy nuclei research is briefly highlighted. Also listed are the beams accelerated by the cyclotron. (LEW)

  8. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  9. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    SciTech Connect

    Bhat, C. M.

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  10. Harvesting (67)Cu from the Collection of a Secondary Beam Cocktail at the National Superconducting Cyclotron Laboratory.

    PubMed

    Mastren, Tara; Pen, Aranh; Loveless, Shaun; Marquez, Bernadette V; Bollinger, Elizabeth; Marois, Boone; Hubley, Nicholas; Brown, Kyle; Morrissey, David J; Peaslee, Graham F; Lapi, Suzanne E

    2015-10-20

    Isotope harvesting is a promising new method to obtain isotopes for which there is no reliable continuous supply at present. To determine the possibility of obtaining radiochemically pure radioisotopes from an aqueous beam dump at a heavy-ion fragmentation facility, preliminary experiments were performed to chemically extract a copper isotope from a large mixture of projectile fragmentation products in an aqueous medium. In this work a 93 MeV/u secondary beam cocktail was collected in an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL) located on the Michigan State University (MSU) campus. The beam cocktail consisted of ∼2.9% (67)Cu in a large mixture of co-produced isotopes ranging in atomic number from ∼19 to 34. The chemical extraction of (67)Cu was achieved via a two-step process: primary extraction using a divalent metal chelation disk followed by anion-exchange chromatography. A significant fraction (74 ± 4%) of the (67)Cu collected in the aqueous beam stop was recovered with >99% radiochemical purity. To illustrate the utility of this product, the purified (67)Cu material was then used to radiolabel an anti-EGFR antibody, Panitumumab, and injected into mice bearing colon cancer xenografts. The tumor uptake at 5 days postinjection was found to be 12.5 ± 0.7% which was in very good agreement with previously reported studies with this radiolabeled antibody. The present results demonstrate that harvesting isotopes from a heavy-ion fragmentation facility could be a promising new method for obtaining high-quality isotopes that are not currently available by traditional methods.

  11. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams.

    PubMed

    Saminathan, S; Beijers, J P M; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-07-01

    A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.

  12. High power target approaches for intense radioactive ion beam facilities

    SciTech Connect

    Talbert, W.L. ||; Hodges, T.A.; Hsu, H.; Fikani, M.M.

    1997-02-01

    Development of conceptual approaches for targets to produce intense radioactive ion beams is needed in anticipation of activity for a next-generation, intense ISOL-type radioactive beams facility, strongly recommended in the NSAC 1995 Long Range Plan for Nuclear Science. The production of isotopes in vapor form for subsequent mass separation and acceleration will depend on the ability to control target temperature profiles within the target resulting from interactions of the intense production beams with the target material. A number of earlier studies have identified promising approaches which need, however, to be carefully analyzed for specific target systems. A survey will be made of these earlier concepts employing various cooling techniques, including imposition of thermal barriers between the target materials and cooling systems. Some results of preliminary analyses are summarized. {copyright} {ital 1997 American Institute of Physics.}

  13. Population Inversions in Ablation Plasmas Generated by Intense Electron Beams.

    DTIC Science & Technology

    1988-11-01

    light weight design, and moderate cost. The Soviets have investigated intense proton beam pumped plasma lasers , however, the University of Michigan...interpretations have been verified by moving the position of the probe laser beam away from the surface of the anode (from 0.1 cm to 0.4 cm) and noting the changes...Properties Effects on Ultraviolet Laser induced Flashover of Angled Plastic insulators in Vacuum", C.L. Ensloe and R. M. Gilgenbach, IEEE 3 Trans. on

  14. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A.

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are rzonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory,'' and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  15. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  16. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  17. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy

    SciTech Connect

    Misra, M.; Shah, K.S.; Moustakas, T.D.; Vaudo, R.P.; Singh, R.

    1995-08-01

    We report for the first time, fabrication of photoconducting UV detectors made from GaN films grown by molecular beam epitaxy. Semi-instilating GaN films were grown by the method of electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-MBE). Photoconductive devices with interdigitated electrodes were fabricated and their photoconducting properties were investigated. In this paper we report on the performance of the detectors in terms of UV responsivity, gain-quantum efficiency product, spectral response and response time. We have measured responsivity of 125A/W and gain-quantum efficiency product of 600 at 254nm and 25V. The response time was measured to be on the order of 20ns for our detectors, corresponding to a bandwidth of 25Mhz. The spectral response showed a sharp long-wavelength cutoff at 365nm, and remained constant in the 200nm to 365nm range. The response of the detectors to low-energy x-rays was measured and found to be linear for x-rays with energies ranging from 60kVp to 90kVp.

  18. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  19. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  20. Improving the intensity of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  1. High power targets for production of intense radioactive ion beams

    SciTech Connect

    Talbert, W. L.; Drake, D. M.; Wilson, M. T.; Walker, J. J.; Lenz, J. W.

    1999-04-26

    Issues are discussed in producing intense Radioactive Ion Beams (RIB) using the Isotope Separator On-Line (ISOL) approach, based on the use of thick targets employed at existing facilities. Some new physics studies may possibly be addressed by improving the performance of these existing targets through improvements in release and effusion properties to optimize the RIB yields. It is, however, acknowledged that many desired physics objectives using RIB can be met only by employing production beams of energetic light ions or protons with currents up to 100 {mu}A. Development of targets that use such intense production beams needs to address the requirement to control operational temperatures derived from internal production beam interactions with the target materials. In addition, issues arise for target materials in terms of their thermal characteristics, such as thermal conductivity and thermo-mechanical properties. A target concept is described for an in-beam test of a prototype target for actual thermal behavior under RIB production conditions. For such a test, a high-power test facility is needed; fortunately, the prototypical production beam currents required exist at the TRIUMF accelerator facility. An experimental proposal has been approved for such a test.

  2. Internal dynamics of intense twin beams and their coherence

    PubMed Central

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A generalized parametric approximation is suggested to solve the quantum model. Its comparison with a semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending on pump power are explained in terms of different speeds of the (back-) flow of energy between the individual down-converted modes and the corresponding pump modes. This effect is also responsible for the gradual replacement of the initial exponential growth of the down-converted fields by the linear one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. These effects manifest a tight relation between the twin-beam coherence and its internal structure, as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the oscillations of energy flow between the pump and down-converted modes are theoretically predicted. PMID:26924749

  3. Experimental and numerical study of high intensity argon cluster beams

    SciTech Connect

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  4. Deflection of a Reflected Intense Vortex Laser Beam

    NASA Astrophysics Data System (ADS)

    Zhang, Lingang; Shen, Baifei; Zhang, Xiaomei; Huang, Shan; Shi, Yin; Liu, Chen; Wang, Wenpeng; Xu, Jiancai; Pei, Zhikun; Xu, Zhizhan

    2016-09-01

    An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l -dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction.

  5. Deposition and surface treatment with intense pulsed ion beams

    SciTech Connect

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J.; Stinnett, R.W.; McIntyre, D.C.

    1995-02-08

    Intense pulsed ion beams (500 keV, 30 kA, 0.5 {mu}s) are being investigated for materials processing. Demonstrated and potential applications include film deposition, glazing and joining, alloying and mixing, cleaning and polishing, corrosion improvement, polymer surface treatments, and nanophase powder synthesis. Initial experiments at Los Alamos have emphasized thin-film formation by depositing beam ablated target material on substrates. We have deposited films with complex stoichiometry such as YBa{sub 2}Cu{sub 3}O{sub 7-x}, and formed diamond-like-carbon films. Instantaneous deposition rates of 1 mm/sec have been achieved because of the short ion range (typically 1{mu}m), excellent target coupling, and the inherently high energy of these beams. Currently the beams are produced in single shot uncomplicated diodes with good electrical efficiency. High-voltage modulator technology and diodes capable of repetitive firing, needed for commercial application, are being developed.

  6. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect

    Coleman, Joshua Eugene

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  7. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  8. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    SciTech Connect

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly; Freemire, Ben; Johnson, Rolland; Kazakevich, Grigory; Tollestrup, Alvin; Zwaska, Robert

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  9. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  10. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  11. Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

    SciTech Connect

    Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam

    2008-06-19

    This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.

  12. High intensity positron beam and angular correlation experiments at Livermore

    SciTech Connect

    Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.

    1985-03-01

    A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.

  13. Fast damping in mismatched high intensity beam transportation

    NASA Astrophysics Data System (ADS)

    Variale, V.

    2001-08-01

    A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571-1582 (1999) and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999), p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  14. Intense ion-beam dynamics in the NICA collider

    NASA Astrophysics Data System (ADS)

    Kozlov, O. S.; Meshkov, I. N.; Sidorin, A. O.; Trubnikov, G. V.

    2016-12-01

    The problems of intense ion-beam dynamics in the developed and optimized optical structure of the NICA collider are considered. Conditions for beam collisions and obtaining the required parameters of luminosity in the operation energy range are discussed. The restriction on collider luminosity is related to effects of the domination of the space charge and intrabeam scattering. Applying methods of cooling, electron and stochastic ones, will permit one to suppress these effects and reach design luminosity. The work also deals with systems of magnetic field correction and problems of calculating the dynamic aperture of the collider.

  15. Nonlinear stability in the transport of intense bunched beams

    NASA Astrophysics Data System (ADS)

    Corrêa da Silva, Thales M.; Rizzato, Felipe B.; Pakter, Renato; Levin, Yan

    2016-11-01

    The paper investigates the nonlinear coupling of envelope modes of oscillation for intense bunched beams. Initially, the analysis concentrates on the case of spherically symmetric beams for which longitudinal and transverse focusing forces are assumed to be the same. It is investigated how externally induced spherically symmetric breathing oscillations may nonlinearly drive the growth of ellipsoidal modes which can break the spherical beam symmetry. Next, a more general case in which the focusing forces are not symmetric such that the matched beam already presents an ellipsoidal shape is studied. It is found that depending on the parameters of the system, even a very small mismatch amplitude can drive an instability, which leads to an effective coupling of longitudinal and transversal envelope oscillations by means of the space-charge forces. Use is made of Poincaré plots and the stability index of periodic orbits to perform a detailed analysis of the location of the instability in the parameter space and how it affects the beam transport. Self-consistent numerical simulations are performed in order to verify the onset of the nonlinear instability and its effect on the evolution of the RMS size and emittance of the beam.

  16. A microsecond-pulsewidth, intense, light-ion beam accelerator

    SciTech Connect

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Greenly, J.B.; Waganaar, W.J.

    1993-07-01

    A relatively long-pulsewidth (0.1-1 {mu}s) intense ion beam accelerator has been built for materials processing applications. An applied-B{sub r}, magnetically-insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2-MV, 300-kJ Marx generator. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse-shaping.

  17. Intensity Modulated Radiotherapy with High Energy Photon and Hadron Beams

    NASA Astrophysics Data System (ADS)

    Oelfke, U.

    2004-07-01

    This short contribution will briefly describe the basic concepts of intensity modulated radiation therapy with high energy photons (IMRT) and charged particle beams (IMPT). Dose delivery and optimization strategies like the `Inverse Planning' approach will be explained for both radiation modalities and their potential advantages are demonstrated for characteristic clinical examples. Finally, future development like image guided radiotherapy (IGRT) and adaptive radiation therapy, based on functional imaging methods, will be introduced.

  18. Time Resolved Imaging of Longitudinal Modulations in Intense Beams

    NASA Astrophysics Data System (ADS)

    Tian, Kai

    2007-11-01

    The longitudinal evolution of high intensity beams is not well understood despite its importance to the success of such applications as free electron lasers and light sources, heavy ion inertial fusion, and high energy colliders. For example any amplification of current modulations in an FEL photoinjector can lead to unwanted coherent synchrotron radiation further downstream in compression chicanes or bends. A significant factor usually neglected is the coupling to the transverse dynamics which can strongly affect the longitudinal evolution. Previous experiments at the University of Maryland have revealed much about the longitudinal physics of space-charge dominated beams by monitoring the evolution of longitudinal perturbations. For the first time, experimental results are presented here which reveal the effect of longitudinal perturbations on the transverse beam distribution, with the aid of several new diagnostics that capture detailed time-resolved density images. A longitudinal modulation of the particle density is deliberately generated at the source, and its evolution is tracked downstream using a number of diagnostics such as current monitors, high-resolution energy analyzers, as well as the transverse imaging devices. The latter consist of a high-resolution 16-bit gated camera coupled with very fast emitters such as prompt optical transition radiation (OTR) from an alumina screen, or fast Phosphor screens with 3-ns time resolution. Simulations using the particle-in-cell code WARP are applied to cross-check the experimental results. These experiments and especially the comparisons to simulation represent significant progress towards understanding the longitudinal physics of intense beams.

  19. Facility for intense diagnostic neutral beam (IDNB) development

    SciTech Connect

    Kasik, R.J.; Hinckley, W.B.; Bartsch, R.R.; Rej, D.J.; Henins, I.; Greenly, J.B.

    1993-08-01

    An intense, pulsed neutral beam source is under development for use as a probe beam on hot, burning plasmas such as in the international thermonuclear experimental reactor (ITER) which is presently in the planning stage. A pulsed, neutral hydrogen beam of 10s of kilo amperes of current can have an alpha particle, charge-exchange-recombination-spectroscopy (alpha-CHERS) signal-to-noise ratio of {approximately} 10. This beam would allow the measurement, on a single pulse of a few hundred nanoseconds duration, of the local alpha particle distribution function as well as other features of the tokamak plasma such as current density profile, impurity density, and microturbulence spectrum. The cross-sections for the CHERS diagnostic dictate operation with proton energies greater than {approximately}50keV. A pulsed neutral hydrogen source of this voltage and intensity can be achieved by neutralizing the ion flux from a magnetized ion-diode. The cross-sections for attachment and stripping, when coupled with scaling from Child-Langmiur, space-charge-limited, ion-current flow imply operation below - 100keV for maximum neutral fluence. The development of a flashover-anode, ion source for forthcoming evaluation of a neutralizing section is described below. This source operates in the accelerator voltage range 70 to 100keV. Eventually, the flashover-anode, magnetized ion-diode will be replaced with a plasma-anode, magnetized ion-diode.

  20. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  1. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  2. High Intensity Superconducting Cyclotron

    DTIC Science & Technology

    2012-12-01

    DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION. Standard Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE...suspended work on the project indefinitely. This report documents the accomplishments and status of work on the five major subsystems of the project: 1...was competed in 2010 under DTRA funding through the Los Alamos National Laboratory ( LANL ). That conceptual design was completed in November 2010. In

  3. Beam dynamics and stability analysis of an intense beam in a continuously twisted quadrupole focusing channel

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2016-11-01

    This paper describes the dynamics of a space-charge-dominated beam through a continuously twisted quadrupole magnet using ten independent first-order differential equations of the beam matrix elements under the assumption of linear space-charge force. Various beam optical properties of the magnet and the evolution of the emittance that results from the coupling between the two transverse planes are studied. The perturbed equations of motion around the matched beam envelopes have been derived and utilized to analyze the stability properties of the intense beam transport by calculating the eigenvalues of the transfer map over one lattice period. Detailed analysis shows the presence of instability due to parametric resonances in a twisted quadrupole channel which generally does not appear in the FODO quadrupole channel. A 2D particle-in-cell simulation code has been developed and utilized to verify the analytical results and to examine the behavior of the intense beam with Gaussian (GA) distribution in the twisted quadrupole channel.

  4. Nondestructive synchronous beam current monitor

    SciTech Connect

    Covo, Michel Kireeff

    2014-12-15

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA.

  5. Modeling nitrogen plasmas produced by intense electron beams

    NASA Astrophysics Data System (ADS)

    Angus, J. R.; Mosher, D.; Swanekamp, S. B.; Ottinger, P. F.; Schumer, J. W.; Hinshelwood, D. D.

    2016-05-01

    A new gas-chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm2 and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D-circuit model using the rigid-beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are in good agreement with experimental measurements of the line-integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.

  6. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  7. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  8. STEREO and Wind observations of intense cyclotron harmonic waves at the Earth's bow shock and inside the magnetosheath

    NASA Astrophysics Data System (ADS)

    Breneman, A. W.; Cattell, C. A.; Kersten, K.; Paradise, A.; Schreiner, S.; Kellogg, P. J.; Goetz, K.; Wilson, L. B.

    2013-12-01

    We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 mV/m peak-peak. A comparison between the short (15 m) and long (100 m) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 m, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.

  9. STEREO and Wind Observations of Intense Cyclotron Harmonic Waves at the Earth's Bow Shock and Inside the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Breneman, A. W.; Cattell, C.

    2013-01-01

    We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.

  10. Design Aspects of Focal Beams From High-Intensity Arrays

    PubMed Central

    Stephens, Douglas N.; Kruse, Dustin E.; Qin, Shengping; Ferrara, Katherine W.

    2011-01-01

    As the applications of ultrasonic thermal therapies expand, the design of the high-intensity array must address both the energy delivery of the main beam and the character and relevance of off-target beam energy. We simulate the acoustic field performance of a selected set of circular arrays organized by array format, including flat versus curved arrays, periodic versus random arrays, and center void diameter variations. Performance metrics are based on the −3-dB focal main lobe (FML) positioning range, axial grating lobe (AGL) temperatures, and side lobe levels. Using finite-element analysis, we evaluate the relative heating of the FML and the AGLs. All arrays have a maximum diameter of 100λ, with element count ranging from 64 to 1024 and continuous wave frequency of 1.5 MHz. First, we show that a 50% spherical annulus produces focus beam side lobes which decay as a function of lateral distance at nearly 87% of the exponential rate of a full aperture. Second, for the arrays studied, the efficiency of power delivery over the −3-dB focus positioning range for spherical arrays is at least 2-fold greater than for flat arrays; the 256-element case shows a 5-fold advantage for the spherical array. Third, AGL heating can be significant as the focal target is moved to its distal half-intensity depth from the natural focus. Increasing the element count of a randomized array to 256 elements decreases the AGL-to-FML heating ratio to 0.12 at the distal half-intensity depth. Further increases in element count yield modest improvements. A 49% improvement in the AGL-to-peak heating ratio is predicted by using the Sumanaweera spiral element pattern with randomization. PMID:21859578

  11. Microsecond pulse width, intense, light-ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Rej, D. J.; Bartsch, R. R.; Davis, H. A.; Faehl, R. J.; Greenly, J. B.; Waganaar, W. J.

    1993-10-01

    A relatively long-pulse width (0.1-1 μs) intense ion beam accelerator has been built for materials processing applications. An applied Br, magnetically insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2 MV, 300-kJ Marx generator. The diode is designed with the aid of multidimensional particle-in-cell simulations. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse shaping. The effect of a plasma opening switch on diode behavior is considered.

  12. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  13. [The effect of combined magnetic fields, adjusted to ion-cyclotron resonance for Ca ions, on intensity of division in planaria].

    PubMed

    Novikov, V V; Sheĭman, I M

    2012-01-01

    The combination of a constant (42 mkT1) and parallel to it a changing magnetic field on a frequency of 32 Hz (it corresponds to cyclotron frequency for Ca2+ ions) is shown to have a changing magnetic field amplitude-dependent effect on intensity of division in planaria. A stimulating effect has been observed at the magnitude of a changing component equal to 100 nT, but the amount of division significantly decreased at 250 nT and no impact of the magnetic field was registered at 500 nT1.

  14. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  15. Gas Feeding System Supplying the U-400M Cyclotron Ion Source with Hydrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Yukhimchuk, A. A.; Antilopov, V. V.; Apasov, V. A.; Vinogradov, Yu. I.; Golubkov, A. N.; Gornostaev, Ye. V.; Grishechkin, S. K.; Demin, A. M.; Zlatoustovski, S. V.; Klevtsov, V. G.; Kuryakin, A. V.; Malkov, I. N.; Musyaev, R. K.; Pustovoi, V. I.; Bekhterev, V. V.; Bogomolov, S. L.; Gulbekian, G. G.; Yefremov, A. A.; Zelenak, A.; Leporis, M.; Loginov, V. N.; Oganessian, Yu. Ts.; Pashchenko, S. V.; Rodin, A. M.; Smirnov, Yu. I.; Ter-Akopian, G. M.; Yazvitski, N. Yu.

    2005-09-01

    Automated system feeding into ion source hydrogen isotopes as molecules with preset ratio of the fluxes is described. The control system automatically maintained the working parameters and provided graphic and digital representation of the controlled processes. The radiofrequency (RF) ion source installed at the axial injection line of the cyclotron produced ion beams of HD+, HT+, DT+, D2H+, etc. At a several months DT+ beam acceleration the tritium consumption was less than 108 Bq/hr. The intensity of a 58.2 MeV triton beam (T+ ions) extracted from the cyclotron chamber was about 10 nA.

  16. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  17. Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. [in earth ionosphere

    NASA Technical Reports Server (NTRS)

    Okuda, H.; Ashour-Abdalla, M.

    1981-01-01

    In the considered investigation, it is assumed that the field aligned currents are responsible for producing electrostatic harmonic cyclotron waves (EHC). Using a one-dimensional simulation model in which the electron velocity distribution is maintained by a constant injection of the initial distribution, it is shown that, in contrast to earlier initial value simulations, EHC waves grow to a large amplitude, resulting in the formation of an anisotropic ion velocity distribution. Both the heating rate and the anisotropy are in reasonable agreement with the quasi-linear theory, taking into account the cyclotron resonance. The results show that the saturation is due to the combined effects of wave induced diffusion in an electron velocity space and the heating of ions perpendicularly. Both these effects reduce the growth rate.

  18. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.

    PubMed

    Kambali, I; Suryanto, H; Parwanto

    2016-06-01

    Routine production of F-18 radionuclide using proton beams accelerated in a cyclotron could potentially generate residual radioisotopes in the cyclotron vicinity which eventually become major safety concerns over radiation exposure to the workers. In this investigation, a typical 11-MeV proton, self-shielded cyclotron has been assessed for its residual radiation sources in the cyclotron's shielding, tank/chamber, cave wall as well as target system. Using a portable gamma ray spectroscopy system, the radiation measurement in the cyclotron environment has been carried out. Experimental results indicate that relatively long-lived radioisotopes such as Mn-54, Zn-65 and Eu-152 are detected in the inner and outer surface of the cyclotron shielding respectively while Mn-54 spectrum is observed around the cyclotron chamber. Weak intensity of Eu-152 radioisotope is again spotted in the inner and outer surface of the cyclotron cave wall. Angular distribution measurement of the Eu-152 shows that the intensity slightly drops with increasing observation angle relative to the proton beam incoming angle. In the target system, gamma rays from Co-56, Mn-52, Co-60, Mn-54, Ag-110 m are identified. TALYS-calculated nuclear cross-section data are used to study the origins of the radioactive by-products.

  19. Broadband source localization using horizontal-beam acoustic intensity striations.

    PubMed

    Turgut, Altan; Orr, Marshall; Rouseff, Daniel

    2010-01-01

    Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.

  20. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  1. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  2. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE PAGES

    Persaud, A.; Barnard, J. J.; Guo, H.; ...

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  3. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H{sub 2}{sup +} beam production

    SciTech Connect

    Jia Xianlu; Zhang Tianjue; Wang Chuan; Zheng Xia; Yin Zhiguo; Zhong Junqing; Wu Longcheng; Qin Jiuchang; Luo Shan

    2010-02-15

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H{sub 2}{sup +} beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of {approx}875 Gs[T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  4. The stress intensity factor for the double cantilever beam

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1983-01-01

    Fourier transforms and the Wiener-Hopf technique are used in conjunction with plane elastostatics to examine the singular crack tip stress field in the double cantilever beam (DCB) specimen. In place of the Dirac delta function, a family of functions which duplicates the important features of the concentrated forces without introducing unmanageable mathematical complexities is used as a loading function. With terms of order h-squared/a-squared retained in the series expansion, the dimensionless stress intensity factor is found to be K (h to the 1/2)/P = 12 to the 1/2 (a/h + 0.6728 + 0.0377 h-squared/a-squared), in which P is the magnitude of the concentrated forces per unit thickness, a is the distance from the crack tip to the points of load application, and h is the height of each cantilever beam. The result is similar to that obtained by Gross and Srawley by fitting a line to discrete results from their boundary collocation analysis.

  5. Infrared imaging diagnostics for intense pulsed electron beam

    SciTech Connect

    Yu, Xiao; Shen, Jie; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Zhang, Gaolong; Le, Xiaoyun; Qu, Miao; Yan, Sha

    2015-08-15

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm{sup 2} and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  6. Infrared imaging diagnostics for intense pulsed electron beam.

    PubMed

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm(2) and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  7. Beam characterization of FLASH from beam profile measurement by intensity transport equation and reconstruction of the Wigner distribution function

    NASA Astrophysics Data System (ADS)

    Schäfer, Bernd; Mey, Tobias; Mann, Klaus; Keitel, Barbara; Kreis, Svea; Kuhlmann, Marion; Plönjes, Elke; Tiedtke, Kai

    2013-05-01

    Beam parameters of the free-electron laser FLASH @13.5 nm in two different operation modes were determined from beam profile measurements and subsequent reconstruction of the Wigner distribution function behind the ellipsoidal focusing mirror at beamline BL2. 40 two-dimensional single pulse intensity distributions were recorded at each of 65 axial positions around the waist of the FEL beam with a magnifying EUV sensitized CCD camera. From these beam profile data the Wigner distribution function based on different levels of averaging could be reconstructed by an inverse Radon transform. For separable beams this yields the complete Wigner distribution, and for beams with zero twist the information is still sufficient for wavefront determination and beam propagation through stigmatic systems. The obtained results are compared to wavefront reconstructions based on the transport of intensity equation. A future setup for Wigner distribution measurements of general beams is discussed.

  8. 14 CFR 23.1395 - Maximum intensities in overlapping beams of position lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRPLANES Equipment Lights § 23.1395 Maximum intensities in overlapping beams of position lights. No position light intensity may exceed the applicable values in the following equal or exceed the applicable... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum intensities in overlapping beams...

  9. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum intensities in overlapping beams...

  10. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams...

  11. 14 CFR 23.1395 - Maximum intensities in overlapping beams of position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRPLANES Equipment Lights § 23.1395 Maximum intensities in overlapping beams of position lights. No position light intensity may exceed the applicable values in the following equal or exceed the applicable... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum intensities in overlapping beams...

  12. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum intensities in overlapping beams...

  13. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum intensities in overlapping beams...

  14. 14 CFR 23.1395 - Maximum intensities in overlapping beams of position lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRPLANES Equipment Lights § 23.1395 Maximum intensities in overlapping beams of position lights. No position light intensity may exceed the applicable values in the following equal or exceed the applicable... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum intensities in overlapping beams...

  15. 14 CFR 23.1395 - Maximum intensities in overlapping beams of position lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRPLANES Equipment Lights § 23.1395 Maximum intensities in overlapping beams of position lights. No position light intensity may exceed the applicable values in the following equal or exceed the applicable... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum intensities in overlapping beams...

  16. 14 CFR 23.1395 - Maximum intensities in overlapping beams of position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRPLANES Equipment Lights § 23.1395 Maximum intensities in overlapping beams of position lights. No position light intensity may exceed the applicable values in the following equal or exceed the applicable... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams...

  17. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams...

  18. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum intensities in overlapping beams...

  19. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum intensities in overlapping beams...

  20. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum intensities in overlapping beams...

  1. 14 CFR 29.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Equipment Lights § 29.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum intensities in overlapping beams...

  2. 14 CFR 27.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Equipment Lights § 27.1395 Maximum intensities in overlapping beams of forward and rear position lights. No position light intensity may exceed the applicable values in the following table, except as provided in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum intensities in overlapping beams...

  3. The ADRIA project for high intensity radioactive beams production

    SciTech Connect

    Bisoffi, G.; Cavenago, M.; Dainelli, A.; Facco, A.; Fortuna, G.; Lombardi, A.; Moisio, M.F.; Pisent, A.; Spolaore, P.; Tiveron, B. ); Ruggiero, A.G. ); Tecchio, L. Istituto Nazionale di Fisica Nucleare, Turin )

    1992-01-01

    A proposal of an accelerator complex (ADRIA) for the Laboratori Nazionali di Legnaro (LNL) is described in this report. The main components of the complex are a Heavy Ion Injection system and two rings, a Booster and a Decelerator, both with a maximum rigidity of 22.25 Tm, connected by a Transfer Line where exotic proposal has two main goals consisting in the isotopes are produced and selected. The proposal has two main goals consisting in the acceleration of stable ion species up to kinetic energies of the order of few GeV/u, at a repetition rate of 10 Hz with intensities of about 10[sup 12] ions per second, for fixed target experiments in nuclear physics and for the production of fully stripped radioactive beams, using particle fragmentation method for nuclear spectroscopy experiments. Fragments are accumulated in the Decelerator, with intensities 10[sup 8] [divided by] 10[sup 9] ions/s, cooled and delivered at the production energies or decelerated down to energies of few MeV/u, in proximity of the Coulomb barrier.

  4. The ADRIA project for high intensity radioactive beams production

    SciTech Connect

    Bisoffi, G.; Cavenago, M.; Dainelli, A.; Facco, A.; Fortuna, G.; Lombardi, A.; Moisio, M.F.; Pisent, A.; Spolaore, P.; Tiveron, B.; Ruggiero, A.G.; Tecchio, L. |

    1992-12-31

    A proposal of an accelerator complex (ADRIA) for the Laboratori Nazionali di Legnaro (LNL) is described in this report. The main components of the complex are a Heavy Ion Injection system and two rings, a Booster and a Decelerator, both with a maximum rigidity of 22.25 Tm, connected by a Transfer Line where exotic proposal has two main goals consisting in the isotopes are produced and selected. The proposal has two main goals consisting in the acceleration of stable ion species up to kinetic energies of the order of few GeV/u, at a repetition rate of 10 Hz with intensities of about 10{sup 12} ions per second, for fixed target experiments in nuclear physics and for the production of fully stripped radioactive beams, using particle fragmentation method for nuclear spectroscopy experiments. Fragments are accumulated in the Decelerator, with intensities 10{sup 8} {divided_by} 10{sup 9} ions/s, cooled and delivered at the production energies or decelerated down to energies of few MeV/u, in proximity of the Coulomb barrier.

  5. Hollow structure formation of intense ion beams with sharp edge in background plasmas

    SciTech Connect

    Hu, Zhang-Hu; Wang, You-Nian

    2016-02-15

    The transport of intense ion beams with sharp radial beam edge in plasmas has been studied with two-dimensional electromagnetic particle simulations. The initial solid beam evolves into a hollow beam due to the nonlinear sharp transverse force peak in the regions of beam edge. The magnitude and nonlinearity of this peak are enhanced as the ion beam travels further into the plasma, due to the self-consistent interactions between the beam ions and the plasma electrons. This structure formation is shown to be independent on the beam radius.

  6. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; ...

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  7. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  8. Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2004-04-09

    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics.

  9. Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere.

    PubMed

    Zhou, Guoquan; Chu, Xiuxiang

    2010-01-18

    The propagation of a Lorentz-Gauss beam in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and the Hermite-Gaussian expansion of a Lorentz function, analytical formulae for the average intensity and the effective beam size of a Lorentz-Gauss beam are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a Lorentz-Gauss beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a Lorentz-Gauss beam in turbulent atmosphere are also discussed in detail.

  10. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  11. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  12. Static analysis of possible emittance growth of intense charged particle beams with thermal equilibrium distribution

    SciTech Connect

    Kikuchi, Takashi; Horioka, Kazuhiko

    2009-05-15

    Possible emittance growths of intense, nonuniform beams during a transport in a focusing channel are derived as a function of nonlinear field energy and space charge tune depression factors. The nonlinear field energy of the beam with thermal equilibrium distribution is estimated by considering the particle distribution across the cross section of the beam. The results show that the possible emittance growth can be suppressed by keeping the beam particle in thermal equilibrium distribution during the beam transport.

  13. Evidence that the electrostatic ion cyclotron instability is saturated by ion heating. [in auroral arc

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Bering, E. A.; Mozer, F. S.

    1975-01-01

    Observations have been made of electric field oscillations near the local ion gyro frequency and of an intense beam of plasma ions at the edge of an auroral arc. The observations are in good agreement with ion heating as the saturation mechanism for electrostatic ion cyclotron waves.

  14. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    SciTech Connect

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  15. Fiber-optic holography employing multiple beam fringe stabilization and object/reference beam intensity variability.

    PubMed

    Muhs, J D; Leilabady, P A; Corke, M

    1988-09-01

    The use of fiber optics in the field of optical holography is discussed with emphasis on the design of systems used to overcome several inherent shortcomings associated with fiber-optic holographic systems. Specifically, random environmentally induced optical phase changes within the fiber are minimized by employing a Michelson interferometer in conjunction with a closed loop feedback system. Furthermore, by using several passive single-mode couplers, complete object illumination via several illumination fibers is observed. Finally, by implementing a Mach-Zehnder interferometric technique, control of the object and reference beam intensity ratios in a fiber-optic holographic system can be accomplished. The resulting schemes are very stable and highly versatile systems suitable for remote holographic interferometric sensing and other applications where conventional holography techniques are impractical. Experimental results on fringe visibility, fringe stability, and the stabilization of object/reference beam intensity ratios are also given along with a composite summary of the overall system constraints associated with fiber-optic holographic systems.

  16. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  17. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  18. Intense Microsecond Electron Beam Interactions with Low-Pressure Gases

    DTIC Science & Technology

    1991-02-28

    Gilgenbach, J. E. Tucker, and C. L. Enloe, Laser and Particle Beams, 6 687 (1988). 4) "Undulation of a Magnetized Electron Beam by a Periodic Ion...Excitation by Relativistic Electrons: I. Collisions Cross Sections and Deposition Efficiencies", Laser and Particle Beams 8 493 (1990) 11) D.B...McGarrah and M.L. Brake, Argon Ion Excitation by Relativistic Electrons: II. Chemical Kinetics", Laser and Particle Beams 8 507 (1990) 9 T-PS/18/3//35709

  19. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    SciTech Connect

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.

  20. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

    PubMed

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I(FC) by the mobile plate tuner. The I(FC) is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I(FC) and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I(FC) when we change the position of the mobile plate tuner.

  1. Structure and morphology characters of GaN grown by ECR-MBE using hydrogen-nitrogen mixed gas plasma[Electron Cyclotron Resonance-Molecular Beam Epitaxy

    SciTech Connect

    Araki, Tsutomu; Chiba, Yasuo; Nanishi, Yasushi

    2000-07-01

    GaN growth by electron-cyclotron-resonance plasma-excited molecular beam epitaxy using hydrogen-nitrogen mixed gas plasma were carried out on GaN templates with a different polar-surface. Structure and surface morphology of the GaN layers were characterized using transmission electron microscopy. The GaN layer grown with hydrogen on N-polar template showed a relatively flat morphology including hillocks. Columnar domain existed in the center of the hillock, which might be attributed to the existence of tiny inversion domain with Ga-polarity. On the other hand, columnar structure was formed in the GaN layer grown with hydrogen on Ga-polar template.

  2. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  3. Simulations of the effects of mobile ions on the relativistic beam-plasma instability for intense beams

    SciTech Connect

    Jones, M.E.; Lemons, D.S.; Lee, H.

    1983-01-01

    Particle-in-cell simulations of the beam-plasma instability for intense relativistic electron beams in dense plasmas show rapid heating of the electrons to multi-kilovolt temperatures. The resulting hydrodynamic motion of the plasma results in density gradients that degrade the interaction. Heat flow out of the plasma is found in some instances to limit the gradient formation process.

  4. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  5. New and improved apparatus and method for monitoring the intensities of charged-particle beams

    DOEpatents

    Varma, M.N.; Baum, J.W.

    1981-01-16

    Charged particle beam monitoring means are disposed in the path of a charged particle beam in an experimental device. The monitoring means comprise a beam monitoring component which is operable to prevent passage of a portion of beam, while concomitantly permitting passage of another portion thereof for incidence in an experimental chamber, and providing a signal (I/sub m/) indicative of the intensity of the beam portion which is not passed. Caibration means are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I/sub f/) indicative of the intensity thereof. Means are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  6. Apparatus and method for monitoring the intensities of charged particle beams

    DOEpatents

    Varma, Matesh N.; Baum, John W.

    1982-11-02

    Charged particle beam monitoring means (40) are disposed in the path of a charged particle beam (44) in an experimental device (10). The monitoring means comprise a beam monitoring component (42) which is operable to prevent passage of a portion of beam (44), while concomitantly permitting passage of another portion thereof (46) for incidence in an experimental chamber (18), and providing a signal (I.sub.m) indicative of the intensity of the beam portion which is not passed. Calibration means (36) are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I.sub.f) indicative of the intensity thereof. Means (41 and 43) are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  7. Beaming of intense AKR seen from the Interball-2 spacecraft

    NASA Astrophysics Data System (ADS)

    Schreiber, R.; Panchenko, M.; Hanasz, J.; Mutel, R.; Christopher, I.

    2017-01-01

    We present results of intense auroral kilometric radiation (AKR) sources direction finding based on single-spacecraft k→ vector source location performed in the frame of Interball-2 mission (POLRAD experiment on board Auroral Probe). With our swept frequency analyzer we are not able to work with single AKR bursts generated in small, elementary sources, but we improve our signal-to-noise (s/n) ratio and determine direction to the AKR source region averaging data over 10 consecutive 4 kHz frequency steps. Measurements of directions to the AKR sources confirm recent Mutel et al. () findings based on Cluster Very Long Baseline Interferometry (VLBI) data - AKR rays are mostly confined to the direction tangent to the auroral oval as measured in Mutel's tangent plane (TP) coordinates. In this paper we use additional coordinate system rotated with respect to TP coordinates in order to determine azimuths of AKR rays with respect to the auroral oval. We see cases of AKR propagation significantly deflected from the tangent plane. Additional information concerning geometry of auroral arc at the AKR source can help to distinguish between propagation along and propagation across the auroral cavity. Examples of instantaneous AKR visibility maps defined in this paper for both coordinate systems are shown and discussed. Using such map (valid for our spacecraft for relatively short observational periods of the order of 10 min), it is possible for known positions of the AKR sources in invariant latitude-magnetic local time coordinates to visualize direction angles of AKR beams reaching the observer.

  8. Determination of beam intensity in a single step for IMRT inverse planning.

    PubMed

    Chuang, Keh-Shih; Chen, Tzong-Jer; Kuo, Shan-Chi; Jan, Meei-Ling; Hwang, Ing-Ming; Chen, Sharon; Lin, Ying-Chuan; Wu, Jay

    2003-02-07

    In intensity modulated radiotherapy (IMRT), targets are treated by multiple beams at different orientations each with spatially-modulated beam intensities. This approach spreads the normal tissue dose to a greater volume and produces a higher dose conformation to the target. In general, inverse planning is used for IMRT treatment planning. The inverse planning requires iterative calculation of dose distribution in order to optimize the intensity profile for each beam and is very computation intensive. In this paper, we propose a single-step method utilizing a figure of merit (FoM) to estimate the beam intensities for IMRT treatment planning. The FoM of a ray is defined as the ratio between the delivered tumour dose and normal tissue dose and is a good index for the dose efficacy of the ray. To maximize the beam utility, it is natural to irradiate the tumour with intensity of each ray proportional to the value of the FoM. The nonuniform beam intensity profiles are then fixed and the weights of the beam are determined iteratively in order to yield a uniform tumour dose. In this study, beams are employed at equispaced angles around the patient. Each beam with its field size that just covers the tumour is divided into a fixed number of beamlets. The FoM is calculated for each beamlet and this value is assigned to be the beam intensity. Various weighting factors are incorporated in the FoM computation to accommodate different clinical considerations. Two clinical datasets are used to test the feasibility of the algorithm. The resultant dose-volume histograms of this method are presented and compared to that of conformal therapy. Preliminary results indicate that this method reduces the critical organ doses at a small expense of uniformity in tumour dose distribution. This method estimates the beam intensity in one single step and the computation time is extremely fast and can be finished in less than one minute using a regular PC.

  9. Average intensity and directionality of partially coherent model beams propagating in turbulent ocean.

    PubMed

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun

    2016-08-01

    We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment.

  10. Spatial correlation properties and the spectral intensity distributions of focused Gaussian Schell-model array beams

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoling; Pu, Zhengcai; Jia, Xinhong

    2009-07-01

    The spatial correlation properties and the spectral intensity distributions of focused Gaussian Schell-model (GSM) array beams are studied in detail. The closed-form expressions for the spectral degree of coherence and the spectral intensity of focused GSM array beams are derived. It is shown that the spectral degree of coherence of focused GSM array beams is the same as that of focused GSM beams in the focal plane. On the other hand, it is found that, in the focal plane the spectral intensity distribution of focused GSM array beams is the fringe pattern when the value of the coherence length is small. However, it becomes one peak located at the center as the value of the coherence length is large enough. In the focal plane, the spectral intensity maximum increases and the width of the normalized spectral intensity distribution decreases as the beam number increases. In general, for GSM array beams, the width of the modulus of the spectral degree of coherence in the focal plane always exceeds that of the normalized spectral intensity distribution, which is different from the behavior of focused GSM beams. In addition, the power in the bucket (PIB) and the beam propagation factor ( M2 factor) are also discussed. The main results are explained physically.

  11. Arc-based smoothing of ion beam intensity on targets

    DOE PAGES

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  12. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  13. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  14. Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam

    NASA Astrophysics Data System (ADS)

    F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal

    2016-06-01

    The propagation characteristics of the Pearcey-Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens-Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.

  15. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  16. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  17. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  18. Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang

    2017-03-01

    Electromagnetic ion cyclotron (EMIC) waves play an important role in the magnetospheric particle dynamics and can lead to resonant pitch-angle scattering and ultimate precipitation of ring current protons. Commonly, the statistics of in situ EMIC wave measurements is adopted for quantitative investigation of wave-particle interaction processes, which however becomes questionable for detailed case studies especially during geomagnetic storms and substorms. Here we establish a novel technique to infer EMIC wave amplitudes from low-altitude proton measurements onboard the Polar Operational Environmental Satellites (POES). The detailed procedure is elaborated regarding how to infer the EMIC wave intensity for one specific time point. We then test the technique with a case study comparing the inferred root-mean-square (RMS) EMIC wave amplitude with the conjugate Van Allen Probes EMFISIS wave measurements. Our results suggest that the developed technique can reasonably estimate EMIC wave intensities from low-altitude POES proton flux data, thereby providing a useful tool to construct a data-based, near-real-time, dynamic model of the global distribution of EMIC waves once the proton flux measurements from multiple POES satellites are available for any specific time period.

  19. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    NASA Astrophysics Data System (ADS)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  20. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    SciTech Connect

    Lu, W. Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L.; Fang, X.; Guo, J. W.; Yang, Y.; Xiong, B.; Ruan, L.; Xie, D.

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  1. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H.; Izotov, I.; Skalyga, V.; Toivanen, V.

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O3+-O7+ were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  2. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Orpana, J; Kronholm, R; Kalvas, T; Laulainen, J; Koivisto, H; Izotov, I; Skalyga, V; Toivanen, V

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O(3+)-O(7+) were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  3. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOEpatents

    Skupsky, Stanley; Craxton, R. Stephen; Soures, John

    1990-01-01

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.

  4. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOEpatents

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  5. Higher order mode beams mitigate halos in high intensity proton linacs

    NASA Astrophysics Data System (ADS)

    Pathak, Abhishek; Krishnagopal, Srinivas

    2017-01-01

    High intensity proton linacs (HIPLs) for applications such as Accelerator Driven Reactor Systems (ADRS) have serious beam dynamics issues related to beam halo formation. This can lead to particle loss and radioactivation of the surroundings which consequently limit the beam current. Beam halos are largely driven by the nonlinear space-charge force of the beam, which depends strongly on the beam distribution and also on the initial beam mismatch. We propose here the use of a higher order mode beam (HOMB), that has a weaker nonlinear force, to mitigate beam halos. We first show how the nonlinear space-charge force can itself be exploited in the presence of nonlinear solenoid fields, to produce a HOMB in the low energy beam transport (LEBT) line. We then study the transport of such a beam through a radio frequency quadrupole (RFQ), and show that the HOMB has a significant advantage in terms of emittance blow-up, halo formation and beam loss, over a Gaussian beam, even with a finite initial mismatch. For example, for the transport of a 30 mA beam through the RFQ, with an initial beam mismatch of 45%, the Gaussian beam sees an emittance blow-up of 125%, while the HOMB sees a blow-up of only 35% (relative to the initial emittance of 0.2 π mm -mrad ). Similarly, the beam halo parameter and beam loss are 0.95 and 25% respectively for a Gaussian beam, but only 0.35 and 15% for a HOMB. The beam dynamics of the HOMB agrees quite well with the particle-core model, because of the more linear space-charge force, while for the Gaussian beam there are additional particle loss mechanisms arising from nonlinear resonances. Therefore, the HOMB suppresses emittance blow-up and halo formation, and can make high current ADRS systems more viable.

  6. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  7. Emission of an intense electron beam from a ceramic honeycomb

    NASA Astrophysics Data System (ADS)

    Friedman, M.; Myers, M.; Hegeler, F.; Swanekamp, S. B.; Sethian, J. D.; Ludeking, L.

    2003-01-01

    Inserting a slab of honeycomb ceramic in front of the emitting surface of a large-area cathode improves the electron beam emission uniformity, decreases the beam current rise and fall times, and maintains a more constant diode impedance. Moreover, changing the cathode material from velvet to carbon fiber achieved a more robust cathode that starts to emit at a higher electric field without a degradation in beam uniformity. In addition, an 80% reduction in the postshot diode pressure was also observed when gamma alumina was deposited on the ceramic. A possible explanation is that reabsorption and recycling of adsorbed gases takes place.

  8. Population Inversions in Ablation Plasmas Generated by Intense Electron Beams.

    DTIC Science & Technology

    1986-11-30

    beam driven carbon anode plasmas. Diode closure results ..,.in three phases of beam-plasma evolution which are summarized below: Stage I: Deposited...enough for anode plasma forma- tion before the diode shorts. Spectroscopic data for noncrowbarred shots (dose 1 500-800 J/g) indicate the presence of CII...inconsistent with previously proposed kinetic mechanisms for the N2 laser pumped by helium. With a simple- model of the chemical kinetics, we have shown

  9. Spontaneous excitation of waves by an intense ion beam on the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna; van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Heidbrink, William

    2016-10-01

    A hydrogen ion beam (15 keV, 10 A) has been injected into a large magnetized plasma (n 1010 -1013 cm-3, Te = 5.0 - 15.0 eV, B = 0.6 - 1.8 kG, He+ and H+ ions, 19 m long, 0.6 m diameter) for performing fast-ion studies on the Large Plasma Device (LAPD). The beam forms a helical orbit (pitch-angle 7° -55°), propagates with an Alfvénic speed (beam-speed/Alfvén-speed = 0.2 - 3.0), and significantly enhances the electron temperature and density when injected during the plasma afterglow. We report results on spontaneous generation of Alfvén waves and electrostatic waves in the lower-hybrid range of frequencies by the beam. Roles of normal and anomalous Doppler-shifted ion-cyclotron resonances in destabilizing the Alfvén waves were examined by measuring the phase-speed of waves and relevant parameters of the plasma using a variety of diagnostic tools (retarding-field energy analyzer, three-axis magnetic-loop, Dipole, and Langmuir probes). Conditions for the maximum growth of these waves were determined by varying the parameters of the beam and ambient plasma and examining the mode-structures in the fluctuation-spectra. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  10. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  11. Propagation instabilities of high-intensity laser-produced electron beams.

    PubMed

    Tatarakis, M; Beg, F N; Clark, E L; Dangor, A E; Edwards, R D; Evans, R G; Goldsack, T J; Ledingham, K W D; Norreys, P A; Sinclair, M A; Wei, M-S; Zepf, M; Krushelnick, K

    2003-05-02

    Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities. Particle-in-cell simulations also indicate the development of such instabilities. This is a regime of particular interest for inertial confinement fusion applications of these beams (i.e., "fast ignition").

  12. Key elements of space charge compensation on a low energy high intensity beam injector

    SciTech Connect

    Peng Shixiang; Lu Pengnan; Ren Haitao; Zhao Jie; Chen Jia; Xu Yuan; Guo Zhiyu; Chen Jia'er; Zhao Hongwei; Sun Liangting

    2013-03-15

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV/90 mA H{sup +} beam and a 40 keV/10 mA He{sup +} beam compensated by Ar/Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.

  13. Modeling nitrogen plasmas produced by intense electron beams

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Swanekamp, Steve; Richardson, Andrew; Schumer, Joseph; Mosher, David; Ottinger, Paul

    2016-10-01

    The Gamble II generator at the Naval Research Laboratory produces 100ns pulse duration, relativistic-electron beams with peak energies on the order of 1MV and peak currents of about 800kA with annular beam areas between 40-80cm2. This gives peak current densities 10 kA/cm2. For many different applications, a nitrogen gas in the 1Torr range is used as a charge- and current-neutralizing background to achieve beam transport. For these parameter regimes, the gas transitions from a weakly-ionized molecular state to a strongly-ionized atomic state on the time scale of the beam pulse. A detailed gas-chemistry model is presented for a dynamical description of the nitrogen plasmas produced in such experiments. The model is coupled to a 0D circuit model representative of annular beams, and results for 1Torr nitrogen are in good agreement with experimental measurements of the line-integrated electron density and the net current. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of the higher-lying optically-allowed states with excitation energies close to the ionization limit. Work is supported by AWE through NNSA.

  14. Longitudinal confinement and matching of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Beaudoin, B.; Haber, I.; Kishek, R. A.; Bernal, S.; Koeth, T.; Sutter, D.; O'Shea, P. G.; Reiser, M.

    2011-01-01

    An induction cell has successfully been demonstrated to longitudinally confine a space-charge dominated bunch for over a thousand turns (>11.52 km) in the University of Maryland Electron Ring [Haber et al., Nucl. Instrum. Methods Phys. Res. A 606, 64 (2009) and R. A. Kishek et al., Int. J. Mod. Phys. A 22, 3838 (2007)]. With the use of synchronized periodic focusing fields, the beam is confined for multiple turns overcoming the longitudinal space-charge forces. Experimental results show that an optimum longitudinal match is obtained when the focusing frequency for containment of the 0.52 mA beam is applied at every fifth turn. Containment of the beam bunch is achievable at lower focusing frequencies, at the cost of a reduction in the transported charge from the lack of sufficient focusing. Containment is also obtainable, if the confinement fields overfocus the bunch, exciting multiple waves at the bunch ends, which propagate into the central region of the beam, distorting the overall constant current beam shape.

  15. Array feed/reflector antenna design for intense microwave beams

    NASA Astrophysics Data System (ADS)

    Blank, Stephen J.

    1990-04-01

    It is shown that a planar-array feed has excellent potential as a solution to paraboloidal reflector distortion problems and beam-steering requirements. Numerical results from an algorithmic procedure are presented which show that, for a range of distortion models, appreciable on-axis gain restoration can be achieved with as few as seven elements. For beam-steering to + or - 1 MW, 19 elements are required. For arrays with either seven or 19 elements, high effective aperture elements give higher system gain than elements having lower effective apertures. With 37 elements, excellent gain and beam-steering performance to + or - 1.5 BW is obtained independently of assumed effective aperture of the array element. A few simple rules of thumb are presented for the design of the planar-array feed configuration.

  16. Influence of Conducting Plate Boundary Conditions on the Transverse Envelope Equations Describing Intense Ion Beam Transport

    SciTech Connect

    Lund, S M; Bukh, B

    2003-07-23

    In typical diagnostic applications, intense ion beams are intercepted by a conducting plate associated with devices used to measure beam phase-space projections. This results in the transverse space-charge field near the plate being shorted out, rendering simple envelope models with constant space-charge strength inaccurate. Here we develop corrected envelope models based on analytical calculations to account for this effect on the space-charge term of the envelope equations, thereby removing a systematic source of error in the equations and enabling more accurate comparisons with experiment. For common intense beam parameters, we find that the correction occurs primarily in the envelope angles and that the effect can be large enough to degrade precision beam matching. Results are verified with 3D self-consistent PIC simulations based on intense beam experiments associated with driver developments for Heavy-Ion Fusion.

  17. Intense high-quality medical proton beams via laser fields.

    PubMed

    Galow, Benjamin J; Harman, Zoltán; Keitel, Christoph H

    2010-12-06

    Simulations based on the coupled relativistic equations of motion show that protons stemming from laser-plasma processes can be efficiently post-accelerated employing single and crossed pulsed laser beams focused to spot radii on the order of the laser wavelength. We demonstrate that the crossed beams produce quasi-monoenergetic accelerated protons with kinetic energies exceeding 200 MeV, small energy spreads of about 1% and high densities as required for hadron cancer therapy. To our knowledge, this is the first scheme allowing for this important application based on an all-optical set-up.

  18. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    NASA Astrophysics Data System (ADS)

    Chung, Moses; Qin, Hong; Davidson, Ronald C.; Groening, Lars; Xiao, Chen

    2016-11-01

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. In this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. The new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. The corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.

  19. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    SciTech Connect

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  20. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOEpatents

    Jacobs, S.D.; Cerqua, K.A.

    1987-07-14

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile. 11 figs.

  1. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOEpatents

    Jacobs, Stephen D.; Cerqua, Kathleen A.

    1987-01-01

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile.

  2. Control of the intensity fluctuations of random electromagnetic beams on propagation in weak atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Korotkova, O.

    2006-02-01

    The intensity fluctuations of random electromagnetic beams propagating in the atmosphere are studied. For such beams it is shown that when the atmospheric fluctuations are weak then the scintillation index (the normalized variance of intensity fluctuations) of the beam at any distance from the source depends not only on the state of coherence but also on the degree of polarization of the beam in the source plane. In particular, we found that for initially unpolarized beams the scintillation index generally takes on smaller values than that for completely polarized beams. The presented analysis might be useful in the applications (e.g. communications, laser radars) where atmospheric effects can be mitigated by adjusting the coherence properties and the polarization properties of the source.

  3. Increase of the beam intensity for BNCT by changing the core configuration at THOR.

    PubMed

    Liu, H M; Peir, J J; Liu, Y H; Tsai, P E; Jiang, S H

    2009-07-01

    In this article, we will consider several core configurations and run the core calculation with MCNP to obtain the neutrons distribution at THOR. The thermal neutron flux inside the vertical tubes (VT-B-VT-E) and the fast neutron flux in the first row facing to the boron neutron capture therapy (BNCT) facility (I3-I5) were tallied for indication. Based on these simulation results, the fuel elements were rearranged during the annual repair period in 2007. The epithermal neutron flux at the center of BNCT beam exit in air was measured again, and the results showed that the beam intensity increased by 50%. Comparing the neutron intensities both in reactor core and at the BNCT beam exit for several core configurations, the results show that the BNCT beam intensity can be increased without decreasing the neutron intensity in core.

  4. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  5. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  6. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transporta)

    NASA Astrophysics Data System (ADS)

    Zhang, W. H.; Ma, H. Y.; Yang, Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Cao, Y.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Sha, S.; Lu, W.; Lin, S. H.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Peng, S. X.; Liu, Z. W.; Zhao, H. W.

    2012-02-01

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  7. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transport

    SciTech Connect

    Zhang, W. H.; Ma, H. Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Liu, Z. W.; Zhao, H. W.; Yang, Y.; Cao, Y.; and others

    2012-02-15

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  8. Excitation of broadband electrostatic noise and of hydrogen cyclotron waves by a perpendicular ion beam in multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Malingre, M.; Pottelette, R.

    1985-05-01

    Results from the PORCUPINE experiment show that a perpendicular heavy ion beams, injected into an O(+) dominated plasma which contains a small concentration of H(+), induces a broadband electrostatic noise near the lower hybrid frequency and also discrete elecrostatic emissions at frequencies close to multiples of the hydrogen gyrofrequency. The dependence of these instabilities on the parameters characteristics of the beam-background plasma system is studied. It is shown that, provided the beam is of sufficiently high density and low temperature, the frequency range of the broadband noise extends continuously from zero frequency up to the lower hybrid frequency. In this case the harmonics of the hydrogen gyrofrequency are also excited but their growth rates are much lower than that of the broadband emission, up to two of three orders of magnitude for the first harmonics.

  9. Device to color modulate a stationary light beam gives high intensity

    NASA Technical Reports Server (NTRS)

    Gantz, W. A.

    1966-01-01

    Signal controlled system color modulates a beam of light while also providing high intensity and a stationary beam, either collimated or focused. The color modulation acquired by the presented system can be compatible with any color film by employing color filters formed to provide a color wedge having a color distribution compatible with the films color sensitivity.

  10. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  11. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    SciTech Connect

    Prost, L. R.

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  12. A 3 Ghz photoelectron gun for high beam intensity

    SciTech Connect

    Bossart, R.; Braun, H.; Dehler, M.

    1995-12-31

    The CLIC Test Facility (CTF) for new accelerator structures of the proposed Compact Linear Collider (CLIC) is to be equipped with a new RF gun containing a laser driven photocathode. The new 3 GHz gun with photocathode shall produce a bunch train of 48 electron bunches of 25 nC charge each with a bunch length of 8 - 15 ps fwhm. The new RF gun consists of 2{1/2} cells and accelerates the beam to an energy of 7 MeV with a peak field gradient Ez = 100 MV/m. The strong space charge forces at low beam energy caused by the high charge density of the electron bunches must be contained by radial and longitudinal RF focusing in the RF gun. Radial RF focusing is applied by a conical backplane around the photocathode in the first cell where the electrons have a low energy. Longitudinal RF focusing is obtained by varying the length of each of the three cells of the gun. The total electric charge of the bunch train exceeds 1{mu}C and causes strong beam loading to the RF structures so that the stored energy is reduced to half of the unloaded RF energy. The RF gun under construction is being optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating RF structure of 4 cells and an intermediate solenoid magnet correcting the beam divergence of the 2{1/2} cell gun. The scheme with two accelerating RF sections will provide a linear energy increase along the bunch suitable for further compression of the bunch length in a magnetic chicane.

  13. The upgraded rf system for the AGS and high intensity proton beams

    SciTech Connect

    Brennan, J.M.

    1995-05-01

    The AGS has been upgraded over the past three years to produce a record beam intensity of 6 {times} 10{sup 13} protons per pulse for the fixed-target physics program. The major elements of the upgrade are: the new 1.5 GeV Booster synchrotron, the main magnet power supply, a high frequency longitudinal dilution cavity, a feedback damper for transverse instabilities, a fast gamma transition jump system, and a new high-power rf system. The new rf system and its role in achieving the high intensity goal are the subjects of this report. The rf system is heavily beam loaded, with 7 Amps of rf current in the beam and a peak power of 0.75 MW delivered to the beam by ten cavities. As an example of the scale of beam loading, at one point in the acceleration cycle the cavities are operated at 1.5 kV/gap; whereas, were it not for the new power amplifiers, the beam-induced voltage on the cavities would be over 25 kV/gap. The upgraded rf system, comprising: new power amplifiers, wide band rf feedback, improved cavities, and new low-level beam control electronics, is described. Results of measurements with beam, which characterize the system`s performance, are presented. A typical high intensity acceleration cycle is described with emphasis on the key challenges of beam loading.

  14. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  15. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  16. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  17. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans

    SciTech Connect

    Du, Weiliang Cho, Sang Hyun; Zhang, Xiaodong; Kudchadker, Rajat J.; Hoffman, Karen E.

    2014-02-15

    Purpose: Excessive complexity in intensity-modulated radiation therapy (IMRT) plans increases the dose uncertainty, prolongs the treatment time, and increases the susceptibility to changes in patient or target geometry. To date, the tools for quantitative assessment of IMRT beam complexity are still lacking. In this study, The authors have sought to develop metrics to characterize different aspects of beam complexity and investigate the beam complexity for IMRT plans of different disease sites. Methods: The authors evaluated the beam complexity scores for 65 step-and-shoot IMRT plans from three sites (prostate, head and neck, and spine) and 26 volumetric-modulated arc therapy (VMAT) plans for the prostate. On the basis of the beam apertures and monitor unit weights of all segments, the authors calculated the mean aperture area, extent of aperture shape irregularity, and degree of beam modulation for each beam. Then the beam complexity values were averaged to obtain the complexity metrics of the IMRT plans. The authors studied the correlation between the beam complexity metrics and the quality assurance (QA) results. Finally, the effects of treatment planning parameters on beam complexity were studied. Results: The beam complexity scores were not uniform among the prostate IMRT beams from different gantry angles. The lateral beams had larger monitor units and smaller shape irregularity, while the anterior-posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest aperture irregularity, beam modulation, and normalized monitor units; the head and neck IMRT plans had large beam irregularity and beam modulation; and the spine stereotactic radiation therapy plans often had small beam apertures, which may have been associated with the relatively large discrepancies between planned and QA measured doses. There were weak correlations between the beam complexity scores and the measured dose errors. The prostate VMAT beams showed

  18. Intense electron-beam excitation of organic dye vapors

    SciTech Connect

    Marowsky, G.; Tittel, F.K.; Wilson, W.L.

    1981-01-01

    Experimental studies of electron-beam excitation of organic dye vapors of p-phenylene-bis-(5-phenyl-2-oxazole) POPOP and p-quaterphenyl have demonstrated short-duration high-gain and super-radiant laser behavior accompanied by severe fluorescence quenching due to dye fragmentation. This has been analyzed quantitatively by evaluation of the nitrogen fluorescence, originating from the complete breakdown of the POPOP structure.

  19. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-11-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue.

  20. Non-perturbative measurement of low-intensity charged particle beams

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  1. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  2. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2015-10-01

    Neutrons over a wide range of energies are produced by bombarding a 1.05 cm thick beryllium target with protons of different energies delivered by the MC-50 Cyclotron of the Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux Φ(En) versus neutron energy En, produced by protons of 30, 35, and 40 MeV energies, was obtained by using the GEANT4 code with a data-based hadronic model. For the experimental validation of the simulated neutron spectra, a number of pure aluminum and iron oxide samples were irradiated with the neutrons produced by 30, 35, and 40 MeV protons at 20 μA beam current. The gamma-ray activities of 24Na and 56Mn produced, respectively, through 27Al(n,α)24Na and 56Fe(n,p)56Mn reactions were measured by a HPGe detector. The neutron flux Φ(En) at each neutron energy from the simulation was multiplied with the evaluated cross-sections σ(En) of the respective nuclear reaction, and the summation ∑ Φ(En) σ(En) was calculated over the neutron spectrum for each proton energy of 30, 35, and 40 MeV. The measured gamma-ray activities of 24Na and 56Mn were found in good agreement with the activities estimated by using the summed values of ∑ Φ(En) σ(En) along with other parameters in a neutron activation method.

  3. Non-inductive current built-up by local electron cyclotron heating and current drive with a 28 GHz focused beam on QUEST

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Idei, Hiroshi; Hasegawa, Makoto; Ohwada, Hiroaki; Zushi, Hideki; Hanada, Kazuaki; Kariya, Tsuyoshi; Mishra, Kishore; Shikama, Taichi; Quest Team

    2016-10-01

    The plasma current can be driven solely by injecting electron cyclotron waves (ECWs) in spherical tokamak (ST) configuration. A system of 28 GHz gyrotron (maximum power: 270 kW) is renewed and reinstalled on QUEST. A focused ECW beam, whose diameter is about 5 cm at the second harmonic resonance, is injected for local ECW heating and current drive. The local power density at resonance exceeds 75 MW/m2 at an injection power of 150 kW. The incident ECW polarization can be adjusted employing the phase shifter consisting of two corrugated plates. During 1.25 second pulse of ECH, plasma current is built up to Ip = 70 kA fully non-inductively with a core electron density of ne > 1018 m-3. The closed flux in such ST plasma is determined at the inboard limiter on the center stack. Energetic electrons are also responsible for the pressure and equilibrium. This work is supported by JSPS KAKENHI (15H04231, 15K17800), NIFS Collaboration Research program (NIFS13KUTR085, NIFS11KUTR069, NIFS16KUTR114).

  4. Enhanced production of runaway electrons during electron cyclotron resonance heating and in the presence of supersonic molecular beam injection in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu, Yi; Yang, J. W.; Song, X. Y.; Yuan, G. L.; Zhou, J.; Yao, L. H.; Feng, B. B.; Li, X.; Yang, Q. W.; Duan, X. R.; Pan, C. H.; Liu, Y.

    2010-07-15

    In the present paper, it is reported that a large production of runaway electrons has been observed during the flattop phase of electron cyclotron resonance heating (ECRH) discharges and in the presence of supersonic molecular beam injection (SMBI) in the HuanLiuqi-2A (commonly referred to as HL-2A) [Q. W. Yang, Nucl. Fusion 47, S635 (2007)] tokamak. For the set of discharges carried out in the present experiment, the ranges of ECRH power and plasma electron density are 0.8-1.0 MW and (3.0-4.0)x10{sup 19} m{sup -3}, respectively. A large number of superthermal electrons are produced through the avalanche effect [A. Lazaros, Phys. Plasmas 8, 1263 (2001)] during ECRH. The loop voltage increase due to SMBI gives rise to a decline in the critical runaway energy, which leads to that many superthermal electrons could be converted into runaway region. Therefore, this phenomenon may come from the synergetic effects of ECRH and SMBI. That is, the superthermal electrons created by ECRH are accelerated into runaway regime via the Dreicer process which is triggered by SMBI. The experimental results are in well agreement with the calculational ones based on the superthermal electron avalanche effect and the Dreicer runaway theory.

  5. Intensity Effects of the FACET Beam in the SLAC Linac

    SciTech Connect

    Decker, F.-J.; Lipkowitz, N.; Sheppard, J.; White, G.R.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

    2012-07-03

    The beam for FACET (Facility for Advanced aCcelerator Experimental Tests) at SLAC requires an energy-time correlation ('chirp') along the linac, so it can be compressed in two chicanes, one at the midpoint in sector 10 and one W-shaped chicane just before the FACET experimental area. The induced correlation has the opposite sign to the typical used for BNS damping, and therefore any orbit variations away from the center kick the tail of the beam more than the head, causing a shear in the beam and emittance growth. Any dispersion created along the linac has similar effects due to the high (>1.2% rms) energy spread necessary for compression. The initial huge emittances could be reduced by a factor of 10, but were still bigger than expected by a factor of 2-3. Normalized emittance of 3 {micro}m-rad in Sector 2 blew up to 150 {micro}m-rad in Sector 11 but could be reduced to about 6-12 {micro}m-rad, for the vertical plane although the results were not very stable. Investigating possible root causes for this, we found locations where up to 10 mm dispersion was created along the linac, which were finally verified with strong steering and up to 7 mm settling of the linac accelerator at these locations.

  6. Intelligence-guided beam angle optimization in treatment planning of intensity-modulated radiation therapy.

    PubMed

    Yan, Hui; Dai, Jian-Rong

    2016-10-01

    An intelligence guided approach based on fuzzy inference system (FIS) was proposed to automate beam angle optimization in treatment planning of intensity-modulated radiation therapy (IMRT). The model of FIS is built on inference rules in describing the relationship between dose quality of IMRT plan and irradiated region of anatomical structure. Dose quality of IMRT plan is quantified by the difference between calculated and constraint doses of the anatomical structures in an IMRT plan. Irradiated region of anatomical structure is characterized by the metric, covered region of interest, which is the region of an anatomical structure under radiation field while beam's eye-view is conform to target volume. Initially, an IMRT plan is created with a single beam. The dose difference is calculated for the input of FIS and the output of FIS is obtained with processing of fuzzy inference. Later, a set of candidate beams is generated for replacing the current beam. This process continues until no candidate beams is found. Then the next beam is added to the IMRT plan and optimized in the same way as the previous beam. The new beam keeps adding to the IMRT plan until the allowed beam number is reached. Two spinal cases were investigated in this study. The preliminary results show that dose quality of IMRT plans achieved by this approach is better than those achieved by the default approach with equally spaced beam setting. It is effective to find the optimal beam combination of IMRT plan with the intelligence-guided approach.

  7. Scintillating screens sensitivity and resolution studies for low energy, low intensity beam diagnostics

    SciTech Connect

    Harasimowicz, Janusz; Welsch, Carsten P.; Cosentino, Luigi; Finocchiaro, Paolo; Pappalardo, Alfio

    2010-10-15

    In order to investigate the limits of scintillating screens for beam profile monitoring in the ultra-low energy, ultra-low intensity regime, CsI:Tl, YAG:Ce, and a Tb glass-based scintillating fiber optic plate (SFOP) were tested. The screens response to 200 and 50 keV proton beams with intensities ranging from a few picoampere down to the subfemtoampere region was examined. In the following paper, the sensitivity and resolution studies are presented in detail for CsI:Tl and the SFOP, the two most sensitive screens. In addition, a possible use of scintillators for ultra-low energy antiproton beam monitoring is discussed.

  8. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current.

    PubMed

    Yano, Keisuke; Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  9. Correction of linear-array lidar intensity data using an optimal beam shaping approach

    NASA Astrophysics Data System (ADS)

    Xu, Fan; Wang, Yuanqing; Yang, Xingyu; Zhang, Bingqing; Li, Fenfang

    2016-08-01

    The linear-array lidar has been recently developed and applied for its superiority of vertically non-scanning, large field of view, high sensitivity and high precision. The beam shaper is the key component for the linear-array detection. However, the traditional beam shaping approaches can hardly satisfy our requirement for obtaining unbiased and complete backscattered intensity data. The required beam distribution should roughly be oblate U-shaped rather than Gaussian or uniform. Thus, an optimal beam shaping approach is proposed in this paper. By employing a pair of conical lenses and a cylindrical lens behind the beam expander, the expanded Gaussian laser was shaped to a line-shaped beam whose intensity distribution is more consistent with the required distribution. To provide a better fit to the requirement, off-axis method is adopted. The design of the optimal beam shaping module is mathematically explained and the experimental verification of the module performance is also presented in this paper. The experimental results indicate that the optimal beam shaping approach can effectively correct the intensity image and provide ~30% gain of detection area over traditional approach, thus improving the imaging quality of linear-array lidar.

  10. High-energy-density electron beam generation in ultra intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Liu, Jianxun; Ma, Yanyun; Yang, Xiaohu; Zhao, Jun; Yu, Tongpu; Shao, Fuqiu; Zhuo, Hongbin; Gan, Longfei; Zhang, Guobo; Zhao, Yuan; Yang, Jingkang

    2017-01-01

    By using a two-dimensional particle-in-cell simulation, we demonstrate a scheme for high-energy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum (Al) target. With the laser having a peak intensity of 4 × 1023 W cm‑2, a high quality electron beam with a maximum density of 117nc and a kinetic energy density up to 8.79 × 1018 J m‑3 is generated. The temperature of the electron beam can be 416 MeV, and the beam divergence is only 7.25°. As the laser peak intensity increases (e.g., 1024 W cm‑2), both the beam energy density (3.56 × 1019 J m‑3) and the temperature (545 MeV) are increased, and the beam collimation is well controlled. The maximum density of the electron beam can even reach 180nc. Such beams should have potential applications in the areas of antiparticle generation, laboratory astrophysics, etc. This work is financially supported by the National Natural Science Foundation of China (Nos. 11475260, 11305264, 11622547, 91230205, and 11474360), the National Basic Research Program of China (No. 2013CBA01504), and the Research Project of NUDT (No. JC14-02-02).

  11. Formation of hot image in an intense laser beam through a saturable nonlinear medium slab

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; Ling, Xiaohui; Dai, Zhiping; Chen, Liezun; Lu, Shizhuan; You, Kaiming

    2016-11-01

    In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. We present an analytical and simulative investigation of hot image formation in an intense laser beam through a saturable nonlinear medium slab based on Fresnel-Kirchhoff diffraction integral and the standard split-step Fourier method. The analytical results are found in agreement with the simulative ones. It is shown that, hot images can still form in an intense laser beam through a saturable nonlinear medium slab, additionally, the saturable nonlinearity does not change the location of hot images, while may decrease the intensity of hot images, i.e., the intensity of hot images decreases with the saturation light intensity lowering, and can stop to increase with the intensity of the incident laser beam heightening due to saturation of nonlinearity. Moreover, variations of intensity of hot images with the obscuration type and the slab thickness are discussed.

  12. Core-halo limit and internal dynamics of high intensity beams

    SciTech Connect

    Nghiem, P. A. P.; Valette, M.; Chauvin, N.; Pichoff, N.; Uriot, D.

    2015-08-15

    The dynamics of high-intensity beams largely depends on their internal space charge forces. These forces are responsible of non-linear coupling, emittance growth, and halo generation. They contribute to shape the beam density profile. As a consequence, an analysis of this profile can be a precious indicator capable of revealing the internal dynamics of the beam. This paper recalls the precise core-halo limit determination proposed earlier, then studies its behavior through a wide range of beam profiles, and finally shows its relevance as an indicator of the limit separating the two space charge field regimes of the core and the halo.

  13. Density and potential measurements in an intense ion-beam-generated plasma

    SciTech Connect

    Abt, N.E.

    1982-05-01

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented.

  14. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Binh, D. N.; He, J. J.; Kim, A.; Kubono, S.

    2008-05-01

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N2 finger and the circulation of the target gas that goes through the liquid N2 tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm2 at the gas pressure of 760 Torr. Intense RI beams, such as a 7Be beam of 2×108 particles per second, were successfully produced using the target.

  15. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    SciTech Connect

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Binh, D. N.; He, J. J.; Kim, A.

    2008-05-21

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N{sub 2} finger and the circulation of the target gas that goes through the liquid N{sub 2} tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm{sup 2} at the gas pressure of 760 Torr. Intense RI beams, such as a {sup 7}Be beam of 2x10{sup 8} particles per second, were successfully produced using the target.

  16. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence.

    PubMed

    Mao, Haidan; Zhao, Daomu

    2010-01-18

    Based on the intensity moments and Wigner distribution function, the second-order moments for broadband partially coherent flat-topped (BPCFT) beams in atmospheric turbulence are studied. The beam width of BPCFT beams in atmospheric turbulence is larger than that in free space. The beam width of BPCFT beams in atmospheric turbulence is larger than that of broadband fully coherent flat-topped (BFCFT) beams in atmospheric turbulence. The broader the bandwidth is, the larger the beam width of BPCFT beams becomes. Similar conclusion can be obtained by analyzing the divergence angle and beam propagation factor of BPCFT beams. The beam width of BPCFT beams in atmospheric turbulence is less affected by the broad spectral bandwidth than that in free space. The beam width of BFCFT beams in atmospheric turbulence is less affected by the broad spectral bandwidth than that of BPCFT beams in atmospheric turbulence.

  17. Intense ion beam applications to magnetic confinement fusion

    SciTech Connect

    Sudan, R N

    1980-08-18

    The ion ring project objective is to trap a ring of high energy, axis-encircling ions in a magnetic mirror. The number of ring ions should be such as to produce deltaB/B on the ring axis of order 10%. The second experiment, LONGSHOT, is directed to producing a long pulse ion beam source so that the total number of protons required for an ion ring can be provided a lower diode power and, hence, at much less cost than that of 100 nsec pulsed power generators like the NRL GAMBLE II. A detailed report of the progress on IREX and LONGSHOT is given. (MOW)

  18. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  19. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  20. Status and plans for recoil separators for experiments with intense stable beams from ATLAS

    NASA Astrophysics Data System (ADS)

    Seweryniak, D.

    2013-12-01

    The Argonne fragment mass analyzer (FMA) has been a very important component of the experimental program at the ATLAS facility for many years and is expected to be a viable instrument for experiments with more intense beams which will become available when the ATLAS intensity upgrade is completed. Several upgrades of FMA itself and of the FMA detector suite in preparation for high-intensity beams will be presented. To accommodate experiments with extremely low cross sections, such as studies of super-heavy nuclei, construction of the Argonne gas-filled analyzer (AGFA), which will be complementary to FMA, was proposed. The design considerations for AGFA will be discussed.

  1. Optimizing the emission, propagation, and focusing of an intense electron beam

    SciTech Connect

    Pepitone, K. Gardelle, J. Modin, P.

    2015-05-14

    Intense electron beams can be used to study the dynamical response of materials under shocks in order to adjust the models developed for hydrodynamics simulations. We present in this paper a characterization of beams produced in a field emission diode coupled to the generator RKA at CEA/CESTA. Cherenkov emission, produced by the beam interacting in a fused silica disk, was observed by fast optical cameras to estimate beam homogeneity. GEANT4 simulations were performed to estimate the transfer function of the silica target and to optimize the anode foil. First, we chose the best cathode material available among the most common materials used in field emission systems. In addition, we found that by optimization of the anode thickness, we could improve the spatial homogeneity of the beam which is of prime importance for computing the interaction of the beam with materials. Next, we changed the beam fluence by increasing the beam current and by reducing the beam radius. Finally, we studied the propagation and focusing of the electron beam in low pressure gases and observed that we could use self-magnetic field focusing in order to increase beam fluence at the target location. The experimental results are in good agreement with PIC simulations.

  2. Hyperenergetic manned aerospacecraft propelled by intense pulsed microwave power beam

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1995-09-01

    The objective of this research was to exploit wireless power transmission (microwave/millimeter)--to lower manned space transportation costs by two or three orders of magnitude. Concepts have been developed for lightweight, mass-producible, beam-propelled aerospacecraft called Lightcraft. The vehicles are designed for a 'mass-poor, energy-rich' (i.e. hyper-energentic flight infrastructure which utilizes remote microwave power stations to build an energy-beam highway to space. Although growth in laser power levels has lagged behind expectations, microwave and millimeter-wave source technology now exists for rapid scaling to the megawatt and gigawatt time-average power levels. The design exercise focused on the engine, structure, and receptive optics requirements for a 15 meter diameter, 5 person Earth- to-moon aerospacecraft. Key elements in the airbreathing accelerator propulsion system are: a) a 'flight-weight' 35GHz rectenna electric powerplant, b) microwave-induced 'Air Spike' and perimeter air-plasma generators, and c) MagnetoHydroDynamic-Fanjet engine with its superconducting magnets and external electrodes.

  3. Cathode Plasma Formation in High Intensity Electron Beam Diodes

    NASA Astrophysics Data System (ADS)

    Johnston, Mark; Kiefer, Mark; Oliver, Bryan; Bennett, Nichelle; Droemer, Darryl; Bernshtam, V.; Doron, R.; Maron, Yitzhak

    2013-10-01

    This talk will detail the experimental results and conclusions obtained for cathode plasma formation on the Self-Magnetic Pinch (SMP) diode fielded on the RITS-6 accelerator (4-7.5 MeV) at Sandia National Laboratories. The SMP diode utilizes a hollowed metal cathode to produce high power (TW), focused electron beams (<3 mm diameter) which are used for flash x-ray radiography applications. Optical diagnostics include high speed (<10 ns) framing cameras, optical streak cameras, and spectroscopy. The cathode plasma in this high electric (MV/cm) and magnetic (>10 Tesla) field environment forms well-defined striations. These striations have been examined for a number of different cathode sizes, vacuum gap spacings, and diode voltages. Optical streak images have been taken to determine the time evolution of the plasma, and optical spectroscopy has been employed to determine its constituents as well as their densities and temperatures inferred from detailed time-dependent, collisional-radiative (CR) and radiation transport modelings. Comments will be made as to the overall effect of the cathode plasma in regards to the diode impedance and electron beam focusing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  5. Mixing intensity modulated electron and photon beams: combining a steep dose fall-off at depth with sharp and depth-independent penumbras and flat beam profiles.

    PubMed

    Korevaar, E W; Heijmen, B J; Woudstra, E; Huizenga, H; Brahme, A

    1999-09-01

    For application in radiotherapy, intensity modulated high-energy electron and photon beams were mixed to create dose distributions that feature: (a) a steep dose fall-off at larger depths, similar to pure electron beams, (b) flat beam profiles and sharp and depth-independent beam penumbras, as in photon beams, and (c) a selectable skin dose that is lower than for pure electron beams. To determine the required electron and photon beam fluence profiles, an inverse treatment planning algorithm was used. Mixed beams were realized at a MM50 racetrack microtron (Scanditronix Medical AB, Sweden), and evaluated by the dose distributions measured in a water phantom. The multileaf collimator of the MM50 was used in a static mode to shape overlapping electron beam segments, and the dynamic multileaf collimation mode was used to realize the intensity modulated photon beam profiles. Examples of mixed beams were generated at electron energies of up to 40 MeV. The intensity modulated electron beam component consists of two overlapping concentric fields with optimized field sizes, yielding broad, fairly depth-independent overall beam penumbras. The matched intensity modulated photon beam component has high fluence peaks at the field edges to sharpen this penumbra. The combination of the electron and the photon beams yields dose distributions with the characteristics (a)-(c) mentioned above.

  6. Approaches to develop targets for production of intense radioactive ion beams

    SciTech Connect

    Talbert, W. L.; Drake, D. M.; Wilson, M. T.; Walker, J. J.; Lenz, J. W.

    1999-06-10

    Approaches to develop targets for production of intense radioactive ion beams (RIBs) have been evaluated over the past five years. It is acknowledged that many desired physics objectives using RIBs can be met only by using production beams of energetic protons with currents up to 100 {mu}A. Such beams can be made available at future spallation neutron facilities. The production targets will require active cooling to control operational temperatures due to internal heating caused by the production beam. A target concept has been selected, and calculational analyses of the target concept have been performed to guide the design of a prototype target for an in-beam test of the actual thermal behavior. For this test, a high-power test facility is needed; fortunately, the beam currents required exist at the TRIUMF accelerator facility. An experimental proposal has been approved for such a test.

  7. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  8. Phase-contrast tomography with low-intensity beams

    SciTech Connect

    Rehacek, J.; Hradil, Z.; Zawisky, M.; Dubus, F.; Bonse, U.

    2005-02-01

    In newly developed neutron phase tomography, wave properties of neutrons are exploited for the nondestructive testing of the internal structure of matter. We show how limitations due to small available intensities of present neutron sources can be overcome by using an advanced maximum-likelihood reconstruction algorithm. Unlike the standard filtered back-projection, the developed procedure gives reasonable results also when used on very noisy data or data consisting of only a few measured projections. This is demonstrated by means of simulations and also experimentally. The proposed method leads to considerably shorter measuring times and/or increased precision.

  9. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  10. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams.

    PubMed

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-11-01

    Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements.

  11. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  12. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  13. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  14. INJECTION ACCELERATION AND EXTRACTION OF HIGH INTENSITY PROTON BEAM FOR THE NEUTRINO FACILITY PROJECT AT BNL.

    SciTech Connect

    Tsoupas, N; Barton, D; Ganetis, G; Jain, A; Lee, Y; Marneris, I; Meng, W; Raparia, D; Roser, T; Ruggiero, A; Tuozzolo, J; Wanderer, P; Weng, W

    2003-05-12

    The proposed ''neutrino-production'' project [1.2] to be built at the Brookhaven National Laboratory (BNL) requires that the neutrino-production target be bombarded by a high intensity proton beam-pulse of {approx} 90 x 10{sup 12} protons of 28 GeV in energy and at a rate of 2.5 Hz, resulting in a 1 MW power of proton beam deposited on the target for the production of the neutrinos. In this paper we investigate the possibility of producing this high intensity proton beam, using as the main accelerator the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL). The following aspects of the project are reported in this paper: (a) The beam injection into the AGS synchrotron of 1.2 GeV H{sup -} beam produced by a super-conducting LINAC[3]; (b) The effect of the eddy currents induced on the vacuum chamber of the circulating beam during the ''ramping'' of the main magnets of the AGS; (c) The method of the beam extraction from the AGS and the optics of the 28 GeV beam extracted from the AGS.

  15. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  16. Polymer electrolyte fuel cell performance degradation at different synchrotron beam intensities.

    PubMed

    Eller, Jens; Büchi, Felix N

    2014-01-01

    The degradation of cell performance of polymer electrolyte fuel cells under monochromatic X-ray irradiation at 13.5 keV was studied in galvanostatic and potentiostatic operation modes in a through-plane imaging direction over a range of two orders of magnitude beam intensity at the TOMCAT beamline of the Swiss Light Source. The performance degradation was found to be a function of X-ray dose and independent of beam intensity, whereas the degradation rate correlates with beam intensity. The cell performance was more sensitive to X-ray irradiation at higher temperature and gas feed humidity. High-frequency resistance measurements and the analysis of product water allow conclusions to be drawn on the dominating degradation processes, namely change of hydrophobicity of the electrode and sulfate contamination of the electrocatalyst.

  17. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect

    Minami, R. Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  18. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  19. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  20. Physics of neutralization of intense high-energy ion beam pulses by electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-05-15

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  1. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  2. The SPIRAL2 Project and experiments with high-intensity rare isotope beams

    NASA Astrophysics Data System (ADS)

    Lewitowicz, Marek

    2011-09-01

    The SPIRAL2 facility at GANIL, which entered recently in the construction phase consists of a new superconducting linear accelerator delivering high intensity, up to 40 MeV, light (proton, deuteron, 3-4He) beams as well as a large variety of 14.5 MeV/nucleon heavy-ion beams and the associated Rare Isotope Beam facility. Using a dedicated converter and the 5 mA deuteron beam, a neutron-induced fission rate is expected to approach 1014 fissions/s for high-density UCx target. The energies of accelerated RIBs will reach 5-10 MeV/nucleon for fission fragments and 20 MeV/nucleon for neutron-deficient nuclei. The physics case of SPIRAL2 is based on the use of high intensity RIBs & stable-ion beams and on possibilities to perform several experiments simultaneously. A use of these beams at a new low-energy ISOL facility (DESIR) and their acceleration to several MeV/nucleon will open new possibilities in nuclear structure physics, nuclear astrophysics and reaction dynamics studies. The high intensities (up to 1011pps) and a high cost of RIBs impose a use of the most efficient and innovative detection systems like ACTAR, FAZIA, GASPARD, HELIOS, NEDA, PARIS and a new separator/spectrometer S3.

  3. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  4. Optimized treatment planning using intensity and energy modulated proton and very-high energy electron beams

    NASA Astrophysics Data System (ADS)

    Yeboah, Collins

    2002-09-01

    Intensity and energy modulated radiotherapy dose planning with protons and very-high energy (50--250 MeV) electron beams has been investigated. A general-purpose inverse treatment planning (ITP) system that can be applied to any combination of proton, electron and photon radiation modalities in therapy has been developed. The new ITP program uses a very fast proton dose calculation engine and employs one of the most efficient optimization algorithms currently available. First, the ITP program was employed to investigate intensity-modulated proton therapy (IMPT) dose optimization for prostate cancer. The second application was to evaluate the potential of intensity-modulated very-high energy electron therapy (VHEET) for dose conformation. For an active proton beam delivery system the required energy resolution to reasonably implement energy modulation was found to be a function of the incident beams' energy spread and became coarser with increasing energy spread. For passive proton beam delivery systems the selection of the required depth resolution for inverse planning may not be critical as long as the depth resolution chosen is at least equal to FWHM/2 of the primary beam Bragg peak. In the study of the number of beam ports selected for IMPT treatment of the prostate, it was found that a maximum of three to four beams is required. Using proton beams for inverse planning of the prostate instead of photon beams gave the same or better target coverage while reducing the sensitive structure dose and normal tissue integral dose by up to 30% and 28% of the prescribed target dose, respectively. In evaluating the potential of VHEET beams for dose conformation, it was found that electron energies greater than 100 MeV are preferable for VHEET treatment of the prostate and that implementation of energy modulation in addition to intensity modulation has only a modest effect on the final dose distribution. VHEET treatment employing approximately nine beams was sufficient to

  5. Low-emittance monoenergetic electron and ion beams from ultra-intense laser-solid interactions

    SciTech Connect

    Cowan, T E; Roth, M; Allen, M M; Johnson, J; Hatchett, S P; Le Sage, G P; Wilks, S C

    2000-03-03

    Recent experiments at the LLNL Petawatt Laser have demonstrated the generation of intense, high energy beams of electrons and ions from the interaction of ultra-intense laser light with solid targets. Focused laser intensities as high as 6 x 10{sup 20} W/cm{sup 2} are achieved, at which point the quiver energies of the target electrons extend to {approx}10 MeV. In this new, fully relativistic regime of laser-plasma interactions, nuclear processes become important and nuclear techniques are required to diagnose the high-energy particle production. In recent experiments we have observed electrons accelerated to 100 MeV, up to 60 MeV brehmsstrahlung generation, photo-nuclear fission and positron-electron pair creation. We also have observed monoenergetic jets of electrons having sufficiently small emittance to be interesting as a laser-accelerated beam, if the production mechanism could be understood and controlled. The huge flux of multi-MeV ponderomotively accelerated electrons produced in the laser-solid interaction is also observed to accelerate contaminant ions from the rear surface of the solid target up to 50 MeV. We describe spectroscopic measurements which reveal intense monoenergetic beam features in the proton energy spectrum. The total spectrum contains >10{sup 13} protons, while the monoenergetic beam pulses contain {approx}1 nC of protons, and exhibits a longitudinal and transverse emittance smaller than conventional RF proton accelerator beams.

  6. Probability density function of the intensity of a laser beam propagating in the maritime environment.

    PubMed

    Korotkova, Olga; Avramov-Zamurovic, Svetlana; Malek-Madani, Reza; Nelson, Charles

    2011-10-10

    A number of field experiments measuring the fluctuating intensity of a laser beam propagating along horizontal paths in the maritime environment is performed over sub-kilometer distances at the United States Naval Academy. Both above the ground and over the water links are explored. Two different detection schemes, one photographing the beam on a white board, and the other capturing the beam directly using a ccd sensor, gave consistent results. The probability density function (pdf) of the fluctuating intensity is reconstructed with the help of two theoretical models: the Gamma-Gamma and the Gamma-Laguerre, and compared with the intensity's histograms. It is found that the on-ground experimental results are in good agreement with theoretical predictions. The results obtained above the water paths lead to appreciable discrepancies, especially in the case of the Gamma-Gamma model. These discrepancies are attributed to the presence of the various scatterers along the path of the beam, such as water droplets, aerosols and other airborne particles. Our paper's main contribution is providing a methodology for computing the pdf function of the laser beam intensity in the maritime environment using field measurements.

  7. Gas Feeding System Supplying the U-400M Cyclotron Ion Source with Hydrogen Isotopes

    SciTech Connect

    Yukhimchuk, A.A.; Angilopov, V.V.; Apasov, V.A.

    2005-07-15

    Automated system feeding into ion source hydrogen isotopes as molecules with preset ratio of the fluxes is described. The control system automatically maintained the working parameters and provided graphic and digital representation of the controlled processes. The radiofrequency (RF) ion source installed at the axial injection line of the cyclotron produced ion beams of HD{sup +}, HT{sup +}, DT{sup +}, D{sub 2}H{sup +}, etc. At a several months DT{sup +} beam acceleration the tritium consumption was less than 108 Bq/hr. The intensity of a 58.2 MeV triton beam (T{sup +} ions) extracted from the cyclotron chamber was about 10 nA.

  8. A mask for high-intensity heavy-ion beams in the MAYA active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Pancin, J.; Damoy, S.; Roger, T.; Babo, M.; Caamaño, M.; Farget, F.; Grinyer, G. F.; Jacquot, B.; Pérez-Loureiro, D.; Ramos, D.; Suzuki, D.

    2014-12-01

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a 136Xe beam are presented.

  9. ARTICLES: Propagation of an intensity-modulated laser beam through a pulsed CO2 amplifier

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.; Yur'ev, M. S.

    1987-01-01

    A theoretical study was made (by a self-consistent solution of the equations of vibrational kinetics, hydrodynamics, and quasioptics) of the influence of self-interaction of laser radiation on the transmission of a beam through a CO2 amplifier. It was found that for times exceeding the time for collisional decay of the upper active level the radiation wavefront becomes unstable in the presence of small-scale perturbations of the transverse structure of the beam. It was shown that the harmful influence of the self-interaction on the divergence can be weakened by raising the intensity of the incident beam and the gain of the amplifier.

  10. High-intensity ion sources for accelerators with emphasis on H- beam formation and transport (invited)a)

    NASA Astrophysics Data System (ADS)

    Keller, R.

    2010-02-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as dc discharge-driven and rf-driven multicusp sources, Penning-type, and electron cyclotron resonance-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber, and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed, ionization mechanism, beam formation, and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  11. Polarization and intensity correlations in stochastic electromagnetic beams upon interaction with devices of polarization optics

    NASA Astrophysics Data System (ADS)

    Jacks, H. C.; Korotkova, O.

    2011-05-01

    Based on the recently formulated unified theory of coherence and polarization of light, we explore the behavior of the intensity-intensity correlations and the auxiliary quantity called the degree of cross-polarization in stochastic electromagnetic beams upon their passage through the devices of polarization optics. In particular, the effects of deterministic devices (such as polarizers, absorbers, compensators, and rotators) as well as of random devices (such as spatial light modulators) on passing beams are investigated. Our results may find applications in polarimetric communications, imaging and sensing.

  12. The University of Maryland Electron Ring: A Model Recirculator for Intense Beam Physics Research

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Li, H.; Cui, Y.; Feldman, D.; Godlove, T.; Haber, I.; Huo, Y.; Harris, J.; Kishek, R. A.; Quinn, B.; Reiser, M.; Walter, M.; Wilson, M.; Zou, Y.; O'Shea, P. G.

    2004-12-01

    The University of Maryland Electron Ring (UMER), designed for transport studies of space-charge dominated beams in a strong focusing lattice, is nearing completion. Low energy, high intensity electron beams provide an excellent model system for experimental studies with relevance to all areas that require high quality, intense charged-particle beams. In addition, UMER constitutes an important tool for benchmarking of computer codes. When completed, the UMER lattice will consist of 36 alternating-focusing (FODO) periods over an 11.5-m circumference. Current studies in UMER over about 2/3 of the ring include beam-envelope matching, halo formation, asymmetrical focusing, and longitudinal dynamics (beam bunch erosion and wave propagation.) Near future, multi-turn operation of the ring will allow us to address important additional issues such as resonance-traversal, energy spread and others. The main diagnostics are phosphor screens and capacitive beam position monitors placed at the center of each 200 bending section. In addition, pepper-pot and slit-wire emittance meters are in operation. The range of beam currents used corresponds to space charge tune depressions from 0.2 to 0.8, which is unprecedented for a circular machine.

  13. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  14. Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy*

    NASA Astrophysics Data System (ADS)

    Pugachev, A.; Xing, L.

    2001-09-01

    In intensity-modulated radiation therapy (IMRT), the incident beam orientations are often determined by a trial and error search. The conventional beam's-eye view (BEV) tool becomes less helpful in IMRT because it is frequently required that beams go through organs at risk (OARs) in order to achieve a compromise between the dosimetric objectives of the planning target volume (PTV) and the OARs. In this paper, we report a beam's-eye view dosimetrics (BEVD) technique to assist in the selection of beam orientations in IMRT. In our method, each beam portal is divided into a grid of beamlets. A score function is introduced to measure the `goodness' of each beamlet at a given gantry angle. The score is determined by the maximum PTV dose deliverable by the beamlet without exceeding the tolerance doses of the OARs and normal tissue located in the path of the beamlet. The overall score of the gantry angle is given by a sum of the scores of all beamlets. For a given patient, the score function is evaluated for each possible beam orientation. The directions with the highest scores are then selected as the candidates for beam placement. This procedure is similar to the BEV approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function to take into account the intensity modulation. This technique allows one to select beam orientations without the excessive computing overhead of computer optimization of beam orientation. It also provides useful insight into the problem of selection of beam orientation and is especially valuable for complicated cases where the PTV is surrounded by several sensitive structures and where it is difficult to select a set of `good' beam orientations. Several two-dimensional (2D) model cases were used to test the proposed technique. The plans obtained using the BEVD-selected beam orientations were compared with the plans obtained using equiangular spaced beams. For all the model cases investigated

  15. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning.

    PubMed

    Li, Yongjie; Yao, Dezhong; Yao, Jonathan; Chen, Wufan

    2005-08-07

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated.

  16. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams

    SciTech Connect

    Stinnett, R.W.; Buchheit, R.G.; Neau, E.L.

    1995-08-01

    The emerging capability to produce high average power (10--300 kW) pulsed ion beams at 0.2{minus}2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This new technique uses high energy, pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1--20 micrometers of the surface of any material. The depth of treatment is controllable by varying the ion energy and species. Deposition of the energy in a thin surface layer allows melft of the layer with relatively small energies (1--10J/cm2) and allows rapid cooling of the melted layer by thermal conduction into the underlying substrate. Typical cooling rates of this process (109 K/sec) are sufficient to cause amorphous layer formation and the production of non-equilibrium microstructures (nanocrystalline and metastable phases). Results from initial experiments confirm surface hardening, amorphous layer and nanocrystalline grain size formation, corrosion resistance in stainless steel and aluminum, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning and oxide layer removal as well as surface ablation and redeposition. These results follow other encouraging results obtained previously in Russia using single pulse ion beam systems. Potential commercialization of this surface treatment capability is made possible by the combination of two new technologies, a new repetitive high energy pulsed power capability (0.2{minus}2MV, 25--50 kA, 60 ns, 120 Hz) developed at SNL, and a new repetitive ion beam system developed at Cornell University.

  17. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  18. Evaluation of intensity based beam-shaping method with Rib-phantom HIFU sonications

    NASA Astrophysics Data System (ADS)

    Tillander, Matti; Köhler, Max; Koskela, Julius; Ylihautala, Mika

    2012-11-01

    The relation between rib bone heating during HIFU therapy and incident intensity on the bone surface was examined using an experimental setup and simulations with ray-tracer. The relation was found to be linear yet the data had large variance. The result was successfully applied to an intensity-based beam-shaping algorithm, which was fast enough for online therapy planning, and used to protect the ribs from overheating during intercostal sonications to a HIFU phantom containing two porcine rib bones.

  19. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  20. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  1. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  2. Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach

    NASA Astrophysics Data System (ADS)

    Stafford, M. A.

    1985-05-01

    Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. (The state transition matrix for a system of linear, ordinary, first-order, constant coefficient differential equations is a special case of such a semigroup.) The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite-dimensional systems. An appropriate underlying Banach space is identified for a simple, but non-trivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized.

  3. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    SciTech Connect

    Sean Strasburg; Ronald C. Davidson

    2000-05-30

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic pertubations about a waterbag equilibrium.

  4. Michigan state upgrade to produce intense radioactive ion beams by fragmentation technique

    SciTech Connect

    Lubkin, G.B.

    1997-05-01

    This article describes the planned upgrading of accelerator facilities to produce intense radioactive ion beams, by a fragmentation technique, for experimental simulation of nucleosynthesis in novas and supernovas. (AIP) {ital 1997 American Institute of Physics.} {copyright} {ital 1997} {ital American Institute of Physics}

  5. Doubling Beam Intensity Unlocks Rare Opportunities for Discovery at Fermi National Accelerator Laboratory

    SciTech Connect

    Segui, Jennifer A.

    2014-05-01

    Particle accelerators such as the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL) produce high-intensity proton beams for particle physics experiments that can ultimately reveal the secrets of the universe. High-intensity proton beams are required by experiments at the “intensity frontier” of particle physics research, where the availability of more particles improves the chances of observing extremely rare physical processes. In addition to their central role in particle physics experiments, particle accelerators have found widespread use in industrial, nuclear, environmental, and medical applications. RF cavities are essential components of particle accelerators that, depending on the design, can perform multiple functions, including bunching, focusing, decelerating, and accelerating a beam of charged particles. Engineers are working to model the RF cavities required for upgrading the 40-year old Booster synchrotron. It is a rather complicated process to refurbish, test, and qualify the upgraded RF cavities to sustain an increased repetition rate of the RF field required to produce proton beams at double the current intensity. Both multiphysics simulation and physical measurements are used to evaluate the RF, thermal, and mechanical properties of the Booster RF cavities.

  6. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY...

  7. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY...

  8. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY...

  9. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY...

  10. 14 CFR 25.1395 - Maximum intensities in overlapping beams of forward and rear position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum intensities in overlapping beams of forward and rear position lights. 25.1395 Section 25.1395 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY...

  11. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  12. Thermomagnetic recording and magneto-optic playback system having constant intensity laser beam control

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1973-01-01

    A system is developed for maintaining the intensity of a laser beam at a constant level in a thermomagnetic recording and magneto-optic playback system in which an isotropic film is heated along a continuous path by the laser beam for recording. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of a controlled magnetic field, a magneto-optic density is produced proportional to the amplitude of the controlled magnetic field. To play back the recorded signal, the intensity of the laser beam is reduced and a Faraday or Kerr effect analyzer is used, with a photodetector, as a transducer for producing an output signal.

  13. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  14. High intensity single bunch operation with heavy periodic transient beam loading in wide band rf cavities

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2015-09-01

    The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.

  15. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  16. Enhanced proton beam collimation in the ultra-intense short pulse regime

    NASA Astrophysics Data System (ADS)

    Green, J. S.; Dover, N. P.; Borghesi, M.; Brenner, C. M.; Cameron, F. H.; Carroll, D. C.; Foster, P. S.; Gallegos, P.; Gregori, G.; McKenna, P.; Murphy, C. D.; Najmudin, Z.; Palmer, C. A. J.; Prasad, R.; Romagnani, L.; Quinn, K. E.; Schreiber, J.; Streeter, M. J. V.; Ter-Avetisyan, S.; Tresca, O.; Zepf, M.; Neely, D.

    2014-08-01

    The collimation of proton beams accelerated during ultra-intense laser irradiation of thin aluminum foils was measured experimentally whilst varying laser contrast. Increasing the laser contrast using a double plasma mirror system resulted in a marked decrease in proton beam divergence (20° to <10°), and the enhanced collimation persisted over a wide range of target thicknesses (50 nm-6 µm), with an increased flux towards thinner targets. Supported by numerical simulation, the larger beam divergence at low contrast is attributed to the presence of a significant plasma scale length on the target front surface. This alters the fast electron generation and injection into the target, affecting the resultant sheath distribution and dynamics at the rear target surface. This result demonstrates that careful control of the laser contrast will be important for future laser-driven ion applications in which control of beam divergence is crucial.

  17. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; McCarrick, James F.; Guethlein, Gary; Caporaso, George J.; Chambers, Frank; Falabella, Steven; Lauer, Eugene; Richardson, Roger; Sampayan, Steve; Weir, John

    2002-12-01

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  18. Numerical studies of the Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.

    2004-11-01

    In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  19. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    SciTech Connect

    Chen, Chiping

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  20. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    SciTech Connect

    Chem, Y-J; McCarrick, J F; Guethlein, G; Chambers, F; Falabella, S; Lauer, E; Richardson, R; Weir, J

    2002-07-31

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  1. Cyclotrons with fast variable and/or multiple energy extraction

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.

    2013-10-01

    We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators). If one uses reverse bends between the sectors (instead of or in combination with drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H2+, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H2+ beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam) at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS), this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field strength compared to proton machines

  2. Three-dimensional numerical studies of the temperature anisotropy instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-05-01

    In neutral plasmas with a uniform magnetic field and strongly anisotropic distribution function (T∥/T⊥≪1) an electrostatic Harris-type collective instability may develop if the plasma is sufficiently dense. Such anisotropies develop naturally in accelerators, and a similar instability may lead to a deterioration of the beam quality in a one-component nonneutral charged particle beam. The instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the temperature anisotropy instability using the newly developed Beam Eigenmodes And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression (ν/ν0≪1). Such high-intensity beams are relevant to next-step experiments such as the Integrated Beam Experiment (IBX), which would serve as proof-of-principal experiment for heavy-ion fusion.

  3. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    SciTech Connect

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2004-04-15

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

  4. New Capabilities for Modeling Intense Beams in Heavy Ion Fusion Drivers

    SciTech Connect

    Friedman, A; Barnard, J J; Bieniosek, F M; Celata, C M; Cohen, R H; Davidson, R C; Grote, D P; Haber, I; Henestroza, E; Lee, E P; Lund, S M; Qin, H; Sharp, W M; Startsev, E; Vay, J L

    2003-09-09

    Significant advances have been made in modeling the intense beams of heavy-ion beam-driven Inertial Fusion Energy (Heavy Ion Fusion). In this paper, a roadmap for a validated, predictive driver simulation capability, building on improved codes and experimental diagnostics, is presented, as are examples of progress. The Mesh Refinement and Particle-in-Cell methods were integrated in the WARP code; this capability supported an injector experiment that determined the achievable current rise time, in good agreement with calculations. In a complementary effort, a new injector approach based on the merging of {approx}100 small beamlets was simulated, its basic feasibility established, and an experimental test designed. Time-dependent 3D simulations of the High Current Experiment (HCX) were performed, yielding voltage waveforms for an upcoming study of bunch-end control. Studies of collective beam modes which must be taken into account in driver designs were carried out. The value of using experimental data to tomographically ''synthesize'' a 4D beam particle distribution and so initialize a simulation was established; this work motivated further development of new diagnostics which yield 3D projections of the beam phase space. Other developments, including improved modeling of ion beam focusing and transport through the fusion chamber environment and onto the target, and of stray electrons and their effects on ion beams, are briefly noted.

  5. Method of active charge and current neutralization of intense ion beams for ICF

    SciTech Connect

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He/sup +/ multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams.

  6. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    SciTech Connect

    Bhat, C. M.

    2015-10-28

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.

  7. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

    PubMed

    Mangles, S P D; Murphy, C D; Najmudin, Z; Thomas, A G R; Collier, J L; Dangor, A E; Divall, E J; Foster, P S; Gallacher, J G; Hooker, C J; Jaroszynski, D A; Langley, A J; Mori, W B; Norreys, P A; Tsung, F S; Viskup, R; Walton, B R; Krushelnick, K

    2004-09-30

    High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

  8. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  9. Nonlinear d--ta-f Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson; Hong Qin

    2002-05-07

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.

  10. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  11. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  12. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  13. High intensity polarized atomic beam source for polarized internal storage ring targets

    NASA Astrophysics Data System (ADS)

    Schiemenz, P.

    1989-05-01

    In collaboration with the Max-Planck-Institut (MPI) für Kernphysik in Heidelberg and the University of Marburg we presently design and construct a high intensity polarized atomic beam source. It is intended to deliver 1*1017 atoms/sec in one hyperfine state into a storage cell for FILTEX. FILTEX is an abbreviation for FILTer EXperiment aiming to polarize storage ring beams. The structure and the vacuum chambers of this source are completed and installed at the Heidelberg Test Storage Ring (TSR). Vacuum pumps, gauges etc. are mounted and partly connected to a logical operation system. When atomic beam nozzle and skimmer geometries and distances as well as the nozzle temperature are optimized, the final geometrical arrangement or our new hybrid sixpole magnets will be decided and the whole source should be completed by the end of 1989.

  14. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    SciTech Connect

    Renk, Timothy J. Turman, Bob Senft, Donna Sorensen, Neil R. Stinnett, Regan Greenly, John B. Thompson, Michael O. Buchheit, Rudolph G.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  15. Anisotropic filamentation instability of intense laser beams in plasmas near the critical density.

    PubMed

    Sheng, Z M; Nishihara, K; Honda, T; Sentoku, Y; Mima, K; Bulanov, S V

    2001-12-01

    The relativistic filamentation instability (RFI) of linearly polarized intense laser beams in plasmas near the critical density is investigated. It is found that the RFI is anisotropic to transverse perturbations in this case; a homogeneous laser beam evolves to a stratified structure parallel to the laser polarization direction, as demonstrated recently with three-dimensional particle-in-cell simulations by Nishihara et al. [Proc. SPIE 3886, 90 (2000)]. A weakly relativistic theory is developed for plasmas near the critical density. It shows that the anisotropy of the RFI results from a suppression of the instability in the laser polarization direction due to the electrostatic response. The anisotropic RFI is also analyzed based on an envelope equation for the laser beam. Finally, the envelope equation is solved numerically, and anisotropic filamentation and self-focusing are illustrated.

  16. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma.

    PubMed

    Willingale, L; Mangles, S P D; Nilson, P M; Clarke, R J; Dangor, A E; Kaluza, M C; Karsch, S; Lancaster, K L; Mori, W B; Najmudin, Z; Schreiber, J; Thomas, A G R; Wei, M S; Krushelnick, K

    2006-06-23

    A beam of multi-MeV helium ions has been observed from the interaction of a short-pulse high-intensity laser pulse with underdense helium plasma. The ion beam was found to have a maximum energy for He2+ of (40(+3)(-8)) MeV and was directional along the laser propagation path, with the highest energy ions being collimated to a cone of less than 10 degrees. 2D particle-in-cell simulations show that the ions are accelerated by a sheath electric field that is produced at the back of the gas target. This electric field is generated by transfer of laser energy to a hot electron beam, which exits the target generating large space-charge fields normal to its boundary.

  17. High intensity multi beam design of SANS instrument for Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Abbas, Sohrab; Désert, S.; Aswal, V. K.

    2016-05-01

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10-4 Å-1 with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  18. Analytic integration of a common set of microwave beam intensity functions

    NASA Astrophysics Data System (ADS)

    Potter, Seth D.

    When designing a wireless power transmission system, a virtually limitless number of aperture illumination functions are available. However, a commonly-used set of beam tapers results in received intensities that involve Bessel functions. This family of intensities is convenient to study and compare systematically. A cosntraint on the calculation of reception efficiency is the need to write numerical routines to integrate such functions. It is shown that these functions can be integrated analytically, resulting in a concise formula for reception efficiency as a function of rectifying antenna (rectenna) diameter.

  19. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  20. The characteristics of an intense laser beam propagating in a corrugated plasma channel

    NASA Astrophysics Data System (ADS)

    Tian, Jian-Min; Tang, Rong-An; Hong, Xue-Ren; Yang, Yang; Wang, Li; Zhou, Wei-Jun; Xue, Ju-Kui

    2016-12-01

    The propagation of an intense laser beam in a corrugated plasma channel is investigated. By using the source-dependent expansion technique, an evolution equation of the laser spot size is derived. The behaviors including aperiodic oscillation, resonance, beat-like wave, and periodic oscillation with multipeak are found and analyzed. The formula for the instantaneous wave numbers of these oscillations is obtained. These theoretical findings are confirmed by the final numerical simulation.

  1. Method for measuring the intensity profile of a CT fan-beam filter

    NASA Astrophysics Data System (ADS)

    Whiting, Bruce R.; Dohatcu, Andreea

    2014-03-01

    Research on CT systems often requires knowledge of intensity as a function of angle in the fan-beam, due to the presence of bowtie filters, for studies such as dose reduction simulation, Monte Carlo dose calculations, or statistical reconstruction algorithms. Since manufacturers consider the x-ray bowtie filter design to be proprietary information, several methods have been proposed to measure the beam intensity profile independently: 1) calculate statistical properties of noise in acquired sinograms (requires access to raw data files, which is also vendor proprietary); 2) measure the waveform of a dosimeter located away from the isocenter (requires dosimeter equipment costing > 10K). We present a novel method that is inexpensive (parts costing 100 from any hardware store, using Gafchromic film at $3 per measurement), requires no proprietary information, and can be performed in a few minutes. A fixture is built from perforated steel tubing, which forms an aperture that selectively samples the intensity at a particular fan-beam angle in a rotating gantry. Two exposures (1× and 2×) are made and self-developing radiochromic film (Gafchromic XR- Ashland Inc.) is then scanned on an inexpensive PC document scanner. An analysis method is described that linearizes the measurements for relative exposure. The resultant profile is corrected for geometric effects (1/LΛ2 fall-off, gantry dwell time) and background exposure, providing a noninvasive estimate of the CT fan-beam intensity present in an operational CT system. This method will allow researchers to conveniently measure parameters required for modeling the effects of bowtie filters in clinical scanners.

  2. Aluminum surface layer strengthening using intense pulsed beam radiation of substrate film system

    NASA Astrophysics Data System (ADS)

    Klopotov, A. A.; Ivanov, Yu F.; Vlasov, V. A.; Kondratyuk, A. A.; Teresov, A. D.; Shugurov, V. V.; Petrikova, E. A.

    2016-11-01

    The paper presents formation of the substrate film system (Zr-Ti-Cu/Al) by electric arc spraying of cathode having the appropriate composition. It is shown that the intense beam radiation of the substrate film system is accompanied by formation of the multi-phase state, the microhardness of which exceeds the one of pure A7 aluminum by ≈4.5 times.

  3. Design of a Paraxial Inverse Compton Scattering Diagnostic for an Intense Relativistic Electron Beam

    DTIC Science & Technology

    2013-06-01

    DESIGN OF A PARAXIAL INVERSE COMPTON SCATTERING DIAGNOSTIC FOR AN INTENSE RELATIVISTIC ELECTRON BEAM ∗ J.E. Colemanξ, J.A. Oertel, C.A. Ekdahl...supported by the National Nuclear Security Administration of the U.S. Department of Energy under ξ email: jecoleman@lanl.gov Abstract An inverse Compton ...ray range by the relativistic electrons. The diverging, scattered photons are diffracted onto an X-ray framing camera by an X-ray crystal

  4. TRIUMF cyclotron vacuum system refurbishing

    NASA Astrophysics Data System (ADS)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  5. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  6. Current neutralization and focusing of intense ion beams with a plasma-filled solenoidal lens. I

    SciTech Connect

    Oliver, B.V.; Sudan, R.N.

    1996-12-01

    The response of the magnetized plasma in an axisymmetric, plasma-filled, solenoidal magnetic lens, to intense light ion beam injection is studied. The lens plasma fill is modeled as an inertialess, resistive, electron magnetohydrodynamic (EMHD) fluid since characteristic beam times {tau} satisfy 2{pi}/{omega}{sub {ital pe}},2{pi}/{Omega}{sub {ital e}}{lt}{tau}{le}2{pi}/{Omega}{sub {ital i}} ({omega}{sub {ital pe}} is the electron plasma frequency and {Omega}{sub {ital e},{ital i}} are the electron, ion gyrofrequencies). When the electron collisionality satisfies {nu}{sub {ital e}}{lt}{Omega}{sub {ital e}}, the linear plasma response is determined by whistler wave dynamics. In this case, current neutralization of the beam is reduced on the time scale for whistler wave transit across the beam. The transit time is inversely proportional to the electron density and proportional to the angle of incidence of the beam with respect to the applied solenoidal field. In the collisional regime ({nu}{sub {ital e}}{gt}{Omega}{sub {ital e}}) the plasma return currents decay on the normal diffusive time scale determined by the conductivity. The analysis is supported by two-and-one-half dimensional hybrid particle-in-cell simulations. {copyright} {ital 1996 American Institute of Physics.}

  7. LHC cryogenics – new experience of run with increased beam energy and intensity

    NASA Astrophysics Data System (ADS)

    Brodzinski, K.; Claudet, S.; Delikaris, D.; Delprat, L.; Ferlin, G.; Rogez, E.; Tavian, L.

    2017-03-01

    After the LHC first long shut down (LS1), when necessary consolidation and maintenance activities were performed on different technical systems, the Large Hadron Collider was progressively cooled down from ambient to operation temperatures from May of 2014. Prior to physics run with increased beam energy to 6.5 TeV/beam, increased beam intensity and modified beam injection scheme, several qualifications and tests affecting cryogenic system have been performed to ensure stable run of the accelerator. New beam parameters were gradually applied to the accelerator, reducing operational margins of cryogenic capacity from previous run. The process optimization and related updates in the control system were applied. This paper will briefly recall the main consolidations performed on the cryogenic system during LS1. The cool down process and behaviour of the cryogenic system during qualifications and tests will be presented. Difficulties and applied solutions during the run will be discussed. The availability and helium losses statistics for full year operation of 2015 will be given.

  8. f Number Increase of a High-Intensity Green Laser Beam in a Plasma

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Johnson, R. P.; Mason, R. J.

    1997-11-01

    Earlier(J. A. Cobble, R. P. Johnson, R. J. Mason, Phys. Plasmas 6, 3006 (1997).), we studied the increase in f number of a high-intensity, 1054-nm laser beam passing through a low density, preformed plasma, i. e., an exploding foil. We have extended this work to 527-nm light. Again we find an increase in the f number of the probe beam. Near field imaging of the transmitted green beam shows a factor of four reduction in beam divergence at 8 percent of the critical density. The change is less for lower densities, and the beam compression corresponds to the critical power dropping below the laser power (0.6 TW) as the density increases. The density is estimated from the spectra of stimulated Raman back scatter and from modeling of the target plasma with LASNEX. A CCD camera and a spectrometer with a 200-nm bandwidth were used to record the backscattered spectra. *Work performed under the auspices of the U. S. Department of Energy.

  9. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    SciTech Connect

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-04-27

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I) , and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations. 2011 American Institute of Physics

  10. High Intensity e-beam Diode Development for Flash X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Oliver, Bryan

    2007-11-01

    A variety of electron beam diodes are being used and developed for the purpose of creating high-brightness, flash x-ray radiography sources. In these diodes, high energy (multi MeV), high current (multi kA), small spot (multi mm) electron beams are generated and stopped in high atomic number anode-targets (typically Ta or W). Beam stopping in the target creates copious amounts of bremsstrahlung radiation. In addition, beam heating of the target liberates material, either in the form of low density (˜10^12-10^14 cm-3) ion emission or higher density (> 10^15 cm-3) plasma. In all cases, beam/target collective effects dominate the diode and beam characteristics, affecting the radiation properties (dose and spot-size). Recent experiments at Sandia National Laboratories have demonstrated diodes capable of producing > 350 rad@m with 1.7mm FWHM x-ray source distributions. A review of our present theoretical understanding of the diode (s) operation and our experimental and simulation methods to investigate them will be presented. Emphasis will be given to e- beam sources used on state-of-the-art Inductive Voltage Adder (IVA) pulsed-power accelerators. In particular, the physics of magnetically pinched diodes (e.g. the rod-pinch [1,2]), gas-cell focusing diodes [3] and the magnetically immersed [4] diode will be discussed. Various proposed methods to optimize the x-ray intensity and the direction of future diode research will be discussed. [1] G. Cooperstein, et al., Phys. Plasmas 8, 4618 (2001).[2] B.V. Oliver et al., Phys. Plasmas 11, 3976 (2004)[3] B.V. Oliver, et al., IEEE Trans. on Plasma Science 33, 704 (2005).[4] M.G. Mazarakis, et al., Appl. Phys. Lett. 70, 832 (1997)

  11. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  12. Theoretical modeling of the divergence of a flat-topped beam from a two-stage beam shaper into a conical intensity profile after propagation in free space

    NASA Astrophysics Data System (ADS)

    Haghighatzadeh, A.; Saadat, Sh.

    2014-02-01

    In this article, a two-stage beam shaping device based on a plastic fiber-bundle prism duct coupled waveguide is theoretically and experimentally described. ZEMAX software is used to simulate and investigate the divergence phenomenon on the beam shape outputted and the radiance profiles in both position and angle space. The effect of prism's geometrical structure on the beam divergence is also investigated and the optimum geometric conditions are reported. According to the theoretical results, due to an asymmetrical divergence effect the beam's cross section is increased with distance by a variable aspect ratio. The results also show that propagation in free space transformed a square beam with a flat-top intensity distribution into a rectangular beam with a conical intensity distribution. For experimental study, an imaging technique is applied to investigate the beam's output images and intensity profiles. A source light is used to illuminate the optical beam shaping elements of the reported design. Digital photographs of the beam's output for different axial distances are taken by a camera and the image data is converted into a response curve for comparison with the simulated image profiles. The obtained experimental results are strongly in agreement with the theoretical ones.

  13. Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Kashani, F. D.; Mashal, A.

    2017-02-01

    In this research, an analytical expression for cross-spectral density matrix elements (and consequently, average intensity) of partially coherent flat-topped (PCFT) radial array laser beams in weak oceanic turbulence are derived based on the extended Huygens-Fresnel principle and the previously developed knowledge of the propagation of a partially coherent beam in atmosphere. Mean-squared beam width is calculated analytically using average intensity formula. The simulation is done by considering the effects of source parameters (such as the radius of the array setup’s circle and effective width of spectral degree of coherence) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature-salinity fluctuations, Kolmogorov micro-scale, and the rate of dissipation of the mean squared temperature) in detail. It is found that when salinity fluctuations in the ocean dominate temperature fluctuations, the average intensity of the PCFT array beam becomes more broad and the array beam profile conversion process to a single wider Gaussian beam profile will occur at a faster rate. For the same turbulent conditions and the same initial beam width, the divergence of a flat-topped array beam is less than the Gaussian array beam. The simulation and calculation results are shown by graphs.

  14. Clinical Realization of Sector Beam Intensity Modulation for Gamma Knife Radiosurgery: A Pilot Treatment Planning Study

    SciTech Connect

    Ma, Lijun; Mason, Erica; Sneed, Penny K.; McDermott, Michael; Polishchuk, Alexei; Larson, David A.; Sahgal, Arjun

    2015-03-01

    Purpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS). Methods and Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter. We developed a SBIM solution based on available clinical planning tools, and we tested it on a cohort of 12 clinical cases as a proof of concept study. The SBIM treatment plans were compared with the original clinically delivered treatment plans to determine dosimetric differences. The goal was to investigate whether SBIM would improve the dose conformity for these treatment plans without prohibitively lengthening the treatment time. Results: A SBIM technique was developed. On average, SBIM improved the Paddick conformity index (PCI) versus the clinically delivered plans (clinical plan PCI = 0.68 ± 0.11 vs SBIM plan PCI = 0.74 ± 0.10, P=.002; 2-tailed paired t test). The SBIM plans also resulted in nearly identical target volume coverage (mean, 97 ± 2%), total beam-on times (clinical plan 58.4 ± 38.9 minutes vs SBIM 63.5 ± 44.7 minutes, P=.057), and gradient indices (clinical plan 3.03 ± 0.27 vs SBIM 3.06 ± 0.29, P=.44) versus the original clinical plans. Conclusion: The SBIM method is clinically feasible with potential dosimetric gains when compared with conventional GKSRS.

  15. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    SciTech Connect

    Winklehner, D.; Leitner, D. Cole, D.; Machicoane, G.; Tobos, L.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  16. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    SciTech Connect

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  17. A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams

    SciTech Connect

    Hong Qin and Ronald C. Davidson

    2012-04-25

    A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equations and the associated envelope equations for high-intensity beams in a periodic lattice is derived. It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions and the envelope equations are specified by eight free parameters. The class of solutions derived captures a wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of high-intensity beams.

  18. The Impact of Dissociator Cooling on the Beam Intensity and Velocity in the SpinLab ABS

    SciTech Connect

    Stancari, M.; Barion, L.; Capiluppi, M.; Contalbrigo, M.; Ciullo, G.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L.; Statera, M.; Bonomo, C.; Wang, M.

    2007-06-13

    At the SpinLab laboratory (University of Ferrara, Italy), a three stage cooling system was installed along the dissociator tube of an atomic beam source (ABS). With this tool, it is possible to observe correlations between the measured temperatures and the atomic beam intensity. The existence of such correlations is suggested by the larger intensity of the RHIC ABS, the only other source with additional cooling stages. An increased intensity at lower cooling temperatures was observed in SpinLab, while no change in the beam's velocity distribution was observed.

  19. A storage ring for the JULIC cyclotron

    NASA Astrophysics Data System (ADS)

    Martin, S. A.; Prasuhn, D.; Schott, W.; Wiedner, C. A.

    1985-05-01

    The storage ring COSY is planned to provide higher intensity and resolution for nuclear structure experiments using the light heavy ion beams (p, d, τ, α) of the JULIC cyclotron and the magnet spectrograph BIG KARL. The ring contains the measuring target of BIG KARL as an internal target, two rf cavities for compensating the mean energy loss in the target and providing additional acceleration of the stored beam and an e --cooling section. In the recirculator mode, i.e., without e --cooling, a luminosity of L = 3.64 × 10 30 particles/(cm 2 s) is obtained for an experiment with 41 MeV protons and a 50 μg/cm 212C target at a spectrograph resolution p/d p = 10 4 and 100% duty factor. This corresponds to a gain in L of 546.5 in comparison with the same experiment without a storage ring. In the recirculator mode with acceleration L = 1.17 × 10 32 p/(cm 2 s) and 98.8% duty factor results for 1500 MeV protons on the same target at the same resolution. Using e --cooling L and the feasible p/d p can be enhanced, however, at a reduced duty factor.

  20. Nuclear Structure at the Legnaro National Laboratories:. from High Intensity Stable to Radioactive Nuclear Beams

    NASA Astrophysics Data System (ADS)

    de Angelis, G.

    2007-04-01

    To understand the properties of a nucleus, apart from establishing the interaction between its components, it is necessary to determine the arrangement of the nucleons, i.e. the structure of a nucleus. So far our knowledge about the structure of nuclei is mostly limited to nuclei close to the valley of stability, or nuclei with a deficiency of neutrons, which can be produced in fusion-evaporation reactions with stable beams and stable targets. Future perspectives in nuclear structure rely on radioactive ion beams (RIB) as well as on high intensity beams of stable ions (HISB). A world wide effort is presently going on in order to built the next generation radioactive ion beam facilities like the FAIR and the EURISOL projects. The LNL are contributing to such development through the design study of the EURISOL project as well as through the design and construction of the intermediate facility SPES. Concerning the instrumentation, particularly powerful is the combination of large acceptance spectrometers with highly segmented γ-detector arrays. An example is the CLARA γ-ray detector array coupled with the PRISMA spectrometer at the Legnaro National Laboratories (LNL). The physics aims achievable with such device complement studies performed with current radioactive beam (RIB) facilities. With this set-up we have recently investigated the stability of the N=50 shell closure. Here the comparison of the experimental data with shell model calculations seems to indicate a persistence of the N=50 shell gap down to Z=31. Also the study of proton rich nuclei can strongly benefit from the use of high intensity stable beams using fusion evaporation reactions at energies close to the Coulomb barrier. Future perspectives at LNL are based on an increase in intensity as well as on the availability of heavy ion species. Moreover a new ISOL facility (SPES) dedicated to the production and acceleration of radioactive neutron rich species is now under development at LNL. Among the new

  1. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  2. Centroid and Envelope Dynamics of High-intensity Charged Particle Beams in an External Focusing Lattice and Oscillating Wobbler

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.; Logan, B. Grant

    2010-04-28

    The centroid and envelope dynamics of a high-intensity charged particle beam are investigated as a beam smoothing technique to achieve uniform illumination over a suitably chosen region of the target for applications to ion-beam-driven high energy density physics and heavy ion fusion. The motion of the beam centroid projected onto the target follows a smooth pattern to achieve the desired illumination, for improved stability properties during the beam-target interaction. The centroid dynamics is controlled by an oscillating "wobbler", a set of electrically-biased plates driven by RF voltage. __________________________________________________

  3. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    NASA Technical Reports Server (NTRS)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  4. Plasma dynamics of the interaction of intense ion beams with ''sub'' and ''super'' range plane targets

    SciTech Connect

    Long, K.A.; Tahir, N.A.

    1986-01-01

    Analytic and numerical solutions for the problem of the interaction of intense ion beams with matter in the form of plane targets are considered in this paper. The theory of the interaction of protons with matter at low energies is discussed and calculations are presented for the energy loss of protons in aluminum and gold. Zero- and one-dimensional models are developed and the results are compared to numerical simulations carried out with the one-dimensional Lagrangian hydrodynamic code Medusa (Comp. Phys. Comm. 1, 271 (1974)), which has been extended to include the various physical effects needed to carry out realistic simulations of the interaction of ion beams with matter. The theory and simulation of the acceleration of foils by intense ion beams is also considered and representative results are given. The theoretical results are used to investigate the optimum conditions in which to carry out stopping power experiments for ions in hot, dense plasmas, so that the theory can be tested. These results are needed in order to perform more realistic pellet calculations for inertial fusion.

  5. Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities

    SciTech Connect

    Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

    2012-05-01

    The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

  6. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    SciTech Connect

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm

  7. Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts

    SciTech Connect

    Pechhacker, R.; Tsiklauri, D.

    2012-11-15

    A beam of super-thermal, hot electrons was injected into maxwellian plasma with a density gradient along a magnetic field line. 1.5D particle-in-cell simulations were carried out which established that the EM emission is produced by the perpendicular component of the beam injection momentum. The beam has a positive slope in the distribution function in perpendicular momentum phase space, which is the characteristic feature of a cyclotron maser. The cyclotron maser in the overdense plasma generates emission at the electron cyclotron frequency. The frequencies of generated waves were too low to propagate away from the injection region, hence the wavelet transform shows a pulsating wave generation and decay process. The intensity pulsation frequency is twice the relativistic cyclotron frequency. Eventually, a stable wave packet formed and could mode couple on the density gradient to reach frequencies of the order of the plasma frequency that allowed for propagation. The emitted wave is likely to be a z-mode wave. The total electromagnetic energy generated is of the order of 0.1% of the initial beam kinetic energy. The proposed mechanism is of relevance to solar type III radio bursts, as well as other situations, when the injected electron beam has a non-zero perpendicular momentum, e.g., magnetron.

  8. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  9. Intense laser-driven proton beam energy deposition in compressed and uncompressed Cu foam

    NASA Astrophysics Data System (ADS)

    McGuffey, Christopher; Krauland, C. M.; Kim, J.; Beg, F. N.; Wei, M. S.; Habara, H.; Noma, S.; Ohtsuki, T.; Tsujii, A.; Yahata, K.; Yoshida, Y.; Uematsu, Y.; Nakaguchi, S.; Morace, A.; Yogo, A.; Nagatomo, H.; Tanaka, K.; Arikawa, Y.; Fujioka, S.; Shiraga, H.

    2016-10-01

    We investigated transport of intense proton beams from a petawatt laser in uncompressed or compressed Cu foam. The LFEX laser (1 kJ on target, 1.5 ps, 1053 nm, I >2×1019 W/cm2) irradiated a curved C foil to generate the protons. The foil was in an open cone 500 μm from the tip where the focused proton beam source was delivered to either of two Cu foam sample types: an uncompressed cylinder (1 mm L, 250 µm ϕ) , and a plastic-coated sphere (250 µm ϕ) that was first driven by GXII (9 beams, 330 J/beam, 1.3 ns, 527 nm) to achieve similar ρϕ to the cylinder sample's ρL as predicted by 2D radiation hydrodynamic simulations. Using magnetic spectrometers and a Thomson parabola, the proton spectra were measured with and without the Cu samples. When included, they were observed using Cu K-shell x-ray imaging and spectroscopy. This paper will present comparison of the experimentally measured Cu emission shape and proton spectrum changes due to deposition in the Cu with particle-in-cell simulations incorporating new stopping models. This work was made possible by laser time Awarded by the Japanese NIFS collaboration NIFS16KUGK107 and performed under the auspices of the US AFOSR YIP Award FA9550-14-1-0346.

  10. Long-path-length experimental studies of longitudinal phenomena in intense beams

    NASA Astrophysics Data System (ADS)

    Beaudoin, Brian

    2015-11-01

    Intense charged particle beams are nonneutral plasmas and they can support a host of plasma waves and instabilities. For a long beam bunch, the longitudinal physics can often be reasonably described by a 1-D cold-fluid model, with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past 5 years on the U. Maryland Electron Ring, investigating longitudinal phenomena, for the first time, over time scales of hundreds and thousands of plasma periods. These results are in good agreement with theory and simulation. Topics that will be discussed are: Longitudinal confinement of a long bunch using barrier fields. The generation of space charge waves from barrier field mismatches, their propagation along the bunch and reflection at the beam ends, as well as their long-term dissipation. The characterization of solitary waves from density/velocity perturbations in the center of the bunch. Compression of solitary wave trains with velocity ``tilts'' (head-to-tail gradient). Observation of a multi-stream instability driven by the longitudinal merging of bunches and the characterization of the onset of the instability with a PIC code. The shock-wave compression of a bunch using rapidly-moving barrier fields.

  11. Warm-fluid description of intense beam equilibrium and electrostatic stability properties

    SciTech Connect

    Lund, S.M.; Davidson, R.C.

    1998-08-01

    A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A closed macroscopic model is obtained by truncating the hierarchy of moment equations by the assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij{endash}Vladimirskij (KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability properties are analyzed in detail for a cold beam with step-function density profile, and then for axisymmetric flute perturbations with {partial_derivative}/{partial_derivative}{theta}=0 and {partial_derivative}/{partial_derivative}z=0 about a warm-fluid KV beam equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV equilibrium is found to be {ital identical} to the eigenfunction derived in a full kinetic treatment. However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations. None of the instabilities that are present in a kinetic description are obtained in the fluid model. A careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models is made in order to delineate which stability features of a KV beam are model-dependent and which may have general applicability. {copyright} {ital 1998 American Institute of Physics.}

  12. Increasing the intensity of an induction accelerator and reduction of the beam breakup instability

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Moir, D. C.; Ekdahl, C. A.; Johnson, J. B.; McCuistian, B. T.; Sullivan, G. W.; Crawford, M. T.

    2014-03-01

    A 7 cm cathode has been deployed for use on a 3.8 MV, 80 ns (FWHM) Blumlein, to increase the extracted electron current from the nominal 1.7 to 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the space-charge limitations on the beam quality, its coupling with the beam breakup (BBU) instability, and provide an independent validation of the BBU theory in a higher current regime, I >2 kA. Time resolved centroid measurements indicate a reduction in BBU >10× with simply a 50% increase in the average B-field used to transport the beam through the accelerator. A qualitative comparison of experimental and calculated results are presented, which include time resolved current density distributions, radial BBU amplitude relative to the calculated beam envelope, and frequency analyzed BBU amplitude with different accelerator lattice tunes.

  13. Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor

    2012-10-01

    Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.

  14. PET computer programs for use with the 88-inch cyclotron

    SciTech Connect

    Gough, R.A.; Chlosta, L.

    1981-06-01

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected.

  15. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  16. The first muon beam from a new highly-intense DC muon source, MuSIC

    NASA Astrophysics Data System (ADS)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  17. Generation of heavy ion beams using high-intensity short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Chris; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2016-10-01

    A theoretical study of ion acceleration from high-Z material irradiated by intense sub-picosecond lasers is presented. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. At least four technical hurdles have been identified: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration and poor energy coupling due to high reflectivity of the plasma. Using two dimensional particle-in-cell (PIC) simulations, we observed transitions from Radiation Pressure Acceleration (RPA) to the Breakout Afterburner regime (BoA) and to Target Normal Sheath Acceleration (TNSA) akin to light ions. The numerical simulations predict gold ions beams with high directionality (<10 degrees half-angle), high fluxes (>1011 ions/sr) and energy (>10 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  18. Bessel-Gauss beam enhancement cavities for high-intensity applications.

    PubMed

    Putnam, William P; Schimpf, Damian N; Abram, Gilberto; Kärtner, Franz X

    2012-10-22

    We introduce Bessel-Gauss beam enhancement cavities that may circumvent the major obstacles to more efficient cavity-enhanced high-field physics such as high-harmonic generation. The basic properties of Bessel-Gauss beams are reviewed and their transformation properties through simple optical systems (consisting of spherical and conical elements) are presented. A general Bessel-Gauss cavity design strategy is outlined, and a particular geometry, the confocal Bessel-Gauss cavity, is analyzed in detail. We numerically simulate the confocal Bessel-Gauss cavity and present an example cavity with 300 MHz repetition rate supporting an effective waist of 33 μm at the focus and an intensity ratio from the focus to the cavity mirror surfaces of 1.5 × 10(4).

  19. Non-dissociative and dissociative ionization of a CO+ beam in intense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Ablikim, U.; Zohrabi, M.; Roland, S.; Carnes, K. D.; Ben-Itzhak, I.

    2011-05-01

    We have investigated the ionization of CO+ beams in intense ultrashort laser pulses. With the recent upgrades to our coincidence three-dimensional momentum imaging method we are able to measure both non-dissociative and dissociative ionization of the molecular-ion beam targets. Using CO+ as an example, we have found that non-dissociative ionization (leading to the metastable dication CO2+) involves a direct transition, i.e. the molecule is ionized with little or no internuclear distance stretch. Dissociative ionization (C+ + O+) occurs both directly and indirectly, stretching first and then ionizing. Our results show that the yield of dissociative ionization is higher than that of non-dissociative ionization and can be manipulated with the laser pulse duration by suppressing the indirect ionization path using ultrashort pulses (<=10 fs). Supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  20. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing

    NASA Astrophysics Data System (ADS)

    Truppe, S.; Williams, H. J.; Fitch, N. J.; Hambach, M.; Wall, T. E.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2017-02-01

    Using frequency-chirped radiation pressure slowing, we precisely control the velocity of a pulsed CaF molecular beam down to a few m s–1, compressing its velocity spread by a factor of 10 while retaining high intensity: at a velocity of 15 m s–1 the flux, measured 1.3 m from the source, is 7 × 105 molecules per cm2 per shot in a single rovibrational state. The beam is suitable for loading a magneto-optical trap or, when combined with transverse laser cooling, improving the precision of spectroscopic measurements that test fundamental physics. We compare the frequency-chirped slowing method with the more commonly used frequency-broadened slowing method.

  1. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target.

    PubMed

    Gauthier, M; Kim, J B; Curry, C B; Aurand, B; Gamboa, E J; Göde, S; Goyon, C; Hazi, A; Kerr, S; Pak, A; Propp, A; Ramakrishna, B; Ruby, J; Willi, O; Williams, G J; Rödel, C; Glenzer, S H

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  2. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    NASA Astrophysics Data System (ADS)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  3. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  4. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  5. Study on fundamental processes of laser welded metals observed with intense x-ray beams

    NASA Astrophysics Data System (ADS)

    Muramatsu, T.; Daido, H.; Shobu, T.; Takase, K.; Tsukimori, K.; Kureta, M.; Segawa, M.; Nishimura, A.; Suzuki, Y.; Kawachi, T.

    With use of photon techniques including visible light, soft and hard x-rays, precise fundamental laser welding processes in the repair and maintenance of nuclear plant engineering were reviewed mechanistically. We make discussions centered on the usefulness of an intense soft x-ray beams for evaluations of spatial residual strain distribution and welded metal convection behavior including the surface morphology. Numerical results obtained with a general purpose three-dimensional code SPLICE for the simulation of the welding and solidifying phenomena. Then it is concluded that the x-ray beam would be useful as one of the powerful tools for understanding the mechanisms of various complex phenomena with higher accuracy and higher resolution.

  6. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  7. Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media.

    PubMed

    Ramirez, E V Garcia; Carrasco, M L Arroyo; Otero, M M Mendez; Cerda, S Chavez; Castillo, M D Iturbe

    2010-10-11

    In this work we present a simple model that can be used to calculate the far field intensity distributions when a Gaussian beam cross a thin sample of nonlinear media but the response can be nonlocal.

  8. Numerical simulation of ions acceleration and extraction in cyclotron DC-110

    NASA Astrophysics Data System (ADS)

    Samsonov, E. V.; Gikal, B. N.; Borisov, O. N.; Ivanenko, I. A.

    2014-03-01

    In Flerov's Laboratory of Nuclear Reactions of JINR in the framework of project "Beta" a cyclotron complex for a wide range of applied research in nanotechnology (track membranes, surface modification, etc.) is created. The complex includes a dedicated heavy-ion cyclotron DC-110, which yields intense beams of accelerated ions Ar, Kr and Xe with a fixed energy of 2.5 MeV/A. The cyclotron is equipped with external injection on the base of ECR ion source, a spiral inflector and the system of ions extraction consisting of an electrostatic deflector and a passive magnetic channel. The results of calculations of the beam dynamics in measured magnetic field from the exit of spiral inflector to correcting magnet located outside the accelerator vacuum chamber are presented. It is shown that the design parameters of ion beams at the entrance of correcting magnet will be obtained using false channel, which is a copy of the passive channel, located on the opposite side of the magnetic system. Extraction efficiency of ions will reach 75%.

  9. Intense, brilliant micro γ-beams in nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Habs, D.; Gasilov, S.; Lang, C.; Thirolf, P. G.; Jentschel, M.; Diehl, R.; Schroer, C.; Barty, C. P. J.; Zamfir, N. V.

    2011-06-01

    The upcoming γ facilities MEGa-Ray (Livermore) and ELI-NP (Bucharest) will have a 105 times higher γ flux F0 = 1013/s and a ~30 times smaller band width (ΔEγ/Eγ = BW ~ 10-3) than the presently best γ beam facility. They will allow to extract a small γ beam of about 30 - 100 μm radius 1 m behind the γ production point, containing the dominant γ energy band width. One can collimate the γ beam down to ΘBW = √ BW/ γe , where γe = Ee/ mec2 is a measure of the energy Ee of the electron beam, from which the γ beam is produced by Compton back-scattering. Due to the γ energy - angle correlation, the angular collimation results at the same time in a reduction of the γ beam band width without loss of "good" γ quanta, however, the primary γ flux F0is reduced to about Fcoll ~ F0 . 1.5 . ΔEγ/Eγ. For γ rays in the (0.1-100) MeV range, the negative real part δ of the index of refraction n = 1- δ + iβ from coherent Rayleigh scattering (virtual photo effect) dominates over the positive δ contributions from coherent virtual Compton scattering and coherent virtual pair creation scattering (Delbrück scattering). The very small absolute value |δ| ~ 10-6 - 10-9 of the index of refraction of matter for hard X-rays and γ-rays and its negative sign--in contrast to usual optics--results in a very different γ-ray optics, e.g. focusing lenses become concave and we use stacks of N optimized lenses. It requires very small radii of curvature of the γ lenses and thus very small γ beam radii. This leads to a technical new solution, where the primary γ beam is subdivided into M γ beamlets, which do not interfere with each other, but contribute with their independent intensities. We send the γ beamlets into a two-dimensional array of closely packed cylindrical parabolic refractive lenses, where N ~ 103 lenses with very small radius of curvature are stacked behind each other, leading to contracted beam spots in one dimension. With a second 1D lens system turned by

  10. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Lebedev, V.; Valishev, A.

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  11. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect

    Miracoli, R.; Gammino, S.; Celona, L.; Mascali, D.; Castro, G.; Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F.; Ciavola, G.

    2012-05-15

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  12. Intense gigawatt relativistic electron beam generation in the presence of prepulse

    NASA Astrophysics Data System (ADS)

    Mondal, J.; Kumar, D. D. P.; Roy, A.; Mitra, S.; Sharma, A.; Singh, S. K.; Rao, G. V.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2007-02-01

    Large pulse power systems in the presence of prepulse can deliver gigawatt power pulses into a matched load. While employing these pulse power systems for the generation of intense relativistic electron beams (IREBs), the prepulse initiated plasma closes the anode cathode gap, if the gap distance is set by the Child-Langmuir formula. In order to reduce the prepulse effect, the anode cathode gap has been increased for the generation of IREB with output parameters of 400kV, 20kA, and 100ns pulse duration. In this paper the generation of IREB in the presence of prepulse without using any prepulse switch has been discussed.

  13. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  14. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  15. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    NASA Technical Reports Server (NTRS)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  16. Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Scott, R. H. H.; Pérez, F.; Streeter, M. J. V.; Clark, E. L.; Davies, J. R.; Schlenvoigt, H.-P.; Santos, J. J.; Hulin, S.; Lancaster, K. L.; Dorchies, F.; Fourment, C.; Vauzour, B.; Soloviev, A. A.; Baton, S. D.; Rose, S. J.; Norreys, P. A.

    2013-09-01

    Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2.

  17. Theoretical modeling of generation of hat-top intensity profile from Gaussian beam by means of a two-stage beam shaper

    NASA Astrophysics Data System (ADS)

    Haghighatzadeh, A.; Golnabi, H.

    2013-05-01

    Both theoretical and experimental results of an optical beam shaping system are investigated in this report. The described system is a two-stage beam shaping device including a fiber-bundle and a prism-duct. A source light is used to illuminate the fiber-bundle and the image of output beam is captured by a CCD camera. The fiber-bundle output beam shape shows a linear arrangement of circular spots lights, which are placed in a rectangular cross section of about 21.37 mm×2.44 mm. In another study, the photograph picture of the prism output beam is taken by a digital camera. The prism output beam cross section is a square shape with a dimension of about 4×4 mm2. According to the experimental results, the prism duct converted a Gaussian beam profile with multiple-peak distribution to a hat-top beam profile with the uniform intensity distribution. For theoretical investigations, using ZEMAX software a simulation is performed to analyze the beam shaping design. By proper modeling the output beam shape and radiance profiles in position space and angle space of the fiber-bundle and the prism duct are investigated. Theoretical radiance profiles are obtained by using simulated images and results are in agreement with the experimental results.

  18. Improving intensity-modulated radiation therapy using the anatomic beam orientation optimization algorithm

    SciTech Connect

    Potrebko, Peter S.; McCurdy, Boyd M. C.; Butler, James B.; El-Gubtan, Adel S.

    2008-05-15

    A novel, anatomic beam orientation optimization (A-BOO) algorithm is proposed to significantly improve conventional intensity-modulated radiation therapy (IMRT). The A-BOO algorithm vectorially analyses polygonal surface mesh data of contoured patient anatomy. Five optimal (5-opt) deliverable beam orientations are selected based on (1) tangential orientation bisecting the target and adjacent organ's-at-risk (OARs) to produce precipitous dose gradients between them and (2) parallel incidence with polygon features of the target volume to facilitate conformal coverage. The 5-opt plans were compared to standard five, seven, and nine equiangular-spaced beam plans (5-equi, 7-equi, 9-equi) for: (1) gastric, (2) Radiation Therapy Oncology Group (RTOG) P-0126 prostate, and (3) RTOG H-0022 oropharyngeal (stage-III, IV) cancer patients. In the gastric case, the noncoplanar 5-opt plan reduced the right kidney V 20 Gy by 32.2%, 23.2%, and 20.6% compared to plans with five, seven, and nine equiangular-spaced beams. In the prostate case, the coplanar 5-opt plan produced similar rectal sparing as the 7-equi and 9-equi plans with a reduction of the V 75, V 70, V 65, and V 60 Gy of 2.4%, 5.3%, 7.0%, and 9.5% compared to the 5-equi plan. In the stage-III and IV oropharyngeal cases, the noncoplanar 5-opt plan substantially reduced the V 30 Gy and mean dose to the contralateral parotid compared to plans with five, seven, and nine equiangular-spaced beams: (stage-III) 7.1%, 5.2%, 6.8%, and 5.1, 3.5, 3.7 Gy and (stage-IV) 10.2%, 10.2%, 9.8% and 7.0, 7.1, 7.2 Gy. The geometry-based A-BOO algorithm has been demonstrated to be robust for application to a variety of IMRT treatment sites. Beam orientations producing significant improvements in OAR sparing over conventional IMRT can be automatically produced in minutes compared to hours with existing dose-based beam orientation optimization methods.

  19. Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice

    SciTech Connect

    Hong Qin, Moses Chung, and Ronald C. Davidson

    2009-11-20

    In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

  20. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    SciTech Connect

    Carroll, A.; Chimienti, L.; Leonhardt, W.; Monaghan, R.; Ryan, G.; Sandberg, J.; Sims, W.; Smith, G.; Stillman, P.; Thorwarth, H.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10/sup 13/ proton/sec. These systems were designed for simplicity, reliability, and easy replacement.