Science.gov

Sample records for cyclotron dynamics leading

  1. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  2. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  3. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  4. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  5. Plasma ion dynamics and beam formation in electron cyclotron resonance ion sources

    SciTech Connect

    Mascali, D.; Neri, L.; Miracoli, R.; Gammino, S.; Celona, L.; Ciavola, G.; Gambino, N.; Chikin, S.

    2010-02-15

    In electron cyclotron resonance ion sources it has been demonstrated that plasma heating may be improved by means of different microwave to plasma coupling mechanisms, including the ''frequency tuning'' and the ''two frequency heating''. These techniques affect evidently the electron dynamics, but the relationship with the ion dynamics has not been investigated in details up to now. Here we will try to outline these relations: through the study of ion dynamics we may try to understand how to optimize the electron cyclotron resonance ion sources brightness. A simple model of the ion confinement and beam formation will be presented, based on particle-in-cell and single particle simulations.

  6. Cyclotron dynamics of a Kondo singlet in a spin-orbit-coupled alkaline-earth-metal atomic gas

    NASA Astrophysics Data System (ADS)

    Jiang, Bo-Nan; Lv, Hao; Wang, Wen-Li; Du, Juan; Qian, Jun; Wang, Yu-Zhu

    2014-11-01

    We propose a scheme to investigate the interplay between the Kondo-exchange interaction and the quantum spin Hall effect with ultracold fermionic alkaline-earth-metal atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, although the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling.

  7. Van Allen Probes observations of electromagnetic ion cyclotron waves triggered by enhanced solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J. J.; Choi, C. R.; Thaller, S.; Skoug, R.

    2016-10-01

    Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field (IMF) quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the plasmapause at postmidnight and near the equator (magnetic latitude (MLAT) -3°). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe-A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT 12°). Event 3 is characterized by amplification of a preexisting EMIC wave by a sharp Pdyn pulse impact while Van Allen Probe-A is located outside the plasmapause at noon and rather away from the equator (MLAT -15°). These three events represent various situations where EMIC waves can be triggered by Pdyn increases. Several common features are also found among the three events. (i) The strongest wave is found just above the He+ gyrofrequency. (ii) The waves are nearly linearly polarized with a rather oblique propagation direction ( 28° to 39° on average). (iii) The proton fluxes increase in immediate response to the Pdyn impact, most significantly in tens of keV energy, corresponding to the proton resonant energy. (iv) The temperature anisotropy with T⊥ > T|| is seen in the resonant energy for all the events, although its increase by the Pdyn impact is not necessarily always significant. The last two points (iii) and (iv) may imply that in addition to the temperature anisotropy, the increase of the resonant protons must have played a critical role in triggering the EMIC waves by the enhanced Pdyn impact.

  8. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    NASA Astrophysics Data System (ADS)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  9. The power absorption and the penetration depth of electromagnetic radiation in lead telluride under cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Özalp, S.; Güngör, A.

    1999-10-01

    Cyclotron resonance absorption in n- and p-type PbTe was observed by Nii and was analysed under classical skin effect conditions. When the values of DC magnetic field corresponding to peaks are plotted against the field directions, a close fit is obtained between the calculated and observed results based on the assumption of a <1 1 1> ellipsoids of revolution model for the both conduction and valance band extrema. From the best fit mt=0.024 m0 and 0.03 m0 for the transverse effective masses and K= ml/ mt=9.8 and 12.2 for the anisotropic mass rations are obtained for the conduction and valance band, respectively. The observed absorption curve shows weak structures at low magnetic field. They are supposed to be due to second harmonics of Azbel'-Kaner cyclotron resonance. However, it turns out to be unnecessary to introduce other bands to explain the experimental results. The applicability of the classical magneto-optical theory is examined by calculating the power absorption coefficient and penetration depth as a function of DC magnetic field.

  10. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer

    NASA Technical Reports Server (NTRS)

    Erlandson, Robert E.

    1994-01-01

    The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.

  11. Molecular-dynamics simulations of lead clusters

    NASA Astrophysics Data System (ADS)

    Hendy, S. C.; Hall, B. D.

    2001-08-01

    Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.

  12. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries.

    PubMed

    Cooper, Helen J; Case, Martin A; McLendon, George L; Marshall, Alan G

    2003-05-07

    The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.

  13. Terahertz Dynamics of a Topologically Protected State: Quantum Hall Effect Plateaus near the Cyclotron Resonance of a Two-Dimensional Electron Gas.

    PubMed

    Stier, A V; Ellis, C T; Kwon, J; Xing, H; Zhang, H; Eason, D; Strasser, G; Morimoto, T; Aoki, H; Zeng, H; McCombe, B D; Cerne, J

    2015-12-11

    We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency using highly sensitive Faraday rotation measurements. The sample is electrically gated, allowing the electron density to be changed continuously by more than a factor of 3. We observe clear plateaulike and steplike features in the Faraday rotation angle vs electron density and magnetic field (Landau-level filling factor) even at fields or frequencies very close to cyclotron resonance absorption. These features are the high frequency manifestation of quantum Hall plateaus-a signature of topologically protected edge states. We observe both odd and even filling factor plateaus and explore the temperature dependence of these plateaus. Although dynamical scaling theory begins to break down in the frequency region of our measurements, we find good agreement with theory.

  14. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  15. Frazil ice dynamics in polynyas and leads

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Rees Jones, David

    2016-04-01

    The initial stage of sea ice formation in a turbulent ocean typically involves the growth of a suspension of frazil ice crystals in supercooled waters. In competition with turbulent mixing, these crystals rise buoyantly and eventually settle at the ocean surface. The resulting rapid growth of granular ice has been observed to make up a significant fraction of ice cover in certain locations. Our recent theoretical work suggests that the growth of individual frazil ice crystals may be significantly faster than had commonly been supposed. We here explore the consequences for the dynamics of a suspension of many frazil ice crystals in a well mixed layer. Frazil suspensions are affected by many processes, including the fluid dynamics of suspensions, nucleation, the collision and sintering of crystals, as well as crystal growth. These processes combine to control the evolving distribution of crystal sizes. We apply a model of the crystal size distribution in a well mixed layer to investigate the comparative importance of these mechanisms, quantify the controls on ice growth, and compare to available laboratory data. We complement our theoretical model with two-dimensional direct numerical simulations of turbulent convection with a suspension of resolved crystals, in order to elucidate the fluid dynamical coupling between ocean convection with crystal rise, and its impact on ice precipitation rates.

  16. Molecular dynamics of liquid lead near its melting point

    SciTech Connect

    Khusnutdinov, R. M.; Mokshin, A. V. Yul'met'ev, R. M.

    2009-03-15

    The molecular dynamics of liquid lead is simulated at T = 613 K using the following three models of an interparticle interaction potential: the Dzugutov pair potential and two multiparticle potentials (the 'glue' potential and the Gupta potential). One of the purposes of this work is to determine the optimal model potential of the interatomic interaction in liquid lead. The calculated structural static and dynamic characteristics are compared with the experimental data on X-ray and neutron scattering. On the whole, all three model potentials adequately reproduce the experimental data. The calculations using the Dzugutov pair potential are found to reproduce the structural properties and dynamics of liquid lead on the nanoscale best of all. The role of a multiparticle contribution to the glue and Gupta potentials is studied, and its effect on the dynamic properties of liquid lead in nanoregions is revealed. In particular, the neglect of this contribution is shown to noticeably decrease the acoustic-mode frequency.

  17. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and Dynamics Explorer. Semiannual report, 1 June-1 December 1993

    SciTech Connect

    Erlandson, R. E.

    1993-12-31

    The principal activity during the past six months has involved the analysis of ion cyclotron waves recorded from DE-2 using the magnetic field experiment and electric field experiment. The results of this study have been published in the Geophysical Research Letters (GRL). The primary finding of this paper is that ion cyclotron waves were found to heat electrons, as observed in the DE-2 Langmuir probe data, through a Landau damping process. A second activity, which was started during the last six months, involves the study of large amplitude approximately one Hz electric and magnetic field oscillations recorded in the nightside auroral zone at substorm onset. Work is under way to determine the properties of these waves and investigate any association these waves may have with the substorm initiation process. A third activity under way involves a comprehensive study of ion cyclotron waves recorded at ionospheric altitudes by DE-2. This study will be an extension of the work reported in the GRL paper and will involve a larger sampling of wave events. This paper will focus on wave properties at ionospheric altitudes. A fourth activity involves a more in-depth analysis of the acceleration mechanisms and the resulting electron distributions based on the observations presented in the GRL paper.

  18. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  19. The effects of leading edge roughness on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    2016-11-01

    Dynamic stall is a fundamental flow phenomenon that is commonly observed for insect flight and rotorcraft. Under certain conditions a leading edge vortex forms generating large but temporary lift forces. Historically, computations studying dynamic stall on airfoil shapes have struggled to predict this vortex formation time and separation point. Reduced order models and CFD have performed well when experiments have been performed to develop separation models, but this has limited the development of robust design tools. The current study looks at the effect of leading edge surface roughness on the formation of the Dynamic Stall Vortex (DSV). Roughness elements were applied to the leading edge of a NACA 0012 airfoil and PIV data of the vortex formation process was recorded. Measurements were taken at a Reynolds number of Re = 12,000 and baseline smooth NACA 0012 data was also recorded for comparison. Surface roughness elements, below the typical scale modeled by CFD, are shown to change DSV formation angle and location.

  20. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  1. Building 211 cyclotron characterization survey report

    SciTech Connect

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  2. The effect of leading edge tubercles on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    The effect of the leading edge tubercles of humpback whales has been heavily studied for their static benefits. These studies have shown that tubercles inhibit flow separation, limit spanwise flow, and extend the operating angle of a wing beyond the static stall point while maintaining lift, all while having a comparatively low negative impact on drag. The current study extends the prior work to investigating the effect of tubercles on dynamic stall, a fundamental flow phenomenon that occurs when wings undergo dynamic pitching motions. Flow fields around the wing models tested were studied using Laser Induced Fluorescence (LIF) and Molecular Tagging Velocimetry (MTV).Resulting velocity fields show that the dynamics of the formation and separation of the leading edge vortex were fundamentally different between the straight wing and the tubercled wing. Tracking of the Dynamic Stall Vortex (DSV) and Shear Layer Vortices (SLVs), which may have a significant impact on the overall flow behavior, was done along with calculations of vortex circulation. Proximity to the wing surface and total circulation were used to evaluate potential dynamic lift increases provided by the tubercles. The effects of pitch rate on the formation process and benefits of the tubercles were also studied and were generally consistent with prior dynamic stall studies. However, tubercles were shown to affect the SLV formation and the circulation differently at higher pitch rates.

  3. Defining the clonal dynamics leading to mouse skin tumour initiation

    PubMed Central

    Sánchez-Danés, Adriana; Hannezo, Edouard; Larsimont, Jean-Christophe; Liagre, Mélanie; Youssef, Khalil Kass; Simons, Benjamin D; Blanpain, Cédric

    2016-01-01

    The changes that occur in cell dynamics following oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the impact of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, were competent to initiate tumour formation upon oncogenic hedgehog signalling. Interestingly, this difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase of symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is not only dependent on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin. PMID:27459053

  4. Structural defects lead to dynamic entrapment in cardiac electrophysiology.

    PubMed

    Bates, Oliver R J; Suki, Bela; Spector, Peter S; Bates, Jason H T

    2015-01-01

    Biological networks are typically comprised of many parts whose interactions are governed by nonlinear dynamics. This potentially imbues them with the ability to support multiple attractors, and therefore to exhibit correspondingly distinct patterns of behavior. In particular, multiple attractors have been demonstrated for the electrical activity of the diseased heart in situations where cardioversion is able to convert a reentrant arrhythmia to a stable normal rhythm. Healthy hearts, however, are typically resilient to abnormal rhythms. This raises the question as to how a healthy cardiac cell network must be altered so that it can support multiple distinct behaviors. Here we demonstrate how anatomic defects can give rise to multi-stability in the heart as a function of the electrophysiological properties of the cardiac tissue and the timing of activation of ectopic foci. This leads to a form of hysteretic behavior, which we call dynamic entrapment, whereby the heart can become trapped in aberrant attractor as a result of a transient change in tissue properties. We show that this can lead to a highly inconsistent relationship between clinical symptoms and underlying pathophysiology, which raises the possibility that dynamic entrapment may underlie other forms of chronic idiopathic illness.

  5. Structural Defects Lead to Dynamic Entrapment in Cardiac Electrophysiology

    PubMed Central

    Bates, Oliver R. J.; Suki, Bela; Spector, Peter S.; Bates, Jason H. T.

    2015-01-01

    Biological networks are typically comprised of many parts whose interactions are governed by nonlinear dynamics. This potentially imbues them with the ability to support multiple attractors, and therefore to exhibit correspondingly distinct patterns of behavior. In particular, multiple attractors have been demonstrated for the electrical activity of the diseased heart in situations where cardioversion is able to convert a reentrant arrhythmia to a stable normal rhythm. Healthy hearts, however, are typically resilient to abnormal rhythms. This raises the question as to how a healthy cardiac cell network must be altered so that it can support multiple distinct behaviors. Here we demonstrate how anatomic defects can give rise to multi-stability in the heart as a function of the electrophysiological properties of the cardiac tissue and the timing of activation of ectopic foci. This leads to a form of hysteretic behavior, which we call dynamic entrapment, whereby the heart can become trapped in aberrant attractor as a result of a transient change in tissue properties. We show that this can lead to a highly inconsistent relationship between clinical symptoms and underlying pathophysiology, which raises the possibility that dynamic entrapment may underlie other forms of chronic idiopathic illness. PMID:25756656

  6. Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Winske, Dan

    1993-01-01

    Enhanced transverse magnetic fluctuations observed below the proton cyclotron frequency in the terrestrial magnetosheath have been identified as due to the proton cyclotron and helium cyclotron instabilities driven by the T-perpendicular greater than T-parallel condition of the sheath ions. One-dimensional hybrid computer simulations are used here to examine the nonlinear properties of these two growing modes at relatively weak fluctuation energies and for wave vectors parallel to the background magnetic field. Second-order theory predicts fluctuating magnetic field energies at saturation of the proton cyclotron anisotropy instability in semiquantitative agreement with the simulation results. Introduction of the helium component enhances the wave-particle exchange rate for proton anisotropy reduction by that instability, thereby reducing the saturation energy of that mode. The simulations demonstrate that wave-particle interactions by the proton cyclotron and helium cyclotron instabilities lead to the anticorrelation observed by Anderson and Fuselier (1993).

  7. Generalized Master Equations Leading to Completely Positive Dynamics

    NASA Astrophysics Data System (ADS)

    Vacchini, Bassano

    2016-12-01

    We provide a general construction of quantum generalized master equations with a memory kernel leading to well-defined, that is, completely positive and trace-preserving, time evolutions. The approach builds on an operator generalization of memory kernels appearing in the description of non-Markovian classical processes and puts into evidence the nonuniqueness of the relationship arising due to the typical quantum issue of operator ordering. The approach provides a physical interpretation of the structure of the kernels, and its connection with the classical viewpoint allows for a trajectory description of the dynamics. Previous apparently unrelated results are now connected in a unified framework, which further allows us to phenomenologically construct a large class of non-Markovian evolutions taking as the starting point collections of time-dependent maps and instantaneous transformations describing the microscopic interaction dynamics.

  8. 88-Inch Cyclotron newsletter

    SciTech Connect

    Stokstad, R.

    1987-02-01

    Activities at the 88-Inch Cyclotron are discussed. Increased beam time demand and operation of the ECR source and cyclotron are reported. Experimental facility improvements are reported, including improvements to the High Energy Resolution Array and to the Recoil Atom Mass Analyzer, a new capture beamline, development of a low background counting facility. Other general improvements are reported that relate to the facility computer network and electronics pool. Approved heavy nuclei research is briefly highlighted. Also listed are the beams accelerated by the cyclotron. (LEW)

  9. Relaxation dynamics of lithium ions in lead bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Pan, A.; Ghosh, A.

    2000-08-01

    We have investigated relaxation dynamics of lithium ions in lead bismuthate glasses in the frequency range from 10 Hz to 2 MHz and in the temperature range from 303-553 K. Using the Anderson-Stuart model, we have calculated the activation energy, which is observed to be lower than that of the dc conductivity. We have studied the relaxation mechanism of these glasses in the framework of the electric modulus and conductivity formalisms. The microscopic parameters obtained from these formalisms have been compared. We have also calculated the decoupling index and correlated them with the stretched exponential relaxation parameter and the dc conductivity.

  10. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  11. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance

    PubMed Central

    Chevereau, Guillaume; Dravecká, Marta; Batur, Tugce; Guvenek, Aysegul; Ayhan, Dilay Hazal; Toprak, Erdal; Bollenbach, Tobias

    2015-01-01

    The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the “morbidostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations—an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall

  12. A dynamic simulation of a lead blast furnace

    NASA Astrophysics Data System (ADS)

    Chao, John T.

    1981-06-01

    A dynamic model has been developed to simulate the operation of the stack zone of a lead blast furnace. The mathematical formulation of the governing equations of change leads to a system of 2nd order partial differential equations, which is solved by finite difference methods. A reduction model of ash-layer diffusion controlled mechanism, which allows the stepwise reduction to the lowest oxide or metal thermodynamically possible for the local gas composition within the sinter, is employed in this model. The surface reaction and the internal diffusion in the porous solid particles are taken into account in the coke gasification reaction. The profiles of the temperatures of gases and solids, solid compositions, and gas compositions and pressure in both radial and axial directions are predicted by the model. The results provide a good representation of the experimental data obtained for the blast furnace at Brunswick Mining and Smelting Corp., Ltd., New Brunswick, Canada and also of the less extensive data available for the Cominco blast furnace at Trail, British Columbia, Canada. In addition to the modelling of the stack, a mass and energy balance for the bosh zone is also included in the present calculation. The improvement of coke efficiency due to oxygen enrichment in the blast air for the Brunswick Furnace were interpreted semiquantitatively. The effect of sinter size distribution on the furnace performance has also been studied.

  13. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  14. Inflation and cyclotron motion

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-01-01

    We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying unconventional dispersion relations.

  15. Lawrence's Legacy : Seaborg's Cyclotron - The 88-Inch Cyclotron turns 40

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Clark, David

    2003-04-01

    In 1958, Sputnik had recently been launched by the Russians, leading to worry in Congress and increased funding for science and technology. Ernest Lawrence was director of the "Rad Lab" at Berkeley. Another Nobel Prize winner, Glenn Seaborg, was Associate Laboratory Director and Director of the Nuclear Chemistry Division. In this atmosphere, Lawrence was phoned by commissioners of the Atomic Energy Commission and asked what they could do for Seaborg, "because he did such a fine job of setting up the chemistry for extracting plutonium from spent reactor fuel" [1]. In this informal way, the 90-Inch (eventually 88-Inch) Cyclotron became a line item in the federal budget at a cost of 3M (later increased to 5M). The 88-Inch Cyclotron achieved first internal beam on Dec. 12, 1961 and first external beam in May 1962. Forty years later it is still going strong. Pieced together from interviews with the retirees who built it, Rad Lab reports and archives from the Seaborg and Lawrence collections, the story of its design and construction - on-time and under-budget - provides a glimpse into the early days of big science. [1] remarks made by Elmer Kelly, "Physicist-in-charge' of the project on the occasion of the 40th anniversary celebration.

  16. Cyclotron Research and Applications

    SciTech Connect

    Mach, Rostislav

    2010-01-05

    The twenty years old cyclotron U-120M was upgraded for R and D and Production of Radiopharmaceuticals. R and D on short-lived Radiopharmaceuticals production is done at this accelerator. These Radiopharmaceuticals are eventually delivered to nearby hospitals. Development of new diagnostic radiopharmaceuticals is also pursued at the facility. your paper.

  17. Lead

    MedlinePlus

    ... Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home Find a Lead-Safe Certified firm Before you renovate Before you buy or rent a home built before 1978 Test your home's drinking water Test for lead in paint, dust or soil ...

  18. Leading Dynamic Schools: How to Create and Implement Ethical Policies

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.; Cobb, Casey D.; Reagan, Timothy G.; Kuntz, Aaron

    2007-01-01

    This companion book to "Principals of Dynamic Schools" and "Dynamic Teachers" brings to life the process of making and enacting educational policy and helps decision makers evaluate, interpret, and analyze the policies that govern their schools. In accessible language, this book presents educational leaders with a conceptual framework for…

  19. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  20. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  1. Lead

    MedlinePlus

    ... ATSDR Board of Scientific Counselors Lead in the environment: Agency for Toxic Substances and Disease Registry (ATSDR) Federal partner agencies: Department of Housing and Urban Development (HUD) and U.S. Environmental Protection Agency (EPA) Data, ...

  2. Balanced excitation and inhibition lead to statistical and dynamical criticality

    NASA Astrophysics Data System (ADS)

    Cecchi, Guillermo

    2010-03-01

    We present a simple abstract model, an anti-Hebbian network which spontaneously poises itself, by balancing excitation and inhibition, at a dynamically critical state: an extensive number of degrees of freedom approach Hopf bifurcations, becoming arbitrarily sensitive to external perturbations (PRL 102, 258102 - 2009). As the dynamics controlling this state has itself a marginal fixed point, the eigenvalues fluctuate close to the imaginary axis; when they become slightly unstable, the corresponding mode ``breaks out'' and becomes more prominent, and as they become slightly stable the mode slowly damps out. This breakout dynamics displays avalanche-like activity bursts whose sizes may be power-law distributed, i.e. statistically critical. Within these epochs the neurons of our model are slightly correlated; yet, as the number of small but significant correlations is high, the model has strongly correlated network states. This system is, on the short time-scale, sensitive in bulk to any outside input, even if applied only to a small subset of the neurons. We also present preliminary results showing that human brain electro-physiological recordings display both statistical and dynamical criticality.

  3. Design Study Of Cyclotron Magnet With Permanent Magnet

    SciTech Connect

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 and the All field calculations had been performed by OPERA-3D TOSCA. The self-made beam dynamics program OPTICY is used for making isochronous field and other calculations.

  4. Design Study Of Cyclotron Magnet With Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  5. Leading at the Front: How EB Proteins Regulate Microtubule Dynamics

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare

    2012-02-01

    Microtubules are the most rigid of the cytoskeletal filaments, they provide the cell's scaffolding, form the byways on which motor proteins transport intracellular cargo and reorganize to form the mitotic spindle when the cell needs to divide. These biopolymers are composed of alpha and beta tubulin monomers that create hollow cylindrical nanotubes with an outer diameter of 25 nm and an inner diameter of 17 nm. At steady state concentrations, microtubules undergo a process known as dynamic instability. During dynamic instability the length of individual microtubules is changing as the filament alternates between periods of growth to shrinkage (catastrophe) and shrinkage to growth (rescue). This process can be enhanced or diminished with the addition of microtubule associated proteins (MAPs). MAPs are microtubule binding proteins that stabilize, destabilize, or nucleate microtubules. We will discuss the effects of the stabilizing end-binding proteins (EB1, EB2 and EB3), on microtubule dynamics observed in vitro. The EBs are a unique family of MAPs known to tip track and enhance microtubule growth by stabilizing the ends. This is a different mechanism than those employed by structural MAPs such as tau or MAP4.

  6. Female juvenile murderers: Biological and psychological dynamics leading to homicide.

    PubMed

    Heide, Kathleen M; Solomon, Eldra P

    2009-01-01

    The increasing involvement of girls under 18 in violent crime has been a matter of growing concern in the United States in recent years. This article reviews the arrests of female juveniles for violent crime and then focuses specifically on their involvement in homicide. Arrests of girls for murder, unlike arrests for assault, have not risen over the last 30 years, suggesting that the dynamics that propel female juveniles to engage in lethal violence differ from those contributing to assaultive behavior by this same group. A review of the literature indicates that theories as to why female adolescents kill do not take into account recent scientific findings on brain development and the biological effects of early trauma in explaining serious violent behavior by girls. Three cases, evaluated by the authors, involving female adolescents charged with murder or attempted murder, are presented. The authors focus on the biological and psychological dynamics that help explain their violent behavior. They discuss the effects of insecure attachment and child maltreatment, and trace a critical pathway between these early experiences and future risk of violent behavior. The dynamics of child maltreatment in fostering rage and violence are discussed thereafter in terms of offender accountability. The article concludes with a discussion of treatment and recommendations for future research.

  7. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  8. Exploring the cation dynamics in lead-bromide hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2016-06-01

    Density functional theory including a many-body treatment of dispersive forces is used to describe the interplay between structure and electronic properties of two prototypical Br-based hybrid perovskites, namely, CH3NH3PbBr3 and HC (NH2)2PbBr3 . We find that, like for some of their iodine-based counterparts, the molecules' orientation plays a crucial role in determining the shape of both the conduction and valence bands around the band edges. This is mostly evident in the case of CH3NH3PbBr3 , which is a direct band-gap semiconductor when the CH3NH3 group is oriented along the (111) direction but turns indirect when the orientation is (100). We have constructed a simple dipole model, with parameters all evaluated from ab initio calculations, to describe the molecules' depolarization dynamics. We find that, once the molecules are initially orientated along a given high-symmetry direction, their room-temperature depolarization depends on the specific material investigated. In particular we find that the ratio between the polarization decay constant of CH3NH3PbBr3 and that of HC (NH2)2PbBr3 is about 2 at room temperature. With these results at hand we suggest a simple luminescence decay experiment to prove our findings and establish a correlation between optical activity and the molecules' dynamics in these materials.

  9. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  10. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  11. Lead from the center. How to manage divisions dynamically.

    PubMed

    Raynor, M E; Bower, J L

    2001-05-01

    Conventional wisdom holds that a company's divisions should be given almost total autonomy--especially under conditions of uncertainty--because they are closer to emerging technologies, customers, and competitors than corporate headquarters could ever be. But research from Michael Raynor and Joseph Bower suggests that the corporate office should be more, not less, directive in turbulent markets. Rapid changes in an industry make it difficult to predict where and when synergies among divisions might emerge. With so many possibilities and such uncertainty, companies can't afford to sacrifice their ability to flexibly execute business strategy. Corporate headquarters must play an active role in defining the scope of division-level strategy, the authors say, so that divisions do not act in ways that undermine opportunities to collaborate in the future. But neither can companies afford to sacrifice the competitiveness of their divisions as stand-alone businesses. In creating corporate-level strategic flexibility, a corporate office must balance the need for divisional autonomy now with the potential need for cooperation in the future. Through an examination of four corporations--Sprint, WPP, Teradyne, and Viacom--the authors challenge traditional approaches to diversification in which a company's divisions are either related (they share resources and collaborate) or unrelated (they compete for resources and operate as stand-alone businesses). They argue that companies should adopt a dynamic approach to cooperation among divisions, enabling varying degrees of relatedness between divisions depending on strategic circumstances. The authors offer four tactics to help executives manage divisions dynamically.

  12. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    SciTech Connect

    Dorf, M. A.; Zorin, V. G.; Sidorov, A. V.; Bokhanov, A. F.; Izotov, I. V.; Razin, S. V.; Skalyga, V. A.

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  13. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer. Final report, 1 June 1991-31 August 1994

    SciTech Connect

    Erlandson, R.E.

    1994-08-01

    The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.

  14. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  15. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  16. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  17. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  18. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  19. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  20. Fluid equations in the presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-01

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  1. Fluid equations in the presence of electron cyclotron current drive

    SciTech Connect

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  2. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 35

    SciTech Connect

    Not Available

    1986-10-29

    Efforts are reported on the installation and checkout of cyclotron components which had been previously fabricated. Final integration of subsystems and major systems leading to internal beam tests is reported near completion. Progress is reported in relation to control system components, focus and steering magnet design, and rf system testing. (LEW)

  3. Leading Order Response of Statistical Averages of a Dynamical System to Small Stochastic Perturbations

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.

    2017-03-01

    The classical fluctuation-dissipation theorem predicts the average response of a dynamical system to an external deterministic perturbation via time-lagged statistical correlation functions of the corresponding unperturbed system. In this work we develop a fluctuation-response theory and test a computational framework for the leading order response of statistical averages of a deterministic or stochastic dynamical system to an external stochastic perturbation. In the case of a stochastic unperturbed dynamical system, we compute the leading order fluctuation-response formulas for two different cases: when the existing stochastic term is perturbed, and when a new, statistically independent, stochastic perturbation is introduced. We numerically investigate the effectiveness of the new response formulas for an appropriately rescaled Lorenz 96 system, in both the deterministic and stochastic unperturbed dynamical regimes.

  4. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  5. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  6. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  7. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  8. The nature of dynamic disorder in lead halide perovskite crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yaffe, Omer; Guo, Yinsheng; Hull, Trevor; Stoumpos, Costas; Tan, Liang Z.; Egger, David A.; Zheng, Fan; Szpak, Guilherme; Semonin, Octavi E.; Beecher, Alexander N.; Heinz, Tony F.; Kronik, Leeor; Rappe, Andrew M.; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Pimenta, Marcos A.; Brus, Louis E.

    2016-09-01

    We combine low frequency Raman scattering measurements with first-principles molecular dynamics (MD) to study the nature of dynamic disorder in hybrid lead-halide perovskite crystals. We conduct a comparative study between a hybrid (CH3NH3PbBr3) and an all-inorganic lead-halide perovskite (CsPbBr3). Both are of the general ABX3 perovskite formula, and have a similar band gap and structural phase sequence, orthorhombic at low temperature, changing first to tetragonal and then to cubic symmetry as temperature increases. In the high temperature phases, we find that both compounds show a pronounced Raman quasi-elastic central peak, indicating that both are dynamically disordered.

  9. Design Features Of K = 100 Cyclotron Magnet For ISOL RIB Production

    SciTech Connect

    Park, Jin Ah; Gad, Kh. M. M.; Chai, Jong-Seo

    2011-06-01

    K = 100 Separated Sector Cyclotron was designed in conceptual for the ISOL driver. It has 4 separated sector magnets. Two SF cyclotrons will be used as the injectors for separated sector cyclotron. RF frequency is 70 MHz, 4th harmonics. We have designed sector magnet without trim and harmonic coils. Minimum radius of the magnet is 55 cm and maximum radius is 1.8 m. Designed magnets were calculated and simulated by OPERA 3D (TOSCA) code. Ion beam dynamics calculations have been done using particle studio code to prove the focusing properties of the designed magnets.

  10. Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shen, Zheng; Ray, Asok; Rahn, Christopher D.

    2014-12-01

    This short paper presents a recently reported dynamic data-driven method, Symbolic Dynamic Filtering (SDF), for real-time estimation of the state-of-health (SOH) and state-of-charge (SOC) in lead-acid batteries, as an alternative to model-based analysis techniques. In particular, SOC estimation relies on a k-NN regression algorithm while SOH estimation is obtained from the divergence between extracted features. The results show that the proposed data-driven method successfully distinguishes battery voltage responses under different SOC and SOH situations.

  11. Numerical study: Iron corrosion-resistance in lead-bismuth eutectic coolant by molecular dynamics method

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani,; Celino, Massimo

    2012-06-06

    In this present work, we report numerical results of iron (cladding) corrosion study in interaction with lead-bismuth eutectic coolant of advanced nuclear reactors. The goal of this work is to study how the oxygen can be used to reduce the corrosion rate of cladding. The molecular dynamics method was applied to simulate corrosion process. By evaluating the diffusion coefficients, RDF functions, MSD curves of the iron and also observed the crystal structure of iron before and after oxygen injection to the coolant then we concluded that a significant and effective reduction can be achieved by issuing about 2% number of oxygen atoms to lead-bismuth eutectic coolant.

  12. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  13. TRIUMF cyclotron vacuum system refurbishing

    NASA Astrophysics Data System (ADS)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  14. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  15. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  16. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2007-12-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  17. Infra red active modes due to coupling of cyclotron excitation and LO phonons in polar semiconductor

    NASA Astrophysics Data System (ADS)

    Agrawal, Ratna; Dubey, Swati; Ghosh, S.

    2013-06-01

    Effects of free carrier concentration, external magnetic field and Callen effective charge on infra red active modes in a polar semiconductor have been analytically investigated using simple harmonic oscillator model. Callen effective charge considerably enhances reflectivity and shifts minima towards lower values of energy. Presence of magnetic field leads towards the coupling of collective cyclotron excitations with LO phonon giving rise to maximum reflectivity whereas cyclotron resonance absorption results into minimum reflectivity.

  18. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  19. Future cyclotron systems: An industrial perspective

    SciTech Connect

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market`s potential and the cyclotron system`s abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century.

  20. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  1. Room-temperature dynamic correlation between methylammonium molecules in lead-iodine based perovskites: An ab initio molecular dynamics perspective

    NASA Astrophysics Data System (ADS)

    Lahnsteiner, Jonathan; Kresse, Georg; Kumar, Abhinav; Sarma, D. D.; Franchini, Cesare; Bokdam, Menno

    2016-12-01

    The high efficiency of lead organo-metal-halide perovskite solar cells has raised many questions about the role of the methylammonium (MA) molecules in the Pb-I framework. Experiments indicate that the MA molecules are able to "freely" spin around at room temperature even though they carry an intrinsic dipole moment. We have performed large supercell (2592 atoms) finite-temperature ab initio molecular dynamics calculations to study the correlation between the molecules in the framework. An underlying long-range antiferroelectric ordering of the molecular dipoles is observed. The dynamical correlation between neighboring molecules shows a maximum around room temperature in the mid-temperature phase. In this phase, the rotations are slow enough to (partially) couple to neighbors via the Pb-I cage. This results in a collective motion of neighboring molecules in which the cage acts as the mediator. At lower and higher temperatures, the motions are less correlated.

  2. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  3. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    SciTech Connect

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M.

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  4. Use of cyclotrons in medical research: Past, present, future

    NASA Astrophysics Data System (ADS)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  5. Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    SciTech Connect

    Haxton, D. J; Slaughter, D. S; Osipov, T.; Weber, T.; Rescigno, T. N; Belkacem, A.; Adaniya, H.; Rudek, B.; McCurdy, C. W

    2011-09-15

    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ({sup 2}{Pi}) and OH ({sup 2}{Sigma}), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear configurations.

  6. Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    SciTech Connect

    Haxton, Dan; Adaniya, Hidihito; Slaughter, Dan; Rudek, B.; Osipov, Timur; Weber, Thorsten; Rescigno, Tom; McCurdy, Bill; Belkacem, Ali

    2011-06-08

    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ((sup 2}{Pi} ) and OH ({sup 2}{Sigma} ), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear con gurations.

  7. On the dynamical mechanisms explaining the western Pacific subsurface temperature buildup leading to ENSO events

    NASA Astrophysics Data System (ADS)

    Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier

    2015-04-01

    Despite steady progress in the understanding of El Niño-Southern Oscillation (ENSO) in the past decades, questions remain on the exact mechanisms explaining the heat buildup leading to the onset of El Niño (EN) events. Here we use an ensemble of ocean and atmosphere assimilation products to identify mechanisms that are consistently identified by all the data sets and that contribute to the heat buildup in the western Pacific 18 to 24 months before the onset of EN events. Meridional and eastward heat advection due to equatorward subsurface mass convergence and transport along the equatorial undercurrent are found to contribute to the subsurface warming at 170°E-150°W. In the warm pool, instead, surface horizontal convergence and downwelling motion have a leading role in subsurface warming. The picture emerging from our results highlights a sharp dynamical transition at 170°E near the level of the thermocline.

  8. A Dynamical Origin Of The Leading/trailing Asymmetry In Jupiter's Trojan Swarms?

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.

    2012-10-01

    The cataloged population of Jupiter Trojans has long shown a puzzling asymmetry between the leading (L4) and trailing (L5) swarms down to the smallest observable sizes. Estimates from the Sloan Digital Sky Survey (SDSS) place the leading/trailing ratio at 1.6 ± 0.1 [1], survey observations with the Subaru telescope give a leading/trailing ratio of around 1.8 [2], and most recently, estimates from the WISE mission give a leading/trailing ratio of 1.4 ± 0.2 [3]. Current models for Trojan capture [eg. 4] predict that the two swarms should begin with roughly equal numbers of bodies, and there is no inherent difference in stability between the leading and trailing swarms in the three-body problem. However, several researchers have proposed that when Saturn is included in the dynamics, the trailing swarm might be less stable than the leading swarm [5-8], and this difference may be able to explain the asymmetry. Here we test that hypothesis with long-term orbital integrations using a wider range of initial conditions than explored by those authors. References: [1] Szabo, G. M. et al., MNRAS 377, 1393-1406 (2007). [2] Nakamura, T. and Yoshida, F., PASJ 60, 293-296 (2008). [3] Grav, T. et al., ApJ 742, 40-49 (2011). [4] Morbidelli, A. et al., Nature 435, 462-465 (2005). [5] Pal, A. and Suli, A., Publications of the Astronomy Department of the Eotvos University (PADEU) 14, 285-292 (2004). [6] Schwarz, R. et al., CMDA 90, 139-148 (2004). [7] Dvorak, R. and Schwarz, R., CMDA 92, 19-28 (2005). [8] Freistetter, F., A&A 453, 353-361 (2006).

  9. Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure.

    PubMed

    Lauritzen, Knut H; Kleppa, Liv; Aronsen, Jan Magnus; Eide, Lars; Carlsen, Harald; Haugen, Øyvind P; Sjaastad, Ivar; Klungland, Arne; Rasmussen, Lene Juel; Attramadal, Håvard; Storm-Mathisen, Jon; Bergersen, Linda H

    2015-08-01

    Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.

  10. PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity

    PubMed Central

    Dabrowska, Aleksandra; Venero, Jose Luis; Iwasawa, Ryota; Hankir, Mohammed-khair; Rahman, Sunniyat; Boobis, Alan; Hajji, Nabil

    2015-01-01

    Due to its role in regulation of mitochondrial function, PGC1α is emerging as an important player in ageing and neurodegenerative disorders. PGC1α exerts its neuroprotective effects by promoting mitochondrial biogenesis (MB) and functioning. However, the precise regulatory role of PGC1α in the control of mitochondrial dynamics (MD) and neurotoxicity is still unknown. Here we elucidate the role of PGC1α in vitro and in vivo in the regulatory context of MB and MD in response to lead (II) acetate as a relevant model of neurotoxicity. We show that there is an adaptive response (AR) to lead, orchestrated by the BAP31-calcium signalling system operating between the ER and mitochondria. We find that this hormetic response is controlled by a cell-tolerated increase of PGC1α expression, which in turn induces a balanced expression of fusion/fission genes by binding to their promoters and implying its direct role in regulation of MD. However, dysregulation of PGC1α expression through either stable downregulation or overexpression, renders cells more susceptible to lead insult leading to mitochondrial fragmentation and cell death. Our data provide novel evidence that PGC1α expression is a key regulator of MD and the maintenance of tolerated PGC1α expression may offer a promising strategy for neuroprotective therapies. PMID:26363853

  11. PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity.

    PubMed

    Dabrowska, Aleksandra; Venero, Jose Luis; Iwasawa, Ryota; Hankir, Mohammed-Khair; Rahman, Sunniyat; Boobis, Alan; Hajji, Nabil

    2015-09-01

    Due to its role in regulation of mitochondrial function, PGC1α is emerging as an important player in ageing and neurodegenerative disorders. PGC1α exerts its neuroprotective effects by promoting mitochondrial biogenesis (MB) and functioning. However, the precise regulatory role of PGC1α in the control of mitochondrial dynamics (MD) and neurotoxicity is still unknown. Here we elucidate the role of PGC1αin vitro and in vivo in the regulatory context of MB and MD in response to lead (II) acetate as a relevant model of neurotoxicity. We show that there is an adaptive response (AR) to lead, orchestrated by the BAP31-calcium signalling system operating between the ER and mitochondria. We find that this hormetic response is controlled by a cell-tolerated increase of PGC1α expression, which in turn induces a balanced expression of fusion/fission genes by binding to their promoters and implying its direct role in regulation of MD. However, dysregulation of PGC1α expression through either stable downregulation or overexpression, renders cells more susceptible to lead insult leading to mitochondrial fragmentation and cell death. Our data provide novel evidence that PGC1α expression is a key regulator of MD and the maintenance of tolerated PGC1α expression may offer a promising strategy for neuroprotective therapies.

  12. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  13. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  14. Leading edge vortex dynamics on a pitching delta wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lemay, Scott P.

    1988-01-01

    The leading edge flow structure was investigated on a 70 deg flat plate delta wing which was pitched about its 1/2 chord position, to increase understanding of the high angle of attack aerodynamics on an unsteady delta wing. The wing was sinusoidally pitched at reduced frequencies ranging from k being identical with 2pi fc/u = 0.05 to 0.30 at chord Reynolds numbers between 90,000 and 350,000, for angle of attack ranges of alpha = 29 to 39 deg and alpha = 0 to 45 deg. The wing was also impulsively pitched at an approximate rate of 0.7 rad/s. During these dynamic motions, visualization of the leading edge vorticies was obtained by entraining titanium tetrachloride into the flow at the model apex. The location of vortex breakdown was recorded using 16mm high speed motion picture photography. When the wing was sinusoidally pitched, a hysteresis was observed in the location of breakdown position. This hysteresis increased with reduced frequency. The velocity of breakdown propagation along the wing, and the phase lag between model motion and breakdown location were also determined. When the wing was impulsively pitched, several convective times were required for the vortex flow to reach a steady state. Detailed information was also obtained on the oscillation of breakdown position in both static and dynamic cases.

  15. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  16. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  17. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.

  18. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  19. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  20. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo

    PubMed Central

    Carballès, Fabrice; Parassol, Nadège; Schaub, Sébastien; Cérézo, Delphine; Noselli, Stéphane

    2017-01-01

    Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGFβ/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we sought out new JNK target genes through a genomic approach: 25 were identified of which 8 are specifically expressed in the LE, similarly to decapentaplegic or puckered. Quantitative in situ gene profiling of this new set of LE genes reveals complex patterning of the LE along the AP axis, involving a three-way interplay between the JNK pathway, segmentation and HOX genes. Patterning of the LE into discrete domains appears essential for coordination of tissue sealing dynamics. Loss of anterior or posterior HOX gene function leads to strongly delayed and asymmetric DC, due to incorrect zipping in their respective functional domain. Therefore, in addition to significantly increasing the number of JNK target genes identified so far, our results reveal that the LE is a highly heterogeneous morphogenetic organizer, sculpted through crosstalk between JNK, segmental and AP signalling. This fine-tuning regulatory mechanism is essential to coordinate morphogenesis and dynamics of tissue sealing. PMID:28231245

  1. Cyclotrons: From Science to Human Health

    NASA Astrophysics Data System (ADS)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  2. Local interactions lead to pathogen-driven change to host population dynamics.

    PubMed

    Boots, Michael; Childs, Dylan; Reuman, Daniel C; Mealor, Michael

    2009-10-13

    Individuals tend to interact more strongly with nearby individuals or within particular social groups. Recent theoretical advances have demonstrated that these within-population relationships can have fundamental implications for ecological and evolutionary dynamics. In particular, contact networks are crucial to the spread and evolution of disease. However, the theory remains largely untested experimentally. Here, we manipulate habitat viscosity and thereby the frequency of local interactions in an insect-pathogen model system in which the virus had previously been shown to have little effect on host population dynamics. At high viscosity, the pathogen caused the collapse of dominant and otherwise stable host generation cycles. Modeling shows that this collapse can be explained by an increase in the frequency of intracohort interactions relative to intercohort interactions, leading to more disease transmission. Our work emphasizes that spatial structure can subtly mediate intraspecific competition and the effects of natural enemies. A decrease in dispersal in a population may actually (sometimes rather counterintuitively) intensify the effects of parasites. Broadly, because anthropological and environmental change often cause changes in population mixing, our work highlights the potential for dramatic changes in the effects of parasites on host populations.

  3. Leading role of internal dynamics in the 2009 Indian summer monsoon drought

    NASA Astrophysics Data System (ADS)

    Neena, J. M.; Suhas, E.; Goswami, B. N.

    2011-07-01

    Understanding the underlying dynamics of the Indian summer monsoon (ISM) extremes such as severe droughts is key to improving seasonal prediction of the ISM rainfall. A large number of ISM droughts over the past century occurred unrelated to external forcing like the El Niño-Southern Oscillation (ENSO). In this study, we challenge the perception that the 2009 ISM drought was driven by ENSO and show that it was caused by internally driven processes. The 2009 drought of ISM was the result of two very long breaks, one in the month of June and the other in July-August (JA). While some studies provide strong evidence that the June break was caused by dry air intrusion associated with extratropical waves, a mechanism for the equally important JA break has not been elucidated so far. In this study, we unravel a new process in which westward propagating convectively coupled planetary-scale equatorial Rossby (PSER) waves emanating from the eastern Pacific as a remnant of Madden-Julian Oscillation (MJO), interact with the monsoon intraseasonal oscillation (MISO), modulate the active/break spells, and thereby influence the seasonal mean. It was found that during JA 2009 the arrival of the divergent phase of this PSER mode over the ISM domain reinforced and extended the break condition initiated by the northward propagating MISO, thereby creating a long break. Nonlinear kinetic energy exchanges between the PSER mode and the northward propagating MISO were found to be at the heart of such interactions. Evidence of such interactions can be seen during different active/break events in other monsoon seasons as well. As both long breaks were primarily driven by internal dynamical processes of the atmosphere, the study underscores the major role played by internal dynamics in causing the 2009 ISM drought. Our discovery that interactions between PSER waves and MISO can lead to significant modulations of the active/break spells opens up a new unexplored mechanism for understanding

  4. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  5. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  6. Study on Dynamic Failure Model of Lead-Free Solders Using Shpb Techniques

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyan; Yuan, Guozheng; Li, Zhigang; Shu, Xuefeng

    The dynamic compressive properties of 96.3Sn3Ag0.7Cu and 99.3Sn0.7Cu solders were studied by means of a split Hopkinson pressure bar at strain rates ranging from 500 to 2000 s-1. Tests were conducted at room temperature and under uniaxial compressive conditions. Eutectic SnPb solders were used as the reference. From the data of tests, it was found that yield strength and flow stress increased remarkably with the increase of strain rate. On logarithmic scales, the yield strength increased linearly with strain rate. These lead-free solders revealed certain visco-plastic behavior and strain rate sensitivity, which predicted using Johnson-Cook material model. Related parameters in the model were determined from the experiment. Compared with the typical Pb-containing solder Sn63Pb37, these lead-free solders showed some fine properties and could substitute some Pb-containing solder alloys in microelectronic components packaging and interconnects.

  7. How do tree competition and stand dynamics lead to spatial patterns in monospecific mangroves?

    NASA Astrophysics Data System (ADS)

    Khan, M. N. I.; Sharma, S.; Berger, U.; Koedam, N.; Dahdouh-Guebas, F.; Hagihara, A.

    2013-04-01

    Information on mangrove stand development is rare because long-term monitoring data is often lacking. Such information is important in order to plan management measures effectively. Novel approaches based on existing datasets are required to bridge this gap of knowledge. This study uses a unique combination of field data analyses with simulation experiments in order to demonstrate how information on mangrove dynamics can be extracted if data are sparse. The paper provides a baseline characterization of stand development in a monospecific pioneer mangrove stand of Kandelia obovata. Point pattern analyses revealed that in the young stage, self-thinning has started but has not yet lead to a regularity of spatial tree distribution in the entire stand, and trees located in smaller clumps hinder each other in growth but do not lead to a significant size class differentiation. However, after ca. 2 decades the self-thinning and the size class differentiation start to become more visible. A mutual inhibition of growth was observed within 2 m circular distance (r) in the young stage and within 3 m distance after two decades of stand development as confirmed by the negative values of mark correlation function. As a stand grows older the spatial pattern of individuals become more regular from a clustered pattern. In order to understand and predict the future stand development, simulation experiments were carried out by means of the individual-based model KiWi.

  8. How do tree competition and stand dynamics lead to spatial patterns in monospecific mangroves?

    NASA Astrophysics Data System (ADS)

    Khan, M. N. I.; Sharma, S.; Berger, U.; Koedam, N.; Dahdouh-Guebas, F.; Hagihara, A.

    2013-01-01

    Information on mangrove stand development is rare because long-term monitoring data is often lacking. Such information is important in order to plan management measures effectively. Novel approaches are required to bridge this gap of knowledge based on existing data sets. This study uses a unique combination of field data analyses with simulation experiments in order to demonstrate how information on mangrove dynamics can be extracted if data are sparse. The paper provides a~baseline characterization of stand development in a monospecific pioneer mangrove stand of Kandelia obovata. Point pattern analyses revealed that in the young stage, self-thinning has started but has not yet lead to a regularity of spatial tree distribution in the entire stand, and trees located in smaller clumps hinder each other in growth but do not lead to a significant size class differentiation. However, after ca. 2 decades the self-thinning and the size class differentiation start to become more visible. A mutual inhibition of growth was observed within 2 m circular distance (r) in the young stage and within 3 m distance after two decades of stand development as confirmed by the negative values of mark correlation function. As a stand grows older the spatial pattern of individuals become more regular from a clustered pattern. In order to understand and predict the future stand development, simulation experiments were carried out by means of the individual-based model KiWi.

  9. Electron cyclotron resonance plasma photos.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  10. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  11. Cyclotron resonance absorption in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  12. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  13. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  14. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations.

    PubMed

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita

    2016-02-16

    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation

  15. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  16. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  17. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  18. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  19. Order-disorder transition in conflicting dynamics leading to rank-frequency generalized beta distributions

    NASA Astrophysics Data System (ADS)

    Alvarez-Martinez, R.; Martinez-Mekler, G.; Cocho, G.

    2011-01-01

    The behavior of rank-ordered distributions of phenomena present in a variety of fields such as biology, sociology, linguistics, finance and geophysics has been a matter of intense research. Often power laws have been encountered; however, their validity tends to hold mainly for an intermediate range of rank values. In a recent publication (Martínez-Mekler et al., 2009 [7]), a generalization of the functional form of the beta distribution has been shown to give excellent fits for many systems of very diverse nature, valid for the whole range of rank values, regardless of whether or not a power law behavior has been previously suggested. Here we give some insight on the significance of the two free parameters which appear as exponents in the functional form, by looking into discrete probabilistic branching processes with conflicting dynamics. We analyze a variety of realizations of these so-called expansion-modification models first introduced by Wentian Li (1989) [10]. We focus our attention on an order-disorder transition we encounter as we vary the modification probability p. We characterize this transition by means of the fitting parameters. Our numerical studies show that one of the fitting exponents is related to the presence of long-range correlations exhibited by power spectrum scale invariance, while the other registers the effect of disordering elements leading to a breakdown of these properties. In the absence of long-range correlations, this parameter is sensitive to the occurrence of unlikely events. We also introduce an approximate calculation scheme that relates this dynamics to multinomial multiplicative processes. A better understanding through these models of the meaning of the generalized beta-fitting exponents may contribute to their potential for identifying and characterizing universality classes.

  20. Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

    PubMed Central

    Ameixa, Olga M. C. C.; Messelink, Gerben J.; Kindlmann, Pavel

    2013-01-01

    Since typically there are many predators feeding on most herbivores in natural communities, understanding multiple predator effects is critical for both community and applied ecology. Experiments of multiple predator effects on prey populations are extremely demanding, as the number of treatments and the amount of labour associated with these experiments increases exponentially with the number of species in question. Therefore, researchers tend to vary only presence/absence of the species and use only one (supposedly realistic) combination of their numbers in experiments. However, nonlinearities in density dependence, functional responses, interactions between natural enemies etc. are typical for such systems, and nonlinear models of population dynamics generally predict qualitatively different results, if initial absolute densities of the species studied differ, even if their relative densities are maintained. Therefore, testing combinations of natural enemies without varying their densities may not be sufficient. Here we test this prediction experimentally. We show that the population dynamics of a system consisting of 2 natural enemies (aphid predator Adalia bipunctata (L.), and aphid parasitoid, Aphidius colemani Viereck) and their shared prey (peach aphid, Myzus persicae Sulzer) are strongly affected by the absolute initial densities of the species in question. Even if their relative densities are kept constant, the natural enemy species or combination thereof that most effectively suppresses the prey may depend on the absolute initial densities used in the experiment. Future empirical studies of multiple predator – one prey interactions should therefore use a two-dimensional array of initial densities of the studied species. Varying only combinations of natural enemies without varying their densities is not sufficient and can lead to misleading results. PMID:23638107

  1. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  2. Effects of Lead Exposure, Environmental Conditions, and Metapopulation Processes on Population Dynamics of Spectacled Eiders.

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Petersen, Margaret; Rockwell, Robert F.

    2016-01-01

    Spectacled eider Somateria fischeri numbers have declined and they are considered threatened in accordance with the US Endangered Species Act throughout their range. We synthesized the available information for spectacled eiders to construct deterministic, stochastic, and metapopulation models for this species that incorporated current estimates of vital rates such as nest success, adult survival, and the impact of lead poisoning on survival. Elasticities of our deterministic models suggested that the populations would respond most dramatically to changes in adult female survival and that the reductions in adult female survival related to lead poisoning were locally important. We also examined the sensitivity of the population to changes in lead exposure rates. With the knowledge that some vital rates vary with environmental conditions, we cast stochastic models that mimicked observed variation in productivity. We also used the stochastic model to examine the probability that a specific population will persist for periods of up to 50 y. Elasticity analysis of these models was consistent with that for the deterministic models, with perturbations to adult female survival having the greatest effect on population projections. When used in single population models, demographic data for some localities predicted rapid declines that were inconsistent with our observations in the field. Thus, we constructed a metapopulation model and examined the predictions for local subpopulations and the metapopulation over a wide range of dispersal rates. Using the metapopulation model, we were able to simulate the observed stability of local subpopulations as well as that of the metapopulation. Finally, we developed a global metapopulation model that simulates periodic winter habitat limitation, similar to that which might be experienced in years of heavy sea ice in the core wintering area of spectacled eiders in the central Bering Sea. Our metapopulation analyses suggested that no

  3. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  4. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    PubMed

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  5. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  6. Ultrafast charge generation and relaxation dynamics in methylammonium lead bromide perovskites

    NASA Astrophysics Data System (ADS)

    Deng, Xiaofan; Wen, Xiaoming; Sheng, Rui; Huang, Shujuan; Harada, Takaaki; Kee, Tak W.; Green, Martin A.; Ho-Baillie, Anita

    2015-12-01

    Methylammonium Lead Bromide (CH3NH3PbBr3) is a promising material for tandem solar cell due to its high band gap. Ultrafast optical techniques on a time scale of femto- and picosecond are used to investigate the carrier dynamics in CH3NH3PbBr3. An ultrafast cooling of hot carriers occurs in sub-picoseconds in CH3NH3PbBr3 by phonon scattering. Two ultrafast relaxation processes are attributed to optical phonon scattering and acoustic phonon scattering. The relaxation processes are evidently slower when CH3NH3PbBr3 is in contact with compact TiO2 (c-TiO2) layer, suggesting better quality CH3NH3PbBr3. when deposited on c-TiO2. The nanosecond decay in CH3NH3PbBr3 film is ascribed to electron-hole recombination. With the presence of c-TiO2 layer, this process is accelerated due to electron transport across the CH3NH3PbBr3/ c-TiO2 interface.

  7. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution

    NASA Astrophysics Data System (ADS)

    Park, Sunghak; Chang, Woo Je; Lee, Chan Woo; Park, Sangbaek; Ahn, Hyo-Yong; Nam, Ki Tae

    2017-01-01

    The solar-driven splitting of hydrohalic acids (HX) is an important and fast growing research direction for H2 production. In addition to the hydrogen, the resulting chemicals (X2/X3-) can be used to propagate a continuous process in a closed cycle and are themselves useful products. Here we present a strategy for photocatalytic hydrogen iodide (HI) splitting using methylammonium lead iodide (MAPbI3) in an effort to develop a cost-effective and easily scalable process. Considering that MAPbI3 is a water-soluble ionic compound, we exploit the dynamic equilibrium of the dissolution and precipitation of MAPbI3 in saturated aqueous solutions. The I- and H+ concentrations of the aqueous solution are determined to be the critical parameters for the stabilization of the tetragonal MAPbI3 phase. Stable and efficient H2 production under visible light irradiation was demonstrated. The solar HI splitting efficiency of MAPbI3 was 0.81% when using Pt as a cocatalyst.

  8. Laboratory study of pulsed regimes of electron cyclotron instabilities in a mirror-confined plasma for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Izotov, Ivan; Gospodchikov, Egor; Shalashov, Alexander; Demekhov, Andrei

    2014-05-01

    We discuss the use of a mirror-confined plasma of the electron cyclotron resonance discharge for modeling of burst processes in the inner magnetosphere of the Earth associated with the implementation of the plasma cyclotron maser. Heating under the electron cyclotron resonance conditions allows to create two component plasma which is typical for the inner magnetosphere of the Earth. One of the most interesting electron cyclotron resonance manifestations is the generation of bursts of electromagnetic radiation that are related to the explosive growth of cyclotron instabilities of the magnetoactive plasma confined in magnetic traps of various kinds and that are accompanied by particle precipitations from the trap. We investigate several regimes of cyclotron maser which are realized in dense and rarefied plasma, in the presence and absence of a permanent powerful gyrotron microwave radiation as a source of nonequilibrium particles in the plasma. Using the new technique for detection of microwave radiation we studied the dynamical spectrum and the intensity of stimulated electromagnetic radiation from the plasma in a wide frequency band covering all types of cyclotron instabilities. Also possible applications for astrophysical plasma are discussed.

  9. Linear coupling of acoustic and cyclotron waves in plasma flows

    SciTech Connect

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-15

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  10. Observation of Ion Cyclotron Heating in a Fast-flowing Plasma for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hatanaka, Motoi; Shibata, Masaki; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2004-11-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio of specific impulse to thrust at constant power. In order to establish the advanced plasma thruster, experiments of an ion heating and plasma acceleration by a magnetic nozzle are performed in a fast-flowing plasma in the HITOP device. A fast-flowing He plasma is produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field up to 1kG. RF waves with an ion cyclotron range of frequency (f=20-300kHz) is excited by a helically-wound antenna located downstream of the MPDA. Increases of an ion temperature and plasma stored energy measured by a diamagnetic coil clearly observed during the RF pulse. The heating efficiency is compared for various magnetic field configurations and strengths. There appears no indication of cyclotron resonance in a high density plasma where the ratio of ion cyclotron frequency to ion-ion collision one is below unity, because an ion-ion collisional effect is dominant. When the density becomes low and the ratio of ion cyclotron frequency to ion-ion collision one becomes high, features of ion cyclotron resonance are clearly appeared. The optimum magnetic field strength for the ion heating is slightly lower than that of the cyclotron resonance, which is caused by the Doppler effect due to the fast-flowing plasma. An ion energy distribution function is measured at a magnetic nozzle region by an electrostatic analyzer and increase of the parallel velocity is also observed.

  11. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    SciTech Connect

    Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S.; Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T.; Czarnecka, A.; Coenen, J. W.; and others

    2014-02-12

    The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  12. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Jacquet, P.; Bobkov, V.; Czarnecka, A.; Coenen, J. W.; Colas, L.; Crombé, K.; Graham, M.; Jachmich, S.; Joffrin, E.; Klepper, C. C.; Kiptily, V.; Lehnen, M.; Maggi, C.; Marcotte, F.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Nave, M. F. F.; Neu, R.; Noble, C.; Ongena, J.; Pütterich, T.; Rimini, F.; Solano, E. R.; van Rooij, G.; JET-EFDA contributors

    2014-02-01

    The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  13. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  14. Simulation of Median Plane Effects in the Extraction Region of the C235 Cyclotron

    SciTech Connect

    Jongen, Y.; Karamysheva, G.; Shirkov, S.

    2010-01-05

    The Study of beam dynamics in the C235 cyclotron dedicated for proton therapy is presented. Results of computer simulations of the particle motion in the measured magnetic field are given. This of the median plane effects in the extraction region was carried out. The tolerance on the radial component of the magnetic field was defined using these simulations.

  15. Design study of an ultra-compact superconducting cyclotron for isotope production

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  16. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    SciTech Connect

    Singh, N.; Conrad, J.R.; Schunk, R.W.

    1985-06-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves. 39 references.

  17. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  18. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGES

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; ...

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  19. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  20. A SCENARIO FOR THE FINE STRUCTURES OF SOLAR TYPE IIIb RADIO BURSTS BASED ON ELECTRON CYCLOTRON MASER EMISSION

    SciTech Connect

    Wang, C. B.

    2015-06-10

    A scenario based on electron cyclotron maser (ECM) emission is proposed for the fine structures of solar radio emission. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro frequency by ultra-low-frequency waves, which is a key parameter for excitation of ECM instability, may lead to the intermittent emission of radio waves. As an example, the explanation for the observed fine-structure components in the solar Type IIIb bursts is discussed in detail. Three primary issues of Type IIIb bursts are addressed: (1) the physical mechanism that results in intermittent emission elements that form a chain in the dynamic spectrum of Type IIIb bursts, (2) the cause of split pairs (or double stria) and triple stria, and (3) why only IIIb–III bursts are observed in the events of fundamental harmonic pair emission whereas IIIb–IIIb or III–IIIb bursts are very rarely observed.

  1. A Scenario for the Fine Structures of Solar Type IIIb Radio Bursts Based on Electron Cyclotron Maser Emission

    NASA Astrophysics Data System (ADS)

    Wang, C. B.

    2015-06-01

    A scenario based on electron cyclotron maser (ECM) emission is proposed for the fine structures of solar radio emission. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro frequency by ultra-low-frequency waves, which is a key parameter for excitation of ECM instability, may lead to the intermittent emission of radio waves. As an example, the explanation for the observed fine-structure components in the solar Type IIIb bursts is discussed in detail. Three primary issues of Type IIIb bursts are addressed: (1) the physical mechanism that results in intermittent emission elements that form a chain in the dynamic spectrum of Type IIIb bursts, (2) the cause of split pairs (or double stria) and triple stria, and (3) why only IIIb-III bursts are observed in the events of fundamental harmonic pair emission whereas IIIb-IIIb or III-IIIb bursts are very rarely observed.

  2. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  3. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    SciTech Connect

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  4. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  5. Dynamics of contamination of urban soils with lead in the eastern district of Moscow

    NASA Astrophysics Data System (ADS)

    Nikiforova, E. M.; Kosheleva, N. E.

    2007-08-01

    Spatial-temporal trends were revealed in the contamination of Moscow soils with lead as a priority pollutant emitted with automobile exhaust. From the data of 1989 and 2005, maps of technogenic lead aureoles in soils of the eastern district were compiled, the average annual rate of increase in the element content was estimated, and its doubling time was predicted. Ecological-indication properties controlling the accumulation of lead in soils were determined.

  6. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  7. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  8. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  9. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Sudarko; Shafii, Mohammad Ali; Celino, Massimo

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  10. A Hybrid Model for the Spectra of Neutron Star Accretion Columns Including Comptonization and Cyclotron Lines

    NASA Astrophysics Data System (ADS)

    Schwarm, Fritz-Walter; Schönherr, G.; Becker, P. A.; Wolff, M. T.; Wilms, J.; Ferrigno, C.; West, B.

    2013-04-01

    A physical model for the radiation emitted from accretion columns of neutron stars with magnetic fields on the order of 1012 G has to reflect the large-scale dynamical structure of the inflowing matter as well as the quantum mechanical scattering processes leading to the formation of cyclotron resonant scattering features (CRSFs). Becker & Wolff (B&W) developed an analytic model for the broadband continuum while the CRSFs have been investigated by Schönherr & Schwarm (S&S). While both models describe the separate trends seen in observational data very well, a fully self-consistent fitting approach to determine the physical parameters (e.g., accretion rate, magnetic field strength) of the accretion column in accreting X-ray pulsars requires accounting for both processes in one unified model. We present our first approach towards such an unified hybrid model covering both the macro- and the microphysics of the accreting plasma. We assume a cylinder symmetrical dual layer structure of the accretion column. The inner layer reflects the dynamical structure described by the B&W model while the optical thin outer layer acts as a CRSF forming region similar to a photosphere. We adopt the parameters from a fit of the B&W model to Her X-1 and calculate the emergent radiation as well as the dynamical properties such as bulk velocity within the core of the accretion column. Radiation escaping the optical thick core region is further altered by the outer shell, a thin layer with an optical depth on the order of 10-4-10-2 Thomson optical depth, adding cyclotron lines by processing it through the S&S model. This hybrid model is only a first step towards an unified model for accreting neutron stars with strong magnetic fields. In the future we will investigate the insertion of a third layer in the middle as a transition region, parameter boundaries, and also incorporate general relativity with the ultimate goal to use this new tool to model phase-resolved spectroscopy of

  11. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  12. Imaging Cyclotron Orbits of Electrons in Graphene.

    PubMed

    Bhandari, Sagar; Lee, Gil-Ho; Klales, Anna; Watanabe, Kenji; Taniguchi, Takashi; Heller, Eric; Kim, Philip; Westervelt, Robert M

    2016-03-09

    Electrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away. By tuning the magnetic field B and electron density n in the graphene layer, we observe magnetic focusing peaks. We use a cooled scanning gate microscope to image cyclotron trajectories in graphene at 4.2 K. The tip creates a local change in density that casts a shadow by deflecting electrons flowing nearby; an image of flow can be obtained by measuring the transmission between contacts as the tip is raster scanned across the sample. On the first magnetic focusing peak, we image a cyclotron orbit that extends from one contact to the other. In addition, we study the geometry of orbits deflected into the second point contact by the tip.

  13. Currents driven by electron cyclotron waves

    SciTech Connect

    Karney, C.F.F.; Fisch, N.J.

    1981-07-01

    Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the nonlinear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered.

  14. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  15. Cycling State that Can Lead to Glassy Dynamics in Intracellular Transport

    NASA Astrophysics Data System (ADS)

    Scholz, Monika; Burov, Stanislav; Weirich, Kimberly L.; Scholz, Björn J.; Tabei, S. M. Ali; Gardel, Margaret L.; Dinner, Aaron R.

    2016-01-01

    Power-law dwell times have been observed for molecular motors in living cells, but the origins of these trapped states are not known. We introduce a minimal model of motors moving on a two-dimensional network of filaments, and simulations of its dynamics exhibit statistics comparable to those observed experimentally. Analysis of the model trajectories, as well as experimental particle tracking data, reveals a state in which motors cycle unproductively at junctions of three or more filaments. We formulate a master equation for these junction dynamics and show that the time required to escape from this vortexlike state can account for the power-law dwell times. We identify trends in the dynamics with the motor valency for further experimental validation. We demonstrate that these trends exist in individual trajectories of myosin II on an actin network. We discuss how cells could regulate intracellular transport and, in turn, biological function by controlling their cytoskeletal network structures locally.

  16. A cycling state that can lead to glassy dynamics in intracellular transport

    NASA Astrophysics Data System (ADS)

    Scholz, Monika; Burov, Stanislav; Weirich, Kimberly L.; Scholz, Bjorn J.; Tabei, S. M. Ali; Gardel, Margaret L.; Dinner, Aaron

    Power-law dwell times have been observed for molecular motors in living cells, but the origins of these trapped states are not known. We introduce a minimal model of motors moving on a two- dimensional network of filaments, and simulations of its dynamics exhibit statistics comparable to those observed experimentally. Analysis of the model trajectories, as well as experimental particle tracking data, reveals a state in which motors cycle unproductively at junctions of three or more filaments. We formulate a master equation for these junction dynamics and show that the time required to escape from this vortex-like state can account for the power-law dwell times. We identify trends in the dynamics with the motor valency for further experimental validation. We demonstrate that these trends exist in individual trajectories of myosin II on an actin network. We discuss how cells could regulate intracellular transport and, in turn, biological function, by controlling their cytoskeletal network structures locally.

  17. Infinite swapping replica exchange molecular dynamics leads to a simple simulation patch using mixture potentials.

    PubMed

    Lu, Jianfeng; Vanden-Eijnden, Eric

    2013-02-28

    Replica exchange molecular dynamics (REMD) becomes more efficient as the frequency of swap between the temperatures is increased. Recently Plattner et al. [J. Chem. Phys. 135, 134111 (2011)] proposed a method to implement infinite swapping REMD in practice. Here we introduce a natural modification of this method that involves molecular dynamics simulations over a mixture potential. This modification is both simple to implement in practice and provides a better, energy based understanding of how to choose the temperatures in REMD to optimize efficiency. It also has implications for generalizations of REMD in which the swaps involve other parameters than the temperature.

  18. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  19. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    SciTech Connect

    Saalfrank, Peter; Juaristi, J. I.

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  20. Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Gratton, F.T.; Gnavi, G.

    1995-02-01

    The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.

  1. Learning from Accident Analysis: The Dynamics Leading Up to a Rafting Accident.

    ERIC Educational Resources Information Center

    Hovelynck, Johan

    1998-01-01

    Analysis of a case study of a whitewater rafting accident reveals that such accidents tend to result from multiple actions. Many events leading up to such accidents include procedural and process factors, suggesting that hard-skills technical training is an insufficient approach to accident prevention. Contains 26 references. (SAS)

  2. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    SciTech Connect

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer; Renaud, Nicolas; Stoumpos, Constantinos C.; Schatz, George C.; Hupp, Joseph T.; Farha, Omar K.; Savenije, Tom J.; Kanatzidis, Mercouri G.; Grozema, Ferdinand C.

    2016-08-04

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH3NH3PbI3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition. For CH3NH3PbI3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH3NH3+) inside the perovskite crystal structure.

  3. Regional lead dynamics in the Northeastern United States - Local versus regional industrial influences

    NASA Astrophysics Data System (ADS)

    Wreschnig, A. J.; Bain, D. J.; Green, M. B.; Ruffing, C. M.; Adams, L. E.

    2009-12-01

    Elevated concentrations of lead in sediments are a phenomenon that has been primarily examined in the context of leaded gasoline usage and prehistoric smelting. However, regional trends in the Northeastern United States have not been well explained, particularly between the years of 1800 and 1920. Sediment core data from throughout the region were synthesized to characterize regional Pb deposition. There is a consistent increase in sediment Pb concentrations independent of geographic location that begins to occur around 1870. This increase occurs before the advent of leaded gasoline, requiring apportionment to other sources. Previous studies have used smaller scale distributions of Pb sediment concentrations to estimate the contribution of various anthropogenic sources including coal combustion, Pb smelting, and industrial waste. However, the robustness of these estimates when scaled up to an entire region is questionable. To improve understanding at larger scales, local, regional, and national metal production and coal combustion records are compared to sediment core data across the region. It is expected that both Midwestern smelting, undergoing great intensification during this time period, and local production of Pb intensive goods will be strongly correlated with Pb concentrations in sediments. Further, it is expected the large regional increase in coal combustion should influence regional Pb flux less than local metal production.

  4. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation

    SciTech Connect

    Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun; Gorfien, Matthew; Mendez Plaskus, Joshua; Li, Dong; Voss, Ryan; Nelson, Cory A.; Wai Lei, Kin; Wolcott, Abraham; Zhu, Xiaoyang; Li, Junjie; Cao, Jianming

    2016-10-10

    We directly monitored the lattice dynamics in PbSe quantum dots induced by laser excitation using ultrafast electron di raction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any signi cant phonon bottleneck e ect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon- induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates signi cantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.

  5. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun; Gorfien, Matthew; Mendez Plaskus, Joshua; Li, Dong; Voss, Ryan; Nelson, Cory A.; Wai Lei, Kin; Wolcott, Abraham; Zhu, Xiaoyang; Li, Junjie; Cao, Jianming

    2016-10-01

    We directly monitored the lattice dynamics in PbSe quantum dots (QD) induced by laser excitation using ultrafast electron diffraction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any significant phonon bottleneck effect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon-induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates significantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.

  6. Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia

    2016-10-01

    The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.

  7. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    SciTech Connect

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  8. Volunteering leads to rock-paper-scissors dynamics in a public goods game

    NASA Astrophysics Data System (ADS)

    Semmann, Dirk; Krambeck, Hans-Jürgen; Milinski, Manfred

    2003-09-01

    Collective efforts are a trademark of both insect and human societies. They are achieved through relatedness in the former and unknown mechanisms in the latter. The problem of achieving cooperation among non-kin has been described as the `tragedy of the commons', prophesying the inescapable collapse of many human enterprises. In public goods experiments, initial cooperation usually drops quickly to almost zero. It can be maintained by the opportunity to punish defectors or the need to maintain good reputation. Both schemes require that defectors are identified. Theorists propose that a simple but effective mechanism operates under full anonymity. With optional participation in the public goods game, `loners' (players who do not join the group), defectors and cooperators will coexist through rock-paper-scissors dynamics. Here we show experimentally that volunteering generates these dynamics in public goods games and that manipulating initial conditions can produce each predicted direction. If, by manipulating displayed decisions, it is pretended that defectors have the highest frequency, loners soon become most frequent, as do cooperators after loners and defectors after cooperators. On average, cooperation is perpetuated at a substantial level.

  9. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  10. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  11. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  12. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  13. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  14. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  15. Cyclotron Wave Electrostatic and Parametric Amplifiers.

    DTIC Science & Technology

    2008-02-15

    Plasma Physics Division GEORGE EwEI.• Georgia Tech Research Institute Atlanta, Georgia, 30332 February 28, 1997 Approved for public release...and transmitted to the external circuit load. Thus, as far as the input resonator is concerned, noises of the electron gun on the fast cyclotron wave...characteristics of CWESA. Engineering the permanent magnet system is often the most challenging part CWESA design at ISTOK. The plane cathode electron gun

  16. Radiation Sources at Electron Cyclotron Harmonic Frequencies.

    DTIC Science & Technology

    1983-01-28

    KEY WORDS (Continue on reverse side it necesear and Identify by block number) Radiation source, electron cyclotron frequency, gyrotron, travelling ...investigation of gyrotron devices operating in cylindrical geometry. Specific topics include an analysis of oscillations in a gyrotron travelling wave...amplifier, the study of the effects of velocity spread and wall resistivity on gain and bandwidth in a gyrotron travell - ing wave amplifier, an

  17. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  18. Alternative optical concept for electron cyclotron emission imaging

    SciTech Connect

    Liu, J. X.; Milbourne, T.; Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B.; Kubota, S.; Kasparek, W.; Lu, J.; Park, H.

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  19. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  20. Photoinduced Single- and Multiple- Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots.

    PubMed

    Vogel, Dayton Jon; Kryjevski, Andrei; Inerbaev, Talgat M; Kilin, Dmitri S

    2017-03-21

    Methyl-ammonium lead iodide perovskite (MAPbI3) is a promising material for photovoltaic devices. A modification of the MAPbI3 into confined nanostructures is expected to further increase efficiency of solar energy conversion. Photo-excited dynamic processes in a MAPbI3 quantum dot (QD) have been modeled by many-body perturbation theory and nonadiabatic dynamics. A photoexcitation is followed by either exciton cooling (EC), its radiative (RR) or non-radiative recombination (NRR), or multi-exciton generation (MEG) processes. Computed times of these processes fall in the order of MEG < EC < RR < NRR, where MEG is in the order of a few femtoseconds, EC at the picosecond range while RR and NRR are in the order of nanoseconds. Computed timescales indicate which electronic transition pathways can contribute to increase in charge collection efficiency. Simulated mechanism relaxation rates show that quantum confinement promotes MEG in MAPbI3 QDs.

  1. Tunneling Microscopy of Dynamical Processes on the LEAD/GERMANIUM(111) Surface

    NASA Astrophysics Data System (ADS)

    Hwang, Ing-Shouh

    Knowledge about atomic scale motions is essential for understanding dynamical phenomena on surfaces, such as diffusion, phase transitions, and epitaxial growth. This report describes the results of a study of dynamical processes on the Pb/Ge(111) surface using a scanning tunneling microscope (STM). Individual Pb atom diffUsion and concerted atomic motions on the Ge(111) surface are observed in real time. We also study a structural surface phase transformation at elevated temperatures. At very low Pb coverage, migration of individual Pb atoms is observed in the Ge(111)-c(2 x 8) surface near room temperature. The activation energy of this migration can be measured by analyzing a large number of individual atomic motions from room temperature to 80^ circC. The Pb diffusion is found to occur mainly along the (011) adatom row direction of the c(2 x 8) reconstruction. About half of the adatom migrations are "long jumps". We also observe the formation and annihilation of metastable structural surface excitations, which occur much less often than Pb diffusion. They involve a number of adatoms in the same row moving in concert along the row direction like beads on an abacus. This "adatom row shift" may be responsible for the anisotropy of the Pb atom diffusion. It also provides a new mechanism for atomic transport on crystal surfaces and can explain several structural phenomena associated with the Ge(111) surface. At high coverage, a one monolayer Pb/Ge(111) undergoes a reversible phase transformation from sqrt{3} x sqrt{3 }R30^circ to 1 x 1 at about 180 ^circC. Atomic structures of both high and low temperature phases are resolved, which reveals an order-order transition. Spatial and temporal fluctuations are exposed just above the transition temperature. In addition, the influence of surface strain, phase boundaries, and finite size domains are found to play an important role in the phase transformation.

  2. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics

    PubMed Central

    Kawada, Ichiro; Hasina, Rifat; Lennon, Frances E; Bindokas, Vytautas P; Usatyuk, Peter; Tan, Yi-Hung C; Krishnaswamy, Soundararajan; Arif, Qudsia; Carey, George; Hseu, Robyn D; Robinson, Matthew; Tretiakova, Maria; Brand, Toni M; Iida, Mari; Ferguson, Mark K; Wheeler, Deric L; Husain, Aliya N; Natarajan, Viswanathan; Vokes, Everett E; Singleton, Patrick A; Salgia, Ravi

    2013-01-01

    Cytoskeletal and focal adhesion abnormalities are observed in several types of cancer, including lung cancer. We have previously reported that paxillin (PXN) was mutated, amplified, and overexpressed in a significant number of lung cancer patient samples, that PXN protein was upregulated in more advanced stages of lung cancer compared with lower stages, and that the PXN gene was also amplified in some pre-neoplastic lung lesions. Among the mutations investigated, we previously found that PXN variant A127T in lung cancer cells enhanced cell proliferation and focal adhesion formation and colocalized with the anti-apoptotic protein B Cell Lymphoma 2 (BCL-2), which is known to localize to the mitochondria, among other sites. To further explore the effects of activating mutations of PXN on mitochondrial function, we cloned and expressed wild-type PXN and variants containing the most commonly occurring PXN mutations (P46S, P52L, G105D, A127T, P233L, T255I, D399N, E423K, P487L, and K506R) in a GFP-tagged vector using HEK-293 human embryonic kidney cells. Utilizing live-cell imaging to systematically study the effects of wild-type PXN vs. mutants, we created a model that recapitulates the salient features of the measured dynamics and conclude that compared with wild-type, some mutant clones confer enhanced focal adhesion and lamellipodia formation (A127T, P233L, and P487L) and some confer increased association with BCL-2, Dynamin-related Protein-1 (DRP-1), and Mitofusion-2 (MFN-2) proteins (P233L and D399N). Further, PXN mutants, through their interactions with BCL-2 and DRP-1, could regulate cisplatin drug resistance in human lung cancer cells. The data reported herein suggest that mutant PXN variants play a prominent role in mitochondrial dynamics with direct implications on lung cancer progression and hence, deserve further exploration as therapeutic targets. PMID:23792636

  3. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  4. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  5. Cyclotron instability in the afterglow mode of minimum-B ECRIS

    SciTech Connect

    Izotov, I. Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.; Skalyga, V.

    2016-02-15

    It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. It was found that even in various gases (helium and oxygen were studied) and at different values of magnetic field and heating power, the dynamic spectra demonstrate common features: decreasing frequency within a single burst as well as from one burst to another.

  6. Cyclotron instability in the afterglow mode of minimum-B ECRIS

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Mansfeld, D.; Skalyga, V.; Tarvainen, O.

    2016-02-01

    It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. It was found that even in various gases (helium and oxygen were studied) and at different values of magnetic field and heating power, the dynamic spectra demonstrate common features: decreasing frequency within a single burst as well as from one burst to another.

  7. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes.

    PubMed

    Kalnejais, Linda H; Martin, W R; Bothner, Michael H

    2015-06-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment-water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  8. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.

    2015-01-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  9. Dynamic processes in the lithosphere leading to extension, rifting and basin formation

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas

    2014-05-01

    The similarity of ages of extensional core complexes, co-genetic basin formation, and kinematically compatible movements along large strike-slip faults in western North America to ages of comparable events within the Himalayas-Alps orogenic belt leads to the speculation that strain related to changes in Pacific (PAC)-North America(NA) plate motions may be recorded on a global scale affecting the coupled plates and extending eastward across Eurasia. The contemporaneous global deformation reflects abrupt changes in PAC-NA plate motions in response to coupling following convergence of buoyant oceanic lithosphere, commonly part of a spreading center, which impedes subduction and leads to collision followed by coupling when the buoyant lithosphere binds against the base of the overriding continental plate. Critical coupling of a sufficiently long ridge segment leads to "capture", after which the former movements of the newly coupled plates are integrated abruptly and changed from previous directions. In western North America, episodes of capture of the NA plate by the (PAC) plate are recorded by break-up unconformities (ca. 55, 35, and 17 Ma) and basins commonly within extensional domains distinguished by age and direction of tectonic transport (Eocene [~55-42 Ma], ca. 285o, Oligocene [~35-20 Ma], 240o, Miocene [17-0 Ma], ca. 280o). The transport directions record the integration of the southwesterly motion of NA , related to mantle convection, and the northwesterly motion of PAC, driven by slab pull. Following each coupling event, PAC moves westward dragging: 1) the formerly subducting Farallon slab, 2) the coupled, formerly overriding, NA plate, and 3) Eurasia (EA), with it. In response to the strong extension that is imposed upon rocks within domains encompassed by the PAC-NA coupled region, and along the southern margin of Eurasia, brittle deformation, accommodated by normal and strike-slip faults, and formation of contemporaneous basins, takes place. Core

  10. Poverty alleviation strategies in eastern China lead to critical ecological dynamics.

    PubMed

    Zhang, Ke; Dearing, John A; Dawson, Terence P; Dong, Xuhui; Yang, Xiangdong; Zhang, Weiguo

    2015-02-15

    Poverty alleviation linked to agricultural intensification has been achieved in many regions but there is often only limited understanding of the impacts on ecological dynamics. A central need is to observe long term changes in regulating and supporting services as the basis for assessing the likelihood of sustainable agriculture or ecological collapse. We show how the analyses of 55 time-series of social, economic and ecological conditions can provide an evolutionary perspective for the modern Lower Yangtze River Basin region since the 1950s with powerful insights about the sustainability of modern ecosystem services. Increasing trends in provisioning ecosystem services within the region over the past 60 years reflect economic growth and successful poverty alleviation but are paralleled by steep losses in a range of regulating ecosystem services mainly since the 1980s. Increasing connectedness across the social and ecological domains after 1985 points to a greater uniformity in the drivers of the rural economy. Regime shifts and heightened levels of variability since the 1970s in local ecosystem services indicate progressive loss of resilience across the region. Of special concern are water quality services that have already passed critical transitions in several areas. Viewed collectively, our results suggest that the regional social-ecological system passed a tipping point in the late 1970s and is now in a transient phase heading towards a new steady state. However, the long-term relationship between economic growth and ecological degradation shows no sign of decoupling as demanded by the need to reverse an unsustainable trajectory.

  11. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala

    PubMed Central

    Sawamura, Takehito; Klengel, Torsten; Armario, Antonio; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; Andero, Raül

    2016-01-01

    Posttraumatic stress disorder (PTSD) is both a prevalent and debilitating trauma-related disorder associated with dysregulated fear learning at the core of many of its signs and symptoms. Improvements in the currently available psychological and pharmacological treatments are needed in order to improve PTSD treatment outcomes and to prevent symptom relapse. In the present study, we used a putative animal model of PTSD that included presentation of immobilization stress (IMO) followed by fear conditioning (FC) a week later. We then investigated the acute effects of GR receptor activation on the extinction (EXT) of conditioned freezing, using dexamethasone administered systemically which is known to result in suppression of the HPA axis. In our previous work, IMO followed by tone-shock-mediated FC was associated with impaired fear EXT. In this study, we administered dexamethasone 4 h before EXT training and then examined EXT retention (RET) 24 h later to determine whether dexamethasone suppression rescued EXT deficits. Dexamethasone treatment produced dose-dependent enhancement of both EXT and RET. Dexamethasone was also associated with reduced amygdala Fkbp5 mRNA expression following EXT and after RET. Moreover, DNA methylation of the Fkbp5 gene occurred in a dose-dependent and time course-dependent manner within the amygdala. Additionally, we found dynamic changes in epigenetic regulation, including Dnmt and Tet gene pathways, as a function of both fear EXT and dexamethasone suppression of the HPA axis. Together, these data suggest that dexamethasone may serve to enhance EXT by altering Fkbp5-mediated glucocorticoid sensitivity via epigenetic regulation of Fkbp5 expression. PMID:26174596

  12. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala.

    PubMed

    Sawamura, Takehito; Klengel, Torsten; Armario, Antonio; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; Andero, Raül

    2016-02-01

    Posttraumatic stress disorder (PTSD) is both a prevalent and debilitating trauma-related disorder associated with dysregulated fear learning at the core of many of its signs and symptoms. Improvements in the currently available psychological and pharmacological treatments are needed in order to improve PTSD treatment outcomes and to prevent symptom relapse. In the present study, we used a putative animal model of PTSD that included presentation of immobilization stress (IMO) followed by fear conditioning (FC) a week later. We then investigated the acute effects of GR receptor activation on the extinction (EXT) of conditioned freezing, using dexamethasone administered systemically which is known to result in suppression of the HPA axis. In our previous work, IMO followed by tone-shock-mediated FC was associated with impaired fear EXT. In this study, we administered dexamethasone 4 h before EXT training and then examined EXT retention (RET) 24 h later to determine whether dexamethasone suppression rescued EXT deficits. Dexamethasone treatment produced dose-dependent enhancement of both EXT and RET. Dexamethasone was also associated with reduced amygdala Fkbp5 mRNA expression following EXT and after RET. Moreover, DNA methylation of the Fkbp5 gene occurred in a dose-dependent and time course-dependent manner within the amygdala. Additionally, we found dynamic changes in epigenetic regulation, including Dnmt and Tet gene pathways, as a function of both fear EXT and dexamethasone suppression of the HPA axis. Together, these data suggest that dexamethasone may serve to enhance EXT by altering Fkbp5-mediated glucocorticoid sensitivity via epigenetic regulation of Fkbp5 expression.

  13. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  14. MW-class 800 MeV/n H2+ SC-cyclotron for ADS application, design and study goals

    SciTech Connect

    Meot F.; Calabretta, L.; Calanna, A.; Roser, T.; Weng, B.

    2012-05-20

    This paper addresses an attempt to start investigating the use of the Superconducting Ring Cyclotron (SRC) developed for DAE{delta}ALUS experiment for ADS application [1], focusing on the magnet design and its implication for lattice parameters and dynamic aperture performance.

  15. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics.

    PubMed

    Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan

    2008-06-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.

  16. Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, R.; Gunell, H.; Hamrin, M.

    2017-01-01

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

  17. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto

    2002-01-01

    We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R greater than 0.3 solar mass/km) that is inconsistent with neutron stars or that requires a low (5-7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  18. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report evidence for cyclotron resonance features from the Soft Gamma Repeater SCR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV, and a narrow width of < 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R > 0.3 Solar Mass/km) that is inconsistent with neutron stars, or requires a low (5 - 7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared to those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field, which have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  19. Phase field simulation of domain switching dynamics in multiaxial lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Britson, Jason

    The defining characteristic of ferroelectric materials is their ability to be switched between energetically equivalent polarization states. This behavior has led to an interest in ferroelectrics for a wide range of bulk and thin film applications such as mechanical actuators and ferroelectric random access memory devices. Ferroelectric switching depends on domain wall motion, however, and is critically influenced by the existence of defects such as dislocations and preexisting domains. Domain wall motion in thin film applications can be controlled by individual local defects due to the reduced length scale of the system. This dissertation describes the impact of preexisting ferroelastic domains and misfits dislocations in coherent (001)-oriented Pb(Zr0.2,Ti0.8)O3 (PZT) thin films on the switching response and domain structure. A phase field model based on the Landau-Ginzburg-Devonshire theory that accounts for the electrostatic and mechanical interactions is used to describe domain structures in ferroelectric PZT thin films. To solve the governing equations a semi-implicit Fourier-Spectral scheme is developed that accommodates boundary conditions appropriate to the thin film geometry. Errors are reduced in the solutions at the film edges through extensions to the model developed to correct the Fourier transform around stationary discontinuities at the thin film edges. This correction is shown to result in increased accuracy of the phase field model needed to appropriately describe dynamic switching responses in the thin film. Investigation of switching around preexisting ferroelastic domains showed these defects are strong obstacles to switching in PZT thin films. Directly above the ferroelastic domain the magnitude of the required nucleation bias underneath a tip-like electrode was found to be elevated compared to the required bias far from the domain. Locally both the piezoelectric and dielectric responses of the thin film were found to be suppressed, which is

  20. Amplitudes of electron cyclotron waves transmitted in the ionosphere

    NASA Astrophysics Data System (ADS)

    James, H. G.

    2011-07-01

    During the two-point sounding rocket experiment Observations of Electric-field Distributions in the Ionospheric Plasma-A Unique Strategy-C (OEDIPUS-C, hereinafter OC), Bernstein or electron cyclotron waves (ECWs) were transmitted over magnetic field-aligned emitter-receiver separations of hundreds of meters. Signals were observed at harmonic frequencies mfc of the electron cyclotron frequency fc, where m was 2, 3, and 4, fc ≈ 1.3 MHz, and the electron plasma frequency was less than half of fc. The electric fields at 2fc radiated by the emitting dipoles have been computed from the inhomogeneous Helmholtz wave equation. Using the full hot plasma theory to evaluate the dielectric tensor, a Green's function has been derived, based partly on numerical inversion and facilitated by some simplifications made possible by the given frequency and plasma parameters. Under the assumption of straight-line rays, it is found that the computed absolute voltage levels induced on the receiving dipoles are of the same order of magnitude as the observed levels. The electric field E radiation patterns at 2fc are found to be highly elongated along the direction of the Earth's magnetic induction field B. The component of E perpendicular to B, the radial or ρ component, is much stronger than the other two components in a cylindrical coordinate system. The prediction of strong radial E magnitudes along ray directions very close to B is consistent with the OC observations. These results enlarge our appreciation of distinct characteristics of ECW radiation and propagation that may improve understanding of the role of these electrostatic waves in ionospheric dynamics.

  1. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  2. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  3. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  4. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  5. Electron Cyclotron Heating on DIII-D

    SciTech Connect

    Prater, R.; Petty, C.C.

    2005-10-15

    Electron cyclotron heating (ECH) has proved to be a very flexible system for heating applications in DIII-D. The outstanding characteristics of ECH - controllable heating location, a high degree of localization of the power, ability to heat without introducing particles, and ability to heat only the electron fluid - have been used in a wide variety of experiments to study wave physics and transport, to control magnetohydrodynamic activity, and to improve discharges. These characteristics along with relatively easy coupling to the plasma make ECH a valuable resource for both heating and instability control in burning plasmas.

  6. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  7. Cavity QED of the graphene cyclotron transition.

    PubMed

    Hagenmüller, David; Ciuti, Cristiano

    2012-12-28

    We investigate theoretically the cavity quantum electrodynamics of the cyclotron transition for Dirac fermions in graphene. We show that the ultrastrong coupling regime characterized by a vacuum Rabi frequency comparable or even larger than the transition frequency can be obtained for high enough filling factors of the graphene Landau levels. Important qualitative differences occur with respect to the corresponding physics of massive electrons in a semiconductor quantum well. In particular, an instability for the ground state analogous to the one occurring in the Dicke model is predicted for an increasing value of the electron density.

  8. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  9. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-12-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes ('decomposers') and microbes exploiting the catalytic activities of others ('cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate.

  10. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  11. Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Usanova, M. E.; Malaspina, D. M.; Jaynes, A. N.; Bruder, R. J.; Mann, I. R.; Wygant, J. R.; Ergun, R. E.

    2016-09-01

    Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron waves, which are believed to contribute to loss of ring current ions and radiation belt electrons and therefore can be also important for inner magnetosphere dynamics.

  12. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  13. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  14. How a Small Change in Retinal Leads to G-Protein Activation: Initial Events Suggested by Molecular Dynamics Calculations

    PubMed Central

    Crozier, Paul S.; Stevens, Mark J.; Woolf, Thomas B.

    2010-01-01

    Rhodopsin is the prototypical G-protein coupled receptor, coupling light activation with high efficiency to signaling molecules. The dark-state X-ray structures of the protein provide a starting point for consideration of the relaxation from initial light activation to conformational changes that may lead to signaling. In this study we create an energetically unstable retinal in the light activated state and then use molecular dynamics simulations to examine the types of compensation, relaxation, and conformational changes that occur following the cis–trans light activation. The results suggest that changes occur throughout the protein, with changes in the orientation of Helices 5 and 6, a closer interaction between Ala 169 on Helix 4 and retinal, and a shift in the Schiff base counterion that also reflects changes in sidechain interactions with the retinal. Taken together, the simulation is suggestive of the types of changes that lead from local conformational change to light-activated signaling in this prototypical system. PMID:17109408

  15. Ion Cyclotron Waves in the VASIMR

    NASA Astrophysics Data System (ADS)

    Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.

    2008-12-01

    The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.

  16. Loss cone-driven cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Yi, Sibaek; Lim, Dayeh; Kim, Hee-Eun; Seough, Jungjoon; Yoon, Peter H.

    2013-11-01

    The weakly (or mildly) relativistic cyclotron maser instability has been successfully applied to explain the Earth's auroral kilometric radiation and other radio sources in nature and laboratory. Among the most important physical parameters that determine the instability criteria is the ratio of plasma-to-electron cyclotron frequencies, ωp/Ω. It is therefore instructive to consider how the normalized maximum growth rate, γmax/Ω, varies as a function of ωp/Ω. Although many authors have already discussed this problem, in order to complete the analysis, one must also understand how the radiation emission angle corresponding to the maximum growth, θmax, scales with ωp/Ω, since the propagation angle determines the radiation beaming pattern. Also, the behavior of the frequency corresponding to the maximum growth rate at each harmonic, (ωmax-sΩ)/Ω, where s=1,2,3,ċ , as a function of ωp/Ωis of importance for a complete understanding of the maser excitation. The present paper computes these additional quantities for the first time, making use of a model loss cone electron distribution function.

  17. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  18. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  19. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  20. Cyclotron resonance heating systems for SST-1

    NASA Astrophysics Data System (ADS)

    Bora, D.; Kumar, Sunil; Singh, Raj; Sathyanarayana, K.; Kulkarni, S. V.; Mukherjee, A.; Shukla, B. K.; Singh, J. P.; Srinivas, Y. S. S.; Khilar, P.; Kushwah, M.; Kumar, Rajnish; Sugandhi, R.; Chattopadhyay, P.; Raghuraj, Singh; Jadav, H. M.; Kadia, B.; Singh, Manoj; Babu, Rajan; Jatin, P.; Agrajit, G.; Biswas, P.; Bhardwaj, A.; Rathi, D.; Siju, G.; Parmar, K.; Varia, A.; Dani, S.; Pragnesh, D.; Virani, C.; Patel, Harsida; Dharmesh, P.; Makwana, A. R.; Kirit, P.; Harsha, M.; Soni, J.; Yadav, V.; Bhattacharya, D. S.; Shmelev, M.; Belousov, V.; Kurbatov, V.; Belov, Yu.; Tai, E.

    2006-03-01

    RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during a pulse length of 1000 s. For different heating scenarios at 1.5 and 3.0 T, a wide band of operating frequencies (20-92 MHz) is required. To meet this requirement two CW 1.5 MW rf generators are being developed in-house. A pressurized as well as vacuum transmission line and launcher for the SST-1-ICRF system has been commissioned and tested successfully. A gyrotron for the 82.6 GHz ECRF system has been tested for a 200 kW/1000 s operation on a water dummy load with 17% duty cycle. High power tests of the transmission line have been carried out and the burn pattern at the exit of transmission line shows a gaussian nature. Launchers used to focus and steer the microwave beam in plasma volume are characterized by a low power microwave source and tested for UHV compatibility. Long pulse operation has been made feasible by actively cooling both the systems. In this paper detailed test results and the present status of both the systems are reported.

  1. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  2. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  3. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    SciTech Connect

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Chatziantonaki, Ioanna; Vlahos, Loukas; Strintzi, Dafni

    2009-11-15

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  4. The surface-state of the topological insulator Bi2Se3 revealed by cyclotron resonance

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Altarawneh, Moaz M; Analytis, James G

    2011-01-14

    Transport measurements of topological insulators are dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2Se3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state. By probing the conductivity at reduced skin depths, we have observed a 2D cyclotron resonance from a material whose bulk Fermi-surface is 3D. The frequency-magnetic field scaling of this resonance is inconsistent with the bulk effective mass, but more consistent with the dispersion and band filling of a Dirac-like surface state as observed by ARPES, with substantial manybody renormalization.

  5. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.

  6. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  7. Performance of Variable Energy Cyclotron Centre superconducting cyclotron liquid nitrogen distribution system

    NASA Astrophysics Data System (ADS)

    Pal, Gautam; Nandi, Chinmay; Bhattacharyya, Tamal Kumar; Chakrabarti, Alok

    2014-01-01

    The liquid nitrogen distribution at Variable Energy Cyclotron Centre, Kolkata, India K500 superconducting cyclotron uses parallel branches to cool the thermal shield of helium vessel housing the superconducting coil and the cryopanels. Liquid nitrogen is supplied to the thermal shields from a pressurised liquid nitrogen dewar. Direct measurement of flow is quite difficult and seldom used in an operational cryogenic system. The total flow and heat load of the liquid nitrogen system was estimated indirectly by continuous measurement of level in the liquid nitrogen tanks. A mathematical model was developed to evaluate liquid nitrogen flow in the parallel branches. The model was used to generate flow distribution for different settings and the total flow was compared with measured data.

  8. Linked Environment for Atmospheric Discovery (LEAD): Transforming the Sensing and Numerical Prediction of High Impact Local Weather Through Dynamic Adaptation

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M.; Droegemeier, K.

    2006-12-01

    Those who have experienced the devastation of a tornado, the raging waters of a flash flood, or the paralyzing impacts of lake-effect snows understand that mesoscale weather develops rapidly, often with considerable uncertainty with regard to location. Such weather is also locally intense and frequently influenced by processes on both larger and smaller scales. Ironically, few of the technologies used to observe the atmosphere, predict its evolution, and compute, transmit, or store information about it operate in a manner that accommodates the dynamic behavior of mesoscale weather. Radars do not adaptively scan specific regions of thunderstorms; numerical models are run largely on fixed time schedules in fixed configurations; and cyberinfrastructure does not allow meteorological tools to run on-demand, change configurations in response to the weather, or provide the fault tolerance needed for rapid reconfiguration. As a result, today's weather technology is highly constrained and far from optimal when applied to any particular situation. This presentation describes a major paradigm shift now underway in the field of meteorology -- away from today's environment in which remote sensing systems, atmospheric prediction models, and hazardous weather detection systems operate in fixed configurations, and on fixed schedules largely independent of weather -- to one in which they can change their configuration dynamically in response to the evolving weather. A major driver of this change is a project known as Linked Environments for Atmospheric Discovery (LEAD) -- a 5-year NSF Large Information Technology Research (ITR) grant that is developing cyberinfrastructure to allow scientists, students, tools and sensors to interact with weather. This presentation will describe the research and technology development being performed to establish this capability

  9. Dynamic modelling of the long term behaviour of cadmium, lead and mercury in Swiss forest soils using CHUM-AM.

    PubMed

    Rieder, Stephan R; Tipping, Edward; Zimmermann, Stefan; Graf-Pannatier, Elisabeth; Waldner, Peter; Meili, Markus; Frey, Beat

    2014-01-15

    The applicability of the dynamic soil model CHUM-AM was tested to simulate concentrations of Cd, Pb and Hg in five Swiss forest soils. Soil cores of up to 50 cm depth were sampled and separated into two defined soil layers. Soil leachates were collected below the litter by zero-tension lysimeters and at 15 and 50 cm soil depths by tension lysimeters over two years. The concentrations of Cd, Pb and Hg in the solid phase and soil solution were measured by ICP-MS (Cd, Pb) or CV-AFS (Hg). Measured metal concentrations were compared with modelled concentrations using CHUM-AM. Additionally we ran the model with three different deposition scenarios (current deposition; maximum acceptable deposition according to the Swiss ordinance on Air Pollution Control; critical loads according to CLRTAP) to predict metal concentrations in the soils for the next 1000 years. Assuming current loads concentrations of Cd and Pb showed varying trends (increasing/decreasing) between the soils. Soils rich in organic carbon or with a high pH value showed increasing trends in Cd and Pb concentrations whereas the concentrations in the other soils decreased. In contrast Hg concentrations are predicted to further increase in all soils. Critical limits for Pb and Hg will partly be exceeded by current loads or by the critical loads proposed by the CLRTAP but the critical limits for Cd will rarely be reached within the next 1000 years. In contrast, maximal acceptable deposition will partly lead to concentrations above the critical limits for Pb in soils within the next 400 years, whereas the acceptable deposition of Cd will not lead to concentrations above the proposed critical limits. In conclusion the CHUM-AM model is able to accurately simulate heavy metal (Cd, Pb and Hg) concentrations in Swiss forest soils of various soil properties.

  10. Numerical simulation of ions acceleration and extraction in cyclotron DC-110

    NASA Astrophysics Data System (ADS)

    Samsonov, E. V.; Gikal, B. N.; Borisov, O. N.; Ivanenko, I. A.

    2014-03-01

    In Flerov's Laboratory of Nuclear Reactions of JINR in the framework of project "Beta" a cyclotron complex for a wide range of applied research in nanotechnology (track membranes, surface modification, etc.) is created. The complex includes a dedicated heavy-ion cyclotron DC-110, which yields intense beams of accelerated ions Ar, Kr and Xe with a fixed energy of 2.5 MeV/A. The cyclotron is equipped with external injection on the base of ECR ion source, a spiral inflector and the system of ions extraction consisting of an electrostatic deflector and a passive magnetic channel. The results of calculations of the beam dynamics in measured magnetic field from the exit of spiral inflector to correcting magnet located outside the accelerator vacuum chamber are presented. It is shown that the design parameters of ion beams at the entrance of correcting magnet will be obtained using false channel, which is a copy of the passive channel, located on the opposite side of the magnetic system. Extraction efficiency of ions will reach 75%.

  11. Progress in theory and simulation of ion cyclotron emission from magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Dendy, Richard; Chapman, Ben; Chapman, Sandra; Cook, James; Reman, Bernard; McClements, Ken; Carbajal, Leopoldo

    2016-10-01

    Suprathermal ion cyclotron emission (ICE) is detected from all large tokamak and stellarator plasmas. Its frequency spectrum has narrow peaks at sequential cyclotron harmonics of the energetic ion population (fusion-born or neutral beam-injected) at the outer edge of the plasma. ICE was the first collective radiative instability driven by confined fusion-born ions observed in deuterium-tritium plasmas in JET and TFTR, and the magnetoacoustic cyclotron instability is the most likely emission mechanism. Contemporary ICE measurements are taken at very high sampling rates from the LHD stellarator and from the conventional aspect ratio KSTAR tokamak. A correspondingly advanced modelling capability for the ICE emission mechanism has been developed using 1D3V PIC and hybrid-PIC codes, supplemented by analytical theory. These kinetic codes simulate the self-consistent full orbit dynamics of energetic and thermal ions, together with the electric and magnetic fields and the electrons. We report recent progress in theory and simulation that addresses: the scaling of ICE intensity with energetic particle density; the transition between super-Alfvénic and sub-Alfvénic regimes for the collectively radiating particles; and the rapid time evolution that is seen for some ICE measurements. This work was supported in part by the RCUK Energy Programme [Grant Number EP/I501045] and by Euratom.

  12. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    SciTech Connect

    Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-09-02

    Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.

  13. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  14. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  15. Electron Cyclotron Emission Diagnostics on ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Phillips, Perry; Rowan, William; Beno, Joseph; Auroua, Abelhamid; Feder, Russell; Patel, Ashish; Hubbard, Amanda; Pandya, Hitesh

    2010-11-01

    Electron cyclotron emission (ECE) will be employed on ITER to measure the radial profile of electron temperature and non thermal features of the electron distribution as well as measurements of ELMs, magnetic islands, high frequency instabilities, and turbulence. There are two quasioptical systems, designed with Gaussian beam analysis. One view is radial, primarily for temperature profile measurement, the other views at a small angle to radial for measuring non-thermal emission. Radiation is conducted to by a long corrugated waveguide to a multichannel Michelson interferometer which provides wide wavelength coverage but limited time response as well as two microwave radiometers which cover the fundamental and second harmonic ECE and provide excellent time response. Measurements will be made in both X and O mode. In-situ calibration is provided by a novel hot calibration source. We discuss spatial resolution and the implications for physics studies.

  16. Cyclotron maser using the anomalous Doppler effect

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Borisov, A. R.; Fomenko, G. P.; Shlapakovskii, A. S.; Shtein, Iu. G.

    1983-11-01

    The operation of an anomalous-Doppler-effect cyclotron-resonance maser using a waveguide partially filled with dielectric as the slow-wave system is reported. The device investigated is similar to that of Didenko et al. (1983) and comprises a 300-mm-long 50-mm-o.d. 30-mm-i.d. waveguide with fabric-laminate dielectric, located 150 mm from the cathode in a 500-mm-long region of uniform 0-20-kG magnetic field, and a coaxial magnetic-insulation gun producing a 13-mm-i.d. 25-mm-o.d. hollow electron beam. Radiation at 12 + or - 1 mm wavelength and optimum power 20 MW is observed using hot-carrier detectors, with a clear peak in the power-versus-magnetic-field curve at about 6.4 kG.

  17. Superconducting cyclotron and its vacuum system

    NASA Astrophysics Data System (ADS)

    Sur, A.; Bhandari, R. K.

    2008-05-01

    A large superconducting cyclotron is under construction at this Centre and will be used to accelerate heavy ion beams to energy up to 80 MeV/A for light heavy ions and about 10 MeV/A for medium mass heavy ions. The vacuum system for this accelerator has several different aspects. The main acceleration chamber will be evacuated to a level of about 10-7 torr using both turbo molecular pumps and specially designed cryopanels. The surfaces exposed to this 'vacuum' are mostly made of OFE copper. The cryogenic transfer lines, to cool the cryopanels, are of several meters in length and they pass through RF resonators extending below the magnet. The cryostat that will house the superconducting coils has an annular vacuum chamber, which is evacuated to a level of approximately 10-5 torr using a turbo molecular pump. Cryopumping action starts once the coils are cooled to low temperatures. A differential pumping is provided below the RF liner that encloses the pole tip of the main magnet. The space that is pumped in this case contains epoxy-potted trim coils wound around the pole tips. Crucial interlocks are provided between the differential vacuum and the acceleration chamber vacuum to avoid distortion of the RF liner, which is made of thin copper sheets. The other important vacuum system provides thermal insulation for the liquid helium transfer lines. In this paper a brief description of the superconducting cyclotron will be given. Details of various vacuum aspects of the accelerator and the logistics of their operation will be presented. Introduction of some of the improved equipment now available and improved techniques are also discussed.

  18. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  19. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  20. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  1. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    NASA Astrophysics Data System (ADS)

    Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasché, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pittà, G.; Puggioni, P.; Rosso, E.; Verdú Andrés, S.; Wegner, R.; Weiss, M.; Zennaro, R.

    2010-08-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.

  2. Ion-cyclotron instability in plasmas described by product-bi-kappa distributions

    SciTech Connect

    Santos, M. S. dos; Ziebell, L. F. Gaelzer, R.

    2015-12-15

    The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase in the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population.

  3. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  4. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes (‘decomposers') and microbes exploiting the catalytic activities of others (‘cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate. PMID:26621582

  5. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites.

    PubMed

    Leguy, Aurélien M A; Goñi, Alejandro R; Frost, Jarvist M; Skelton, Jonathan; Brivio, Federico; Rodríguez-Martínez, Xabier; Weber, Oliver J; Pallipurath, Anuradha; Alonso, M Isabel; Campoy-Quiles, Mariano; Weller, Mark T; Nelson, Jenny; Walsh, Aron; Barnes, Piers R F

    2016-10-21

    We present Raman and terahertz absorbance spectra of methylammonium lead halide single crystals (MAPbX3, X = I, Br, Cl) at temperatures between 80 and 370 K. These results show good agreement with density-functional-theory phonon calculations. Comparison of experimental spectra and calculated vibrational modes enables confident assignment of most of the vibrational features between 50 and 3500 cm(-1). Reorientation of the methylammonium cations, unlocked in their cavities at the orthorhombic-to-tetragonal phase transition, plays a key role in shaping the vibrational spectra of the different compounds. Calculations show that these dynamic effects split Raman peaks and create more structure than predicted from the independent harmonic modes. This explains the presence of extra peaks in the experimental spectra that have been a source of confusion in earlier studies. We discuss singular features, in particular the torsional vibration of the C-N axis, which is the only molecular mode that is strongly influenced by the size of the lattice. From analysis of the spectral linewidths, we find that MAPbI3 shows exceptionally short phonon lifetimes, which can be linked to low lattice thermal conductivity. We show that optical rather than acoustic phonon scattering is likely to prevail at room temperature in these materials.

  6. Gas phase ion - molecule reactions studied by Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Ross, C.W. III.

    1993-01-01

    Intrinsic thermodynamic information of molecules can easily be determined in the low pressure FT/ICR mass spectrometer. The gas phase basicity of two carbenes were measured by isolating the protonated carbene ion and reacting it with neutral reference compounds by the bracketing method. A fundamentally new-dimensional FT/ICR/MS experiment, SWIM (stored waveform ion modulation) 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system. In some endoergic reactions there is a minimum energy threshold that must overcome for a reaction to occur. Hence, a simple sinusoidal modulation of parent ion cyclotron radius leads to a clipped sinusoidal signal of the product ion abundance in the second dimension, which upon Fourier transformation produces signals with harmonic and combination ion cyclotron resonance frequencies. Moreover, ion-molecule reaction rates may vary directly within kinetic energy rather than cyclotron radius. With SWIM, it is possible to tailor the excitation profile so as to produce a sinusoidal modulation of ion kinetic energy as a function of cyclotron frequency.

  7. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  8. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  9. Electron cyclotron plasma startup in the GDT experiment

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. V.; Shalashov, A. G.; Gospodchikov, E. D.; Solomakhin, A. L.; Savkin, V. Ya.; Bagryansky, P. A.

    2017-01-01

    We report on a new plasma startup scenario in the gas dynamic trap (GDT) magnetic mirror device. The primary 5 MW neutral beam injection (NBI) plasma heating system fires into a sufficiently dense plasma target (‘seed plasma’), which is commonly supplied by an arc plasma generator. In the reported experiments, a different approach to seed plasma generation is explored. One of the channels of the electron cyclotron resonance (ECR) heating system is used to ionize the neutral gas and build up the density of plasma to a level suitable for NBI capture. After a short transition of approximately 1 ms the discharge becomes essentially similar to a standard one initiated by the plasma gun. This paper presents the discharge scenario and experimental data on the seed plasma evolution during ECRH, along with the dependencies on incident microwave power, magnetic configuration and pressure of a neutral gas. The characteristics of the consequent high-power NBI discharge are studied and differences from the conventional scenario are discussed. A theoretical model describing the ECR breakdown and the seed plasma accumulation in a large-scale mirror trap is developed on the basis of the GDT experiment.

  10. Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.

    2015-12-01

    We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.

  11. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    DOE PAGES

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less

  12. Cyclotrons for clinical and biomedical research with PET

    SciTech Connect

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use.

  13. Vacuum Control Systems of the Cyclotrons in VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Akhtar, Javed; Yadav, R. C.; Bhole, R. B.; Pal, Sarbajit; Sarkar, D.; Bhandari, R. K.

    2012-11-01

    VECC has undertaken the modernization of the K-130 Room Temperature Cyclotron (RTC) (operational since 1978) and commissioning of K-500 Superconducting Cyclotron (SCC) at present. The control system of RTC vacuum system has been upgraded to Programmable Logic Controller (PLC) based automated system from relay based manual system. A distributed PLC based system is under installation for SCC vacuum system. The requirement of high vacuum in both the cyclotrons (1×10-6 mbar for RTC and 5 × 10-8 mbar SCC) imposes the reliable local and remote operation of all vacuum components and instrumentation. The design and development of the vacuum control system of two cyclotrons using the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  14. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; Doe, P. J.; Fernandes, J. L.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Furse, D.; Jones, A. M.; Kofron, J. N.; LaRoque, B. H.; Leber, M.; McBride, E. L.; Miller, M. L.; Mohanmurthy, P.; Monreal, B.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Rysewyk, D.; Sternberg, M. G.; Tedeschi, J. R.; Thummler, T.; VanDevender, B. A.; Woods, N. L.

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  15. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  16. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  17. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Ashraf, Zaman; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-03-15

    Polyphenol oxidases (PPOs)/tyrosinases are metal-dependent enzymes and known as important targets for melanogenesis. Although considerable attempts have been conducted to control the melanin-associated diseases by using various inhibitors. However, the exploration of the best anti-melanin inhibitor without side effect still remains a challenge in drug discovery. In present study, protein structure prediction, ligand-based pharmacophore modeling, virtual screening, molecular docking and dynamic simulation study were used to screen the strong novel inhibitor to cure melanogenesis. The 3D structures of PPO1 and PPO2 were built through homology modeling, while the 3D crystal structures of PPO3 and PPO4 were retrieved from PDB. Pharmacophore modeling was performed using LigandScout 3.1 software and top five models were selected to screen the libraries (2601 of Aurora and 727, 842 of ZINC). Top 10 hit compounds (C1-10) were short-listed having strong binding affinities for PPO1-4. Drug and synthetic accessibility (SA) scores along with absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment were employed to scrutinize the best lead hit. C4 (name) hit showed the best predicted SA score (5.75), ADMET properties and drug-likeness behavior among the short-listed compounds. Furthermore, docking simulations were performed to check the binding affinity of C1-C10 compounds against target proteins (PPOs). The binding affinity values of complex between C4 and PPOs were higher than those of other complexes (-11.70, -12.1, -9.90 and -11.20kcal/mol with PPO1, PPO2, PPO3, or PPO4, respectively). From comparative docking energy and binding analyses, PPO2 may be considered as better target for melanogenesis than others. The potential binding modes of C4, C8 and C10 against PPO2 were explored using molecular dynamics simulations. The root mean square deviation and fluctuation (RMSD/RMSF) graphs results depict the significance of C4 over the other compounds

  18. PET computer programs for use with the 88-inch cyclotron

    SciTech Connect

    Gough, R.A.; Chlosta, L.

    1981-06-01

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected.

  19. A mechanism for the Fine Structures of Solar Radio Bursts Based on the Electron Cyclotron Maser Emission

    NASA Astrophysics Data System (ADS)

    Wang, C.; Tong, Z.; Liu, J.

    2015-12-01

    A scenario based on the electron cyclotron maser emission is proposed for the fine structures of solar radio emission in the present discussion. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro-frequency by ultra low frequency waves, which is a key parameter for excitation of the maser instability, may lead to the intermittent emission of radio waves. As an example, the explanation of the observed fine-structure components in the solar type IIIb burst is discussed in detail. Three primary issues of the type IIIb bursts are addressed: 1) what is the physical mechanism that results in the intermittent emission elements that form a chain in the dynamic spectrum of type IIIb bursts, 2) what causes the split pair (or double stria) and the triple stria, 3) why in the events of fundamental-harmonic pair emission there is only IIIb-III, but IIIb-IIIb or III-IIIb cases are very rarely observed. The application of the scenario to some other type of solar radio bursts and their fine structures are also discussed.

  20. On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activitya)

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Boivin, R. L.; Boom, J. E.; Classen, I. G. J.; Domier, C. W.; Donné, A. J. H.; Heidbrink, W. W.; Luhmann, N. C.; Munsat, T.; Muscatello, C. M.; Nazikian, R.; Park, H. K.; Spong, D. A.; Turnbull, A. D.; Van Zeeland, M. A.; Yun, G. S.

    2011-05-01

    Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfvén wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous determination of the 2D eigenmode structure. This has provided support for nonperturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfvén eigenmodes, and in cases where convective flows or saturated perturbations lead to nonaxisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made toward a comprehensive understanding of fast reconnection in tokamak plasmas.

  1. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.

    PubMed

    Makarov, Nikolay S; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, István; Klimov, Victor I

    2016-04-13

    Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton-exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger

  2. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    SciTech Connect

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, Istvan; Klimov, Victor Ivanovich

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective

  3. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  4. A 16-channel heterodyne electron cyclotron emission radiometer on J-TEXT.

    PubMed

    Yang, Z J; Phillips, P E; Zhuang, G; Xiao, J S; Huang, H; Rowan, W L; Wang, Z J

    2012-10-01

    To study equilibrium temporal dynamics and the mechanisms of magnetohydrodynamic instabilities, a 16-channel heterodyne electron cyclotron emission (ECE) radiometer has been developed to view the J-TEXT tokamak from the low field side. The ECE radiometer detects second-harmonic extraordinary mode in the frequency band of 94-125 GHz which corresponds to resonances from 1.8 T to 2.2 T. This ECE system consists of an ECE transmission line, a radio frequency unit, and two 8-channel intermediate frequency units. An in situ blackbody calibration source is applied for system calibration by comparison of hot and cold sources in order to provide an absolute temperature measurement.

  5. A 16-channel heterodyne electron cyclotron emission radiometer on J-TEXT

    SciTech Connect

    Yang, Z. J.; Zhuang, G.; Xiao, J. S.; Wang, Z. J.; Phillips, P. E.; Huang, H.; Rowan, W. L.

    2012-10-15

    To study equilibrium temporal dynamics and the mechanisms of magnetohydrodynamic instabilities, a 16-channel heterodyne electron cyclotron emission (ECE) radiometer has been developed to view the J-TEXT tokamak from the low field side. The ECE radiometer detects second-harmonic extraordinary mode in the frequency band of 94-125 GHz which corresponds to resonances from 1.8 T to 2.2 T. This ECE system consists of an ECE transmission line, a radio frequency unit, and two 8-channel intermediate frequency units. An in situ blackbody calibration source is applied for system calibration by comparison of hot and cold sources in order to provide an absolute temperature measurement.

  6. First results of an auxiliary electron cyclotron resonance heating experiment in the GDT magnetic mirror

    NASA Astrophysics Data System (ADS)

    Bagryansky, P. A.; Kovalenko, Yu. V.; Savkin, V. Ya.; Solomakhin, A. L.; Yakovlev, D. V.

    2014-08-01

    The axially symmetric magnetic mirror device gas-dynamic trap (GDT, Budker Institute, Novosibirsk) has recently demonstrated a tangible increase in plasma electron temperature. According to laser scattering, a value of 0.4 keV has been achieved (a twofold increase). In addition to standard machine operation, utilizing a 5 MW neutral beam injection, a newly installed electron cyclotron resonance heating (ECRH) system was employed (54.5 GHz, 0.4 MW). The reported progress in electron temperature, along with previous experiments, which demonstrated plasma confinement at beta as high as 60%, is a significant advancement towards an energy efficient fusion neutron source based on GDT physics.

  7. Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broad-band electromagnetic turbulence

    NASA Technical Reports Server (NTRS)

    Retterer, John M.; Chang, Tom; Crew, G. B.; Jasperse, J. R.; Winningham, J. D.

    1987-01-01

    It is demonstrated that cyclotron resonance with observed electric field fluctuations is responsible for production of the oxygen-ion conics that are observed by the Dynamics Explorer 1 satellite in the central plasma-sheet region of the earth's magnetosphere. The ion-velocity distribution is described by a quasi-linear diffusion equation which is solved by the Monte Carlo technique. The acceleration produced by the observed wave spectrum agrees well with the ion observations, in both form and magnitude. This is believed to represent the first successful comparison of an observed conic with any theoretical model.

  8. Drude weight, cyclotron resonance, and the Dicke model of graphene cavity QED.

    PubMed

    Chirolli, Luca; Polini, Marco; Giovannetti, Vittorio; MacDonald, Allan H

    2012-12-28

    The unique optoelectronic properties of graphene make this two-dimensional material an ideal platform for fundamental studies of cavity quantum electrodynamics in the strong-coupling regime. The celebrated Dicke model of cavity quantum electrodynamics can be approximately realized in this material when the cyclotron transition of its 2D massless Dirac fermion carriers is nearly resonant with a cavity photon mode. We develop the theory of strong matter-photon coupling in this circumstance, emphasizing the essential role of a dynamically generated matter energy term that is quadratic in the photon field and absent in graphene's low-energy Dirac model.

  9. Terahertz Imaging of cyclotron emission from quantum Hall conductors

    NASA Astrophysics Data System (ADS)

    Komiyama, Susumu

    2006-03-01

    Microscopy of extremely weak terahertz (THz) waves via photon-counting method is reported. A quantum-dot photon detector [1] is incorporated into a scanning terahertz microscope [2]. By using a quantum Hall detector [3] as well, measurements cover the intensity dynamic range more than five orders of magnitude. The minimum intensity reaches as lo as 10̂-21^ watt (one photon per one second). Applying the measurement system to the study of semiconductor quantum Hall (QH) devices, we image cyclotron radiation emitted by non-equilibrium electrons generated in QH electron systems. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled [4]. It is stressed that the present approach is in marked contrast to the THz- wave applications recently discussed extensively in a wide variety of fields including clinic, security, and environment. In the vast majority of those applications, room-temperature operation is implicit. The intensity of treated THz radiation is hence well beyond the level of 300K black body radiation (roughly 10̂-7 watts or 10̂14 photons/s per square centimeter in a 1/10 relative band width). From the scientific viewpoint, however, detecting extremely weak THz waves from an object without external illumination such as applied in the present work is of strong importance, because the microscopic kinetics of an object can be probed only in such a passive method. Besides semiconductor electric devices studied here, we will also discuss possible applications of the present method for molecular dynamics, micro thermography, and cell activities.. [1] S. Komiyama et al., Nature 403, 405 (2000). [2] K. Ikushima et al.,. Rev. Sci. Instrum. 74, 4209 (2003). [3] Y.Kawano et al., J. Appl. Phys. 89, 4037 (2001). [4] K.Ikushima et al., Phys. Rev. Lett. 93, 146804 (2004).

  10. Cyclotron autoresonance maser in the millimeter region

    NASA Astrophysics Data System (ADS)

    Nikolov, N. A.; Spasovski, I. P.; Kostov, K. G.; Velichkov, J. N.; Spasov, V. A.

    1990-06-01

    This paper investigates the optimal experimental conditions for a cyclotron autoresonance maser (CARM) regime realized by a nonadiabatic magnetic beam pumping in the millimeter wavelength region. In the experiment, a Blumline-type accelerator with a voltage up to 650 kV and maximal current up to 10 kA is used to generate a hollow beam with a pulse duration of 30 ns. The electron beam, emitted from a graphite cathode with a 10-mm diameter, propagates in a cylindrical drift tube of 56 mm diam and a length of 500 mm. The external magnetic field B, provided by a solenoidal magnet, is homogeneous along the drift tube up to a distance of 300 mm from the cathode. The experiment demonstrated the generation of microwave radiation in the time interval from 0.0016 to 0.0023 sec after the switch-on of the external magnetic field. Two maxima of the output microwave power (8 and 10 MW) at a wavelength of 5 and 5.5 mm, respectively, were observed.

  11. Characterization of electron cyclotron resonance hydrogen plasmas

    SciTech Connect

    Outten, C.A. . Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. )

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

  12. Two Dimensional Synthetic Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Valeo, Ernest J.; Tobias, Benjamin J.; Kramer, Gerrit J.; Liu, Chang; Tang, William M.

    2016-10-01

    Electron Cyclotron Emission (ECE) has been widely used as a measurement of the electron temperature profile in magnetically confined plasmas. The ECE Imaging (ECEI) system provides additional vertical resolutions, and is used to measure the electron temperature fluctuations. The vertical resolution is typically a few centi-meters which is sometimes comparable to the vertical wave length of the underlying fluctuations. The ray-tracing technique used in most synthetic ECE codes to determine the origin and spatial extent of the ECE radiations is not accurate when the refraction and diffraction due to the fluctuations are important. In this presentation, we introduce a new synthetic ECEI code which solves the wave propagation up to the 2nd order of the WKB approximation, and provides full 2D information of the ECE source. We'll show that when the ECE frequency is near the cutoff, the refraction due to the fluctuations is important. A ``trapping'' of the ECE source by the density fluctuations is identified, and is potentially useful for determining the cross phase between electron temperature and density fluctuations. The new formalism is also used to study the Runaway Electrons contribution to the ECE signal, and provides insights to the measured ECE spectrum on DIII-D. This work has been funded by the US Department of Energy under Contract Number DE-AC02-09CH11466.

  13. The Oak Ridge Isochronous Cyclotron Refurbishment Project

    SciTech Connect

    Mendez, II, Anthony J; Ball, James B; Dowling, Darryl T; Mosko, Sigmund W; Tatum, B Alan

    2011-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) has been in operation for nearly fifty years at the Oak Ridge National Laboratory (ORNL). Presently, it serves as the driver accelerator for the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), where radioactive ion beams are produced using the Isotope Separation Online (ISOL) technique for post-acceleration by the 25URC tandem electrostatic accelerator. Operability and reliability of ORIC are critical issues for the success of HRIBF and have presented increasingly difficult operational challenges for the facility in recent years. In February 2010, a trim coil failure rendered ORIC inoperable for several months. This presented HRIBF with the opportunity to undertake various repairs and maintenance upgrades aimed at restoring the full functionality of ORIC and improving the reliability to a level better than what had been typical over the previous decade. In this paper, we present details of these efforts, including the replacement of the entire trim coil set and measurements of their radial field profile. Comparison of measurements and operating tune parameters with setup code predictions will also be presented.

  14. A storage ring for the JULIC cyclotron

    NASA Astrophysics Data System (ADS)

    Martin, S. A.; Prasuhn, D.; Schott, W.; Wiedner, C. A.

    1985-05-01

    The storage ring COSY is planned to provide higher intensity and resolution for nuclear structure experiments using the light heavy ion beams (p, d, τ, α) of the JULIC cyclotron and the magnet spectrograph BIG KARL. The ring contains the measuring target of BIG KARL as an internal target, two rf cavities for compensating the mean energy loss in the target and providing additional acceleration of the stored beam and an e --cooling section. In the recirculator mode, i.e., without e --cooling, a luminosity of L = 3.64 × 10 30 particles/(cm 2 s) is obtained for an experiment with 41 MeV protons and a 50 μg/cm 212C target at a spectrograph resolution p/d p = 10 4 and 100% duty factor. This corresponds to a gain in L of 546.5 in comparison with the same experiment without a storage ring. In the recirculator mode with acceleration L = 1.17 × 10 32 p/(cm 2 s) and 98.8% duty factor results for 1500 MeV protons on the same target at the same resolution. Using e --cooling L and the feasible p/d p can be enhanced, however, at a reduced duty factor.

  15. Cyclotron resonant scattering in gamma-ray bursts - Further analysis of GB880205

    NASA Technical Reports Server (NTRS)

    Freeman, P. E.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.; Fenimore, E. E.; Murakami, T.; Yoshida, A.

    1992-01-01

    We have extended our previous work by exploring several plane-parallel slab geometries to model the formation of cyclotron line features. We calculated the Compton temperature T(C) as a function of column density Ne for each of the new geometries. We then fit the resulting spectra to GB880205 exactly as described in Wang et al. (1989). The results show that the addition of column depth below the photon source plane leads to a modest improvement in chi-squared which, although not statistically significant, is pleasing because these geometries are more physically realistic.

  16. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    DOE PAGES

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective

  17. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  18. Electron cyclotron emissions from an electron cyclotron heated discharge in ISX-B

    SciTech Connect

    Elder, G.B.

    1983-01-01

    Observation of the electron cyclotron emissions (ECE) is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code that predicts the ECE from an electron distribution in ISX-B, taking into a account the effect of the plasma's dielectric response to the emissions from a single electron, was developed.

  19. Electrostatic electron cyclotron harmonic instability near Ganymede

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2014-08-01

    Jupiter's moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave's growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.

  20. Design of RF system for CYCIAE-230 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  1. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  2. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  3. Effects of the condensation and scattering of radiation at the plasma-dynamic expansion of the detonation products of lead azide

    NASA Astrophysics Data System (ADS)

    Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.

    2013-11-01

    The kinetics of the superluminescence of lead atoms, Pb 3 P {1/0} → 1 D 2 (722.9 nm) and 3 P {1/0} → 3 P 2 (405.8 nm), at the fast adiabatic expansion and cooling of the detonation products of lead azide Pb(N3)2 in vacuum has been studied. The effects of the condensation and scattering of light from drop clusters in an optically active heterophase medium has been analyzed in order to interpret the experiments in laser detonation plasma-dynamic systems based on metal azides.

  4. Heating and Current Drive by Electron Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Prater, R.

    2003-10-01

    The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. Work has shown that ECCD can be highly localized and robustly controlled, leading to applications including stabilization of MHD instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport. These physics applications and the study of the basic physics of ECH and ECCD were enabled by the advent of the gyrotron in the 1980s and of the diamond window for megawatt gyrotrons in the 1990s. The experimental work stimulated a broad base of theory based on first principles which is encapsulated in linear ray tracing codes and fully relativistic quasilinear Fokker-Planck codes. Recent experiments use measurements of the local poloidal magnetic field through the motional Stark effect to determine the magnitude and profile of the locally driven current. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well, an effect which can be used to advantage. Strong quasilinear effects and radial transport of electrons which may broaden the driven current profile have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. Additional advantages of ECH compared with other rf heating methods are that the antenna can be far removed from the plasma and the power density can be very high. The agreement of theory and experiment, the broad base of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators.

  5. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  6. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  7. Spectra and Neutron Dosimetry Inside a PET Cyclotron Vault Room

    SciTech Connect

    Vega-Carrillo, Hector Rene; Mendez, Roberto; Iniguez, Maria Pilar; Marti-Climent, Joseph; Penuelas, Ivan; Barquero, Raquel

    2006-09-08

    The neutron field around a PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Pairs of thermoluminescent dosemeters, TLD600 and TLD700, were used as thermal neutron detector inside a Bonner Spheres Spectrometer to measure the neutron spectra at three different positions inside the cyclotron's vault room. Neutron spectra were also determined by Monte Carlo calculations. The hardest spectrum was observed in front of cyclotron target and the softest was noticed at the antipode of target. Neutron doses derived from the measured spectra vary between 11 and 377 mSv/{mu}A-h of proton integrated current, Doses were also measured with a single-moderator remmeter, with an active thermal neutron detector, whose response in affected by the radiation field in the vault room.

  8. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  9. Proton and helium cyclotron anisotropy instability thresholds in the magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. Peter; Convery, Patrick D.; Denton, Richard E.; Fuselier, Stephen A.; Anderson, Brian J.

    1994-01-01

    Both the protons and the helium ions of the terrestrial magnetosheath typically display T (sub perpendicular) greater than T (sub parallel), where perpendicular to and parallel to denote directions perpendicular and parallel to the background magnetic field. Observations of the highly compressed magnetosheath show an inverse correlation between these ion temperature anisotropies and the parallel proton beta. Computer simulations have demonstrated that these correlations are due to wave-particle scattering by electromagnetic ion cyclotron anisotropy instabilities. These correlations correspond to linear theory thresholds of the proton cyclotron and the helium cyclotron instabilities. This paper uses linear Vlasov theory and the assumption of a constant maximum growth rate to obtain closed-form expressions for these thresholds as a function of the relative helium density and the parallel proton beta in a parameter model of the magnetosheath.

  10. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  11. The next generation of electron cyclotron emission imaging diagnostics (invited).

    PubMed

    Zhang, P; Domier, C W; Liang, T; Kong, X; Tobias, B; Shen, Z; Luhmann, N C; Park, H; Classen, I G J; van de Pol, M J; Donné, A J H; Jaspers, R

    2008-10-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T(e) profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  12. The next generation of electron cyclotron emission imaging diagnostics (invited)

    SciTech Connect

    Zhang, P.; Domier, C. W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; Luhmann, N. C. Jr.; Park, H.; Classen, I. G. J.; Pol, M. J. van de; Donne, A. J. H.; Jaspers, R.

    2008-10-15

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T{sub e} profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  13. Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics

    PubMed Central

    Cortes, Jesus M.; Desroches, Mathieu; Rodrigues, Serafim; Veltz, Romain; Muñoz, Miguel A.; Sejnowski, Terrence J.

    2013-01-01

    Short-term synaptic plasticity strongly affects the neural dynamics of cortical networks. The Tsodyks and Markram (TM) model for short-term synaptic plasticity accurately accounts for a wide range of physiological responses at different types of cortical synapses. Here, we report a route to chaotic behavior via a Shilnikov homoclinic bifurcation that dynamically organizes some of the responses in the TM model. In particular, the presence of such a homoclinic bifurcation strongly affects the shape of the trajectories in the phase space and induces highly irregular transient dynamics; indeed, in the vicinity of the Shilnikov homoclinic bifurcation, the number of population spikes and their precise timing are unpredictable and highly sensitive to the initial conditions. Such an irregular deterministic dynamics has its counterpart in stochastic/network versions of the TM model: The existence of the Shilnikov homoclinic bifurcation generates complex and irregular spiking patterns and—acting as a sort of springboard—facilitates transitions between the down-state and unstable periodic orbits. The interplay between the (deterministic) homoclinic bifurcation and stochastic effects may give rise to some of the complex dynamics observed in neural systems. PMID:24062464

  14. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit.

  15. Electron Cyclotron Emissions from AN Electron Cyclotron Heated Discharge in Isx-B

    NASA Astrophysics Data System (ADS)

    Elder, Gerald Blaine

    1983-09-01

    Observation of the electron cyclotron emissions (ECE) at both optically thick and optically thin frequencies can be a very useful tool in studying the behavior of the electron distribution. It is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX-B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code which predicts the ECE from an electron distribution in ISX-B, taking into account the effect of the plasma's dielectric response to the emissions from a single electron, is developed. This code is the result of combining a ray tracing technique with the emissions from a single dressed test particle and summing over the electron distribution. The code confirms the sensitivity of the third harmonic emissions to small changes in the electron distribution. A Fokker-Planck code is combined with the emission code to predict the evolution of the ECE from a perturbed electron distribution. The codes clearly show that the rises in the emissions observed by the three detectors can be reasonably explained by consideration of the effect of pitch angle scattering

  16. Cyclotron modes of a multi-species ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C. F.

    1995-04-15

    Cyclotron modes varying as exp(il{theta}), with l=1, 2 and 3, have been observed in an unneutralized Mg ion plasma. The l=1 mode is observed to be down-shifted from the corresponding cyclotron frequency, while the l{>=}2 modes are found to be up-shifted. Good agreement is found between the observed down-shifts of the l=1 modes of Mg{sup +} and Mg{sup ++} and the predictions of a multi-species cold plasma theory. The down-shifts depend on the composition and size of the plasma, and the relative abundance of each ion can thus be determined.

  17. Electron cyclotron emission diagnostics on the large helical device

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Kawahata, K.; England, A.; Ito, Y.; Bretz, N.; McCarthy, M.; Taylor, G.; Doane, J.; Ikezi, H.; Edlington, T.; Tomas, J.

    1999-01-01

    The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH.

  18. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  19. A 600 MeV cyclotron for radioactive beam production

    SciTech Connect

    Clark, D.J.

    1993-05-17

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA.

  20. Electron cyclotron heating experiments on the DIII-D tokamak

    SciTech Connect

    Prater, R.; Austin, M.E.; Bernabei, S.

    1998-01-01

    Initial experiments on heating and current drive using second harmonic electron cyclotron heating (ECH) are being performed on the DIII-D tokamak using the new 110 GHz ECH system. Modulation of the ECH power in the frequency range 50 to 300 Hz and detection of the temperature perturbation by ECE diagnostics is used to validate the location of the heating. This technique also determines an upper bound on the width of the deposition profile. Analysis of electron cyclotron current drive indicates that up to 0.17 MA of central current is driven, resulting in a negative loop voltage near the axis.

  1. Analysis of gamma-ray burst spectra with cyclotron lines

    NASA Technical Reports Server (NTRS)

    Kargatis, Vincent; Liang, Edison P.

    1992-01-01

    Motivated by the recent developments in the cyclotron resonance upscattering of soft photons or CUSP model of Gamma Ray Burst (GBR) continuum spectra, we revisit a select database of GRBs with credible cyclotron absorption features. We measure the break energy of the continuum, the slope below the break and deduce the soft photon energy or the electron beam Lorentz factor cutoff. We study the correlation (or lack of) between various parameters in the context of the CUSP model. One surprise result is that there appears to be marginal correlation between the break energy and the spectral index below the break.

  2. RF cavity design for KIRAMS-430 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, In Su; Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk; Kwon, Key Ho

    2015-03-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only 12C6+ ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  3. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  4. Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang

    2017-03-01

    Electromagnetic ion cyclotron (EMIC) waves play an important role in the magnetospheric particle dynamics and can lead to resonant pitch-angle scattering and ultimate precipitation of ring current protons. Commonly, the statistics of in situ EMIC wave measurements is adopted for quantitative investigation of wave-particle interaction processes, which however becomes questionable for detailed case studies especially during geomagnetic storms and substorms. Here we establish a novel technique to infer EMIC wave amplitudes from low-altitude proton measurements onboard the Polar Operational Environmental Satellites (POES). The detailed procedure is elaborated regarding how to infer the EMIC wave intensity for one specific time point. We then test the technique with a case study comparing the inferred root-mean-square (RMS) EMIC wave amplitude with the conjugate Van Allen Probes EMFISIS wave measurements. Our results suggest that the developed technique can reasonably estimate EMIC wave intensities from low-altitude POES proton flux data, thereby providing a useful tool to construct a data-based, near-real-time, dynamic model of the global distribution of EMIC waves once the proton flux measurements from multiple POES satellites are available for any specific time period.

  5. Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission

    SciTech Connect

    Wu, D. J.

    2014-06-15

    By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It is this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.

  6. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  7. Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?

    PubMed

    Etienne, Thibaud; Mosconi, Edoardo; De Angelis, Filippo

    2016-05-05

    The presence of a Rashba band-splitting mechanism mediated by spin-orbit coupling and breaking of inversion symmetry has been suggested as a possible cause for the reduced recombination rates observed in organohalide perovskites. Here, we investigate the interplay of electronic and nuclear degrees of freedom in defining the Rashba splitting in realistic MAPbI3 models. Our simulations disclose a "dynamical Rashba effect", allowing for a quantification of its magnitude under thermal conditions. We find that even in globally centrosymmetric structures the dynamics of the coupled inorganic-organic degrees of freedom give rise to a spatially local Rashba effect which fluctuates on the subpicosecond time scale typical of the methylammonium cation dynamics. This effect is progressively quenched in globally centrosymmetric structures, likely representing the MAPbI3 perovskite at room temperature, on increasing the probed spatial scale up to 32 MAPbI3 units (∼3 nm size) because of the incoherent nuclear thermal motion mediated by the disorder of the organic cations.

  8. Electron-cyclotron-heating experiments in tokamaks and stellarators

    SciTech Connect

    England, A.C.

    1983-01-01

    This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.

  9. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  10. Cyclotron waves in a non-neutral plasma column

    SciTech Connect

    Dubin, Daniel H. E.

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  11. Higher Harmonic Generation in the Induced Resonance Electron Cyclotron Maser.

    DTIC Science & Technology

    1987-09-01

    direction of the electron beam along the external magnetic field. The index of refraction n = cosm is adjustable by varying the angle between the...exact Lorentz force equations in the vector potential representation over the fast (cyclotron) K5 ’I..--* -- , , ’ , 1,.,. . . ,- ,,.G

  12. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  13. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  14. Parametric decay of an electromagnetic wave near electron cyclotron harmonics

    SciTech Connect

    Istomin, Y.N.; Leyser, T.B.

    1995-06-01

    A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  16. Axial injection and phase selection studies of the MSU K1200 cyclotron

    SciTech Connect

    Bailey, J.D. |

    1995-12-31

    Axial injection into a cyclotron through its iron yoke, a spiral inflector, and the central region electrodes couples the transverse coordinates of motion together, as well as with the longitudinal coordinates. The phase slits in the K1200 cyclotron use the r - {phi} correlations inherent in acceleration of ions in a cyclotron. Computer simulations of injection into and acceleration within the K1200 cyclotron encompassing the four transverse dimensions together with time were used to determine beam matching requirements for injection and phase selection in the K1200 cyclotron. The simulations were compared with measurements using an external timing detector.

  17. Electron acceleration by Z-mode waves associated with cyclotron maser instability

    SciTech Connect

    Lee, K. H.; Lee, L. C.; Omura, Y.

    2012-12-15

    We demonstrate by a particle simulation that Z-mode waves generated by the cyclotron maser instability can lead to a significant acceleration of energetic electrons. In the particle simulation, the initial electron ring distribution leads to the growth of Z-mode waves, which then accelerate and decelerate the energetic ring electrons. The initial ring distribution evolves into an X-like pattern in momentum space, which can be related to the electron diffusion curves. The peak kinetic energy of accelerated electrons can reach 3 to 6 times the initial kinetic energy. We further show that the acceleration process is related to the 'nonlinear resonant trapping' in phase space, and the test-particle calculations indicate that the maximum electron energy gain {Delta}{epsilon}{sub max} is proportional to B{sub w}{sup 0.57}, where B{sub w} is the wave magnetic field.

  18. Progress in research, April 1, 1992--March 31, 1993, Texas A and M University Cyclotron Institute

    SciTech Connect

    1993-07-01

    This Institute annual report for the period 1 April 1992--31 March 1993 covers a period which has seen the initial runs of three new spectrometers which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP), the Mass Achromat Recoil Mass Spectrometer (MARS), and the Multipole dipole Multipole (MDM) Particle Spectrometer. These devices are now available to pursue the studies of Gamow Teller states, reactions of astrophysical interest, and giant resonance studies for which they were constructed, as well as for other experiments. A beam analysis system which will deliver high resolution beams to the MDM spectrometer is currently under construction. With the completion of these spectrometer projects, the facility emphasis is now focused on the development of the full capabilities of the K500 cyclotron and on the research program. During the report period, the ECR-K500 cyclotron combination operated 5,849 hours. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons, the latter as a probe of the QCD phase transition. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. In atomic physics, new measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported.

  19. VASIMR Simulation Studies of Auroral Ion Cyclotron Heating

    NASA Astrophysics Data System (ADS)

    Brukardt, M.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Glover, T. W.; Jacobs0n, V. T.; McCaskill, G. E.; Cassady, L. D.; Bengtson, R. D.

    2006-12-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies and can be used to simulate several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating (ICRH) similar to auroral zone processes. The production of upward moving `ion conics' and ion heating are significant features in auroral processes. It is believed that ion cyclotron heating plays a role in these processes, but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once. In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) we have successfully simulated these effects. The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance. The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power. This is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been confirmed with several independent measurements. The ion cyclotron resonance heating (ICRH) shows a substantial increase in ion velocity. Pitch angle distribution studies

  20. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions.

    PubMed

    Yang, Ye; Rodríguez-Córdoba, William; Lian, Tianquan

    2011-06-22

    Lead salt quantum dots (QDs) have emerged as attractive materials for solar energy conversion because of their broad spectral response, long exciton lifetime, and efficient multiexciton generation. However, charge separation dynamics from these QDs remain poorly understood. In this study we investigate charge separation and recombination dynamics in PbS-methylene blue (MB(+)) complexes by femtosecond transient absorption spectroscopy. We show that while the 1S electrons and holes in excited PbS QDs lead to overlapping transient absorption features in the visible and near-IR regions, their intraband absorptions in the mid-IR can be monitored independently to directly follow the charge separation and recombination processes. The charge separation and recombination rates in PbS-MB(+) complexes were found to be (2.7 ± 0.2) × 10(12) and (1.1 ± 0.2) × 10(11) s(-1), respectively. The ultrafast charge separation rate suggests the possibility of hot electron injection and multiexciton dissociation from these strongly quantum confined QDs, consistent with recent reports of these phenomena at lead salt QD/TiO(2) interfaces.

  1. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    SciTech Connect

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A. -V.; Wang, Y.

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  2. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    DOE PAGES

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less

  3. Characteristics of heat flux and electromagnetic electron-cyclotron instabilities driven by solar wind electrons

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Qureshi, M. N. S.

    2017-01-01

    In-situ observations reveal the existence of electron velocity distribution function in the solar wind, where the net distribution can be modeled by a combination of core, halo and strahl. These components often possess a relative drift and with respective temperature anisotropies. The relative drift between the core and halo components leads to heat flux (HF) instability, while temperature anisotropies drive electromagnetic electron-cyclotron (EMEC) instability. These instabilities have been separately studied in the literature, but for the first time, the present study combines both unstable modes in the presence of two free energy sources, namely, excessive parallel pressure and excessive perpendicular temperature. Heat flux instability (which is a left-hand circularly polarized mode) is effectively similar to electron firehose instability, except that the free energy is provided by net relative drift among two component electrons in the background of protons. The heat flux instability is discussed here along with (the right-hand polarized) EMEC instability driven by temperature anisotropy. The unstable heat flux mode is conventionally termed the "whistler" heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. Electromagnetic electron-cyclotron mode, on the other hand, reduces to the proper whistler wave in the absence of free energy source. The present combined analysis clarifies the polarization characteristics of these two modes in an unambiguous manner.

  4. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  5. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies

    PubMed Central

    Lee, Wei-Hua; Higuchi, Hitoshi; Ikeda, Sakae; Macke, Erica L; Takimoto, Tetsuya; Pattnaik, Bikash R; Liu, Che; Chu, Li-Fang; Siepka, Sandra M; Krentz, Kathleen J; Rubinstein, C Dustin; Kalejta, Robert F; Thomson, James A; Mullins, Robert F; Takahashi, Joseph S; Pinto, Lawrence H; Ikeda, Akihiro

    2016-01-01

    While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases. DOI: http://dx.doi.org/10.7554/eLife.19264.001 PMID:27863209

  6. The effect of vibrational motion on the dynamics of shape resonant photoionization of BF3 leading to the ? state of ?

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Montuoro, Raffaele; Kotsis, Konstantinos; Tashiro, Motomichi; Ehara, Masahiro; Bozek, John D.; Das, Aloke; Landry, April; Rathbone, Jeff; Poliakoff, E. D.

    2010-04-01

    We present the results of an experimental and theoretical investigation of vibrationally resolved valence shell photoionization of BF3 leading to the ? state of ? , where vibronic coupling and shape resonances are known to be important. The experimental vibrational branching ratios for multiple quantum excitations of the symmetric stretching mode of the ion ? as well as for the single vibrational excitation of the asymmetric stretching mode ? are compared with the predictions of single-channel Schwinger variational calculations performed within the Chase adiabatic approximation to obtain vibrational-state specific cross sections. The presence of a shape resonance in the continuum of ? symmetry is seen to lead to significant non-Franck-Condon intrachannel vibronic coupling effects. The breakdown in the Franck-Condon approximation is due to the sensitivity to the asymmetric stretching mode of the energy of the resonance and the magnitude of the transition moment for exciting the resonance. However, there are indications that interchannel vibronic coupling effects may also be significant in this system.

  7. Charge carrier dynamics of methylammonium lead iodide: from PbI₂-rich to low-dimensional broadly emitting perovskites.

    PubMed

    Klein, Johannes R; Flender, Oliver; Scholz, Mirko; Oum, Kawon; Lenzer, Thomas

    2016-04-28

    We provide an investigation of the charge carrier dynamics of the (MAI)(x)(PbI2)(1-x) system in the range x = 0.32-0.90 following the recently published "pseudobinary phase-composition processing diagram" of Song et al. (Chem. Mater., 2015, 27, 4612). The dynamics were studied using ultrafast pump-supercontinuum probe spectroscopy over the pump fluence range 2-50 μJ cm(-2), allowing for a wide variation of the initial carrier density. At high MAI excess (x = 0.90), low-dimensional perovskites (LDPs) are formed, and their luminescence spectra are significantly blue-shifted by ca. 50 nm and broadened compared to the 3D perovskite. The shift is due to quantum confinement effects, and the inhomogeneous broadening arises from different low-dimensional structures (predominantly 2D, but presumably also 1D and 0D). Accurate transient carrier temperatures are extracted from the transient absorption spectra. The regimes of carrier-carrier, carrier-optical phonon and acoustic phonon scattering are clearly distinguished. Perovskites with mole fractions x ≤ 0.71 exhibit extremely fast carrier cooling (ca. 300 fs) at low fluence of 2 μJ cm(-2), however cooling slows down significantly at high fluence of 50 μJ cm(-2) due to the "hot phonon effect" (ca. 2.8 ps). A kinetic analysis of the electron-hole recombination dynamics provides second-order recombination rate constants k2 which decrease from 5.3 to 1.5 × 10(-9) cm(3) s(-1) in the range x = 0.32-0.71. In contrast, recombination in the LDPs (x = 0.90) is more than one order of magnitude faster, 6.4 × 10(-8) cm(3) s(-1), which is related to the confined perovskite structure. Recombination in these LDPs should be however still slow enough for their potential application as efficient broadband emitters or solar light-harvesting materials.

  8. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    PubMed

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  9. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    SciTech Connect

    Baek, S. G. Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.; Takase, Y.

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  10. Electromagnetic ion cyclotron resonance heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Díaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    2008-07-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2 4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient

  11. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis.

    PubMed

    Van der Borght, Karin; Kóbor-Nyakas, Dóra E; Klauke, Karin; Eggen, Bart J L; Nyakas, Csaba; Van der Zee, Eddy A; Meerlo, Peter

    2009-10-01

    Increased levels of angiogenesis and neurogenesis possibly mediate the beneficial effects of physical activity on hippocampal plasticity. This study was designed to investigate the temporal dynamics of exercise-induced changes in hippocampal angiogenesis and cell proliferation. Mice were housed with a running wheel for 1, 3, or 10 days. Analysis of glucose transporter Glut1-positive vessel density showed a significant increase after 3 days of wheel running. Cell proliferation in the dentate gyrus showed a trend towards an increase after 3 days of running and was significantly elevated after 10 days of physical exercise. Ten days of wheel running resulted in a near-significant increase in the number of immature neurons, as determined by a doublecortin (DCX) staining. In the second part of the study, the persistence of the exercise-induced changes in angiogenesis and cell proliferation was determined. The running wheel was removed from the cage after 10 days of physical activity. Glut-1 positive vessel density and hippocampal cell proliferation were determined 1 and 6 days after removal of the wheel. Both parameters had returned to baseline 24 h after cessation of physical activity. The near-significant increase in the number of DCX-positive immature neurons persisted for at least 6 days, indicating that new neurons formed during the period of increased physical activity had survived. Together these experiments show that the hippocampus displays a remarkable angiogenic and neurogenic plasticity and rapidly responds to changes in physical activity.

  12. The adsorption of lead(II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber.

    PubMed

    Wang, Hui; Huang, Tao; Tu, Zong-Cai; Ruan, Chuan-Ying; Lin, Derong

    2016-06-01

    Insoluble dietary fiber from soybean residue (SIDF) was treated with dynamic high-pressure microfluidization (DHPM) and used as adsorbent for Pb(II) ion. The effects of pressure on the Pb(II) adsorption capacity, primary cilia structure and surface topography of SIDF were determined using a gastrointestinal simulated model in vitro. SIDF (at pH 7.0) showed maximum binding capacity (261.42 ± 2.77 μmol/g), which was about 1.13 times higher than that of untreated sample (233.47 ± 1.84 μmol/g), when pressure reached 80 MPa. However, the net adsorption value of SIDF in a simulated small intestine (~ 9 μmol/g) was significantly lower than that in the stomach (~ 48 μmol/g), because of the competitive adsorption of Pb(2+) by pancreatin, cholate and several enzymes in the small intestine. In addition, the adsorption capacity of SIDF exhibited good linear relationship with the physicochemical properties of total negative charges, and the adsorption behavior presumably occurred on the surface area of granules fiber.

  13. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  14. Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis.

    PubMed

    Echevarría-Zomeño, Sira; Fernández-Calvino, Lourdes; Castro-Sanz, Ana B; López, Juan Antonio; Vázquez, Jesús; Castellano, M Mar

    2016-06-01

    In many plant species, an exposure to a sublethal temperature triggers an adaptative response called acclimation. This response involves an extensive molecular reprogramming that allows the plant to further survive to an otherwise lethal increase of temperature. A related response is also launched under an abrupt and lethal heat stress that, in this case, is unable to successfully promote thermotolerance and therefore ends up in plant death. Although these molecular programmes are expected to have common players, the overlapping degree and the specific regulators of each process are currently unknown. We have carried out a high-throughput comparative proteomics analysis during acclimation and during the early stages of the plant response to a severe heat stress that lead Arabidopsis seedlings either to survival or death. This analysis dissects these responses, unravels the common players and identifies the specific proteins associated with these different fates. Thermotolerance assays of mutants in genes with an uncharacterized role in heat stress demonstrate the relevance of this study to uncover both positive and negative heat regulators and pinpoint a pivotal role of JR1 and BAG6 in heat tolerance.

  15. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Nasir, Irem; Lundqvist, Martin; Cabaleiro-Lago, Celia

    2015-10-01

    The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being ``hard'' or ``soft''. However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino

  16. Does rising crime lead to increasing distress? Longitudinal analysis of a natural experiment with dynamic objective neighbourhood measures.

    PubMed

    Astell-Burt, Thomas; Feng, Xiaoqi; Kolt, Gregory S; Jalaludin, Bin

    2015-08-01

    Identifying 'neighbourhood effects' to support widespread beliefs that where we live matters for our health remains a major challenge due to the reliance upon observational data. In this study we reassess the issue of local crime rates and psychological distress by applying unobserved ('fixed') effects models to a sample of participants who remain in the same neighbourhoods throughout the study. Baseline data was extracted from the 45 and Up Study between 2006 and 2008 and followed up as part of the Social Economic and Environmental Factors (SEEF) Study between 2009 and 2010. Kessler 10 scores were recorded for 25,545 men and 29,299 women reported valid outcomes. Annual crime rates per 1000 (including non-domestic violence, malicious damage, break and enter, and stealing, theft and robbery) from 2006 to 2010 inclusive were linked to the person-level data. Change in exposure to crime among participants in this study, therefore, occurs as a result of a change in the local crime rate, rather than a process of neighbourhood selection. Gender stratified unobserved effects logistic regression adjusting for sources of time-varying confounding (age, income, employment, couple status and physical functioning) indicated that an increase in the risk of experiencing psychological distress was generally associated with an increase in the level of neighbourhood crime. Effect sizes were particularly high for women, especially for an increase in malicious damage (Odds Ratio Tertile 3 vs Tertile 1 2.40, 95% Confidence Interval 1.88, 3.05), which may indicate that damage to local built environment is an important pathway linking neighbourhood crime with psychological distress. No statistically significant association was detected for an increase in non-domestic violence, although the effect was in the hypothesised direction. In summary, the application of unobserved effects models to analyse data that takes into account the temporally dynamic characteristics of where people live

  17. Alpha-Fetoprotein Detection of Hepatocellular Carcinoma Leads to a Standardized Analysis of Dynamic AFP to Improve Screening Based Detection

    PubMed Central

    Dimitropoulou, Polyxeni; Turner, Rebecca M.; Jenks, Sara J.; Hey, Shiying; Blunsum, Andrew; Kelly, Sarah; Sturgeon, Catharine; Hayes, Peter C.; Bird, Sheila M.

    2016-01-01

    Detection of hepatocellular carcinoma (HCC) through screening can improve outcomes. However, HCC surveillance remains costly, cumbersome and suboptimal. We tested whether and how serum Alpha-Fetoprotein (AFP) should be used in HCC surveillance. Record linkage, dedicated pathways for management and AFP data-storage identified i) consecutive highly characterised cases of HCC diagnosed in 2009–14 and ii) a cohort of ongoing HCC-free patients undergoing regular HCC surveillance from 2009. These two well-defined Scottish patient cohorts enabled us to test the utility of AFP surveillance. Of 304 cases of HCC diagnosed over 6 years, 42% (129) were identified by a dedicated HCC surveillance programme. Of these 129, 47% (61) had a detectable lesion first identified by screening ultrasound (US) but 38% (49) were prompted by elevated AFP. Despite pre-HCC diagnosis AFP >20kU/L being associated with poor outcome, ‘AFP-detected’ tumours were offered potentially curative management as frequently as ‘US-detected’ HCCs; and had comparable survival. Linearity of serial log10-transformed AFPs in HCC cases and in the screening ‘HCC-free’ cohort (n = 1509) provided indicators of high-risk AFP behaviour in HCC cases. An algorithm was devised in static mode, then tested dynamically. A case/control series in hepatitis C related disease demonstrated highly significant detection (p<1.72*10−5) of patients at high risk of developing HCC. These data support the use of AFP in HCC surveillance. We show proof-of-principle that an automated and further refine-able algorithmic interpretation of AFP can identify patients at higher risk of HCC. This approach could provide a cost-effective, user-friendly and much needed addition to US surveillance. PMID:27308823

  18. Alpha-Fetoprotein Detection of Hepatocellular Carcinoma Leads to a Standardized Analysis of Dynamic AFP to Improve Screening Based Detection.

    PubMed

    Bird, Thomas G; Dimitropoulou, Polyxeni; Turner, Rebecca M; Jenks, Sara J; Cusack, Pearce; Hey, Shiying; Blunsum, Andrew; Kelly, Sarah; Sturgeon, Catharine; Hayes, Peter C; Bird, Sheila M

    2016-01-01

    Detection of hepatocellular carcinoma (HCC) through screening can improve outcomes. However, HCC surveillance remains costly, cumbersome and suboptimal. We tested whether and how serum Alpha-Fetoprotein (AFP) should be used in HCC surveillance. Record linkage, dedicated pathways for management and AFP data-storage identified i) consecutive highly characterised cases of HCC diagnosed in 2009-14 and ii) a cohort of ongoing HCC-free patients undergoing regular HCC surveillance from 2009. These two well-defined Scottish patient cohorts enabled us to test the utility of AFP surveillance. Of 304 cases of HCC diagnosed over 6 years, 42% (129) were identified by a dedicated HCC surveillance programme. Of these 129, 47% (61) had a detectable lesion first identified by screening ultrasound (US) but 38% (49) were prompted by elevated AFP. Despite pre-HCC diagnosis AFP >20kU/L being associated with poor outcome, 'AFP-detected' tumours were offered potentially curative management as frequently as 'US-detected' HCCs; and had comparable survival. Linearity of serial log10-transformed AFPs in HCC cases and in the screening 'HCC-free' cohort (n = 1509) provided indicators of high-risk AFP behaviour in HCC cases. An algorithm was devised in static mode, then tested dynamically. A case/control series in hepatitis C related disease demonstrated highly significant detection (p<1.72*10-5) of patients at high risk of developing HCC. These data support the use of AFP in HCC surveillance. We show proof-of-principle that an automated and further refine-able algorithmic interpretation of AFP can identify patients at higher risk of HCC. This approach could provide a cost-effective, user-friendly and much needed addition to US surveillance.

  19. Determination of the lead-acid battery's dynamic response using Butler-Volmer equation for advanced battery management systems in automotive applications

    NASA Astrophysics Data System (ADS)

    Piłatowicz, Grzegorz; Budde-Meiwes, Heide; Kowal, Julia; Sarfert, Christel; Schoch, Eberhard; Königsmann, Martin; Sauer, Dirk Uwe

    2016-11-01

    Micro-hybrid vehicles (μH) are currently starting to dominate the European market and seize constantly growing share of other leading markets in the world. On the one hand, the additional functionality of μH reduces the CO2 emissions and improves the fuel economy, but, on the other hand, the additional stress imposed on the lead-acid battery reduces significantly its expected service life in comparison to conventional vehicles. Because of that μH require highly accurate battery state detection solutions. They are necessary to ensure the vehicle reliability requirements, prolong service life and reduce warranty costs. This paper presents an electrical model based on Butler-Volmer equation. The main novelty of the presented approach is its ability to predict accurately dynamic response of a battery considering a wide range of discharge current rates, state-of-charges and temperatures. Presented approach is fully implementable and adaptable in state-of-the-art low-cost platforms. Additionally, shown results indicate that it is applicable as a supporting tool for state-of-charge and state-of-health estimation and scalable for the different battery technologies and sizes. Validation using both static pulses and dynamic driving profile resulted in average absolute error of 124 mV regarding cranking current rate of 800 A respectively.

  20. Decontamination of the Activation Product Based on a Legal Revision of the Cyclotron Vault Room on the Non-self-shield Compact Medical Cyclotron.

    PubMed

    Komiya, Isao; Umezu, Yoshiyuki; Fujibuchi, Toshioh; Nakamura, Kazumasa; Baba, Shingo; Honda, Hiroshi

    The non-self-shield compact medical cyclotron and the cyclotron vault room were in operation for 27 years. They have now been decommissioned. We efficiently implemented a technique to identify an activation product in the cyclotron vault room. Firstly, the distribution of radioactive concentrations in the concrete of the cyclotron vault room was estimated by calculation from the record of the cyclotron operation. Secondly, the comparison of calculated results with an actual measurement was performed using a NaI scintillation survey meter and a high-purity germanium detector. The calculated values were overestimated as compared to the values measured using the NaI scintillation survey meter and the high-purity germanium detector. However, it could limit the decontamination area. By simulating the activation range, we were able to minimize the concrete core sampling. Finally, the appropriate range of radioactivated area in the cyclotron vault room was decontaminated based on the results of the calculation. After decontamination, the radioactive concentration was below the detection limit value in all areas inside the cyclotron vault room. By these procedures, the decommissioning process of the cyclotron vault room was more efficiently performed.

  1. Ion Cyclotron Waves Observed in the Comet Halley: A New Look to Giotto Observations

    NASA Astrophysics Data System (ADS)

    Rodriguez-Martinez, M. R.; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Haro-Corzo, S. S. A. R., Sr.; Arriaga-Contreras, V. V. R.

    2015-12-01

    Ion Cyclotron Waves (ICW) were observed with Giotto spacecraft. Magnetic field data have been analyzed in the past to determine the nature of ICW and compared with other comets, as Giacobini-Zinner and Grigg-Skjellerup. It is important to develop tools that allow re-analyze these data in order to know better the characteristics of these waves. In this work we have applied a Fast Fourier Transform (FFT) analysis in which we define the transverse and compressive powers for a better contrast and characterization of ICW. The information obtained will be presented through dynamic spectra in several time intervals. This tool will allow to explore the possibility to check the existence of Harmonic Mode Waves (HMW) of these waves. Finally, we use linear kinetic theory, using WHAMP code, in order to determine conditions for wave growth in a plasma resembling the regions where these waves were observed.

  2. Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; Gary, S. Peter; Reeves, Geoffrey D.; Winske, Dan

    2016-11-01

    Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.

  3. The saturation of the electron-cyclotron maser instability and the interpretation of solar millisecond spikes

    NASA Technical Reports Server (NTRS)

    Aschwanden, M. J.

    1990-01-01

    A self-consistent numeric two-dimensional code of the kinetic wave-particle equations developed to investigate the maser dynamics in the solar context is applied to solar millisecond-spike observations in order to improve the diagnostic capabilities of the theory of the electron-cyclotron maser instablitity. Attention is given to the inhomogeneity of the magnetic field selecting magneto-ionic modes with relatively short saturation lengths and suppressing mechanisms such as collisional deflection, free-free absorption, and gyroresonance absorption. The time scales of maser saturation in respect to time scales of global particle changes in a magnetic loop are covered, relevant observations of solar millisecond spikes are described, and the interpretation in terms of physical parameters deduced from the quasi-linear maser simulations are presented. It is demonstrated that the quasi-linear simulations make it possible to constrain the physical parameters from the observed time scale and frequency.

  4. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices.

    PubMed

    Navarrete, Diego; Sitch, Stephen; Aragão, Luiz E O C; Pedroni, Lucio

    2016-10-01

    Strategies to mitigate climate change by reducing deforestation and forest degradation (e.g. REDD+) require country- or region-specific information on temporal changes in forest carbon (C) pools to develop accurate emission factors. The soil C pool is one of the most important C reservoirs, but is rarely included in national forest reference emission levels due to a lack of data. Here, we present the soil organic C (SOC) dynamics along 20 years of forest-to-pasture conversion in two subregions with different management practices during pasture establishment in the Colombian Amazon: high-grazing intensity (HG) and low-grazing intensity (LG) subregions. We determined the pattern of SOC change resulting from the conversion from forest (C3 plants) to pasture (C4 plants) by analysing total SOC stocks and the natural abundance of the stable isotopes (13) C along two 20-year chronosequences identified in each subregion. We also analysed soil N stocks and the natural abundance of (15) N during pasture establishment. In general, total SOC stocks at 30 cm depth in the forest were similar for both subregions, with an average of 47.1 ± 1.8 Mg C ha(-1) in HG and 48.7 ± 3.1 Mg C ha(-1) in LG. However, 20 years after forest-to-pasture conversion SOC in HG decreased by 20%, whereas in LG SOC increased by 41%. This net SOC decrease in HG was due to a larger reduction in C3-derived input and to a comparatively smaller increase in C4-derived C input. In LG both C3- and C4-derived C input increased along the chronosequence. N stocks were generally similar in both subregions and soil N stock changes during pasture establishment were correlated with SOC changes. These results emphasize the importance of management practices involving low-grazing intensity in cattle activities to preserve SOC stocks and to reduce C emissions after land-cover change from forest to pasture in the Colombian Amazon.

  5. Permanent magnet electron cyclotron resonance plasma source with remote window

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M. )

    1995-03-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved.

  6. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  7. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early

  8. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-01

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ˜10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ˜50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  9. PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; PRATER,R; LUCE,TC; ELLIS,RA; HARVEY,RW; KINSEY,JE; LAO,LL; LOHR,J; MAKOWSKI,MA

    2002-09-01

    OAK A271 PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  10. Examination of the plasma located in PSI Ring Cyclotron

    NASA Astrophysics Data System (ADS)

    Pogue, N. J.; Adelmann, A.; Schneider, M.; Stingelin, L.

    2016-06-01

    A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud may be a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results show that the plasma is comprised of elements consistent with the cyclotrons vacuum interior.

  11. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  12. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  13. LH wave absorption by mode conversion near ion cyclotron harmonics

    SciTech Connect

    Ko, K.; Bers, A.; Fuchs, V.

    1981-02-01

    Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.

  14. Kinetic friction attributed to enhanced radiation by cyclotron maser instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.

    1991-01-01

    Along the auroral field lines, a fraction of the energetic electrons injected from the magnetotail is reflected by the earth's convergent geomagnetic field. The reflected loss-cone electrons are unstable with respect to the cyclotron maser instability, resulting in the auroral kilometric radiation. This paper investigates the kinetic friction force exerted on the energetic electrons by the enhanced radiation field. It is found that the enhanced radiation results in a deceleration of reflected electrons, thereby providing an effective resistivity. In addition, the rate of decrease (increase) of effective perpendicular (parallel) kinetic temperatures is also evaluated. The analysis is carried out over various physical parameters such as the degree of loss cone, average particle energy, and the ratio of plasma frequency to cyclotron frequency.

  15. Evidence for proton cyclotron waves near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Tsurutani, B. T.

    1993-02-01

    We have computed frequency spectra of power density and polarization parameters of magnetohydrodynamic waves from observations on board the ICE spacecraft as it flew past Comet Giacobini-Zinner on September 11, 1985. Since the spectral parameters are frequency dependent, we find that the analysis is best carried out in a 'wave' reference frame where one of the major axes is along the wave normal direction for each frequency component. The power density along the wave normal direction shows a systematic peak structure which we identify as belonging to cyclotron wave harmonics of pickup ions near the comet. The fundamental harmonics of the cyclotron waves are also consistent with the gyrofrequencies calculated from the magnetic field data.

  16. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  17. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  18. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  19. Improving the Long-Lead Predictability of El Niño Using a Novel Forecasting Scheme Based on a Dynamic Components Model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Garcia, Markel; Rodo, Xavier

    2016-04-01

    El Niño Southern Oscillation (ENSO) is a dominant feature of climate variability on inter-annual time scales and predictions for it are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. We have explored a novel method for ENSO forecasting. In the state-of-the-art the advantageous statistical technique of Structural (Unobserved Components) Time Series has not been applied. Therefore, we have developed such a model with regression parameters obtained by a State Space approach. Its distinguishing feature is that observations consist of several unobserved components - trend, seasonality, cycles, disturbance, and explanatory regression covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. We introduce a new domain of predictor regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific as it has been shown by previous studies that subsurface processes and heat accumulation there are fundamental for the genesis of El Niño. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1980-2015. Retrospective forecasts of these events were successfully made for long lead times of at least two years. Hence, we demonstrate that the theoretical limit of ENSO prediction should be sought much longer than the commonly accepted "Spring Barrier". Our statistical approach is found to exhibit similar skill to the best dynamical forecasting models for ENSO. Thus, the novel way in which the proposed modeling scheme has been structured could also be used for improving other statistical and dynamical prediction systems.

  20. Pencil Beam Scanning System Based On A Cyclotron

    SciTech Connect

    Tachikawa, Toshiki; Nonaka, Hideki; Kumata, Yukio; Nishio, Teiji; Ogino, Takashi

    2011-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed a new pencil beam scanning system (PBS) for proton therapy in collaboration with National Cancer Center Hospital East (NCCHE). Taking advantage of the continuous beam from the cyclotron P235, the line scanning method is employed in order to realize continuous irradiation with high dose rate. 3D uniform and sphere field was irradiated and compared with the simulation.

  1. Cyclotron Auto-Resonance Accelerator for environmental applications

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A MW-level CW electron beam source for environmental remediation based on extensions of the scientifically-proven Cyclotron Auto-Resonance Accelerator, dubbed CARA, is described here. CARA is distinguished by its exceptionally high RF-to-beam efficiency, by its production of a self-scanning beam, and by its proportionately lower specific power loading on a beam output window. Its environmental applications include sterilization, flue gas and waste water treatment.

  2. Formation of cyclotron lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1989-01-01

    A transmission model of gamma-ray burst sources is studied using the relativistic QED magnetic-resonant opacities including multiple photon scattering, incorporated into a discrete-ordinate radiative-transport scheme. The physics of the cyclotron line-producing region is discussed in general, and the expected line profiles, relative harmonic strengths, and polarizations are indicated under various conditions. The calculated spectra for these models show good agreement with the spectra reported from Ginga for GB 880205 and GB 870303.

  3. Design options for an ITER ion cyclotron system

    SciTech Connect

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-09-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented.

  4. Trap density of GeNx/Ge interface fabricated by electron-cyclotron-resonance plasma nitridation

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Otani, Yohei; Toyota, Hiroshi; Ono, Toshiro

    2011-07-01

    We have investigated GeNx/Ge interface properties using Si3N4(7 nm)/GeNx(2 nm)/Ge metal-insulator-semiconductor structures fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The interface trap density (Dit) measured by the conductance method is found to be distributed symmetrically in the Ge band gap with a minimum Dit value lower than 3 × 1011 cm-2eV-1 near the midgap. This result may lead to the development of processes for the fabrication of p- and n-Ge Schottky-barrier (SB) source/drain metal-insulator-semiconductor field-effect transistors using chemically and thermally robust GeNx dielectrics as interlayers for SB source/drain contacts and high-κ gate dielectrics.

  5. An explanation for experimental observations of harmonic cyclotron emission induced by fast ions

    SciTech Connect

    Chen, K.R.; Horton, W.; Van Dam, J.W.

    1993-09-01

    An explanation, supported by numerical simulations and analytical theory, is given for the harmonic cyclotron emission induced by fast ions in tokamak plasmas - particular, for the emission observed at low harmonics in deuterium-deuterium md deuterium-tritium experiments in the Joint European Tokamak. We show that the first proton harmonic is one of the highest spectral peaks whereas the first alpha is weak. We also compare the relative spectral amplitudes of different harmonics. Our results axe consistent with the experimental observations. The simulations verify that the instabilities are caused by a weak relativistic mass effect. Simulation that a nonuniform magnetic field leads to no appreciable change in the growth and saturation amplitude of the waves.

  6. A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Yoon, Peter H.; Freund, H. P.

    1989-01-01

    A generation mechanism for radio waves in the frequency range 150 - 700 kHz observed by ground facilities is suggested in terms of an electromagnetic electron cyclotron instability driven by auroral electrons. The excited waves can propagate downward along the ambient magnetic field lines and are thus observable with ground facilities. The trapped auroral electrons are supposed to play an important role in the generation process, because they give rise to a thermal anisotropy which consequently leads to the instability. The present work is a natural extension of the theory proposed earlier by Wu et al. (1983) which was discussed in a different context but may be used to explain the observed waves originated at low altitudes. This paper presents a possible wave generation mechanism valid in the entire auroral field-line region of interest.

  7. Preferential Heating and Acceleration of {alpha} Particles by Alfven-Cyclotron Waves

    SciTech Connect

    Araneda, J. A.; Maneva, Y.; Marsch, E.

    2009-05-01

    Preferential heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics, and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. We show that fast and slow ion-acoustic waves (IAW) and transverse waves, driven by Alfven-cyclotron wave parametric instabilities can selectively destroy the coherent fluid motion of different ion species and, in this way lead to their differential heating and acceleration. Trapping of the more abundant protons by the fast IAW generates a proton beam with drift speed of about the Alfven speed. Because of their larger mass, {alpha} particles do not become significantly trapped and start, by conservation of total ion momentum, drifting relative to the receding bulk protons. Thus the resulting core protons and the {alpha} particles are differentially heated via pitch-angle scattering.

  8. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  9. Laboratory investigation of auroral cyclotron emission in the presence of background plasma

    NASA Astrophysics Data System (ADS)

    McConville, Sandra; Speirs, David C.; Ronald, Kevin; Phelps, Alan; Gillespie, Karen; Cross, Adrian; Bingham, Robert; Robertson, Craig; Whyte, Colin G.; Vorgul, Irena; Cairns, Alan; Kellett, Barry

    2009-11-01

    In the auroral regions of the Earth's magnetosphere, particles are accelerated downwards into an increasing magnetic field. Due to conservation of the magnetic moment, magnetic compression leads to the formation of a horseshoe velocity distribution. This process is associated with the emission of Auroral Kilometric Radiation (AKR), polarised in the X-mode. A cyclotron maser instability driven by the horseshoe distribution is thought to be the generation mechanism of AKR. To simulate this naturally occurring phenomenon, a scaled laboratory experiment was created. Measurements of radiation conversion efficiency, mode and spectral content previously obtained were seen to be in close agreement with numerical predictions and satellite observations in the magnetosphere. To further replicate the magnetospheric conditions, a Penning trap was constructed and inserted into the interaction region of the experiment to generate a background plasma. The latest results from this modification shall be presented including characteristics of the background plasma.

  10. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  11. An upgraded 32-channel heterodyne electron cyclotron emission radiometer on Tore Supra

    SciTech Connect

    Segui, J.L.; Molina, D.; Giruzzi, G.; Goniche, M.; Huysmans, G.; Maget, P.; Ottaviani, M.

    2005-12-15

    A 32-channel, 1 GHz spaced heterodyne radiometer is used on the Tore Supra tokamak to measure electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O:E parallel B,k perpendicular B) and 94-126 GHz for the extraordinary mode (X:E perpendicular B,k perpendicular B). The radial resolution is essentially limited by ECE relativistic effects, depending on electron temperature and density, and not by the channels' frequency spacing. The time resolution depends on the acquisition scheme: the system allows for both 1 ms and 10 {mu}s acquisition. For example, this leads to precise electron temperature mapping during MHD activity. First experimental results obtained with this upgraded 32-channel radiometer are presented.

  12. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test.

    PubMed

    Xue, Qiang; Wang, Ping; Li, Jiang-Shan; Zhang, Ting-Ting; Wang, Shan-Yong

    2017-01-01

    Long-term leaching behavior of contaminant from stabilization/solidification (S/S) treated waste stays unclear. For the purpose of studying long-term leaching behavior and leaching mechanism of lead from cement stabilized soil under different pH environment, semi-dynamic leaching test was extended to two years to investigate leaching behaviors of S/S treated lead contaminated soil. Effectiveness of S/S treatment in different scenarios was evaluated by leachability index (LX) and effective diffusion coefficient (De). In addition, the long-term leaching mechanism was investigated at different leaching periods. Results showed that no significant difference was observed among the values of the cumulative release of Pb, De and LX in weakly alkaline and weakly acidic environment (pH value varied from 5.00 to 10.00), and all the controlling leaching mechanisms of the samples immersed in weakly alkaline and weakly acidic environments turned out to be diffusion. Strong acid environment would significantly affect the leaching behavior and leaching mechanism of lead from S/S monolith. The two-year variation of De appeared to be time dependent, and De values increased after the 210(th) day in weakly alkaline and weakly acidic environment.

  13. A Suzaku View of Cyclotron Line Sources and Candidates

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.; Wilms, J.; Schoenherr, G.; Caballero, I.; Camero-Arranz, A.; Bodaghee, A.; Doroshenko, V.; Klochkov, D.; Santangelo, A.; Staubert, R.; Kretschmar, P.; Wilson-Hodge, C.; Finger, M. H.; Terada, Y.

    2012-01-01

    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.

  14. High Power Ion Cyclotron Heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.

    2009-12-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.

  15. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  16. Quench analysis of a novel compact superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Ghosh, Sundeep; Dutta Gupta, Anjan; Kanti Dey, Malay; Pal, Gautam

    2017-02-01

    Design and analysis of a compact superconducting cyclotron dedicated for medical applications in the fields of nuclear medicine and therapy is presently being pursued in our organization. The novelty of this cyclotron lies in the fact that it does not consist of any iron-pole. The cyclotron magnet will be made of a set of NbTi coils comprising of solenoid and sector coils which are housed in two halves on either sides of the median plane. The average magnetic field is 1.74 T and the maximum extraction energy is 25 MeV, which is sufficient for production of 99mTc from Mo. In this paper, quench analyses of the coils have been discussed in details considering adiabatic condition. The entire cryostat magnet along with coils, formers and support links were modelled for the quench simulation. Self and mutual inductances of all the coils were obtained from a separate magnetic analysis and used in the simulation. Parametric analyses were carried out with different quench initiation energy at various critical locations on the coil surface. The corresponding quench behaviour, i.e. maximum temperature rise, maximum voltage and current decay in each of the coils have been studied.

  17. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  18. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  19. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  20. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  1. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  2. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  3. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    SciTech Connect

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  4. Lead Poisoning

    MedlinePlus

    ... be exposed to lead by Eating food or drinking water that contains lead. Water pipes in older homes ... herbs or foods that contain lead Breathing air, drinking water, eating food, or swallowing or touching dirt that ...

  5. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier

    2016-05-01

    El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these

  6. Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model

    NASA Astrophysics Data System (ADS)

    Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier

    2017-02-01

    El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these

  7. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  8. Functional units and lead topologies: a hierarchical framework for observing and modeling the interplay of structures, storage dynamics and integral mass and energy flows in lower mesoscale catchments

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens

    2013-04-01

    The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies

  9. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  10. Lead Toxicity

    MedlinePlus

    ... including some imported jewelry. What are the health effects of lead? • More commonly, lower levels of lead in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or behavioral issues. • Lead also affects other ...

  11. Lead poisoning

    SciTech Connect

    Rekus, J.F.

    1992-08-01

    Construction workers who weld, cut or blast structural steel coated with lead-based paint are at significant risk of lead poisoning. Although technology to control these exposures may not have existed when the lead standard was promulgated, it is available today. Employers who do not take steps to protect their employees from lead exposure may be cited and fined severely for their failure.

  12. Progress in research, April 1, 1991--March 31, 1992, Texas A and M University Cyclotron Institute

    SciTech Connect

    1992-06-01

    Reports on research activities, facility operation, and facility development of the Texas A and M Cyclotron Institute for the period 1 April 1991--31 March 1992 are presented in this document. During the report period, the ECR-K500 Cyclotron Combination operated 4,377 hours. Of this time, 832 hours was used for beam development, 942 hours was used for tuning and optics, and the beam was available for experiments 2,603 hours. This time was used in a variety of studies including elastic and inelastic scattering, projectile break-up, the production and decay of giant resonances, fusion and fission dynamics, intermediate mass fragment emission, e{sup +}e{sup {minus}} production and molecular dissociation. In addition, studies of surfaces and metastable states in highly charged ions were carried out using the ECR source. Completion of two 19-element BaF{sub 2} arrays, of the focal plane detector for the proton spectrometer and installation of the HiLi multidetector have provided significant new experimental capabilities which have been further enhanced by major additions to the computer network. Progress on the Mass Achromat Recoil Spectrometer (MARS) is such that first operation of that device should occur this summer. Funding for installation of the MDM spectrometer was obtained at the beginning of this year. As this report is being completed, the Enge Split Pole Spectrometer is being disassembled and removed to make room for the MDM spectrometer. The split-pole will be shipped to CEBAF for use in experiments there. Installation of the MDM should be completed within the next year. Also expected in the next year is a 92 element plastic-CsI ball.

  13. Advanced Techniques for Neoclassical Tearing Mode Control by Electron Cyclotron Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Volpe, F.

    2008-11-01

    Novel techniques have been developed in DIII-D for (1) control of rapidly rotating neoclassical tearing modes (NTMs) and (2) control of NTMs that have locked to a residual error field or the resistive wall. Electron cyclotron current drive (ECCD) has been successful at suppression of NTMs in present tokamaks, but will face new challenges in ITER where NTMs are expected to be more prone to locking. In order to avoid locking, rotating islands must be controlled at small widths that are expected to be narrower than the ECCD deposition. Under these conditions, modulated ECCD is predicted to stabilize more efficiently than continuous current drive. (1) A new technique developed at DIII-D detects the island using oblique electron cyclotron emission with a line of sight equivalent to that of the ECCD. This removes much of the uncertainty in mapping the island structure from the detector to the current drive location. This method was used both to measure the radial alignment between ECCD and the island, and to synchronize the modulation in phase with the island O-point, successfully stabilizing an NTM with mode numbers m/n=3/2. (2) If islands do grow large enough to lock, locked mode control will be necessary for recovery or avoiding disruption in ITER. A potential difficulty associated with locking is that the mode can lock in a position not necessarily accessible to ECCD. To obviate this problem, magnetic perturbations were used for the first time to unlock and reposition a locked m/n=2/1 mode in order to bring it in view of the gyrotron beam, leading to a significant reduction in island size. Once unlocked, magnetic perturbations were also used to sustain and control the mode rotation, which has the potential for easier ECCD modulation

  14. Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics.

    PubMed

    Kostyukevich, Yury I; Vladimirov, Gleb N; Nikolaev, Eugene N

    2012-12-01

    The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.

  15. Cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    Cyclotron maser and plasma wave growth which results from electrons accelerated in magnetic loops are studied. The evolution of the accelerated electron distribution is determined by solving the kinetic equation including Coulomb collisions and magnetic convergence. It is found that for modest values of the column depth of the loop the growth rates of instabilities are significantly reduced and that the reduction is much larger for the cyclotron modes than for the plasma wave modes. The large decrease in the growth rate with column depth suggests that solar coronal densities must be much lower than commonly accepted in order for the cyclotron maser to operate. The density depletion has to be similar to that which occurs during auroral kilometric radiation events in the magnetosphere. The resulting distributions are much more complicated than the idealized distributions used in many theoretical studies, but the fastest growing mode can still simply be determined by the ratio of electron plasma to gyrofrequency, U=omega(sub p)/Omega(sub e). However, the dominant modes are different than for the idealized situations with growth of the z-mode largest for U approximately less than 0.5, and second harmonic x-mode (s=2) or fundamental o-mode (s=1) the dominant modes for 0.5 approximately less than U approximately less than 1. The electron distributions typically contain more than one inverted feature which could give rise to wave growth. It is shown that this can result in simultaneous amplification of more than one mode with each mode driven by a different feature and can be observed, for example, by differences in the rise times of the right and left circularly polarized components of the associated spike bursts.

  16. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  17. Personal computer based Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Jones, Patrick R.

    1988-12-01

    An IBM PC AT compatible computer is used to host the interface of a Fourier transform ion cyclotron resonance mass spectrometer or FTMS. A common fast memory bank for both ion-excitation waveform and data acquisition is reserved in the computer's system memory space. All the digital electronics circuitry is assembled on an IBM PC AT extension board. Neither an external frequency synthesizer nor a waveform digitizer is needed. Ion-excitation waveforms can be generated in either frequency-sweeping or inverse-Fourier transform modes. Both excitation and data acquisition can be carried out at eight megawords per second.

  18. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  19. Cyclotron scattering lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Preece, Robert D.

    1989-01-01

    If cyclotron scattering, rather than absorption, is responsible for the line features observed recently in two gamma-ray burst spectra (Murakami et al., 1988), then the second and higher harmonics are due to resonant scattering events that excite the electron to Landau levels above the ground state. Here, relativistic Compton scattering cross sections are used to estimate the expected ratio of third to second harmonics in the presence of Doppler broadening. At the field strength (1.7 TG) required to give first and second harmonics at 19 keV and 38 keV, there should be no detectable third harmonic in the spectrum.

  20. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  1. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  2. Lead Poisoning

    MedlinePlus

    ... from lead poisoning in New Hampshire and in Alabama. Lead poisoning has also been associated with juvenile ... for decades—after it first enters the blood stream. (The same process can occur with the onset ...

  3. Lead poisoning

    MedlinePlus

    ... Failure at school Hearing problems Kidney damage Reduced IQ Slowed body growth The symptoms of lead poisoning ... can have a permanent impact on attention and IQ. People with higher lead levels have a greater ...

  4. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    SciTech Connect

    Moeller, C P

    1987-08-18

    It is an object of this invention to provide a method and apparatus for preventing cyclotron breakdown in a partially evacuated waveguide used to insert microwave energy for electron cyclotron heating in a plasma magnetic confinement device. An electrostatic field is applied along a section of such a waveguide in order to run seed electrons into the wall of the waveguide.

  5. Ion-cyclotron turbulence and diagonal double layers in a magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Liperovskiy, V. A.; Pudovkin, M. I.; Skuridin, G. A.; Shalimov, S. L.

    1981-01-01

    A survey of current concepts regarding electrostatic ion-cyclotron turbulence (theory and experiment), and regarding inclined double potential layers in the magnetospheric plasma is presented. Anomalous resistance governed by electrostatic ion-cyclotron turbulence, and one-dimensional and two-dimensional models of double electrostatic layers in the magnetospheric plasma are examined.

  6. Quantum non demolition measurement of cyclotron excitations in a Penning trap

    NASA Technical Reports Server (NTRS)

    Marzoli, Irene; Tombesi, Paolo

    1993-01-01

    The quantum non-demolition measurement of the cyclotron excitations of an electron confined in a Penning trap could be obtained by measuring the resonance frequency of the axial motion, which is coupled to the cyclotron motion through the relativistic shift of the electron mass.

  7. Electron cyclotron maser based on the combination two-wave resonance

    SciTech Connect

    Savilov, A. V.

    2012-11-01

    A mechanism of a combination two-wave cyclotron interaction between an electron beam and the forward/backward components of a far-from-cutoff standing wave is analyzed. This regime can be promising for the realization of high-power continuous-wave electron cyclotron masers operating in the THz frequency range.

  8. Delayed dynamic triggering: Local seismicity leading up to three remote M ≥ 6 aftershocks of the 11 April 2012 M8.6 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher W.; Bürgmann, Roland

    2016-01-01

    The 11 April 2012 M8.6 strike-slip Indian Ocean earthquake (IOE) was followed by an increase in global seismic activity, with three remote M ≥ 6.0 earthquakes within 24 h. We investigate delayed dynamic triggering by systematically examining three offshore regions hosting these events for changes in microseismic activity preceding the IOE, and during the hours between the IOE surface-wave arrival and the triggered-event candidate. The Blanco Fault Zone, USA, and the Tiburón Fault Zone, Mexico, each host a strike-slip event, and the Michoacán Subduction Zone, Mexico, hosts a reverse event. At these locations we estimate transient Coulomb stresses of ±1-10 kPa during the IOE. Each study area contains a regional seismic network allowing us to examine continuous waveforms at one or more nearby stations. We implement a short-/long-term-average algorithm and template matching to detect events and assess the seismicity with the β-statistic. Our results indicate low-magnitude seismicity in the days prior to the IOE and the occurrence of earthquakes during the surface-wave passage after more than 2 h of transient loading. We find both transtensional tectonic environments respond to the transient stresses with a substantial increase observed in the seismicity rates during the hours after the passage of surface waves. In contrast, seismicity rates remain constant in the subduction zone we investigate during the 14 h delay between the IOE and the large-magnitude earthquake. The seismicity rate increases we observe occur after many hours of dynamic stresses and suggest the long duration of transient loading initiated failure processes leading up to these M ≥ 6.0 events.

  9. Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics

    SciTech Connect

    Waltz, R. E.; Deng Zhao

    2013-01-15

    A nonlinear theory of drift-cyclotron kinetics (termed cyclo-kinetics here) is formulated to test the breakdown of the gyro-kinetic approximations. Six dimensional cyclo-kinetics can be regarded as an extension of five dimensional gyro-kinetics to include high-frequency cyclotron waves, which can interrupt the low-frequency gyro-averaging in the (sixth velocity grid) gyro-phase angle. Nonlinear cyclo-kinetics has no limit on the amplitude of the perturbations. Formally, there is no gyro-averaging when all cyclotron (gyro-phase angle) harmonics of the perturbed distribution function (delta-f) are retained. Retaining only the (low frequency) zeroth cyclotron harmonic in cyclo-kinetics recovers both linear and nonlinear gyro-kinetics. Simple recipes are given for converting continuum nonlinear delta-f gyro-kinetic transport simulation codes to cyclo-kinetics codes by retaining (at least some) higher cyclotron harmonics.

  10. Online Visual Feedback during Error-Free Channel Trials Leads to Active Unlearning of Movement Dynamics: Evidence for Adaptation to Trajectory Prediction Errors

    PubMed Central

    Lago-Rodriguez, Angel; Miall, R. Chris

    2016-01-01

    Prolonged exposure to movement perturbations leads to creation of motor memories which decay towards previous states when the perturbations are removed. However, it remains unclear whether this decay is due only to a spontaneous and passive recovery of the previous state. It has recently been reported that activation of reinforcement-based learning mechanisms delays the onset of the decay. This raises the question whether other motor learning mechanisms may also contribute to the retention and/or decay of the motor memory. Therefore, we aimed to test whether mechanisms of error-based motor adaptation are active during the decay of the motor memory. Forty-five right-handed participants performed point-to-point reaching movements under an external dynamic perturbation. We measured the expression of the motor memory through error-clamped (EC) trials, in which lateral forces constrained movements to a straight line towards the target. We found greater and faster decay of the motor memory for participants who had access to full online visual feedback during these EC trials (Cursor group), when compared with participants who had no EC feedback regarding movement trajectory (Arc group). Importantly, we did not find between-group differences in adaptation to the external perturbation. In addition, we found greater decay of the motor memory when we artificially increased feedback errors through the manipulation of visual feedback (Augmented-Error group). Our results then support the notion of an active decay of the motor memory, suggesting that adaptive mechanisms are involved in correcting for the mismatch between predicted movement trajectories and actual sensory feedback, which leads to greater and faster decay of the motor memory. PMID:27721748

  11. The variable cyclotron line of GX 301-2

    NASA Astrophysics Data System (ADS)

    Kreykenbohm, I.; Wilms, J.; Coburn, W.; Kuster, M.; Rothschild, R. E.; Heindl, W. A.; Kretschmar, P.; Staubert, R.

    2004-06-01

    We present a 200 ksec observation of the High Mass X-ray Binary GX 301-2 taken in 2000 November with the Rossi X-ray Timing Explorer during the pre-periastron flare and the actual periastron passage of the neutron star. To model the spectrum we use a power law with the Fermi Dirac cutoff and a cyclotron line at higher energies plus either a reflection component or a heavily absorbed partial covering component. Although completely different, both models describe the data equally well. Phase resolved spectra show that the energy and the depth of the cyclotron resonant scattering feature vary strongly with pulse phase: It is deepest in the fall of the main pulse, the rise of the secondary pulse, and the pulse minimum in-between with τC~0.3. In the other phase bins the line is much less deep with τC~0.1. The energy of the line correlates strongly with its depth and varies by 25 % from 30.1 keV in the fall of the secondary pulse to 37.9 keV in the fall of the main pulse.

  12. Benchmark experiments for cyclotron-based neutron source for BNCT.

    PubMed

    Yonai, S; Itoga, T; Baba, M; Nakamura, T; Yokobori, H; Tahara, Y

    2004-11-01

    In the previous study, we found the feasibility of a cyclotron-based BNCT using the Ta(p,n) neutrons at 90 degrees bombarded by 50 MeV protons, and the iron, AlF(3), Al and (6)LiF moderators by simulations using the MCNPX code. In order to validate the simulations to realize the cyclotron-based BNCT, we measured the epithermal neutron energy spectrum passing through the moderators with our new spectrometer consisting of a (3)He gas counter covered with a silicon rubber loaded with (nat)B and polyethylene moderator and the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in an acrylic phantom set behind the rear surface of the moderators. The measured results were compared with the calculations using the MCNPX code. We obtained the good agreement between the calculations and measurements within approximately 10% for the neutron energy spectra and within approximately 20% for the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in the phantom. The comparison clarified a good accuracy of the calculation of the neutron energy spectrum passing through the moderator and the thermalization in a phantom. These experimental results will be a good benchmark data to evaluate the accuracy of the calculation code.

  13. Electron cyclotron emission measurements on the Texas Experimental Tokamak

    SciTech Connect

    Austin, M.E. Jr.

    1992-01-01

    A ten-channel grating polychromator was designed, constructed, and installed on the Texas Experimental Tokamak to monitor the second harmonic electron cyclotron emission. Electron temperature profiles were derived from measurements of the optically thick radiation for a variety of plasma confinement experiments. The radial and temporal evolution of T[sub e] has been characterized for electron cyclotron heated discharges with 150 kW of 60 GHz power. Comparisons were made of the heating efficiency of two type of ECH launchers. A focussed launcher was shown to have slightly better heating efficiency than an unfocussed launcher; however, the focussed antenna did not yield significantly higher electron temperatures as expected. A study of the time evolution of the electron temperature indicated that increased sawtooth activity limited the effectiveness of the focussed launcher. A focussing hog-horn antenna was fabricated and installed on the inboard side of the tokamak to measure emission directed towards the high-field side during ECH. Comparison of the radiation temperature profiles from low-field side and high-field side antennas indicates the creation of a nonthermal electron distribution by the heating. The results of the experiment compare favorably with theoretical predictions from a quasi-linear Fokker-Planck code of a 6 keV nonthermal population with a density about 1 percent of the thermal density.

  14. Mode conversion at the higher ion cyclotron harmonics

    NASA Astrophysics Data System (ADS)

    Chiu, S. C.; Chan, V. S.; Harvey, R. W.; Porkolab, M.

    1989-07-01

    It has been demonstrated that mode conversion of fast waves to ion Bernstein waves can be calculated from a reduced second order differential equation for the wave fields rather than the 4th order equations used in earlier studies near the ion-ion hybrid resonance and the second harmonic resonance. Here the underlying justification of the method is discussed. It is shown that the method works for high harmonic resonances and an analytical formula for the tunneling coefficient is derived. The result is a generalization of a previous result obtained by Ngan and Swanson and is applicable when κ⊥ρi is large. Recently, there is interest in using fast waves for current drive at high ion cyclotron harmonics frequencies in tokamaks. Generally, the fast wave will encounter ion cyclotron harmonics within the plasma cross-section. For efficient current drive, the minimization of the mode conversion processes sets restrictions to the choice of frequencies and magnetic fields. This is discussed using the derived formula.

  15. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  16. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  17. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  18. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  19. A high-speed study of the dynamic bullet-body interactions produced by grazing gunshots with full metal jacketed and lead projectiles.

    PubMed

    Thali, M J; Kneubuehl, B P; Zollinger, U; Dirnhofer, R

    2003-03-27

    Experimenting upon a synthetic, non-biological Skull-Brain Model, our goal was to document and study the bullet-body interaction of grazing (glancing, tangential) gunshots. Thanks to the high-speed study of the dynamic bullet-body interaction it was possible to document the glancing behavior of projectiles with a resolution of 50 million pictures per second. It was possible to demonstrate the differing deformation and fragmentation patterns between the 9mm Luger full metal jacketed projectile and the 38 Smith & Wesson (S & W) lead round nose projectile. In a true-to-life manner the morphologic fracture systems could be documented by utilization of the model in dependence of the projectile's behavior, deformation, and fragmentation. Based on these experimental studies with body models, conclusions could be drawn for surgical and reconstructive forensic questions in real cases. In summary, model substitutes offer a suitable basis for the study of the bullet-body interaction because the experiments are reproducible, totally independent of the biological variances of corpse and animal experiments, and are harmless from the ethical perspective.

  20. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-12-01

    Cyclotron-produced 99mTc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99mTc. However, the small amount of 92-98Mo in the irradiation of enriched 100Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  1. Leading Democratically

    ERIC Educational Resources Information Center

    Brookfield, Stephen

    2010-01-01

    Democracy is the most venerated of American ideas, the one for which wars are fought and people die. So most people would probably agree that leaders should be able to lead well in a democratic society. Yet, genuinely democratic leadership is a relative rarity. Leading democratically means viewing leadership as a function or process, rather than…

  2. Performance Evaluation of a Dual Linear Ion Trap-Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Proteomics Research

    PubMed Central

    Weisbrod, Chad R.; Hoopmann, Michael R.; Senko, Michael W.; Bruce, James E.

    2014-01-01

    A novel dual cell linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) and its performance characteristics are reported. A linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer has been modified to incorporate a LTQ-Velos mass spectrometer. This modified instrument features efficient ion accumulation and fast MS/MS acquisition capabilities of dual cell linear RF ion trap instruments coupled to the high mass accuracy, resolution, and dynamic range of a FT-ICR for improved proteomic coverage. The ion accumulation efficiency is demonstrated to be an order of magnitude greater than that observed with LTQ-FT Ultra instrumentation. The proteome coverage with yeast was shown to increase over the previous instrument generation by 50% (100% increase on the peptide level). In addition, many lower abundance level yeast proteins were only detected with this modified instrument. This novel configuration also enables beam type CID fragmentation using a dual cell RF ion trap mass spectrometer. This technique involves accelerating ions between traps while applying an elevated DC offset to one of the traps to accelerate ions and induce fragmentation. This instrument design may serve as a useful option for labs currently considering purchasing new instrumentation or upgrading existing instruments. PMID:23590889

  3. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  4. Cyclotrons with fast variable and/or multiple energy extraction

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.

    2013-10-01

    We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators). If one uses reverse bends between the sectors (instead of or in combination with drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H2+, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H2+ beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam) at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS), this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field strength compared to proton machines

  5. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  6. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  7. Excitation of Electron Cyclotron Harmonic Waves in Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojia

    This dissertation investigates the generation mechanism, spatial distribution and characteristics of electrostatic electron cyclotron harmonic (ECH) waves under different plasma sheet conditions, and quantifies the role of these waves in producing the diffuse aurora. THEMIS observations from five magnetotail seasons, along with ray-tracing, and electron diffusion codes have been utilized towards that goal. By modeling the wave growth and quasi-linear pitch-angle diffusion of electrons with realistic parameters for the magnetic field, loss-cone distribution and wave intensity (obtained from observations as a function of magnetotail location), we estimate the loss-cone fill ratio and the contribution of auroral energy flux from wave-induced electron precipitation. We conclude that ECH waves are the dominant driver of electron precipitation in the middle to outer magnetotail.

  8. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  9. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  10. Cyclotron resonance maser experiment in a nondispersive waveguide

    SciTech Connect

    Jerby, E.; Shahadi, A.; Drori, R.

    1996-06-01

    A cyclotron-resonance maser (CRM) oscillator experiment in which a spiraling electron beam interacts with a transverse electromagnetic wave in a nondispersive waveguide is presented. The experiment employs a low-energy low-current electron beam in a two-wire (Lecher type) waveguide. The microwave output frequency is tuned in this experiment by the axial magnetic field in the range 3.5--6.0 GHz. A second harmonic emission is observed at {approximately}7 GHz. CRM theory shows that in a free-space TEM-mode interaction, the gain might be canceled due to the equal and opposite effects of the axial (Weibel) and the azimuthal bunching mechanisms. This balance is violated in the large transverse velocity regime (V{sub {perpendicular}} {much_gt} V{sub z}) in which the experiment operates. The tunability measurements of the CRM oscillator experiment in the nondispersive waveguide are discussed in view of the CRM theory.

  11. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  12. Magnetic-field measurements for the Lewis Research Center cyclotron

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1973-01-01

    The magnetic field of the Lewis Center cyclotron was mapped by using a Hall-effect magnetic-field transducer. Main-field Fourier coefficients were determined on a polar mesh of 40 radii for each of seven levels of main-field coil current. Incremental fields for eight sets of trim coils and two sets of harmonic coils were also determined at four of these main-field levels. A stored-program, digital computer was used to perform the measurements. The process was entirely automatic; all data-taking and data-reduction activities were specified by the computer programs. A new method for temperature compensation of a Hall element was used. This method required no temperature control of the element. Measurements of the Hall voltage and Hall-element resistance were sufficient to correct for temperature effects.

  13. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  14. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  15. Recent developments of cyclotron produced radionuclides for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. V.; Jansen, D. E.; Corbett, J. R.

    1987-04-01

    For over a decade myocardial perfusion imaging with thallium-201, a cyclotron product, has been routinely used in clinical medicine. Recent advances have allowed the efficient production of very high purity (> 99.8%) iodine-123. New metabolically active 123I labeled radiopharmaceuticals, including alkyl and phenyl fatty acids, and norepinephrine analogs, have been developed and are undergoing clinical trials. Fab' fragments of monoclonal antibodies to cardiac myosin have been labeled with indium-111 ( 111In) and are undergoing clinical evaluation for imaging myocardial infarcts. Monoclonal antibodies to platelets, fibrin, and the thrombolytic agent, tissue plasminogen activator (TPA), have recently been labeled with 111In. Together these developments in radiotracers and instrumentation should have a significant impact on the future of cardiovascular nuclear medicine. This manuscript will discuss developments in single photon emitting radiotracers for myocardial imaging.

  16. On ion cyclotron current drive for sawtooth control

    NASA Astrophysics Data System (ADS)

    Eriksson, L.-G.; Johnson, T.; Mayoral, M.-L.; Coda, S.; Sauter, O.; Buttery, R. J.; McDonald, D.; Hellsten, T.; Mantsinen, M. J.; Mueck, A.; Noterdaeme, J.-M.; Santala, M.; Westerhof, E.; de Vries, P.; contributors, JET-EFDA

    2006-10-01

    Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.

  17. Commercial and PET radioisotope manufacturing with a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Boothe, T. E.; McLeod, T. F.; Plitnikas, M.; Kinney, D.; Tavano, E.; Feijoo, Y.; Smith, P.; Szelecsényi, F.

    1993-06-01

    Mount Sinai has extensive experience in producing radionuclides for commercial sales and for incorporation into radiopharmaceuticals, including PET. Currently, an attempt is being made to supply radiochemicals to radiopharmaceutical manufacturers outside the hospital, to prepare radiopharmaceuticals for in-house use, and to prepare PET radiopharmaceuticals, such as 2-[F-18] FDG, for outside sales. This use for both commercial and PET manufacturing is atypical for a hospital-based cyclotron. To accomplish PET radiopharmaceutical sales, the hospital operates a nuclear pharmacy. A review of operational details for the past several years shows a continuing dependence on commercial sales which is reflected in research and developmental aspects and in staffing. Developmental efforts have centered primarily on radionuclide production, target development, and radiochemical processing optimization.

  18. A simple electron cyclotron resonance ion source (abstract)a)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-03-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  19. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  20. Normal and anomalous Doppler effects in periodic waveguide cyclotron maser

    SciTech Connect

    Korol, M.; Jerby, E.

    1995-12-31

    A linear analysis of the periodic-waveguide cyclotron (PWC) maser shows that the PWC interaction with fast-waves possesses properties of the known anomalous Doppler resonance interaction if the wave impedance of the resonant spatial harmonic, Z{sub n}, is much smaller than the free space impedance, i.e. if Z{sub n} {much_lt} Z{sub 0}. The feasibility of a fast-wave PWC interaction in a low impedance waveguide is examined theoretically in this paper. A practical scheme of a slotted-waveguide PWC operating in the fundamental harmonic near cutoff is proposed for a future experiment. The possible advantages of the quasi-anomalous Doppler effect in the fast-wave-PWC operating regime are the alleviation of the initial electron rotation and a high-efficiency operation.

  1. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2017-01-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the beta decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). We report on results for calibration measurements performed with Kr-83m in a gas cell that fulfills the stringent requirements for a measurement using tritium: cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged

  2. Determination of the Electron Cyclotron Current Drive Profile

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Schuster, D.I.; Makowski, M.A.

    1999-11-01

    Evaluation of the profile of non-inductive current density driven by absorption of electron cyclotron waves (ECCD) using time evolution of the poloidal flux indicated a broader profile than predicted by theory. To determine the nature of this broadening, a 1-1/2 D transport calculation of current density evolution was used to generate the signals which the DIII-D motional Stark effect (MSE) diagnostic would measure in the event that the current density evolution followed the neoclassical Ohm's law with the theoretical ECCD profile. Comparison with the measured MSE data indicates the experimental data is consistent with the ECCD profile predicted by theory. The simulations yield a lower limit on the magnitude of the ECCD which is at or above the value found in Fokker-Planck calculations of the ECCD including quasilinear and parallel electric field effects.

  3. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2016-03-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the β--decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). Here we discuss the production of a gas cell that fulfills the stringent requirements for cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged.

  4. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    NASA Astrophysics Data System (ADS)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  5. Ion source and low energy injection line for a central region model cyclotron

    SciTech Connect

    Zhang Tianjue; Li Zhenguo; Lu Yinlong; Wei Sumin; Cai Hongru; Ge Tao; Wu Longcheng; Pan Gaofeng; Yao Hongjuan; Kuo, T.; Yuan, D.

    2008-02-15

    At CIAE, a 100 MeV H{sup -} cyclotron (CYCIAE-100) is under design and construction. A central region model (CRM) cyclotron was built for various experimental verifications for the CYCIAE-100 project and for research and development of high current injection to accelerate milliampere H{sup -} beam. The H{sup -} multicusp source built in 2003 has been improved recently to make the source operation more stable. A new injection line for axial low energy high current injection has been designed and constructed for the CRM cyclotron.

  6. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B{sub T} = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of {approximately}1 MW.

  7. Auxiliary ECR heating system for the gas dynamic trap

    SciTech Connect

    Shalashov, A. G.; Gospodchikov, E. D.; Smolyakova, O. B.; Malygin, V. I.; Bagryansky, P. A.; Thumm, M.

    2012-05-15

    Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW/54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250-350 eV for improved energy confinement of hot ions. The key physical issue of the GDT magnetic field topology is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions, oblique launch of gyrotron radiation results in generation of right-hand-polarized (R) electromagnetic waves propagating with high N{sub Double-Vertical-Line Double-Vertical-Line} in the vicinity of the cyclotron resonance layer, which leads to effective single-pass absorption of the injected microwave power. In the present paper, we investigate numerically an optimized ECRH scenario based on the proposed mechanism of wave propagation and discuss the design of the ECRH system, which is currently under construction at the Budker Institute.

  8. Effects of electromagnetic ion cyclotron rising tone emissions on the magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.

    2015-12-01

    We perform self-consistent hybrid simulations on electromagnetic ion cyclotron (EMIC) triggered emissions with a gradient of the non-uniform ambient magnetic field and obtained broadband and clear rising tone EMIC emissions. We also performed the test particle simulations for scattering of the relativistic electrons. Broadband emissions induce rapid precipitation of energetic protons and relativistic electrons into the loss cone since the scattering by the concurrent triggering takes place faster than that of the coherent emissions. The coherent triggered emission causes efficient proton acceleration around the equator because of the stable particle trapping by the coherent rising tone emission. Nonlinear trapping causes significant relativistic electron scattering in wide energy range. Since the frequency of the rising tone emissions reaches close to the gyro-frequency and the emission also induces lower band EMIC waves which are also close to the gyro-frequency, the minimum resonance energy of the electrons reaches 300 keV. The higher energetic electrons (with 6 MeV to 20 MeV) are scattered almost 70 % for both broadband and rising tone cases. The hybrid simulations including cold ion heating are also performed, which shows the selective heating of heavy ions (Helium and Oxygen). These heating mechanism also makes the dynamic spectrum of the EMIC wave complex.

  9. Theoretical and numerical modelling of chaotic electrostatic ion cyclotron (EIC) oscillations by Jerk equation

    SciTech Connect

    Wharton, A. M. Kumar Shaw, Pankaj; Janaki, M. S.; Sekar Iyengar, A. N.

    2014-02-15

    In the last few years, third order explicit autonomous differential equations, known as jerk equations, have generated great interest as they show features of regular and chaotic motion. In this paper, we have modelled chaotic electrostatic ion cyclotron oscillations using a third order nonlinear ordinary differential equation (ODE) and investigated its nonlinear dynamical properties. The nonlinear ODE has been derived for a plasma system from a two fluid model in the presence of a source term, under the influence of an external magnetic field, which is perpendicular to the direction of the wave vector. It is seen that the equation does not require an external forcing term to obtain chaotic behaviour. The stability of the solutions of the equation has been investigated analytically as well as numerically, and the bifurcation diagram obtained shows a number of interesting phenomena for various regimes of parameters. The coexisting attractors as well as their corresponding basins are shown and the phase space portraits at different conditions are obtained numerically and shown here. The results obtained here are in agreement with preliminary experiments conducted for a similar configuration of a plasma system.

  10. Nonlinear Effects at Tokamak Electron Cyclotron Resonance in Inhomogeneous Magnetic Field.*

    NASA Astrophysics Data System (ADS)

    Stefan, V.

    1996-11-01

    Nonlinear interaction of X- and O- modes with drift plasma waves is studied. The drift waves with frequency given by ωD ~ Ωc (ρ_e/r)^2 (ρe electron Larmor radius, Ωe electron cyclotron frequency, r small tokamak radius, where nabla Ω / Ωe ~ 1/R (for large tokamaks R ~ r)), are coupled to driver pump via scattering instability. Nonlocality of the interaction is taken into account. It is shown that nonlinear mechanism of interaction (Brillouin scattering) can be used as a tool for dynamic rf confinement^1 of tokamak plasmas. Particularly, it is possible to achieve longer confinement times due to suppression of drift wave turbulence. Supported by Tesla Laboratories, Inc., La Jolla, CA 92038-2946. ^1M.N. Rosenbluth (Editor-in-Chief). New Ideas in Tokamak Confinement. Research Trends in Physics Series of the La Jolla International School of Physics, The Institute for Advanced Physics Studies, La Jolla, CA (AIP Press, New York, 1994).

  11. Ion heating by strong electrostatic ion cyclotron turbulence. [in auroral zone

    NASA Technical Reports Server (NTRS)

    Lysak, R. L.; Hudson, M. K.; Temerin, M.

    1980-01-01

    A theory of the ion heating due to electrostatic ion cyclotron (EIC) waves in the auroral zone is presented. Due to the slowly convecting nature of the EIC mode, quasi-linear plateau formation cannot stabilize the waves, and growth occurs until the nonlinear mechanisms of ion resonance broadening and electron trapping provide saturation. The large amplitude and coherent nature of the resulting wave imply that quasi-linear theory provides only a lower limit to the ion heating. An upper bound on the heating rate is derived using a time-average model of ion dynamics in the coherent waves. The effects of ion heating in the presence of the magnetic gradient force and parallel electric fields are considered, with the result that perpendicular energies over 100 eV are easily attainable from a 1 eV source plasma. Perpendicular heating in the absence of a parallel electric field yields conical ion distributions, which in the presence of an electric field become field-aligned beams.

  12. Calculating electron cyclotron current drive stabilization of resistive tearing modes in a nonlinear magnetohydrodynamic model

    SciTech Connect

    Jenkins, Thomas G.; Schnack, Dalton D.; Kruger, Scott E.; Hegna, C. C.; Sovinec, Carl R.

    2010-01-15

    A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.

  13. Calculating electron cyclotron current drive stabilization of resistive tearing modes in a nonlinear magnetohydrodynamic model

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.; Hegna, C. C.; Schnack, Dalton D.; Sovinec, Carl R.

    2010-01-01

    A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.

  14. Beam imaging in the injection line of the INFN-LNS superconducting cyclotron

    SciTech Connect

    Nicolosi, Dario Cosentino, Luigi; Mascali, David; Pappalardo, Alfio; Castro, Maurizio; Celona, Luigi; Marchetta, Carmelo; Marletta, Salvatore; Maugeri, Antonio; Rifuggiato, Danilo; Seminara, Angelo; Gammino, Santo

    2016-02-15

    A cheap and efficient diagnostic system for beam monitoring has been recently developed at INFN-LNS in Catania. It consists of a high sensitivity CCD camera detecting the light produced by an ion beam hitting the surface of a scintillating screen and a frame grabber for image acquisition. A scintillating screen, developed at INFN-LNS and consisting of a 2 μm BaF{sub 2} layer evaporated on an aluminium plate, has been tested by using {sup 20}Ne and {sup 40}Ar beams in the keV energy range. The CAESAR ECR ion source has been used for investigating the influence of the frequency and magnetic field tuning effects, the impact of the microwave injected power, and of the focusing solenoids along the low energy beam transport on the beam shape and current. These tests will allow to better understand the interplay between the plasma and beam dynamics and, moreover, to improve the transport efficiency along the low energy beam line and the matching with the superconducting cyclotron, particularly relevant in view of the expected upgrade of the machine.

  15. Ecotoxicology: Lead

    USGS Publications Warehouse

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  16. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India.

    PubMed

    Shaiju, V S; Sharma, S D; Kumar, Rajesh; Sarin, B

    2009-07-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as (18)F, (11)C, (15)O, (13)N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel.

  17. A Tuning Method for Electrically Compensated Ion Cyclotron Resonance Mass Spectrometer Traps

    PubMed Central

    Brustkern, Adam M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    We describe a method for tuning electrically compensated ion cyclotron resonance (ICR) traps by tracking the observed cyclotron frequency of an ion cloud at different oscillation mode amplitudes. Although we have used this method to tune the compensation voltages of a custom-built electrically compensated trap, the approach is applicable to other designs that incorporate electrical compensation. To evaluate the effectiveness of tuning, we examined the frequency shift as a function of cyclotron orbit size at different z-mode oscillation amplitudes. The cyclotron frequencies varied by ~ 12 ppm for ions with low z-mode oscillation amplitudes compared to those with high z-mode amplitudes. This frequency difference decreased to ~1 ppm by one iteration of trap tuning. PMID:20060743

  18. Cyclotron resonance phenomena in a non-neutral multispecies ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C.F.

    1995-08-01

    Cyclotron modes of a non-neutral Mg ion plasma were studied in a long cylindrical Penning--Malmberg trap. Several modes with angular dependence exp({ital il}{theta}), {ital l}{ge}1, are observed near the cyclotron frequencies of the various Mg ions. The {ital l}=1 modes for the majority species are downshifted from the cyclotron frequencies, with downshifts as large as four times the diocotron frequency. These large shifts are quantitatively explained by a multispecies cold-plasma theory, including the dependence on the plasma size and composition. These dependencies allow the plasma size and composition to be obtained from the measured mode frequencies. In contrast, the {ital l}=1 downshifts for minority species are generally close to twice the diocotron frequency, and remain unexplained. Cyclotron heating of the plasma ions was also observed with a surprising effect of improving the plasma confinement. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Vertical-viewing electron cyclotron emission diagnostic for the DIII-D tokamak

    SciTech Connect

    James, R.; Janz, S.; Ellis, R.; Boyd, D.; Lohr, J.

    1988-08-01

    The vertical-viewing electron cyclotron emission diagnostic on DIII-D will be used to assess the nonthermal electron distributions resulting from electron cyclotron heating and electron cyclotron current drive experiments. Electron cyclotron emission along a vertical chord is collected using an ellipsoidal focusing mirror and retroreflector (the latter to minimize wall reflections). The emission is then transported approx.20 m using a quasioptical transport system composed of eight lenses and three mirrors, and detected between the 2nd and the 10th harmonics by a fast-scanning (40-Hz) Michelson interferometer. The entire system has been aligned using a Gaussian beam simulator and absolutely calibrated in situ using a cold liquid-nitrogen bath. Details of the design, installation, and calibration will be discussed.

  20. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  1. Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL

    NASA Astrophysics Data System (ADS)

    Gehring, A. E.; Brodeur, M.; Bollen, G.; Morrissey, D. J.; Schwarz, S.

    2016-06-01

    A model device to transport thermal ions in the cyclotron gas stopper, a next-generation beam thermalization device under construction at the National Superconducting Cyclotron Laboratory, is presented. Radioactive ions produced by projectile fragmentation will come to rest at distances as large as 45 cm from the extraction orifice of the cyclotron gas stopper. The thermalized ions will be transported to the exit by RF carpets employing the recently developed "ion surfing" method. A quarter-circle prototype RF carpet was tested with potassium ions, and ion transport velocities as high as 60 m/s were observed over distances greater than 10 cm at a helium buffer gas pressure of 80 mbar. The transport of rubidium ions from an RF carpet to an electrode below was also demonstrated. The results of this study formed the basis of the design of the RF carpets for use in the cyclotron gas stopper.

  2. Electrostatic electron cyclotron instabilities near the upper hybrid layer due to electron ring distributions

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Speirs, D. C.; Daldorff, L. K. S.

    2016-09-01

    A theoretical study is presented of the electrostatic electron cyclotron instability involving Bernstein modes in a magnetized plasma. The presence of a tenuous thermal ring distribution in a Maxwellian plasma decreases the frequency of the upper hybrid branch of the electron Bernstein mode until it merges with the nearest lower branch with a resulting instability. The instability occurs when the upper hybrid frequency is somewhat above the third, fourth, and higher electron cyclotron harmonics, and gives rise to a narrow spectrum of waves around the electron cyclotron harmonic nearest to the upper hybrid frequency. For a tenuous cold ring distribution together with a Maxwellian distribution an instability can take place also near the second electron cyclotron harmonic. Noise-free Vlasov simulations are used to assess the theoretical linear growth-rates and frequency spectra, and to study the nonlinear evolution of the instability. The relevance of the results to laboratory and ionospheric heating experiments is discussed.

  3. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  4. A fast multichannel Martin-Puplett interferometer for electron cyclotron emission measurements on JET

    SciTech Connect

    Simonetto, A.; Sozzi, C.; Garavaglia, S.; Nowak, S.; Fessey, J. A.; Collaboration: JET-EFDA Contributors

    2011-11-15

    A Martin Puplett interferometer for electron cyclotron emission (ECE) measurements from JET tokamak plasmas was extended to multichannel operation for simultaneous radial and oblique ECE measurements. This paper describes the new optics and the instrument's performance.

  5. Cyclotron-absorption measurement of the runaway-electron distribution in a tokamak

    SciTech Connect

    Zvonkov, A.V.; Suvorov, E.V.; Timofeev, A.V.; Fraiman, A.A.

    1983-03-01

    The distribution function of runaway electrons in a tokamak can be determined in the slightly relativistic region from measurements of the absorption coefficient corresponding to electron cyclotron waves. The plasma should be probed in the vertical direction.

  6. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory.

    PubMed

    Newhauser, Wayne D; Myers, Karla D; Rosenthal, Stanley J; Smith, Alfred R

    2002-04-21

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60Co radiation and a calculated correction in order to take into account the differences in response to 60Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery.

  7. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne D.; Myers, Karla D.; Rosenthal, Stanley J.; Smith, Alfred R.

    2002-04-01

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60Co radiation and a calculated correction in order to take into account the differences in response to 60Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery.

  8. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.

    2006-03-15

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150 keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10x10 cm{sup 2} has been marked at 20 cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05 mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7 min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10{sup -5} Torr, microwave power: 350 W, and coil current: 0 A. The effective energy of the x-ray spectrum is nearly 40 keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  9. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions

    SciTech Connect

    Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui

    2014-05-15

    Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.

  10. The targeted heating and current drive applications for the ITER electron cyclotron system

    SciTech Connect

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D.; Saibene, G.; Gagliardi, M.; Farina, D.; Figini, L.; Hanson, G.; Poli, E.; Takahashi, K.

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  11. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  12. Tetraethyl lead

    Integrated Risk Information System (IRIS)

    Tetraethyl lead ; CASRN 78 - 00 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    SciTech Connect

    Not Available

    1992-01-01

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA's Broad Scope A License. The CS-22 cyclotron was turned over to UCLA's jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and Clause B'' involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA's responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts.

  14. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    SciTech Connect

    Not Available

    1992-05-01

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA`s Broad Scope A License. The CS-22 cyclotron was turned over to UCLA`s jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and ``Clause B`` involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA`s responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts.

  15. Applications of Electron Cyclotron Waves in the DIII-D Tokamak

    SciTech Connect

    Prater, R.; Cengher, M.; Gorelov, I. A.; Lohr, J.; Ponce, D.

    2009-11-26

    Electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) have progressed from being the subject of experiments to being a prime tool for carrying out experiments on other topics. ECH has different characteristics than neutral beam heating: ECH heats only the electrons, heats very locally and controllably, does not inject momentum or particles, and may be arranged to drive highly localized currents or to just heat. These differences make ECH useful in a very wide range of experiments.

  16. Rapid Current Ramp-Up by Cyclotron-Driving Electrons beyond Runaway Velocity

    SciTech Connect

    Uchida, M.; Yoshinaga, T.; Tanaka, H.; Maekawa, T.

    2010-02-12

    The toroidal current has been rapidly ramped-up after the formation of an initial closed flux surface in an electron cyclotron heated discharge in the low aspect ratio torus experiment device. A current carrying fast electron tail is developed well beyond the runaway velocity against the reverse voltage from self-induction, suggesting a forward driving force on the tail by the cyclotron absorption of high N{sub ||} electron Bernstein waves.

  17. Saturation of cyclotron maser instability driven by an electron loss-cone distribution

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Lee, M. C.

    1986-01-01

    The resonance diffusion of electrons in velocity space caused by the excited EM wave fields is considered to be the dominant saturation process of cyclotron maser instability that is driven by an electron loss-cone distribution. An upper bound of the saturation level is derived analytically. Since the resulting saturation level is low, the resonance diffusion is indeed responsible for the saturation of the cyclotron maser instability.

  18. Status of the Berkeley small cyclotron AMS (accelerator mass spectrometry) project

    SciTech Connect

    Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.; Welch, J.J.

    1987-04-01

    A small, low-energy cyclotron has been designed and built at Berkeley for direct detection dating of /sup 14/C. The system combines the use of a negative ion source to reject /sup 14/N with the high resolution of a cyclotron to reject other background ions. In order to allow the dating of old and small samples, the present system incorporates a high-current external ion source and injection beamline. The system is expected to be operational by mid-1987.

  19. Simulation, Design, and Testing of a High Power Collimator for the RDS-112 Cyclotron

    PubMed Central

    Peeples, Johanna L.; Stokely, Matthew H.; Poorman, Michael C.; Bida, Gerald T.; Wieland, Bruce W.

    2015-01-01

    A high power [F-18]fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3 kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. PMID:25562677

  20. Ion cyclotron radio frequency systems and performance on the tandem mirror experiment-upgrade (TMX-U)

    SciTech Connect

    Moore, T.L.; Molvik, A.W.; Cummins, W.F.; Pedrotti, L.R.; Henderson, A.L.; Karsner, P.G.; Scofield, D.W.; Brooksby, C.A.

    1983-12-01

    High power ion cyclotron radio frequency (ICRF) systems are now gaining greater attention than before as prime driver ion heating systems. Lawrence Livermore National Laboratory (LLNL) has installed a 200 kW high frequency (HF) transmitter system on its Tandem Mirror Experiment-Upgrade (TMX-U). This paper describes the system, antenna, controls, and monitoring apparatus. The transmitter operates into a high Q antenna installed in the central cell region of the experiment. It incorporates a dual-port feedback system to automatically adjust the transmitter's output power and allow the maximum consistent with the plasma loading of the antenna. Special techniques have been used to measure, in real-time, the dynamically changing loading values presented by the plasma. From the measurements, the antenna impedance can be optimized for specified plasma density.

  1. Evaluation of the latent radiation dose from the activated radionuclides in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Cho, Gyuseong; Kim, Sun A.; Kang, Bo Sun

    2015-02-01

    The production of short-lived radioisotopes for the synthesis of radiopharmaceuticals typically takes advantage of a cyclotron that accelerates a proton beam up to a few tens of MeV. The number of cyclotrons has been continuously increasing since the first operation of the MC-50 for the production of radiopharmaceuticals at the Korea Institute of Radiological & Medical Sciences (KIRAMS) in 1986, and currently 35 cyclotrons are under operation throughout the nation. As the number of operating cyclotrons has increased, concerns about radiation safety for the persons who are working at the facilities and dwelling in the vicinity of the facilities are becoming important issues. Radiation that could emit a time-dependent dose was shown to exist in a cyclotron vault after its shutdown. The calculation of the latent radiation dose rate was performed by using the MCNPX and the FISPACT. The calculated results for the activated long-lived radioisotopes in the concrete wall and the structural components of the cyclotron facility were compared with the measured data that were obtained by using gamma-ray spectroscopy with a HPGe detector.

  2. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu

    2014-02-01

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10-9-10-6 ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a 12C5+ beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  3. Variations of cyclotron line energy with luminosity in accreting X-ray pulsars

    SciTech Connect

    Nishimura, Osamu

    2014-01-20

    I develop a new model for changes of cyclotron line energy with luminosity based on changes in polar cap dimensions and the direction of photon propagation as well as a shock height. In X0115+63 and V0332+53, the fundamental cyclotron line energy has been observed to decrease with increasing luminosity. This phenomenon has been interpreted as a change of a shock height with luminosity. However, the rates of the observed changes are quite different, in which the line energy in V0332+53 varies slowly with luminosity compared with that in X0115+63. I demonstrate that a new model successfully reproduces the changes of the fundamental cyclotron line energies with luminosity in both X0115+63 and V0332+53. On the other hand, the cyclotron line energies in Her X–1, GX301–2, and GX304–1 were reported to increase with increasing luminosity. I discuss the positive correlation between the cyclotron line energy and luminosity based on changes in a beam pattern for Her X–1, GX301–2, and GX304–1. In addition, I discuss how a switch of the predominant, observed emission region from pole1 to pole2 influences cyclotron line energy for GX304–1 and A0535+26.

  4. Upstream proton cyclotron waves at Venus near solar maximum

    NASA Astrophysics Data System (ADS)

    Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.

    2015-01-01

    magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of

  5. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Giruzzi, G.; Napoli, F.; Galli, A.; Schettini, G.; Tuccillo, A. A.

    2014-02-01

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (Te_periphery). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (Te_periphery). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a˜0.8, f0=144 GHz), an increase of Te in the outer plasma (from 40 eV to 80 eV at r/a˜0.8) is expected by the JETTO code

  6. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A.; Giruzzi, G.; Napoli, F.; Schettini, G.

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  7. Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Lyssoivan, A.; Philipps, V.; Brémond, S.; Freisinger, M.; Kreter, A.; Lombard, G.; Marchuk, O.; Mollard, P.; Paul, M. K.; Pegourié, B.; Reimer, H.; Sergienko, G.; Tsitrone, E.; Vervier, M.; Van Wassenhove, G.; Wünderlich, D.; Van Schoor, M.; Van Oost, G.

    2011-08-01

    This contribution reports on isotope exchange studies with both Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) in TEXTOR and TORE SUPRA. The discharges have been carried out in H2, D2 (ICWC and GDC) and He/H2 mixtures (ICWC). The higher reionization probability in ICWC compared to GDC, following from the 3 to 4 orders of magnitude higher electron density, leads to a lower pumping efficiency of wall desorbed species. GDC has in this analysis (5-10) times higher removal rates of wall desorbed species than ICWC, although the wall release rate is 10 times higher in ICWC. Also the measured high retention during ICWC can be understood as an effect of the high reionization probability. The use of short RF pulses (∼1 s) followed by a larger pumping time significantly improves the ratio of implanted over recovered particles, without severely lowering the total amount of removed particles.

  8. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Küchler, D.

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  9. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  10. Excitation of the surface flute waves in electron cyclotron frequency range by internal rotating electron beam in a coaxial waveguide

    NASA Astrophysics Data System (ADS)

    Blednov, O.; Girka, I.; Girka, V.; Pavlenko, I.; Sydora, R.

    2014-12-01

    The initial stage of interaction between a gyrating beam of electrons, which move along Larmor orbits in a narrow gap between a cylindrical plasma layer and an internal screen of a metal coaxial waveguide and electromagnetic eigen waves, is studied theoretically. These waves are extraordinary polarized ones; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that the excitation process is stable enough in respect to changing plasma waveguide parameters. The wider the plasma layer, the broader the range of plasma waveguide parameters within which effective wave excitation takes place. The main influence on the excitation of these modes is performed by the applied axial magnetic field, namely: its increase leads to an increase of growth rate and a broadening of the range of the waveguide parameters within which wave excitation is effective.

  11. Who Leads China's Leading Universities?

    ERIC Educational Resources Information Center

    Huang, Futao

    2017-01-01

    This study attempts to identify the major characteristics of two different groups of institutional leaders in China's leading universities. The study begins with a review of relevant literature and theory. Then, there is a brief introduction to the selection of party secretaries, deputy secretaries, presidents and vice presidents in leading…

  12. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  13. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.

    PubMed

    Rauf Abdullah, Nzar; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-09-21

    We investigate theoretically the balance of the static magnetic and the dynamical photon forces in the electron transport through a quantum dot in a photon cavity with a single photon mode. The quantum dot system is connected to external leads and the total system is exposed to a static perpendicular magnetic field. We explore the transport characteristics through the system by tuning the ratio, [Formula: see text], between the photon energy, [Formula: see text], and the cyclotron energy, [Formula: see text]. Enhancement in the electron transport with increasing electron-photon coupling is observed when [Formula: see text]. In this case the photon field dominates and stretches the electron charge distribution in the quantum dot, extending it towards the contact area for the leads. Suppression in the electron transport is found when [Formula: see text], as the external magnetic field causes circular confinement of the charge density around the dot.

  14. Ion cyclotron resonance heating in SST-1 tokamak

    SciTech Connect

    Bora, D.; Mukherjee, A.; Singh, J. P.; Gangopadhyay, S.; Kumar, Sunil; Singh RF Group, Raj

    1999-09-20

    Multimegawatt ion cyclotron resonance heating (ICRH) system is being developed for the steady state superconducting takamak SST-1 (1), which would form an important heating scheme during non-inductive steady state operation. 1.5 MW of RF power at different frequencies between 22-92 MHz is to be delivered to the plasma for pulse lengths of upto 1000 s. Water cooled antenna, interface and 9 inch Tx-line will ensure safe operation for long pulse operation. Three stages of matching would ensure maximum power coupling to the plasma. Power would be coupled to the plasma through two sets of antennae consisting of two strips in antenna box positioned 180 degree opposite to each other with capability of handling 0.8 MW/m{sup 2} heat load. Electromagnetic stress analysis of the antenna assembly shows that maximum 1.37 kNm torque would be exerted during plasma disruption operating at 3.0 T, 220 kA plasma current. Impurity generation by ICRH antennae is not so severe.

  15. Plume properties measurement of an Electron Cyclotron Resonance Accelerator

    NASA Astrophysics Data System (ADS)

    Correyero, Sara; Vialis, Theo; Jarrige, Julien; Packan, Denis

    2016-09-01

    Some emergent technologies for Electric Propulsion, such as the Electron Cyclotron Resonance Accelerator (ECRA), include magnetic nozzles to guide and expand the plasma. The advantages of this concept are well known: wall-plasma contact is avoided, it provides a current-free plume, it can allow to control thrust by modifying the magnetic field geometry, etc. However, their industrial application requires the understanding of the physical mechanisms involved, such as the electron thermodynamics at the plasma plume expansion, which is crucial to determine propulsive performances. This work presents a detailed characterization of the plasma plume axial profile in an ECR plasma thruster developed at ONERA. Langmuir, emissive, Faraday and ion energy probes are used to measure the electric potential space evolution, the current and electron energy distribution function in the plume, from the near field to the far field. The experimental results are compared with a quasi-1D (paraxial) steady-state kinetic model of a quasineutral collisionless magnetized plasma which is able to determine consistently the axial evolution of the electric potential and the electron and ion distribution functions with their associated properties.

  16. Multi-harmonic electron cyclotron instabilities. [diffuse electron aurora

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Kennel, C. F.

    1978-01-01

    The reported investigation constitutes an extension of studies conducted by Ashour-Abdalla and Kennel (1975, 1976, 1978) with respect to a basic plasma model of Young et al. (1973). The model involves a combination of a cold Maxwellian background plasma, a hot plasma, and a 'loss cone' type of free energy source. Previous results on the first cyclotron harmonic bands are extended to multiharmonics. The significance of the obtained relations is discussed and tentative conclusions are presented. Given that the spatial growth rates of the convective modes are comparable, and that simultaneous nonconvective instability (NCI) is possible, it is concluded that multiharmonic emissions ought to be a common feature of the magnetospheric electrostatic wave observations. Since the volume of parameter space for which the first harmonic is NCI, and the volume for which the convective first harmonic mode has significant spatial growth rates, exceed those for the higher harmonics, first harmonic waves should be the most commonly observed and the higher harmonics should usually be accompanied by the first harmonic.

  17. High current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Etoh, H.; Onai, M.; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S.; Shibata, T.; Hatayama, A.; Okumura, Y.

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H- beam of 10 mA and D- beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H- beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H- current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H- production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H- current dependence on the arc power.

  18. Electron cyclotron resonance deposition of diamond-like films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1990-01-01

    Electron cyclotron resonance (ECR) microwave plasma CVD has been developed at low pressures (0.0001 - 0.01 torr) and at ambient and high substrate temperatures (up to 750 C), to achieve large-area (greater than 4 in. diameter) depositions of diamondlike amorphous carbon (a - C:H) films. The application of a RF bias to the substrate stage, which induces a negative self-bias voltage, is found to play a critical role in determining carbon bonding configurations and in modifying the film morphology. There are two distinct types of ECR-deposited diamondlike films. One type of diamondlike film exhibits a Raman spectrum consisting of broad and overlapping, graphitic D (1360/cm, line width = 280/cm) and G (1590/cm, line width 140/cm) lines, and the other type has a broad Raman peak centered at appoximately 1500/cm. Examination of plasma species by optical emission spectroscopy shows no correlation between the CH-asterisk emission intensity and the deposition rate of diamondklike films.

  19. A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun

    2016-12-01

    A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)

  20. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.