Sample records for cyclotron complex center

  1. Feasibility study of a cyclotron complex for hadron therapy

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2018-04-01

    An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.

  2. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  3. Development of a Medical Cyclotron Production Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Danny R.

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply.more » We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.« less

  4. Suzaku Observations of the Ultracompact Binary System 4U1626-67

    NASA Technical Reports Server (NTRS)

    Camero-Arranz, A.; Pottschmidt, K.; Finger, M. H.; Wilson-Hodge, C. A.; Marcu, D. M.

    2011-01-01

    The accretion-powered pulsar 4U1626-67 experienced a new torque reversal at the beginning of 2008, after about 18 years of steadily spinning down. We present a spectral analysis of this source using two pointed observations performed by Suzaku in 2006 March and in 2010 September. We confirm with Suzaku the presence of a strong emission-line complex centered on 1 keV, with the strongest line being the hydrogen-like Ne Ly- alpha at 1.025(1.5) keV. We were able to resolve this complex with up to eight emission lines. A dramatic increase of the equivalent width of the Ne Ly-alpha 1.021 keV after the 2008 torque reversal occurred, reaching almost the same value measured by ASCA in 1993. In addition, we confirm the general decrease trend of the equivalent widths during the spin-down period. We also report on the detection of a cyclotron line feature centered at approx 37 keV. In spite of the fact that a dramatic increase of the X-ray luminosity (0.5-100 keV) of a factor of approx 3.5 occurred between these two observations, no significant change in the energy of the cyclotron line feature was observed. However, the intensity of the approx 1 keV line complex increased by an overall factor of approx 10.

  5. Cyclotron transitions of bound ions

    NASA Astrophysics Data System (ADS)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  6. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  7. EBCO Technologies TR Cyclotrons, Dynamics, Equipment, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.R.; Univ British Columbia; Erdman, K. L.

    2003-08-26

    The Ebco Technologies TR cyclotrons have a common parent in the 500 MeV negative ion cyclotron at TRIUMF in Vancouver. As such, the TR cyclotrons have features that can be adapted for specific application. The cyclotron design is modularized into ion source and injection system, central region and then extraction. The cyclotron ion source is configured for cyclotron beam currents ranging from 50 microAmps to 2 milliAmps. The injection line can be operated in either continuous (CW) or in pulsed mode. The center region of the cyclotron is configured to match the ion source configuration. The extracted beams are directedmore » either to a local target station or to beam lines and thence to target stations. There has been development both in solid, liquid and gas targets. There has been development in radioisotope handling techniques, target material recovery and radiochemical synthesis.« less

  8. Cancer Therapy

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The patient shown is undergoing cancer radiation treatment in a hospital-like atmosphere but he is not in a hospital. The treatment room is at NASA's Lewis Research Center, Cleveland, Ohio. It is a converted portion of the Center's cyclotron facility, originally designed for radiation studies related to nuclear propulsion for aircraft and spacecraft. Under an agreement between the Center and the Cleveland Clinic Foundation, the 50 million volt cyclotron is now being used to evaluate the effectiveness of "fast neutron" therapy in the treatment of cancerous tumors.

  9. 4U 1626-67 as Seen by Suzaku Before and After the 2008 Torque Reversal

    NASA Technical Reports Server (NTRS)

    Camero-Arranz, A.; Pottschmidt, K.; Finger, M. H.; Ikhsanov, N. R.; Wilson-Hodge, C. A.; Marcu, D. M.

    2012-01-01

    Aims. The accretion-powered pulsar 4U 1626-67 experienced a new torque reversal at the beginning of 2008, after about 18 years of steadily spinning down. The main goal of the present work is to study this recent torque reversal that occurred in 2008 February. Methods. We present a spectral analysis of this source using two pointed observations performed by Suzaku in 2006 March and in 2010 September. Results. We confirm with Suzaku the presence of a strong emission-line complex centered on 1 keV, with the strongest line being the hydrogen-like Ne Lya at 1.025(3) keV. We were able to resolve this complex with up to seven emission lines. A dramatic increase of the intensity of the Ne Lya line after the 2008 torque reversal occurred, with the equivalent width of this line reaching almost the same value measured by ASCA in 1993. We also report on the detection of a cyclotron line feature centered at approximately 37 keV. In spite of the fact that an increase of the X-ray luminosity (0.5-100keV) of a factor of approximately 2.8 occurred between these two observations, no significant change in the energy of the cyclotron line feature was observed. However, the intensity of the approximately 1 keV line complex increased by an overall factor of approximately 8. Conclusions. Our results favor a scenario in which the neutron star in 4U 1626-67 accretes material from a geometrically thin disk during both the spin-up and spin-down phases.

  10. Asymmetric dee-voltage compensation of beam off-centering in the milan superconducting cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milinkovic, Lj.; Fabrici, E.; Ostojic, R.

    1985-10-01

    An analysis of the effects of orbit off-centering on the beam extraction in the Milan superconducting cyclotron is made, and the sensitivity of axial beam loss and radial phase space distortions to beam off-centering determined for various acceleration conditions. We conclude that the first field harmonic compensation of beam off-centering is ineffective in the region of the operating diagram where the Walkinshaw resonance precedes the ..nu.. /SUB r/ =1 resonance. Asymmetric dee-voltage compensation is considered in these cases, and the domain of validity of the method determined. A semi-empirical relation for dee-voltage distribution is deduced, and the extraction efficiency discussed.

  11. Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.

    PubMed

    Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank

    2018-02-01

    Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  13. Central region of SKKUCY-9 compact cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, S. Y.; Kim, H. W.; Ghergherehchi, M.; Park, J. K.; Chai, J. S.; Kim, S. H.

    2014-04-01

    The development of a 9 MeV compact cyclotron for the production of radioisotopes for medical applications has been recently completed. The machine accelerates negative hydrogen ions generated from an internal PIG (Penning Ion Gauge) ion source following spiral orbits. Some of the structures designed for early beam acceleration, including a pair of center poles providing ions a circular direction, the head of the ion source, and the electrodes, are located in the center of the cyclotron. In this paper we discuss and evaluate the design of the central region that pulls the ions from the chimney of the ion source and directs them into the equilibrium orbit. The magnetic field produced by the center poles was analyzed using the magnetic solver in OPERA-3D TOSCA, and the phase error and ion equilibrium orbit, which is dependent on the kinetic energy within the designed field, were calculated using CYCLONE v8.4. The electric field produced in the acceleration gap was designed using an electrostatic solver. Then, the single beam trajectory was calculated by our own Cyclotron Beam Dynamics (CBD) code. The early orbits, vertical oscillation, acceptable RF phase and the energy gain during the early turns was evaluated. Final goal was to design the central region by the iterative optimization process and verify it with 1 MeV beam experiment.

  14. Cyclotron in the Materials and Stresses Building

    NASA Image and Video Library

    1976-11-21

    Researchers check the cyclotron in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Materials and Stresses Building, built in 1949, contained a number of laboratories to test the strength, diffusion, and other facets of materials. The materials could be subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The cyclotron was built in the early 1950s to test the effects of radiation on different materials so that the proper materials could be used to construct a nuclear aircraft engine and other components. By the late 1950s, the focus had shifted to similar studies for rockets. NASA cancelled its entire nuclear program in January 1973, and the cyclotron was mothballed. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron to treat cancer patients with a new type of radiation therapy. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. Over the course of five years, the cyclotron was used to treat 1200 patients. The program was terminated in 1980 as the Clinic shifted its efforts to concentrate on non-radiation treatments. The Lewis cyclotron was mothballed for a number of years before being demolished.

  15. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  16. The development of an injection system for a compact H(-) cyclotron, the concomitant measurement of injected beam properties and the experimental characterization of the spiral inflector

    NASA Astrophysics Data System (ADS)

    Dehnel, Morgan Patrick

    1998-11-01

    This thesis addresses two major problems. One is of interest to commercial cyclotron manufacturers and the other is of interest to the accelerator physics community. The industrial problem was to produce a compact and modular ion source and injection system for the new TR13 H- cyclotron, which is capable of transporting and injecting a high quality and well matched beam into the cyclotron. The accelerator physics problem was to advance the science of inflector ion optical design, analysis and troubleshooting from the realm of pure simulation to the realm of measurement and experimentation. The industrial problem was solved by designing candidate injection systems in parallel with the TR13 cyclotron design. These systems were fabricated and then experimentally optimized along with the ion source on a 1 MeV test cyclotron. This work resulted in a set of ion source and injection systems with well documented and understood properties. The recommended solution for the TR13 was a cost effective injection system composed of only two axially rotated quadrupole magnets. The accelerator physics problem is the lack of measured cyclotron inflector optical data and beam related properties in the immediate vicinity of a cyclotron inflector. This required the development of an experimental technique to overcome the numerous technical difficulties associated with making measurements near a device as inaccessible as a cyclotron inflector. A diverse assembly of equipment and procedures was required: a well understood injection system, a pinhole collimator for producing beamlets for ray-tracing, a specially configured center region to expose the inflector to view, a system of scintillators in close proximity to the inflector for producing visible beamspots, a TV camera and frame grabber to record images and a set of image analysis and data processing procedures. The results obtained using this technique were: (a) measured constraints on the coefficients of an inflector's transport matrix, (b) measurement of the beam's centering, size, shape and orientation in phase space at the entrance and exit of an inflector, (c) measurements of beam displacement as a function of field and energy perturbations at an inflector exit and (d) comparison of an inflector simulation code's capabilities against detailed measured data. Such properties of a beam have not heretofore been determined experimentally.

  17. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department

  18. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  19. Guiding center model to interpret neutral particle analyzer results

    NASA Technical Reports Server (NTRS)

    Englert, G. W.; Reinmann, J. J.; Lauver, M. R.

    1974-01-01

    The theoretical model is discussed, which accounts for drift and cyclotron components of ion motion in a partially ionized plasma. Density and velocity distributions are systematically precribed. The flux into the neutral particle analyzer (NPA) from this plasma is determined by summing over all charge exchange neutrals in phase space which are directed into apertures. Especially detailed data, obtained by sweeping the line of sight of the apertures across the plasma of the NASA Lewis HIP-1 burnout device, are presented. Selection of randomized cyclotron velocity distributions about mean azimuthal drift yield energy distributions which compared well with experiment. Use of data obtained with a bending magnet on the NPA showed that separation between energy distribution curves of various mass species correlate well with a drift divided by mean cyclotron energy parameter of the theory. Use of the guiding center model in conjunction with NPA scans across the plasma aid in estimates of ion density and E field variation with plasma radius.

  20. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] andmore » the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.« less

  1. Manipulation of the micro and macro-structure of beams extracted from cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laxdal, R.E.

    1995-09-01

    It is standard practice in cyclotrons to alter the extracted micro-pulse width by using center-region slits and/or by chopping the beam before injection. The macro-structure can also be varied by means of pulsed or sinusoidal deflection devices before injection and/or after extraction. All above methods, however, involve cutting away the unwanted beam, thus reducing the time-averaged intensity. This paper will focus on some methods used to alter the time structure of extracted beams without significant beam loss. For example radial gradients in the accelerating fields from rf cavities can be utilized to compress, expand or even split longitudinally the circulatingmore » particle bunches. The macro-structure of the extracted beam can be altered by employing resonant extraction methods and replacing the static magnetic bump with either a pulsed or a sinusoidal transverse perturbation. The methods are most suitable for H cyclotrons but may also be considered in a limited scope for cyclotrons using direct extraction. Results of computer simulations and beam tests on the TRIUMF 500 MeV H{sup {minus}} cyclotron will be presented.« less

  2. Cyclotron Provides Neutron Therapy for Cancer Patients

    NASA Image and Video Library

    1978-01-21

    A cancer patient undergoes treatment in the Neutron Therapy Treatment Facility, or Cylotron, at the National Aeronautics and Space Administration (NASA) Lewis Research Center. After World War II Lewis researchers became interested in nuclear energy for propulsion. The focused their efforts on thermodynamics and strength of materials after radiation. In 1950 an 80-person Nuclear Reactor Division was created, and a cyclotron was built behind the Materials and Structures Laboratory. An in-house nuclear school was established to train these researchers in their new field. NASA cancelled its entire nuclear program in January 1973, just as the cyclotron was about to resume operations after a major upgrade. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron for a new type of radiation treatment for cancer patients. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. The facility had a dual-beam system that could target the tumor both vertically and horizontally. Over the course of five years, the cyclotron was used to treat 1200 patients. It was found to be particularly effective on salivary gland, prostrate, and other tumors. It was not as successful with tumors of the central nervous system. The program was terminated in 1980 as the Clinic began concentrating on non-radiation treatments.

  3. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  4. FREQUENCY CONTROL OF RF HEATING OF GASEOUS PLASMA

    DOEpatents

    Herold, E.W.

    1962-09-01

    This invention relates to the heating of gaseous plasma by radiofrequency ion-cyclotron resonance heating. The cyclotron resonance frequencies are varied and this invention provides means for automatically controlling the frequency of the radiofrequency to maximize the rate of heating. To this end, a servo-loop is provided to sense the direction of plasma heating with frequency and a control signal is derived to set the center frequency of the radiofrequency energy employed to heat the plasma. (AEC)

  5. Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry

    PubMed Central

    Zargan, S.; Ghafarian, P.; Shabestani Monfared, A.; Sharafi, A.A.; Bakhshayeshkaram, M.; Ay, M.R.

    2017-01-01

    Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. Materials and Methods: 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger-Muller dosimeter were also utilized for measurement purpose. Results: The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient’s head in PET/CT room and 3.5 meter from the reception desk. Conclusion: In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital. PMID:28451574

  6. Trivelpiece-Gould modes in a uniform unbounded plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less

  7. Characterization of non-polar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS).

    PubMed

    Schrader, Wolfgang; Panda, Saroj K; Brockmann, Klaus J; Benter, Thorsten

    2008-07-01

    We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.

  8. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  9. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for themore » ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].« less

  10. RF Stabilization for Storage of Antiprotons

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Lewis, Raymond A.

    2005-01-01

    Portable storage of antimatter is an important step in the experimental exploration of antimatter in propulsion applications. The High Performance Antiproton Trap (HiPAT) at NASA Marshall Space Flight Center is a Penning-Malmberg ion trap being developed to trap and store low energy antiprotons for a period of weeks. The antiprotons can then be transported for use in experiments. HiPAT is being developed and evaluated using normal matter, before an attempt is made to store and transport antiprotons. Stortd ions have inherent instabilities that limit the storage lifetime. RF stabilization at cyclotron resonance frequencies is demonstrated over a period of 6 days for normal matter ion clouds. A variety of particles have been stored, including protons, C+ ions, and H2+ ions. Cyclotron resonance frequencies are defined and experimental evidence presented to demonstrate excitation of cyclotron waves in the plasma for all three species of ions.

  11. Variability of the composition of Io's exosphere deduced from the spectrum of ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Russell, C. T.; Raeder, J.; Kivelson, M. G.

    2000-10-01

    The spectrum of ion cyclotron waves seen during the Io flybys, I0, I24, I25 and I27 is quite varied. On I0 the cyclotron waves had a single strong peak near the gyrofrequency of SO2+. On I24 there were two peaks, one at the SO+ gyrofrequency and one at the SO2+ gyrofrequency, with the former stronger. On I25, the spectrum was similar but the relative strength of the peaks reversed. On I27 the spectrum was similar to I24 with the addition of a broad band centered on the H2S+ gyrofrequency. These varying strength emissions centered at the gyrofrequency of discrete ion gyrofrequencies imply that the chemical composition of the upper atmosphere is quite variable. The strength of the waves also appears to vary from one pass to the next, with the weakest signals occurring furthest from noon solar phase angle. This latter effect may be a geometrical in origin, associated with the varying dayside atmosphere relative to the corotating plasma. A simple model of the ion pickup process and transport of fast neutrals across field lines can explain the observed local time effect, and some of the radial variation of the torus properties.

  12. Feasibility of a motional Stark effect system on the TCV tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, M.R.; Hawkes, N.; Weisen, H.

    This paper presents a feasibility study for a motional Stark effect (MSE) [F. M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)] diagnostic on the TCV tokamak. A numerical simulation code has been used to identify the optimal port arrangement and geometrical layout. It predicts the expected measurement accuracy for a range of typical plasma scenarios. With the existing neutral beam injector (NBI) and a detection system based on current day technology, it should be possible to determine the safety factor with an accuracy of the order of 5%. A vertically injected beam through the plasma center would allowmore » one to measure plasmas which are centered above the midplane, a common occurrence in connection with electron cyclotron resonance heating and electron cyclotron current drive experiments. In this case a new and ideally more powerful NBI would be required.« less

  13. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    NASA Astrophysics Data System (ADS)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  14. The Francis H. Burr Proton Therapy Center

    NASA Astrophysics Data System (ADS)

    Flanz, Jay; Kooy, Hanne; DeLaney, Thomas F.

    The Francis H. Burr Proton Therapy Center (FHBPTC) is one of the first hospital-based proton therapy (PT) facilities. Its development was the natural evolution of several decades of PT experience of the Massachusetts General Hospital treating patients at the Harvard Cyclotron Laboratory. The operations of the FHBPTC reflect the combined missions of patient care, clinical and physics research, technological developments, and education. This chapter will discuss aspects of the history, evolution, and performance of this unique PT center.

  15. Single-Event Effect Testing of the Vishay Si7414DN n-Type TrenchFET(Registered Trademark) Power MOSFET

    NASA Technical Reports Server (NTRS)

    Lauenstein, J.-M.; Casey, M. C.; Campola, M. A.; Phan, A. M.; Wilcox, E. P.; Topper, A. D.; Ladbury, R. L.

    2017-01-01

    This study was being undertaken to determine the single event effect susceptibility of the commercial Vishay 60-V TrenchFET power MOSFET. Heavy-ion testing was conducted at the Texas AM University Cyclotron Single Event Effects Test Facility (TAMU) and the Lawrence Berkeley National Laboratory BASE Cyclotron Facility (LBNL). In addition, initial 200-MeV proton testing was conducted at Massachusetts General Hospital (MGH) Francis H. Burr Proton Beam Therapy Center. Testing was performed to evaluate this device for single-event effects from lower-LET, lighter ions relevant to higher risk tolerant space missions.

  16. Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.

    2017-01-15

    The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-015). March 2005. INTERIOR WALL OF MAGNET INSIDE CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. [Simplicity or complexity of the radiopharmaceutical production process in the light of optimization of radiation protection of staff - 99mTc vs. 18F].

    PubMed

    Wrzesień, Małgorzata

    2018-05-22

    A radiopharmaceutical is a combination of a non-radioactive compound with a radioactive isotope. Two isotopes: technetium-99m (99mTc) and fluorine-18 (18F) are worth mentioning on the rich list of isotopes which have found numerous medical applications. Their similarity is limited only to the diagnostic area of applicability. The type and the energy of emitted radiation, the half-life and, in particular, the production method demonstrate their diversity. The 99mTc isotope is produced by a short-lived nuclide generator - molybdenum-99 (99Mo)/99mTc, while 18F is resulting from nuclear reaction occurring in a cyclotron. A relatively simple and easy handling of the 99Mo/99mTc generator, compared to the necessary use a cyclotron, seems to favor the principle of optimizing the radiological protection of personnel. The thesis on the effect of automation of both the 18F isotope production and the deoxyglucose labelling process on the optimization of radiological protection of workers compared to manual procedures during handling of radiopharmaceuticals labelled with 99Tc need to be verified. Measurements of personal dose equivalent Hp(0.07) were made in 5 nuclear medicine departments and 2 radiopharmaceuticals production centers. High-sensitivity thermoluminescent detectors (LiF: Mg, Cu, P - MCP-N) were used to determine the doses. Among the activities performed by employees of both 18F-fluorodeoxyglucose (18F-FDG) production centers and nuclear medicine departments, the manual quality control procedures and labelling of radiopharmaceuticals with 99mTc isotope manifest the greatest contribution to the recorded Hp(0.07). The simplicity of obtaining the 99mTc isotope as well as the complex, but fully automated production process of the 18F-FDG radiopharmaceutical optimize the radiation protection of workers, excluding manual procedures labelling with 99mTc or quality control of 18F-FDG. Med Pr 2018;69(3):317–327. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Photocopy of photograph (digital image maintained in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image maintained in LBNL Photo Lab Collection, XBD200503-00117-176). March 2005. CENTRAL COLUMN SUPPORT TO ROOF SHOWING CRANES CENTER SUPPORT TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-046). March 2005. ROOF SHIELDING BLOCK AND I-BEAM SUPPORT CONSTRUCTION, CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  2. Fragmentation studies of fulvic acids using collision induced dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Witt, Matthias; Fuchser, Jens; Koch, Boris P

    2009-04-01

    The complex natural organic matter standard Suwannee river fulvic acid (SRFA) was analyzed by negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS) using on-resonance collision induced dissociation (CID) of single ultrahigh resolved mass peaks in the ICR cell. Molecular formula assignment of precursor masses resulted in exactly one molecular formula for each of the peaks. Analyses of the corresponding fragment spectra and comparison to different standard substances revealed specific neutral losses and fragmentation patterns which result in structures consisting of a high degree of carboxyl- and fewer hydroxyl groups. The comparison of fragmented mass peaks within different pseudohomologous series (CH(2)-series, and CH(4) vs O exchange) suggested structurally based differences between these series. CID FTICR MS allowed isolating single mass peaks in a very complex natural organic matter spectrum. Subsequently, fragmentation gave structural insights into this material. Our results suggest that the structural diversity in complex humic substances is not as high as expected.

  3. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panteleev, V. N., E-mail: vnp@pnpi.spb.ru; Barzakh, A. E.; Batist, L. Kh.

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-linemore » or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.« less

  4. The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute.

    PubMed

    Panteleev, V N; Barzakh, A E; Batist, L Kh; Fedorov, D V; Ivanov, V S; Moroz, F V; Molkanov, P L; Orlov, S Yu; Volkov, Yu M

    2015-12-01

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes (82)Sr and (223,224)Ra are also presented.

  5. Overview of Light-Ion Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, William T.

    2006-03-16

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the buildingmore » of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at energies that permitted the initiation of several biological studies. It is worth noting that when the Bevatron was converted to accelerate light ions, the main push came from biomedical users who wanted to use high-LET radiation for treating human cancer.« less

  6. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-034). March 2005. MOUSE AT EAST TANGENT WITH COVER CLOSED, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-031). March 2005. MOUSE AT EAST TANGENT, WITH COVER OPEN, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  10. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  11. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  12. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  13. Cyclotron resonant scattering feature simulations. II. Description of the CRSF simulation process

    NASA Astrophysics Data System (ADS)

    Schwarm, F.-W.; Ballhausen, R.; Falkner, S.; Schönherr, G.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Fürst, F.; Marcu-Cheatham, D. M.; Hemphill, P. B.; Sokolova-Lapa, E.; Dauser, T.; Klochkov, D.; Ferrigno, C.; Wilms, J.

    2017-05-01

    Context. Cyclotron resonant scattering features (CRSFs) are formed by scattering of X-ray photons off quantized plasma electrons in the strong magnetic field (of the order 1012 G) close to the surface of an accreting X-ray pulsar. Due to the complex scattering cross-sections, the line profiles of CRSFs cannot be described by an analytic expression. Numerical methods, such as Monte Carlo (MC) simulations of the scattering processes, are required in order to predict precise line shapes for a given physical setup, which can be compared to observations to gain information about the underlying physics in these systems. Aims: A versatile simulation code is needed for the generation of synthetic cyclotron lines. Sophisticated geometries should be investigatable by making their simulation possible for the first time. Methods: The simulation utilizes the mean free path tables described in the first paper of this series for the fast interpolation of propagation lengths. The code is parallelized to make the very time-consuming simulations possible on convenient time scales. Furthermore, it can generate responses to monoenergetic photon injections, producing Green's functions, which can be used later to generate spectra for arbitrary continua. Results: We develop a new simulation code to generate synthetic cyclotron lines for complex scenarios, allowing for unprecedented physical interpretation of the observed data. An associated XSPEC model implementation is used to fit synthetic line profiles to NuSTAR data of Cep X-4. The code has been developed with the main goal of overcoming previous geometrical constraints in MC simulations of CRSFs. By applying this code also to more simple, classic geometries used in previous works, we furthermore address issues of code verification and cross-comparison of various models. The XSPEC model and the Green's function tables are available online (see link in footnote, page 1).

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-049). March 2005. TUNNEL ENTRY FROM MAIN FLOOR OF MAGNET ROOM INTO CENTER OF BEVATRON, BENEATH SOUTHWEST QUADRANT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Experimental observation of ion-cyclotron turbulence in the presence of transverse-velocity shear. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatucci, W.E.

    1994-01-01

    This laboratory investigation documents the influence of transverse, localized, dc electric fields (TLE) on the excitation of ion-cyclotron waves driven by magnetic field-aligned current (FAC) in a Q-machine plasma device. A segmented disk electrode, located on axis at the end of the plasma column, is used to independently control TLE and FAC in the plasma (potassium plasma, n approximately equals 10(exp 9) cm(exp {minus}3), rho(i) approximately equals 0.2 cm, T(e) = T(i) approximately equals 0.2 eV). Ion-cyclotron waves have been characterized in both the weak-TLE and large-FAC regime and the strong-TLE and small-FAC regime. The existence of a new categorymore » of oscillation identified as the inhomogeneous energy-density driven (IEDD) instability is verified based on the properties of the waves in the latter regime. In the weak-TLE regime, current-driven electrostatic ion-cyclotron (CDEIC) waves with features in qualitative agreement with previous laboratory results have been observed at sufficiently large FAC. These waves have a frequency spectrum with a single narrow spectral feature located slightly above the ion-cyclotron frequency (omega approximately equals 1.2 Omega(i)). The waves are standing in the radial direction with peak oscillation amplitude located in the center of the FAC channel and are azimuthally symmetric (m = 0). Small magnitude TLE were found to have negligible effect on the characteristics of the waves. In the strong-TLE regime, a decrease in the threshold FAC level is observed. This transition in the instability threshold is accompanied by changes in the frequency spectra, propagation characteristics, and mode amplitude profiles. In the presence of strong-TLE, the ion-cyclotron waves propagate azimuthally in the E x B direction with k(theta) rho(i) = 0.4 and m = 1. The frequency spectrum becomes broadband and spiky, and shifts with the applied TLE strength.« less

  16. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  17. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybridmore » FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  18. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE PAGES

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; ...

    2016-12-02

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  19. In-situ determination of residual specific activity in activated concrete walls of a PET-cyclotron room

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Toyoda, A.; Masumoto, K.; Yoshida, G.; Yagishita, T.; Nakabayashi, T.; Sasaki, H.; Matsumura, K.; Yamaya, Y.; Miyazaki, Y.

    2018-06-01

    In the decommissioning work for concrete walls of PET-cyclotron rooms, an in-situ measurement is expected to be useful for obtaining a contour map of the specific activity on the walls without destroying the structure. In this study, specific activities of γ-ray-emitting radionuclides in concrete walls were determined by using an in-situ measurement method employing a portable Ge semiconductor detector, and compared with the specific activity obtained using the sampling measurement method, at the Medical and Pharmacological Research Center Foundation in Hakui, Ishikawa, Japan. Accordingly, the specific activity could be determined by the in-situ determination method. Since there is a clear correlation between the total specific activity of γ-ray-emitting radionuclides and contact dose rate, the specific activity can be determined approximately by contact dose-rate measurement using a NaI scintillation survey meter. The specific activity of each γ-ray-emitting radionuclide can also be estimated from the contact dose rate using a NaI scintillation survey meter. The in-situ measurement method is a powerful tool for the decommissioning of the PET cyclotron room.

  20. Control system of neoclassical tearing modes in real time on HL-2A tokamak.

    PubMed

    Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong

    2017-11-01

    The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

  1. Control system of neoclassical tearing modes in real time on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong

    2017-11-01

    The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

  2. Numerical solution for linear cyclotron and diocotron modes in a nonneutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2014-10-01

    This poster presents numerical methods for solution of the linearized Vlasov-Poisson (LVP) equation applied to a cylindrical single-species plasma in a uniform magnetic field. The code is used to study z-independent cyclotron and diocotron modes of these plasmas, including kinetic effects. We transform to polar coordinates in both position and velocity space and Fourier expand in both polar angles (i.e. the cyclotron gyro angle and θ). In one approach, we then discretize in the remaining variables r and v (where v is the magnitude of the perpendicular velocity). However, using centered differences the method is unstable to unphysical eigenmodes with rapid variation on the scale of the grid. We remedy this problem by averaging particular terms in the discretized LVP operator over neighboring gridpoints. We also present a stable Galerkin method that expands the r and v dependence in basis functions. We compare the numerical results from both methods to exact analytic results for various modes. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.

  3. High power long pulse microwave generation from a metamaterial structure with reverse symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xueying; Stephens, Jacob C.; Mastovsky, Ivan; Shapiro, Michael A.; Temkin, Richard J.

    2018-02-01

    Experimental operation of a high power microwave source with a metamaterial (MTM) structure is reported at power levels to 2.9 MW at 2.4 GHz in full 1 μs pulses. The MTM structure is formed by a waveguide that is below cutoff for TM modes. The waveguide is loaded by two axial copper plates machined with complementary split ring resonators, allowing two backward wave modes to propagate in the S-Band. A pulsed electron beam of up to 490 kV, 84 A travels down the center of the waveguide, midway between the plates. The electron beam is generated by a Pierce gun and is focused by a lens into a solenoidal magnetic field. The MTM plates are mechanically identical but are placed in the waveguide with reverse symmetry. Theory indicates that both Cherenkov and Cherenkov-cyclotron beam-wave interactions can occur. High power microwave generation was studied by varying the operating parameters over a wide range, including the electron beam voltage, the lens magnetic field, and the solenoidal field. Frequency tuning with a magnetic field and beam voltage was studied to discriminate between operation in the Cherenkov mode and the Cherenkov-cyclotron mode. Both modes were observed, but pulses above 1 MW of output power were only seen in the Cherenkov-cyclotron mode. A pair of steering coils was installed prior to the interaction space to initiate the cyclotron motion of the electron beam and thus encourage the Cherenkov-cyclotron high power mode. This successfully increased the output power from 2.5 MW to 2.9 MW (450 kV, 74 A, 9% efficiency).

  4. Commercial and PET radioisotope manufacturing with a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Boothe, T. E.; McLeod, T. F.; Plitnikas, M.; Kinney, D.; Tavano, E.; Feijoo, Y.; Smith, P.; Szelecsényi, F.

    1993-06-01

    Mount Sinai has extensive experience in producing radionuclides for commercial sales and for incorporation into radiopharmaceuticals, including PET. Currently, an attempt is being made to supply radiochemicals to radiopharmaceutical manufacturers outside the hospital, to prepare radiopharmaceuticals for in-house use, and to prepare PET radiopharmaceuticals, such as 2-[F-18] FDG, for outside sales. This use for both commercial and PET manufacturing is atypical for a hospital-based cyclotron. To accomplish PET radiopharmaceutical sales, the hospital operates a nuclear pharmacy. A review of operational details for the past several years shows a continuing dependence on commercial sales which is reflected in research and developmental aspects and in staffing. Developmental efforts have centered primarily on radionuclide production, target development, and radiochemical processing optimization.

  5. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center.

    PubMed

    Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho

    2015-12-01

    The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

  6. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi, E-mail: guatemalacocoa@gmail.com; Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako, Saitama 351-0198; Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+}more » beam intensity from the RIKEN Azimuthal Varying Field cyclotron.« less

  8. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, S. C.; Oyaizu, M.; Imai, N.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  9. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.

    2014-10-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.

  10. The cyclotron laboratory and the RFQ accelerator in Bern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braccini, S.; Ereditato, A.; Kreslo, I.

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University ofmore » Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.« less

  11. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  12. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

    PubMed Central

    Chung, Kwangzoo; Kim, Jinsung; Ahn, Sung Hwan; Ju, Sang Gyu; Jung, Sang Hoon; Chung, Yoonsun; Cho, Sungkoo; Jo, Kwanghyun; Shin, Eun Hyuk; Hong, Chae-Seon; Shin, Jung Suk; Park, Seyjoon; Kim, Dae-Hyun; Kim, Hye Young; Lee, Boram; Shibagaki, Gantaro; Nonaka, Hideki; Sasai, Kenzo; Koyabu, Yukio; Choi, Changhoon; Huh, Seung Jae; Ahn, Yong Chan; Pyo, Hong Ryull; Lim, Do Hoon; Park, Hee Chul; Park, Won; Oh, Dong Ryul; Noh, Jae Myung; Yu, Jeong Il; Song, Sanghyuk; Lee, Ji Eun; Lee, Bomi; Choi, Doo Ho

    2015-01-01

    Purpose The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015. PMID:26756034

  13. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    NASA Astrophysics Data System (ADS)

    Gallart, Dani; Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; Krawczyk, Natalia; King, Damian; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H) at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ˜7.0 MW in D-T.

  14. Development of a PET cyclotron based irradiation setup for proton radiobiology

    NASA Astrophysics Data System (ADS)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan to irradiate small animals, cell cultures, or other materials or samples.

  15. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  16. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  17. Phase-resolved cyclotron spectroscopy of polars

    NASA Astrophysics Data System (ADS)

    Campbell, Ryan

    In this thesis we use phase-resolved cyclotron spectroscopy to study polars. Polars are a subset of cataclysmic variables where the primary WD is highly magnetic. In this case, the accretion flow is constrained along the magnetic field lines and eventually deposited on the WD, where the accreting material interacts with the atmosphere, forming a standing hydrodynamic shock at a location termed the accretion region, and emitting cyclotron radiation. Due to its field strength, cyclotron radiation from polars falls at either UV, optical or NIR wavelengths. While a substantial amount of optical cyclotron spectra have been published on polars, the NIR remains relatively unstudied. In this thesis, we present NIR spectroscopy for fifteen polars. Additionally, while a single cyclotron spectrum is needed to constrain the shock parameters, phase- resolved spectroscopy allows for a more in-depth analysis of the shock structure and the geometry of the accretion region. Of the fifteen polars observed, eight yielded spectra of adequate quality to be modeled in this manner: EF Eri, EQ Cet, AN UMa, VV Pup, AM Her, ST LMi, MR Ser, and MQ Dra. Initially, we used the industry standard "Constant Lambda (CL)" code to model each object. The code is fast, but produces only globally averaged values of the salient shock parameters: B - the magnetic field strength, kT - the plasma temperature, logL - the "size parameter" of the accretion column, and TH- the viewing angle between the observer and the magnetic field. For each object we present CL models for our NIR phase-resolved cyclotron spectra. Subsequently, we use a more advanced "Structured-Shock" code built by Fischer & Beuermann (2001)("F&B") to remodel three objects: EQ Cet, MQ Dra, and EF Eri. The F&B code allows for input of more physical parameters and most importantly does ray tracing through a simulated one-dimensional accretion column. To determine the outgoing spectrum, temperature and velocity profiles are needed to reconstruct the characteristics of the plasma at each location. A substantial effort was made to accurately construct these profiles. Finally, we compare the results of the CL and F&B codes to determine when the extra complexity and significantly longer computational times of F&B modeling are necessary to understand these systems.

  18. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  19. Scandium(III) complexes of monophosphorus acid DOTA analogues: a thermodynamic and radiolabelling study with (44)Sc from cyclotron and from a (44)Ti/(44)Sc generator.

    PubMed

    Kerdjoudj, R; Pniok, M; Alliot, C; Kubíček, V; Havlíčková, J; Rösch, F; Hermann, P; Huclier-Markai, S

    2016-01-28

    The complexation ability of DOTA analogs bearing one methylenephosphonic (DO3AP) or methylenephosphinic (DO3AP(PrA) and DO3AP(ABn)) acid pendant arm toward scandium was evaluated. Stability constants of their scandium(iii) complexes were determined by potentiometry combined with (45)Sc NMR spectroscopy. The stability constants of the monophosphinate analogues are somewhat lower than that of the Sc-DOTA complex. The phosphorus acid moiety interacts with trivalent scandium even in very acidic solutions forming out-of-cage complexes; the strong affinity of the phosphonate group to Sc(iii) precludes stability constant determination of the Sc-DO3AP complex. These results were compared with those obtained by the free-ion selective radiotracer extraction (FISRE) method which is suitable for trace concentrations. FISRE underestimated the stability constants but their relative order was preserved. Nonetheless, as this method is experimentally simple, it is suitable for a quick relative comparison of stability constant values under trace concentrations. Radiolabelling of the ligands with (44)Sc was performed using the radioisotope from two sources, a (44)Ti/(44)Sc generator and (44m)Sc/(44)Sc from a cyclotron. The best radiolabelling conditions for the ligands were pH = 4, 70 °C and 20 min which were, however, not superior to those of the parent DOTA. Nonetheless, in vitro behaviour of the Sc(iii) complexes in the presence of hydroxyapatite and rat serum showed sufficient stability of (44)Sc complexes of these ligands for in vivo applications. PET images and ex vivo biodistribution of the (44)Sc-DO3AP complex performed on healthy Wistar male rats showed no specific bone uptake and rapid clearance through urine.

  20. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  1. Particle-in-cell code library for numerical simulation of the ECR source plasma

    NASA Astrophysics Data System (ADS)

    Shirkov, G.; Alexandrov, V.; Preisendorf, V.; Shevtsov, V.; Filippov, A.; Komissarov, R.; Mironov, V.; Shirkova, E.; Strekalovsky, O.; Tokareva, N.; Tuzikov, A.; Vatulin, V.; Vasina, E.; Fomin, V.; Anisimov, A.; Veselov, R.; Golubev, A.; Grushin, S.; Povyshev, V.; Sadovoi, A.; Donskoi, E.; Nakagawa, T.; Yano, Y.

    2003-05-01

    The project ;Numerical simulation and optimization of ion accumulation and production in multicharged ion sources; is funded by the International Science and Technology Center (ISTC). A summary of recent project development and the first version of a computer code library for simulation of electron-cyclotron resonance (ECR) source plasmas based on the particle-in-cell method are presented.

  2. Maven Observations of Electron-Induced Whistler Mode Waves in the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C.; Espley, J.; DiBraccio, G. A.; McFadden, J. P.; Brian, D. A.; hide

    2016-01-01

    We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies.

  3. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating

    NASA Astrophysics Data System (ADS)

    Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.

    2017-09-01

    A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.

  4. Bloch equations applied to ion cyclotron resonance spectroscopy: Broadband interconversion between magnetron and cyclotron motion for ion axialization

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Marshall, Alan G.

    1993-03-01

    Conversion of magnetron motion to cyclotron motion combined with collisional cooling of the cyclotron motion provides an efficient way to reduce the kinetic energy of trapped heavy ions and to reduce their magnetron radii in an ion cyclotron resonance (ICR) ion trap. The coupling of magnetron and cyclotron motion can be realized by azimuthal quadrupolar excitation. Theoretical understanding of the coupling process has until now been based on resonant single-frequency quadrupolar excitation at the combination frequency ωc=ω++ω-, in which ωc is the ion cyclotron orbital frequency in the absence of electrostatic field; and ω+ and ω- are the reduced cyclotron and magnetron frequencies in the presence of an electrostatic trapping potential. In this work, we prove that the magnetron/cyclotron coupling is closely related to a two energy level system whose behavior is described by the well-known Bloch equations. By means of a special transformation, the equations of motion for the coupling may be expressed in Bloch-type equations in spherical coordinates. We show that magnetron-to-cyclotron conversion by single-frequency quadrupolar excitation in ICR is analogous to a 180° pulse in nuclear magnetic resonance (NMR). We go on to show that simultaneous magnetron-to-cyclotron conversion of ions over a finite mass-to-charge ratio range may be produced by quadrupolar frequency-sweep excitation, by analogy to adiabatic rapid passage in magnetic resonance. Axialization by broadband magnetron-to-cyclotron conversion followed by cyclotron cooling is successfully demonstrated experimentally for a crude oil distillate sample.

  5. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  6. Nucleic Acid analysis by fourier transform ion cyclotron resonance mass spectrometry at the beginning of the twenty-first century.

    PubMed

    Frahm, J L; Muddiman, D C

    2005-01-01

    Mass spectrometers measure an intrinsic property (i.e., mass) of a molecule, which makes it an ideal platform for nucleic acid analysis. Importantly, the unparalleled capabilities of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry further extend its usefulness for nucleic acid analysis. The beginning of the twenty-first century has been marked with notable advances in the field of FT-ICR mass spectrometry analysis of nucleic acids. Some of these accomplishments include fundamental studies of nucleic acid properties, improvements in sample clean up and preparation, better methods to obtain higher mass measurement accuracy, analysis of noncovalent complexes, tandem mass spectrometry, and characterization of peptide nucleic acids. This diverse range of studies will be presented herein.

  7. Development of a fast scintillator based beam phase measurement system for compact superconducting cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Tanushyam; Kanti Dey, Malay; Dhara, Partha

    2013-05-15

    In an isochronous cyclotron, measurements of central phase of the ion beam with respect to rf and the phase width provide a way to tune the cyclotron for maximum energy gain per turn and efficient extraction. We report here the development of a phase measurement system and the measurements carried out at the Variable Energy Cyclotron Centre's (VECC's) K= 500 superconducting cyclotron. The technique comprises detecting prompt {gamma}-rays resulting from the interaction of cyclotron ion beam with an aluminium target mounted on a radial probe in coincidence with cyclotron rf. An assembly comprising a fast scintillator and a liquid light-guidemore » inserted inside the cyclotron was used to detect the {gamma}-rays and to transfer the light signal outside the cyclotron where a matching photo-multiplier tube was used for light to electrical signal conversion. The typical beam intensity for this measurement was a few times 10{sup 11} pps.« less

  8. National Biomedical Tracer Facility. Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, R.

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research:more » fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.« less

  9. Electron dynamics in solid state via time varying wavevectors

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2018-06-01

    In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.

  10. Electron cyclotron resonance plasma reactor for production of carbon stripper foil

    NASA Astrophysics Data System (ADS)

    Faith Romero, Camille; Kanamori, Keita; Kinsho, Michikazu; Yoshimoto, Masahiro; Wada, Motoi

    2018-01-01

    A graphite antenna for the production of carbon-containing hydrogen plasmas is being developed to prepare impurity-free charge exchange foils for high-energy synchrotrons. Microwave power at 2.45 GHz frequency drives a coaxial structure antenna with a 12-mm-diameter central graphite cylinder and a tapered surrounding cylinder serving as the ground electrode. The antenna was placed in a linear magnetic field to investigate how it performs under an electron cyclotron resonance (ECR) condition. A clear resonance phenomenon was observed in plasma luminosity, microwave power absorption, and microwave power reflection when the induction current used to produce a linear magnetic field was changed. The antenna realized the best microwave coupling to the plasma with the ECR zone formed 5 mm from the end of the center electrode. The antenna realized stable operation for more than 5 h with 100 W input microwave power and with operating hydrogen pressure from 0.5 to 50 Pa.

  11. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  12. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, S. C.; Oyaizu, M.; Imai, N.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions ofmore » ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.« less

  13. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  14. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  15. The self-consistent parallel electric field due to electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. IV

    NASA Astrophysics Data System (ADS)

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-01

    The physical processes that determine the self-consistent electric field (E∥) parallel to the magnetic field have been an unresolved problem in magnetospheric physics for over 40 years. Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); Jasperse et al., Phys. Plasmas13, 112902 (2006)]). In the present paper and its companion paper [Jasperse et al., Phys. Plasmas 17, 062903 (2010)], which are intended as sequels to the earlier work, a fundamental model for downward, magnetic field-aligned (Birkeland) currents for quasisteady conditions is presented. The model includes the production of electrostatic ion-cyclotron turbulence in the long-range potential region by an electron, bump-on-tail-driven ion-cyclotron instability. Anomalous momentum transfer (anomalous resistivity) by itself is found to produce a very small contribution to E∥; however, the presence of electrostatic, ion-cyclotron turbulence has a very large effect on the altitude dependence of the entire quasisteady solution. Anomalous energy transfer (anomalous heating and cooling) modifies the density, drift, and temperature altitude profiles and hence the generalized parallel-pressure gradients and mirror forces in the electron and ion momentum-balance equations. As a result, |E∥| is enhanced by nearly a factor of 40 compared to its value when turbulence is absent. The space-averaged potential increase associated with the strong double layer at the bottom of the downward-current sheet is estimated using the FAST satellite data and the multimoment fluid theory.

  16. THE WISE LIGHT CURVES OF POLARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas E.; Campbell, Ryan K., E-mail: tharriso@nmsu.edu, E-mail: Ryan.Campbell@humboldt.edu

    2015-08-15

    We have extracted the WISE (Wide-field Infrared Survey Explorer) single-exposure data for a sample of 72 polars, which are highly magnetic cataclysmic variables (CVs). We combine these data with both published and unpublished optical and infrared data to explore the origins of the large amplitude variations seen in these systems. In nearly every case, we find evidence for cyclotron emission in the WISE bandpasses. We find that the derived magnetic field strengths for some polars are either too high, or cyclotron emission from lower field components, located spatially coincident to the main accreting poles, must be occurring. We have alsomore » estimated field strengths for a number of polars where no such values exist. In addition, contrary to expectations, we find that emission from the fundamental cyclotron harmonic (n = 1) appears to be nearly always present when the magnetic field is of the appropriate strength that it falls within a WISE bandpass. We find that the light curves for RBS 490, an ultrashort-period (46 minutes) CV, suggest that it is a polar. Modeling its spectrum indicates that its donor star is much hotter than expected. Nearly all of the detected polars show 11.5 μm (“W3 band”) excesses. The general lack of variability seen in the W3 bandpass light curves for higher-field polars demonstrates that these excesses are probably not due to cyclotron emission. There is circumstantial evidence that these excesses can be attributed to bremsstrahlung emission from their accretion streams. Reduction of the Spitzer 24 μm image of V1500 Cyg shows that it appears to be located at the center of a small nebula.« less

  17. Proton Therapy At Siteman Cancer Center: The State Of The Art

    NASA Astrophysics Data System (ADS)

    Bloch, Charles

    2011-06-01

    Barnes-Jewish Hospital is on the verge of offering proton radiation therapy to its patients. Those treatments will be delivered from the first Monarch 250, a state-of-the-art cyclotron produced by Still River Systems, Inc., Littleton, MA. The accelerator is the world's first superconducting synchrocyclotron, with a field-strength of 10 tesla, providing the smallest accelerator for high-energy protons currently available. On May 14, 2010 it was announced that the first production unit had successfully extracted 250 MeV protons. That unit is scheduled for delivery to the Siteman Cancer Center, an NCI-designated Comprehensive Cancer Center at Washington University School of Medicine. At a weight of 20 tons and with a diameter of less than 2 meters the compact cyclotron will be mounted on a gantry, another first for proton therapy systems. The single-energy system includes 3 contoured scatterers and 14 different range modulators to provide 24 distinct beam delivery configurations. This allows proton fields up to 25 cm in diameter, with a maximum range from 5.5 to 32 cm and spread-out-Bragg-peak extent up to 20 cm. Monte Carlo simulations have been run using MCNPX to simulate the clinical beam properties. Those calculations have been used to commission a commercial treatment planning system prior to final clinical measurements. MCNPX was also used to calculate the neutron background generated by protons in the scattering system and patient. Additional details of the facility and current status will be presented.

  18. Whistler and Alfvén Mode Cyclotron Masers in Space

    NASA Astrophysics Data System (ADS)

    Trakhtengerts, V. Y.; Rycroft, M. J.

    2012-10-01

    Preface; 1. Introduction; 2. Basic theory of cyclotron masers (CMs); 3. Linear theory of the cyclotron instability (CI); 4. Backward wave oscillator (BWO) regime in CMs; 5. Nonlinear cyclotron wave-particle interactions for a quasi-monochromatic wave; 6. Nonlinear interaction of quasi-monochromatic whistler mode waves with gyroresonant electrons in an in homogeneous plasma; 7. Wavelet amplification in an inhomogeneous plasma; 8. Quasi-linear theory of cyclotron masers; 9. Nonstationary generation regimes, and modulation effects; 10. ELF/VLF noise-like emissions and electrons in the Earth's radiation belts; 11. Generation of discrete ELF/VLF whistler mode emissions; 12. Cyclotron instability of the proton radiation belts; 13. Cyclotron masers elsewhere in the solar system and in laboratory plasma devices; Epilogue; Glossary of terms; List of acronyms; References; Index.

  19. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  20. Status of ion sources at National Institute of Radiological Sciences.

    PubMed

    Kitagawa, A; Fujita, T; Goto, A; Hattori, T; Hamano, T; Hojo, S; Honma, T; Imaseki, H; Katagiri, K; Muramatsu, M; Sakamoto, Y; Sekiguchi, M; Suda, M; Sugiura, A; Suya, N

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  1. A CW FFAG for Proton Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, C.; Neuffer, D. V.; Snopok, P.

    2012-05-01

    An advantage of the cyclotron in proton therapy is the continuous (CW) beam output which reduces complexity and response time in the dosimetry requirements and beam controls. A CW accelerator requires isochronous particle orbits at all energie s through the acceleration cycle and present compact isochronous cyclotrons for proton therapy reach only 250 MeV (kinetic energy) which is required for patient treatment, but low for full Proton Computed Tomography (PCT) capability. PCT specifications ne ed 300-330 MeV in order for protons to transit the human body. Recent innovations in nonscaling FFAG design have achieved isochronous performance in a compact (~3more » m radius) design at these higher energies. Preliminary isochronous designs are presented her e. Lower energy beams can be efficiently extracted for patient treatment without changes to the acceleration cycle and magnet currents.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, A.; Fujita, T.; Goto, A.

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ionmore » radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.« less

  3. Status of ion sources at National Institute of Radiological Sciencesa)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  4. Hamiltonian structure of the guiding center plasma model

    NASA Astrophysics Data System (ADS)

    Burby, J. W.; Sengupta, W.

    2018-02-01

    The guiding center plasma model (also known as kinetic MHD) is a rigorous sub-cyclotron-frequency closure of the Vlasov-Maxwell system. While the model has been known for decades and it plays a fundamental role in describing the physics of strongly magnetized collisionless plasmas, its Hamiltonian structure has never been found. We provide explicit expressions for the model's Poisson bracket and Hamiltonian and thereby prove that the model is an infinite-dimensional Hamiltonian system. The bracket is derived in a manner which ensures that it satisfies the Jacobi identity. We also report on several previously unknown circulation theorems satisfied by the guiding center plasma model. Without knowledge of the Hamiltonian structure, these circulation theorems would be difficult to guess.

  5. Commercial compact cyclotrons in the 90`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference tomore » those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.« less

  6. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expectedmore » array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).« less

  7. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.

    PubMed

    Kambali, I; Suryanto, H; Parwanto

    2016-06-01

    Routine production of F-18 radionuclide using proton beams accelerated in a cyclotron could potentially generate residual radioisotopes in the cyclotron vicinity which eventually become major safety concerns over radiation exposure to the workers. In this investigation, a typical 11-MeV proton, self-shielded cyclotron has been assessed for its residual radiation sources in the cyclotron's shielding, tank/chamber, cave wall as well as target system. Using a portable gamma ray spectroscopy system, the radiation measurement in the cyclotron environment has been carried out. Experimental results indicate that relatively long-lived radioisotopes such as Mn-54, Zn-65 and Eu-152 are detected in the inner and outer surface of the cyclotron shielding respectively while Mn-54 spectrum is observed around the cyclotron chamber. Weak intensity of Eu-152 radioisotope is again spotted in the inner and outer surface of the cyclotron cave wall. Angular distribution measurement of the Eu-152 shows that the intensity slightly drops with increasing observation angle relative to the proton beam incoming angle. In the target system, gamma rays from Co-56, Mn-52, Co-60, Mn-54, Ag-110 m are identified. TALYS-calculated nuclear cross-section data are used to study the origins of the radioactive by-products.

  8. Performance history and upgrades for the DIII-D gyrotron complex

    DOE PAGES

    Lohr, J.; Anderson, J. P.; Cengher, M.; ...

    2015-03-12

    The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.

  9. Intensity limits of the PSI Injector II cyclotron

    NASA Astrophysics Data System (ADS)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  10. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Matthew J.; Krzysko, Anthony J.; Niver, Cynthia M.

    Astatine-211 (211At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy of blood borne and metastatic cancers, as well as treatment of tumor remnants after surgical resections. The isolation of trace quantities of 211At, produced within several grams of a Bi metal cyclotron target, involves a complex, multi-step procedure: (1) Bi metal dissolution in strong HNO3, (2) distillation of the HNO3 to yield Bi salts containing 211At, (3) dissolution of the salts in strong HCl, (4) solvent extraction of 211At from bismuth salts with diisopropyl ether (DIPE), and (5) back-extraction of 211At from DIPE into NaOH,more » leading to a purified 211At product. Step (1) has been addressed first to begin the process of automating the onerous 211At isolation process. A computer-controlled Bi target dissolution system has been designed. The system performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized 211At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (HNO3 concentration and influent flow rate) were optimized prior to evaluation of the system performance on replicate cyclotron irradiated targets. The results indicate that the system performs reproducibly, having nearly quantitative release of 211At from irradiated targets, with cumulative 211At recoveries that follow a sigmoidal function. The predictable nature of the 211At release profile allows the user to tune the system to meet target processing requirements.« less

  11. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  12. Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.

    2016-03-25

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  13. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    DOE PAGES

    Kamaraju, N.; Pan, W.; Ekenberg, U.; ...

    2015-01-21

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is also shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG,more » in contrast with the dominance of superradiant damping in two-dimensional electron gases. Furthermore, these results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.« less

  14. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov

    2015-01-19

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, inmore » contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.« less

  15. Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Bao, Jian; Lin, Zhihong

    2015-11-01

    Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.

  16. Comparative study of the loss cone-driven instabilities in the low solar corona

    NASA Technical Reports Server (NTRS)

    Sharma, R. R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.

  17. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less

  18. Mass Measurements with the CSS2 and CIME cyclotrons at GANIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Hornillos, M. B.; Chartier, M.; Demonchy, C. E.

    2006-03-13

    This paper presents two original direct mass-measurement techniques developed at GANIL using the CSS2 and CIME cyclotrons as high-resolution mass spectrometers. The mass measurement with the CSS2 cyclotron is based on a time-of-flight method along the spiral trajectory of the ions inside the cyclotron. The atomic mass excesses of 68Se and 80Y recently measured with this technique are -53.958(246) MeV and -60.971(180) MeV, respectively. The new mass-measurement technique with the CIME cyclotron is based on the sweep of the acceleration radio-frequency of the cyclotron. Tests with stable beams have been performed in order to study the accuracy of this newmore » mass-measurement method and to understand the systematic errors.« less

  19. A new generation of medical cyclotrons for the 90`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discussmore » the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA.« less

  20. α-[¹¹C]-methyl-L-tryptophan PET for tracer localization of epileptogenic brain regions: clinical studies.

    PubMed

    Kumar, Ajay; Asano, Eishi; Chugani, Harry T

    2011-10-01

    Of several molecular probes used in PET, only α-[(11)C]-methyl-L-tryptophan (AMT) is able to pinpoint the epileptic focus itself in the interictal state, by revealing a focus of increased AMT uptake, even when an MRI or glucose metabolism PET demonstrates normal findings. AMT PET appears to be particularly useful in patients with tuberous sclerosis complex and in patients with cortical developmental malformations. Although the sensitivity of AMT PET in finding the epileptic focus is about 70%, its specificity is almost 100%, indicating that if AMT PET identifies an area of increased uptake, it likely represents the epileptic focus which needs to be resected for better surgical outcome. In nontuberous sclerosis complex patients with cortical dysplasia, increased AMT uptake is usually associated with cortical dysplasia type IIB and a very good surgical outcome. Previously, no imaging modality has been able to predict the exact pathology subtype or differentiate between epileptogenic and nonepileptogenic lesions interictally. The neuropathological similarities between tubers and type IIB cortical dysplasia suggest a common mechanism of epilepsy, for which AMT PET is a biomarker. Due to the limited access to AMT PET, as presently it is labeled with (11)C, which has a half-life of only 20 min and therefore has to be synthesized on site using a cyclotron, most of the AMT experience has originated primarily from only two centers. Therefore, there is a need for more clinical studies from other centers and this can be greatly facilitated if AMT can be labeled with (18)F, a PET radionuclide widely available with a half-life of 110 min.

  1. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  2. Integro-differential modeling of ICRH wave propagation and damping at arbitrary cyclotron harmonics and wavelengths in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.

    2014-02-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester & R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester & E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.

  3. Interpretive Experiments: An Interpretive Experiment in Ion Cyclotron Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    Burnier, R. C.; Freiser, B. S.

    1979-01-01

    Provides a discussion which is intended for chemistry college students on the ion cyclotron resonance (ICR) spectroscopy, the physical basis for ion cyclotron resonance, and the experimental methodology employed by ICR spectroscopists. (HM)

  4. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreeraj, T., E-mail: sreerajt13@iigs.iigm.res.in; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: gslakhina@gmail.com

    2016-08-15

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron andmore » acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.« less

  5. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  6. The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.

    1985-01-01

    The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.

  7. Identification of chemical components in Baidianling Capsule based on gas chromatography-mass spectrometry and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wu, Wenying; Chen, Yu; Wang, Binjie; Sun, Xiaoyang; Guo, Ping; Chen, Xiaohui

    2017-08-01

    Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  9. Modification and integration of JSW cyclotron GAS targets at the national institutes of health cyclotron facility

    NASA Astrophysics Data System (ADS)

    Finn, R.; Plascjak, P.; Sheh, Y.; Yamashita, Y.; Yoshida, H.; Adams, R.; Simpson, N.; Larson, S.

    1987-04-01

    The Cyclotron staff at the National Institutes of Health is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived radiopharmaceutical agents for clinical evaluation. The existence of two cyclotrons and the requests for cyclotron-produced radionuclides, principally short-lived positron-emitting ones, necessitates an efficient and cost-effective program. The clinical need for 15O labelled water exemplifies the modification and effective coupling of two supplied gas target systems without detriment to either individual product. 15O labeled oxygen, produced from the 14N(d,n) 15O nuclear reaction, is combined with the target gas for 11C labelled cyanide production through standard fittings to achieve the chemical oxidation. The system allows an "on-line" product of extremely high yield and excellent radionuclidic purity. The operational characteristics of the redesigned commercial cyclotron targetry system and the radiochemical considerations are presented.

  10. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    PubMed

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The importance of plasma effects on electron-cyclotron maser-emission from flaring loops

    NASA Technical Reports Server (NTRS)

    Sharma, R. R.; Vlahos, L.; Papadopoulos, K.

    1982-01-01

    Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.

  12. Electrostatic waves in the warm magnetoplasma at the cyclotron harmonic frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwal, A.K.; Misra, K.D.

    1977-09-01

    Mode conversion and collisionless absorption of electromagnetic wave at the cyclotron harmonic frequencies in an inhomogeneous non-Maxwellian magnetoplasma have been studied. Under suitable energy transfer condition the converted electrostatic wave (plasma wave) either grows or damps. The expressions for the growth/damping rates of this wave have been derived and studied at the cyclotron harmonic frequencies. The effect of the temperature anisotropy on the growth/damping rate of the electrostatic wave at the second cyclotron harmonic frequency has been shown. Growth of such electrostatic waves at ionospheric heights may explain the observed upper hybrid resonance (UHR) echoes and noise bands at themore » second cyclotron harmonic frequency.« less

  13. Observation of Poincaré-Andronov-Hopf Bifurcation in Cyclotron Maser Emission from a Magnetic Plasma Trap

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.

    2018-04-01

    We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap.

  14. High-Amplitude, Rapid Photometric Variation of the New Polar Master OT J132104.0+560957.8

    DTIC Science & Technology

    2015-02-05

    channel the captured material onto cyclotron -emitting accretion regions near the WD’s magnetic poles. Because cyclotron emission is heavily beamed, it...of the cyclotron -emitting region can produce dramatic pho- tometric variability modulated at the WD’s spin period (e.g., Gänsicke et al. 2001). A...observations of J1321 could detect the polarized cyclotron emission from the accretion region, conclusively verifying this classification. Figure 1. The

  15. Electron cyclotron emission from nonthermal tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.W.; O'Brien, M.R.; Rozhdestvensky, V.V.

    1993-02-01

    Electron cyclotron emission can be a sensitive indicator of nonthermal electron distributions. A new, comprehensive ray-tracing and cyclotron emission code that is aimed at predicting and interpreting the cyclotron emission from tokamak plasmas is described. The radiation transfer equation is solved along Wentzel--Kramers--Brillouin (WKB) rays using a fully relativistic calculation of the emission and absorption from electron distributions that are gyrotropic and toroidally symmetric, but may be otherwise arbitrary functions of the constants of motion. Using a radial array of electron distributions obtained from a bounce-averaged Fokker--Planck code modeling dc electron field and electron cyclotron heating effects, the cyclotron emissionmore » spectra are obtained. A pronounced strong nonthermal cyclotron emission feature that occurs at frequencies relativistically downshifted to second harmonic cyclotron frequencies outside the tokamak is calculated, in agreement with experimental results from the DIII-D [J. L. Luxon and L. G. Davies, Fusion Technol. [bold 8], 441 (1985)] and FT-1 [D. G. Bulyginsky [ital et] [ital al]., in [ital Proceedings] [ital of] [ital the] 15[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating], Dubrovnik, 1988 (European Physical Society, Petit-Lancy, 1988), Vol. 12B, Part II, p. 823] tokamaks. The calculations indicate the presence of a strong loss mechanism that operates on electrons in the 100--150 keV energy range.« less

  16. Consequences of electroplated targets on radiopharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Finn, R. D.; Tirelli, S.; Sheh, Y.; Knott, A.; Gelbard, A. S.; Larson, S. M.; Dahl, J. R.

    1991-05-01

    The staff of the cyclotron facility at Memorial Sloan-Kettering Cancer Center is involved in a comprehensive radionuclide preparation program which culminates with the formulation of numerous requested short-lived, positron-emitting radiopharmaceutical agents for clinical investigation. Both the produced radionuclide as well as the final radiolabeled compound are subjected to stringent quality control standards including assays for radiochemical and chemical purity. The subtle chemical consequences resulting from the irradiation of a nickel-plated target for 13N production serve to emphasize some of these potential technical difficulties.

  17. Measurement of axial injection displacement with trim coil current unbalance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covo, Michel Kireeff, E-mail: mkireeffcovo@lbl.gov

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  18. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MRmore » application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.« less

  19. Ion source and injection line for high intensity medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less

  20. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  1. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  2. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  3. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  4. BEST medical radioisotope production cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beammore » intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.« less

  5. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  6. 75 FR 48939 - National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF COMMERCE International Trade Administration National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on Applications for Duty-Free Entry of Scientific... Cyclotron Laboratory of Michigan State University. Instrument: Radio Frequency Quadropole Accelerator (RFQ...

  7. PET - radiopharmaceutical facilities at Washington University Medical School - an overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dence, C.S.; Welch, M.J.

    1994-12-31

    The PET program at Washington University has evolved over more than three decades of research and development in the use of positron-emitting isotopes in medicine and biology. In 1962 the installation of the first hospital cyclotron in the USA was accomplished. This first machine was an Allis Chalmers (AC) cyclotron and it was operated until July, 1990. Simultaneously with this cyclotron the authors also ran a Cyclotron Corporation (TCC) CS-15 cyclotron that was purchased in 1977. Both of these cyclotrons were maintained in-house and operated with a relatively small downtime (approximately 3.5%). After the dismantling of the AC machine inmore » 1990, a Japanese Steel Works 16/8 (JSW-16/8) cyclotron was installed in the vault. Whereas the AC cyclotron could only accelerate deuterons (6.2 MeV), the JSW - 16/8 machine can accelerate both protons and deuterons, so all of the radiopharmaceuticals can be produced on either of the two presently owned accelerators. At the end of May 1993, the medical school installed the first clinical Tandem Cascade Accelerator (TCA) a collaboration with Science Research Laboratories (SRL) of Somerville, MA. Preliminary target testing, design and development are presently under way. In 1973, the University installed the first operational PETT device in the country, and at present there is a large basic science and clinical research program involving more than a hundred staff in nuclear medicine, radiation sciences, neurology, neurosurgery, psychiatry, cardiology, pulmonary medicine, oncology, and surgery.« less

  8. A review of ion sources for medical accelerators (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, M.; Kitagawa, A.

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespreadmore » since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under development for the boron neutron capture therapy. This treatment is conventionally demonstrated by a nuclear reactor, but it is strongly expected to replace the reactor by the accelerator. We report status of ion source for medical application and such scope for further developments.« less

  9. A New Active Space Radiation Instruments for the International Space Station, A-DREAMS

    NASA Astrophysics Data System (ADS)

    Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo

    For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.

  10. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  11. Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Centera)

    NASA Astrophysics Data System (ADS)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.; Scheloske, S.; Spädtke, P.; Tinschert, K.

    2008-02-01

    Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year.

  12. Rapid Trace Detection and Isomer Quantitation of Pesticide Residues via Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wu, Xinzhou; Li, Weifeng; Guo, Pengran; Zhang, Zhixiang; Xu, Hanhong

    2018-04-18

    Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) has been applied for rapid, sensitive, undisputed, and quantitative detection of pesticide residues on fresh leaves with little sample pretreatment. Various pesticides (insecticides, bactericides, herbicides, and acaricides) are detected directly in the complex matrix with excellent limits of detection down to 4 μg/L. FTICR-MS could unambiguously identify pesticides with tiny mass differences (∼0.017 75 Da), thereby avoiding false-positive results. Remarkably, pesticide isomers can be totally discriminated by use of diagnostic fragments, and quantitative analysis of pesticide isomers is demonstrated. The present results expand the horizons of the MALDI-FTICR-MS platform in the reliable determination of pesticides, with integrated advantages of ultrahigh mass resolution and accuracy. This method provides growing evidence for the resultant detrimental effects of pesticides, expediting the identification and evaluation of innovative pesticides.

  13. Extraction channel design based on an equivalent lumped parameter method for a SCC-250 MeV superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Zhang, Lige; Fan, Kuanjun; Hu, Shengwei; Li, Xiaofei; Mei, Zhiyuan; Zeng, Zhijie; Chen, Wei; Qin, Bin; Rao, Yinong

    2018-07-01

    A SCC-250 MeV cyclotron, producing a 250 MeV proton beam, is under development in Huazhong University of Science and Technology (HUST) for proton therapy. The magnetic flux density, as a function of radius, decreases rapidly in the beam extraction region, which increases the radial beam size continuously along the extraction orbit. In this paper, an extraction channel inside the SCC-250 MeV is designed to control the beam size using passive magnetic channels. An equivalent lumped parameter method is used to establish the model of the extraction channel in the complex fringe magnetic field of the main magnet. Then, the extraction channel is designed using the lattice design software MADX. The beam envelopes are verified using particle tracing method. The maximum radial size of 6.8 mm and axial size of 4.3 mm meet the requirements of the extraction from the SCC-250 MeV.

  14. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchiyama, A., E-mail: a-uchi@riken.jp; Ozeki, K.; Higurashi, Y.

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS asmore » well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.« less

  15. Cyclotrons and positron emitting radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  16. Quantum non demolition measurement of cyclotron excitations in a Penning trap

    NASA Technical Reports Server (NTRS)

    Marzoli, Irene; Tombesi, Paolo

    1993-01-01

    The quantum non-demolition measurement of the cyclotron excitations of an electron confined in a Penning trap could be obtained by measuring the resonance frequency of the axial motion, which is coupled to the cyclotron motion through the relativistic shift of the electron mass.

  17. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  18. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  19. The rare isotope beams production at the Texas A and M university Cyclotron Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabacaru, G.; May, D. P.; Chubarian, G.

    2013-04-19

    The Cyclotron Institute at Texas A and M initiated an upgrade project for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) and a heavy-ion guide coupled (HIG) with an Electron Cyclotron Resonance Ion Source (ECRIS) constructed for charge-boosting (CB-ECRIS). This scheme is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources and devices used in the project is presented.

  20. Production of novel diagnostic radionuclides in small medical cyclotrons.

    PubMed

    Synowiecki, Mateusz Adam; Perk, Lars Rutger; Nijsen, J Frank W

    2018-01-01

    The global network of cyclotrons has expanded rapidly over the last decade. The bulk of its industrial potential is composed of small medical cyclotrons with a proton energy below 20 MeV for radionuclides production. This review focuses on the recent developments of novel medical radionuclides produced by cyclotrons in the energy range of 3 MeV to 20 MeV. The production of the following medical radionuclides will be described based on available literature sources: Tc-99 m, I-123, I-124, Zr-89, Cu-64, Ga-67, Ga-68, In-111, Y-86 and Sc-44. Remarkable developments in the production process have been observed in only some cases. More research is needed to make novel radionuclide cyclotron production available for the medical industry.

  1. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  3. [Microeconomics of introduction of a PET system based on the revised Japanese National Insurance reimbursement system].

    PubMed

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi

    2003-11-01

    It is crucial to evaluate an annual balance before-hand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system.

  4. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  5. BEARS: Radioactive ion beams at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C andmore » 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.« less

  6. ELECTRONUCLEAR RESEARCH DIVISION SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING MARCH 20, 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, F.T. ed.

    1955-06-24

    The 86-in. cyclotron is being modified to provide for deflection of the proton beam. Radioisotope production and cyclotron operation before shut-down are summarized. With the use of the 63-in. cyclotron, the absolute values of the electron capture and loss cross sections for elastic scattering of N by N was measured at energies from 13 to 22 Mev. A double-focusing 90 deg magnet is being designed for use in identifying the reaction products from N-induced nuclear reactions. The 44-in. cyclotron is being revised to provide for the acceleration of protons to 1.5 and 5 Mev. The feasibility of converting the 44-more » in. cyclotron to a 48-in. heavy-particle cyclotron is being studied, and design specifications are given. The production of Pu isotopes by electromagnetic separation, Pu recycle chemistry, and product processing are discussed. The Army Package Power Reactor program is summarized. APPR-type fuel assemblies have been fabricated for irradiation experiments and are being corrosion tested. Feasibility studies of a fixed-frequency 1-bev accelerator are reported. (W.L.H.)« less

  7. Cyclotron emission near stellar mass black holes

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.

    1984-01-01

    Cyclotron emission in the inner regions of an accretion disk around a matter accreting black hole can be appreciable. In the case of the X-ray source Cyg X-1, cyclotron emission may provide the soft photons needed for 'Comptonization' to produce high energy X-rays. The inverse correlation between the fluxes of high energy and low energy X-rays during the 'high' and 'low' states of Cyg X-1, may be understood as a result of the variation of the rate of accretion and the Compton scattering of the cyclotron photons. In the case of the X-ray source GX 339-4, the observed optical flux during the high states does not seem to be due to cyclotron emission, but probably due to reprocessing of high energy X-rays by the outer regions of the disk.

  8. Shielding design of the Mayo Clinic Scottsdale cyclotron vault

    NASA Astrophysics Data System (ADS)

    Riper, Kenneth A. Van; Metzger, Robert L.; Nelson, Kevin

    2017-09-01

    Mayo Clinic Scottsdale (Scottsdale, Arizona) is building a cyclotron vault containing a cyclotron with adjacent targets and a beam line leading to an external target. The targets are irradiated by high energy (15 to 16.5 MeV) protons for the production of radioisotopes. We performed Monte Carlo radiation transport simulations to calculate the radiation dose outside of the vault during irradiation of the cyclotron and external targets. We present the Monte Carlo model including the geometry, sources, and variance reduction methods. Mesh tallies surrounding the vault show the external dose rate is within acceptable limits.

  9. Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex.

    PubMed

    Ihling, Christian; Schmidt, Andreas; Kalkhof, Stefan; Schulz, Daniela M; Stingl, Christoph; Mechtler, Karl; Haack, Michael; Beck-Sickinger, Annette G; Cooper, Dermot M F; Sinz, Andrea

    2006-08-01

    For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.

  10. Study of electrostatic electron cyclotron parallel flow velocity shear instability in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Kandpal, Praveen; Pandey, R. S.

    2018-05-01

    In the present paper, the study of electrostatic electron cyclotron parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field has been carried out in the magnetosphere of Saturn. Dimensionless growth rate variation of electron cyclotron waves has been observed with respect to k⊥ ρe for various plasma parameters. Effect of velocity shear scale length (Ae), inhomogeneity (P/a), the ratio of ion to electron temperature (Ti/Te) and density gradient (ɛnρe) on the growth of electron cyclotron waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation and computation of dispersion relation and growth rate have been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the relevant data from the Cassini spacecraft in the inner magnetosphere of Saturn. We have considered ambient magnetic field data and other relevant data for this study at the radial distance of ˜4.82-5.00 Rs. In our study velocity shear and ion to electron temperature ratio have been observed to be the major sources of free energy for the electron cyclotron instability. The inhomogeneity of electric field caused a small noticeable impact on the growth rate of electrostatic electron cyclotron instability. Density gradient has been observed playing stabilizing effect on electron cyclotron instability.

  11. Systematic Study of Three-Nucleon System Dynamics in Deuteron-Proton Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Kozela, A.; Ciepał, I.; Garbacz, M.; Jamróz, B.; Kłos, B.; Kistryn, St.; Khatri, G.; Kuboś, J.; Kulessa, P.; Liptak, A.; Parol, W.; Rusnok, A.; Sȩkowski, P.; Skwira-Chalot, I.; Stephan, E.; Wilczek, A.; Włoch, B.; Zejma, J.

    2017-03-01

    We report on preliminary results of the first measurement of elastic scattering of protons from deuterons and proton induced deuteron breakup at proton beam energy of 108 MeV conducted at new Cyclotron Center Bronowice IFJ PAN in Kraków. The experiment is aimed at precise determination of the differential cross section for extensive set of kinematical configurations in a wide range of angular acceptance. In the first data taking run the average statistical per-point accuracy of about 5% has been reached.

  12. Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework

    NASA Astrophysics Data System (ADS)

    Winklehner, Daniel; Adelmann, Andreas; Gsell, Achim; Kaman, Tulin; Campo, Daniela

    2017-12-01

    We present an upgrade to the particle-in-cell ion beam simulation code opal that enables us to run highly realistic simulations of the spiral inflector system of a compact cyclotron. This upgrade includes a new geometry class and field solver that can handle the complicated boundary conditions posed by the electrode system in the central region of the cyclotron both in terms of particle termination, and calculation of self-fields. Results are benchmarked against the analytical solution of a coasting beam. As a practical example, the spiral inflector and the first revolution in a 1 MeV /amu test cyclotron, located at Best Cyclotron Systems, Inc., are modeled and compared to the simulation results. We find that opal can now handle arbitrary boundary geometries with relative ease. Simulated injection efficiencies and beam shape compare well with measured efficiencies and a preliminary measurement of the beam distribution after injection.

  13. SIN accelerator, operational experience and improvement programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joho, W.; Olivo, M.; Stammbach, T.

    1977-06-01

    The SIN meson facility, in operation since 1974, consists of a 590 MeV ring cyclotron for protons and a 72 MeV injector cyclotron. The average beam current on target is presently about 50 ..mu..A, the peak being 112 ..mu..A. Extraction efficiency, once considered a severe handicap for cyclotrons, is now 99.6 to 99.9% for the ring cyclotron and about 90% for the injector. Many improvements in both accelerators allow single turn extraction in the ring cyclotron. The present current limit is given by the injector, while the ring itself could accept now a 600 ..mu..A beam, with 2 to 4more » mA as an ultimate limit. Some muon experiments require a pulsed beam with on-off times in the order of the lifetime of the muon. First trials with beam pulse frequencies of 200 and 400 kHz and a 50% duty cycle have been successful.« less

  14. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    DOE PAGES

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less

  15. NORTICA—a new code for cyclotron analysis

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  16. Electron Gyro-Harmonic Effects on Ionospheric Stimulated Brillouin Scatter

    DTIC Science & Technology

    2014-08-21

    27709-2211 Brillouin, SBS, emission lines, pump frequency stepping, cyclotron , EIC, airglow, upper hybrid REPORT DOCUMENTATION PAGE 11. SPONSOR...direction and the background magnetic field vector, the excited electrostatic wave could be either ion acoustic (IA) or electrostatic ion cyclotron (EIC...A. Hedberg, B. Lundborg, P. Stubbe, H. Kopka, and M. T. Rietveld (1989), Stimulated electromagnetic emission near electron cyclotron harmonics in

  17. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  18. mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng

    2017-09-01

    Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.

  19. Cyclotron decay time of a two-dimensional electron gas from 0.4 to 100 K

    NASA Astrophysics Data System (ADS)

    Curtis, Jeremy A.; Tokumoto, Takahisa; Hatke, A. T.; Cherian, Judy G.; Reno, John L.; McGill, Stephen A.; Karaiskaj, Denis; Hilton, David J.

    2016-04-01

    We have studied the cyclotron decay time of a Landau-quantized two-dimensional electron gas as a function of temperature (0.4-100 K) at a fixed magnetic field (±1.25 T ) using terahertz time-domain spectroscopy in a gallium arsenide quantum well with a mobility of μd c=3.6 ×106cm2V-1s-1 and a carrier concentration of ns=2 ×1011cm-2 . We find a cyclotron decay time that is limited by superradiant decay of the cyclotron ensemble and a temperature dependence that may result from both dissipative processes as well as a decrease in ns below 1.5 K . Shubnikov-de Haas characterization determines a quantum lifetime, τq=1.1 ps , which is significantly faster than the corresponding dephasing time, τs=66.4 ps , in our cyclotron data. This is consistent with small-angle scattering as the dominant contribution in this sample, where scattering angles below θ ≤13∘ do not efficiently contribute to dephasing. Above 50 K , the cyclotron oscillations show a strong reduction in both the oscillation amplitude and lifetime that result from polar optical phonon scattering.

  20. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  1. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes

    NASA Astrophysics Data System (ADS)

    Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.

    2018-02-01

    Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.

  2. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  3. Centrifugal particle confinement in mirror geometry

    NASA Astrophysics Data System (ADS)

    White, Roscoe; Hassam, Adil; Brizard, Alain

    2018-01-01

    The use of supersonic rotation of a plasma in mirror geometry has distinct advantages for thermonuclear fusion. The device is steady state, there are no disruptions, the loss cone is almost closed, sheared rotation stabilizes magnetohydrodynamic instabilities as well as plasma turbulence, there are no runaway electrons, and the coil configuration is simple. In this work, we examine the effect of rotation on mirror confinement using a full cyclotron orbit code. The full cyclotron simulations give a much more complete description of the particle energy distribution and losses than the use of guiding center equations. Both collisionless loss as a function of rotation and the effect of collisions are investigated. Although the cross field diffusion is classical, we find that the local rotating Maxwellian is increased to higher energy, increasing the fusion rate and also enhancing the radial diffusion. We find a loss channel not envisioned with a guiding center treatment, but a design can be chosen that can satisfy the Lawson criterion for ions. Of course, the rotation has a minimal effect on the alpha particle birth distribution, so there is initially loss through the usual loss cone, just as in a mirror with no rotation. However after this loss, the alphas slow down on the electrons with little pitch angle scattering until reaching low energy, so over half of the initial alpha energy is transferred to the electrons. The important problem of energy confinement, with losses primarily through the electron channel, is not addressed in this work. We also discuss the use of rotating mirror geometry to produce an ion thruster.

  4. Anisotropic dyonic black brane and its effects on holographic conductivity

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2017-10-01

    We investigate a massive gravity theory involving the SL(2 , R) symmetry and anisotropy. Due to the SL(2 , R) invariance of the equations of motion, the complex con-ductivity of this model transforms covariantly under the SL(2 , R) transformation and the ratio of DC conductivities in different spatial directions is preserved even after the SL(2 , R) transformation. We further investigate AC and Hall conductivities by utilizing the Kubo formula. There exists a Drude-like peak in the region with a small anisotropy, while such a Drude peak disappears when anisotropy becomes large. We also show that the complex conductivity can have a cyclotron frequency pole even beyond the hydrodynamic limit.

  5. "Unresolved Complex Mixture" (UCM): A brief history of the term and moving beyond it.

    PubMed

    Farrington, John W; Quinn, James G

    2015-07-15

    The term "Unresolved Complex Mixture" (UCM) has been used extensively for decades to describe a gas chromatographic characteristic indicative of the presence of fossil fuel hydrocarbons (mainly petroleum hydrocarbons) in hydrocarbons isolated from aquatic samples. We chronicle the origin of the term. While it is still a useful characteristic for screening samples, more modern higher resolution two dimensional gas chromatography and gas chromatography coupled with advanced mass spectrometry techniques (Time-of-Flight or Fourier Transform-Ion Cyclotron Resonance) should be employed for analyses of petroleum contaminated samples. This will facilitate advances in understanding of the origins, fates and effects of petroleum compounds in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  7. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  8. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  9. High current H{sub 2}{sup +} cyclotrons for neutrino physics: The IsoDAR and DAE{delta}ALUS projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jose R.; Collaboration: DAE delta ALUS Collaboration

    2013-04-19

    Using H{sub 2}{sup +} ions is expected to mitigate the two major impediments to accelerating very high currents in cyclotrons, due to lower space charge at injection, and stripping extraction. Planning for peak currents of 10 particle milliamps at 800 MeV/amu, these cyclotrons can generate adequate neutrino fluxes for Decay-At-Rest (DAR) studies of neutrino oscillation and CP violation. The Injector Cyclotron, at 60 MeV/amu can also provide adequate fluxes of electron antineutrinos from {sup 8}Li decay for sterile neutrino searches in existing liquid scintillator detectors at Kam LAND or SNO+. This paper outlines programs for designing and building these machines.

  10. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunologymore » and pharmacology components of the program.« less

  11. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  12. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas.

    PubMed

    Alonso, M P; Figueiredo, A C A; Borges, F O; Elizondo, J I; Galvão, R M O; Severo, J H F; Usuriaga, O C; Berni, L A; Machida, M

    2010-10-01

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfvén wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfvén wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  13. Selective ionization of dissolved organic nitrogen by positive ion atmospheric pressure photoionization coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Podgorski, David C; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T

    2012-06-05

    Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.

  14. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  15. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158more » molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).« less

  16. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  17. Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.

    2016-06-01

    As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.

  18. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India

    PubMed Central

    Shaiju, V. S.; Sharma, S. D.; Kumar, Rajesh; Sarin, B.

    2009-01-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as 18F, 11C, 15O, 13N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel. PMID:20098564

  19. ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from about 2.5 to 4.5 R(E)

    NASA Technical Reports Server (NTRS)

    Catell, C. A.; Mozer, F. S.; Roth, I.; Anderson, R. R.; Elphic, R. C.

    1991-01-01

    Quasi-monochromatic waves at about the hydrogen cyclotron frequency were observed as the ISEE 1 satellite traversed auroral field lines at radial distances of about 2.5-4.5 R(E) near midnight on June 19, 1981. Waves and both lower and higher frequencies were observed at higher altitudes, and possible electrostatic helium cyclotron and oxygen cyclotron waves occurred at lower altitudes. Upflowing hydrogen and oxygen beams and field-aligned currents occurred simultaneously. The features of the waves are most consistent with the current-driven mode. In addition, numerical studies of the linear dispersion relation, using parameters based on the observations, show that both the parallel and oblique two-stream modes and the ion-beam-driven modes were stable while oblique current-driven modes were unstable. The O(+) and H(+) distributions provide evidence for interactions with local electrostatic ion cyclotron waves and for the H(+)-O(+) two-stream instability at altitudes below the satellite.

  20. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    DOE PAGES

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less

  1. Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grosshans, Peter B.; Chen, Ruidan; Limbach, Patrick A.; Marshall, Alan G.

    1994-11-01

    We present the first Fourier transform ion cyclotron resonance (FT-ICR) ion trap designed to produce both a linear spatial variation of the excitation electric potential field and a linear response of the detection circuit to the motion of the confined ions. With this trap, the magnitude of the detected signal at a given ion cyclotron frequency varies linearly with both the number of ions of given mass-to-charge ratio and also with the magnitude-mode excitation signal at the ion cyclotron orbital frequency; the proportionality constant is mass independent. Interestingly, this linearization may be achieved with any ion trap geometry. The excitation/detection design consists of an array of capacitively coupled electrodes which provide a voltage-divider network that produces a nearly spatially homogeneous excitation electric field throughout the linearized trap; resistive coupling to the electrodes isolates the a.c. excitation (or detection) circuit from the d.c. (trapping) potential. The design is based on analytical expressions for the potential associated with each electrode, from which we are able to compute the deviation from linearity for a trap with a finite number of elements. Based on direct experimental comparisons to an unmodified cubic trap, the linearized trap demonstrates the following performance advantages at the cost of some additional mechanical complexity: (a) signal response linearly proportional to excitation electric field amplitude; (b) vastly reduced axial excitation/ejection for significantly improved ion relative abundance accuracy; (c) elimination of harmonics and sidebands of the fundamental frequencies of ion motion. As a result, FT-ICR mass spectra are now more reproducible. Moreover, the linearized trap should facilitate the characterization of other fundamental aspects of ion behavior in an ICR ion trap, e.g. effects of space charge, non-quadrupolar electrostatic trapping field, etc. Furthermore, this novel design should improve significantly the precision of ion relative abundance and mass accuracy measurements, while removing spectral artifacts of the detection process. We discuss future modifications that linearize the spatial variation of the electrostatic trapping electric field as well, thereby completing the linearization of the entire FT-ICR mass spectrometric techniques. Suggested FT-ICR mass spectrometric applications for the linearized trap are discussed.

  2. The Multiple Gyrotron System on the DIII-D Tokamak

    DOE PAGES

    Lohr, J.; Anderson, J.; Brambila, R.; ...

    2015-08-28

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less

  3. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spirin, K. E., E-mail: spirink@ipmras.ru; Krishtopenko, S. S.; Sadofyev, Yu. G.

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density ofmore » states at the Landau levels.« less

  4. Fabrication of the Superferric Cyclotron Gas-stopper Magnet at NSCL at Michigan State University

    NASA Astrophysics Data System (ADS)

    Chouhan, S. S.; Bollen, G.; DeKamp, J.; Green, M. A.; Lawton, D.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Schwarz, S.; Zeller, A. F.

    2014-05-01

    The magnet for the cyclotron gas stopper is a newly designed, large warm-iron superconducting cyclotron sector gradient dipole. The maximum field in the centre (gap = 0.18 m) is 2.7 T. The outer diameter of magnet yoke is 4.0 m, with a pole radius of 1.1 m and B*ρ = 1.8 T m. The fabrication and assembly of the iron return yoke and twelve pole pieces is complete. Separate coils are mounted on the return yokes that have a total mass of about 167 metric tons of iron. This paper illustrates the design and the fabrication process for the cyclotron gas-stopper magnet that is being fabricated at MSU.

  5. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  6. Design study of an ultra-compact superconducting cyclotron for isotope production

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  7. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.

  8. Multi-ion, multi-event test of ion cyclotron resonance heating

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1993-01-01

    The multi-ion, multi-event study of ion cyclotron resonance heating has been funded to study ion energization through ion cyclotron resonance with low frequency broadband electromagnetic turbulence. The modeling algorithm for the ion cyclotron resonance heating (ICRH) of oxygen ions was presented in Crew et al. (1990). Crew and his co-authors developed a two-parameter representation of selected oxygen conic distributions and modelled the conic formation in terms of resonance heating. The first year of this study seeks to extend the work of Crew and his co-authors by testing the applicability of the ICRH mechanism to helium ion conic distributions, using data obtained from the Energetic Ion Composition Spectrometer and the Plasma Wave Instrument on Dynamics Explorer 1.

  9. Hole-cyclotron instability in semiconductor quantum plasmas

    NASA Astrophysics Data System (ADS)

    Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.

    2018-01-01

    The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.

  10. Trajectories of charged particles in radial electric and uniform axial magnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1979-01-01

    Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.

  11. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  12. A PDP-15 to industrial-14 interface at the Lewis Research Center's cyclotron

    NASA Technical Reports Server (NTRS)

    Kebberly, F. R.; Leonard, R. F.

    1977-01-01

    An interface (hardware and software) was built which permits the loading, monitoring, and control of a digital equipment industrial-14/30 programmable controller by a PDP-15 computer. The interface utilizes the serial mode for data transfer to and from the controller, so that the required hardware is essentially that of a teletype unit except for the speed of transmission. Software described here permits the user to load binary paper tape, read or load individual controller memory locations, and if desired turn controller outputs on and off directly from the computer.

  13. Cyclotron Production of Medical Radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  14. Building 211 cyclotron characterization survey report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  15. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron.

    PubMed

    Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen

    2015-12-01

    To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  16. Low energy cyclotron for radiocarbon dating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer.more » These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.« less

  17. The National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Gelbke, C. Korad; Morrissey, D. J.; York, R. C.

    1996-10-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.

  18. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  19. Electromagnetic ion cyclotron waves in the helium branch induced by multiple electromagnetic ion cyclotron triggered emissions

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark

    2011-09-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  20. Evaluation of induced activity in various components of a PET-cyclotron

    NASA Astrophysics Data System (ADS)

    Toyoda, A.; Yoshida, G.; Matsumura, H.; Masumoto, K.; Nakabayashi, T.; Yagishita, T.; Sasaki, H.

    2018-06-01

    For decommissioning a cyclotron facility, it is important to evaluate the induced activity of the various components of the cyclotron; however, activation of the metal components has been rarely investigated. In this study, two types of cyclotrons were examined; one is a proton acceleration type using a deflector, and another is a hydride ion (H-) acceleration type using a carbon stripper foil for beam extraction to the target port. The samples were obtained from various metal components such as the yoke, sector magnet, coil, and vacuum chamber by the core boring method, and the depth distribution of the radioactivity was determined via a germanium semiconductor detector. The activities of 54Mn and 60Co were detected from the surface to a deeper site of the yoke and sector magnet. Most of the observed activities of the cyclotron components were higher than the clearance levels, suggesting that a clearance system should not be applied to the yoke and sector magnet. In the case of a high-activity sample, we have to wait for 30 years to reach the clearance level.

  1. Optimized magnet for a 250 MeV proton radiotherapy cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.; Blosser, H.

    2001-12-01

    The NSCL accelerator group in 1993 carried out an extensive design study [1] for a K250 superconducting cyclotron for advanced cancer therapy. A private company ACCEL now offers cyclotrons based on this study on a commercial basis, and actual construction of a first such cyclotron is likely in the near future. In view of this, further optimization of the design of the superconducting magnet is currently underway. The configuration of the cyclotron has many similarities with previous NSCL-built superconducting cyclotrons—notable differences are the peak average field of 3 T (required by the focusing limit for protons) vs the 5 tesla of other MSU designs, and the use of four sectors rather than three to avoid the νr=3/2 stopband. The further optimization of the magnetic design described here keys on using the true 3D magnetic field program to more precisely match the design to an optimized orbital frequency configuration and to explore reducing the amount of spiral in the hills which then shortens the linear length of the rf elements and therefore reduces capacity and power consumption.

  2. Piezo electric polaron and polaron pinning in n-CdS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, K.

    1976-05-01

    The cyclotron resonance of the piezoelectric polaron in n-CdS has been investigated using far infrared spectroscopy at magnetic fields to 90 kOe. Both lamellar grating and Michelson Fourier transform spectrometers were used with a 0.3/sup 0/K Ge bolometer to study the photon energy region from 10 cm/sup -1/ to 60 cm/sup -1/. The theory of Miyake predicts that the frequency of the polaron's cyclotron resonance is shifted from the bare hand electron resonance frequency according to the expression: ..delta omega../sup p//sub c// ..cap omega../sub c/ varies as H/sup -1/ T/sup /sup 2///sup 3//. The magnetic field dependence of the presentmore » cyclotron resonance confirms this expression; the cyclotron mass isiezoelectric polaron effects. The bare band mass in n-CdS has also been determined by taking into account the Froehlich polaron interaction in addition to the piezoelectric polaron effects. For H parallel to the c-axis this cyclotron mass is 0.155 +- 0.005 m. The polaron pinning due to the 43 cm/sup -1/ optically inactive phonon has been observed.« less

  3. Low current performance of the Bern medical cyclotron down to the pA range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2015-09-01

    A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.

  4. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  5. Note: control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron.

    PubMed

    Bhattacharyya, T K; Pal, G

    2015-02-01

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  6. Improving cancer treatment with cyclotron produced radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  7. 88-Inch Cyclotron

    Science.gov Websites

    , commercial, and international institutions use these beams to understand the effect of radiation on microelectronics, optics, materials, and cells. Click here to see the 88-Inch Cyclotron's contributions to space

  8. Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron.

    PubMed

    Peeples, Johanna L; Stokely, Matthew H; Poorman, Michael C; Bida, Gerald T; Wieland, Bruce W

    2015-03-01

    A high power [F-18] fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Dispersion equation for electrostatic ion cyclotron instability under the effect of ionization in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Singh, Sukhmander

    2018-05-01

    In the present paper we derive the plasma dispersion equation under the effect of ionization rate in a dust plasma to investigate the electrostatic ion cyclotron instability, where dust charge fluctuation is absent. It has one of the lowest threshold drift velocities among all the current-driven instabilities in isothermal plasma. The Electrostatic ion cyclotron instability in a dusty plasma containing electrons, light ions, and massive negatively charged dust grains which can be investigated both experimentally and theoretically.

  10. Theory of unfolded cyclotron accelerator

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Robiche, J.

    2010-10-01

    An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.

  11. Plasma waves produced by the xenon ion beam experiment on the Porcupine sounding rocket

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M.

    1982-01-01

    The production of electrostatic ion cyclotron waves by a perpendicular ion beam in the F-region ionosphere is described. The ion beam experiment was part of the Porcupine program and produced electrostatic hydrogen cyclotron waves just above harmonics of the hydrogen cyclotron frequency. The plasma process may be thought of as a magnetized background ionosphere through which an unmagnetized beam is flowing. The dispersion equation for this hypothesis is constructed and solved. Preliminary solutions agree well with the observed plasma waves.

  12. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  13. Ion cyclotron production by a four-wave interaction with a helicon pump.

    PubMed

    Sutherland, O; Giles, M; Boswell, R

    2005-05-27

    Ion cyclotron waves at approximately 0.7 the ion gyrofrequency have been observed experimentally in the large volume helicon reactor WOMBAT. These waves are highly localized along the axis of the device where a 8 cm diameter, 2 m long. Ar II plasma column is produced. Spectral measurements reveal a four-wave interaction where energy is down-converted to the ion cyclotron mode from the helicon pump. The experimental results are explained in terms of a filamentation type instability.

  14. Calculation of the spontaneous cyclotron emissivity using the complete relativistic resonance condition

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Wu, C. S.; Gaffey, J. D., Jr.

    1984-01-01

    An expression for the spectral emissivity of spontaneous synchrotron radiation for a plasma which consists of both thermal and suprathermal electron components is derived using the complete relativistic cyclotron resonance condition. The expression is valid over all angles of propagation. The result is applied to the study of the emission of radiation from an energetic population of electrons with a loss-cone distribution in a relatively low-density plasma (i.e., the electron plasma frequency is less than the cyclotron frequency).

  15. The electron-cyclotron maser for astrophysical application

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.

    2006-08-01

    The electron-cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron-cyclotron maser was considered as an alternative to turbulent though coherent wave-wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron-cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron-cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron-cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron-cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron-cyclotron maser is that in the electron-cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron-cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron-cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron-cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron-cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.

  16. Pulse - Accelerator Science in Medicine

    Science.gov Websites

    cyclotrons all night to produce medical isotopes for research and treatment. In 1938, Lawrence’s mother Gunda became the first cancer patient to be treated successfully with particles from cyclotrons.

  17. Lawson criterion in cyclotron heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demutskii, V.P.; Polovin, R.V.

    1975-07-01

    Stochastic heating of plasma particles is of great interest for controlled thermonuclear reactions. The ion velocity distribution function is described for the case of cyclotron heating. The Lawson criterion applied to this distribution is described. (MOW)

  18. Determining the Binding Sites of β-Cyclodextrin and Peptides by Electron-Capture Dissociation High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Geib, Timon; Volmer, Dietrich A.

    2015-07-01

    Cyclodextrins (CDs) are a group of cyclic oligosaccharides, which readily form inclusion complexes with hydrophobic compounds to increase bioavailability, thus making CDs ideal drug excipients. Recent studies have also shown that CDs exhibit a wide range of protective effects, preventing proteins from aggregation, degradation, and folding. These effects strongly depend on the binding sites on the protein surface. CDs only exhibit weak interactions with amino acids, however; conventional analytical techniques therefore usually fail to reveal the exact location of the binding sites. Moreover, some studies even suggest that CD inclusion complexes are merely electrostatic adducts. Here, electron capture dissociation (ECD) was applied in this proof-of-concept study to examine the exact nature of the CD/peptide complexes, and CD binding sites were unambiguously located for the first time via Fourier-transform ion cyclotron resonance (FTICR) tandem mass spectrometry.

  19. Improving cancer treatment with cyclotron produced radionuclides. Comprehensive progress report, February 1, 1990--January 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author`s continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  20. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  1. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, T. K., E-mail: tamal@vecc.gov.in; Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these threemore » cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.« less

  2. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.

    PubMed

    Infantino, Angelo; Cicoria, Gianfranco; Lucconi, Giulia; Pancaldi, Davide; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano; Marengo, Mario

    2016-12-01

    In the planning of a new cyclotron facility, an accurate knowledge of the radiation field around the accelerator is fundamental for the design of shielding, the protection of workers, the general public and the environment. Monte Carlo simulations can be very useful in this process, and their use is constantly increasing. However, few data have been published so far as regards the proper validation of Monte Carlo simulation against experimental measurements, particularly in the energy range of biomedical cyclotrons. In this work a detailed model of an existing installation of a GE PETtrace 16.5MeV cyclotron was developed using FLUKA. An extensive measurement campaign of the neutron ambient dose equivalent H ∗ (10) in marked positions around the cyclotron was conducted using a neutron rem-counter probe and CR39 neutron detectors. Data from a previous measurement campaign performed by our group using TLDs were also re-evaluated. The FLUKA model was then validated by comparing the results of high-statistics simulations with experimental data. In 10 out of 12 measurement locations, FLUKA simulations were in agreement within uncertainties with all the three different sets of experimental data; in the remaining 2 positions, the agreement was with 2/3 of the measurements. Our work allows to quantitatively validate our FLUKA simulation setup and confirms that Monte Carlo technique can produce accurate results in the energy range of biomedical cyclotrons. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be onmore » the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.« less

  4. Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua

    2017-07-01

    We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.

  5. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  6. Development of a three component complex to increase isoniazid efficacy against isoniazid resistant and nonresistant Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis

    2015-10-15

    The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Observation of the inductive to helicon mode transition in a weakly magnetized solenoidal inductive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min-Hyong; Chung, Chin-Wook

    2008-10-13

    A mode transition from an inductive mode to a helicon mode is observed in a solenoidal inductive discharge immersed in a weak dc magnetic field. The measured electron temperature and the plasma density at the reactor radial boundary show a sudden increase when the magnetic field strength reaches the critical value and the electron cyclotron frequency exceeds the rf driving frequency. These increases are due to the electron heating by the helicon wave. Such increases in the temperature and the density are not observed at the plasma center because the helicon wave cannot propagate to the center of the solenoidalmore » type reactor unless the magnetic field is very high. These results show that the transition of the discharge from the inductive to the helicon mode occurs at the critical magnetic field strength.« less

  8. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  9. Cyclotron maser emission of auroral Z mode radiation

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.

    1983-01-01

    Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.

  10. Cyclotron maser emission of auroral Z mode radiation

    NASA Astrophysics Data System (ADS)

    Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.

    1983-12-01

    Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.

  11. Applications of high-energy heavy-ions from superconducting cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, T. L.

    1999-06-10

    The superconducting cyclotrons of the National Superconducting Cyclotron Laboratory (NSCL), a major nuclear physics facility, can provide ions of any element from hydrogen to uranium. A major upgrade to the NSCL is underway and will consist of an electron cyclotron resonance (ECR) ion source followed by two large superconducting cyclotrons (K500 and K1200). Ions can be extracted at any point along this chain allowing a large range of energies and charge states. The ion energies range from a few keV to over 20 GeV, and charge states up to fully stripped {sup 197}Au{sup 79+} and two electron {sup 238}U{sup 90+}more » are possible. The long range of the high-energy heavy-ions allows them to penetrate deeply into a target that is placed in air, outside a vacuum chamber. The ion beams have already been used for a number of applications including; ion implantation, atomic physics, single event effects in integrated circuits, DNA radiation studies, radiation detector studies, flux pinning in high-T{sub c} superconductors, calibration of a space-based spectrometer, isotropic ratio measurements, material wear studies, and continuous positron emission tomography imaging.« less

  12. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  13. Cyclotron-based neutron source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutronmore » collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.« less

  14. Planned development of a radioactive beam capability at the LBNL 88-inch cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Moltz, D.M.; Norman, E.B.

    1997-12-31

    Planned development of low-Z, proton-rich, radioactive beams ({sup 11}C, {sup 13}N, {sup 14}, {sup 15}O, and {sup 18}F) at the 88 inch Cyclotron of the Lawrence Berkeley National Lab is described. Based on the {open_quotes}coupled cyclotron method{close_quotes}, isotopes produced by (p,n) and (p,a) reactions at a high-current (30 mA), low-energy (10 MeV) medical cyclotron will be transferred {approximately}300 meters by high-speed gas-jet transport to the ECR ion-source at the 88 inch Cyclotron. Important features of this approach are its low cost, use of simple and well tested technology, applicability to nearly all elements, and avoidance of lengthy (chemical or physical)more » isotopic release delays at the production target. Developmental progress is reported for various operational components. Based on conservative estimates, e.g. 1% ECR ion-yield, extracted radioactive ion beams are projected to exceed 10{sup 6} ions/sec. Experiments which will use these beams include studies of the scattering of mirror nuclei, single and mutual excitation in inelastic scattering and single nucleon transfer reactions.« less

  15. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  16. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  17. Error-rate prediction for programmable circuits: methodology, tools and studied cases

    NASA Astrophysics Data System (ADS)

    Velazco, Raoul

    2013-05-01

    This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia

    In this work, resonant ejection coupled with surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer is used to examine fragmentation kinetics of two singly protonated hexapeptides, RYGGFL and KYGGFL, containing the basic arginine residue and less basic lysine residue at the N-terminus. The kinetics of individual reaction channels at different collision energies are probed by applying a short ejection pulse (1 ms) in resonance with the cyclotron frequency of a selected fragment ion and varying the delay time between ion-surface collision and resonant ejection while keeping total reaction delay time constant. Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of themore » experimental data provides accurate threshold energies and activation entropies of individual reaction channels. Substitution of arginine with less basic lysine has a pronounced effect on the observed fragmentation kinetics of several pathways, including the b2 ion formation, but has little or no effect on formation of the b5+H2O fragment ion. The combination of resonant ejection SID, time- and collision energy-resolved SID, and RRKM modeling of both types of experimental data provides a detailed mechanistic understanding of the primary dissociation pathways of complex gaseous ions.« less

  19. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year, we will develop the new software module (essentially a computer code representing the theoretical model) necessary to perform the analysis of accretion-powered pulsar X-ray spectra in the XSPEC spectral analysis environment. Also in this first year we will analyze new Suzaku Cycle 6 Target of Opportunity observations of GX 304-1 and 4U 0115+63, two known cyclotron line sources, that we have recently carried out. In the second year of this study we will apply our new XSPEC spectral continuum module to the archival X-ray observational data from a number of accreting X-ray pulsars from the RXTE/PCA/HEXTE and Suzaku/XIS/HXD instruments to extract basic accretion parameters. Our source list contains eight pulsars, seven of which have observed cyclotron scattering lines. These pulsars span a range in magnetic field strength, luminosity, expected accretion rate, expected polar cap size, and Comptonizing temperature. In the second year of this work we also plan to make our new fully tested XSPEC continuum analysis module available to the Goddard Space Flight Center HEASARC for distribution to the astrophysical research community. The development and analysis tasks proposed here will provide for the first time a physical basis for the analysis and interpretation of data on accreting X-ray pulsar spectra.

  20. A simple thick target for production of 89Zr using an 11MeV cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Jeanne M.; Krohn, Kenneth A.; O'Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  1. Generation of cyclotron harmonic waves in the ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janabi, A.H.A.; Kumar, A.; Sharma, R.P.

    1994-02-01

    In the present paper, the parametric decay instability of the pump X-mode into electron Bernstein wave (EBW) near second harmonics of electron cyclotron frequency and IBW at different harmonics ([omega] < n[omega][sub ci];n = 2, 3, 4) is examined. Expressions are derived for homogeneous threshold, growth rate and convective threshold for this instability. Applications and relevances of the present investigation to ionospheric modification experiment in the F-layer of the ionosphere as well as during intense electron cyclotron resonance heating in the upcoming MTX tokamak have been given.

  2. Planetary plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1993-01-01

    The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.

  3. Electron Plasmas Cooled by Cyclotron-Cavity Resonance

    DOE PAGES

    Povilus, A. P.; DeTal, N. D.; Evans, L. T.; ...

    2016-10-21

    We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.

  4. Fluid equations in the presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-01

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  5. Fluid equations in the presence of electron cyclotron current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G.; Kruger, Scott E.

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  6. (Cardiology and nuclear medicine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.

    1988-10-27

    The traveler was invited to serve as an external examiner for a doctoral thesis entitled Analysis of Myocardial Time-Activity Curves Related to Radiolabeled Free Fatty Acid Metabolism'' in the Cardiology Department at the Free University of Amsterdam, The Netherlands. The traveler also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, the Department of Nuclear Medicine in Aachen, West Germany, and the Cyclotron Research Center in Liege, Belgium. He led discussions, reviewed data, and coordinated further collaboration on the preclinical studies and clinical testing of radiopharmaceuticals being developed by the traveler's research group at the Oakmore » Ridge National Laboratory (ORNL).« less

  7. On a nonlinear state of the electromagnetic ion/ion cyclotron instability

    NASA Astrophysics Data System (ADS)

    Cremer, M.; Scholer, M.

    We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.

  8. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less

  9. Measurements and analyses of the distribution of the radioactivity induced by the secondary neutrons produced by 17-MeV protons in compact cyclotron facility

    NASA Astrophysics Data System (ADS)

    Matsuda, Norihiro; Izumi, Yuichi; Yamanaka, Yoshiyuki; Gandou, Toshiyuki; Yamada, Masaaki; Oishi, Koji

    2017-09-01

    Measurements of reaction rates by secondary neutrons produced from beam losses by 17-MeV protons are conducted at a compact cyclotron facility with the foil activation method. The experimentally obtained distribution of the reaction rates of 197Au (n, γ) 198Au on the concrete walls suggests that a target and an electrostatic deflector as machine components for beam extraction of the compact cyclotron are principal beam loss points. The measurements are compared with calculations by the Monte Carlo code: PHITS. The calculated results based on the beam losses are good agreements with the measured ones within 21%. In this compact cyclotron facility, exponential attenuations with the distance from the electrostatic deflector in the distributions of the measured reaction rates were observed, which was looser than that by the inverse square of distance.

  10. Backward propagating branch of surface waves in a semi-bounded streaming plasma system

    NASA Astrophysics Data System (ADS)

    Lim, Young Kyung; Lee, Myoung-Jae; Seo, Ki Wan; Jung, Young-Dae

    2017-06-01

    The influence of wake and magnetic field on the surface ion-cyclotron wave is kinetically investigated in a semi-bounded streaming dusty magnetoplasma in the presence of the ion wake-field. The analytic expressions of the frequency and the group velocity are derived by the plasma dielectric function with the spectral reflection condition. The result shows that the ion wake-field enhances the wave frequency and the group velocity of the surface ion-cyclotron wave in a semi-bounded dusty plasma. It is found that the frequency and the group velocity of the surface electrostatic-ion-cyclotron wave increase with an increase of the strength of the magnetic field. It is interesting to find out that the group velocity without the ion flow has the backward propagation mode in a semi-bounded dusty plasma. The variations due to the frequency and the group velocity of the surface ion-cyclotron wave are also discussed.

  11. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.

    PubMed

    Ren, Yong; Liu, Xiaogang; Gao, Xiang

    2016-01-01

    The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.

  12. Topological model of composite fermions in the cyclotron band generator picture: New insights

    NASA Astrophysics Data System (ADS)

    Staśkiewicz, Beata

    2018-03-01

    A combinatorial group theory in the braid groups is correlated with the unusual "anyon" statistic of particles in 2D Hall system in the fractional quantum regime well. On this background has been derived cyclotron band generator as a modification and generalization band generator, first established to solve the word and conjugacy problems in the braid group terms. Topological commensurability condition has been embraced by canonical factors - like, based on the concept of parallel descending cycles. Owing to this we can mathematically capture the general hierarchy of correlated states in the lowest Landau level, describing the fractional quantum Hall effect hierarchy, in terms of cyclotron band generators, especially for those being beyond conventional composite fermions model. It has been also shown that cyclotron braid subgroups, developed for interpretation of Laughlin correlations, are a special case of the right-angled Artin groups.

  13. Statistical fluctuations in cooperative cyclotron radiation

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Baryshevsky, V. G.

    2018-01-01

    Shot noise is the cause of statistical fluctuations in cooperative cyclotron radiation generated by an ensemble of electrons oscillating in magnetic field. Autophasing time - the time required for the cooperative cyclotron radiation power to peak - is the critical parameter characterizing the dynamics of electron-oscillators interacting via the radiation field. It is shown that premodulation of charged particles leads to a considerable narrowing of the autophasing time distribution function for which the analytic expression is obtained. When the number of particles Ne exceeds a certain value that depends on the degree to which the particles have been premodulated, the relative root-mean-square deviation (RMSD) of the autophasing time δT changes from a logarithmic dependence on Ne (δT ∼ 1 / lnNe) to square-root (δT ∼ 1 /√{Ne }). A slight energy spread (∼4%) results in a twofold drop of the maximum attainable power of cooperative cyclotron radiation.

  14. Status of the cyclotron/P.E.T. facility at the State University of New York at Buffalo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toorongian, S.A.; Haka, M.S.

    1994-12-31

    A new P.E.T./Cyclotron facility has been constructed on the Main St. campus of the State University of New York at Buffalo to service the needs of Nuclear Medicine departments in Buffalo and throughout the Western New York area. This facility is jointly funded and operated by S.U.N.Y. and the Veterans Administration. The cyclotron, as well as the research labs and a nuclear pharmacy to prepare non-positron emitting radiopharmaceuticals, are located in a newly constructed facility on campus. The P.E.T. scanner is located in the Veterans Administration Hospital adjacent to the campus. The two annexes are connected by a pneumatic transportmore » {open_quotes}rabbit{close_quotes} system. The cyclotron and all radiopharmaceutical synthesis apparatus have been purchased from Ion Beam Applications s.a. of Lovain-la-Neuve Belgium.« less

  15. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  16. Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.

  17. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  18. Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors

    NASA Astrophysics Data System (ADS)

    Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.

    2018-04-01

    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.

  19. STEREO and Wind Observations of Intense Cyclotron Harmonic Waves at the Earth's Bow Shock and Inside the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Breneman, A. W.; Cattell, C.

    2013-01-01

    We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.

  20. Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  1. Ultra-strong coupling with spin-split heavyhole cyclotron resonances in sGe QWs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keller, Janine; Scalari, Giacomo; Maissen, Curdin; Paravicini-Bagliani, Gian Lorenzo; Haase, Johannes; Failla, Michele; Myronov, Maksym; Leadley, David R.; Lloyd-Hughes, James; Faist, Jérôme

    2017-02-01

    We study the ultra-strong coupling (USC) of Landau level transitions in strained Germanium quantum wells (sGe QW) to THz metasurfaces. The spin-splitting of the heavy-hole cyclotron resonance in sGe QWs due to the Rashba spin-orbit interaction in magnetic field offers an excellent platform to investigate ultra-strong coupling to a non-parabolic system. THz split ring resonators can be tuned to coincide with the single cyclotron transition (around 0.4 THz and a magnetic field of 1.5 T) or the spin-resolved transitions of the sGe QWs (at 1.3 THz and 4.5 T). Coupling to the single cyclotron yields a normalized USC rate of 25%, resulting from fitting with a Hopfield-like Hamiltonian model. Coupling to two or three cyclotron resonances in sGe QWs lead to the observation of multiple polaritons branches, one polariton branch for each oscillator involved in the system. An adaption of the theory allows to also describe this multiple-oscillator system and to determine the coupling strengths. The different Rabi-splittings for the multiple cyclotrons coupling to the same resonator mode relate to the underlying differences in the material. Furthermore, the visibility of an additional transition, possibly a light hole transition with very low carrier density, is strongly enhanced due to the coupling to the LC-resonance with a normalized strong coupling ratio of 4.7%. Future perspectives include controlling spin-flip transitions in USC and studying the impact of non-parabolicity on the ultra-strong coupling physics.

  2. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  3. Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.

  4. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  5. 88-Inch Cyclotron Contributions to Space Exploration - 88-Inch Cyclotron

    Science.gov Websites

    Training BASE - Rad Effects Heavy Ions Protons Neutrons Shipping Ion Sources VENUS AECR ECR Gamma Spec Lab ) *For more information on the early years of radiation effects testing, please see "The Single

  6. Clinical Trial with Sodium 99mTc-Pertechnetate Produced by a Medium-Energy Cyclotron: Biodistribution and Safety Assessment in Patients with Abnormal Thyroid Function.

    PubMed

    Selivanova, Svetlana V; Lavallée, Éric; Senta, Helena; Caouette, Lyne; McEwan, Alexander J B; Guérin, Brigitte; Lecomte, Roger; Turcotte, Éric

    2017-05-01

    A single-site prospective open-label clinical study with cyclotron-produced sodium 99m Tc-pertechnetate ( 99m Tc-NaTcO 4 ) was performed in patients with indications for a thyroid scan to demonstrate the clinical safety and diagnostic efficacy of the drug and to confirm its equivalence with conventional 99m Tc-NaTcO 4 eluted from a generator. Methods: 99m Tc-NaTcO 4 was produced from enriched 100 Mo (99.815%) with a cyclotron (24 MeV; 2 h of irradiation) or supplied by a commercial manufacturer (bulk vial eluted from a generator). Eleven patients received 325 ± 29 (mean ± SD) MBq of the cyclotron-produced 99m Tc-NaTcO 4 , whereas the age- and sex-matched controls received a comparable amount of the generator-derived tracer. Whole-body and thyroid planar images were obtained for each participant. In addition to the standard-energy window (140.5 keV ± 7.5%), data were acquired in lower-energy (117 keV ± 10%) and higher-energy (170 keV ± 10%) windows. Vital signs and hematologic and biochemical parameters were monitored before and after tracer administration. Results: Cyclotron-produced 99m Tc-NaTcO 4 showed organ and whole-body distributions identical to those of conventional 99m Tc-NaTcO 4 and was well tolerated. All images led to a clear final diagnosis. The fact that the number of counts in the higher-energy window was significantly higher for cyclotron-produced 99m Tc-NaTcO 4 did not influence image quality in the standard-energy window. Image definition in the standard-energy window with cyclotron-produced 99m Tc was equivalent to that with generator-eluted 99m Tc and had no particular features allowing discrimination between the 99m Tc production methods. Conclusion: The systemic distribution, clinical safety, and imaging efficacy of cyclotron-produced 99m Tc-NaTcO 4 in humans provide supporting evidence for the use of this tracer as an equivalent for generator-eluted 99m Tc-NaTcO 4 in routine clinical practice. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Production of radiohalogens and [11C]-methane at high specific activity

    NASA Astrophysics Data System (ADS)

    Nye, Jonathon Andrew

    2005-07-01

    The halogens, occupying Group VII of the periodic table, play an important role in the biochemical processes underlying health and disease. A variety of positron emitters covering a broad range of half-lives permit the imaging of the body's physiochemical behavior using PET. Neutron deficient isotopes of the halogen group can be produced by (p,n) reactions from enriched targets with low energy (<13MeV) biomedical cyclotrons. These cyclotrons are distributed relatively evenly throughout the United States at research institutions and commercial distribution sites (i.e., 100+ CTI RDS 11MeV proton cyclotrons). However, these sites concentrate on the core group of positron emitters: 15O, 13N, 11C, and primarily 18F-fluoride. The simplicity of the production process insures their role in the clinical/research environment, labeling H215 O, 13NH3, CH3-compounds and 18F-FDG. Halogens with half-lives longer than 18F have been avoided due to a combination of several factors, such as complexity of the target systems, expense of the enriched substrate, low reaction yields, and extensive post-processing to reclaim the target material. PET research over the last decade has forced a match between drug development and emerging small animal instrumentation, shifting focus to agents labeled with high specific activity 11CH3I and the long-lived radiohalogens, 76Br and 124I. A steady local supply of 18F-fluoride, 11C-methane, 76B-bromide, and 124I-iodide is essential to seize today's research opportunities or for limited distribution outside of our local area. To keep pace, new targetry developments are implemented to reliably produce these isotopes on a batch basis. The research presented details improvements on existing production methods for 18F-fluoride intended for nucleophilic substitution and high specific activity 11C-methane (→CH3I) for the N-methylation of a half-dozen neuroligands. A significant effort is placed on the novel use of low energy cyclotrons for the production of 76Br and 124I involved in labeling antibody and protein agents. Performance of these new designs and the success of the solid targetry development will be described. The ten-fold scale-up in yields at end-of-bombardment promises new hope for the synthesis of PET tracers, previously limited by access to the radio-halogen precursors.

  8. The X-ray Spectra of Accreting Pulsars: Studies of Three Sources Using Empirical and Phenomenological Models

    NASA Astrophysics Data System (ADS)

    Hemphill, Paul Britton

    Accreting X-ray pulsars are a class of astrophysical objects consisting of a neutron star in a binary system with a stellar companion. Matter expelled by the companion star is captured by the neutron star's gravity; as this matter falls towards the neutron star's surface, is compressed and heated, giving off X-rays. As the matter falls the last few miles above the neutron star surface, a number of physical processes compete for dominance, resulting in a highly complex environment governed by the interplay of magnetic, hydrodynamical, and radiative processes. The resulting spectrum often shows broad absorption-like features called cyclotron lines, which provide the only direct measurement of the magnetic field of a neutron star and act as probes of the properties of the accretion column, and their behavior with respect to changes in the accretion rate onto the neutron star has been of interest in recent years. My work in this dissertation brings together nearly 20 years of data from three X-ray satellites to study the X-ray emission from accreting pulsars, with a focus on the hard X-ray continuum and cyclotron lines. I present results for the accreting pulsars 4U 1538-522 and 4U 1907+09, examining the behavior of their cyclotron lines with respect to their luminosity, finding evidence for a positive correlation between the line energy and luminosity in 4U 1907+09. A combined analysis of most of the available X-ray data for the accreting pulsar 4U 1538-522 shows no such correlation in this source, either positive or negative. However, I do present evidence that the cyclotron line energy in 4U 1538-522 has shifted upwards by ˜ 5% in recent years compared to measurements from 10-20 years ago. I additionally carry out an extensive analysis of the environment around 4U 1538-522 using the soft X-ray detectors aboard the satellite Suzaku. I finally present a set of new results from the transient X-ray pulsar V 0332+53, which I fit with a new physics-based model for the accretion column. These fits allow me to constrain the size and temperature of the accretion column, as well as the relative contributions of different processes in the column to the overall observed spectrum.

  9. Cyclotron resonance spectroscopy in a high mobility two dimensional electron gas using characteristic matrix methods.

    PubMed

    Hilton, David J

    2012-12-31

    We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.

  10. A simple thick target for production of 89Zr using an 11 MeV cyclotron

    PubMed Central

    Link, Jeanne M.; Krohn, Kenneth A.; O’Hara, Matthew J.

    2017-01-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89Y(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siemens cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90° foil tolerated 41 μA without damage and produced ~800 MBq/h, > 20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons. PMID:28187357

  11. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    PubMed

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  12. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  13. NACA Researcher Examines the Cyclotron

    NASA Image and Video Library

    1951-02-21

    Researcher James Blue examines the new cyclotron at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Researchers at NACA Lewis began postulating about the use of atomic power for propulsion immediately after World War II. The NACA concentrated its efforts on the study of high temperature materials and heat transfer since it did not have access to the top secret fission information. The military studied the plausibility of nuclear propulsion for aircraft in the late 1940s. The military program was cancelled after four years without any breakthroughs, but the Atomic Energy Commission took on the effort in 1951. The NACA Lewis laboratory was expanding its nuclear-related research during this period. In 1948, Lewis engineers were assigned to the Oak Ridge National Laboratory to obtain expertise in high temperature heat transfer and advanced materials technology. The following year a new 80-person Nuclear Reactor Division was created, and an in-house nuclear school was established to train these researchers. The cyclotron was built behind the Materials and Structures Laboratory to support thermodynamic and materials research for both nuclear aircraft and nuclear rockets. The original NACA Lewis cyclotron was used to accelerate two kinds of particles. To better match the space radiation environment, the cyclotron was later modified to accelerate particles of the newly-discovered Van Allen radiation belts.

  14. Study on characteristic frequencies of ELF emissions and estimation of ion constituents in the vicinity of magnetic equator

    NASA Astrophysics Data System (ADS)

    Matsuda, S.; Kasahara, Y.; Goto, Y.

    2012-12-01

    The AKEBONO satellite has been operated continuously over 2 cycles of solar activity. Long-term observation data obtained by the AKEBONO satellite is very valuable to clarify plasma dynamics in the magnetosphere. Recently, the mechanism of wave-particle interaction around the radiation belt has attracted considerable attention. The ELF receiver, which is a sub-system of the VLF instruments onboard AKEBONO, measures waveforms below 50Hz for one component of electric field and three components of magnetic field, or waveforms below 100Hz for one component of electric and magnetic field, respectively. It was reported that ion cyclotron waves were observed near magnetic equator by the receiver [1] . It is well known that ion cyclotron wave generally propagates with a left-handed circularly polarization, but there exists right-handed polarized ion cyclotron wave below a characteristic frequency called 'crossover' in the presence of two or more kinds of ions such as oxygen and helium ions besides proton. As the crossover frequency can be derived theoretically from relative constituents of ions in plasma, it is possible to estimate the ion constituents by identifying the crossover frequency observationally. In this study, we analyze polarization of the ion cyclotron waves observed around the magnetic equator by the ELF receiver onboard AKEBONO, and report an example of ion cyclotron wave whose polarization changes from left-handed to right-handed at crossover frequency. As a next step, we estimate the ion constituents according to the polarization analysis. Furthermore, these phenomena sometimes have characteristic lower cut-off frequencies changing along the trajectories of Akebono. According to our work, it was found that the cutoff frequency is frequently in agreement with 1/n of proton's cyclotron frequency, where "n" is integer. The lower cut-off of ion cyclotron wave can be theoretically derived considering certain ion constituents of the background cold plasma. However, it remains several different interpretations depending on the species of ions and their ion constituents. In this study, we set up the following two hypotheses which shall satisfy dozens of such phenomena observed in 1989 and 1990: 1) Constituents of major ions in the plasmasphere (i.e., H^{+}, He^{+}) happened to coincide the condition that gives observed lower cut-off frequency along the trajectory. 2) There exists minor ions (i.e., D^{+}, T^{+}) that have cyclotron frequencies at 1/n of proton's cyclotron frequency. We examine the validity of the above hypotheses referring electron density and Dst index of the corresponding period. The present study could be a promising technique to estimate ion constituents from plasma wave observation by Akebono in the radiation belt. It is also noted that it can be also applicable to the ERG mission, which is expected to provide important clues for solving plasma dynamics in the Earth's radiation belt by means of integrated observation of electric and magnetic fields, particles and waves. [1] Y. Kasahara, A. Sawada, M. Yamamoto, I. Kimura, S. Kokubun, and K. Hayashi, Ion Cyclotron Emissions Observed by the Satellite Akebono in the vicinity of the Magnetic Equator, Radio Science, 27, 347-362, 1992.

  15. Radar soundings of the ionosphere of Mars.

    PubMed

    Gurnett, D A; Kirchner, D L; Huff, R L; Morgan, D D; Persoon, A M; Averkamp, T F; Duru, F; Nielsen, E; Safaeinili, A; Plaut, J J; Picardi, G

    2005-12-23

    We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength.

  16. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    NASA Technical Reports Server (NTRS)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  17. MEASUREMENTS OF CYCLOTRON FEATURES AND PULSE PERIODS IN THE HIGH-MASS X-RAY BINARIES 4U 1538–522 AND 4U 1907+09 WITH THE INTERNATIONAL GAMMA-RAY ASTROPHYSICS LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538–522 and 4U 1907+09. Our timing measurements for 4U 1538–522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 ± 0.001 s. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538–522.more » A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at ∼22 and ∼49 keV for 4U 1538–522 and at ∼18 and ∼36 keV for 4U 1907+09. The spectral parameters of 4U 1538–522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538–522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.« less

  18. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu

    2009-03-15

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range ofmore » the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV {sup 12}C{sup 5+} (h=2), 260 MeV {sup 20}Ne{sup 7+} (h=2), and 45 MeV H{sup +} (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV {sup 20}Ne{sup 7+} beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from {delta}E/E=0.1% to 0.05% by single-turn extraction after FT acceleration.« less

  19. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  20. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  1. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  2. Medical Isotope Production at TRIUMF - from Imaging to Treatment

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Bénard, F.; Buckley, K.; Crawford, J.; Gottberg, A.; Hanemaayer, V.; Kunz, P.; Ladouceur, K.; Radchenko, V.; Ramogida, C.; Robertson, A.; Ruth, T.; Zacchia, N.; Zeisler, S.; Schaffer, P.

    TRIUMF has a long history of medical isotope production. For more than 40 years, the Life Sciences Division at TRIUMF has produced isotopes for Positron Emission Tomography (PET) for the local hospitals. Recently, the division has taken on the challenge to expand the facility's isotope repertoire to isotopes for imaging to treatment. At the smallest cyclotron at TRIUMF with energy of 13 MeV, radiometals are being produced in a liquid target which is typically used for PET isotope production. This effort makes radiometals available for early stage research and preclinical trials. At beam energy of 24 MeV, we produce 99mTc from 100Mo with a cyclotron, the most common isotope for Single-Photon-Emission-Computed-Tomography (SPECT) and the most common isotope for nuclear imaging. The use of a cyclotron bypasses the common production route via a nuclear reactor as well as enriched uranium. And finally, at our 500 MeV cyclotron we have demonstrated the production of α emitters useful for targeted alpha therapy. Herein, these efforts are summarized.

  3. Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi

    2018-02-01

    Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.

  4. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  5. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  6. Investigations of Cyclotron Resonance in InSb and PbTe: Intraband Transitions between Landau Levels

    NASA Astrophysics Data System (ADS)

    Burstein, Elias

    2005-06-01

    We describe the investigations of cyclotron resonance, and its formulation in terms of intraband transitions between Landau levels, that were carried out at the Naval Research Laboratory and the University of Pennsylvania in the 1950's and 1960's. Measurements were carried out as a function of magnetic field at fixed wavelength in the infrared in both the Faraday and Voigt configurations on an intrinsic sample of InSb sample for which ωP << ωC, and on doped n-type samples for which ωP is comparable to ωC. Azbel'-Kaner cyclotron resonance, which is also observed in the Voigt configuration, was investigated at microwave frequencies in degenerate p-type PbTe where the cyclotron orbit of the carriers is comparable to the skin depth. The results showed that AK-CR is a particularly effective tool for determining the effective mass of carriers in semiconductors at microwave frequencies when ωP cannot be made smaller than ωC.

  7. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  8. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  9. A Comprehensive Analysis of Ion Cyclotron Waves in the Equatorial Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Z. C.; Simon, S.

    2016-12-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field. Reference: Meeks, Z., Simon, S., Kabanovic, S., 2016. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn. Planetary and Space Sciences 129, 47-60.

  10. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.

  11. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGES

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; ...

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ω e, where Ω e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ω e and 0.6Ω e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  12. FDG at 7.8 MeV

    NASA Astrophysics Data System (ADS)

    Jensen, Mikael

    2017-05-01

    I here report the fundamental performance of a new generation of compact medical cyclotrons for hospital-based PET tracer manufacture, exemplified with the FDG production numbers achieved by the first prototype of the GE GenTrace cyclotron. The proton energy is 7.8 MeV. After 3 years of extensive testing in a "physics lab" setting, which is door-to-door with our normal GMP production suite, I can now conclude that this cyclotron in conjunction with a standard GE Fastlab chemistry box easily achieves significant, reliable and compliant FDG output surpassing 15 GBq per batch at EOS, after 2 hours bombardment time. The details are reported below.

  13. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  14. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

    PubMed Central

    2012-01-01

    Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  15. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  16. Monthly Progress Report No. 60 for April 1948

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Various

    This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.

  17. Developments of fast emittance monitors for ion sources at RCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real timemore » measurement with about 2 Hz has been achieved.« less

  18. In-house cyclotron production of high-purity Tc-99m and Tc-99m radiopharmaceuticals.

    PubMed

    Martini, Petra; Boschi, Alessandra; Cicoria, Gianfranco; Zagni, Federico; Corazza, Andrea; Uccelli, Licia; Pasquali, Micòl; Pupillo, Gaia; Marengo, Mario; Loriggiola, Massimo; Skliarova, Hanna; Mou, Liliana; Cisternino, Sara; Carturan, Sara; Melendez-Alafort, Laura; Uzunov, Nikolay M; Bello, Michele; Alvarez, Carlos Rossi; Esposito, Juan; Duatti, Adriano

    2018-05-30

    In the last years, the technology for producing the important medical radionuclide technetium-99m by cyclotrons has become sufficiently mature to justify its introduction as an alternative source of the starting precursor [ 99m Tc][TcO 4 ] - ubiquitously employed for the production of 99m Tc-radiopharmaceuticals in hospitals. These technologies make use almost exclusively of the nuclear reaction 100 Mo(p,2n) 99m Tc that allows direct production of Tc-99m. In this study, it is conjectured that this alternative production route will not replace the current supply chain based on the distribution of 99 Mo/ 99m Tc generators, but could become a convenient emergency source of Tc-99m only for in-house hospitals equipped with a conventional, low-energy, medical cyclotron. On this ground, an outline of the essential steps that should be implemented for setting up a hospital radiopharmacy aimed at the occasional production of Tc-99m by a small cyclotron is discussed. These include (1) target production, (2) irradiation conditions, (3) separation/purification procedures, (4) terminal sterilization, (5) quality control, and (6) Mo-100 recovery. To address these issues, a comprehensive technology for cyclotron-production of Tc-99m, developed at the Legnaro National Laboratories of the Italian National Institute of Nuclear Physics (LNL-INFN), will be used as a reference example. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A mechanism for beam-driven excitation of ion cyclotron harmonic waves in the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dendy, R.O.; McClements, K.G.; Lashmore-Davies, C.N.

    1994-10-01

    A mechanism is proposed for the excitation of waves at harmonics of the injected ion cyclotron frequencies in neutral beam-heated discharges in the Tokamak Fusion Test Reactor (TFTR) [[ital Proceedings] [ital of] [ital the] 17[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating] (European Physical Society, Petit-Lancy, Switzerland, 1990), p. 1540]. Such waves are observed to originate from the outer midplane edge of the plasma. It is shown that ion cyclotron harmonic waves can be destabilized by a low concentration of sub-Alfvenic deuterium or tritium beam ions, provided these ions havemore » a narrow distribution of speeds parallel to the magnetic field. Such a distribution is likely to occur in the edge plasma, close to the point of beam injection. The predicted instability gives rise to wave emission at propagation angles lying almost perpendicular to the field. In contrast to the magnetoacoustic cyclotron instability proposed as an excitation mechanism for fusion-product-driven ion cyclotron emission in the Joint European Torus (JET) [Phys. Plasmas [bold 1], 1918 (1994)], the instability proposed here does not involve resonant fast Alfven and ion Bernstein waves, and can be driven by sub-Alfvenic energetic ions. It is concluded that the observed emission from TFTR can be driven by beam ions.« less

  20. The Perspectives of the Boron Neutron Capture Therapy-Clinical Applications Research and Development in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Badhrees, I.; Alrumayan, F.; Mahube, F.

    Boron Neutron Capture Therapy (BNCT) is a binary form of experimental radiotherapy which is based on the administration of a drug able to concentrate the isotopes in a tumor cell that later are irradiated with a neutron beam. Even though the first evidence of the success of this treatment dates back many years ago, BNCT showed successful treatment results in malignant melanoma, and Glioblastoma. In order for BNCT to be successful, a sufficient amount of Boron (10B) must be selectively delivered to the tumor cell, and then irradiated by neutrons of sufficient enough. The CS-30 cyclotron at King Faisal Specialist Hospital & Research Center is a positive-ion machine capable of accelerating protons at 26MeV, and other isotopes as well. Although the peak beam intensity from the CS-30 is low, the key to success of using it for the BNCT is by using a high average beam current at low energy. This work is aimed at testing the capability of the CS-30 Cyclotron to produce a low-energy neutron beam to be used to activate the Boron atoms injected into the tumor cell, through simulation of a compatible moderator. We are also planning to measure the overall dosimetry of the energy dose as well as that for the boron in the tumor cell.

  1. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    DOE PAGES

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; ...

    2017-05-22

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less

  2. A new approach for manufacturing and processing targets to produce 99mTc with cyclotrons

    NASA Astrophysics Data System (ADS)

    Matei, L.; McRae, G.; Galea, R.; Niculae, D.; Craciun, L.; Leonte, R.; Surette, G.; Langille, S.; Louis, C. St.; Gelbart, W.; Abeysekera, B.; Johnson, R. R.

    2017-06-01

    The most important radioisotope for nuclear medicine is 99mTc. After the supply crisis of 99Mo starting in 2008, the availability of 99mTc became a worldwide concern. Alternative methods for producing the medical imaging isotope 99mTc are actively being developed around the world. The reaction 100Mo(p, 2n)99mTc provides a direct route that can be incorporated into routine production in nuclear medicine centers that possess medical cyclotrons for production of other isotopes, such as those used for Positron Emission Tomography. This paper describes a new approach for manufacturing targets for the (p, 2n) nuclear reaction on 100Mo and the foundation for the subsequent commercial separation and purification of the 99mTc produced. Two designs of targets are presented. The targets used to produce 99mTc are subject to a number of operational constraints.They must withstand the temperatures generated by the irradiation, accommodate temperature gradients from cooling system of the target, must be resilient and must be easily post-processed to separate the 99mTc. After irradiation, the separation of Tc from Mo was carried out using an innovative two-step approach. The process described in this paper can be automated with modules that easily fit in standard production hot cells found in nuclear medicine facilities.

  3. Root negative gravitropism is accompanied with displacing of columella amyloplasts to the statocyte upper longitudinal cell wall

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Sobol, Margaryta; Kalinina, Yana; Bogatina, Nina; Kondrachuk, Alexander

    Recently it was shown that roots reveal negative gravitropism in the weak combined magnetic field (CMF) with the frequency resonance to the cyclotron frequency of Ca2+ ions. A negative gravitropic reaction in the CMF occurs by a usual physiological process. Experiments in the CMF confirmed that gravitropism is plastid-based and Ca2+ ions participate in this process. Unlike control, amyloplasts-statoliths are not displacing on the lower side of a gravistimulated root but tend to group in the center of a statocyte during 30 min under gravistimulation in the CMF. In an hour of gravistimulation, they are localized near one of the statocyte longitudinal wall. Now we determined that amyloplasts are localized along the statocyte upper longitudinal side. It is of a special interest that a root is bending to the same direction with displacing of amyloplasts: in positive gravitropism - downwards, in negative gravitropism - upwards. On the basis of the obtained data there is a question, what forces promote displacing of amyloplasts against a gravitational vector? In the paper, three possible explanations are discussed: 1) CMF + Ca2+ action on the distribution of elastic forces in cytoskeleton, 2) CMF + Ca2+ action on the distribution of electric field in statocytes, and 3) CMF action on energy and direction of Ca2+ ion rotation according to the ion cyclotron resonance model that can lead to paradoxical Ca2+ redistribution.

  4. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less

  5. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  6. Molecular characterization of lake sediment WEON by Fourier transform ion cyclotron resonance mass spectrometry and its environmental implications.

    PubMed

    Zhang, Li; Wang, Shengrui; Xu, Yisheng; Shi, Quan; Zhao, Haichao; Jiang, Bin; Yang, Jiachun

    2016-12-01

    The compositional properties of water-extractable organic nitrogen (WEON) affect its behavior in lake ecosystems. This work is the first comprehensive study using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterization of the molecular composition of WEON in lake sediment. In sediments of Erhai Lake in China, this study found complex WEON species, with N-containing compounds in the northern, central, and southern regions contributing 34.47%, 42.44%, and 40.6%, respectively, of total compounds. Additionally, a van Krevelen diagram revealed that lignin components were dominant in sediment WEON structures (68% of the total), suggesting terrestrial sources. Furthermore, this study applied ESI-FT-ICR-MS to the examination of the environmental processes of lake sediment WEON on a molecular level. The results indicated that sediment depth impacted WEON composition and geochemical processes. Compared with other ecosystems, the double bond equivalent (DBE) value was apparently lower in Erhai sediment, indicating the presence of relatively fewer and smaller aromatic compounds. In addition, the presence of a large number of N-containing species and abundant oxidized nitrogen functional compounds that were likely to biodegrade may have further increased the potential releasing risk of WEON from Erhai sediment under certain environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Fundamental mode of ultra-low frequency electrostatic dust-cyclotron surface waves in a magnetized complex plasma with drifting ions

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lee, Myoung-Jae

    2012-10-01

    The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).

  8. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Nicolardi, Simone; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2014-06-03

    Structural confirmation and quality control of recombinant monoclonal antibodies (mAbs) by top-down mass spectrometry is still challenging due to the size of the proteins, disulfide content, and post-translational modifications such as glycosylation. In this study we have applied electrochemistry (EC) to overcome disulfide bridge complexity in top-down analysis of mAbs. To this end, an electrochemical cell was coupled directly to an electrospray ionization (ESI) source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS) equipped with a 15 T magnet. By performing online EC-assisted reduction of interchain disulfide bonds in an intact mAb, the released light chains could be selected for tandem mass spectrometry (MS/MS) analysis without interference from heavy-chain fragments. Moreover, the acquisition of full MS scans under denaturing conditions allowed profiling of all abundant mAb glycoforms. Ultrahigh-resolution FTICR-MS measurements provided fully resolved isotopic distributions of intact mAb and enabled the identification of the most abundant adducts and other interfering species. Furthermore, it was found that reduction of interchain disulfide bonds occurs in the ESI source dependent on capillary voltage and solvent composition. This phenomenon was systematically evaluated and compared with the results obtained from reduction in the electrochemical cell.

  9. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  10. Observation of CO2 and solvent adduct ions during negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of monohydric alcohols.

    PubMed

    Zhou, Xibin; Zhang, Yahe; Zhao, Suoqi; Hsu, Chang Samuel; Shi, Quan

    2013-12-15

    Monohydric alcohols are common in natural products, bio-oils, and medicine. We have found that monohydric alcohols can form O3 (ions containing three oxygen atoms) and O4 adduct ions in negative electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which would significantly affect the composition analysis of alcohols, especially in a complex mixture. It is necessary to study the reaction pathways and the method to eliminate or reduce the 'artifact' adducts. Octadecanol, cholesterol, squalanol and two complex monohydric alcohol mixtures were selected as model compounds. These samples were subjected to negative ion ESI FT-ICR MS analysis. The composition and formation mechanism of adducts were studied by the ultrahigh-resolution accurate mass measurement for elemental composition, along with the MS(2) isolation and collision-induced dissociation (CID) experiments for structural determination. The reaction pathway of O3 adduct formation is the coupling of a monohydric alcohol ion with a CO2 to form a stable O3 ionic species by likely a covalent bond (source of CO2 is not clear). The O4 species are formed by O3 ionic species adducted with an alcohol molecule of the solvent, such as methanol or ethanol, by likely a hydrogen bond. These adduct ions could be eliminated or reduced by increasing collision energy. However, excessive collision energy would fragment monohydric alcohol ions. The formation mechanisms of O3 and O4 adducts from monohydric alcohols in negative ion ESI FT-ICR MS were proposed. The solvent adduction effects can be eliminated or reduced by optimizing the collision energy of CID in FT-ICR MS. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    PubMed

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  12. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  13. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  14. The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Vladimirov, Gleb; Zherebker, Alexander; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2017-04-01

    We report the investigation of the hydrothermal liquefaction products of the Spirulina platensis microalgae by using the Fourier transform ion cyclotron resonance mass spectrometry. The hydrothermal liquefaction produced two fractions: one with boiling temperature below 300℃ and the dense residue that remained in the reactor. It was observed that N 2 and N classes of compounds that dominate in the positive ESI Fourier transform ion cyclotron resonance spectra for both fractions, and that the light fraction is considerably more saturated then the heavy one. The performed hydrogen/deuterium exchange reaction indicated the presence of the onium compounds in the bio-oil.

  15. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    NASA Astrophysics Data System (ADS)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  16. (Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, P.C.

    1991-01-14

    The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiationmore » and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.« less

  17. Operation of the Preclinical Head Scanner for Proton CT.

    PubMed

    Sadrozinski, H F-W; Geoghegan, T; Harvey, E; Johnson, R P; Plautz, T E; Zatserklyaniy, A; Bashkirov, V; Hurley, R F; Piersimoni, P; Schulte, R W; Karbasi, P; Schubert, K E; Schultze, B; Giacometti, V

    2016-09-21

    We report on the operation and performance tests of a preclinical head scanner developed for proton computed tomography (pCT). After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. In order to assess the performance of the scanner, we have performed CT scans with 200 MeV protons from both the synchrotron of the Loma Linda University Medical Center (LLUMC) and the cyclotron of the Northwestern Medicine Chicago Proton Center (NMCPC). The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 7 minutes. The reconstruction of various phantoms verified accurate reconstruction of the proton relative stopping power (RSP) and the spatial resolution in a variety of materials. The dose for an image with better than 1% uncertainty in the RSP is found to be close to 1 mGy.

  18. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colmenter, L.; Coelho, D.; Esteves, L. M.

    2007-10-26

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

  19. High Power Ion Cyclotron Heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.

    2009-12-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.

  20. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  1. Cyclotron resonance and interband optical transitions in HgTe/CdTe(0 1 3) quantum well heterostructures

    NASA Astrophysics Data System (ADS)

    Ikonnikov, A. V.; Zholudev, M. S.; Spirin, K. E.; Lastovkin, A. A.; Maremyanin, K. V.; Aleshkin, V. Ya; Gavrilenko, V. I.; Drachenko, O.; Helm, M.; Wosnitza, J.; Goiran, M.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Diakonova, N.; Consejo, C.; Chenaud, B.; Knap, W.

    2011-12-01

    Cyclotron resonance spectra of 2D electrons in HgTe/CdxHg1-xTe (0 1 3) quantum well (QW) heterostructures with inverted band structure have been thoroughly studied in quasiclassical magnetic fields versus the electron concentration varied using the persistent photoconductivity effect. The cyclotron mass is shown to increase with QW width in contrast to QWs with normal band structure. The measured values of cyclotron mass are shown to be systematically less than those calculated using the 8 × 8 Kane model with conventional set of HgTe and CdTe material parameters. In quantizing pulsed magnetic fields (Landau level filling factor less than unity) up to 45 T, both intraband (CR) and interband magnetoabsorption have been studied at radiation wavelengths 14.8 and 11.4 µm for the first time. The results obtained are compared with the allowed transition energies between Landau levels in the valence and conduction bands calculated within the same model, the calculated energies being again systematically less (by 3-14%) than the observed optical transition energies.

  2. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  3. Overview of the future upgrade of the INFN-LNS superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano; Calanna, Alessandra; Cuttone, Giacomo; D'Agostino, Grazia; Rifuggiato, Danilo; Domenico Russo, Antonio

    2017-06-01

    The LNS Superconducting Cyclotron, named “Ciclotrone Superconduttore” (CS), has been in operation for more than 20 years. A wide range of ion species from hydrogen to lead, with energy in the range 10 to 80 AMeV, have been delivered to users. The maximum beam power is limited to 100 W due to the beam dissipation on the electrostatic deflectors. To fulfil the demand of users aiming at studying rare processes in nuclear physics, an upgrade of the cyclotron is necessarily intended to increase the intensity of ion beams with mass lower than 40 a.m.u. up to a power 10 kW. This will be achieved by means of extraction by stripping. This solution needs to replace the cryostat including the superconducting coils. The present capability of the cyclotron will be maintained, i.e. all the ion species allowed by the operating diagram will be available, being extracted by electrostatic extraction. In addition to the high power beams for nuclear physics, it will be possible to produce medical radioisotopes like 211At using an internal target.

  4. Towards a better understanding of high-energy electron pitch-angle scattering by electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Vincena, S.; Gekelman, W.; Pribyl, P.; Tang, S., W.,; Papadopoulos, K.

    2017-10-01

    Shear Alfven waves are a fundamental mode in magnetized plasmas. Propagating near the ion cyclotron frequency, these waves are often termed electromagnetic ion cyclotron (EMIC) waves and can involve multiple ion species. Near the earth, for example, the wave may interact resonantly with oxygen ions at altitudes ranging from 1000 to 2000 km. The waves may either propagate from space towards the earth (possibly involving mode conversion), or be generated by RF transmitters on the ground. These preliminary experiments are motivated by theoretical predictions that such waves can pitch-angle scatter relativistic electrons trapped in the earth's dipole field. EMIC waves are launched in the Large Plasma Device at UCLA's Basic Plasma Science Facility in plasmas with single and multiple ion species into magnetic field gradients where ion cyclotron resonance is satisfied. We report here on the frequency and k-spectra in the critical layer and how they compare with theoretical predictions in computing an effective diffusion coefficient for high-energy electrons. Funding is provided by the NSF, DoE, and AFSOR.

  5. Stationary radiation hydrodynamics of accreting magnetic white dwarfs.

    NASA Astrophysics Data System (ADS)

    Woelk, U.; Beuermann, K.

    1996-02-01

    Using an artificial viscosity, we solved the one-dimensional time-independent two-fluid hydrodynamic equations simultaneously to the fully frequency and angle dependent radiation transport in an accretion flow directed towards the surface of a magnetic white dwarf. We consider energy transfer from ions to electrons by Coulomb encounters and cooling by bremsstrahlung and by cyclotron radiation in fields between B=5 and 70MG. Electron and ion temperatures relax in the post-shock regime and the cooling flow settles onto the white dwarf surface. For high mass flow rates ˙(m) (in g/cm^2^/s), cooling takes place mainly by bremsstrahlung and the solutions approach the non-magnetic case. For low ˙(m) and high B, cooling is dominated by cyclotron radiation which causes the thickness of the cooling region to collapse by 1-2 orders of magnitude compared to the non-magnetic case. The electron temperature behind the shock drops from a few 10^8^ to a few 10^7^K and the ratio of cyclotron vs. total radiative flux approaches unity. For high ˙(m) and low B values, bremsstrahlung dominates, but cyclotron losses can never be neglected. We find a smooth transition from particle-heated to shock-heated atmospheres in the maximum electron temperature and also in the thickness of the heated layer. With these results, the stationary radiation-hydrodynamics of accreting magnetic white dwarfs with cyclotron and bremsstrahlung cooling has been solved for the whole range of observed mass flow rates and field strengths.

  6. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curvemore » is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.« less

  7. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  8. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    PubMed

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  9. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.

    PubMed

    Infantino, Angelo; Valtieri, Lorenzo; Cicoria, Gianfranco; Pancaldi, Davide; Mostacci, Domiziano; Marengo, Mario

    2015-12-01

    In a medical cyclotron facility, (41)Ar (t1/2 = 109.34 m) is produced by the activation of air due to the neutron flux during irradiation, according to the (40)Ar(n,γ)(41)Ar reaction; this is particularly relevant in widely diffused high beam current cyclotrons for the production of PET radionuclides. While theoretical estimations of the (41)Ar production have been published, no data are available on direct experimental measurements for a biomedical cyclotron. In this work, we describe a sampling methodology and report the results of an extensive measurement campaign. Furthermore, the experimental results are compared with Monte Carlo simulations performed with the FLUKA code. To measure (41)Ar activity, air samples were taken inside the cyclotron bunker in sealed Marinelli beakers, during the routine production of (18)F with a 16.5 MeV GE-PETtrace cyclotron; this sampling thus reproduces a situation of absence of air changes. Samples analysis was performed in a gamma-ray spectrometry system equipped with HPGe detector. Monte Carlo assessment of the (41)Ar saturation yield was performed directly using the standard FLUKA score RESNUCLE, and off-line by the convolution of neutron fluence with cross section data. The average (41)Ar saturation yield per one liter of air of (41)Ar, measured in gamma-ray spectrometry, resulted to be 3.0 ± 0.6 Bq/µA*dm(3) while simulations gave a result of 6.9 ± 0.3 Bq/µA*dm(3) in the direct assessment and 6.92 ± 0.22 Bq/µA*dm(3) by the convolution neutron fluence-to-cross section. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  11. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended value: a ratio simulation to IAEA of 1.01±0.10 was found.

  12. History and Perspectives of Nuclear Medicine in Myanmar

    PubMed Central

    Mar, Win

    2018-01-01

    Nuclear Medicine was established in Myanmar in 1963 by Dr Soe Myint and International Atomic Energy expert Dr R. Hochel at Yangon General Hospital. Nuclear medicine diagnostic and therapeutic services started with Probe Scintillation Detector Systems and rectilinear scanner. In the early stage, many Nuclear Medicine specialists from the International Atomic Energy Agency (IAEA) spent some time in Myanmar and made significant contributions to the development of Nuclear Medicine in our country. The department participated in various IAEA technical cooperation projects and regional cooperation projects. By the late 1990s, new centers were established in Mandalay, Naypyidaw, and North Okkalapa Teaching Hospital of University of Medicine 11, Yangon. The training program related to Nuclear Medicine includes a postgraduate master’s degree (three years) at the University of Medicine. Currently, all centers are equipped with SPECT, SPECT-CT, PET-CT, and cyclotron in Yangon General Hospital. Up until now, the International Atomic Energy Agency has been playing a crucial role in the growth and development of Nuclear Medicine in Myanmar. Our vision is to provide a wide spectrum of nuclear medicine services at a level compatible with the international standards to become a Center of Excellence. PMID:29333470

  13. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, William T.

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''Themore » motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.« less

  14. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  15. Measurement of H/H+D Ratio and Recycling in Ion Cyclotron Resonance Heating HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Liancheng; Jiang, Guangkuan; Wei, Lehan

    1994-12-01

    A scanning Fabry-Perot interferometer has been used to measure the Hα and Dα lines obtain the H/H+D ratio in ion cyclotron resonance heating HT-6M tokamak for determing the energy absorption mechanism. The recycling is observed by changing the working gas from deuterium to hydrogen.

  16. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE PAGES

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian; ...

    2017-03-30

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  17. Cyclotron resonance of interacting quantum Hall droplets

    NASA Astrophysics Data System (ADS)

    Widmann, M.; Merkt, U.; Cortés, M.; Häusler, W.; Eberl, K.

    1998-06-01

    The line shape and position of cyclotron resonance in gated GaAs/GaAlAs heterojunctions with δ-doped layers of negatively charged beryllium acceptors, that provide strong potential fluctuations in the channels of the quasi-two-dimensional electron systems, are examined. Specifically, the magnetic quantum limit is considered when the electrons are localized in separate quantum Hall droplets in the valleys of the disorder potential. A model treating disorder and electron-electron interaction on an equal footing accounts for all of the principal experimental findings: blue shifts from the unperturbed cyclotron frequency that decrease when the electron density is reduced, surprisingly narrow lines in the magnetic quantum limit, and asymmetric lines due to additional oscillator strength on their high-frequency sides.

  18. Target development for diversified irradiations at a medical cyclotron.

    PubMed

    Spellerberg, S; Scholten, B; Spahn, I; Bolten, W; Holzgreve, M; Coenen, H H; Qaim, S M

    2015-10-01

    The irradiation facility at an old medical cyclotron (Ep=17 MeV; Ed=10 MeV) was upgraded by extending the beam line and incorporation of solid state targetry. Tests performed to check the quality of the available beam are outlined. Results on nuclear data measurements and improvement of radiochemical separations are described. Using solid targets, with the proton beam falling at a slanting angle of 20°, a few radionuclides, e.g. (75)Se, (120)I, (124)I, etc. were produced with medium currents (up to 20 µA) in no-carrier-added form in quantities sufficient for local use. The extended irradiation facility has considerably enhanced the utility of the medical cyclotron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.

  20. Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons.

    PubMed

    Cerfon, Antoine J

    2016-04-29

    We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  1. Characterization of Graphene Stripper Foils in 11-MeV Cyclotrons

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Dishman, Rick; Yebra, Alberto; Meshcheryakov, Nikolay; Smirnov, Ilya; Pavlovsky, Igor; Fink, Richard

    An experimental study of the use of graphene as an extractor (stripper) foil in the 11-MeV Siemens Eclipse Cyclotron is discussed in this paper. The main advantage of graphene is its high thermal conductivity compared to that of amorphous carbon films. Graphene also has significant mechanical strength. The lifetime of the graphene foils under proton bombardment exceeded 16,000 μAh. Graphene-based stripper foils demonstrated a significant increase in the transmission factor (defined as the ratio of the beam current on the target to the beam current on the stripper foil), which was approximately 90%. Fabrication of the graphene-based foils is discussed. The pros and cons of using the graphene material as a stripper foil in cyclotrons are analyzed.

  2. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L.

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement ofmore » electron temperature gradient scale length.« less

  3. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  4. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  5. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  6. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show thatmore » it has a uniformity on the order of 2 parts in 10{sup 4}.« less

  7. Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.

    2003-04-01

    New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.

  8. Electroplating targets for production of unique PET radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bui, V.; Sheh, Y.; Finn, R.

    1994-12-31

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing themore » Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators.« less

  9. Electroplated targets for production of unique PET radionuclides

    NASA Astrophysics Data System (ADS)

    Bui, V.; Sheh, Y.; Finn, R.; Francesconi, L.; Cai, S.; Schlyer, D.; Wieland, B.

    1995-12-01

    The past decade has witnessed the applications of positron emission tomography (PET) evolving from a purely research endeavor to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in both medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules, i.e. monoclonal antibodies and peptides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center (MSKCC) cyclotron are examples of target design and development applicable to many medical accelerators.

  10. Practice Patterns Analysis of Ocular Proton Therapy Centers: The International OPTIC Survey.

    PubMed

    Hrbacek, Jan; Mishra, Kavita K; Kacperek, Andrzej; Dendale, Remi; Nauraye, Catherine; Auger, Michel; Herault, Joel; Daftari, Inder K; Trofimov, Alexei V; Shih, Helen A; Chen, Yen-Lin E; Denker, Andrea; Heufelder, Jens; Horwacik, Tomasz; Swakoń, Jan; Hoehr, Cornelia; Duzenli, Cheryl; Pica, Alessia; Goudjil, Farid; Mazal, Alejandro; Thariat, Juliette; Weber, Damien C

    2016-05-01

    To assess the planning, treatment, and follow-up strategies worldwide in dedicated proton therapy ocular programs. Ten centers from 7 countries completed a questionnaire survey with 109 queries on the eye treatment planning system (TPS), hardware/software equipment, image acquisition/registration, patient positioning, eye surveillance, beam delivery, quality assurance (QA), clinical management, and workflow. Worldwide, 28,891 eye patients were treated with protons at the 10 centers as of the end of 2014. Most centers treated a vast number of ocular patients (1729 to 6369). Three centers treated fewer than 200 ocular patients. Most commonly, the centers treated uveal melanoma (UM) and other primary ocular malignancies, benign ocular tumors, conjunctival lesions, choroidal metastases, and retinoblastomas. The UM dose fractionation was generally within a standard range, whereas dosing for other ocular conditions was not standardized. The majority (80%) of centers used in common a specific ocular TPS. Variability existed in imaging registration, with magnetic resonance imaging (MRI) rarely being used in routine planning (20%). Increased patient to full-time equivalent ratios were observed by higher accruing centers (P=.0161). Generally, ophthalmologists followed up the post-radiation therapy patients, though in 40% of centers radiation oncologists also followed up the patients. Seven centers had a prospective outcomes database. All centers used a cyclotron to accelerate protons with dedicated horizontal beam lines only. QA checks (range, modulation) varied substantially across centers. The first worldwide multi-institutional ophthalmic proton therapy survey of the clinical and technical approach shows areas of substantial overlap and areas of progress needed to achieve sustainable and systematic management. Future international efforts include research and development for imaging and planning software upgrades, increased use of MRI, development of clinical protocols, systematic patient-centered data acquisition, and publishing guidelines on QA, staffing, treatment, and follow-up parameters by dedicated ocular programs to ensure the highest level of care for ocular patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Practice Patterns Analysis of Ocular Proton Therapy Centers: The International OPTIC Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrbacek, Jan, E-mail: Jan.hrbacek@psi.ch; Mishra, Kavita K.; Kacperek, Andrzej

    Purpose: To assess the planning, treatment, and follow-up strategies worldwide in dedicated proton therapy ocular programs. Methods and Materials: Ten centers from 7 countries completed a questionnaire survey with 109 queries on the eye treatment planning system (TPS), hardware/software equipment, image acquisition/registration, patient positioning, eye surveillance, beam delivery, quality assurance (QA), clinical management, and workflow. Results: Worldwide, 28,891 eye patients were treated with protons at the 10 centers as of the end of 2014. Most centers treated a vast number of ocular patients (1729 to 6369). Three centers treated fewer than 200 ocular patients. Most commonly, the centers treated uvealmore » melanoma (UM) and other primary ocular malignancies, benign ocular tumors, conjunctival lesions, choroidal metastases, and retinoblastomas. The UM dose fractionation was generally within a standard range, whereas dosing for other ocular conditions was not standardized. The majority (80%) of centers used in common a specific ocular TPS. Variability existed in imaging registration, with magnetic resonance imaging (MRI) rarely being used in routine planning (20%). Increased patient to full-time equivalent ratios were observed by higher accruing centers (P=.0161). Generally, ophthalmologists followed up the post–radiation therapy patients, though in 40% of centers radiation oncologists also followed up the patients. Seven centers had a prospective outcomes database. All centers used a cyclotron to accelerate protons with dedicated horizontal beam lines only. QA checks (range, modulation) varied substantially across centers. Conclusions: The first worldwide multi-institutional ophthalmic proton therapy survey of the clinical and technical approach shows areas of substantial overlap and areas of progress needed to achieve sustainable and systematic management. Future international efforts include research and development for imaging and planning software upgrades, increased use of MRI, development of clinical protocols, systematic patient-centered data acquisition, and publishing guidelines on QA, staffing, treatment, and follow-up parameters by dedicated ocular programs to ensure the highest level of care for ocular patients.« less

  12. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  13. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  14. Measurements and evaluation of the risks due to external radiation exposures and to intake of activated elements for operational staff engaged in the maintenance of medical cyclotrons.

    PubMed

    Calandrino, R; del Vecchio, A; Parisi, R; Todde, S; De Felice, P; Savi, A; Pepe, A; Mrskova, A

    2010-06-01

    The aim of this paper is to assess the activation phenomena and to evaluate the risk of external exposure and intake doses for the maintenance staff of two medical cyclotrons. Two self-shielded cyclotrons are currently operating in the facility for the routine production of (11)C and (18)F. Four radiochemistry laboratories are linked to the cyclotrons by means of shielded radioisotope delivery lines. Radiopharmaceuticals are prepared both for the PET Diagnostic Department, where four CT-PET scanners are operating with a mean patient workload of 40 d(-1) and for [(18)F]FDG external distribution, to provide radiopharmaceuticals for other institutions. In spite of the fact that air contamination inside the radiochemistry laboratories during the synthesis represents the largest 'slice of the pie' in the evaluation of annual intake dose, potential contamination due to the activated particulate, generated during cyclotron irradiation by micro-corrosion of targets and other components potentially struck by the proton beam and generated neutrons, should be considered. In this regard, the most plausible long-lived (T(1/2) > 30 d) radioisotopes formed are: (97)Tc, (56)Co, (57)Co, (58)Co, (60)Co, (49)V, (55)Fe, (109)Cd, (65)Zn and (22)Na. The results for the operating personnel survey has revealed only low-level contamination for (65)Zn in one test, together with minor (18)F intake, probably due to the environmental dispersion of the radioisotope during the [(18)F]FDG synthesis.

  15. Advances in Nonlinear Non-Scaling FFAGs

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Berz, M.; Makino, K.; Koscielniak, S.; Snopok, P.

    Accelerators are playing increasingly important roles in basic science, technology, and medicine. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider) but remain particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient or FFAG, is an attractive alternative to the other approaches to a high-power beam source. Its strong focusing optics can mitigate space charge effects and achieve higher bunch charges than are possible in a cyclotron, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron but beyond their energy reach, well into the relativistic regime. This new concept has been advanced in non-scaling nonlinear FFAGs using powerful new methodologies developed for FFAG accelerator design and simulation. The machine described here has the high average current advantage and duty cycle of the cyclotron (without using broadband RF frequencies) in combination with the strong focusing, smaller losses, and energy variability that are more typical of the synchrotron. The current industrial and medical standard is a cyclotron, but a competing CW FFAG could promote a shift in this baseline. This paper reports on these new advances in FFAG accelerator technology and presents advanced modeling tools for fixed-field accelerators unique to the code COSY INFINITY.1

  16. Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Thorne, Richard M.

    2000-03-01

    It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+12) and (n+1)Ωe in regions where waves are also growing locally at <=1.5Ωe. The calculated diffusion rates suggest that ECH waves with amplitudes of the order of 1 mV m-1 can form pancake distributions from an initially isotropic distribution on a timescale of a few hours. This is consistent with recent CRRES observations of ECH wave amplitudes following substorm injections near geostationary orbit and the timescales for pancake formation. Persistent but much weaker ECH waves can further intensify and maintain pancake distributions during magnetically quiet periods.

  17. Thermal Electron Contributions to Current-Driven Instabilities: SCIFER Observations in the 1400-km Cleft Ion Fountain and Their Implications to Thermal Ion Energization

    NASA Technical Reports Server (NTRS)

    Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.

  18. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isenberg, Philip A.; Vasquez, Bernard J.

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating tomore » inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.« less

  19. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    PubMed

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D.; Lerche, E.

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063],more » the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.« less

  1. Kinetics and Product Branching Fractions of Reactions between a Cation and a Radical: Ar+ + CH3 and O2+ + CH3 (Postprint)

    DTIC Science & Technology

    2015-01-13

    Gross group using a Chen nozzle coupled to a Fourier transform ion cyclotron reso- nance (FT-ICR) mass spectrometer for reactions of the benzyl radical...reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. Int. J. Mass Spectrom. 2009, 287, 8

  2. CYCLOTRON-WAVE INSTABILITIES,

    DTIC Science & Technology

    Interactions of waves on electron streams or plasmas are studied for several geometric configurations of finite cross section in a finite magnetic...velocity parallel to the magnetic field. It is further assumed that either macroscopic neutrality exists or static spacecharge forces are negligible. For...the most part the quasi-static analysis is used. For the case of two drifting streams cyclotron waves act to giveinstabilities which are either

  3. Survey of heating and current drive for K-DEMO

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; Bertelli, N.; Kim, K.

    2018-03-01

    We present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration with I_p=12.3 MA, a  =  2.1 m, R_o=6.8 m, B_o=7.4 T, \

  4. Electron cyclotron thruster new modeling results preparation for initial experiments

    NASA Technical Reports Server (NTRS)

    Hooper, E. Bickford

    1993-01-01

    The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.

  5. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  6. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  7. Comparison of Dispersion Model of Magneto-Acoustic Cyclotron Instability with Experimental Observation of 3He Ion Cyclotron Emission on JT-60U

    NASA Astrophysics Data System (ADS)

    Sumida, Shuhei; Shinohara, Kouji; Ikezoe, Ryuya; Ichimura, Makoto; Sakamoto, Mizuki; Hirata, Mafumi; Ide, Shunsuke

    2017-12-01

    The Magneto-acoustic Cyclotron Instability (MCI) is a possible emission mechanism for Ion Cyclotron Emissions (ICEs). A dispersion model of the MCI driven by a drifting-ring-type ion velocity distribution has been proposed. In this study, the model was compared with the experimental observations of 3He ICEs [ICEs(3He)] on JT-60U. For this purpose, at first, velocity distributions of deuterium-deuterium fusion produced fast 3He ions at the time of an appearance of the ICE(3He) were evaluated by using a fast ion orbit following code under a realistic condition. The calculated distribution at the edge of the plasma on the midplane on the low field side is shown to have an inverted population and strong anisotropy. This distribution can be reasonably approximated by the drifting-ring-type distribution. Next, dispersions of the MCIs driven by the drifting-ring-type distribution were compared with those of observed ICEs(3He). The comparison shows that toroidal wavenumbers and frequencies of the calculated MCIs agree with those of the observed ICEs(3He).

  8. Outburst of GX304-1 Monitored with INTEGRAL: Positive Correlation Between the Cyclotron Line Energy and Flux

    NASA Technical Reports Server (NTRS)

    Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Ferrigno, C.; Kretschmar, P.; Caballero, I.; Wilms, J.; Kreykenbohm, I.; Pottschmidt, I.; hide

    2012-01-01

    Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-my spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.

  9. Relationship Between the Parameters of the Linear and Nonlinear Wave Generation Stages in a Magnetospheric Cyclotron Maser in the Backward-Wave Oscillator Regime

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.

    2017-03-01

    By using numerical simulations we generalize certain relationships between the parameters of quasimonochromatic whistler-mode waves generated at the linear and nonlinear stages of the cyclotron instability in the backward-wave oscillator regime. One of these relationships is between the wave amplitude at the nonlinear stage and the linear growth rate of the cyclotron instability. It was obtained analytically by V.Yu.Trakhtengerts (1984) for a uniform medium under the assumption of constant frequency and amplitude of the generated wave. We show that a similar relationship also holds for the signals generated in a nonuniform magnetic field and having a discrete structure in the form of short wave packets (elements) with fast frequency drift inside each element. We also generalize the formula for the linear growth rate of absolute cyclotron instability in a nonuniform medium and analyze the relationship between the frequency drift rate in the discrete elements and the wave amplitude. These relationships are important for analyzing the links between the parameters of chorus emissions in the Earth's and planetary magnetospheres and the characteristics of the energetic charged particles generating these signals.

  10. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  11. Evaluation of neutron skyshine from a cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huyashi, K.; Nakamura, T.

    1984-06-01

    The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with various detectors in the environment surrounding the cyclotron of the Institute for Nuclear Study, University of Tokyo. The source neutrons were produced by stopping a 52-MeV proton beam into a carbon beam stopper and were extracted upward from the opening in the concrete shield surrounding the cyclotron and then leaked into the atmosphere through the cyclotron building. The dose distribution and the spectrum of neutrons near the beam stopper were also measured in order to get information on the skyshine source. Themore » measured skyshine neutron spectra and dose distribution were analyzed with two codes, MMCR2 and SKYSHINE-II, with the result that the calculated results are in good agreement with the experiment. Valuable characteristics of this experiment are the determination of the energy spectrum and dose distribution of source neutron and the measurement of skyshine neutrons from an actual large-scale accelerator building to the exclusion of direct neutrons transported through the air. This experiment must be useful as a kind of benchmark experiment on the skyshine phenomenon.« less

  12. Accurate Identification of Unknown and Known Metabolic Mixture Components by Combining 3D NMR with Fourier Transform Ion Cyclotron Resonance Tandem Mass Spectrometry.

    PubMed

    Wang, Cheng; He, Lidong; Li, Da-Wei; Bruschweiler-Li, Lei; Marshall, Alan G; Brüschweiler, Rafael

    2017-10-06

    Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E. coli cell lysate based on 2D/3D NMR experiments in combination with Fourier transform ion cyclotron resonance MS and MS/MS data. For 19 of the 25 model metabolites, SUMMIT yielded complete structures that matched those in the mixture independent of database information. Of those, seven top-ranked structures matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20 previously known metabolites with three or more 1 H spins independent of database information. Moreover, for 15 unknown metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or untargeted analysis of complex mixtures of unknown compounds.

  13. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments. We found that only in human milk gangliosides was the ceramide carbon always even numbered, which is consistent with the notion that differences in the oligosaccharide and the ceramide moieties confer to their physiological distinctions. PMID:21860602

  14. Electron cyclotron maser instability in the solar corona - The role of superthermal tails

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Sharma, R. R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.

  15. The negative hydrogen Penning ion gauge ion source for KIRAMS-13 cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, D. H.; Jung, I. S.; Kang, J.

    2008-02-15

    The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of KIRAMS-13 cyclotron has been used for generation of negative hydrogen ions. The dc H-beam current of 650 {mu}A from the PIG ion source with the Dee voltage of 40 kV and arc current of 1.0 A is extrapolated from the measured dc extraction beam currents at the low extraction dc voltages. The output optimization of PIG ion source in the cyclotron has been carried out by using various chimneys with different sizes of the expansion gap between the plasma boundary and the chimney wall. This papermore » presents the results of the dc H-extraction measurement and the expansion gap experiment.« less

  16. Linear bunchers and half-frequency bunching method

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Jiang, J. Z.; Shi, A. M.; Yin, Z. K.; Wang, Y. F.

    2000-12-01

    A new buncher system consisting of two bunchers has been designed and constructed for HIRFL injector cyclotron, working at the SFC acceleration modes of H=1 and H=3, respectively. The bunchers use saw-tooth RF waveform, but with double-gap drift tube electrodes and single-gap grid electrodes, respectively. The special merit of the design is introduction of the half-frequency bunching mode, utilizing half of the cyclotron RF frequency. With this method, a perfect longitudinal match between the injector SFC and the main cyclotron SSC has been reached theoretically, compared to the original efficiency of 50% for most cases. Detailed studies have been made concerning space charge effects, longitudinal dispersions through the yoke hole and the spiral inflector, and non-linearity in both the RF waveform and the stray electric field of electrodes.

  17. Consequences of narrow cyclotron emission from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Weaver, R. P.

    1978-01-01

    The implications of the recent observations of a narrow cyclotron line in the hard X-ray spectrum of Hercules X-1 are studied. A Monte Carlo code is used to simulate the X-ray transfer of an intrinsically narrow feature at approximately 56 keV through an opaque, cold magnetospheric shell. The results of this study indicate that if a narrow line can be emitted by the source region, then only about 10% of the photons remain in a narrow feature after scattering through the shell. The remaining photons are scattered into a broad feature (FWHM approximately 30 keV) that peaks near 20 keV. Thus, these calculations indicate that the intrinsic source luminosity of the cyclotron line is at least an order of magnitude greater than the observed luminosity.

  18. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.

    2017-03-01

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/ni, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  19. Measurements of Mode Converted Ion Cyclotron Wave with Phase Contrast Imaging in Alcator C-Mod and Comparisons with Synthetic PCI Simulations in TORIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujii, N.; Porkolab, M.; Edlund, E. M.

    2009-11-26

    Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D-{sup 3}He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found tomore » be in qualitative agreement with the measurements.« less

  20. A Hamiltonian Model of Dissipative Wave-particle Interactions and the Negative-mass Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zhmoginov

    2011-02-07

    The effect of radiation friction is included in the Hamiltonian treatment of wave-particle interactions with autoresonant phase-locking, yielding a generalized canonical approach to the problem of dissipative dynamics near a nonlinear resonance. As an example, the negativemass eff ect exhibited by a charged particle in a pump wave and a static magnetic field is studied in the presence of the friction force due to cyclotron radiation. Particles with negative parallel masses m! are shown to transfer their kinetic energy to the pump wave, thus amplifying it. Counterintuitively, such particles also undergo stable dynamics, decreasing their transverse energy monotonically due tomore » cyclotron cooling, whereas some of those with positive m! undergo cyclotron heating instead, extracting energy from the pump wave.« less

  1. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less

  2. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD (invited).

    PubMed

    Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M

    2010-10-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.

  3. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission.

    PubMed

    Carbajal, L; Dendy, R O; Chapman, S C; Cook, J W S

    2017-03-10

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n_{α}/n_{i}, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  4. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here in this paper, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg–DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 –4. Heteroatomic molecules, especially those containing multiple S and N atoms, weremore » found to be among the most important in forming strong complexes with Hg. Major Hg–DOM complexes of C 10H 21N 2S 4Hg + and C 8H 17N 2S 4Hg + were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. Finally, these findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg–DOM complexes that affect biological uptake and transformation of Hg in the environment.« less

  5. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg-DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 -4. Heteroatomic molecules, especially those containing multiple S and N atoms, were found to bemore » among the most important in forming strong complexes with Hg. Major Hg-DOM complexes of C10H21N2S4Hg+ and C8H17N2S4Hg+ were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. These findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg-DOM complexes that affect biological uptake and transformation of Hg in the environment.« less

  6. Molecular beads on a charged molecular string

    NASA Astrophysics Data System (ADS)

    Zhang, Haizhen; Ferrell, Tyler A.; Asplund, Matthew C.; Dearden, David V.

    2007-09-01

    Complexes of [alpha],[omega]-alkyldiammonium cations [H3N+(CH2)nNH3+, n = 2-10] with the cyclic, hollow ligand cucurbit[6]uril (CB6) were characterized in the gas phase using Fourier transform ion cyclotron resonance mass spectrometry with energy resolved sustained off-resonance irradiation (SORI) collision induced dissociation, in combination with HF/6-31G* and B3LYP/6-31G* computational methods. All the complexes have the diammonium cation threaded through the cavity of CB6. The modeled supramolecular geometries, the SORI energies required for dissociation of the complexes and for appearance of singly protonated diamine product ions, and the branching ratios for the various dissociation channels all suggest that the optimum [alpha],[omega]-alkyldiammonium chain length for binding CB6 in the gas phase occurs for n = 4. This contrasts with observed complex stability constants in aqueous formic acid, which are maximum for n = 6, reflecting solvent stabilization of the ammonium groups that is not possible in the gas phase. At the B3LYP/6-31G* level of theory, the binding energy for the n = 4 complex with respect to dissociation to singly protonated butanediamine and protonated CB6 is 204 kJ mol-1. The n = 6 complex exhibits especially low dissociation thresholds, perhaps reflecting compression of the diammonium cation upon complexation with CB6, forming a loaded "molecular spring."

  7. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    DOE PAGES

    Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.; ...

    2016-12-22

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here in this paper, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg–DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 –4. Heteroatomic molecules, especially those containing multiple S and N atoms, weremore » found to be among the most important in forming strong complexes with Hg. Major Hg–DOM complexes of C 10H 21N 2S 4Hg + and C 8H 17N 2S 4Hg + were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. Finally, these findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg–DOM complexes that affect biological uptake and transformation of Hg in the environment.« less

  8. Insights into the Binding Sites of Organometallic Ruthenium Anticancer Compounds on Peptides Using Ultra-High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wills, Rebecca H.; Habtemariam, Abraha; Lopez-Clavijo, Andrea F.; Barrow, Mark P.; Sadler, Peter J.; O'Connor, Peter B.

    2014-04-01

    The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru( N, N)Cl]+, where arene/ N, N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/ o-phenylenediamine ( o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.

  9. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  10. Survey of heating and current drive for K-DEMO

    DOE PAGES

    Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; ...

    2018-01-22

    Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \

  11. Survey of heating and current drive for K-DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.

    Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \

  12. Acceleration of Ions and Electrons by Wave-Particle Interactions

    DTIC Science & Technology

    1984-03-31

    of cyclotron radiation from high-temperature plasmas including collective effects have been derived and discussed in two recent articles by Freund...however, will be presented in separate articles . In summary, the spontaneous cyclotron emissivity has been calcu- lated using the complete...diation from high-temperature plasmas including collective effects are derived and discussed in two recent articles by Freund and Wu’ and Audenaerde

  13. Sensing Fissile Materials at Long Range

    DTIC Science & Technology

    2016-04-01

    Adjusted Magnetic Design Working Point Parametrics ................................................ 21  B.  Use of  HTS  Monoliths or Permanent Magnets for...25  B.3 Applications of  HTS  bulk to cyclotrons. ....................................................................... 26  B.4...57  D.  HTS  Potential for cyclotrons

  14. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.

    2010-04-01

    The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.

  15. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.

  16. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  17. Converting an AEG Cyclotron to H- Acceleration and Extraction

    NASA Astrophysics Data System (ADS)

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-01

    Clinical Trials are under way to evaluate agents labeled with the nuclide 225Ac and its decay product 213Bi, in targeted alpha-immuno-therapy [1]. 225Ac can be produced on a medium-energy cyclotron via the nuclear reaction 226Ra(p,n)225Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33 [2], with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc. [3]. An improved high-power rotating target has been built and installed [4]. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H- ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H- ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H- production. We have also designed and built a precision H- charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of ˜80 microamperes for a total yield of ˜70 milli-curies of 225Ac.

  18. Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating

    NASA Astrophysics Data System (ADS)

    Dolla, L.; Solomon, J.

    2008-05-01

    Context: Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). Aims: We propose a method to constrain both the Alfvén wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. Methods: The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfvén wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 Å line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. Results: The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 R_⊙ above the limb. This result rules out any direct evidence of damping of the Alfvén waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57´´ and 102´´ above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.

  19. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×10 7 s -1.« less

  20. Lorentz force in water: evidence that hydronium cyclotron resonance enhances polymorphism.

    PubMed

    D'Emilia, E; Giuliani, L; Lisi, A; Ledda, M; Grimaldi, S; Montagnier, L; Liboff, A R

    2015-01-01

    There is an ongoing question regarding the structure forming capabilities of water at ambient temperatures. To probe for different structures, we studied effects in pure water following magnetic field exposures corresponding to the ion cyclotron resonance of H3O(+). Included were measurements of conductivity and pH. We find that under ion cyclotron resonance (ICR) stimulation, water undergoes a transition to a form that is hydroxonium-like, with the subsequent emission of a transient 48.5 Hz magnetic signal, in the absence of any other measurable field. Our results indicate that hydronium resonance stimulation alters the structure of water, enhancing the concentration of EZ-water. These results are not only consistent with Del Giudice's model of electromagnetically coherent domains, but they can also be interpreted to show that these domains exist in quantized spin states.

  1. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  2. Cyclotron production of Ga-68 for human use from liquid targets: From theory to practice

    NASA Astrophysics Data System (ADS)

    Alves, F.; Alves, V. H.; Neves, A. C. B.; do Carmo, S. J. C.; Nactergal, B.; Hellas, V.; Kral, E.; Gonçalves-Gameiro, C.; Abrunhosa, A. J.

    2017-05-01

    A fully automated system for the production of 68Ga based on commercially available cyclotron liquid target and synthesis modules is described. A solution containing enriched 68Zn dissolved in a nitric solution is irradiated in a Cyclone 18/9 IBA cyclotron leading to the production of up to about 25 GBq of 68Ga. The irradiated solution is transferred to a Synthera synthesis module in which 68Ga is separated and purified with a yield superior to 85 % and where further labelling is achieved with yields no inferior to 70 %. The developed and implemented method presents an improved approach for the production of 68Ga-radiopharmaceuticals suitable for human use, in a process that takes less than 2 hours. This technique represents an economically viable alternative to 68Ge/68Ga generators with improved characteristics.

  3. Self-induced transparency and electromagnetic pulse compression in a plasma or an electron beam under cyclotron resonance conditions.

    PubMed

    Ginzburg, N S; Zotova, I V; Sergeev, A S

    2010-12-31

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  4. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  5. Single event upset sensitivity of low power Schottky devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Measel, P. R.; Wahlin, K. L.

    1982-01-01

    Data taken from tests involving heavy ions in the Berkeley 88 in. cyclotron being directed at low power Schottky barrier devices are reported. The tests also included trials in the Harvard cyclotron with 130 MeV protons, and at the U.C. Davis cyclotron using 56 MeV protons. The experiments were performed to study the single event upsets in MSI logic devices containing flip-flops. Results are presented of single-event upsets (SEU) causing functional degradation observed in post-exposure tests of six different devices. The effectiveness of the particles in producing SEUs in logic device functioning was found to be directly proportional to the proton energy. Shielding was determined to offer negligible protection from the particle bombardment. The results are considered significant for the design and fabrication of LS devices for space applications.

  6. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less

  7. Oscillating two-stream instability of beat waves in a hot magnetized plasma

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1997-02-01

    It is shown that an electrostatic electron plasma beat wave is efficiently unstable for a low-frequency and short-wave-length purely growing perturbation (ω, k), i.e. an oscillating two-stream instability in a transversely magnetized hot plasma. The nonlinear response of electrons and ions with strong finite Larmor radius effects has been obtained by solving the Vlasov equation expressed in the guiding-center coordinates. The effect of ion dynamics has been found to play a vital role around ω ∼ ωci, where ωci is the ion-cyclotron frequency. For typical plasma parameters, it is found that the maximum growth rate of the instability is about two orders higher when ion motion is taken into account in addition to the electron dynamics.

  8. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  9. Parametric Excitation of Electrostatic Dust-Modes by Ion-Cyclotron Waves in a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Islam, M. K.; Salahuddin, M.; Ferdous, T.; Salimullah, M.

    A large amplitude electrostatic ion-cyclotron wave propagating through a magnetized and collisional dusty plasma undergoes strong parametric instability off the low-frequency dust-modes. The presence of the dust-component has effect on the nonlinear coupling via the dust-modes. The ion-neutral collisions are seen to have significant effect on the damping and consequent overall growth of the parametric excitation process.

  10. Experiment to investigate current drive by fast Alfven waves in a small tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahl, J.; Ishihara, O.; Wong, K.

    1985-07-01

    An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.

  11. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  12. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  13. APPARATUS FOR HEATING A PLASMA

    DOEpatents

    Stix, T.H.

    1962-01-01

    The system contemplates the use of ion cyclotron motions for transferring energy to a plasma immersed in a confining magnetic field such as is found in thermonuclear reactors of the stellarator class. Oppositely directed windings are provided for producing ion-accelerating fields having a time and spatial periodicity and these have the advantage of producing ion cyclotron motions without the development of space charges which preclude the efficient energy transfer to the plasma. (AEC)

  14. Electron-cyclotron absorption in high-temperature plasmas: quasi-exact analytical evaluation and comparative numerical analysis

    NASA Astrophysics Data System (ADS)

    Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.

    2007-01-01

    On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.

  15. Ion-cyclotron instability in plasmas described by product-bi-kappa distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, M. S. dos; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br; Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br

    The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase inmore » the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population.« less

  16. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  17. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  18. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  19. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less

  20. Improving cancer treatment with cyclotron produced radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less

  1. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Erlandson, Robert E.

    1993-01-01

    The principal activity during the past six months has involved the analysis of ion cyclotron waves recorded from DE-2 using the magnetic field experiment and electric field experiment. The results of this study have been published in the Geophysical Research Letters (GRL). The primary finding of this paper is that ion cyclotron waves were found to heat electrons, as observed in the DE-2 Langmuir probe data, through a Landau damping process. A second activity, which was started during the last six months, involves the study of large amplitude approximately one Hz electric and magnetic field oscillations recorded in the nightside auroral zone at substorm onset. Work is under way to determine the properties of these waves and investigate any association these waves may have with the substorm initiation process. A third activity under way involves a comprehensive study of ion cyclotron waves recorded at ionospheric altitudes by DE-2. This study will be an extension of the work reported in the GRL paper and will involve a larger sampling of wave events. This paper will focus on wave properties at ionospheric altitudes. A fourth activity involves a more in-depth analysis of the acceleration mechanisms and the resulting electron distributions based on the observations presented in the GRL paper.

  2. Ion cyclotron waves near comet C/2013 A1 (Siding Spring) and Mars

    NASA Astrophysics Data System (ADS)

    Crary, F. J.; Dols, V. J.; Connerney, J. E. P.; Espley, J. R.

    2014-12-01

    On October 19, 2014, comet C/2013 A1 (Siding Spring) passed approximately 135,000 km from Mars. Previously,we predicted the amplitude of ion cyclotron waves which might be observed during the Siding Spring encounter. Ioncyclotron waves have been observed both in the vicinity of comets and of Mars. These waves are generated by theionization of neutrals in the flowing solar wind, which produces an unstable ring-beam velocity distribution. We estimated that, for a production rate of 2x1028 s-1, ion cyclotron wave with amplitudes over 0.1 nT would be present within ‡5 hours (1.2 million km) of closest approach. We will compare the actual observations made by the MAVEN spacecraft with these predictions. The spacecraft was close to or downstream of the martian bow shock, which complicates the interpretation of the data. Taking thisinto account, we will describe the observations and their implications for wave activity and cometary neutral production. We also present updated hybrid simulations of ion cyclotron wave generation. The simulations use our best estimate of solar wind conditions at the time of the encounter and a variable injection of 18 AMU pickup ions, at a rates consistent a model of the cometary neutrals.

  3. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema

    Gabrielse, Gerald

    2018-05-22

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  4. Unravelling Mechanistic Aspects of the Gas-Phase Ethanol Conversion: An Experimental and Computational Study on the Thermal Reactions of MO2 (+) (M=Mo, W) with Ethanol.

    PubMed

    González-Navarrete, Patricio; Schlangen, Maria; Wu, Xiao-Nan; Schwarz, Helmut

    2016-02-24

    The ion/molecule reactions of molybdenum and tungsten dioxide cations with ethanol have been studied by Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) and density functional theory (DFT) calculations. Dehydration of ethanol has been found as the dominant reaction channel, while generation of the ethyl cation corresponds to a minor product. Cleary, the reactions are mainly governed by the Lewis acidity of the metal center. Computational results, together with isotopic labeling experiments, show that the dehydration of ethanol can proceed either through a conventional concerted [1,2]-elimination mechanism or a step-wise process; the latter occurs via a hydroxyethoxy intermediate. Formation of C2 H5 (+) takes place by transfer of OH(-) from ethanol to the metal center of MO2 (+) . The molybdenum and tungsten dioxide cations exhibit comparable reactivities toward ethanol, and this is reflected in similar reaction rate constants and branching ratios. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less

  6. Interpretation of frequency sweeping of n=0 mode in JET

    NASA Astrophysics Data System (ADS)

    Berk, H. L.

    2006-04-01

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) are observed in the JET tokamak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a global geodesic acoustic mode (GGAM). The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma. In collaboration with C.J. Boswell, MIT; D. Borba, A.C.A. Figueiredo, Center for Nuclear Fusion Association; T. Johnson, Alfven Laboratory, KTH; M.F.F. Nave, Center for Nuclear Fusion Association; S.D. Pinches, Max Planck Institute for Plasma Physics; S.E. Sharapov, UKEA Culham Science Centre; and T. Zhou, University of Texas at Austin.

  7. Ions generated from uranyl nitrate solutions by electrospray ionization (ESI) and detected with Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry.

    PubMed

    Pasilis, Sofie; Somogyi, Arpád; Herrmann, Kristin; Pemberton, Jeanne E

    2006-02-01

    Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).

  8. Cyclotron emission from AM Herculis

    NASA Technical Reports Server (NTRS)

    Chanmugam, G.

    1981-01-01

    The cyclotron absorption coefficients in the ordinary and extraordinary modes are calculated for the shock heated region of AM Her. The equations of radiative transfer are solved and the intensity of the emitted UV radiation determined as a function of angle. The average spectrum is shown to have deviations from the previously predicted Rayleigh-Jeans spectrum and the magnetic field of AM Her is deduced to be roughly 5 x 10 to the 7th power gauss.

  9. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    ScienceCinema

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus; Cave, Etosha; Gur, Ilan; Lounis, Sebastien

    2018-01-16

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  10. Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.

  11. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  12. The reawakening of the sleeping X-ray pulsar XTE J1946+274

    NASA Astrophysics Data System (ADS)

    Müller, S.; Kühnel, M.; Caballero, I.; Pottschmidt, K.; Fürst, F.; Kreykenbohm, I.; Sagredo, M.; Obst, M.; Wilms, J.; Ferrigno, C.; Rothschild, R. E.; Staubert, R.

    2012-10-01

    We report on a series of outbursts of the high-mass X-ray binary XTE J1946+274 in 2010/2011 observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron Kα fluorescence line at 6.4 keV, which are variable in flux and pulse phase. We find possible evidence for a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst that was confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE J1946+274 is variable between individual outbursts.

  13. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  15. MMS Observations of Harmonic Electromagnetic Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.

    2017-12-01

    Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.

  16. Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, D. J., E-mail: djwu@pmo.ac.cn

    By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It ismore » this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.« less

  17. Review of cyclotron production and quality control of ``High specific activity'' radionuclides for biomedical, biological, industrial and environmental applications at INFN-LASA

    NASA Astrophysics Data System (ADS)

    Birattari, C.; Bonardi, M.; Groppi, F.; Gini, L.

    2001-12-01

    At the "Radiochemistry Laboratory" of Accelerators and Applied Superconductivity Laboratory, LASA, a wide range of high specific activity radionuclides, RNs, have been produced in No Carrier Added form, for both basic research and application purposes. Use was made of the AVF proton cyclotron (K=45) of Milan University (up to 1987). More recently, the irradiations were carried out at the Scanditronix MC40 cyclotron (K=38; p, d, He-4 and He-3) of JRC-Ispra, Italy, of the European Community. In order to optimize the irradiation conditions for radioisotope production, a series of thin- and thick-target excitation functions have been experimentally determined. For each RN, a specific radiochemical separation has been developed in order to obtain GBq (mCi) amounts of the radiotracers in "high specific activity" No Carrier Added form (NCA).

  18. Influence of the electron cyclotron resonance plasma confinement on reducing the bremsstrahlung production of an electron cyclotron resonance ion source with metal-dielectric structures.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2009-01-01

    The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.

  19. The instrument for investigating magnetic fields of isochronous cyclotrons

    NASA Astrophysics Data System (ADS)

    Avreline, N. V.

    2017-12-01

    A new instrument was designed and implemented in order to increase the measurement accuracy of magnetic field maps for isochronous Cyclotrons manufactured by Advanced Cyclotron Systems Inc. This instrument uses the Hall Probe (HP) from New Zealand manufacturer Group3. The specific probe used is MPT-141 HP and can measure magnetic field in the range from 2G to 21kG. Use of a fast ADC NI9239 module and error reduction algorithms, based on a polynomial regression method, allowed to reduce the noise to 0.2G. The design of this instrument allows to measure high gradient magnetic fields, as the resolution of the HP arm angle is within 0.0005° and the radial position resolution is within 25μm. A set of National Instrument interfaces connected to a desktop computer through a network are used as base control and data acquisition systems.

  20. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.

    2018-04-01

    Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.

  1. Ion cyclotron emission from energetic fusion products in tokamak plasmas: A full-wave calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1989-06-01

    A full-wave ion cyclotron resonant heating (ICRH) code has been modified to allow calculation of cyclotron emission from energetic ions in tokamaks. The immediate application is to fusion alpha particles in near-ignition devices. This permits detailed evaluation of proposed alpha particle diagnostics (Proceedings of the Thirteenth European Conference on Controlled Fusion and Plasma Heating, Schliersee, Federal Republic of Germany, 1986, edited by G. Briffod and M. Kaufmann (European Physical Society, Petit-Lancy, Switzerland, 1986), Part 1, Vol. 2, p. 37.) This full-wave approach automatically takes into account wall reflections, standing waves, and plasma absorption and overcomes the difficulties inherent in attemptingmore » to apply conventional geometrical optics to long wavelengths. By calculating the coherent radiation field caused by an ensemble of localized current sources (and retaining the phase information), the directivity of pickup antennas is correctly represented.« less

  2. Cyclotron produced radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Kopička, K.; Fišer, M.; Hradilek, P.; Hanč, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides/compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed.

  3. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  4. Dependence of synergy current driven by lower hybrid wave and electron cyclotron wave on the frequency and parallel refractive index of electron cyclotron wave for Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.; Chen, S. Y., E-mail: sychen531@163.com; Tang, C. J.

    2014-01-15

    The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainlymore » caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.« less

  5. Magneto-optical absorption and cyclotron-phonon resonance in graphene monolayer

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Phuong, Le Thi Thu; Phong, Tran Cong

    2018-03-01

    The optical absorption power by Dirac fermions in a graphene monolayer subjected to a perpendicular magnetic field is calculated using a projection operator technique. The electron-optical phonon interaction with optical deformation potential is taken into account. By varying the photon frequency (energy), we observe in the absorption power a series of cyclotron-phonon resonance (CPR) peaks (i.e., the phonon-assisted cyclotron resonance). It is seen that the resonant photon energy is linearly proportional to the square root of the magnetic field. Also, the half width at half maximum (HWHM) of CPR peaks depends on the magnetic field by the law HWHM = 7.42 √{B } but does not depend on the temperature. In particular, the magnetic field and temperature dependences of the position and HWHM of CPR peaks are in good agreement with those obtained recently by the perturbation theory and an experiment in graphene.

  6. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; hide

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  7. [Modulating effect of weak combined magnetic fields on duration of mealworm beetle Tenebrio molitor metamorphosis stage].

    PubMed

    Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E

    2014-01-01

    It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.

  8. High-beta steady-state research with integrated modeling in the JT-60 Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, T.

    2007-05-15

    Improvement of high-beta performance and its long sustainment was obtained with ferritic steel tiles in the JT-60 Upgrade (JT-60U) [T. Fujita et al., Phys. Plasmas 50, 104 (2005)], which were installed inside the vacuum vessel to reduce fast ion loss by decreasing the toroidal field ripple. When a separation between the plasma surface and the wall was small, high-beta plasmas reached the ideal wall stability limit, i.e., the ideal magnetohydrodynamics stability limit with the wall stabilization. A small rotation velocity of 0.3% of the Alfven velocity was found to be effective for suppressing the resistive wall mode. Sustainment of themore » high normalized beta value of {beta}{sub N}=2.3 has been extended to 28.6 s ({approx}15 times the current diffusion time) by improvement of the confinement and increase in the net heating power. Based on the research in JT-60U experiments and first-principle simulations, integrated models of core, edge-pedestal, and scrape-off-layer (SOL) divertors were developed, and they clarified complex features of reactor-relevant plasmas. The integrated core plasma model indicated that the small amount of electron cyclotron (EC) current density of about half the bootstrap current density could effectively stabilize the neoclassical tearing mode by the localized EC current accurately aligned to the magnetic island center. The integrated edge-pedestal model clarified that the collisionality dependence of energy loss due to the edge-localized mode was caused by the change in the width of the unstable mode and the SOL transport. The integrated SOL-divertor model clarified the effect of the exhaust slot on the pumping efficiency and the cause of enhanced radiation near the X-point multifaceted asymmetric radiation from edge. Success in these consistent analyses using the integrated code indicates that it is an effective means to investigate complex plasmas and to control the integrated performance.« less

  9. DIII-D Electron Cyclotron Heating System Status and Upgrades

    DOE PAGES

    Cengher, Mirela; Lohr, John; Gorelov, Yuri; ...

    2016-06-23

    The DIII-D Electron Cyclotron Heating (ECH) system consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds. The maximum ECH energy injected into the DIII-D is 16.6 MJ. The HE1,1 mode content is over 85% for all the lines, and the transmission coefficient is better than -1.1 dB formore » all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Four dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, are used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. Two more gyrotrons are expected to be installed and operational in 2015- 2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI).« less

  10. Increasing Polyaromatic Hydrocarbon (PAH) Molecular Coverage during Fossil Oil Analysis by Combining Gas Chromatography and Atmospheric-Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)

    PubMed Central

    Benigni, Paolo; DeBord, J. Daniel; Thompson, Christopher J.; Gardinali, Piero; Fernandez-Lima, Francisco

    2016-01-01

    Thousands of chemically distinct compounds are encountered in fossil oil samples that require rapid screening and accurate identification. In the present paper, we show for the first time, the advantages of gas chromatography (GC) separation in combination with atmospheric-pressure laser ionization (APLI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the screening of polyaromatic hydrocarbons (PAHs) in fossil oils. In particular, reference standards of organics in shale oil, petroleum crude oil, and heavy sweet crude oil were characterized by GC-APLI-FT-ICR MS and APLI-FT-ICR MS. Results showed that, while APLI increases the ionization efficiency of PAHs, when compared to other ionization sources, the complexity of the fossil oils reduces the probability of ionizing lower-concentration compounds during direct infusion. When gas chromatography precedes APLI-FT-ICR MS, an increase (more than 2-fold) in the ionization efficiency and an increase in the signal-to-noise ratio of lower-concentration fractions are observed, giving better molecular coverage in the m/z 100–450 range. That is, the use of GC prior to APLI-FT-ICR MS resulted in higher molecular coverage, higher sensitivity, and the ability to separate and characterize molecular isomers, while maintaining the ultrahigh resolution and mass accuracy of the FT-ICR MS separation. PMID:27212790

  11. Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McLaughlin, K. R.

    2008-12-01

    In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  12. Low-Frequency Plasma Waves in Saturn's Magnetosphere: A Comprehensive Analysis of Magnetometer Data from the Cassini Era (2004-2017)

    NASA Astrophysics Data System (ADS)

    Meeks, Z. C.; Simon, S.; Kabanovic, S.; Liuzzo, L.

    2017-12-01

    Based on all available Cassini magnetic field data sets collected between 2004 and 2017, we construct a three-dimensional map of ion cyclotron waves (ICWs) in the Saturnian magnetosphere. First, we survey the magnetometer data for ICWs, which can be applied to constrain the local ion production rate, as well as the mass of the newly-generated ions. We find that the occurrence rate of ion cyclotron waves decreases according to a Fermi-Dirac-like profile w.r.t. radial distance, with only few waves observed beyond the orbit of Rhea. In the north-south direction, the ICW amplitude decreases non-linearly with no waves occurring farther than two Saturnian radii from the equatorial plane. The ICWs are generated in a narrow band (extension 0.3 Saturn radii) around the planet's equatorial plane and then propagate away from the magnetic equator in both hemispheres. We derive an analytical expression for the three-dimensional shape of the region populated by ICWs. We also analyze the distribution of mirror mode waves in Saturn's equatorial magnetosphere. We find that this wave mode occurs independent of Local Time. In radial direction, we identify a transition region between L=5.5 and L=6.5 where a drastic drop of ion cyclotron wave occurrence is juxtaposed with the emergence of the mirror mode wave. On average, the dilute atmospheres around Dione and Rhea have no statistically significant impact on either the ICWs or the mirror mode waves. We then apply hybrid (kinetic ions, fluid electrons) modeling to study the generation of ion cyclotron waves (ICWs) in Saturn's equatorial magnetosphere and to convert the observed ICW amplitudes into a profile of the local ion production rate. Previously, this conversion has been done exclusively at the orbit of Enceladus (Cowee et al. (2009)), but we expand this survey to the complete occurrence realm of ion cyclotron waves in Saturn's equatorial magnetosphere (between L=3.5 and L=9.5). In doing so, we provide a relationship between the observed ion cyclotron wave amplitude and ion production rate between the orbits of Enceladus and Rhea, which we use to characterize the sources of plasma in the Saturnian system.

  13. Magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Thorne, R. M.

    1972-01-01

    Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.

  14. Ground-based dosimetry support for experiment AR002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassou, R.; Benton, E.V.

    1976-01-01

    Actinomyces levoris colonies were exposed to alpha particles at the 184-inch cyclotron, and Streptomyces levoris colonies were exposed to Ne-20 ions. A description is given of the experimental conditions for each experiment along with tables listing the doses delivered to the colonies. The doses for the Actinomyces levoris exposures came from calibrations made by the cyclotron operators, while the doses for the Streptomyces levoris exposures came in part from cave calibrations and also in part from calculations.

  15. Radionuclidic purity measurements for cyclotron-produced 99mTc via 100Mo(p,2n) at 18 MeV

    NASA Astrophysics Data System (ADS)

    Buckley, K.; Tanguay, J.; Hou, X.; Stothers, L.; Vuckovic, M.; Frantzen, K.; Cockburn, N.; Corsaut, J.; Dodd, M.; Goodbody, A.; Hanemaayer, V.; Hook, B.; Klug, J.; Kovacs, M.; Kumlin, J.; McDiarmid, S.; McEwan, J.; Prato, F.; Ruddock, P.; Valiant, J.; Zeisler, S.; Ruth, T.; Celler, A.; Benard, F.; Schaffer, P.

    2017-05-01

    The radionuclidic purity of cyclotron-produced 99mTc has been measured by gamma ray spectroscopy and compared to the results of a quick release test modeled after the molybdenum breakthrough test performed on generator-derived 99mTc. Excellent radionuclidic purity is reported for samples produced at BCCA during our clinical trial. The quick release test results agree well with the gamma ray analysis.

  16. The new solid target system at UNAM in a self-shielded 11 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.; Flores-Moreno, A.; Trejo-Ballado, F.; Avila-Rodriguez, Miguel A.

    2012-12-01

    A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL's was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.

  17. Ion-cyclotron-frequency stabilization of internal kink mode and sawtooth oscillations in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.

    It is proposed that the ponderomotive force due to applied ion-cyclotron resonance-frequency waves can stabilize the internal kink mode in tokamaks. The sufficient stability criterion is derived and the necessary power estimated. It is concluded that at the rf power level, present in the Joint European Torus experiment, the ponderomotive force effects are significant and may be responsible for the modification of the sawtooth activity observed in recent experiments.

  18. A compact electron cyclotron resonance proton source for the Paul Scherrer Institute's proton accelerator facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgarten, C.; Barchetti, A.; Einenkel, H.

    2011-05-15

    A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.

  19. Principles of Space Plasma Wave Instrument Design

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.

  20. The new solid target system at UNAM in a self-shielded 11 MeV cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarate-Morales, A.; Gaspar-Carcamo, R. E.; Lopez-Rodriguez, V.

    2012-12-19

    A dual beam line (BL) self-shielded RDS 111 cyclotron for radionuclide production was installed at the School of Medicine of the National Autonomous University of Mexico in 2001. One of the BL's was upgraded to Eclipse HP (Siemens) in 2008 and the second BL was recently upgraded (June 2011) to the same version with the option for the irradiation of solid targets for the production of metallic radioisotopes.

  1. Polarization Measurements During Electron Cyclotron Heating Experiments in the DIII-D Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petty, C.C.; Luce, T.C.; Austin, M.E.

    The polarization of the launched electron cyclotron wave has been optimized for coupling to the X-mode by adjusting the inclination of grooved mirrors located in two consecutive mitre bends of the waveguide. The unwanted O-mode component of the launched beam can be positively identified by the difference in the power deposition profiles between X-mode and O-mode. The optimal polarization for X-mode launch is in good agreement with theoretical expectations.

  2. Open problems of magnetic island control by electron cyclotron current drive

    DOE PAGES

    Grasso, Daniela; Lazzaro, E.; Borgogno, D.; ...

    2016-11-17

    This study reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.

  3. Conceptual design of the AGATA 1 π array at GANIL

    NASA Astrophysics Data System (ADS)

    Clément, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Barthe Dejean, C.; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J.-L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Ménager, L.; Ménard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Korten, W.; Salsac, M.-D.; Theisen, Ch.; Zielińska, M.; Joannem, T.; Karolak, M.; Kebbiri, M.; Lotode, A.; Touzery, R.; Walter, Ch.; Korichi, A.; Ljungvall, J.; Lopez-Martens, A.; Ralet, D.; Dosme, N.; Grave, X.; Karkour, N.; Lafay, X.; Legay, E.; Kojouharov, I.; Domingo-Pardo, C.; Gadea, A.; Pérez-Vidal, R. M.; Civera, J. V.; Birkenbach, B.; Eberth, J.; Hess, H.; Lewandowski, L.; Reiter, P.; Nannini, A.; De Angelis, G.; Jaworski, G.; John, P.; Napoli, D. R.; Valiente-Dobón, J. J.; Barrientos, D.; Bortolato, D.; Benzoni, G.; Bracco, A.; Brambilla, S.; Camera, F.; Crespi, F. C. L.; Leoni, S.; Million, B.; Pullia, A.; Wieland, O.; Bazzacco, D.; Lenzi, S. M.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Recchia, F.; Bellato, M.; Isocrate, R.; Egea Canet, F. J.; Didierjean, F.; Duchêne, G.; Baumann, R.; Brucker, M.; Dangelser, E.; Filliger, M.; Friedmann, H.; Gaudiot, G.; Grapton, J.-N.; Kocher, H.; Mathieu, C.; Sigward, M.-H.; Thomas, D.; Veeramootoo, S.; Dudouet, J.; Stézowski, O.; Aufranc, C.; Aubert, Y.; Labiche, M.; Simpson, J.; Burrows, I.; Coleman-Smith, P. J.; Grant, A.; Lazarus, I. H.; Morrall, P. S.; Pucknell, V. F. E.; Boston, A.; Judson, D. S.; Lalović, N.; Nyberg, J.; Collado, J.; González, V.; Kuti, I.; Nyakó, B. M.; Maj, A.; Rudigier, M.

    2017-05-01

    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This set-up exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA 1 π array are presented.

  4. High energy PIXE: A tool to characterize multi-layer thick samples

    NASA Astrophysics Data System (ADS)

    Subercaze, A.; Koumeir, C.; Métivier, V.; Servagent, N.; Guertin, A.; Haddad, F.

    2018-02-01

    High energy PIXE is a useful and non-destructive tool to characterize multi-layer thick samples such as cultural heritage objects. In a previous work, we demonstrated the possibility to perform quantitative analysis of simple multi-layer samples using high energy PIXE, without any assumption on their composition. In this work an in-depth study of the parameters involved in the method previously published is proposed. Its extension to more complex samples with a repeated layer is also presented. Experiments have been performed at the ARRONAX cyclotron using 68 MeV protons. The thicknesses and sequences of a multi-layer sample including two different layers of the same element have been determined. Performances and limits of this method are presented and discussed.

  5. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  6. A Suzaku View of Cyclotron Line Sources and Candidates

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.; hide

    2012-01-01

    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.

  7. Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.

    2015-09-15

    A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less

  8. Characterization of 41Ar production in air at a PET cyclotron facility

    NASA Astrophysics Data System (ADS)

    Cicoria, Gianfranco; Cesarini, Francesco; Infantino, Angelo; Vichi, Sara; Zagni, Federico; Marengo, Mario

    2017-06-01

    In the production of Positron Emission Tomography (PET) nuclides at a medical cyclotron facility 41Ar (T1/2 = 109.34 m) is produced by the activation of air due to the neutron flux, according to the 40Ar(n, γ)41Ar reaction. In this work, we describe a relatively inexpensive and readily reproducible methodology of air sampling that can be used for quantification of 41Ar during the routine production of PET nuclides. We report the results of an extensive measurement campaign in the cyclotron bunker and in the ducts of the ventilation system, before and after final filtering of the extracted air. Air Samples were analyzed using a gamma-ray spectrometry system equipped with HPGe detector, with proper correction of the efficiency calibration to account for the samples density. The results of measurement were then used to evaluate the Total Effective Dose (TED) to the population living in the surrounding areas, due to routine emissions in the operation of the cyclotron. The average 41Ar saturation yield per one liter of air emitted in the environment resulted to be (0.044 ± 0.007) Bq/(μA ṡ dm3). The maximum value of TED for the critical group of the population, even considering an overestimated workload, was less than 0.19 μSv/year, well below the level of radiological relevance.

  9. Cyclotron production of high specific activity 55Co and in vivo evaluation of the stability of 55Co metal-chelate-peptide complexes

    PubMed Central

    Mastren, Tara; Marquez, Bernadette V.; Sultan, Deborah E.; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E.

    2016-01-01

    This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96GBq/µmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabelled at 3.7MBq/µg and injected into HCT-116 tumor xenografted mice. PET imaging and biodistribution studies were performed at 24 and 48 hours post injection and compared with that of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptake in the liver by 6-fold at 24 with ~1% ID/g and at 48 hours with ~0.5% ID/g, and reducing uptake in the heart by 4-fold at 24 hours with ~0.7% ID/g and 7-fold at 48 hours with ~0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for Positron Emission Tomography (PET) imaging of cancer and other diseases. PMID:26505224

  10. Cyclotron Production of High-Specific Activity 55Co and In Vivo Evaluation of the Stability of 55Co Metal-Chelate-Peptide Complexes.

    PubMed

    Mastren, Tara; Marquez, Bernadette V; Sultan, Deborah E; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E

    2015-01-01

    This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers' uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.

  11. Cyclotron Production of High–Specific Activity 55Co and In Vivo Evaluation of the Stability of 55Co Metal-Chelate-Peptide Complexes

    DOE PAGES

    Mastren, Tara; Marquez, Bernadette V.; Sultan, Deborah E.; ...

    2015-10-01

    This work describes the production of high–specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α) 55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl 2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptakemore » in the liver by sixfold at 24 hours with ˜ 1% ID/g and at 48 hours with ˜ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ˜ 0.7% ID/g and sevenfold at 48 hours with ˜ 0.35% ID/g. Furthermore, these results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.« less

  12. Revitalizing Complex Analysis: A Transition-to-Proof Course Centered on Complex Topics

    ERIC Educational Resources Information Center

    Sachs, Robert

    2017-01-01

    A new transition course centered on complex topics would help in revitalizing complex analysis in two ways: first, provide early exposure to complex functions, sparking greater interest in the complex analysis course; second, create extra time in the complex analysis course by eliminating the "complex precalculus" part of the course. In…

  13. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.

    PubMed

    Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi

    2015-01-01

    Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.

  14. Production of Y-86 and other radiometals for research purposes using a solution target system.

    PubMed

    Oehlke, Elisabeth; Hoehr, Cornelia; Hou, Xinchi; Hanemaayer, Victoire; Zeisler, Stefan; Adam, Michael J; Ruth, Thomas J; Celler, Anna; Buckley, Ken; Benard, Francois; Schaffer, Paul

    2015-11-01

    Diagnostic radiometals are typically obtained from cyclotrons by irradiating solid targets or from radioisotope generators. These methods have the advantage of high production yields, but require additional solid target handling infrastructure that is not readily available to many cyclotron facilities. Herein, we provide an overview of our results regarding the production of various positron-emitting radiometals using a liquid target system installed on a 13 MeV cyclotron at TRIUMF. Details about the production, purification and quality control of (89)Zr, (68)Ga and for the first time (86)Y are discussed. Aqueous solutions containing 1.35-1.65 g/mL of natural-abundance zinc nitrate, yttrium nitrate, and strontium nitrate were irradiated on a 13 MeV cyclotron using a standard liquid target. Different target body and foil materials were investigated for corrosion. Production yields were calculated using theoretical cross-sections from the EMPIRE code and compared with experimental results. The radioisotopes were extracted from irradiated target material using solid phase extraction methods adapted from previously reported methods, and used for radiolabelling experiments. We demonstrated production quantities that are sufficient for chemical and biological studies for three separate radiometals, (89)Zr (Asat = 360 MBq/μA and yield = 3.17 MBq/μA), (86)Y (Asat = 31 MBq/μA and yield = 1.44 MBq/μA), and (68)Ga (Asat = 141 MBq/μA and yield = 64 MBq/μA) from one hour long irradiations on a typical medical cyclotron. (68)Ga yields were sufficient for potential clinical applications. In order to avoid corrosion of the target body and target foil, nitrate solutions were chosen as well as niobium as target-body material. An automatic loading system enabled up to three production runs per day. The separation efficiency ranged from 82 to 99%. Subsequently, (68)Ga and (86)Y were successfully used to radiolabel DOTA-based chelators while deferoxamine was used to coordinate (89)Zr. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.

    2015-06-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.

  16. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The May 2-7, 1998, Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    Complete description of a self-consistent model for magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves, and back on waves, are considered self-consistently by solving both equations on a global magnetospheric scale under non steady-state conditions. In the paper by Khazanov et al. [2002] this self-consistent model has only been shortly outlined, and discussions of many the model related details have been omitted. For example, in present study for the first time a new algorithm for numerical finding of the resonant numbers for quasilinear wave-particle interaction is described, or it is demonstrated that in order to describe quasilinear interaction in a multi-ion thermal plasma correctly, both e and He(+) modes of electromagnetic ion cyclotron waves should be employed. The developed model is used to simulate the entire May 2-7, 1998 storm period. Trapped number fluxes of the ring current protons are calculated and presented along with their comparison with the data measured by the 3D hot plasma instrument Polar/HYDRA. Examining of the wave (MLT, L shell) distributions produced during the storm progress reveals an essential intensification of the wave emissions in about two days after main phase of storm. This result is well consistent with the earlier ground-based observations. Also the theoretical shapes and the occurrence rates for power spectral densities of electromagnetic ion cyclotron waves are studied. It is found that in about 2 days after the storm main phase on May 4, mainly non Gaussian shapes of power spectral densities are produced.

  17. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  18. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki.

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  19. ESI-FTICR-MS Molecular Characterization of DOM Degradation under Warming in Tundra Soils from Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongmei Chen; Ziming Yang; Rosalie Chu

    This dataset provides the results of warming incubation of Arctic soils from trough areas of a high-center polygon at the Barrow Environmental Observatory (BEO) in northern Alaska, United States. The organic-rich soil (8-20 cm below ground surface) and the mineral-rich soil (22-45 cm below surface) were separated, and the thawed and homogenized subsamples from each soil were incubated at -2 degrees C or 8 degrees C for 122 days under anoxic conditions (headspace filled with N2). The extracted DOM from soil samples were analyzed by Fourier transform ion cyclotron resonance mass spectrometry coupled with electrospray ionization (ESI-FTICR-MS). Reported analytes includemore » soil water content, dissolved organic carbon, total organic carbon, MS peaks' m/z and intensities, and elemental composition of identified molecular formulas.« less

  20. Structure of zirconocene complexes relevant for olefin catalysis: infrared fingerprint of the Zr(C(5)H(5))(2)(OH)(CH(3)CN)(+) cation in the gas phase.

    PubMed

    Lagutschenkov, Anita; Springer, Andreas; Lorenz, Ulrich Joseph; Maitre, Philippe; Dopfer, Otto

    2010-02-11

    Cationic zirconocene complexes are active species in Ziegler-Natta catalysis for olefin polymerization. Their structure and metal-ligand bond strength strongly influence their activity. In the present work, the infrared multiphoton dissociation (IRMPD) spectrum of mass selected Zr(C(5)H(5))(2)(OH)(CH(3)CN)(+) cations was obtained in the 300-1500 cm(-1) fingerprint range by coupling a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization (ESI) source and the infrared free electron laser (IR-FEL) at the Centre Laser Infrarouge d'Orsay (CLIO). The experimental efforts are complemented by quantum chemical calculations at the MP2 and B3LYP levels using the 6-311G* basis set. Vibrational assignments of transitions observed in the IRMPD spectra to modes of the Zr-O-H, C(5)H(5), and CH(3)CN moieties are based on comparison to calculated linear absorption spectra. Both the experimental data and the calculations provide unprecedented information about structure, metal-ligand bonding, charge distribution, and binding energy of the complex.

Top