Science.gov

Sample records for cyclotron resonance plasma-assisted

  1. Electron cyclotron resonance plasma assisted pulsed laser deposition for compound host film synthesis and in situ doping

    SciTech Connect

    Lu, Y.F.; Sun, J.; Yu, D.; Shi, L.Q.; Dong, Z.B.; Wu, J.D.

    2006-05-15

    We developed a method for compound host film synthesis and in situ doping based on plasma assisted pulsed laser deposition by coablation of two targets with two pulsed laser beams. The feasibility of this method was demonstrated by the preparation of Er-doped GaN films. In the reactive nitrogen environment and with the assistance of nitrogen plasma generated from electron cyclotron resonance microwave discharge, the ablation of a polycrystalline GaAs target resulted in the reactive deposition of a GaN host film, whereas the ablation of a metallic Er target provided the host with Er atoms for in situ doping in the growing GaN host film. Hexagonal GaN films were formed on a silicon substrate as the host and Er was incorporated into the host with controlled concentration. We found that the composition of the compound host could be adjusted by varying the laser fluence on the target for host deposition or the energy of the plasma stream bombarding the growing host film. The dopant concentration could also be independently controlled to vary in a wide range by changing the pulse repetition ratio of the two laser beams or the laser fluence on the target for dopant supply. It was also proved that doping of very low concentrations could be easily realized by simply adjusting the pulse repetition rate and the fluence of the second laser.

  2. Low-temperature synthesis of gallium nitride thin films using electron cyclotron resonance plasma assisted pulsed laser deposition from a GaAs target

    SciTech Connect

    Sun, J.; Wu, A.M.; Xu, N.; Ying, Z.F.; Shen, X.K.; Dong, Z.B.; Wu, J.D.; Shi, L.Q.

    2005-11-15

    Using reactive pulsed laser deposition assisted by electron cyclotron resonance (ECR) plasma, we have synthesized GaN thin films from a polycrystalline GaAs target at low temperatures. This was achieved by ablating the GaAs target in the reactive environment of a nitrogen plasma generated from ECR microwave discharge in pure nitrogen gas and depositing the films with concurrent bombardment by the low-energy nitrogen plasma stream. High-energy ion backscattering spectroscopy analysis shows that the synthesized films are gallium rich. Characterizations by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirm the presence of GaN bonds in the films. The recorded absorption spectrum also reveals GaN stretching mode characteristic of the hexagonal GaN phase. The synthesized GaN films are transparent in the visible region and have a band gap of 3.38 eV. Optical emission from the plume during film deposition reveals that the plume created by pulsed laser ablation of the GaAs target consists mainly of monoatomic atoms and ions of gallium and arsenic. Mechanisms responsible for the formation of GaN molecules and the growth of GaN films are also discussed.

  3. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    SciTech Connect

    Nie, Man Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  4. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-05-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (-In2O3) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal ()-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although -In2O3 grains with wide band-gap energy were formed in In film by N2 annealing, they were not easily formed in N2-annealed InN films. Even if they were not detected in N2-annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]0.5%). Although [O]1% could be estimated by investigating In2O3 grains formed in N2-annealed InN films, [O]0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In2O3 grains formed by H2 annealing with higher reactivity with InN and O2, using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films.

  5. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  6. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  7. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  8. Electron cyclotron resonance plasma photos.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  9. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  10. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  11. Cyclotron resonance absorption in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  12. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  13. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  14. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  15. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  16. Cyclotron resonance in plasma flow

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>ω>kv{sub sw}−Ω{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ω and Ω{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  17. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  18. Cyclotron resonance heating systems for SST-1

    NASA Astrophysics Data System (ADS)

    Bora, D.; Kumar, Sunil; Singh, Raj; Sathyanarayana, K.; Kulkarni, S. V.; Mukherjee, A.; Shukla, B. K.; Singh, J. P.; Srinivas, Y. S. S.; Khilar, P.; Kushwah, M.; Kumar, Rajnish; Sugandhi, R.; Chattopadhyay, P.; Raghuraj, Singh; Jadav, H. M.; Kadia, B.; Singh, Manoj; Babu, Rajan; Jatin, P.; Agrajit, G.; Biswas, P.; Bhardwaj, A.; Rathi, D.; Siju, G.; Parmar, K.; Varia, A.; Dani, S.; Pragnesh, D.; Virani, C.; Patel, Harsida; Dharmesh, P.; Makwana, A. R.; Kirit, P.; Harsha, M.; Soni, J.; Yadav, V.; Bhattacharya, D. S.; Shmelev, M.; Belousov, V.; Kurbatov, V.; Belov, Yu.; Tai, E.

    2006-03-01

    RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during a pulse length of 1000 s. For different heating scenarios at 1.5 and 3.0 T, a wide band of operating frequencies (20-92 MHz) is required. To meet this requirement two CW 1.5 MW rf generators are being developed in-house. A pressurized as well as vacuum transmission line and launcher for the SST-1-ICRF system has been commissioned and tested successfully. A gyrotron for the 82.6 GHz ECRF system has been tested for a 200 kW/1000 s operation on a water dummy load with 17% duty cycle. High power tests of the transmission line have been carried out and the burn pattern at the exit of transmission line shows a gaussian nature. Launchers used to focus and steer the microwave beam in plasma volume are characterized by a low power microwave source and tested for UHV compatibility. Long pulse operation has been made feasible by actively cooling both the systems. In this paper detailed test results and the present status of both the systems are reported.

  19. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  20. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  1. Characterization of electron cyclotron resonance hydrogen plasmas

    SciTech Connect

    Outten, C.A. . Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. )

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

  2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  3. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  4. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  5. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  6. Electromagnetic ion cyclotron resonance heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Díaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    2008-07-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2 4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient

  7. Cyclotron Auto-Resonance Accelerator for environmental applications

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A MW-level CW electron beam source for environmental remediation based on extensions of the scientifically-proven Cyclotron Auto-Resonance Accelerator, dubbed CARA, is described here. CARA is distinguished by its exceptionally high RF-to-beam efficiency, by its production of a self-scanning beam, and by its proportionately lower specific power loading on a beam output window. Its environmental applications include sterilization, flue gas and waste water treatment.

  8. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  9. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  10. Permanent magnet electron cyclotron resonance plasma source with remote window

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M. )

    1995-03-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved.

  11. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  12. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  13. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  14. Personal computer based Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Jones, Patrick R.

    1988-12-01

    An IBM PC AT compatible computer is used to host the interface of a Fourier transform ion cyclotron resonance mass spectrometer or FTMS. A common fast memory bank for both ion-excitation waveform and data acquisition is reserved in the computer's system memory space. All the digital electronics circuitry is assembled on an IBM PC AT extension board. Neither an external frequency synthesizer nor a waveform digitizer is needed. Ion-excitation waveforms can be generated in either frequency-sweeping or inverse-Fourier transform modes. Both excitation and data acquisition can be carried out at eight megawords per second.

  15. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  16. Electron spin resonance of Zn{sub 1-x}Mg{sub x}O thin films grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Wassner, T. A.; Stutzmann, M.; Brandt, M. S.; Laumer, B.; Althammer, M.; Goennenwein, S. T. B.; Eickhoff, M.

    2010-08-30

    Zn{sub 1-x}Mg{sub x}O thin films with a Mg content x between 0 and 0.42 grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates were investigated by electron spin resonance at 5 K. Above band gap illumination induces a persistent resonance signal, which is attributed to free conduction band electrons. The g-factors of the Zn{sub 1-x}Mg{sub x}O epitaxial layers and their anisotropy were determined experimentally and an increase from g{sub ||}=1.957 for x=0 to g{sub ||}=1.970 for x=0.42 was found, accompanied by a decrease in anisotropy. A comparison with g-factors of the Al{sub x}Ga{sub 1-x}N system is also given.

  17. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  18. Cyclotron resonance maser experiment in a nondispersive waveguide

    SciTech Connect

    Jerby, E.; Shahadi, A.; Drori, R.

    1996-06-01

    A cyclotron-resonance maser (CRM) oscillator experiment in which a spiraling electron beam interacts with a transverse electromagnetic wave in a nondispersive waveguide is presented. The experiment employs a low-energy low-current electron beam in a two-wire (Lecher type) waveguide. The microwave output frequency is tuned in this experiment by the axial magnetic field in the range 3.5--6.0 GHz. A second harmonic emission is observed at {approximately}7 GHz. CRM theory shows that in a free-space TEM-mode interaction, the gain might be canceled due to the equal and opposite effects of the axial (Weibel) and the azimuthal bunching mechanisms. This balance is violated in the large transverse velocity regime (V{sub {perpendicular}} {much_gt} V{sub z}) in which the experiment operates. The tunability measurements of the CRM oscillator experiment in the nondispersive waveguide are discussed in view of the CRM theory.

  19. A simple electron cyclotron resonance ion source (abstract)a)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-03-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  20. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  1. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  2. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  3. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  4. Ion cyclotron resonance heating in SST-1 tokamak

    SciTech Connect

    Bora, D.; Mukherjee, A.; Singh, J. P.; Gangopadhyay, S.; Kumar, Sunil; Singh RF Group, Raj

    1999-09-20

    Multimegawatt ion cyclotron resonance heating (ICRH) system is being developed for the steady state superconducting takamak SST-1 (1), which would form an important heating scheme during non-inductive steady state operation. 1.5 MW of RF power at different frequencies between 22-92 MHz is to be delivered to the plasma for pulse lengths of upto 1000 s. Water cooled antenna, interface and 9 inch Tx-line will ensure safe operation for long pulse operation. Three stages of matching would ensure maximum power coupling to the plasma. Power would be coupled to the plasma through two sets of antennae consisting of two strips in antenna box positioned 180 degree opposite to each other with capability of handling 0.8 MW/m{sup 2} heat load. Electromagnetic stress analysis of the antenna assembly shows that maximum 1.37 kNm torque would be exerted during plasma disruption operating at 3.0 T, 220 kA plasma current. Impurity generation by ICRH antennae is not so severe.

  5. Plume properties measurement of an Electron Cyclotron Resonance Accelerator

    NASA Astrophysics Data System (ADS)

    Correyero, Sara; Vialis, Theo; Jarrige, Julien; Packan, Denis

    2016-09-01

    Some emergent technologies for Electric Propulsion, such as the Electron Cyclotron Resonance Accelerator (ECRA), include magnetic nozzles to guide and expand the plasma. The advantages of this concept are well known: wall-plasma contact is avoided, it provides a current-free plume, it can allow to control thrust by modifying the magnetic field geometry, etc. However, their industrial application requires the understanding of the physical mechanisms involved, such as the electron thermodynamics at the plasma plume expansion, which is crucial to determine propulsive performances. This work presents a detailed characterization of the plasma plume axial profile in an ECR plasma thruster developed at ONERA. Langmuir, emissive, Faraday and ion energy probes are used to measure the electric potential space evolution, the current and electron energy distribution function in the plume, from the near field to the far field. The experimental results are compared with a quasi-1D (paraxial) steady-state kinetic model of a quasineutral collisionless magnetized plasma which is able to determine consistently the axial evolution of the electric potential and the electron and ion distribution functions with their associated properties.

  6. Electron cyclotron resonance deposition of diamond-like films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1990-01-01

    Electron cyclotron resonance (ECR) microwave plasma CVD has been developed at low pressures (0.0001 - 0.01 torr) and at ambient and high substrate temperatures (up to 750 C), to achieve large-area (greater than 4 in. diameter) depositions of diamondlike amorphous carbon (a - C:H) films. The application of a RF bias to the substrate stage, which induces a negative self-bias voltage, is found to play a critical role in determining carbon bonding configurations and in modifying the film morphology. There are two distinct types of ECR-deposited diamondlike films. One type of diamondlike film exhibits a Raman spectrum consisting of broad and overlapping, graphitic D (1360/cm, line width = 280/cm) and G (1590/cm, line width 140/cm) lines, and the other type has a broad Raman peak centered at appoximately 1500/cm. Examination of plasma species by optical emission spectroscopy shows no correlation between the CH-asterisk emission intensity and the deposition rate of diamondklike films.

  7. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.

  8. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Darvish, Behafarid; Sajjadi, Amir Yousef

    2017-02-01

    The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ˜1000 times compared to the conventional approach.

  9. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy

    SciTech Connect

    Misra, M.; Shah, K.S.; Moustakas, T.D.; Vaudo, R.P.; Singh, R.

    1995-08-01

    We report for the first time, fabrication of photoconducting UV detectors made from GaN films grown by molecular beam epitaxy. Semi-instilating GaN films were grown by the method of electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-MBE). Photoconductive devices with interdigitated electrodes were fabricated and their photoconducting properties were investigated. In this paper we report on the performance of the detectors in terms of UV responsivity, gain-quantum efficiency product, spectral response and response time. We have measured responsivity of 125A/W and gain-quantum efficiency product of 600 at 254nm and 25V. The response time was measured to be on the order of 20ns for our detectors, corresponding to a bandwidth of 25Mhz. The spectral response showed a sharp long-wavelength cutoff at 365nm, and remained constant in the 200nm to 365nm range. The response of the detectors to low-energy x-rays was measured and found to be linear for x-rays with energies ranging from 60kVp to 90kVp.

  10. High power Ion Cyclotron Resonance Heating (ICRH) in JET

    SciTech Connect

    Jacquinot, J.

    1988-01-01

    Ion Cyclotron Resonance Heating (ICRH) powers of up to 17 MW have been coupled to JET limiter plasmas. The plasma stored energy has reached 7 MJ with 13 MW of RF in 5 MA discharges with Z/sub eff/ = 2. When I/sub p//B/sub /phi// = 1 MA/T the stored energy can be 50% greater than the Goldston L mode scaling. This is due to transient stabilisation of sawteeth (up to 3 s) and to a significant energy content in the minority particles accelerated by RF (up to 30% of the total stored energy). Central temperatures of T/sub e/ - 11 keV and T/sub i/ = 8 keV have been reached with RF alone. (He/sup 3/)D fusion experiments have given a 60 kW fusion yield (fusion rate of 2 /times/ 10/sup 16/ s/sup /minus/1/ in the form of energetic fast particles (14.7 MeV(H), 3.6 MeV(He/sup 4/)) in agreement with modelling. When transposing the same calculation to a (D)T scenario, Q is predicted to be between 0.l2 and 0.8 using plasma parameters already achieved. For the first time, a peaked density profile generated by pellet injection could be reheated and sustained by ICRF for 1.2 s. Electron heat transport in the central region is reduced by a factor 2 to 3. The fusion product n/sub io//tau//sub E/T/sub io/ reaches 2.2 /times/ 10/sup 20/ m/sup /minus/3//center dot/s/center dot/kev in 3 MA discharges which is a factor of 2.3 times larger than with normal density profile. 18 refs., 13 figs., 3 tabs.

  11. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  12. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  13. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup −3}, respectively.

  14. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  15. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  16. Anomalous magnetotransport and cyclotron resonance of high mobility magnetic 2DHGs in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Wurstbauer, U.; Knott, S.; Westarp, C. G. v.; Mecking, N.; Rachor, K.; Heitmann, D.; Wegscheider, W.; Hansen, W.

    2010-02-01

    Low-temperature magnetotransport measurements and far-infrared transmission spectroscopy are reported in molecular beam epitaxial grown two-dimensional hole systems confined in strained InAs quantum wells with magnetic impurities in the channel. The interactions of the free holes spin with the magnetic moment of 5/2 provided by manganese features intriguing localization phenomena and anomalies in the Hall and the quantum Hall resistance. In magnetic field-dependent far-infrared spectroscopy measurements well-pronounced cyclotron resonance and an additional resonance are found that indicates an anti-crossing with the cyclotron resonance.

  17. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  18. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  19. Higher Harmonic Generation in the Induced Resonance Electron Cyclotron Maser.

    DTIC Science & Technology

    1987-09-01

    direction of the electron beam along the external magnetic field. The index of refraction n = cosm is adjustable by varying the angle between the...exact Lorentz force equations in the vector potential representation over the fast (cyclotron) K5 ’I..--* -- , , ’ , 1,.,. . . ,- ,,.G

  20. A Tuning Method for Electrically Compensated Ion Cyclotron Resonance Mass Spectrometer Traps

    PubMed Central

    Brustkern, Adam M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    We describe a method for tuning electrically compensated ion cyclotron resonance (ICR) traps by tracking the observed cyclotron frequency of an ion cloud at different oscillation mode amplitudes. Although we have used this method to tune the compensation voltages of a custom-built electrically compensated trap, the approach is applicable to other designs that incorporate electrical compensation. To evaluate the effectiveness of tuning, we examined the frequency shift as a function of cyclotron orbit size at different z-mode oscillation amplitudes. The cyclotron frequencies varied by ~ 12 ppm for ions with low z-mode oscillation amplitudes compared to those with high z-mode amplitudes. This frequency difference decreased to ~1 ppm by one iteration of trap tuning. PMID:20060743

  1. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  2. Critical electron pitch angle anisotropy necessary for chorus generation. [Doppler-shifted cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Burton, R. K.

    1976-01-01

    Simultaneous wave, resonant-particle, and ambient-plasma data from OGO 5 for chorus emissions on August 15, 1968, were found consistent with the theoretical critical pitch-angle-anisotropy condition for whistler-mode instability by Doppler-shifted electron cyclotron resonance. Local generation, as determined by wave normal measurements, occurred only when the pitch-angle anisotropy of resonant electrons required for instability substantially exceeded the critical anisotropy defined by Kennel and Petschek (1966).

  3. Beam-driven ion cyclotron harmonic resonances in the terrestrial foreshock

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Goldstein, M. L.; Gary, S. P.; Russell, C. T.

    1985-01-01

    A terrestrial upstream wave event which demonstrates multiple, ion cyclotron harmonic resonances between the interplanetary wave population and an observed proton beam is analyzed. The techniques and parameters employed in the data analysis are discussed, including the use of differential and band-pass filters. An upstream wave event demonstrating multiple harmonic waves is examined, and the instability analysis relevant to the ion beam observations thought to be responsible for that event is discussed. It is shown that an observed bi-Maxwellian ion beam is capable of generating right and left-hand polarized waves through ion cyclotron harmonic resonance.

  4. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, O. Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  5. Plasma ion dynamics and beam formation in electron cyclotron resonance ion sources

    SciTech Connect

    Mascali, D.; Neri, L.; Miracoli, R.; Gammino, S.; Celona, L.; Ciavola, G.; Gambino, N.; Chikin, S.

    2010-02-15

    In electron cyclotron resonance ion sources it has been demonstrated that plasma heating may be improved by means of different microwave to plasma coupling mechanisms, including the ''frequency tuning'' and the ''two frequency heating''. These techniques affect evidently the electron dynamics, but the relationship with the ion dynamics has not been investigated in details up to now. Here we will try to outline these relations: through the study of ion dynamics we may try to understand how to optimize the electron cyclotron resonance ion sources brightness. A simple model of the ion confinement and beam formation will be presented, based on particle-in-cell and single particle simulations.

  6. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  7. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  8. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    PubMed

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  9. Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere

    SciTech Connect

    Kuo, Spencer P.

    2013-09-15

    Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

  10. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGES

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; ...

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  11. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  12. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  13. The surface-state of the topological insulator Bi2Se3 revealed by cyclotron resonance

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Altarawneh, Moaz M; Analytis, James G

    2011-01-14

    Transport measurements of topological insulators are dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2Se3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state. By probing the conductivity at reduced skin depths, we have observed a 2D cyclotron resonance from a material whose bulk Fermi-surface is 3D. The frequency-magnetic field scaling of this resonance is inconsistent with the bulk effective mass, but more consistent with the dispersion and band filling of a Dirac-like surface state as observed by ARPES, with substantial manybody renormalization.

  14. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  15. Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Failla, M.; Myronov, M.; Morrison, C.; Leadley, D. R.; Lloyd-Hughes, J.

    2015-07-01

    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

  16. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  17. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto

    2002-01-01

    We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R greater than 0.3 solar mass/km) that is inconsistent with neutron stars or that requires a low (5-7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  18. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report evidence for cyclotron resonance features from the Soft Gamma Repeater SCR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV, and a narrow width of < 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R > 0.3 Solar Mass/km) that is inconsistent with neutron stars, or requires a low (5 - 7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared to those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field, which have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  19. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.

  20. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  1. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  2. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  3. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  4. Cyclotron resonances of ions with obliquely propagating waves in coronal holes and the fast solar wind

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.; Markovskii, S. A.

    2002-06-01

    There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our equations (10), (11), and (13) for the secular rate of energy gain (or loss) by a resonant particle and the unfamiliar result that ions can resonate with a purely right-hand circularly polarized wave if the propagation is oblique. We conclude with some speculations about the origin of highly obliquely propagating ion resonant waves in the corona and solar wind. We point out that there are a number of instabilities that may generate such waves locally in the corona and solar wind.

  5. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Watanabe, Takeyoshi; Matsui, Yuuki; Hirai, Yoshiaki; Kutsumi, Osamu; Sakamoto, Naoki; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  6. Acoustic mode driven by fast electrons in TJ-II Electron Cyclotron Resonance plasmas

    NASA Astrophysics Data System (ADS)

    Sun, B. J.; Ochando, M. A.; López-Bruna, D.

    2016-08-01

    Intense harmonic oscillations in radiation signals (δ I/I∼ 5{%}) are commonly observed during Electron Cyclotron Resonance (ECR) heating in TJ-II stellarator plasmas at low line-averaged electron density, 0.15 < \\bar{n}e < 0.6 ×1019 \\text{m}-3 . The frequency agrees with acoustic modes. The poloidal modal structure is compatible with Geodesic Acoustic Modes (GAM) but an n \

  7. Cyclotron auto resonance maser and free electron laser devices: a unified point of view

    NASA Astrophysics Data System (ADS)

    di Palma, E.; Sabia, E.; Dattoli, G.; Licciardi, S.; Spassovsky, I.

    2017-02-01

    We take advantage of previous research in the field of cyclotron auto resonance maser (CARM) and undulator-based free electron laser (U-FEL) sources to establish a common formalism for the relevant description of the underlying physical mechanisms. This strategy is aimed at stressing the deep analogies between the two devices and at providing a practical tool for their study based on the use of well-tested scaling formulae developed independently for the two systems.

  8. Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator “LACARA”

    SciTech Connect

    Marshall, T C

    2008-11-11

    The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

  9. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  10. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Pardo, R.; Scott, R.

    2013-11-15

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of {sup 202}Hg{sup 29+} and 3.0 eμA of {sup 202}Hg{sup 31+} from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  11. An ion cyclotron resonance study of reactions of some atomic and simple polyatomic ions with water

    NASA Technical Reports Server (NTRS)

    Karpas, Z.; Anicich, V. G.; Huntress, W. T., Jr.

    1978-01-01

    Reactions of various positive ions with water vapor were studied by ion cyclotron resonance mass spectrometric techniques. Rate constants and product distributions were determined for reactions of the ions: Ar(+), Co(+), N2(+), and CO2(+), CH2(+), and CH4(+), CH2Cl(+), HCO(+), H2CO(+), H2COH(+), H2S(+) and HS(+). The results obtained in this work are compared with earlier reported data where available.

  12. Note: Production of a mercury beam with an electron cyclotron resonance ion source.

    PubMed

    Vondrasek, R; Pardo, R; Scott, R

    2013-11-01

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of (202)Hg(29+) and 3.0 eμA of (202)Hg(31+) from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  13. ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE

    SciTech Connect

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  14. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    SciTech Connect

    Spirin, K. E. Krishtopenko, S. S.; Sadofyev, Yu. G.; Drachenko, O.; Helm, M.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  15. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.

    PubMed

    Muñoz, R; Munuera, C; Martínez, J I; Azpeitia, J; Gómez-Aleixandre, C; García-Hernández, M

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq(-1). The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  16. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  17. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition

    PubMed Central

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2016-01-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies. PMID:28070341

  18. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.; Lerche, E.; Lin, Y.; Mayoral, M.-L.; Ongena, J.; Calabro, G.; Crombé, K.; Frigione, D.; Giroud, C.; Lennholm, M.; Mantica, P.; Nave, M. F. F.; Naulin, V.; Sozzi, C.; Studholme, W.; Tala, T.; Versloot, T.; Contributors, JET-EFDA

    2012-07-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost constant angular rotation. The core rotation is stronger in magnitude than observed for scenarios with dominating ion cyclotron absorption. Two scenarios are considered: the inverted mode conversion scenarios and heating at the second harmonic 3He cyclotron resonance in H plasmas. In the latter case, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (3He)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar rotation profiles are seen when heating at the second harmonic cyclotron frequency of 3He and with mode conversion at high concentrations of 3He. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature is better than with coupled power, indicating that for these types of discharges the dominating mechanism for the rotation is related to indirect effects of electron heat transport, rather than to direct effects of ICRF heating. There is no conclusive evidence that mode conversion in itself affects rotation for these discharges.

  19. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    SciTech Connect

    Uchida, T.; Minezaki, H.; Tanaka, K.; Asaji, T.; Muramatsu, M.; Kitagawa, A.; Kato, Y.; Biri, S.

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  20. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials productiona)

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Minezaki, H.; Tanaka, K.; Muramatsu, M.; Asaji, T.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2010-02-01

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C60 ion beam production.

  1. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    SciTech Connect

    Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-09-02

    Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.

  2. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  3. Sensitive test for ion-cyclotron resonant heating in the solar wind.

    PubMed

    Kasper, Justin C; Maruca, Bennett A; Stevens, Michael L; Zaslavsky, Arnaud

    2013-03-01

    Plasma carrying a spectrum of counterpropagating field-aligned ion-cyclotron waves can strongly and preferentially heat ions through a stochastic Fermi mechanism. Such a process has been proposed to explain the extreme temperatures, temperature anisotropies, and speeds of ions in the solar corona and solar wind. We quantify how differential flow between ion species results in a Doppler shift in the wave spectrum that can prevent this strong heating. Two critical values of differential flow are derived for strong heating of the core and tail of a given ion distribution function. Our comparison of these predictions to observations from the Wind spacecraft reveals excellent agreement. Solar wind helium that meets the condition for strong core heating is nearly 7 times hotter than hydrogen on average. Ion-cyclotron resonance contributes to heating in the solar wind, and there is a close link between heating, differential flow, and temperature anisotropy.

  4. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    SciTech Connect

    Kato, Yushi Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  5. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  6. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.

    PubMed

    Kaiser, Nathan K; Bruce, James E

    2005-09-15

    Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as

  7. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities

    SciTech Connect

    Tarvainen, O. Laulainen, J.; Komppula, J.; Kronholm, R.; Kalvas, T.; Koivisto, H.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2015-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum B{sub min}-field in single frequency heating mode is often ≤0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  8. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  9. Effect of pulse-modulated microwaves on fullerene ion production with electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Uchida, T; Minezaki, H; Oshima, K; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2012-02-01

    Fullerene plasmas generated by pulse-modulated microwaves have been investigated under typical conditions at the Bio-Nano electron cyclotron resonance ion source. The effect of the pulse modulation is distinct from that of simply structured gases, and then the density of the fullerene plasmas increased as decreasing the duty ratio. The density for a pulse width of 10 μs at the period of 100 μs is 1.34 times higher than that for CW mode. We have studied the responses of fullerene and argon plasmas to pulsed microwaves. After the turnoff of microwave power, fullerene plasmas lasted ∼30 times longer than argon plasmas.

  10. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  11. First results of an auxiliary electron cyclotron resonance heating experiment in the GDT magnetic mirror

    NASA Astrophysics Data System (ADS)

    Bagryansky, P. A.; Kovalenko, Yu. V.; Savkin, V. Ya.; Solomakhin, A. L.; Yakovlev, D. V.

    2014-08-01

    The axially symmetric magnetic mirror device gas-dynamic trap (GDT, Budker Institute, Novosibirsk) has recently demonstrated a tangible increase in plasma electron temperature. According to laser scattering, a value of 0.4 keV has been achieved (a twofold increase). In addition to standard machine operation, utilizing a 5 MW neutral beam injection, a newly installed electron cyclotron resonance heating (ECRH) system was employed (54.5 GHz, 0.4 MW). The reported progress in electron temperature, along with previous experiments, which demonstrated plasma confinement at beta as high as 60%, is a significant advancement towards an energy efficient fusion neutron source based on GDT physics.

  12. The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Lyneis, C.; Leitner, D.; Leitner, M.; Taylor, C.; Abbott, S.

    2010-02-15

    VENUS is a third generation electron cyclotron resonance (ECR) ion source, which incorporates a high field superconducting NbTi magnet structure, a 28 GHz gryotron microwave source and a state of the art closed cycle cryosystem. During the decade from initial concept to regular operation, it has demonstrated both the feasibility and the performance levels of this new generation of ECR ion sources and required innovation on magnet construction, plasma chamber design, and beam transport. In this paper, the development, performance, and major innovations are described as well as a look to the potential to construct a fourth generation ECR ion source.

  13. Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P.

    2008-02-15

    The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

  14. Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broad-band electromagnetic turbulence

    NASA Technical Reports Server (NTRS)

    Retterer, John M.; Chang, Tom; Crew, G. B.; Jasperse, J. R.; Winningham, J. D.

    1987-01-01

    It is demonstrated that cyclotron resonance with observed electric field fluctuations is responsible for production of the oxygen-ion conics that are observed by the Dynamics Explorer 1 satellite in the central plasma-sheet region of the earth's magnetosphere. The ion-velocity distribution is described by a quasi-linear diffusion equation which is solved by the Monte Carlo technique. The acceleration produced by the observed wave spectrum agrees well with the ion observations, in both form and magnitude. This is believed to represent the first successful comparison of an observed conic with any theoretical model.

  15. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University.

    PubMed

    Uchida, T; Minezaki, H; Ishihara, S; Muramatsu, M; Rácz, R; Asaji, T; Kitagawa, A; Kato, Y; Biri, S; Drentje, A G; Yoshida, Y

    2014-02-01

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C60 using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  16. Two-dimensional numerical model of electron cyclotron resonance discharge with pointwise mappings

    SciTech Connect

    Eruhimov, V.; Semenov, V.

    2006-03-15

    We suggest a new approach to numerical modeling of electron distribution function in an electron cyclotron resonance (ECR) discharge. The method is based on a pointwise mapping of electron velocity over a single bounce oscillation. We limit our consideration to ECR heating, collisions, ionization, and ambipolar losses from the trap although other processes can be accounted for as well. The method gives a solution close to the brute-force particle-in-cell integration but is incomparably faster. Initial results of experiments are presented.

  17. Design of a new electron cyclotron resonance ion source at Oshima National College of Maritime Technology

    SciTech Connect

    Asaji, T. Hirabara, N.; Izumihara, T.; Nakamizu, T.; Ohba, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Kato, Y.

    2014-02-15

    A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.

  18. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  19. A 250-GHz CARM (Cyclotron Auto Resonance Maser) oscillator experiment driven by an induction linac

    SciTech Connect

    Caplan, M.; Kulke, B.; Bubp, D.G. ); McDermott, D.; Luhmann, N. )

    1990-09-14

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE{sub 11} mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%).

  20. Application of terahertz quantum-cascade lasers to semiconductor cyclotron resonance.

    PubMed

    Larrabee, Diane C; Khodaparast, Giti A; Tittel, Frank K; Kono, Jun; Scalari, Giacomo; Ajili, Lassaad; Faist, Jerome; Beere, Harvey; Davies, Giles; Linfield, Edmund; Ritchie, David; Nakajima, Yoji; Nakai, Masato; Sasa, Shigehiko; Inoue, Masataka; Chung, Seokjae; Santos, Michael B

    2004-01-01

    Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.

  1. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  2. Performance of the Argonne National Laboratory electron cyclotron resonance charge breeder

    SciTech Connect

    Vondrasek, R.; Kolomiets, A.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2011-05-15

    An electron cyclotron resonance charge breeder for the Californium rare ion breeder upgrade (CARIBU), a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), has been constructed and commissioned. Charge breeding efficiencies up to 15.6% have been realized for stable beams with a typical breeding time of 10 ms/charge state. The CARIBU system has been undergoing commissioning tests utilizing a 100 mCi {sup 252}Cf fission source. A charge breeding efficiency of 14.8 {+-} 5% has been achieved for the first radioactive beam of {sup 143}Cs{sup 27+}.

  3. Performance of the Argonne National Laboratory electron cyclotron resonance charge breeder

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kolomiets, A.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2011-05-01

    An electron cyclotron resonance charge breeder for the Californium rare ion breeder upgrade (CARIBU), a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), has been constructed and commissioned. Charge breeding efficiencies up to 15.6% have been realized for stable beams with a typical breeding time of 10 ms/charge state. The CARIBU system has been undergoing commissioning tests utilizing a 100 mCi 252Cf fission source. A charge breeding efficiency of 14.8 ± 5% has been achieved for the first radioactive beam of 143Cs27+.

  4. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  5. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics.

    PubMed

    Lu, W; Xie, D Z; Zhang, X Z; Xiong, B; Ruan, L; Sha, S; Zhang, W H; Cao, Y; Lin, S H; Guo, J W; Fang, X; Guo, X H; Li, X X; Ma, H Y; Yang, Y; Wu, Q; Zhao, H Y; Ma, B H; Wang, H; Zhu, Y H; Feng, Y C; Li, J Y; Li, J Q; Sun, L T; Zhao, H W

    2012-02-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  6. A preliminary study of the electron cyclotron resonance ion source for the RAON injector

    NASA Astrophysics Data System (ADS)

    Hong, I. S.; Kim, Y.; Choi, S. J.; Heo, J. I.; Jin, H. C.; Park, B. S.

    2016-09-01

    We have built and tested an electron cyclotron resonance (ECR) ion source for the Rare Isotope Accelerator of Newness (RAON) injector. Fully superconducting magnets were developed for the ECR ion source. First, an oxygen plasma was ignited, and a preliminary highly-charged oxygen beam was extracted. Next, a 100 μA beam current of oxygen 5+ was extracted when a 1 kW microwave power was injected using a 28 GHz gyrotron. Finally, an off-site test facility was proposed to test the components of the injector by using heavy-ion beams generated by the ECR ion source.

  7. Drude weight, cyclotron resonance, and the Dicke model of graphene cavity QED.

    PubMed

    Chirolli, Luca; Polini, Marco; Giovannetti, Vittorio; MacDonald, Allan H

    2012-12-28

    The unique optoelectronic properties of graphene make this two-dimensional material an ideal platform for fundamental studies of cavity quantum electrodynamics in the strong-coupling regime. The celebrated Dicke model of cavity quantum electrodynamics can be approximately realized in this material when the cyclotron transition of its 2D massless Dirac fermion carriers is nearly resonant with a cavity photon mode. We develop the theory of strong matter-photon coupling in this circumstance, emphasizing the essential role of a dynamically generated matter energy term that is quadratic in the photon field and absent in graphene's low-energy Dirac model.

  8. Gas phase ion - molecule reactions studied by Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Ross, C.W. III.

    1993-01-01

    Intrinsic thermodynamic information of molecules can easily be determined in the low pressure FT/ICR mass spectrometer. The gas phase basicity of two carbenes were measured by isolating the protonated carbene ion and reacting it with neutral reference compounds by the bracketing method. A fundamentally new-dimensional FT/ICR/MS experiment, SWIM (stored waveform ion modulation) 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system. In some endoergic reactions there is a minimum energy threshold that must overcome for a reaction to occur. Hence, a simple sinusoidal modulation of parent ion cyclotron radius leads to a clipped sinusoidal signal of the product ion abundance in the second dimension, which upon Fourier transformation produces signals with harmonic and combination ion cyclotron resonance frequencies. Moreover, ion-molecule reaction rates may vary directly within kinetic energy rather than cyclotron radius. With SWIM, it is possible to tailor the excitation profile so as to produce a sinusoidal modulation of ion kinetic energy as a function of cyclotron frequency.

  9. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves

    NASA Astrophysics Data System (ADS)

    Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui

    2017-02-01

    Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq<75°, nearly independent of wave normal angle ψ. In contrast, the upper pitch angle cutoff of nonlinear losses tends to increase with the wave normal angle increasing, which is about αeq=82° at ψ = 0° and αeq>87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.

  10. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    SciTech Connect

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-15

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  11. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.

    PubMed

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-01

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  12. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  13. Self-consistent simulation of a planar electron-cyclotron-wave-resonance discharge

    SciTech Connect

    Krimke, R.; Urbassek, H.M.

    1997-06-01

    A discharge heated inductively by resonant absorption of electron cyclotron waves discharge is modeled in a planar geometry. The simulation algorithm is based on a kinetic particle-in-cell (PIC/MC) simulation of the plasma properties; the electromagnetic field is calculated macroscopically using the Appleton{endash}Hartree theory for the dielectric tensor. The results are checked against a simplified analytical theory and experimental data by B. Pfeiffer [J. Appl. Phys. {bold 37}, 1624,1628 (1966)] for a 15 mTorr argon discharge. As a result, we show that an inhomogeneous density profile in the discharge strongly affects the electromagnetic fields in the plasma. Power deposition is calculated both in and outside of the resonance. {copyright} {ital 1997 American Institute of Physics.}

  14. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  15. ARTEMIS-B: A room-temperature test electron cyclotron resonance ion source for the National Superconducting Cyclotron Laboratory at Michigan State University

    SciTech Connect

    Machicoane, G.; Cole, D.; Ottarson, J.; Stetson, J.; Zavodszky, P.

    2006-03-15

    The current scheme for ion-beam injection into the coupled cyclotron accelerator at the NSCL involves the use of two electron cyclotron resonance (ECR) ion sources. The first one is a 6.4 GHz fully superconducting that will be replaced within two years by SUSI, a third generation 18 GHz superconducting ECR ion source. The other source, ARTEMIS, is a room-temperature source based on the AECR-U design and built in collaboration with the University of Jyvaeskylae in 1999. Due to cyclotron operation constraint, very little time can be allowed to ion source development and optics studies of the cyclotron injection beam line. In this context, NSCL has decided to build ARTEMIS-B an exact replica of its room-temperature ECR ion source. The goal of this project is threefold. One is to improve the overall reliability of cyclotron operation through tests and studies of various ion source parameters that could benefit beam stability, tuning reproducibility, and of course overall extracted currents performance. Second is to implement and test modifications or upgrade made to the ion source: extraction geometry, new resistive or rf oven design, dual frequency use, liner, etc. Finally, this test source will be used to study various ion optics schemes such as electrostatic quadrupole doublet or triplet at the source extraction or the use of a correction sextupole and assess their effect on the ion beam through the use of an emittance scanner and imaging viewer that will be incorporated into ARTEMIS-B beam line. This article reviews the design and construction of ARTEMIS-B along with some initial commissioning results.

  16. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    NASA Astrophysics Data System (ADS)

    Lu, W.; Sun, L. T.; Qian, C.; Guo, J. W.; Fang, X.; Feng, Y. C.; Yang, Y.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Xiong, B.; Guo, S. Q.; Ruan, L.; Zhao, H. W.

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O6+, 1.7 emA of Ar8+, 1.07 emA of Ar9+, and 118 euA of Bi28+. The source has also successfully delivered O5+ and Ar8+ ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  17. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  18. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  19. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Baring, Matthew G.; Eiles, Matthew T.; Wadiasingh, Zorawar; Taylor, Caitlin A.; Fitch, Catherine J.

    2014-08-01

    The quantum electrodynamical (QED) process of Compton scattering in strong magnetic fields is commonly invoked in atmospheric and inner magnetospheric models of x-ray and soft gamma-ray emission in high-field pulsars and magnetars. A major influence of the field is to introduce resonances at the cyclotron frequency and its harmonics, where the incoming photon accesses thresholds for the creation of virtual electrons or positrons in intermediate states with excited Landau levels. At these resonances, the effective cross section typically exceeds the classical Thomson value by over 2 orders of magnitude. Near and above the quantum critical magnetic field of 44.13 TeraGauss, relativistic corrections must be incorporated when computing this cross section. This profound enhancement underpins the anticipation that resonant Compton scattering is a very efficient process in the environs of highly magnetized neutron stars. This paper presents formalism for the QED magnetic Compton differential cross section valid for both subcritical and supercritical fields, yet restricted to scattered photons that are below pair creation threshold. Calculations are developed for the particular case of photons initially propagating along the field, and in the limit of zero vacuum dispersion, mathematically simple specializations that are germane to interactions involving relativistic electrons frequently found in neutron star magnetospheres. This exposition of relativistic, quantum, magnetic Compton cross sections treats electron spin dependence fully, since this is a critical feature for describing the finite decay lifetimes of the intermediate states. Such lifetimes are introduced to truncate the resonant cyclotronic divergences via standard Lorentz profiles. The formalism employs both the traditional Johnson and Lippmann (JL) wave functions and the Sokolov and Ternov (ST) electron eigenfunctions of the magnetic Dirac equation. The ST states are formally correct for self

  20. Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Lennholm, M.; Chapman, I. T.; Lerche, E.; Reich, M.; Alper, B.; Bobkov, V.; Dumont, R.; Faustin, J. M.; Jacquet, P.; Jaulmes, F.; Johnson, T.; Keeling, D. L.; Liu, Yueqiang; Nicolas, T.; Tholerus, S.; Blackman, T.; Carvalho, I. S.; Coelho, R.; Van Eester, D.; Felton, R.; Goniche, M.; Kiptily, V.; Monakhov, I.; Nave, M. F. F.; Perez von Thun, C.; Sabot, R.; Sozzi, C.; Tsalas, M.

    2015-01-01

    New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.

  1. Electron effective mass enhancement in Ga(AsBi) alloys probed by cyclotron resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pettinari, G.; Drachenko, O.; Lewis, R. B.; Tiedje, T.

    2016-12-01

    The effect of Bi incorporation on the conduction band structure of Ga(AsBi) alloys is revealed by a direct estimation of the electron effective mass via cyclotron resonance absorption spectroscopy at THz frequencies in pulsed magnetic fields up to 65 T. A strong enhancement in the electron effective mass with increasing Bi content is reported, with a value of mass ˜40 % higher than that in GaAs for ˜1.7 % of Bi. This experimental evidence unambiguously indicates a Bi-induced perturbation of the host conduction band states and calls for a deep revision of the theoretical models describing dilute bismides currently proposed in the literature, the majority of which neglect or exclude that the incorporation of a small percentage of Bi may affect the conduction band states of the host material.

  2. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Uchida, T.; Muramatsu, M.; Kato, Y.

    2016-02-15

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5–6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  3. Fabrication of ultrathin Ni-Zn ferrite films using electron cyclotron resonance sputtering method

    SciTech Connect

    Tanaka, Terumitsu; Kurisu, Hiroki; Matsuura, Mitsuru; Shimosato, Yoshihiro; Okada, Shigenobu; Oshiro, Kazunori; Fujimori, Hirotaka; Yamamoto, Setsuo

    2006-04-15

    Well-crystallized Ni-Zn ferrite (Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4}) highly oriented ultrathin films were obtained at a substrate temperature of 200 deg. C by a reactive sputtering method utilizing electron cyclotron resonance microwave plasma, which is very effective to crystallize oxide or nitride materials without heat treatment. Thin films of Ni-Zn ferrite deposited on a MgO (100) underlayer showed an intense X-ray-diffraction peak of (400) from the Ni-Zn ferrite as compared to similar films deposited directly onto thermally oxidized Si substrates. A 1.5-nm-thick Ni-Zn ferrite film, which corresponds to twice the lattice constant for bulk Ni-Zn ferrite, crystallized on a MgO (100) underlayer.

  4. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  5. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Muramatsu, M.; Sekiguchi, M.; Yamada, S.; Jincho, K.; Okada, T.; Yamamoto, M.; Hattori, T.; Biri, S.; Baskaran, R.; Sakata, T.; Sawada, K.; Uno, K.

    2000-02-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C4+ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e μA for C4+ and 1.1e mA for Ar8+, respectively.

  6. Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Ongena, J.; Fülöp, T.

    2014-02-01

    The construction of the world largest superconducting stellarator Wendelstein 7-X (W7-X) has reached the final stage. One of the main scientific objectives of the W7-X project is to prove experimentally the predicted good confinement of high-energy ions. Ion cyclotron resonance heating (ICRH) system is considered to be installed in W7-X to serve as a localized source of high energy ions. ICRH heating scenarios relevant for hydrogen and deuterium phases of W7-X operation are summarized. The heating efficiency in (3He)-H plasmas is qualitatively analyzed using a modified version of the 1D TOMCAT code able to account for stellarator geometry. The minority ion absorption is shown to be maximized at the helium-3 concentration ˜2% for the typical plasma and ICRH parameters to be available during the initial phase of W7-X.

  7. Roadmap for the design of a superconducting electron cyclotron resonance ion source for Spiral2

    SciTech Connect

    Thuillier, T.; Angot, J.; Lamy, T.; Peaucelle, C.

    2012-02-15

    A review of today achieved A/Q = 3 heavy ions beams is proposed. The daily operation A/Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

  8. Development of Electron Cyclotron Resonance Ion Source for Synthesis of Endohedral Metallofullerenes

    SciTech Connect

    Tanaka, K.; Muramatsu, M.; Uchida, T.; Hanajiri, T.; Yoshida, Y.; Biri, S.; Kitagawa, A.; Kato, Y.

    2008-11-03

    A new electron cyclotron resonance ion source (ECRIS) has been constructed for synthesis of endohedral metallofullerenes. The main purpose of the ion source is to produce new biological and medical materials. The design is based on ECRIS for production of multicharged ion beams with a traditional minimum-B magnetic field. An 8-10 GHz traveling wave tube (TWT) amplifier and a 2.45 GHz magnetron have been applied as microwave sources. Fullerene and metal vapor are introduced with a filament heating micro-oven and an induction heating oven, respectively. In preliminary ion-extraction test, Ar{sup +} is 54 {mu}A. Many broken fullerenes such as C{sub 58} and C{sub 56} are observed in fullerene ion beams.

  9. Refractory rf ovens and sputter probes for electron cyclotron resonance ion source

    SciTech Connect

    Cavenago, M.; Galata, A.; Kulevoy, T.; Petrenko, S.; Sattin, M.; Facco, A.

    2008-02-15

    Beams from electron cyclotron resonance ion source (ECRIS) with radio frequency ovens for refractory material (using a Mo coil) were recently demonstrated; results for Ti and V are here discussed, with temperature T{sub s}{>=}2300 K stably maintained and extracted current of about 1000 nA for V{sup 8+} and V{sup 9+}. The status of sputter probes is also reported, and the reason why trapping efficiency may be lower than in the oven case are investigated. The simple tubular probe concept show typical currents of Sn{sup 18+} about 250 nA, for the most abundant isotopes, but an operating pressure of about 300 {mu}Pa may be required. Some preliminary experiments were performed with Penning probes, showing that transmission of Sn or Pr from Penning cathode to ECRIS plasma is limited. Placement of tin onto anticathode and use of collimator between Penning and ECRIS are also discussed.

  10. Impurity cyclotron resonance in InGaAs/AlAs superlattice under ultra high magnetic fields

    NASA Astrophysics Data System (ADS)

    Momose, H.; Deguchi, H.; Okai, H.; Mori, N.; Takeyama, S.

    2005-11-01

    We have carried out cyclotron resonance (CR) measurements of (InGaAs) 8/(AlAs) 8 superlattice (SL) to investigate electronic properties of the SL under pulsed ultra-high magnetic fields. The magnetic fields up to 160 T were generated by using the single-turn-coil technique. Clear CR signals were obtained in the transmission of far-infrared laser through the SL at room temperature and lower temperature. We observed a shift of CR peak to lower magnetic field caused by transition from free-electron CR to impurity CR below ∼90 K. Compared with the previous works of GaAs/AlAs SL, the peak shift was small and the transition temperature was low. This result suggests that a binding energy of the impurity in the InGaAs/AlAs SL is smaller than the GaAs/AlAs SL.

  11. Trap density of GeNx/Ge interface fabricated by electron-cyclotron-resonance plasma nitridation

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Otani, Yohei; Toyota, Hiroshi; Ono, Toshiro

    2011-07-01

    We have investigated GeNx/Ge interface properties using Si3N4(7 nm)/GeNx(2 nm)/Ge metal-insulator-semiconductor structures fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The interface trap density (Dit) measured by the conductance method is found to be distributed symmetrically in the Ge band gap with a minimum Dit value lower than 3 × 1011 cm-2eV-1 near the midgap. This result may lead to the development of processes for the fabrication of p- and n-Ge Schottky-barrier (SB) source/drain metal-insulator-semiconductor field-effect transistors using chemically and thermally robust GeNx dielectrics as interlayers for SB source/drain contacts and high-κ gate dielectrics.

  12. Status of the pulsed magnetic field electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Mühle, C.; Ratzinger, U.; Bleuel, W.; Jöst, G.; Leible, K.; Schennach, S.; Wolf, B. H.

    1994-04-01

    Synchrotrons like the heavy-ion synchrotron SIS at GSI need an efficient low duty cycle injector (typical 1-pulse/s and 200-μs pulse length). To improve the peak current, an electron cyclotron resonance (ECR) ion source has been designed using a pulsed magnetic field (PuMa) to force ion extraction. We replaced the hexapole of a 10-GHz Minimafios ECR ion source by a vacuum chamber containing a water-cooled bilayered solenoid coil and a decapole permanent magnetic structure. A pulse line feeds the solenoid with a 250-μs pulse which increases the magnetic field in the minimum B region by 0.3 T. This process opens the magnetic bottle along the beam axis resulting in an extracted ion pulse. First tests of the PuMa ECR configuration in cw and pulsed operation are presented and analyzed.

  13. Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides.

    PubMed

    Park, Youmie; Lebrilla, Carlito B

    2005-01-01

    The application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to the structural elucidation of oligosaccharides is described. This review covers the analyses of oligosaccharides in the context of the unique features of FTICR MS and the improvements in instrumentation that make it possible to study this class of compounds. It consists of work performed initially to understand the fundamental aspects of oligosaccharide ionization and unimolecular fragmentation. More recent investigation includes the application of the technique to samples of direct biological origin. Chemical and enzymatic degradation methods in conjunction with mass spectrometry (MS) and the use front-end methods with FTICR MS are also discussed. The current applications including the characterization of bacterial lipooligosaccharides and phosporylated carbohydrates are described.

  14. Diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves

    SciTech Connect

    Tripathi, A. K.; Singhal, R. P.

    2009-11-15

    Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves using quasilinear diffusion theory. Unlike previous calculations, the parallel group velocity has been included in this study. Further, ECH wave intensity is expressed as a function of wave frequency and wave normal angle with respect to ambient magnetic field. It is found that observed wave electric field amplitudes in Earth's magnetosphere are sufficient to set electrons on strong diffusion in the energy ranges of a few hundred eV. However, the required amplitudes are larger than the observed values for keV electrons and higher by about a factor of 3 compared to past calculations. Required electric field amplitudes are smaller at larger radial distances. It is concluded that ECH waves are responsible for diffuse auroral precipitation of electrons with energies less than about 500 eV.

  15. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    SciTech Connect

    Uchida, T.; Rácz, R.; Biri, S.; Kato, Y.; Yoshida, Y.

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  16. Production of molecular ion beams using an electron cyclotron resonance ion source

    SciTech Connect

    Draganić, I. N.; Bannister, M. E.; Meyer, F. W.; Vane, C. R.; Havener, C. C.

    2011-06-01

    An all-permanent magnet electron cyclotron resonance (ECR) ion source is tuned to create a variety of intense molecular ion beams for basic energy research. Based on simultaneous injection of several gases with spectroscopic high purity or enriched isotope content (e.g., H2, D2, N2, O2, or CO) and lower power microwave heating, the ECR ion source produces diatomic molecular ion beams of H2+, D2+, HD+, HO+, DO+, NH+, ND+, and more complex polyatomic molecular ions such as H3+, D3+, HD2+, H2O+, D2O+, H3O+, D3O+, and NHn+, NDn+ with n=2,3,4 and possibly higher. Molecular ion beams have been produced with very high current intensities compared to other molecular beam sources. The recorded molecular ion beam spectra are discussed.

  17. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  18. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    SciTech Connect

    Uchiyama, A. Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-15

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  19. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Rácz, R.; Muramatsu, M.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  20. Progress towards the development of a realistic electron cyclotron resonance ion source extraction model

    SciTech Connect

    Winklehner, D.; Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Strohmeier, M. M.

    2012-02-15

    In this paper, an ongoing effort to provide a simulation and design tool for electron cyclotron resonance ion source extraction and low energy beam transport is described and benchmarked against experimental results. Utilizing the particle-in-cell code WARP, a set of scripts has been developed: A semiempirical method of generating initial conditions, a 2D-3D hybrid method of plasma extraction and a simple beam transport deck. Measured emittances and beam profiles of uranium and helium beams are shown and the influence of the sextupole part of the plasma confinement field is investigated. The results are compared to simulations carried out using the methods described above. The results show that the simulation model (with some additional refinements) represents highly charged, well-confined ions well, but that the model is less applicable for less confined, singly charged ions.

  1. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Ohnishi, J. Higurashi, Y.; Nakagawa, T.

    2016-02-15

    We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS.

  2. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    SciTech Connect

    Cannat, F. E-mail: felix.cannat@gmail.com; Lafleur, T.; Jarrige, J.; Elias, P.-Q.; Packan, D.; Chabert, P.

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  3. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  4. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification.

    PubMed

    Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  5. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  6. Effects of fundamental and second harmonic electron cyclotron resonances on ECRIS.

    PubMed

    Kato, Yushi; Satani, Takashi; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    A new concept on magnetic field of plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of comb-shaped magnet which has opposite polarity to each other, and which cylindrically surrounds the plasma chamber. This magnetic configuration suppresses the loss due to E x B drift, and then plasma confinement is enhanced. The profiles of the electron temperature and density are measured around the ECR zones of the fundamentals and the second harmonics for 2.45 GHz and 11-13 GHz microwaves by using Langmuir probe. Their characteristics and effects are clarified under various operating conditions in both of simple multipole and comb-shaped magnetic configurations.

  7. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  8. Cyclotron resonance and Faraday rotation in topological insulator (Bi,Sb)2 Te3

    NASA Astrophysics Data System (ADS)

    Shao, Yinming; Post, Kirk; Wu, Jhih-Sheng; Richardella, Anthony; Lee, Joon Sue; Fogler, Michael; Samarth, Nitin; Basov, Dimitri

    Using magneto-optical spectroscopy, we have explored the complex electronic structure of (Bi,Sb)2 Te3 (BST) film. From the magneto-optical transmission spectra, we extracted the cyclotron resonance (CR) energy, and subsequently measured the broadband Faraday rotation spectra (FR). From these complementary FR-CR datasets, we were able to identify the conducting channels associated with the topological surface states of the film at the interface with the substrate and with the amorphous capping layer on top of the film. According to the FR data the two surfaces are dominated by carriers of opposite sign, in accord with earlier transport measurements. These results elucidate the origin of the zero-field optical response, observed previously, and give direct evidence of significant SS contribution using a bulk sensitive probe.

  9. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  10. Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator

    SciTech Connect

    Kazakov, Ye. O.

    2014-02-12

    The construction of the world largest superconducting stellarator Wendelstein 7-X (W7-X) has reached the final stage. One of the main scientific objectives of the W7-X project is to prove experimentally the predicted good confinement of high-energy ions. Ion cyclotron resonance heating (ICRH) system is considered to be installed in W7-X to serve as a localized source of high energy ions. ICRH heating scenarios relevant for hydrogen and deuterium phases of W7-X operation are summarized. The heating efficiency in ({sup 3}He)-H plasmas is qualitatively analyzed using a modified version of the 1D TOMCAT code able to account for stellarator geometry. The minority ion absorption is shown to be maximized at the helium-3 concentration ∼2% for the typical plasma and ICRH parameters to be available during the initial phase of W7-X.

  11. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  12. Electron cyclotron resonant heating: A simpler method for deriving the linear wave equations in a nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    McDonald, D. C.; Cairns, R. A.; Lashmore-Davies, C. N.

    1994-04-01

    In a recent article Cairns et al. [Phys. Fluids B 3, 2953 (1991)] gave a method for the derivation of full wave equations describing propagation through a cyclotron resonance in an inhomogeneous plasma. The simplicity of this method compares favorably with previous derivations, and the damping resulting from the variation in the magnetic field across a Larmor orbit, described by Lashmore-Davies and Dendy [Phys. Fluids B 1, 1565 (1989)], is included. The effect of the relativistic mass shift on the cyclotron frequency, which plays an important role in the electron cyclotron range of frequencies, was not taken into account, however, and the object of the present work is to remedy this omission. It is shown how equations, valid in the weakly relativistic regime, may be obtained in a rather straightforward way. Results obtained by a number of earlier workers are recovered and can be extended.

  13. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: Off-resonant and resonant cases

    SciTech Connect

    Cortázar, O. D.

    2013-09-15

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  14. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    SciTech Connect

    Timofeev, A. V.

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  15. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Timofeev, A. V.

    2015-11-01

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  16. Plasma heating in stellarators by radio frequency electromagnetic waves at the fundamental ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir A.

    1998-11-01

    A perturbation method is developed to find the structure of Alfven wave modes in a cylindrical waveguide filled with a cold, collisional, uniform plasma with a vacuum layer between the plasma and a conducting wall when the magnetic field in the waveguide is a superposition of a uniform and an inhomogeneous /ell=2 (quadrupole) field created by helical windings. The influence of the helical field on the wave mode structure is treated as a perturbation. This innovative technique is applied in order to investigate the possibility of direct heating of plasma ions at the fundamental ion cyclotron resonance in stellarator magnetic field configuration. However, the theoretical development itself is unique and complete, and it can be useful for the analysis of other similar plasma models. We investigated the mode structure of an m=[+]1 (azimuthal wave number) fast wave which is modified by the magnetic field inhomogeneity. We found that the m=[- ]1 azimuthal component of the modified m=[+]1 fast Alfven wave is left-hand polarized in the central part of the plasma. This implies a coupling between the m=[+]1 fast (right-hand polarized) wave and m=[-]1 slow (left- hand polarized) waves due to the inhomogeneity of the /ell=2 fields. The coupling efficiency is examined for different plasma parameters. Results demonstrate that efficient coupling between the modes occurs for appropriate plasma parameters in this model, indicating that efficient plasma heating at the fundamental ion cyclotron frequency is possible in stellarators. The results of the analysis also point the way to a general theory of linear wave coupling in any inhomogeneous, anisotropic medium, since conventional mode conversion theory may be seen as just another example of this general theory.

  17. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    SciTech Connect

    Hillairet, Julien Mollard, Patrick; Bernard, Jean-Michel; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Colas, Laurent; Delaplanche, Jean-Marc; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Magne, Roland; Patterlini, Jean-Claude; and others

    2015-12-10

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V{sub r}/V{sub f} and SHAD systems.

  18. Wave propagation near a cyclotron resonance in a nonuniform equilibrium magnetic field

    NASA Astrophysics Data System (ADS)

    Cairns, R. A.; Lashmore-Davies, C. N.; Dendy, R. O.; Harvey, B. M.; Hastie, R. J.; Holt, H.

    1991-11-01

    The inclusion of the variation of the equilibrium magnetic field across the Larmor orbits of the resonant particles is crucial for a self-consistent treatment of cyclotron resonance in plasmas. Two contrasting nonrelativistic self-consistent calculations [T. M. Antonsen and W. M. Manheimer, Phys. Fluids 21, 2295 (1978); C. N. Lashmore-Davies and R. O. Dendy, Phys. Fluids B 1, 1565 (1989)] which analyze perpendicular propagation in the same nonuniform magnetic field are compared. It is shown that the first of these, which is a full wave calculation, makes an approximation that eliminates the damping found in the second, which calculates optical depth via a Wentzel-Kramers-Brillouin (WKB) approximation. A new expansion of the exact integral equation describing the problem is given, producing full wave equations which incorporate the perpendicular damping. The equations are of the correct form to ensure energy conservation and can easily be obtained to any order in an expansion in terms of the ratio of Larmor radius to perpendicular wavelength.

  19. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.

    2014-06-01

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  20. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Altenburg, Y.; Baylard, C.; and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  1. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    NASA Astrophysics Data System (ADS)

    Hillairet, Julien; Mollard, Patrick; Zhao, Yanping; Bernard, Jean-Michel; Song, Yuntao; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Chen, Gen; Chen, Zhaoxi; Colas, Laurent; Delaplanche, Jean-Marc; Dumortier, Pierre; Durodié, Frédéric; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Patterlini, Jean-Claude; Prou, Marc; Verger, Jean-Marc; Volpe, Robert; Vulliez, Karl; Wang, Yongsheng; Winkler, Konstantin; Yang, Qingxi; Yuan, Shuai

    2015-12-01

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the Vr/Vf and SHAD systems.

  2. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  3. Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption

    NASA Astrophysics Data System (ADS)

    Orlita, M.; Crassee, I.; Faugeras, C.; Kuzmenko, A. B.; Fromm, F.; Ostler, M.; Seyller, Th; Martinez, G.; Polini, M.; Potemski, M.

    2012-09-01

    We report on absolute magneto-transmission experiments on highly doped quasi-free-standing epitaxial graphene targeting the classical-to-quantum crossover of the cyclotron resonance. This study allows us to directly extract the carrier density and also other relevant quantities such as the quasiparticle velocity and the Drude weight, which is precisely measured from the strength of the cyclotron resonance. We find that the Drude weight is renormalized with respect to its non-interacting (or random phase approximation) value and that the renormalization is tied to the quasiparticle velocity enhancement. This finding is in agreement with recent theoretical predictions, which attribute the renormalization of the Drude weight in graphene to the interplay between broken Galilean invariance and electron-electron interactions.

  4. Non-linear transport in microwave-irradiated 2D electron systems at the cyclotron resonance subharmonics

    NASA Astrophysics Data System (ADS)

    Chiang, Hung-Sheng; Hatke, Anthony; Zudov, Michael; Pfeiffer, Loren; West, Ken

    2009-03-01

    We study microwave photoresistivity oscillations in a high mobility two-dimensional electron system subject to strong dc electric fields. We find [1] that near the second subharmonic of the cyclotron resonance the frequency of the resistivity oscillations with dc electric field is twice the frequency of the oscillations at the cyclotron resonance, its harmonics, or in the absence of microwave radiation. This observation is discussed in terms of the microwave-induced sidebands in the density of states and the interplay between different scattering processes in the separated Landau level regime. [1] A. T. Hatke, H.-S. Chiang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. accepted for publication.

  5. A proposal for a novel H ion source based on electron cyclotron resonance heating and surface ionization

    SciTech Connect

    Tarvainen, Ollie A; Kurennoy, Sergey

    2008-01-01

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further 'self-extracted' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  6. A Proposal for a Novel H{sup -} Ion Source Based on Electron Cyclotron Resonance Plasma Heating and Surface Ionization

    SciTech Connect

    Tarvainen, O.; Kurennoy, S.

    2009-03-12

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further ''self-extracted'' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  7. Measurements of the fast electron bremsstrahlung emission during electron cyclotron resonance heating in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu, Yi; Song, X. Y.; Yuan, G. L.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, J. W.; Zhou, J.; Li, X.; Yang, Q. W.; Duan, X. R.; Pan, C. H.; Liu, Y.

    2010-10-15

    A fast electron bremsstrahlung (FEB) diagnostic technique based on cadmium telluride (CdTe) detector has been developed recently in the HL-2A tokamak for measurements of the temporal evolution of FEB emission in the energy range of 10-200 keV. With a perpendicular viewing into the plasma on the equatorial plane, the hard x-ray spectra with eight different energy channels are measured. The discrimination of the spectra is implemented by an accurate spectrometry. The system also makes use of fast digitization and software signal processing technology. An ambient environment of neutrons, gammas, and magnetic disturbance requires careful shielding. During electron cyclotron resonance heating, the generation of fast electrons and the oscillations of electron fishbone (e-fishbone) have been found. Using the FEB measurement system, it has been experimentally identified that the mode strongly correlates with the electron cyclotron resonance heating produced fast electrons with 30-70 keV.

  8. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Kang, C. S.; Lee, S. G.

    2014-07-15

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  9. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer.

    PubMed

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN(+) using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  10. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  11. Evolutions of zonal flows and turbulence in a tokamak edge plasma during electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Kong, D. F.; Liu, A. D.; Lan, T.; Cui, Z. Y.; Yu, D. L.; Yan, L. W.; Zhao, H. L.; Sheng, H. G.; Chen, R.; Xie, J. L.; Li, H.; Liu, W. D.; Yu, C. X.; Ding, W. X.; Sun, X.; Hong, W. Y.; Cheng, J.; Zhao, K. J.; Dong, J. Q.; Duan, X. R.

    2013-12-01

    Geodesic acoustic mode (GAM) and low-frequency zonal flow (LFZF) are both observed through Langmuir probe arrays during electron cyclotron resonance heating (ECRH) on the HL-2A tokamak edge. The radial distributions of the amplitude and peak frequency of GAM in floating potential fluctuations are investigated through rake probe arrays under different ECRH powers. It is observed that the GAM frequency would decrease and the intensity of carbon line emission would increase as the ECRH power exceeds a certain threshold. The analyses suggest that the impurity ions may play an important role in the GAM frequency at the edge region. It is also found that during the ECRH phase besides the mean flow, both GAM and LFZF are strengthened. The total fluctuation power and the fraction of that power associated with zonal flows both increase with the ECRH power, consistent with a predator-prey model. The auto- and cross-bicoherence analyses show the coupling between GAM and its second harmonic during the ECRH phase. Moreover, the results also suggest that the couplings between GAM and the components with multiple GAM frequency are strengthened. These couplings may be important for GAM saturation during the ECRH phase.

  12. Identification of sites of ubiquitination in proteins: a fourier transform ion cyclotron resonance mass spectrometry approach.

    PubMed

    Cooper, Helen J; Heath, John K; Jaffray, Ellis; Hay, Ronald T; Lam, Tukiet T; Marshall, Alan G

    2004-12-01

    Structural elucidation of posttranslationally modified peptides and proteins is of key importance in the understanding of an array of biological processes. Ubiquitination is a reversible modification that regulates many cellular functions. Consequences of ubiquitination depend on whether a single ubiquitin or polyubiquitin chain is added to the tagged protein. The lysine residue through which the polyubiquitin chain is formed is also critical for biological activity. Robust methods are therefore required to identify sites of ubiquitination modification, both in the target protein and in ubiquitin. Here, we demonstrate the suitability of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, in conjunction with activated ion electron capture dissociation (AI ECD) or infrared multiphoton dissociation (IRMPD), for the analysis of ubiquitinated proteins. Polyubiquitinated substrate protein GST-Ubc5 was generated in vitro. Tryptic digests of polyubiquitinated species contain modified peptides in which the ubiquitin C-terminal Gly-Gly residues are retained on the modified lysine residues. Direct infusion microelectrospray FT-ICR of the digest and comparison with an in silico digest enables identification of modified peptides and therefore sites of ubiquitination. Fifteen sites of ubiquitination were identified in GST-Ubc5 and four sites in ubiquitin. Assignments were confirmed by AI ECD or IRMPD. The Gly-Gly modification is stable and both tandem mass spectrometric techniques are suitable, providing extensive sequence coverage and retention of the modification on backbone fragments.

  13. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    PubMed

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  14. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.

    2006-03-15

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150 keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10x10 cm{sup 2} has been marked at 20 cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05 mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7 min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10{sup -5} Torr, microwave power: 350 W, and coil current: 0 A. The effective energy of the x-ray spectrum is nearly 40 keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  15. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  16. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    SciTech Connect

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  17. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  18. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  19. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  20. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  1. Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments

    NASA Astrophysics Data System (ADS)

    Lerche, E.; Van Eester, D.; Ongena, J.; Mayoral, M.-L.; Laxaback, M.; Rimini, F.; Argouarch, A.; Beaumont, P.; Blackman, T.; Bobkov, V.; Brennan, D.; Brett, A.; Calabro, G.; Cecconello, M.; Coffey, I.; Colas, L.; Coyne, A.; Crombe, K.; Czarnecka, A.; Dumont, R.; Durodie, F.; Felton, R.; Frigione, D.; Gatu Johnson, M.; Giroud, C.; Gorini, G.; Graham, M.; Hellesen, C.; Hellsten, T.; Huygen, S.; Jacquet, P.; Johnson, T.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lamalle, P.; Lennholm, M.; Loarte, A.; Maggiora, R.; Maslov, M.; Messiaen, A.; Milanesio, D.; Monakhov, I.; Nightingale, M.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sozzi, C.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Vrancken, M.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

    2011-12-01

    In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

  2. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook; Lee, Seung Wook

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  3. Electron cyclotron resonance deposition of amorphous silicon alloy films and devices

    SciTech Connect

    Shing, Y.H. )

    1992-10-01

    This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.

  4. Electron cyclotron resonance deposition of a-Si:H and a-C:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Yang, C. L.; Allevato, C. E.; Pool, F. S.

    1989-01-01

    Amorphous silicon (a-Si:H) and amorphous carbon (a-C:H) films have been deposited by electron cyclotron resonance (ECR) microwave plasma enhanced CVD. A high deposition rate of 25 A/sec and a light-to-dark conductivity ratio of 500,000 for a-Si:H films have been achieved by the ECR process using a pure silane plasma. ECR microwave plasmas have been analyzed by in situ optical emission spectroscopy (OES) and have shown a strong H-asterisk emission at 434 nm indicating higher chemical reactivity than RF plasmas. The linear correlation between the film deposition rate and the SiH-asterisk emission intensity of ECR silane plasma suggests that SiH-asterisk species are related to the neutral radicals which are responsible for the a-Si:H film deposition. Hard and soft a-C:H films have been deposited by ECR with and without RF bias power, respectively. The RF bias to the substrate is found to play a critical role in determining the film structure and the carbon bonding configuration of ECR deposited a-C:H films. Raman spectra of these films indicate that ECR deposition conditions can be optimized to produce diamond films.

  5. Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometric characterization of protein kinase C phosphorylation.

    PubMed

    Chalmers, Michael J; Quinn, John P; Blakney, Greg T; Emmett, Mark R; Mischak, Harold; Gaskell, Simon J; Marshall, Alan G

    2003-01-01

    A vented column, capillary liquid chromatography (LC) microelectrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR (9.4 T)) mass spectrometry (MS) approach to phosphopeptide identification is described. A dual-ESI source capable of rapid (approximately 200 ms) switching between two independently controlled ESI emitters was constructed. The dual-ESI source, combined with external ion accumulation in a linear octopole ion trap, allowed for internal calibration of every mass spectrum during LC. LC ESI FT-ICR positive-ion MS of protein kinase C (PKC) revealed four previously unidentified phosphorylated peptides (one within PKC(alpha), one within PKC(delta), and two within PKC(zeta)). Internal calibration improved the mass accuracy for LC MS spectra from an absolute mean (47 peptide ions) of 11.5 ppm to 1.5 ppm. Five additional (out of eight known) activating sites of PKC phosphorylation, not detected in positive-ion experiments, were observed by subsequent negative-ion direct infusion nanoelectrospray. Extension of the method to enable infrared multiphoton dissociation of all ions in the ICR cell prior to every other mass measurement revealed the diagnostic neutral loss of H3PO4 from phosphorylated peptide ions. The combination of accurate-mass MS and MS/MS offers a powerful new tool for identifying the presence and site(s) of phosphorylation in peptides, without the need for additional wet chemical derivatization.

  6. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  7. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  8. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.

  9. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOEpatents

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  10. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    SciTech Connect

    Kim, June Young Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae Hwang, Y. S.

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  11. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Ridgeway, Mark E; Wolff, Jeremy J; Silveira, Joshua A; Lin, Cheng; Costello, Catherine E; Park, Melvin A

    2016-09-01

    Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed "Gated TIMS" that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.

  12. Silicon carbon alloy thin film depositions using electron cyclotron resonance microwave plasmas

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1990-01-01

    Amorphous and microcrystalline silicon carbon films (a-SiC:H, micro-c-SiC:H) have been deposited using SiH4, CH4 and H2 mixed gas ECR (electron cyclotron resonance) plasmas. The optical bandgap of a-SiC:H films is not dependent on the hydrogen dilution in the ECR plasma. The deposition rate of a-SiC:H films is found to be strongly dependent on the ECR magnetic field and the hydrogen dilution. The hydrogen dilution effect on the deposition rate indicates that the etching in ECR hydrogen plasmas plays an important role in the deposition of a-SiC:H films. The optical constants n and k of ECR-deposited a-SiC:H films in the wavelength region of 0.4 to 1.0 micron are determined to be 2.03-1.90 and 0.04-0.00, respectively. The microstructures of ECR-deposited micro-c-SiC:H films are shown by X-ray diffraction and SEM (scanning electron microscopy) to be composed of 1000-A alpha-SiC microcrystallites and amorphous network structures.

  13. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating

    SciTech Connect

    Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-10-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--500 GHz for use in electron cyclotron resonance (ECR) heating of magnetically-confined plasma. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 940 kW at 35% efficiency have been obtained and average powers of 200 kW have been achieved at peak powers of 400 kW. Long-pulse testing is currently underway. Initial test have resulted in output levels of 400 kW for pulse durations of 380 ms. Design work on 110 GHz, 500 kW CW gyrotron oscillators has recently been completed and a prototype tube has been assembled and is currently being tested. The design of a 110 GHz, 1 MW CW gyrotron, using a novel output coupling approach, is nearly complete. Fabrication of the first 1 MW CW experimental tube is in progress.

  14. High-Throughput Metabolic Profiling of Soybean Leaves by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Yilmaz, Ali; Rudolph, Heather L; Hurst, Jerod J; Wood, Troy D

    2016-01-19

    As a relatively recent research field, plant metabolomics has gained increasing interest in the past few years and has been applied to answer biological questions through large-scale qualitative and quantitative analyses of the plant metabolome. The combination of sensitivity and selectivity offered by mass spectrometry (MS) for measurement of many metabolites in a single shot makes it an indispensable platform in metabolomics. In this regard, Fourier-transform ion cyclotron resonance (FTICR) has the unique advantage of delivering high mass resolving power and mass accuracy simultaneously, making it ideal for the study of complex mixtures such as plant extracts. Here we optimize soybean leaf extraction methods compatible with high-throughput reproducible MS-based metabolomics. In addition, matrix-assisted laser desorption ionization (MALDI) and direct LDI of soybean leaves are compared for metabolite profiling. The extraction method combined with electrospray (ESI)-FTICR is supported by the significant reduction of chlorophyll and its related metabolites as the growing season moves from midsummer to the autumn harvest day. To our knowledge for the first time, the use of ESI-FTICR MS and MALDI-FTICR MS is described in a complementary manner with the aim of metabolic profiling of plant leaves that have been collected at different time points during the growing season.

  15. Radiofrequency and 2.45 GHz electron cyclotron resonance H- volume production ion sources

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Peng, S. X.

    2016-10-01

    The volume production of negative hydrogen ions ({{{H}}}-) in plasma ion sources is based on dissociative electron attachment (DEA) to rovibrationally excited hydrogen molecules (H2), which is a two-step process requiring both, hot electrons for ionization, and vibrational excitation of the H2 and cold electrons for the {{{H}}}- formation through DEA. Traditionally {{{H}}}- ion sources relying on the volume production have been tandem-type arc discharge sources equipped with biased filament cathodes sustaining the plasma by thermionic electron emission and with a magnetic filter separating the main discharge from the {{{H}}}- formation volume. The main motivation to develop ion sources based on radiofrequency (RF) or electron cyclotron resonance (ECR) plasma discharges is to eliminate the apparent limitation of the cathode lifetime. In this paper we summarize the principles of {{{H}}}- volume production dictating the ion source design and highlight the differences between the arc discharge and RF/ECR ion sources from both, physics and technology point-of-view. Furthermore, we introduce the state-of-the-art RF and ECR {{{H}}}- volume production ion sources and review the challenges and future prospects of these yet developing technologies.

  16. Model for the description of ion beam extraction from electron cyclotron resonance ion sources.

    PubMed

    Spädtke, P

    2010-02-01

    The finite difference method trajectory code KOBRA3-INP has been developed now for 25 years to perform the simulation of ion beam extraction in three dimensions. Meanwhile, the code has been validated for different applications: high current ion beam extraction from plasma sources for ion implantation technology, neutral gas heating in fusion devices, or ion thrusters for space propulsion. One major issue of the development of this code was to improve the flexibility of the applied model for the simulation of different types of particle sources. Fixed emitter sources might be simulated with that code as well as laser ion sources, Penning ion sources, electron cyclotron resonance ion sources (ECRISs), or H(-) sources, which require the simulation of negative ions, negative electrons, and positive charges simultaneously. The model which has been developed for ECRIS has now been used to explore the conditions for the ion beam extraction from a still nonexisting ion source, a so called ARC-ECRIS [P. Suominen and F. Wenander, Rev. Sci. Instrum. 79, 02A305 (2008)]. It has to be shown whether the plasma generator has similar properties like regular ECRIS. However, the emittance of the extracted beam seems to be much better compared to an ECRIS equipped with a hexapole.

  17. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  18. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  19. Cyclotron resonance in epitaxial Bi1-xSbx films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Thrush, C. M.; Karczewski, G.; Richardson, M. S.; Furdyna, J. K.

    1993-10-01

    The far-infrared magnetotransmission of thin films of semiconducting and semimetallic Bi1-xSbx alloys grown by molecular-beam epitaxy has been measured at fixed photon energies between 2.5 and 21.4 meV in magnetic fields up to 6 T, at T=1.8 K. The samples, grown on BaF2 substrates with composition 0<=x<=22.5%, were monocrystalline, with the trigonal axis perpendicular to the surface plane. The measurements were carried out in Faraday and Voigt geometries, with the magnetic field oriented parallel to binary, bisectrix, and trigonal axes of the films. Cyclotron-resonance lines of both electrons and holes were observed. From them, we establish the composition dependence of the effective-mass tensor, of the direct L-point band gap, and of the energy overlap in the semimetallic samples. We conclude that all band-structure parameters are the same in the films as in bulk Bi1-xSbx alloys, except for the energy overlap, which is increased by 16 meV independently of composition, possibly because of the strain induced by the substrate.

  20. Ion Extraction from a Toroidal Electron Cyclotron Resonance Ion Source: a Numerical Feasibility Study

    NASA Astrophysics Data System (ADS)

    Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.

  1. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Wang, J. C. L.; Lamb, D. Q.; Loredo, T. J.; Wasserman, I. M.; Salpeter, E. E.

    1989-01-01

    Fits of theoretical spectra from Monte Carlo radiation-transfer calculations to dips at approximately 20 and 40 keV in a spectrum of the gamma-ray burst source GB 880 205 give best-fit values and 68 percent-confidence intervals for the magnetic field of (1.71 + or - 0.07) x 10 to the 12th G, the electron density of (1.2 + or - 0.6) x 10 to the 21st electrons/cm-squared, and the cosine of the viewing angle relative to the field of 0.31 + or - 0.05. The dips observed at approximately 20 keV in the spectra are interpreted as cyclotron resonant scattering, in which electrons undergo radiative 0 to 1 to 0 Landau transitions initiated by photons near the first harmonic. Physical self-consistency fixes the temperature, and the equilibrium temperature equals 5.3 + 0.3 or - 0.2 keV. These results suggest that this gamma-ray burst and many others which exhibit a low-energy dip originate from strongly magnetic neutron stars and are galactic in origin.

  2. Development of a novel mass spectrometer equipped with an electron cyclotron resonance ion source.

    PubMed

    Kidera, Masanori; Takahashi, Kazuya; Enomoto, Shuichi; Mitsubori, Youhei; Goto, Akira; Yano, Yasushige

    2007-01-01

    The ionization efficiency of an electron cyclotron resonance ion source (ECRIS) is generally high, and all elements can be fundamentally ionized by the high-temperature plasma. We focused our attention on the high potentiality of ECRIS as an ion source for mass spectrometers and attempted to customize the mass spectrometer equipped with an ECRIS. Precise measurements were performed by using an ECRIS that was specialized and customized for elemental analysis. By using the charge-state distribution and the isotope ratio, the problem of overlap such as that observed in the spectra of isobars could be solved without any significant improvement in the mass resolution. When the isotope anomaly (or serious mass discrimination effect) was not observed in ECR plasma, the system was found to be very effective for isotope analysis. In this paper, based on the spectrum (ion current as a function of an analyzing magnet current) results of low charged state distributions (2+, 3+, 4+, ...) of noble gases, we discuss the feasibility of an elemental analysis system employing an ECRIS, particularly for isotopic analysis. The high-performance isotopic analysis obtained for ECRIS mass spectrometer in this study suggests that it can be widely applied to several fields of scientific study that require elemental or isotopic analyses with high sensitivity.

  3. Fluctuations in electron cyclotron resonance plasma in a divergent magnetic field

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Fredriksen, Åshild; Chandra, Sayan

    2016-02-01

    The dependence of fluctuations on electron-neutral collision frequency (νen) and the radial location is investigated in an electron cyclotron resonance plasma in a divergent magnetic field region for a set of magnetic fields. Results indicate that the fluctuations depend strongly on the collision frequency. At lower magnetic fields and νen, the fluctuation levels are small and are observed to peak around 3-5 cm from the central plasma region. Coherent wave modes are found to contribute up to about 30% of the total fluctuation power, and two to three harmonics are present in the power spectra. There are two principal modes present in the discharge: one appears to be a dissipative mode associated with a collisional drift wave instability initiated at a lower pressure (collision frequencies) (˜0.5 mTorr) and is stabilized at a higher pressure (≳3 mTorr). The other mode appears at intermediate pressure (≳1.75 mTorr) and possesses the signature of a flute instability. The fluctuation levels indicate that flute modes are predominant in the discharge at higher pressures ( >1.75 mTorr) and at higher values of the magnetic field (˜540 Gauss).

  4. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    NASA Astrophysics Data System (ADS)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C5+ ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C5+ ion beam was got when work gas was CH4 while about 262 eμA of C5+ ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  5. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  6. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    SciTech Connect

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-10-12

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158 molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).

  7. Development of gas pulsing system for electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Honma, T.; Muramatsu, M.; Sakamoto, Y.; Sugiura, A.

    2008-02-01

    A gas-pulsing system for an electron cyclotron resonance ion source with all permanent magnets (Kei2 source) at NIRS has been developed and tested. The system consists of a small vessel (30ml) to reserve CH4 gas and two fast solenoid valves that are installed at both sides of the vessel. They are connected to each other and to the Kei2 source by using a stainless-steel pipe (4mm inner diameter), where the length of the pipe from the valve to the source is 60cm and the conductance is 1.2l /s. From the results of the test, almost 300eμA for a pulsed C4+12 beam was obtained at a Faraday cup in an extraction-beam channel with a pressure range of 4000Pa in the vessel. At this time, the valve has an open time of 10ms and the delay time between the valve open time and the application of microwave power is 100ms. In experiments, the conversion efficiency for input CH4 molecules to the quantity of extracted C4+12 ions in one beam pulse was found to be around 3% and the ratio of the total amount of the gas requirement was only 10% compared with the case of continuous gas provided in 3.3s of repetition in HIMAC.

  8. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey; Maunoury, L.

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.

  9. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  10. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  11. Experiments with biased side electrodes in electron cyclotron resonance ion sources.

    PubMed

    Drentje, A G; Kitagawa, A; Uchida, T; Rácz, R; Biri, S

    2014-02-01

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions - i.e., radial directions - that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six "side" electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  12. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    PubMed

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  13. Experiments with biased side electrodes in electron cyclotron resonance ion sources

    SciTech Connect

    Drentje, A. G. Kitagawa, A.; Uchida, T.; Rácz, R.; Biri, S.

    2014-02-15

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions – i.e., radial directions – that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six “side” electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  14. Electron cyclotron maser based on the combination two-wave resonance

    SciTech Connect

    Savilov, A. V.

    2012-11-01

    A mechanism of a combination two-wave cyclotron interaction between an electron beam and the forward/backward components of a far-from-cutoff standing wave is analyzed. This regime can be promising for the realization of high-power continuous-wave electron cyclotron masers operating in the THz frequency range.

  15. Cyclotron resonance of composite fermions with two and four flux quanta

    NASA Astrophysics Data System (ADS)

    Kukushkin, I. V.; Smet, J. H.; von Klitzing, K.; Wegscheider, W.

    2003-12-01

    The application of quantum field theoretical methods to strongly interacting many-body problems has reaped rich rewards. Foremost, it has nurtured the quasi-particle notion. The introduction of suitable fictitious entities permits to cast otherwise notoriously difficult many-body systems in a single-particle form. We can then take the customary physical approach, using concepts and representations which formerly could only be applied to systems with weak interactions, and still capture the essential physics. A most notable recent example occurs in the conduction properties of a two-dimensional electron system, when exposed to a strong perpendicular magnetic field B. They are governed by electron-electron interactions, that bring about the Nobel prize winning fractional quantum Hall effect (FQHE) (Perspectives on Quantum Hall effects, Wiley, New York, 1996). Composite fermions (CFs), that do not experience the external magnetic field but a drastically reduced effective magnetic field B ∗, were identified as opposite quasi-particles that simplify enormously the understanding of the FQHE (Phys. Today (2000) 39; Phys. Rev. Lett. 63 (1989) 199). They behave as legitimate particles with well-defined charge, spin and statistics (Phys. Rev. B 47 (1993) 7312; Composite Fermions, World Scientific, Singapore, 1998; Phys. Rev. Lett. 70 (1993) 2944; 75 (1995) 3926; 71 (1993) 3846; 72 (1994) 2065; 77 (1996) 2272). They precess, like electrons, along circular orbits, with a diameter determined by B ∗ rather than B, and with a frequency that is hard to predict, since the effective mass remains enigmatic. Ever since their prediction, the demonstration of enhanced absorption of a microwave field that resonates with the frequency of their circular motion was considered the ultimate experiment to unravel this issue. Here, we report the observation of this cyclotron resonance of CFs with two and four flux quanta and extract their effective mass.

  16. A study on vacuum aspects of electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Taki, G. S.; Mallick, C.; Bhandari, R. K.

    2008-05-01

    The electron cyclotron resonance (ECR) ion source is special type hot plasma machine where the high temperature electrons co-exist with multiply charge state ions and neutrals. A few years ago 6.4 GHz. ECR ion source (VEC-ECR) was developed indigenously at VECC. This multiply charged ion source is being used continuously to inject heavy ion beams into the cyclotron. Vacuum plays the major role in ECR ion source. The water cooled plasma chamber is made from an oxygen free high conductivity copper billet to meet the suitable surface condition for vacuum purpose. The entire volume of the ion source is pumped by two 900 1/s special type oil diffusion pumps to achieve 5×10-8 Torr. Usually main plasma chamber is pumped by the plasma itself. Moreover a few 1/s additional pumping speed is provided through extraction hole and pumping slot on the extraction electrode. A study has been carried out to understand the role of vacuum on the multiply charged heavy ion production process. Considering the ion production and loss criteria, it is seen that for getting Ar18+ better vacuum is essential for lower frequency operation. So, an ECR ion source can give better charge state current output operating at higher frequency and stronger confining magnetic field under a specific vacuum condition. The low pressure condition is essential to minimize charge exchange loss due to recombination of multiply charged ions with the neutral atoms. A fixed ratio of neutral to electron density must be maintained for optimizing a particular charge state in the steady state condition. As the electron density is proportional to square of the injected microwave frequency (nevpropf2) a particular operating pressure is essential for a specific charge state. From the study, it has been obtained that the production of Ar18+ ions needs a pressure ~ 9.6×10-8 Torr for 6.4 GHz. ECR ion source. It is also obtained that an ECR ion source, works at a particular vacuum level, can give better charge state

  17. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  18. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  19. Cyclotron resonance phenomena in a non-neutral multispecies ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C.F.

    1995-08-01

    Cyclotron modes of a non-neutral Mg ion plasma were studied in a long cylindrical Penning--Malmberg trap. Several modes with angular dependence exp({ital il}{theta}), {ital l}{ge}1, are observed near the cyclotron frequencies of the various Mg ions. The {ital l}=1 modes for the majority species are downshifted from the cyclotron frequencies, with downshifts as large as four times the diocotron frequency. These large shifts are quantitatively explained by a multispecies cold-plasma theory, including the dependence on the plasma size and composition. These dependencies allow the plasma size and composition to be obtained from the measured mode frequencies. In contrast, the {ital l}=1 downshifts for minority species are generally close to twice the diocotron frequency, and remain unexplained. Cyclotron heating of the plasma ions was also observed with a surprising effect of improving the plasma confinement. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    NASA Astrophysics Data System (ADS)

    Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.

    2017-01-01

    Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo

  1. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  2. Studies on x-ray and UV emissions in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.

    2008-02-15

    A novel electron cyclotron resonance x-ray source is constructed based on the ECR technique. In this paper, the possibility of using the ECR x-ray source for producing UV rays by optimizing the plasma parameters is explored. X-ray and UV emissions from the ECR x-ray source are carried out for argon, nitrogen, and CO{sub 2} plasma. The x-ray spectral and dose measurements are carried with NaI(Tl) based spectrometer and dosimeter, respectively. For UV measurement, a quartz window arrangement is made at the exit port and the UV intensity is measured at 5 cm from the quartz plate using UV meter. The x-ray and UV emissions are carried out for different microwave power levels and gas pressures. The x-ray emission is observed in the pressure range {<=}10{sup -5} Torr, whereas the UV emission is found to be negligible for the gas pressures <10{sup -5} Torr and it starts increasing in the pressure range between 10{sup -5} and 10{sup -3} Torr. At high-pressure range, collision frequency of electron-atom is large which leads to the higher UV flux. At low pressure, the electron-atom collision frequency is low and hence the electrons reach high energy and by hitting the cavity wall produces higher x-ray flux. By choosing proper experimental conditions and plasma gas species, the same source can be used as either an x-ray source or an UV source.

  3. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  4. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  5. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  6. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  7. Electron cyclotron resonance deposition, structure, and properties of oxygen incorporated hydrogenated diamondlike amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Adamopoulos, G.; Godet, C.; Zorba, T.; Paraskevopoulos, K. M.; Ballutaud, D.

    2004-11-01

    Oxygen-incorporated hydrogenated amorphous carbon films were grown by the integrated distributed electron cyclotron resonance plasma technique from a mixture of acetylene and oxygen. It has been found that the increase of the oxygen to acetylene gas ratio results in more oxygen incorporation up to O /(O+C)=0.2 with a decrease in the hydrogen concentration within the film as measured by the nuclear reaction analysis (NRA) and a combination of the elastic recoil detection analysis and Rutherford backscattering techniques. The spectroscopic ellipsometry in the range of 1.5-5eV showed a negligible decrease of the E04 optical band gap for increasing the oxygen content. At the same time, the decrease of the refractive index from 2.2 to 2.0 denotes the decrease of the films density, which was independently estimated by NRA. The visible (488nm) Raman spectroscopy showed that the increase of the oxygen content favors the clustering of the six-fold sp2C rings. The Fourier transform infrared spectroscopy gives evidence of both C-O and C O bonding configurations. No evidence of O-H bonds formation is found. Simultaneously, the chemisorption of CO2 seems to increased with increasing the oxygen to acetylene gas ratio, which is consistent with the lower film density. The previously trends denote the "softening" of the films, which is consistent with the significant decrease (of about 35%) of the compressive stress allowing the growth of thicker but still transparent films.

  8. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2017-01-01

    The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS) plasma sustained in a mixture of Kr with O2 , N2 , Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (˜1 V ) compared to pure Kr plasma (˜0.01 V ), with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  9. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Han, Jun; Danell, Ryan M.; Patel, Jayanti R.; Gumerov, Dmitry R.; Scarlett, Cameron O.; Speir, J. Paul; Parker, Carol E.; Rusyn, Ivan; Zeisel, Steven; Borchers, Christoph H.

    2008-01-01

    With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion (DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput metabolomic analysis. PMID:19081807

  10. Current density distributions and sputter marks in electron cyclotron resonance ion sources.

    PubMed

    Panitzsch, Lauri; Peleikis, Thies; Böttcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F

    2013-01-01

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then--induced by charged particles--mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  11. Variations in the cyclotron resonant scattering features during 2011 outburst of 4U 0115+63

    NASA Astrophysics Data System (ADS)

    Iyer, N.; Mukherjee, D.; Dewangan, G. C.; Bhattacharya, D.; Seetha, S.

    2015-11-01

    We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT ˜ 0.8 keV) blackbody and a power law with high energy cutoff (Ecut ˜ 5.4 keV) without the need for a broad Gaussian at ˜10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at ˜11 and ˜15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (˜11 and ˜15 keV) as a single CRSF.

  12. Cyclotron Splittings in the Plasmon Resonances of Electronically Doped Semiconductor Nanocrystals Probed by Magnetic Circular Dichroism Spectroscopy.

    PubMed

    Hartstein, Kimberly H; Schimpf, Alina M; Salvador, Michael; Gamelin, Daniel R

    2017-04-10

    A fundamental understanding of the rich electronic structures of electronically doped semiconductor nanocrystals is vital for assessing the utility of these materials for future applications from solar cells to redox catalysis. Here, we examine the use of magnetic circular dichroism (MCD) spectroscopy to probe the infrared localized surface plasmon resonances of p-Cu2-xSe, n-ZnO, and tin-doped In2O3 (n-ITO) nanocrystals. We demonstrate that the MCD spectra of these nanocrystals can be analyzed by invoking classical cyclotron motions of their excess charge carriers, with experimental MCD signs conveying the carrier types (n or p) and experimental MCD intensities conveying the cyclotron splitting magnitudes. The experimental cyclotron splittings can then be used to quantify carrier effective masses (m*), with results that agree with bulk in most cases. MCD spectroscopy thus offers a unique measure of m* in free-standing colloidal semiconductor nanocrystals, raising new opportunities to investigate the influence of various other synthetic or environmental parameters on this fundamentally important electronic property.

  13. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  14. Electron cyclotron resonance microwave plasma deposition of a-Si:H and a-SiC:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1991-01-01

    The paper reports electron cyclotron resonance (ECR) deposition of a-Si:H and a-SiC:H thin films using SiH4, CH4, and hydrogen mixed gas plasmas. The ECR deposition conditions were investigated in the pressure region of 0.1 to 100 mtorr, and the film properties were characterized by light and dark conductivity measurements, XRD, Raman spectroscopy, optical transmission, and IR spectroscopy. In addition, the hydrogen dilution effect on ECR-deposited a-SiC:H was investigated.

  15. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.; Rodrigues, G.; Kanjilal, D.; Roy, A.

    2008-02-15

    From the ECR plasma, hot electrons leak across the magnetic lines of force and by striking the plasma chamber produce bremsstrahlung x-rays. The wall bremsstrahlung gives information on the confinement status of hot electron. In our studies, experimental measurements are carried out in NANOGAN electron cyclotron resonance (ECR) ion source for the wall bremsstrahlung x-rays and the results are presented. While optimizing a particular charge state in ECR ion source, experimental parameters are adjusted to get a maximum current. The wall bremsstrahlung components are studied in these cases for understanding the hot electron confinement conditions.

  16. Lifetime measurement of a collision complex using ion cyclotron double resonance - H2C6N2(+)

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley T., Jr.; Mcewan, Murray J.

    1991-01-01

    In the ion-molecule reaction between HC3N(+) and HC3N, the lifetime of the collision complex (H2C6N2+)-asterisk was long enough that ion cyclotron double-resonance techniques could be used to probe the distribution of the lifetimes of the collision complex. The mean lifetime of the collision complex at room temperature was measured as 180 microsec with a distribution ranging from 60 to 260 microsec as measured at the half-heights in the distribution. Lifetimes of this magnitude with respect to unimolecular dissociation allow for some stabilization of the collision complex by the slower process of infrared photon emission.

  17. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods.

  18. Effect of microwave reflection from the region of electron cyclotron resonance heating in the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Sakharov, A. S. Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2013-11-15

    In experiments on electron cyclotron resonance (ECR) heating of plasma at the second harmonic of the electron gyrofrequency in the L-2M stellarator, the effect of partial reflection of high-power gyrotron radiation from the ECR heating region located in the center of the plasma column was revealed. The reflection coefficient is found to be on the order of 10{sup −3}. The coefficient of reflection of an extraordinary wave from the second-harmonic ECR region is calculated in the one-dimensional full-wave model. The calculated and measured values of the reflection coefficient are found to coincide in order of magnitude.

  19. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    SciTech Connect

    Park, Bum-Sik Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-15

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  20. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  1. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  2. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  3. Effects of electron-cyclotron-resonance-heating-induced internal kink mode on the toroidal rotation in the KSTAR Tokamak.

    PubMed

    Seol, J; Lee, S G; Park, B H; Lee, H H; Terzolo, L; Shaing, K C; You, K I; Yun, G S; Kim, C C; Lee, K D; Ko, W H; Kwak, J G; Kim, W C; Oh, Y K; Kim, J Y; Kim, S S; Ida, K

    2012-11-09

    It is observed that the magnitude of the toroidal rotation speed is reduced by the central electron cyclotron resonance heating (ECRH) regardless of the direction of the toroidal rotation. The magnetohydrodynamics activities generally appear with the rotation change due to ECRH. It is shown that the internal kink mode is induced by the central ECRH and breaks the toroidal symmetry. When the magnetohydrodynamics activities are present, the toroidal plasma viscosity is not negligible. The observed effects of ECRH on the toroidal plasma rotation are explained by the neoclassical toroidal viscosity in this Letter. It is found that the neoclassical toroidal viscosity torque caused by the internal kink mode damps the toroidal rotation.

  4. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  5. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    SciTech Connect

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  6. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  7. Nb{sub 3}Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2010-02-15

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  8. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P. Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A.; Colas, L.; Czarnecka, A.; Lerche, E.; Van-Eester, D.; Mayoral, M.-L.; Brezinsek, S.; Campergue, A.-L.; Klepper, C. C.; Milanesio, D.; and others

    2014-06-15

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ∼ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  9. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  10. The Design of a 100 GHz CARM (Cyclotron Auto-Resonance Maser) Oscillator Experiment

    DTIC Science & Technology

    1988-09-14

    2364. (Radio Engng. Electron. Phys., 21, 78-73). 5) Ginzburg , N. S., Zarnitsyna, I. G., and Nusinovich, G. S., 1981, Theory of relativistic cyclotron...An efficient Doppler-shifted electron-cyclotron maser oscillator. Int J. Electron., 53, 555-57 1. 7) Bratman, V. L., Ginzburg , N. S., Nusinovich, G...1386-1389. (Sov. Tech. Phys. Lett., 8, 596-597). 12) Botvinnik, I. E., Bratman, V. L., Volkov, A. B., Ginzburg , N. S, Denisov, G. G., Kol’chugin, B

  11. The Plasma Assisted Modified Betatron.

    DTIC Science & Technology

    1984-12-27

    fully * ionized plasma in the toroidal system, the response of this plasma to the * injected beam, and the ion resonance and streaming instability. A...Producing the Background Plasma Producing a fully ionized plasma at a density as low as 1010 ci-3 appears to present some experimental difficulties...d stationary ions. The instability only occurs if the parallel wave number is in the range 2 ,ii) ce < k < ce2 +pe /2 (32) yc c Y 3c2 19 Oe 44-A

  12. Performance Evaluation of a Dual Linear Ion Trap-Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Proteomics Research

    PubMed Central

    Weisbrod, Chad R.; Hoopmann, Michael R.; Senko, Michael W.; Bruce, James E.

    2014-01-01

    A novel dual cell linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) and its performance characteristics are reported. A linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer has been modified to incorporate a LTQ-Velos mass spectrometer. This modified instrument features efficient ion accumulation and fast MS/MS acquisition capabilities of dual cell linear RF ion trap instruments coupled to the high mass accuracy, resolution, and dynamic range of a FT-ICR for improved proteomic coverage. The ion accumulation efficiency is demonstrated to be an order of magnitude greater than that observed with LTQ-FT Ultra instrumentation. The proteome coverage with yeast was shown to increase over the previous instrument generation by 50% (100% increase on the peptide level). In addition, many lower abundance level yeast proteins were only detected with this modified instrument. This novel configuration also enables beam type CID fragmentation using a dual cell RF ion trap mass spectrometer. This technique involves accelerating ions between traps while applying an elevated DC offset to one of the traps to accelerate ions and induce fragmentation. This instrument design may serve as a useful option for labs currently considering purchasing new instrumentation or upgrading existing instruments. PMID:23590889

  13. A study on interactions between ions and polarized Alfvén waves below cyclotron resonance frequency

    NASA Astrophysics Data System (ADS)

    Lu, Xing-Qiang; Tang, Wei-Zhong; Guo, Wei; Gong, Xue-Yu

    2016-12-01

    Ion heating by different polarized Alfvén waves below the cyclotron resonance frequency is studied using test-particle simulation. The results indicate that the interactions between ions and waves are affected by the polarization and frequency of the waves. If the frequency of waves is higher ( ω > 0.1 Ω p ), the interactions between ions and left-hand (LH) waves are stronger than right-hand (RH) waves due to the sub-cyclotron resonance. However, with the decrease of the frequency, the interactions between different polarized Alfvén waves and particles tend to be the same. The heating effects of LH waves on ions are better than RH waves at higher frequencies. When the frequency of the waves is lower enough ( ω < 0.1 Ω p ), the heating effects of LH waves and RH waves on ions are almost identical. The change of heating efficiency with the polarization and frequency of the waves is consistent with the change of the heating effect.

  14. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  15. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    SciTech Connect

    Kato, Yushi Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  16. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    SciTech Connect

    Mascali, David Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Romano, Francesco Paolo; Torrisi, Giuseppe

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  17. The power absorption and the penetration depth of electromagnetic radiation in lead telluride under cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Özalp, S.; Güngör, A.

    1999-10-01

    Cyclotron resonance absorption in n- and p-type PbTe was observed by Nii and was analysed under classical skin effect conditions. When the values of DC magnetic field corresponding to peaks are plotted against the field directions, a close fit is obtained between the calculated and observed results based on the assumption of a <1 1 1> ellipsoids of revolution model for the both conduction and valance band extrema. From the best fit mt=0.024 m0 and 0.03 m0 for the transverse effective masses and K= ml/ mt=9.8 and 12.2 for the anisotropic mass rations are obtained for the conduction and valance band, respectively. The observed absorption curve shows weak structures at low magnetic field. They are supposed to be due to second harmonics of Azbel'-Kaner cyclotron resonance. However, it turns out to be unnecessary to introduce other bands to explain the experimental results. The applicability of the classical magneto-optical theory is examined by calculating the power absorption coefficient and penetration depth as a function of DC magnetic field.

  18. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  19. Cyclotron mode frequencies and resonant absorption in multi-species ion plasmas

    SciTech Connect

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2015-05-15

    Cyclotron mode frequencies are studied on trapped rigid-rotor multi-species ion plasmas. Collective effects and radial electric fields shift the mode frequencies away from the “bare” cyclotron frequencies 2πF{sub c}{sup (s)}≡(q{sub s}B/M{sub s}c) for each species s. These frequency shifts are measured on the distinct cyclotron modes (m=0,1, and 2) with cos(mθ) azimuthal dependence. We find that for radially uniform plasmas the frequency shifts corroborate a simple theory expression, in which collective effects enter only through the E × B rotation frequency f{sub E} and the species fraction δ{sub s}. The m = 1 center-of-mass mode is in agreement with a simple “clump” model. Additionally, ultra-cold ion plasmas exhibit centrifugal separation by mass, and additional frequency shifts are observed, in agreement with a more general theory.

  20. Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves

    NASA Technical Reports Server (NTRS)

    Chang, T.; Crew, G. B.; Hershkowitz, N.; Jasperse, J. R.; Retterer, J. M.

    1986-01-01

    Central plasma sheet (CPS) ion conics are oxygen-dominated, with peak energies ranging from tens to hundreds of eV centered around pitch-angles between 115 and 130 degrees. Because of the lack of correlation between the CPS conics and the observed currents and/or electron beam-like structures, it is not likely that all of these conics are generated by interactions with electrostatic ion cyclotron waves or lower hybrid waves. Instead, it is suggested that the observed intense broad band electric field fluctuations in the frequency range between 0 and 100 Hz can be responsible for the transverse energization of the ions through cyclotron resonance heating with the left-hand polarized electromagnetic waves. This process is much more efficient for heating the oxygen ions than hydrogen ions, thus providing a plausible explanation of the oxygen dominance in CPS conics. Simple algebraic expressions are given from which estimates of conic energy and pitch angle can be easily calculated. This suggested mechanism can also provide some preheating of the oxygen ions in the boundary plasma sheet (BPS) where discrete aurorae form.

  1. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  2. Plasma-Assisted Combustion Studies at AFRL

    DTIC Science & Technology

    2009-11-04

    important for lean, gas-turbine ( powerplant ) operation Might one also mitigate/influence acoustic fluctuations? Potential for uniform performance with...Thermometry with pulsed -W Source No -W Pulsed -W Direct coupled plasma torch: flame OH vs. - wave power: Plasma-assisted Ignition Cathey, Gundersen, Wang...Determine physical mechanism, primarily for transient plasma ignition  What is role of humidity: XH2O affects detonation wave speed in PDE but not

  3. Cyclotron resonant scattering in gamma-ray bursts - Further analysis of GB880205

    NASA Technical Reports Server (NTRS)

    Freeman, P. E.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.; Fenimore, E. E.; Murakami, T.; Yoshida, A.

    1992-01-01

    We have extended our previous work by exploring several plane-parallel slab geometries to model the formation of cyclotron line features. We calculated the Compton temperature T(C) as a function of column density Ne for each of the new geometries. We then fit the resulting spectra to GB880205 exactly as described in Wang et al. (1989). The results show that the addition of column depth below the photon source plane leads to a modest improvement in chi-squared which, although not statistically significant, is pleasing because these geometries are more physically realistic.

  4. Ohm's law at strong coupling: S duality and the cyclotron resonance

    SciTech Connect

    Hartnoll, Sean A.; Herzog, Christopher P.

    2007-11-15

    We calculate the electrical and thermal conductivities and the thermoelectric coefficient of a class of strongly interacting 2+1-dimensional conformal field theories with anti-de Sitter space duals. We obtain these transport coefficients as a function of charge density, background magnetic field, temperature, and frequency. We show that the thermal conductivity and thermoelectric coefficient are determined by the electrical conductivity alone. At small frequency, in the hydrodynamic limit, we are able to provide a number of analytic formulas for the electrical conductivity. A dominant feature of the conductivity is the presence of a cyclotron pole. We show how bulk electromagnetic duality acts on the transport coefficients.

  5. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  6. Studies of emittance of multiply charged ions extracted from high temperature superconducting electron cyclotron resonance ion source, PKDELIS

    SciTech Connect

    Rodrigues, G.; Lakshmy, P. S.; Kumar, Sarvesh; Mandal, A.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2010-02-15

    For the high current injector project at Inter University Accelerator Centre, a high temperature superconducting electron cyclotron resonance (ECR) ion source, PKDELIS, would provide the high charge state ions. The emittance of the ECR ion source is an important parameter to design further beam transport system and to match the acceptances of the downstream radio frequency quadrupole and drift tube linac accelerators of the high current injector. The emittance of the analyzed beam of PKDELIS ECR source has been measured utilizing the three beam size technique. A slit and two beam profile monitors positioned at fixed distances from each other were used to measure the beam size. The digitized beam profiles have been analyzed to determine the emittance of various multiply charged ions. The variation of emittance with gas mixing, ultrahigh frequency power, and extraction energy are discussed in this presentation.

  7. Note: Studies on x-ray production in electron cyclotron resonance x-ray source based on ridged cylindrical cavity

    SciTech Connect

    Selvakumaran, T. S.; Baskaran, R.

    2012-02-15

    A ridged cylindrical cavity has been designed using MICROWAVE STUDIO programme and it is used in the electron cyclotron resonance (ECR) x-ray source. The experimental parameters of the source are optimized for maximizing the x-ray output, and an x-ray dose rate of {approx}1000 {mu}Sv/h was observed at 20 cm from the port, for 500 W of microwave power without using any target. With the molybdenum target located at optimum position of the ridged cavity, the dose rate is found to be increased only by 10%. In order to understand the experimental observation, the electric field pattern of the cavity with the target placed at various radial distances is studied. In this note, the experimental and theoretical studies on ECR x-ray source using the ridged cylindrical cavity are presented.

  8. The impact of UVCS/SOHO observations on models of ion-cyclotron resonance heating of the solar corona

    NASA Technical Reports Server (NTRS)

    Cranmer, S. R.; Field, G. B.; Noci, G.; Kohl, J. L.

    1997-01-01

    The compatibility between theoretical models and observations of the temperatures and anisotropic distributions of hydrogen and minor ions in the solar corona is examined. The ultraviolet coronagraph spectrometer (UVCS) instrument onboard SOHO measured hydrogen kinetic temperatures along lines of sight in coronal holes in excess of 3 x 10(exp 6) K and O(+5) ion kinetic temperatures of at least 2 x 10(exp 8) K. Various features of plasma heating by the dissipation of high-frequency ion-cyclotron resonance Alfven waves, which may be the most natural physical mechanism to produce certain plasma conditions, are examined. Preliminary quantitative models of the ion motion in polar coronal holes are presented, and it is shown that such models can be used to predict the spectrum of waves required to reproduce the observations. Indeed, the more ionic species that are observed spectroscopically, the greater the extent in frequency space the wave spectrum can be inferred.

  9. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  10. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Küchler, D.

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  11. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  12. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    PubMed

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  13. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  14. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams.

    PubMed

    Kato, Yushi; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  15. A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments.

    PubMed

    Vondrasek, R; Palchan, T; Pardo, R; Peters, C; Power, M; Scott, R

    2014-02-01

    A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

  16. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGES

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; ...

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  17. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  18. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  19. Observation of turbulence suppression after electron-cyclotron-resonance-heating switch-off on the HL-2A tokamak.

    PubMed

    Liu, Y; Shi, Z B; Dong, Y B; Sun, H J; Sun, A P; Li, Y G; Xia, Z W; Li, W; Ding, X T; Xiao, W W; Zhou, Y; Zhou, J; Rao, J; Liu, Z T; Yang, Q W; Duan, X R

    2011-07-01

    The formation of a transient internal transport barrier (ITB) is observed after the electron-cyclotron-resonance-heating (ECRH) switch-off in the HL-2A plasmas, characterized by transient increase of central electron temperature. The newly developed correlation reflectometer provided direct measurements showing reduction of turbulence in the region of steepened gradients for the period of ITB formation triggered by the ECRH switch-off. Furthermore, the reduction of core turbulence is correlated in time with the appearance of a low-frequency mode with a spectrally broad poloidal structure that peaks near zero frequency in the core region. These structures have low poloidal mode number, high poloidal correlation, and short radial correlation and are strongly coupled with high-frequency ambient turbulence. Observation indicates that these structures play important roles in the reduction of the core turbulence and in improvements of the core transport after the off-axis ECRH is turned off.

  20. The effects of gas mixing and plasma electrode position on the emittance of an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Suominen, P.; Tarvainen, O.; Koivisto, H.

    2004-05-01

    Gas mixing is a commonly used method to improve the intensities and the charge state distribution of ion beams extracted from an electron cyclotron resonance ion source (ECRIS). At the same time, the emittance of the ion beam should be as small as possible. In this work we have studied the effect of the gas mixing method on the ion beam quality by measuring the emittance and brightness of different ion beams using helium, oxygen, and argon with several gas feeding ratios. All measurements were performed with the JYFL 6.4 GHz ECRIS. At the second stage of the experiments the emittance and the ion beam brightness were studied as a function of the plasma electrode position. The extraction system constructed for this experiment can be moved online.

  1. Fishbones in Joint European Torus plasmas with high ion-cyclotron-resonance-heated fast ions energy content

    SciTech Connect

    Nabais, F.; Borba, D.; Mantsinen, M.; Nave, M.F.F.; Sharapov, S.E.; Joint

    2005-10-01

    In Joint European Torus (JET) [P. J. Lomas, Plasma Phys. Controled Fusion 31, 1481 (1989)], discharges with ion cyclotron resonance heating only, low-density plasmas and high fast ions energy contents provided a scenario where fishbones behavior has been observed to be related with sawtooth activity: Crashes of monster sawteeth abruptly changed the type of observed fishbones from low-frequency fishbones [B. Coppi and F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986)] to high-frequency fishbones [L. Chen, R. White, and M. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984)]. During periods between crashes, the type of observed fishbones gradually changed in the opposite way. Two new fishbones regimes have been observed in intermediate stages: Fishbones bursts covering both high and low frequencies and low amplitude bursts of both types occurring simultaneously. Both sawtooth and fishbones behavior have been explained using a variational formalism.

  2. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  3. Optimization of an electron cyclotron resonance plasma etch process for [ital n][sup +] polysilicon: HBr process chemistry

    SciTech Connect

    Tipton, G.D.; Blain, M.G. ); Westerfield, P.L.; Trutna, L.S.; Maxwell, K.L. )

    1994-01-01

    Designed experiments were employed to characterize a process for etching phosphorus doped polycrystalline silicon with HBr in a close-coupled electron cyclotron resonance plasma reactor configured for 200 mm wafers. A fractional factorial screening experiment was employed to determine the principal input factors and the main etch effects. Linear models of the process responses indicate rf power, O[sub 2] flow rate, and the position of the resonance zone (with respect to the wafer) as the three strongest factors influencing process performance. Response surfaces generated using data from a follow-on response surface methodology experiment predicted an optimum operating region characterized by relatively low rf power, a small O[sub 2] flow, and a resonance zone position close to the wafer. One operating point in this region demonstrated a polysilicon etch rate of 270 nm/min, an etch rate nonuniformity of 2.2% (1 std. dev.), an etch selectivity to oxide greater than 100:1, and anisotropic profiles. Particle test results for the optimized process indicated that careful selection of the O[sub 2] fraction is required to avoid residue deposition and particle formation.

  4. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    SciTech Connect

    Thomae, R. Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  5. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    PubMed

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  6. Plasma Assisted Combustion Mechanism for Small Hydrocarbons

    DTIC Science & Technology

    2015-01-01

    Andrey Starikovskiy Nickolay Aleksandrov PRINCETON University Plasma Assisted Combustion  Mechanism for Small  Hydrocarbons Report Documentation Page...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Plasma Assisted Combustion Mechanism for Small Hydrocarbons 5a. CONTRACT NUMBER 5b...Kinetics of ignition of saturated  hydrocarbons  by nonequilibrium plasma: C2H6‐ to C5H12‐containing mixtures. Combustion and Flame 156  (2009) 221–233

  7. Electron cyclotron resonance acceleration of electrons to relativistic energies by a microwave field in a mirror trap

    SciTech Connect

    Sergeichev, K. F.; Karfidov, D. M.; Lukina, N. A.

    2007-06-15

    Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of {>=}10 V/cm and air pressures of 10{sup -6}-10{sup -4} Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3-0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as 'red sprites.'.

  8. Nonlinear Effects at Tokamak Electron Cyclotron Resonance in Inhomogeneous Magnetic Field.*

    NASA Astrophysics Data System (ADS)

    Stefan, V.

    1996-11-01

    Nonlinear interaction of X- and O- modes with drift plasma waves is studied. The drift waves with frequency given by ωD ~ Ωc (ρ_e/r)^2 (ρe electron Larmor radius, Ωe electron cyclotron frequency, r small tokamak radius, where nabla Ω / Ωe ~ 1/R (for large tokamaks R ~ r)), are coupled to driver pump via scattering instability. Nonlocality of the interaction is taken into account. It is shown that nonlinear mechanism of interaction (Brillouin scattering) can be used as a tool for dynamic rf confinement^1 of tokamak plasmas. Particularly, it is possible to achieve longer confinement times due to suppression of drift wave turbulence. Supported by Tesla Laboratories, Inc., La Jolla, CA 92038-2946. ^1M.N. Rosenbluth (Editor-in-Chief). New Ideas in Tokamak Confinement. Research Trends in Physics Series of the La Jolla International School of Physics, The Institute for Advanced Physics Studies, La Jolla, CA (AIP Press, New York, 1994).

  9. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    NASA Astrophysics Data System (ADS)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  10. Terahertz Dynamics of a Topologically Protected State: Quantum Hall Effect Plateaus near the Cyclotron Resonance of a Two-Dimensional Electron Gas.

    PubMed

    Stier, A V; Ellis, C T; Kwon, J; Xing, H; Zhang, H; Eason, D; Strasser, G; Morimoto, T; Aoki, H; Zeng, H; McCombe, B D; Cerne, J

    2015-12-11

    We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency using highly sensitive Faraday rotation measurements. The sample is electrically gated, allowing the electron density to be changed continuously by more than a factor of 3. We observe clear plateaulike and steplike features in the Faraday rotation angle vs electron density and magnetic field (Landau-level filling factor) even at fields or frequencies very close to cyclotron resonance absorption. These features are the high frequency manifestation of quantum Hall plateaus-a signature of topologically protected edge states. We observe both odd and even filling factor plateaus and explore the temperature dependence of these plateaus. Although dynamical scaling theory begins to break down in the frequency region of our measurements, we find good agreement with theory.

  11. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    NASA Astrophysics Data System (ADS)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.; Graham, D. M.

    2016-05-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 1012 cm-2 and 9000 cm2 V-1 s-1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m0.

  12. Optical Emission Spectroscopy of Electron Cyclotron Resonance-Plasma Enchanced Metalorganic Chemical Vapor Deposition Process for Deposition of GaN Film

    NASA Astrophysics Data System (ADS)

    Fu, Silie; Chen, Junfang; Li, Yun; Li, Wei; Zhang, Maoping; Hu, Shejun

    2008-02-01

    An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 2θ = 34.48°, being sharper and more intense with the increase in the N2: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced metalorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.

  13. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  14. Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma

    DOEpatents

    Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.

    1988-01-01

    A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.

  15. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8.

  16. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chanthamontri, C. Ken; Stopford, Andrew P.; Snowdon, Ryan W.; Oldenburg, Thomas B. P.; Larter, Stephen R.

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  17. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  18. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  19. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  20. Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade

    SciTech Connect

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

    1983-11-18

    The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

  1. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Lyneis, C. Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.; Plaum, B.; Thuillier, T.

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  2. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  3. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  4. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries.

    PubMed

    Cooper, Helen J; Case, Martin A; McLendon, George L; Marshall, Alan G

    2003-05-07

    The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.

  5. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  6. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  7. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  8. Top-Down Analysis of Highly Post-Translationally Modified Peptides by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guerrero, Andres; Lerno, Larry; Barile, Daniela; Lebrilla, Carlito B.

    2015-03-01

    Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from κ-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono- or bi-phosphorylated species. Additionally, these four forms can be modified with up to two O-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP never described before.

  9. Structure characterization of polyaromatic hydrocarbons in Arabian mix vacuum residue by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Miyabayashi, Keiko; Naito, Yasuhide; Tsujimoto, Kazuo; Miyake, Mikio

    2004-06-01

    Molecular formulas of constituents in vacuum residue were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Evaluation of electrospray ionization (ESI) ability for hydrocarbons by using model compounds indicates that aromatic compounds having more than two fused rings without functional group are detectable as molecular ions, while that basic nitrogen-containing compounds produce protonated ions in the ESI solvent of methanol/chloroform. Thus, even peaks appear for both hydrocarbons and nitrogen-containing compounds in methanol/chloroform. Although basic nitrogen compound detected selectively in mixture of equal molar concentration of hydrocarbons, hydrocarbon could be observed almost the same intensity when the concentration of nitrogen compounds was adjusted as low as that of Arabian mix vacuum residue (AM-VR: N 0.4 wt.%). When ESI solvent of methanol/chloroform/trifluoroacetic acid (TFA) was used, protonated hydrocarbons produced predominantly as odd peaks. Thus, it was revealed that peaks originating from nitrogen-containing compounds and hydrocarbons can be clearly distinguished by changing composition of ESI solvents. In application to AM-VR, protonated nitrogen-containing compounds ([CnH2n+ZN + H]+ and [CnH2n+ZNS + H]+; even masses) were observed selectively in methanol/chloroform, and both protonated nitrogen-containing compounds and protonated or sodium-cationized hydrocarbons ([M + H]+ or [M + Na]+; odd masses) were observed simultaneously in the solvent composition of methanol/chloroform/TFA.

  10. Extension of high T{sub e} regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

    SciTech Connect

    Takahashi, H. Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M.; and others

    2014-06-15

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density n{sub e-fir} = 1 × 10{sup 19} m{sup −3}. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of n{sub e-fir}. The plasma stored energy of 530 kJ with n{sub e-fir} = 3.2 × 10{sup 19} m{sup −3}, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  11. Improved beta (local beta >1) and density in electron cyclotron resonance heating on the RT-1 magnetosphere plasma

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Saitoh, H.; Yano, Y.; Kawazura, Y.; Nogami, T.; Yamasaki, M.; Mushiake, T.; Kashyap, A.

    2015-05-01

    This study reports the recent progress in improved plasma parameters of the RT-1 device. Increased input power and the optimized polarization of electron cyclotron resonance heating (ECRH) with an 8.2 GHz klystron produce a significant increase in electron beta, which is evaluated by an equilibrium analysis of the Grad-Shafranov equation. The peak value of the local electron beta βe is found to exceed 1. In the high-beta and high-density regime, the density limit is observed for H, D and He plasmas. The line-averaged density is close to the cutoff density for 8.2 GHz ECRH. When the filling gas pressure is increased, the density limit still exists even in the low-beta region. This result indicates that the density limit is caused by the cutoff density rather than the beta limit. From the analysis of interferometer data, we found that inward diffusion causes a peaked density profile beyond the cutoff density.

  12. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  13. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  14. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  15. An antibiotic linked to peptides and proteins is released by electron capture dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Fagerquist, Clifton K; Hudgins, Robert R; Emmett, Mark R; Håkansson, Kristina; Marshall, Alan G

    2003-04-01

    Desfuroylceftiofur (DFC) is a bioactive beta-lactam antibiotic metabolite that has a free thiol group. Previous experiments have shown release of DFC from plasma extracts after addition of a disulfide reducing agent, suggesting that DFC may be bound to plasma and tissue proteins through disulfide bonds. We have reacted DFC with [Arg(8)]-vasopressin (which has one disulfide bond) and bovine insulin (which has three disulfide bonds) and analyzed the reaction products by use of electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD FT-ICR MS), which has previously shown preferential cleavage of disulfide bonds. We observe cleavage of DFC from vasopressin and insulin during ECD, suggesting that DFC is indeed bound to peptides and proteins through disulfide bonds. Specifically, we observed dissociative loss of one, as well as two, DFC species during ECD of [vasopressin + 2(DFC-H) + 2H](2+) from a single electron capture event. Loss of two DFCs could arise from either consecutive or simultaneous loss, but in any case implies a gas phase disulfide exchange step. ECD of [insulin + DFC + 4H](4+) shows preferential dissociative loss of DFC. Combined with HPLC, ECD FT-ICR-MS may be an efficient screening method for detection of drug-biomolecule binding.

  16. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  17. Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Chiron, Lionel; van Agthoven, Maria A.; Kieffer, Bruno; Rolando, Christian; Delsuc, Marc-André

    2014-01-01

    Modern scientific research produces datasets of increasing size and complexity that require dedicated numerical methods to be processed. In many cases, the analysis of spectroscopic data involves the denoising of raw data before any further processing. Current efficient denoising algorithms require the singular value decomposition of a matrix with a size that scales up as the square of the data length, preventing their use on very large datasets. Taking advantage of recent progress on random projection and probabilistic algorithms, we developed a simple and efficient method for the denoising of very large datasets. Based on the QR decomposition of a matrix randomly sampled from the data, this approach allows a gain of nearly three orders of magnitude in processing time compared with classical singular value decomposition denoising. This procedure, called urQRd (uncoiled random QR denoising), strongly reduces the computer memory footprint and allows the denoising algorithm to be applied to virtually unlimited data size. The efficiency of these numerical tools is demonstrated on experimental data from high-resolution broadband Fourier transform ion cyclotron resonance mass spectrometry, which has applications in proteomics and metabolomics. We show that robust denoising is achieved in 2D spectra whose interpretation is severely impaired by scintillation noise. These denoising procedures can be adapted to many other data analysis domains where the size and/or the processing time are crucial. PMID:24390542

  18. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  19. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  20. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    SciTech Connect

    Krishtopenko, S. S. Gavrilenko, V. I.; Ikonnikov, A. V.; Orlita, M.; Sadofyev, Yu. G.; Goiran, M.; Teppe, F.; Knap, W.

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.

  1. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  2. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  3. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trapa)

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  4. High intensity beams from electron cyclotron resonance ion sources: A study of efficient extraction and transport system (invited)

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.; Celona, L.; Andò, L.; Passarello, S.; Zhang, X. Zh.; Spädtke, P.; Winkler, M.

    2004-05-01

    A study of the design of extraction and transport system for high intensity beams that will be produced by the next generation electron cyclotron resonance ion source (ECRIS) was carried out in the frame of a European collaboration devoted to the definition of the main parameters of third generation ECRIS. High intensity production tests carried out in the previous years at INFN-LNS have shown evidence for the need to review the main concepts of the beam analysis and transport when high currents of low energy highly charged ions are extracted from the source. The transport of such low energy beams becomes critical as soon as the total current exceeds a few mA. The study reported here is based on the calculated parameters for the GyroSERSE source and the computer simulations have been carried out to obtain low emittance beams. The design of the extraction system was carried out by means of the KOBRA (three dimensional) code. The study of the beam line has been carried out with the codes GIOS, GICO, and TRANSPORT by taking into account both the phase space growth due to space charge and to the aberrations inside the magnets. The description of some different beam line options will be also given.

  5. Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies.

    PubMed

    Oikawa, Akira; Nakamura, Yukiko; Ogura, Tomonori; Kimura, Atsuko; Suzuki, Hideyuki; Sakurai, Nozomu; Shinbo, Yoko; Shibata, Daisuke; Kanaya, Shigehiko; Ohta, Daisaku

    2006-10-01

    We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS software); (3) identification of marker metabolite candidates by searching a species-metabolite relationship database, KNApSAcK; and (4) structural analyses by an MS/MS method. The scheme was applied to metabolic phenotyping of Arabidopsis (Arabidopsis thaliana) seedlings treated with different herbicidal chemical classes for pathway-specific inhibitions. Arabidopsis extracts were directly infused into an electrospray ionization source on an FT-ICR/MS system. Acquired metabolomics data were comprised of mass-to-charge ratio values with ion intensity information subjected to principal component analysis, and metabolic phenotypes from the herbicide treatments were clearly differentiated from those of the herbicide-free treatment. From each herbicide treatment, candidate metabolites representing such metabolic phenotypes were found through the KNApSAcK database search. The database search and MS/MS analyses suggested dose-dependent accumulation patterns of specific metabolites including several flavonoid glycosides. The metabolic phenotyping scheme on the basis of FT-ICR/MS coupled with the DMASS program is discussed as a general tool for high throughput metabolic phenotyping studies.

  6. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  7. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder.

    PubMed

    Vondrasek, R; Clark, J; Levand, A; Palchan, T; Pardo, R; Savard, G; Scott, R

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  8. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ.

  9. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  10. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Ylin, Tzu-yuan (Inventor); Jackson, Henry (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  11. Plasma assisted synthesis of vanadium pentoxide nanoplates

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-08-01

    In this work, we report the growth of α-V2O5 (orthorhombic) nanoplates on glass substrate using plasma assisted sublimation process (PASP) and Nickel as catalyst. 100 nm thick film of Ni is deposited over glass substrate by thermal evaporation process. Vanadium oxide nanoplates have been deposited treating vanadium metal foil under high vacuum conditions with oxygen plasma. Vanadium foil is kept at fixed temperature growth of nanoplates of V2O5 to take place. Samples grown have been studied using XPS, XRD and HRTEM to confirm the growth of α-phase of V2O5, which revealed pure single crystal of α- V2O5 in orthorhombic crystallographic plane. Surface morphological studies using SEM and TEM show nanostructured thin film in form of plates. Uniform, vertically aligned randomly oriented nanoplates of V2O5 have been deposited.

  12. A simple derivation of relativistic full-wave equations at electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    McDonald, D. C.; Cairns, R. A.; Lashmore-Davies, C. N.

    1994-10-01

    When a wave passes through an electron gyroresonance, in a plasma in the presence of a magnetic field gradient, there is a small spread in the resonance due to the electron's Larmor radius. Mathematically this is represented by the inclusion of the so called gyrokinetic term in the resonance condition, Lashmore-Davies and Dendy. The smallness of this term, compared with other effects such as relativistic broadening, suggests that it should be negligible. However, we shall show here, by extending the method of Cairns et al., into the relativistic regime, that its inclusion is vital for producing self consistent full-wave equations which describe electron gyroresonance. The method is considerably simpler than those used previously by Maroli et al., Petrillo et al., and Lampis et al., for obtaining similar equations. As an example we include a calculation for the O-Mode passing perpendicularly through the fundamental.

  13. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    PubMed

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  14. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  15. Review on high current 2.45 GHz electron cyclotron resonance sources (invited)

    SciTech Connect

    Gammino, S.; Celona, L.; Ciavola, G.; Maimone, F.; Mascali, D.

    2010-02-15

    The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.

  16. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  17. Experimental validation of single pass ion cyclotron resonance absorption in a high speed flowing plasma applied to the variable specific impulse magnetoplasma rocket (VASIMR)

    NASA Astrophysics Data System (ADS)

    Davis, Christopher Nelson

    The topic of this thesis is the experimental characterization and analysis of single pass ion cyclotron resonance heating as applied to acceleration of ions for electric propulsion. The experimental work was done on the VX-10 experiment of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) concept. In ion cyclotron resonance heating (ICRH) a RF wave is launched into a magnetized plasma where it then accelerates the ions by increasing their rotational speed around the magnetic field lines. The electric field vector of the right hand component of the wave will rotate around the field lines with a frequency oRF in the same direction as the ion's cyclotron motion about the field lines. Consequently, when oRF ≈ oci (where oci is the ion's cyclotron frequency) the force from the electric field of the wave on the ions will result in a continuous rotational energy gain. The perpendicular velocity of the ions generated by ICRH is then converted into axial velocity by the decreasing gradient of the axial magnetic field at the exhaust of the propulsion system from conservation of the magnet moment. This increase in axial velocity is predicted to cause a decrease in density due to conservation of current in the plasma. In order to characterize this density drop during ion cyclotron heating, a single channel interferometer system was developed and implemented on the VX-10. Interferometer density measurements were taken at three different locations on the VX-10 experiment upstream and downstream of the ion acceleration zone. Measurements were made of the density drop in both Helium and Deuterium plasma discharges during ICRH under a variety of operating conditions including magnetic field profile, gas flow rate and ICRH power pulse timing, and ICRH power. A clear measurement of a density drop was observed downstream of the ion resonance zone characteristic of ion acceleration and measurement of little change in density upstream of the resonance zone where no

  18. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  19. Non-equilibrium Plasma-Assisted Combustion

    NASA Astrophysics Data System (ADS)

    Sun, Wenting

    As a promising method to enhance combustion, plasma-assisted combustion has drawn considerable attention. Due to the fast electron impact excitation and dissociation of molecules at low temperatures, plasma introduces new reaction pathways, changes fuel oxidation timescales, and can dramatically modify the combustion processes. In this dissertation, the radical generation from the plasma and its effect on flame extinction and ignition were investigated experimentally together with detailed numerical simulation on a counterflow CH4 diffusion flame. It was found that the atomic oxygen production played a dominant role in enhancing the chain-branching reaction pathways and accelerating fuel oxidation at near limit flame conditions. To understand the direct coupling effect between plasma and flame, a novel plasma-assisted combustion system with in situ discharge in a counterflow diffusion flame was developed. The ignition and extinction characteristics of CH4/O 2/He diffusion flames were investigated. For the first time, it was demonstrated that the strong plasma-flame coupling in in situ discharge could significantly modify the ignition/extinction characteristics and create a new fully stretched ignition S-curve. To understand low temperature kinetics of combustion, it is critical to measure the formation and decomposition of H2O2. A molecular beam mass spectrometry (MBMS) system was developed and integrated with a laminar flow reactor. H2O2 measurements were directly calibrated, and compared to kinetic models. The results confirmed that low and intermediate temperature DME oxidation produced significant amounts of H2O2. The experimental characterizations of important intermediate species including H2O2, CH2O and CH3OCHO provided new capabilities to investigate and improve the chemical kinetics especially at low temperatures. A numerical scheme for model reduction was developed to improve the computational efficiency in the simulation of combustion with detailed

  20. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    SciTech Connect

    Baumann, H.; Sah, R.E.

    2005-05-01

    We have used backscattering spectrometry and {sup 15}N({sup 1}H,{alpha},{gamma}){sup 12}C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor.

  1. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.

  2. Possible detection of a cyclotron resonance scattering feature in the X-ray pulsar 4U 1909+07

    SciTech Connect

    Jaisawal, Gaurava K.; Naik, Sachindra; Paul, Biswajit

    2013-12-10

    We present timing and broad band spectral studies of the high-mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observations during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11 ± 0.14 s. Pulsations are seen in the X-ray light curve up to ∼70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy becomes a simple single peak at higher energy. We found that the 1-70 keV pulse-averaged continuum can be fit by the sum of a blackbody and a partial covering Negative and Positive power law with Exponential cutoff model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption-like feature at ∼44 keV was clearly seen in the residuals of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a cyclotron resonance scattering feature (CRSF) in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ∼44 keV. We performed statistical tests on the residuals of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption-like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 × 10{sup 12} G.

  3. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  4. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  5. Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Alvarez, Jormarie; Cooks, R Graham; Barlow, S E; Gaspar, Daniel J; Futrell, Jean H; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2-keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly protonated peptide ion, peptide fragment ions, and peaks characteristic of the surface in all cases. In some experiments, multiply protonated peptide ions and [M + Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25-keV Ga+ time-of-flight-secondary ion mass spectrometry (TOF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis and enables very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  6. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  7. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  8. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  9. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    SciTech Connect

    Sun, L. Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Lu, W.; Zhao, Y. Y.; Xie, D.

    2014-02-15

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, and 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  10. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    NASA Astrophysics Data System (ADS)

    Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Zhao, Y. Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Xie, D.

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe27+, 236 eμA Xe30+, and 64 eμA Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi30+ and 202 eμA U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  11. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    PubMed

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  12. Plasma assisted synthesis of vanadium pentoxide nanoplates

    SciTech Connect

    Singh, Megha; Sharma, Rabindar Kumar; Kumar, Prabhat Reddy, G. B.

    2015-08-28

    In this work, we report the growth of α-V{sub 2}O{sub 5} (orthorhombic) nanoplates on glass substrate using plasma assisted sublimation process (PASP) and Nickel as catalyst. 100 nm thick film of Ni is deposited over glass substrate by thermal evaporation process. Vanadium oxide nanoplates have been deposited treating vanadium metal foil under high vacuum conditions with oxygen plasma. Vanadium foil is kept at fixed temperature growth of nanoplates of V{sub 2}O{sub 5} to take place. Samples grown have been studied using XPS, XRD and HRTEM to confirm the growth of α-phase of V{sub 2}O{sub 5}, which revealed pure single crystal of α- V{sub 2}O{sub 5} in orthorhombic crystallographic plane. Surface morphological studies using SEM and TEM show nanostructured thin film in form of plates. Uniform, vertically aligned randomly oriented nanoplates of V{sub 2}O{sub 5} have been deposited.

  13. Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ikeya, Kosuke; Sleighter, Rachel L.; Hatcher, Patrick G.; Watanabe, Akira

    2015-03-01

    The composition of humic acids (HAs) with varying degrees of humification isolated from 10 common Japanese soils was characterized using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry at 12 T. In particular, attention was paid to polynuclear aromatic components, which are more associated with the refractory nature of HAs and their resistance to biodegradation in soil than single C ring aromatic entities, such as lignin-like components, and aliphatic functionalities. Thousands of peaks were observed in the m/z range of 200-700, and molecular formulas were assigned to 817-2457 peaks in each sample. The molecular formulas having H/C and O/C ratios similar to those of lipid, protein, and other aliphatics with low double bond equivalents (DBE) of 0-7 were generally observed across the m/z range of 200-700. Although there were a number of molecular formulas having H/C and O/C values similar to those of lignin across the wide m/z range in the HAs with a low degree of humification, most lignin-like molecular formulas in the larger m/z range (450-650) or irrespective of m/z were lacking in the HAs with middle and high degrees of humification, respectively. These observations suggest a longer residence time for lignin monomers/dimers (and their derivatives; m/z 200-400) than larger lignin oligomers (m/z 450-650) in HA structural domains. The number of molecular formulas having H/C and O/C values similar to condensed aromatics increased with increasing degree of humification. The m/z and DBE values of condensed aromatic-like molecular formulas in the HAs with a lower degree of humification were <500 and 10-25, respectively, whilst the ranges expanded to 600 and 30-33, respectively, in the highly-humified black HAs. Kendrick mass defect analysis using a carboxyl group as the characteristic functional group found that 31, 73, and 39 molecular formulas had chain-type, net-type, and biphenyl-type condensed aromatic acids

  14. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  15. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  16. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  17. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  18. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the “hot liner” method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  19. Initial velocity distribution of MALDI/LDI ions measured by internal MALDI source Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chagovets, Vitaliy; Frankevich, Vladimir; Zenobi, Renato

    2014-11-01

    A new method for measuring the ion velocity distribution using an internal matrix-assisted laser desorption/ionization (MALDI) source Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The method provides the possibility of studying ion velocities without any influence of electric fields in the direction of the instrument axis until the ions reach the ICR cell. It also allows to simultaneously account for and to estimate not only the velocity distribution but the angular distribution as well. The method was demonstrated using several types of compounds in laser desorption/ionization (LDI) mode.

  20. Resonant and Nonresonant Electron Cyclotron Heating at Densities above the Plasma Cutoff by O-X-B Mode Conversion at the W7-As Stellarator

    SciTech Connect

    Laqua, H.; Erckmann, V.; Hartfuss, H.; Laqua, H.; ECRH Group, W.T.

    1997-05-01

    The extension of the experimentally accessible plasma densities with electron cyclotron heating beyond the plasma cutoff density and the removal of the restriction to a resonant magnetic field, both via mode conversion heating from an O-wave to an X-wave and, finally, to an electron Bernstein (O-X-B) wave, was investigated and successfully demonstrated at the W7-AS stellarator. In addition to the heating effect, clear evidence for both mode conversion steps was detected for the first time. {copyright} {ital 1997} {ital The American Physical Society}

  1. HELIOS: a helium line-ratio spectral-monitoring diagnostic used to generate high resolution profiles near the ion cyclotron resonant heating antenna on TEXTOR.

    PubMed

    Unterberg, E A; Schmitz, O; Fehling, D H; Stoschus, H; Klepper, C C; Muñoz-Burgos, J M; Van Wassenhove, G; Hillis, D L

    2012-10-01

    Radial profiles of electron temperature and density are measured at high spatial (∼1 mm) and temporal (≥10 μs) resolution using a thermal supersonic helium jet. A highly accurate detection system is applied to well-developed collisional-radiative model codes to produce the profiles. Agreement between this measurement and an edge Thomson scattering measurement is found to be within the error bars (≲20%). The diagnostic is being used to give profiles near the ion cyclotron resonant heating antenna on TEXTOR to better understand RF coupling to the core.

  2. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  3. Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina; Dandler, Jörg; Zoller, Jutta

    2006-01-01

    Background The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments. Methods Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca2+. Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated. Results The shoots of plants exposed to Ca2+-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca2+-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca2+-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a

  4. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment

    SciTech Connect

    Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Aßmus, D.; Wauters, T.

    2014-02-12

    Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

  5. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Wauters, T.; Aßmus, D.

    2014-02-01

    Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

  6. Behavior of Small-Scale Density Fluctuations in Discharges with Off-Axis Electron-Cyclotron Resonance Heating in the T-10 Tokamak

    SciTech Connect

    Shelukhin, D.A.; Vershkov, V.A.; Razumova, K.A.

    2005-12-15

    In experiments on off-axis electron-cyclotron resonance heating in the T-10 tokamak, a steep gradient of the electron temperature was observed to form for a short time at a relative radius of {rho} {approx_equal} 0.25 after the heating power was switched off. Small-scale fluctuations of the electron density were studied with the help of correlation reflectometry. It was found that, in a narrow region near {rho} {approx_equal} 0.25, the amplitude of the density fluctuations was two times lower than that in the ohmic heating phase. Quasi-coherent fluctuations were suppressed over a period of time during which the steep temperature gradient existed. Measurements of the poloidal rotation velocity of turbulent fluctuations show that there is no velocity shear after the heating is switched off. An analysis of the linear growth rates of instabilities shows that the ion-temperature-gradient mode is unstable at {rho} {approx_equal} 0.25 throughout the entire discharge phase. The effect observed can be explained by an increase in the distance between the rational surfaces near the radius at which the safety factor is q = 1 due to the temporary flattening of the q profile after the off-axis electron-cyclotron resonance heating is switched off.

  7. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    SciTech Connect

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.

  8. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

    PubMed

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I(FC) by the mobile plate tuner. The I(FC) is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I(FC) and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I(FC) when we change the position of the mobile plate tuner.

  9. Exhaust aftertreatment using plasma-assisted catalysis

    SciTech Connect

    Penetrante, B

    2000-01-20

    preconverting NO to NO{sub 2} could improve both the efficiency and durability of lean-NO{sub x} catalysts. A non-thermal plasma is an efficient means for selective partial oxidation of NO to NO{sub 2}. The use of a non-thermal plasma in combination with a lean-NO{sub x} catalyst opens the opportunity for catalysts that are more efficient and more durable compared to conventional catalysts. In the absence of hydrocarbons, the O radicals will oxidize NO to NO{sub 2}, and the OH radicals will further oxidize NO{sub 2} to nitric acid. In plasma-assisted catalysis it is important that the plasma oxidize NO to NO{sub 2} without further producing acids.

  10. Ion heating in the field-reversed configuration (FRC) by rotating magnetic fields (RMF) near cyclotron resonance

    SciTech Connect

    Samuel A. Cohen; Alan H. Glasser

    2000-07-20

    The trajectories of ions confined in a Solovev FRC equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field, have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC midplane. These results are relevant to a compact magnetic-fusion-reactor design.

  11. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2016-09-01

    We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ˜5.5 × 1038 erg s-1 in 1-70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1-70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi-Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ˜6.4 keV, a model independent absorption like feature at ˜27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ˜2.3 × 1012 G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.

  12. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  13. A "screened" electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Wang, M; Marshall, A G

    1989-06-01

    Until now, it was thought that the optimal static electromagnetic ion trap for Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry should be designed to produce a quadrupolar electrical potential, for which the ion cyclotron frequency is independent of the ion's preexcitation location within the trap. However, a quadrupolar potential results in a transverse (to the magnetic field) electric field that increases linearly with distance from the center of the trap. That radially linear electric field shifts the observed ICR frequency, increases the ICR orbital radius, and ultimately limits the highest mass-to-charge ratio ion that can be contained within the trap. In this paper, we propose a new static electromagnetic ion "trap" in which grounded screens placed just inside the usual "trapping" plates produce a good approximation to a "particle-in-a-box" potential (rather than the quadrupolar "harmonic oscillator" potential). SIMION calculations confirm that the electric potential of the screened trap is near zero almost everywhere within the trap. For our screened orthorhombic (2.5 in. X 2 in. X 2 in.) trap, the experimental ICR frequency shift due to trapping voltage is reduced by a factor of approximately 100, and the experimental variation of ICR frequency with ICR radius is reduced by a factor of approximately 10 compared to a conventional (unscreened) 2-in. cubic ion trap.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  15. Impurity cyclotron resonance in InGaAs/GaAs superlattice and InGaAs/AlAs superlattice grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Momose, H.; Okai, H.; Deguchi, H.; Mori, N.; Takeyama, S.

    2006-05-01

    Various temperature measurements of cyclotron resonance (CR) under pulsed ultra-high magnetic field up to 160 T were carried out in InGaAs/GaAs superlattice (SL) and InGaAs/AlAs SL samples grown by molecular beam epitaxy on GaAs substrates. Clear free-electron CR and impurity CR signals were observed in transmission of CO 2 laser with wavelength of 10.6 μm. A binding energy of impurities in these SLs was roughly estimated based on the experiment as result, and we found it was smaller than the previous experimental result of GaAs/AlAs SLs and theoretical calculation with a simple model.

  16. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal.

    PubMed

    Zuber, Jan; Kroll, Marius M; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols.

  17. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-16

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.

  18. Surface passivation of p-type Ge substrate with high-quality GeNx layer formed by electron-cyclotron-resonance plasma nitridation at low temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro

    2011-09-01

    We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.

  19. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Stenson, Alexandra C; Marshall, Alan G; Cooper, William T

    2003-03-15

    Molecular formulas have been assigned for 4626 individual Suwannee River fulvic acids based on accurate mass measurements from ions generated by electrospray ionization and observed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Formula assignments were possible because of the mass accuracy of FTICR MS at high field (9.4 T) and the regular mass spacing patterns found in fulvic acid mixtures. Sorting the 4626 individually observed ions according to Kendrick mass defect and nominal mass series (z* score) revealed that all could be assigned to 1 of 266 distinct homologous series that differ in oxygen content and double bond equivalence. Tandem mass spectrometry based on infrared multiphoton dissociation identified labile fragments of fulvic acid molecules, whose chemical formulas led to plausible structures consistent with degraded lignin as a source of Suwannee River fulvic acids.

  20. Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Kaplan, Desmond A; Hartmer, Ralf; Speir, J Paul; Stoermer, Carsten; Gumerov, Dmitry; Easterling, Michael L; Brekenfeld, Andreas; Kim, Taeman; Laukien, Frank; Park, Melvin A

    2008-01-01

    Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.

  1. Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples.

    PubMed

    Hur, Manhoi; Yeo, Injoon; Park, Eunsuk; Kim, Young Hwan; Yoo, Jongshin; Kim, Eunkyoung; No, Myoung-han; Koh, Jaesuk; Kim, Sunghwan

    2010-01-01

    Complex petroleum mass spectra obtained by Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS) were successfully interpreted at the molecular level by applying principle component analysis (PCA) and hierarchical clustering analysis (HCA). A total of 40 mass spectra were obtained from 20 crude oil samples using both positive and negative atmospheric pressure photoionization (APPI). Approximately 400,000 peaks were identified at the molecular level. Conventional data analyses would have been impractical with so much data. However, PCA grouped samples into score plots based on their molecular composition. In this way, the overall compositional difference between samples could be easily displayed and identified by comparing score and loading plots. HCA was also performed to group and compare samples based on selected peaks that had been grouped by PCA. Subsequent heat map analyses revealed detailed compositional differences among grouped samples. This study demonstrates a promising new approach for studying multiple, complex petroleum samples at the molecular level.

  2. Structure and morphology characters of GaN grown by ECR-MBE using hydrogen-nitrogen mixed gas plasma[Electron Cyclotron Resonance-Molecular Beam Epitaxy

    SciTech Connect

    Araki, Tsutomu; Chiba, Yasuo; Nanishi, Yasushi

    2000-07-01

    GaN growth by electron-cyclotron-resonance plasma-excited molecular beam epitaxy using hydrogen-nitrogen mixed gas plasma were carried out on GaN templates with a different polar-surface. Structure and surface morphology of the GaN layers were characterized using transmission electron microscopy. The GaN layer grown with hydrogen on N-polar template showed a relatively flat morphology including hillocks. Columnar domain existed in the center of the hillock, which might be attributed to the existence of tiny inversion domain with Ga-polarity. On the other hand, columnar structure was formed in the GaN layer grown with hydrogen on Ga-polar template.

  3. Fundamental mode rectangular waveguide system for electron-cyclotron resonant heating (ECRH) for tandem mirror experiment-upgrade (TMX-U)

    SciTech Connect

    Rubert, R.R.; Felker, B.; Stallard, B.W.; Williams, C.W.

    1983-12-01

    We present a brief history of TMX-U's electron cyclotron resonant heating (ECRH) progress. We emphasize the 2-year performance of the system, which is composed of four 200-kW pulsed gyrotrons operated at 28 GHz. This system uses WR42 waveguide inside the vacuum vessel, and includes barrier windows, twists, elbows, and antennas, as well as custom-formed waveguides. Outside the TMX-U vessel are directional couplers, detectors, elbows, and waveguide bends in WR42 rectangular waveguide. An arc detector, mode filter, eight-arm mode converter, and water load in the 2.5-in. circular waveguide are attached directly to the gyrotron. Other specific areas discussed include the operational performance of the TMX-U pulsed gyrotrons, windows and component arcing, alignment, mode generation, and extreme temperature variations. Solutions for a number of these problems are described.

  4. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  5. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiationa)

    NASA Astrophysics Data System (ADS)

    Silva, A.; Varela, P.; Meneses, L.; Manso, M.; ASDEX Upgrade Team

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  6. Utilizing artificial neural networks in MATLAB to achieve parts-per-billion mass measurement accuracy with a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Williams, D Keith; Kovach, Alexander L; Muddiman, David C; Hanck, Kenneth W

    2009-07-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to realize exceptional mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement, as well as relative ion abundance of a given species. Artificial neural network calibration in conjunction with automatic gain control (AGC) is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. In addition, artificial neural network calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level.

  7. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  8. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  9. The Structure and Bonding State for Fullerene-Like Carbon Nitride Films with High Hardness Formed by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru

    2012-12-01

    We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.

  10. Novel mono-static arrangement of the ASDEX Upgrade high field side reflectometers compatible with electron cyclotron resonance heating stray radiation.

    PubMed

    Silva, A; Varela, P; Meneses, L; Manso, M

    2012-10-01

    The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.

  11. Deposition of Ge-doped silica thin films for an integrated optic application using a matrix distributed electron cyclotron resonance PECVD reactor

    NASA Astrophysics Data System (ADS)

    Botha, Roelene; Bulkin, Pavel V.; Swart, Pieter L.

    2007-10-01

    Optical quality Ge-doped SiO2 thin films, suitable for an integrated optic version of a gain equalizer for erbium-doped fibre amplifiers (EDFAs), have been deposited using a matrix distributed electron cyclotron resonance plasma-enhanced chemical vapour deposition (MDECR-PECVD) system. Using spectroscopic ellipsometry and infrared transmission spectroscopy, the optical constants and hydroxyl content of the films were calculated. Losses due to the hydroxyl overtone at 1.37 μm are found to be approximately 0.251 dB/cm. An RBS analysis determined the germanium content of the films to be in the vicinity of 4 at.%. A comparison of the atomic percentage of germanium in the films and their corresponding refractive indices with values obtained using other deposition methods is also discussed.

  12. I. Effects of Perturbations on Ion Motion in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. I. First Principles Investigation of Hyperfine Properties in Zinc Chalcogenides and Spinels.

    NASA Astrophysics Data System (ADS)

    Mitchell, Dale Wesley

    I. Many FT-ICR systems are approximately described by the so-called quadrupole approximation; the dynamics of a single ion in a constant magnetic field and a quadratic electrostatic potential. The quadrupole approximation is considered the unperturbed problem while all other forces are treated as perturbations to this motion. Averaging methods are employed to study the effects of electrostatic and excitation field inhomogeneities on ion motion in a cubic ICR cell. A theory of ion motion based on averaging methods in a cubic ICR cell is presented for differential sinusoidal excitation that explains the observed stability, orders of magnitude and resonance positions for excitation frequencies away from the cyclotron frequency. FT-ICR double resonance experiments are used to test the theoretical predictions. For excitation frequencies near the cyclotron frequency, a previously unknown and simple expression is derived for the phase synchronization process in ICR which relates how the cyclotron radius and phase depend on the initial conditions. Finally, Lie transform perturbation theory and averaging methods are used to derive frequency shifts and mode amplitudes to all three fundamental ICR modes for the true electrostatic cubic cell potential. These analytical results give good agreement with numerical results. II. All electron Hartree-Fock cluster calculations are carried out to derive electron densities, electric field gradients and electronic structures in zinc chalcogenides, zinc fluoride and oxide spinels in order to theoretically interpret the available hyperfine interactions data. The theoretical densities at the zinc nucleus are combined with experimental isomer shifts to estimate a value for the mean square nuclear charge radius for the Mossbauer transition in ^{67}Zn of Delta< r^2 > = {+(13.9} +/- 1.4)times10 ^{-3} fm^2. For ZnO (wurtzite) and ZnF_2, the electric field gradient tensors are calculated at all nuclei and compared with the available data

  13. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    SciTech Connect

    Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S.; Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T.; Czarnecka, A.; Coenen, J. W.; and others

    2014-02-12

    The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  14. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Jacquet, P.; Bobkov, V.; Czarnecka, A.; Coenen, J. W.; Colas, L.; Crombé, K.; Graham, M.; Jachmich, S.; Joffrin, E.; Klepper, C. C.; Kiptily, V.; Lehnen, M.; Maggi, C.; Marcotte, F.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Nave, M. F. F.; Neu, R.; Noble, C.; Ongena, J.; Pütterich, T.; Rimini, F.; Solano, E. R.; van Rooij, G.; JET-EFDA contributors

    2014-02-01

    The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  15. Parametric study of two-dimensional potential structures induced by radio-frequency sheaths coupled with transverse currents in front of the Ion Cyclotron Resonance Heating antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2006-04-15

    For the first time, a two-dimensional (2D) fluid model and an analytical expression for the rectified potential with respect to the transverse polarization current are established and verified by a 2D PIC (particle in cell) code over the validity domain of our model. Then the model is extended to the overall ion cyclotron frequency range used in different heating and current drive scenarios. First, the models demonstrate that these transverse polarization currents add some inertia in the temporal dynamic. Due to the nonlinear behavior of the I-V sheath characteristic, the time average amplitude (dc potential) of the rectified potential structure is increased compared to the time average rf potential. Second, they induce only a slight widening of the potential structure. Such modifications are quantified using a 'test map' initially characterized by a Gaussian shape. The map is assumed to remain Gaussian near its summit. The time behavior of the peak can be estimated analytically in the presence of polarization current as a function of its width r{sub 0} and amplitude {phi}{sub 0} (normalized to local temperature and to a characteristic length for transverse transport). A potential peaking criterion has been built to determine the peaking zone of the dc potential structure induced by the rf field. Computations made for typical parameters of the edge plasma in front of the antenna of the Tokamak Tore Supra show that the dc rectified potential is up to 50% higher than the previous computations neglecting polarization current effects. The weak diffused and high dc potential structures computed can explain the hot spot formation induced by convective cells associated to high energetic ion fluxes on the corners of the Ion Cyclotron Resonance Heating ant0010en.

  16. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    SciTech Connect

    Belov, Mikhail E.; Zhang, Rui ); Strittmatter, Eric F. ); Prior, David C. ); Tang, Keqi ); Smith, Richard D. )

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  17. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H{sub 2}{sup +} beam production

    SciTech Connect

    Jia Xianlu; Zhang Tianjue; Wang Chuan; Zheng Xia; Yin Zhiguo; Zhong Junqing; Wu Longcheng; Qin Jiuchang; Luo Shan

    2010-02-15

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H{sub 2}{sup +} beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of {approx}875 Gs[T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  18. Note: Studies on target placement in TE{sub 111} cylindrical cavity of electron cyclotron resonance x-ray source for the enhancement of x-ray dose

    SciTech Connect

    Selvakumaran, T. S.; Baskaran, R.; Singh, A. K.; Sista, V. L. S. Rao

    2010-03-15

    X-ray source based on electron cyclotron resonance principle has been constructed using TE{sub 111} cylindrical cavity. At present the device is used to provide low energy x-ray field for thermoluminescent dosimeter badge calibration. Theoretical and experimental studies on the effect of target placement inside the TE{sub 111} cylindrical cavity for enhancing the x-ray output are carried out and the results are presented in this note. Optimum target location is identified by theoretical analysis on the electric field distribution inside the cavity using MICROWAVE STUDIO program. By modifying the magnetic field configuration, the resonance region is shifted to the optimum target location. The microwave transmission line is upgraded with a three stub tuner which improves the microwave coupling from the source to the target loaded cavity. Molybdenum target is located at a radial distance of 2.5 cm from the cavity center and the x-ray dose rate is measured at 20 cm from the exit port for different microwave power. With the introduction of the target, the x-ray output has improved nearly from 70% to 160% in the microwave power of 150-500 W.

  19. Study of cluster anions generated by laser ablation of titanium oxides: a high resolution approach based on Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barthen, Nicolas; Millon, Eric; Aubriet, Frédéric

    2011-03-01

    Laser ablation of titanium oxides at 355 nm and ion-molecule reactions between [(TiO(2))(x)](-•) cluster anions and H(2)O or O(2) were investigated by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with an external ion source. The detected anions correspond to [(TiO(2))(x)(H(2)O)(y)OH](-) and [(TiO(2))(x)(H(2)O)(y)O(2)](-•) oxy-hydroxide species with x=1 to 25 and y=1, 2, or 3 and were formed by a two step process: (1) laser ablation, which leads to the formation of [(TiO(2))(x)](-•) cluster anions as was previously reported, and (2) ion-molecule reactions during ion storage. Reactions of some [(TiO(2))(x)](-•) cluster anions with water and dioxygen conducted in the FTICR cell confirm this assessment. Tandem mass spectrometry experiments were also performed in sustained off-resonance irradiation collision-induced dissociation (SORI-CID) mode. Three fragmentation pathways were observed: (1) elimination of water molecules, (2) O(2) loss for radical anions, and (3) fission of the cluster. Density functional theory (DFT) calculations were performed to explain the experimental data.

  20. Plasma-assisted catalytic ionization using porous nickel plate

    NASA Astrophysics Data System (ADS)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-09-01

    Hydrogen atomic pair ions, i.e., H+ and H- ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H- ions.

  1. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  2. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    SciTech Connect

    McCarville, T.M.; Romesser, T.E.

    1985-10-02

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180/sup 0/ apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown.

  3. Pathway confirmation and flux analysis of central metabolicpathways in Desulfovibrio vulgaris Hildenborough using GasChromatography-Mass Spectrometry and Fourier Transform-Ion CyclotronResonance Mass Spectrometry

    SciTech Connect

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.

    2007-03-15

    Flux distribution in central metabolic pathways ofDesulfovibrio vulgaris Hildenborough was examined using 13C tracerexperiments. Consistent with the current genome annotation andindependent evidence from enzyme activity assays, the isotopomer resultsfrom both GC-MS and Fourier Transform-Ion Cyclotron Resonance massspectrometry (FT-ICR MS) indicate the lack of oxidatively functional TCAcycle and an incomplete pentose phosphate pathway. Results from thisstudy suggest that fluxes through both pathways are limited tobiosynthesis. The data also indicate that>80 percent of the lactatewas converted to acetate and the reactions involved are the primary routeof energy production (NAD(P)H and ATP production). Independent of the TCAcycle, direct cleavage of acetyl-CoA to CO and 5,10-methyl-THF also leadsto production of NADH and ATP. Although the genome annotation implicatesa ferredoxin-dependentoxoglutarate synthase, isotopic evidence does notsupport flux through this reaction in either the oxidative or reductivemode; therefore, the TCA cycle is incomplete. FT-ICR MS was used tolocate the labeled carbon distribution in aspartate and glutamate andconfirmed the presence of an atypical enzyme for citrate formationsuggested in previous reports (the citrate synthesized by this enzyme isthe isotopic antipode of the citrate synthesized by the (S)-citratesynthase). These findings enable a better understanding of the relationbetween genome annotation and actual metabolic pathways in D. vulgaris,and also demonstrate FT-ICR MS as a powerful tool for isotopomeranalysis, overcoming problems in both GC-MS and NMRspectroscopy.

  4. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  5. Boosting Sensitivity in Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids.

    PubMed

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography-Fourier transform ion cyclotron resonance-tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled (13)C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.

  6. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  7. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-03-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  8. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    SciTech Connect

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A.; Corre, Y.; Moncada, V.; Travere, J.-M.

    2015-11-15

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  9. Electron cyclotron resonance deposition of amorphous silicon alloy films and devices. Final subcontract report, 1 April 1991--31 March 1992

    SciTech Connect

    Shing, Y.H.

    1992-10-01

    This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.

  10. Optical emission diagnostics of electron cyclotron resonance and glow discharge plasmas for a-Si:H and a-SiC:H film depositions

    NASA Technical Reports Server (NTRS)

    Yang, C. L.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    It is demonstrated that the steady-state and kinetic characteristics of ECR (electron cyclotron resonance) and RF glow discharge plasmas can be readily monitored by OES (optical emission spectroscopy) in real time during a-Si:H and a-SiC:H film depositions using an OMA detection system. The ECR and RF glow discharge plasmas used for a-Si:H and a-SiC:H film depositions were studied by monitoring the emission of SiH(asterisk), H(asterisk), H(asterisk)2, and CH(asterisk) excited states. The OES of the ECR plasma shows a strong emission at 434 nm from H(asterisk), which is not detectable in the glow discharge plasma. Steady-state OES studies have established preliminary correlations between SiH(asterisk) and CH(asterisk) emission intensities and the film deposition rate. Transient OES spectra of SiH4 and CH4 plasmas have shown different kinetics in SiH(asterisk) and CH(asterisk) emission intensities. Transient studies of the SiH(asterisk) emission intensity have indicated that additional mechanisms for producing the SiH(asterisk) species become evident in hydrogen-diluted silane plasmas.

  11. Molecular evidence of heavy-oil weathering following the M/V Cosco Busan spill: insights from Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Lemkau, Karin L; McKenna, Amy M; Podgorski, David C; Rodgers, Ryan P; Reddy, Christopher M

    2014-04-01

    Recent studies have highlighted a critical need to investigate oil weathering beyond the analytical window afforded by conventional gas chromatography (GC). In particular, techniques capable of detecting polar and higher molecular weight (HMW; > 400 Da) components abundant in crude and heavy fuel oils (HFOs) as well as transformation products. Here, we used atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) to identify molecular transformations in oil-residue samples from the 2007 M/V Cosco Busan HFO spill (San Francisco, CA). Over 617 days, the abundance and diversity of oxygen-containing compounds increased relative to the parent HFO, likely from bio- and photodegradation. HMW, highly aromatic, alkylated compounds decreased in relative abundance concurrent with increased relative abundance of less alkylated stable aromatic structures. Combining these results with GC-based data yielded a more comprehensive understanding of oil spill weathering. For example, dealkylation trends and the overall loss of HMW species observed by FT-ICR MS has not previously been documented and is counterintuitive given losses of lower molecular weight species observed by GC. These results suggest a region of relative stability at the interface of these techniques, which provides new indicators for studying long-term weathering and identifying sources.

  12. Enrichment, resolution, and identification of nickel porphyrins in petroleum asphaltene by cyclograph separation and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Qian, Kuangnan; Edwards, Kathleen E; Mennito, Anthony S; Walters, Clifford C; Kushnerick, J Douglas

    2010-01-01

    We report here the first high resolution mass spectrometric evidence of nickel porphyrins in petroleum. A petroleum asphaltene sample is fractionated by a silica-gel cyclograph. Nickel content is enriched by approximately 3 fold in one of the cyclograph fractions. The fraction is subsequently analyzed by atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with an average mass resolving power of over 500 K (M/DeltaM(fwhm)). Similar to vanadyl porphyrins, monocylcoalkano-type (presumed to be deocophylerythro-etioporphyrin DPEP) Ni porphyrins are found to be the most abundant family followed by etio, bicycloalkano-type, and rhodo-monocylcoalkano-type Ni porphyrins. A Z number ranging from -28 to -44 and a carbon number ranging from 26 to 41 were observed. A significant amount of nickel and vanadyl geoporphyrins are in more condensed tetrapyrrolic cores than just chlorophyll-derived DPEP- and etioporphyrins. Ni has a higher etio/DPEP ratio and rhodo-etio/rhodo-DPEP ratio than does VO.

  13. Analysis of cancer cell lipids using matrix-assisted laser desorption/ionization 15-T Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Yang, Hyo-Jik; Park, Kyu Hwan; Lim, Dong Wan; Kim, Hyun Sik; Kim, Jeongkwon

    2012-03-30

    A combination of methodologies using the extremely high mass accuracy and resolution of 15-T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) was introduced for the identification of intact cancer cell phospholipids. Lipids from a malignant glioma cell line were initially analyzed at a resolution of >200,000 and identified by setting the mass tolerance to ±1 mDa using matrix-assisted laser desorption/ionization (MALDI) 15-T FT-ICR MS in positive ion mode. In most cases, a database search of potential lipid candidates using the exact masses of the lipids yielded only one possible chemical composition. Extremely high mass accuracy (<0.1 ppm) was then attained by using previously identified lipids as internal standards. This, combined with an extremely high resolution (>800,000), yielded well-resolved isotopic fine structures allowing for the identification of lipids by MALDI 15-T FT-ICR MS without using tandem mass spectrometric (MS/MS) analysis. Using this method, a total of 38 unique lipids were successfully identified.

  14. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-01-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  15. Rapid characterization of the chemical constituents of Cortex Fraxini by homogenate extraction followed by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry and GC-MS.

    PubMed

    Wang, Yinan; Han, Fei; Song, Aihua; Wang, Miao; Zhao, Min; Zhao, Chunjie

    2016-11-01

    Cortex Fraxini is an important traditional Chinese medicine. In this work, a rapid and reliable homogenate extraction method was applied for the fast extraction for Cortex Fraxini, and the method was optimized by response surface methodology. Ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography with mass spectrometry were established for the separation and characterization of the constituents of Cortex Fraxini. Liquid chromatography separation was conducted on a C18 column (150 mm × 2.1 mm, 1.8 μm), and gas chromatography separation was performed on a capillary with a 5% phenyl-methylpolysiloxane stationary phase (30 m × 0.25 mm × 0.25 mm) by injection of silylated samples. According to the results, 33 chemical compounds were characterized by liquid chromatography with mass spectrometry, and 11 chemical compounds were characterized by gas chromatography with mass spectrometry, and coumarins were the major components characterized by both gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. The proposed homogenate extraction was an efficient and rapid method, and coumarins, phenylethanoid glycosides, iridoid glycosides, phenylpropanoids, and lignans were the main constituents of Cortex Fraxini. This work laid the foundation for further study of Cortex Fraxini and will be helpful for the rapid extraction and characterization of ingredients in other traditional Chinese medicines.

  16. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A.; Corre, Y.; Moncada, V.; Travere, J.-M.

    2015-11-01

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  17. Calibration laws based on multiple linear regression applied to matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Williams, D Keith; Chadwick, M Ashley; Williams, Taufika Islam; Muddiman, David C

    2008-12-01

    Operation of any mass spectrometer requires implementation of mass calibration laws to translate experimentally measured physical quantities into a m/z range. While internal calibration in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) offers several attractive features, including exposure of calibrant and analyte ions to identical experimental conditions (e.g. space charge), external calibration affords simpler pulse sequences and higher throughput. The automatic gain control method used in hybrid linear trap quadrupole (LTQ) FT-ICR-MS to consistently obtain the same ion population is not readily amenable to matrix-assisted laser desorption/ionization (MALDI) FT-ICR-MS, due to the heterogeneous nature and poor spot-to-spot reproducibility of MALDI. This can be compensated for by taking external calibration laws into account that consider magnetic and electric fields, as well as relative and total ion abundances. Herein, an evaluation of external mass calibration laws applied to MALDI-FT-ICR-MS is performed to achieve higher mass measurement accuracy (MMA).

  18. High-molecular weight sulfur-containing aromatics refractory to weathering as determined by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Panda, Saroj K; Schrader, Wolfgang; Andersson, Jan T

    2012-09-01

    Biomarkers and low-molecular weight polyaromatic compounds have been extensively studied for their fate in the environment. They are used for oil spill source identification and monitoring of weathering and degradation processes. However, in some cases, the absence or presence of very low concentration of such components restricts the access of information to spill source. Here we followed the resistance of high-molecular weight sulfur-containing aromatics to the simulated weathering condition of North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The sulfur aromatics in North Sea crude having double bond equivalents (DBE) from 6 to 14 with a mass range 188-674Da were less influenced even after 6 months artificial weathering. Moreover, the ratio of dibenzothiophenes (DBE 9)/naphthenodibenzothiophenes (DBE 10) was 1.30 and 1.36 in crude oil and 6 months weathered sample, respectively reflecting its weathering stability. It also showed some differences within other oils. Hence, this ratio can be used as a marker of the studied crude and accordingly may be applied for spilled oil source identification in such instances where the light components have already been lost due to environmental influences.

  19. Detection of Non-aromatic Organic Compounds in Meteorites using Imaging Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Scott, J. R.; Hinman, N. W.; Richardson, C. D.; Mahon, R. C.; McJunkin, T. R.

    2009-12-01

    Our most extensive understanding of extraterrestrial organic matter is based on what has been learned from meteorites that have been delivered naturally to Earth. Meteorites have been analyzed by a variety of techniques ranging from extensive sample preparation with extraction and subsequent chromatography to direct laser desorption mass spectrometry (LDMS). While extraction studies have reported a variety of organics (e.g., aliphatic and aromatic hydrocarbons, ketones, aldehydes, and amino acids), LDMS studies have only reported polycyclic aromatic hydrocarbons (PAHs). This is rather surprising considering that Yan et al. (Talanta 2007, 72, 634-641) reported that even a small amount of PAH enables the detection of organics that are not otherwise ionized during the desorption event from minerals. Therefore, we have begun re-investigating meteorites because, regardless of the source of the organic compounds, the presences of PAHs should allow other organic molecules to be observed using imaging laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS). Indeed, we have mapped meteorites (e.g., EETA 79001) and found many mass-to-charge peaks that are non-aromatic as determined by analysis of their mass defects. Mapping also revealed that the distribution of organics is heterogeneous, which necessitates the collection of a mass spectrum from a single laser shot so that minor peaks of interest are not lost in signal averaging. These studies have implications for analyzing future returned samples from Mars or elsewhere with minimal preparation or damage.

  20. Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Qian, Kuangnan; Mennito, Anthony S; Edwards, Kathleen E; Ferrughelli, Dave T

    2008-07-01

    Vanadyl (VO) porphyrins and sulfur-containing vanadyl (VOS) porphyrins of a wide carbon number range (C(26) to C(52)) and Z-number range (-28 to -54) were detected and identified in a petroleum asphaltene by atmospheric pressure photonionization (APPI) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). APPI provides soft ionization of asphaltene molecules (including VO and VOS porphyrins), generating primarily molecular ions (M(+.)). The ultra-high mass resolving power (m/Delta m(FWHM) approximately 500 K) of FTICR-MS enabled resolution and positive identification of elemental formulae for the entire family of VO and VOS porphyrins in a complicated asphaltene matrix. Deocophylerythro-etioporphyrin (DPEP) is found to be the most prevalent structure, followed by etioporphyrins (etio)- and rhodo (benzo)-DPEP. The characteristic Z-distribution of VO porphyrins suggests benzene and naphthene increment in the growth of porphyrin ring structures. Bimodal carbon number distributions of VO porphyrins suggest possible different origins of low and high molecular weight species. To our knowledge, the observation of VOS porphyrins in a petroleum product has not previously been reported. The work is also the first direct identification of the entire vanadyl porphyrin family by ultra-high resolution mass spectrometry without chromatographic separation or demetallation.

  1. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  2. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  3. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  4. Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments

    SciTech Connect

    Choi, M.; Chan, V. S.; Lao, L. L.; Pinsker, R. I.; Green, D.; Berry, L. A.; Jaeger, F.; Park, J. M.; Heidbrink, W. W.; Liu, D.; Podesta, M.; Harvey, R.; Smithe, D. N.; Bonoli, P.

    2010-05-15

    The five-dimensional finite-orbit Monte Carlo code ORBIT-RF[M. Choi et al., Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger et al., Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink et al., Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments.

  5. Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments

    SciTech Connect

    Choi, M.; Green, David L; Heidbrink, W. W.; Harvey, R. W.; Liu, D.; Chan, V. S.; Berry, Lee A; Jaeger, Erwin Frederick; Lao, L.L.; Pinsker, R. I.; Podesta, M.; Smithe, D. N.; Park, J. M.; Bonoli, P.

    2010-01-01

    The five-dimensional finite-orbit Monte Carlo code ORBIT-RF [M. Choi , Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger , Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar , Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink , Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3314336

  6. The significance of monoisotopic and carbon-13 isobars for the identification of a 19-component dodecapeptide library by positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ramjit, H G; Kruppa, G H; Spier, J P; Ross, C W; Garsky, V M

    2000-01-01

    Harnessing the ultra high resolution capabilities of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and positive ion electrospray, we have demonstrated the significance and utility of cumulative mass defect high resolution mass separation stable isotope distribution, exact mass measurement and elemental formula as a means of simultaneously identifying 19 components of the dodecapeptide library Ac-ANKISYQS[X]STE-NH(2). With an instrument resolution of 275 000 (average), isobaric multiplets attributed to monoisotopic and carbon-13 components of peptides: Ac approximately SLS approximately NH(2); Ac approximately SNS approximately NH(2); Ac approximately SOS approximately NH(2); Ac approximately SDS approximately NH(2); within the mass window of 1380-1385 Da, and Ac approximately SQS approximately NH(2); Ac approximately SKS approximately NH(2); Ac approximately SES approximately NH(2); Ac approximately SMS approximately NH(2), within the mass window 1395-1400 Da, were mass resolved, accurately mass measured and identified from the computed molecular formulas. This experimental procedure enabled the separation of monoisotopic and carbon-13 isobars yielding enhanced selectivity and specificity and serves to illustrate the significance of monoisotopic and carbon-13 isobars in final product analysis. Chromatographic separation (HPLC) was of limited utility except for monitoring the overall extent of reaction and apparent product distribution. Positive ion electrospray-FTICR-MS and fast atom bombardment (FAB) MS were used to assess final product quality and apparent component distribution.

  7. High rate and highly selective anisotropic etching for WSi{sub {ital x}}/poly-Si using electron cyclotron resonance plasma

    SciTech Connect

    Nojiri, K.; Tsunokuni, K.; Yamazaki, K.

    1996-05-01

    High rate and highly selective anisotropic etching for tungsten polycide (WSi{sub {ital x}}/poly-Si) has been developed by fully utilizing such advantages of the electron cyclotron resonance plasma etcher, as high plasma density and independent control of ion energy and plasma density. Highly anisotropic etching with a WSi{sub {ital x}}/poly-Si etch rate of 400 nm/min and a poly-Si/SiO{sub 2} selectivity of 50 was realized by adding O{sub 2} to Cl{sub 2} and reducing the ion energy. O{sub 2} addition increases the WSi{sub {ital x}} etch rate and reduces the SiO{sub 2} etch rate, keeping the poly-Si etch rate nearly constant. This leads to the same etch rate for WSi{sub {ital x}} and poly-Si, and a higher selectivity for poly-Si/SiO{sub 2}. The decrease in the SiO{sub 2} etch rate was found to be mainly caused by a deposition of SiO{sub {ital x}} on the surface. The role of the O{sub 2} was found to be not only increasing the WSi{sub {ital x}} etch rate and the poly-Si/SiO{sub 2} selectivity but forming a sidewall protection film to achieve an anisotropic etching. {copyright} {ital 1996 American Vacuum Society}

  8. High excitation of the species in nitrogen-aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-11-01

    A reactive nitrogen-aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen-aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis.

  9. Formation of diatomic molecular radicals in reactive nitrogen-carbon plasma generated by electron cyclotron resonance discharge and pulsed laser ablation

    SciTech Connect

    Liang, Peipei; Li, Yanli; You, Qinghu; Cai, Hua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-04-15

    The reactive nitrogen-carbon plasma generated by electron cyclotron resonance (ECR) microwave discharge of N{sub 2} gas and pulsed laser ablation of a graphite target was characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy with space resolution for a study of gas-phase reactions and molecular radical formation in the plasma. The plasma exhibits very high reactivity compared with the plasma generated solely by ECR discharge or by pulsed laser ablation and contains highly excited species originally present in the ambient gaseous environment and directly ablated from the target as well as formed as the products of gas-phase reactions occurring in the plasma. The space distribution and the time evolution of the plasma emission give an access to the gas-phase reactions for the formation of C{sub 2} and CN radicals, revealing that C{sub 2} radicals are formed mainly in the region near the target while CN radicals can be formed in a much larger region not only in the vicinity of the target, but especially in the region near a substrate far away from the target.

  10. Formation of diatomic molecular radicals in reactive nitrogen-carbon plasma generated by electron cyclotron resonance discharge and pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Li, Yanli; You, Qinghu; Cai, Hua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-04-01

    The reactive nitrogen-carbon plasma generated by electron cyclotron resonance (ECR) microwave discharge of N2 gas and pulsed laser ablation of a graphite target was characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy with space resolution for a study of gas-phase reactions and molecular radical formation in the plasma. The plasma exhibits very high reactivity compared with the plasma generated solely by ECR discharge or by pulsed laser ablation and contains highly excited species originally present in the ambient gaseous environment and directly ablated from the target as well as formed as the products of gas-phase reactions occurring in the plasma. The space distribution and the time evolution of the plasma emission give an access to the gas-phase reactions for the formation of C2 and CN radicals, revealing that C2 radicals are formed mainly in the region near the target while CN radicals can be formed in a much larger region not only in the vicinity of the target, but especially in the region near a substrate far away from the target.

  11. Characterization of organic material in ice core samples from North America, Greenland, and Antarctica using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.

    2013-12-01

    Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.

  12. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    NASA Astrophysics Data System (ADS)

    Lu, W.; Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W.

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H+, 40Ar8+, 129Xe30+, 209Bi33+, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  13. Electron Cyclotron Resonance-Sputtered Nanocarbon Film Electrode Compared with Diamond-Like Carbon and Glassy Carbon Electrodes as Regards Electrochemical Properties and Biomolecule Adsorption

    NASA Astrophysics Data System (ADS)

    Xue, Qiang; Kato, Dai; Kamata, Tomoyuki; Umemura, Shigeru; Hirono, Shigeru; Niwa, Osamu

    2012-09-01

    The electrochemical properties and biocompatible characteristics at an electron cyclotron resonance (ECR)-sputtered nanocarbon film electrode, a diamond-like carbon (DLC) electrode and a glassy carbon (GC) electrode have been studied. The three carbon electrodes show significant current reductions with increased peak separations as a result of protein fouling before oxygen plasma treatment, but the current reductions of the ECR-sputtered nanocarbon and DLC film electrodes are smaller than that of the GC electrode due to their superior surface flatness. The oxygen plasma pretreated ECR-sputtered nanocarbon film electrode exhibits a significant improvement in anti-fouling performance with an improved electron transfer. This is because the pretreated ECR-sputtered nanocarbon film enabled the surface to introduce surface oxygen functionalities that not only improve the interaction between the analytes and the electrode surface but also make the film surface more hydrophilic, which is important for the suppression of biomolecule adsorption. At the same time, the pretreated ECR-sputtered nanocarbon film also retained an ultraflat surface even after pretreatment as a result of the low background current. This excellent performance can only be achieved with our ECR-sputtered nanocarbon film, indicating that our film is promising for application to electrochemical detectors for various biomolecular analytes.

  14. Enhanced production of runaway electrons during electron cyclotron resonance heating and in the presence of supersonic molecular beam injection in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu, Yi; Yang, J. W.; Song, X. Y.; Yuan, G. L.; Zhou, J.; Yao, L. H.; Feng, B. B.; Li, X.; Yang, Q. W.; Duan, X. R.; Pan, C. H.; Liu, Y.

    2010-07-15

    In the present paper, it is reported that a large production of runaway electrons has been observed during the flattop phase of electron cyclotron resonance heating (ECRH) discharges and in the presence of supersonic molecular beam injection (SMBI) in the HuanLiuqi-2A (commonly referred to as HL-2A) [Q. W. Yang, Nucl. Fusion 47, S635 (2007)] tokamak. For the set of discharges carried out in the present experiment, the ranges of ECRH power and plasma electron density are 0.8-1.0 MW and (3.0-4.0)x10{sup 19} m{sup -3}, respectively. A large number of superthermal electrons are produced through the avalanche effect [A. Lazaros, Phys. Plasmas 8, 1263 (2001)] during ECRH. The loop voltage increase due to SMBI gives rise to a decline in the critical runaway energy, which leads to that many superthermal electrons could be converted into runaway region. Therefore, this phenomenon may come from the synergetic effects of ECRH and SMBI. That is, the superthermal electrons created by ECRH are accelerated into runaway regime via the Dreicer process which is triggered by SMBI. The experimental results are in well agreement with the calculational ones based on the superthermal electron avalanche effect and the Dreicer runaway theory.

  15. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barrow, Mark P.; Peru, Kerry M.; Fahlman, Brian; Hewitt, L. Mark; Frank, Richard A.; Headley, John V.

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  16. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    PubMed

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  17. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    DTIC Science & Technology

    2012-11-01

    species: O, H, O2(a∆g) … Most combustors Disappear of the “S-curve” the classical S-curve . Can plasma assisted combustion enhances sublimit...species: O, H, O2(a∆g) … Most combustors Disappear of the “S-curve” the classical S-curve Ignition Extinction Hypothesis 0.05 0.10 0.15 0.20...Ether (DME) Oxidation 23 Molecular beam P la sm a R e ac to r ex it R e ac ti o n p ro d u ct s 0.1-5 atm Quartz nozzle

  18. Optimization of an electron cyclotron resonance plasma etch process for n{sup +} polysilicon: HBr process chemistry

    SciTech Connect

    Tipton, G.D.; Blain, M.G.; Westerfield, P.L.; Trutna, L.S.; Maxwell, K.L.

    1993-08-01

    Designed experiments were employed to characterize a process for etching phosphorus doped polycrystalline silicon with HBr in a close-coupled ECR plasma reactor configured for 200 mm wafers. A fractional factorial screening experiment was employed to determine the principal input factors and the main etch effects. Linear models of the process responses indicate RF power, O{sub 2} flow rate, and the position of the resonance zone (with respect to the wafer) as the three strongest factors influencing process performance. Response surfaces generated using data from a follow-on response surface methodology (RSM) experiment predicted an optimum operating region characterized by relatively low RF power, a small O{sub 2} flow, and a resonance zone position close to the wafer. The optimized process demonstrated a polysilicon etch rate of 270 nm/min, an etch rate non-uniformity of 2.2% (1s), an etch selectivity to oxide greater than 100:1, and anisotropic profiles. Particle test results for the optimized process indicated that careful selection of the O{sub 2} fraction is required to avoid polymer deposition and particle formation.

  19. Cyclotron Resonance in a Two-Dimensional Electron Gas with Long-Range Randomness in Modulation-Doped GaAs/AlGaAs and Si/SiGe Single Quantum Wells

    NASA Astrophysics Data System (ADS)

    McCombe, B. D.; Yeo, T.; Comanescu, G.; Ashkinadze, B. M.; Tol, H. V.; Brunel, L. C.

    2001-03-01

    We have performed studies of cyclotron resonance (CR) on two high mobility, one-side modulation-doped GaAs/AlGaAs single quantum-well (SQW) samples and one one-side modulation-doped Si/SiGe heterostructure. Measurements were made at 4.2 K over a wide range of photon energies (141.8 cm-1 - 1.25 cm-1) by far-infrared laser and microwave techniques in conjunction with a superconducting magnet at 4.2 K. From linewidth analysis the behavior of the CR linewidth vs. (ωc τ)-1, where ωc is the cyclotron frequency and τ is the momentum relaxation time, is not well-explained by CR linewidth descriptions [1] which mainly deal with the effect of short-range random potential. A comparison of the experimental results with a recently suggested theoretical model of cyclotron resonance of two-dimensional electron gas with long-range randomness will be given [2]. supported by BSF96004092 and DMR 9727425. 1 T. Ando, J. Phys. Soc. Jpn. 38, 989 (1975). 2 M. M. Fogler, B. I. Shklovskii, Phys. Rev. Lett. 80, 4749 (1998).

  20. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  1. Plasma-assisted cataluminescence sensor array for gaseous hydrocarbons discrimination.

    PubMed

    Na, Na; Liu, Haiyan; Han, Jiaying; Han, Feifei; Liu, Hualin; Ouyang, Jin

    2012-06-05

    Combining plasma activation and cross-reactivity of sensor array, we have developed a plasma-assisted cataluminescence (PA-CTL) sensor array for fast sensing and discrimination of gaseous hydrocarbons, which can be potentially used for fast diagnosis of lung cancer. Based on dielectric barrier discharge, a low-temperature plasma is generated to activate gaseous hydrocarbons with low cataluminescence (CTL) activities. Extremely increased CTL responses have been obtained, which resulted in a plasma assistance factor of infinity (∞) for some hydrocarbons. On a 4 × 3 PA-CTL sensor array made from alkaline-earth nanomaterials, gaseous hydrocarbons showed robust and unique CTL responses to generate characteristic patterns for fast discrimination. Because of the difference in the component of hydrocarbons in breath, exhaled breath samples from donors with and without lung cancer were tested, and good discrimination has been achieved by this technique. In addition, the feasibility of multidimentional detection based on temperature was confirmed. It had good reproducibility and gave a linear range of 65-6500 ng/mL or 77-7700 ppmv (R > 0.98) for CH(4) with a detection limit of 33 ng/mL (38 ppmv) on MgO. The PA-CTL sensor array is simple, low-cost, thermally stable, nontoxic, and has an abundance of alkaline-earth nanomaterials to act as sensing elements. This has expanded the applications of CTL-based senor arrays and will show great potential in clinical fast diagnosis.

  2. A high temperature, plasma-assisted chemical vapor deposition system

    SciTech Connect

    Brusasco, R.M.; Britten, J.A.; Thorsness, C.B.; Scrivener, M.S.; Unites, W.G.; Campbell, J.H. ); Johnson, W.L. )

    1990-02-01

    We have designed and built a high-temperature, plasma-assisted, chemical vapor deposition system to deposit multilayer optical coatings of SiO{sub 2} and doped-SiO{sub 2} flat substrates. The coater concept and design is an outgrowth of our recent work with Schott Glasswerke demonstrating the use of plasma assisted CVD to prepare very high damage threshold optical coatings. The coater is designed to deposit up to several thousand alternating quarterwave layers of SiO{sub 2} and doped SiO{sub 2} substrate at deposition rates up to several microns per minute. The substrate is resistively heated to about 1000{degree}C during the deposition phase of the process. The plasma is driven by a 13.56 MHz RF unit capable of producing power densities of up to 140 W cm{sup {minus}3} in the reaction zone. The coater is designed to be adaptable to microwave generated plasmas, as well as RF. Reactant gas flow rates of up to 10 slm can be achieved at a 10 tar operating pressure. Reactants consist of O{sub 2}, SiCl{sub 4} and a volatile halogenated dopant. These gases react in the plasma volume producing SiO{sub 2} with dopant concentrations of up to a few percent. A variable dopant concentration is used to produce index differences between adjacent optical layers.

  3. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

    DTIC Science & Technology

    2011-11-01

    Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Yiguang Ju AFOSR MURI Review Meeting...SUBTITLE Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion 5a. CONTRACT NUMBER 5b. GRANT...stabilization • Combustion completion F135 engine: (F35, 2011) Mach 6-8 Ignition instability Plasma assisted combustion Plasma Ions/electrons Excited species

  4. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  5. Pulse-Periodic Regimes of Kinetic Instabilities in the Non-Equilibrium Plasma of an Electron Cyclotron Resonance Discharge Maintained by Continuous-Wave Radiation of a 24 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Mansfeld, D. A.; Viktorov, M. E.; Vodopyanov, A. V.

    2017-01-01

    We have experimentally discovered an instability, which manifests itself as precipitations of hot electrons occurring synchronously with generation of bursts of electromagnetic radiation, in the plasma of an electron cyclotron resonance discharge maintained by a high-power, continuous-wave radiation of a 24 GHz gyrotron, for the first time. The observed instability has the kinetic nature and is determined by the formation of the non-equilibrium velocity distribution of hot particles. Two possible explanations are proposed for the mechanism of wave excitation in a two-component plasma with a stationary source of non-equilibrium particles. The results of the studies performed are of interest for modeling of the dynamics of magnetospheric cyclotron masers.

  6. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  7. Combinatorial characterization of transparent conductive properties of Ga-doped ZnO films cosputtered from electron cyclotron resonance and rf magnetron plasma sources

    SciTech Connect

    Akazawa, Housei

    2010-03-15

    The simultaneous sputtering of ZnO and Ga{sub 2}O{sub 3} by electron cyclotron resonance and rf magnetron plasma sources produced Ga-doped ZnO (GZO) films with continuously varying Ga concentration over the substrate surface. Combinatorial evaluation of electrical and optical properties of GZO film grown on silica glass substrate without heater annealing enabled identification of minimum resistivity (0.5 m{Omega} cm) at a Ga{sub 2}O{sub 3} content of 5.5 wt % with an optical transmittance of 90% in the visible wavelength. The monotonically decreasing mobility that was associated with increasing carrier concentration as Ga{sub 2}O{sub 3} content was increased indicated that conduction was governed by ionized impurity scattering. Above the critical Ga{sub 2}O{sub 3} content (6 wt %), carrier concentration decreased since excess Ga atoms that were incorporated beyond the solubility limit at Zn sites hindered large crystalline domains from forming. The ZnO (002) x-ray diffraction peak was suppressed and peaks assigned to Ga{sub 2}O{sub 3} were observed at high Ga{sub 2}O{sub 3} content. The optimum Ga{sub 2}O{sub 3} content shifted to 3.5 wt % at a deposition temperature of 200 deg. C and 2.5 wt % at 300 deg. C, and the minimum resistivity was further decreased to 0.28 m{Omega} cm at 200 deg. C. However, the resistivities at these elevated temperatures were incredibly high both at the lower and higher side of the optimum Ga{sub 2}O{sub 3} content.

  8. Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation.

    PubMed

    Nyakas, Adrien; Han, Jun; Peru, Kerry M; Headley, John V; Borchers, Christoph H

    2013-05-07

    Oil sands processed water (OSPW) is the main byproduct of the large-scale bitumen extraction activity in the Athabasca oil sands region (Alberta, Canada). We have investigated the acid-extractable fraction (AEF) of OSPW by extraction-only (EO) direct infusion (DI) negative-ion mode electrospray ionization (ESI) on a 12T-Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS), as well as by offline ultrahigh performance liquid chromatography (UHPLC) followed by DI-FTICR-MS. A preliminary offline UHPLC separation into 8 fractions using a reversed-phase C4 column led to approximately twice as many detected peaks and identified compounds (973 peaks versus 2231 peaks, of which 856 and 1734 peaks, respectively, could be assigned to chemical formulas based on accurate mass measurements). Conversion of these masses to the Kendrick mass scale allowed the straightforward recognition of homologues. Naphthenic (CnH2n+zO2) and oxy-naphthenic (CnH2n+zOx) acids represented the largest group of molecules with assigned formulas (64%), followed by sulfur-containing compounds (23%) and nitrogen-containing compounds (8%). Pooling of corresponding fractions from two consecutive offline UHPLC runs prior to MS analysis resulted in ~50% more assignments than a single injection, resulting in 3-fold increase of identifications compared to EO-DI-FTICR-MS using the same volume of starting material. Liquid-liquid extraction followed by offline UHPLC fractionation thus holds enormous potential for a more comprehensive profiling of OSPW, which may provide a deeper understanding of its chemical nature and environmental impact.

  9. Protein-sequence polymorphisms and post-translational modifications in proteins from human saliva using top-down Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whitelegge, Julian P.; Zabrouskov, Vlad; Halgand, Frederic; Souda, Puneet; Bassilian, Sara; Yan, Weihong; Wolinsky, Larry; Loo, Joseph A.; Wong, David T. W.; Faull, Kym F.

    2007-12-01

    Single nucleotide polymorphisms (SNPs) can result in protein-sequence polymorphisms (PSPs) when codon translations are altered. Both top-down and bottom-up proteomics strategies can identify PSPs, but only if databases and software are used with this in mind. A 14,319 Da protein from human saliva was characterized using the top-down approach on a hybrid linear ion-trap Fourier-transform ion cyclotron resonance mass spectrometer equipped for both collisionally activated (CAD) and electron-capture (ECD) dissociation. Sequence tags identified the protein as Cystatin SN, and defined the N-terminal signal peptide cleavage site, as well as two disulfide bonds, in agreement with previous studies. The mass of the intact protein (<5 ppm error) deviated from that calculated from the published gene sequence by 16.031 Da, and, based on CAD and ECD fragment ion assignments, it was concluded that the isoform of the protein analyzed carried a PSP at residue 11 such that the Pro translated from the genome was in fact Leu/Ile. An independently determined SNP (rs2070856) subsequently confirmed the genetic basis of the mass spectral interpretation and defined the residue as Leu. In another example, the PRP3 protein with mass ~10,999 Da was found to be an isomeric/isobaric mixture of the reported sequence with PSPs D4N or D50N (rs1049112). Both CAD and ECD datasets support two phosphorylation sites at residues Ser8 and Ser22, rather than Ser17. In the context of discovery proteomics, previously undefined PSPs and PTMs will only be detected if the logic of data processing strategies considers their presence in an unbiased fashion.

  10. Characterization of mutant xylanases using fourier transform ion cyclotron resonance mass spectrometry: stabilizing contributions of disulfide bridges and N-terminal extensions.

    PubMed

    Jänis, Janne; Turunen, Ossi; Leisola, Matti; Derrick, Peter J; Rouvinen, Juha; Vainiotalo, Pirjo

    2004-07-27

    Structural properties and thermal stability of Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) and its three recombinant mutants were characterized using electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry and hydrogen/deuterium (H/D) exchange reactions. TRX II has been previously stabilized by a disulfide bridge C110-C154 and other site-directed mutations (TRX II mutants DS2 and DS5). Very recently, a highly thermostable mutant was introduced by combining mutations of DS5 with an N-terminal disulfide bridge C2-C28 (mutant DB1). Accurate mass measurements of TRX II, DS2, DS5, and DB1 verified the expected DNA-encoded protein sequences (average mass error 1.3 ppm) and allowed unequivocal assignment of the disulfides without chemical reduction and subsequent alkylation of the expected cross-links. Moreover, H/D exchange reactions provided means for the detection of a major heat-induced conformational change comprising two interconverting conformers of very different H/D exchange rates as well as allowed the apparent melting temperatures (T(m)) to be determined (62.6, 65.1, 68.0, and 82.2 degrees C for TRX II, DS2, DS5, and DB1, respectively). Residual activity measurements verified that the enzymes inactivated at significantly lower temperatures than expected on the basis of the apparent T(m) values, strongly suggesting that the inactivation takes place through minor conformational change other than observed by H/D exchange. ESI FT-ICR analyses also revealed molecular heterogeneity in DS5 and DB1 due to the propeptide incorporation. Resulting unintentional N-terminal extensions were observed to further improve the stability of the DB1 mutant. The extension of six amino acid residues upstream from the protein N-terminus increased stability by approximately 5 degrees C.

  11. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Ren, Shuoyi; Yu, Jianwei; Ji, Feng; Luo, Wenbin; Yang, Min

    2012-10-15

    Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH(4) against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water.

  12. Mechanical and transparent conductive properties of ZnO and Ga-doped ZnO films sputtered using electron-cyclotron-resonance plasma on polyethylene naphtalate substrates

    SciTech Connect

    Akazawa, Housei

    2014-03-15

    Transparent conductive ZnO and Ga-doped ZnO (GZO) films were deposited on polyethylene naphtalate (PEN) sheet substrates using electron cyclotron resonance plasma sputtering. Both ZnO and GZO films were highly adhesive to the PEN substrates without inserting an intermediate layer in the interface. When compared at the same thickness, the transparent conductive properties of GZO films on PEN substrates were only slightly inferior to those on glass substrates. However, the carrier concentration of ZnO films on PEN substrates was 1.5 times that of those on glass substrates, whereas their Hall mobility was only 60% at a thickness of 300 nm. The depth profile of elements measured by secondary ion mass spectroscopy revealed the diffusion of hydrocarbons out of the PEN substrate into the ZnO film. Hence, doped carbons may act as donors to enhance carrier concentration, and the intermixing of elements at the interface may deteriorate the crystallinity, resulting in the lower Hall mobility. When the ZnO films were thicker than 400 nm, cracks became prevalent because of the lattice mismatch strain between the film and the substrate, whereas GZO films were free of cracks. The authors investigated how rolling the films around a cylindrical pipe surface affected their conductive properties. Degraded conductivity occurred at a threshold pipe radius of 10 mm when tensile stress was applied to the film, but it occurred at a pipe radius of 5 mm when compressive stress was applied. These values are guidelines for bending actual devices fabricated on PEN substrates.

  13. Effect of the gas mixing technique on the plasma potential and emittance of the JYFL 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Suominen, P.; Ropponen, T.; Kalvas, T.; Heikkinen, P.; Koivisto, H.

    2005-09-01

    The effect of the gas mixing technique on the plasma potential, energy spread, and emittance of ion beams extracted from the JYFL 14 GHz electron cyclotron resonance ion source has been studied under various gas mixing conditions. The plasma potential and energy spread of the ion beams were studied with a plasma potential instrument developed at the Department of Physics, University of Jyväskylä (JYFL). With the instrument the effects of the gas mixing on different plasma parameters such as plasma potential and the energy distribution of the ions can be studied. The purpose of this work was to confirm that ion cooling can explain the beneficial effect of the gas mixing on the production of highly charged ion beams. This was done by measuring the ion-beam current as a function of a stopping voltage in conjunction with emittance measurements. It was observed that gas mixing affects the shape of the beam current decay curves measured with low charge-state ion beams indicating that the temperature and/or the spatial distribution of these ions is affected by the mixing gas. The results obtained in the emittance measurements support the conclusion that the ion temperature changes due to the gas mixing. The effect of the energy spread on the emittance of different ion beams was also studied theoretically. It was observed that the emittance depends considerably on the dispersive matrix elements of the beam line transfer matrix. This effect is due to the fact that the dipole magnet is a dispersive ion optical component. The effect of the energy spread on the measured emittance in the bending plane of the magnet can be several tens of percent.

  14. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H.; Izotov, I.; Skalyga, V.; Toivanen, V.

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O3+-O7+ were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  15. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Orpana, J; Kronholm, R; Kalvas, T; Laulainen, J; Koivisto, H; Izotov, I; Skalyga, V; Toivanen, V

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O(3+)-O(7+) were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  16. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing.

    PubMed

    You, H-J

    2013-07-01

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5-3 kW in the pressure range of 0.2-10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source.

  17. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    PubMed

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  18. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  19. Commercialization of Plasma-Assisted Technologies: The Indian Experience

    NASA Astrophysics Data System (ADS)

    John, P. I.

    The paper describes an initiative by the Institute for Plasma Research (IPR), India in establishing links with the Indian industry for developing and commercialising advanced plasma-based industrial technologies. This has culminated in the creation of a self-financing technology development, incubation, demonstration and delivery facility. A business plan for converting the knowledge base to commercially viable technologies conceived technology as a product and the industry as the market and addressed issues like resistance to new technologies, the key role of entrepreneur, thrust areas and the necessity of technology incubation and delivery. Success of this strategy is discussed in a few case studies. We conclude by identifying the cost, environmental, strategic and techno-economic aspects, which would be the prime drivers for plasma-assisted manufacturing technology in India.

  20. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  1. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  2. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Astrophysics Data System (ADS)

    Spalvins, T.

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  3. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  4. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    SciTech Connect

    Cortazar, O. D.

    2012-10-15

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 {mu}s are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  5. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  6. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming

    2014-01-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 ≤ n ≤ 58),CnH2n-42N4V1O1 (37 ≤ n ≤ 57),CnH2n-44N4V1O1 (38 ≤ n ≤ 59),CnH2n-46N4V1O1 (43 ≤ n ≤ 54),CnH2n-48N4V1O1 (45 ≤ n ≤ 55),CnH2n-38N4V1S1O1 (36 ≤ n ≤ 41),CnH2n-40N4V1S1O1 (35 ≤ n ≤ 51),CnH2n-42N4V1S1O1 (36 ≤ n ≤ 54),CnH2n-44N4V1S1O1 (41 ≤ n ≤ 55),CnH2n-46N4V1S1O1 (39 ≤ n ≤ 55),CnH2n-27N5V1O1 (29 ≤ n ≤ 40),CnH2n-29N5V1O1 (34 ≤ n ≤ 42),CnH2n-33N5V1O1 (31 ≤ n ≤ 38),CnH2n-35N5V1O1 (32 ≤ n ≤ 41),CnH2n-27N5V1O2 (32 ≤ n ≤ 41) and CnH2n-29N5V1O2 (33 ≤ n ≤ 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils. PMID:24948028

  7. Hydropathic influences on the quantification of equine heart cytochrome c using relative ion abundance measurements by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Gordon, E F; Mansoori, B A; Carroll, C F; Muddiman, D C

    1999-10-01

    The number of publications documenting the utility of electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for the analysis of biological molecules has increased in geometric proportion spanning diverse areas of research. Currently, we are investigating the capabilities of ESI-FTICR to quantify relative molecular ion abundances of biopolymers, an area which has not been explored rigorously. We present here the results of an investigation of a two-component system utilizing equine heart cytochrome c (EH) as the analyte and bovine heart cytochrome c (BH) as a constant concentration internal standard. As these compounds are relatively large ( approximately 12 kDa), they will become multiply charged during the electrospray process. Using appropriate solution and instrument conditions, the 7(+) and 8(+) charge states were enhanced for both cytochrome c species. We report that using the average of the ion abundances for the two charge states observed for each species, the linear curve (intensity ratio vs concentration ratio) had a dynamic range of 0.045-2.348 microM (1.7 orders of magnitude). Linear least-squares regression analysis (LLSRA) of these averaged ion abundances (i.e. [(EH + 7H(+))(7+)/(BH + 7H(+))(7+) + (EH + 8H(+))(8+)/(BH + 8H(+))(8+)]/2) yielded the equation y = 1.005x + 0.027. The slope of the line with its calculated precision, reported as one standard deviation, is 1.005 +/- 0.0150, which is statistically ideal (i.e. equal to unity). However, LLSRA of the ion abundances of the two individual charge states were significantly different (i.e. the slope of the (EH + 7H(+))(7+)/(BH + 7H(+))(7+) peak intensity ratio vs molar ratio data was 0.885 +/- 0.0183 and the slope of the (EH + 8H(+))(8+)/(BH + 8H(+))(8+) data was 1.125 +/- 0.0308). We attribute this difference to the variation in primary amino acid sequence for the two cytochrome c species. Both have 104 amino acids, but there are three residue

  8. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments

  9. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming

    2014-06-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 <= n <= 58),CnH2n-42N4V1O1 (37 <= n <= 57),CnH2n-44N4V1O1 (38 <= n <= 59),CnH2n-46N4V1O1 (43 <= n <= 54),CnH2n-48N4V1O1 (45 <= n <= 55),CnH2n-38N4V1S1O1 (36 <= n <= 41),CnH2n-40N4V1S1O1 (35 <= n <= 51),CnH2n-42N4V1S1O1 (36 <= n <= 54),CnH2n-44N4V1S1O1 (41 <= n <= 55),CnH2n-46N4V1S1O1 (39 <= n <= 55),CnH2n-27N5V1O1 (29 <= n <= 40),CnH2n-29N5V1O1 (34 <= n <= 42),CnH2n-33N5V1O1 (31 <= n <= 38),CnH2n-35N5V1O1 (32 <= n <= 41),CnH2n-27N5V1O2 (32 <= n <= 41) and CnH2n-29N5V1O2 (33 <= n <= 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils.

  10. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS

    SciTech Connect

    Bhatt, B.

    2000-08-20

    Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work

  11. Electron-silane scattering cross section for plasma assisted processes

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Kaur, Jaspreet; Antony, Bobby

    2017-03-01

    Silane is an important molecule with numerous applications to natural and technological plasmas. In such environments, where plasma assisted processes are vital, electron induced reactions play a major role in its chemistry. In view of this, electron induced scattering of molecules such as silane finds significance. This article reports a comprehensive study of electron impact cross sections for silane over a wide energy range. In particular, the emphasis is given in providing a complete dataset for various electron scattering events possible with silane. Such dataset is the need for the plasma modeling community. Moreover, literature survey shows that the cross section database for silane is fragmentary. To fill this void, we have computed the differential elastic, total, rotational excitation, and momentum transfer cross sections. Two formalisms that are reliable in their energy domain are employed to accomplish the task: the R-matrix method through QUANTEMOL-N at low incident energies and the spherical complex optical potential formalism at intermediate to high energies. Interestingly, the comparison of the present cross section exhibits a good concurrence with the previous data, wherever available.

  12. Simple and inexpensive microwave plasma assisted CVD facility

    SciTech Connect

    Brewer, M.A.; Brown, I.G.; Dickinson, M.R.

    1992-12-01

    A simple and inexpensive microwave plasma assisted CVD facility has been developed and used for synthesis of diamond thin films. The system is similar to those developed by others but includes several unique features that make it particularly economical and safe, yet capable of producing high quality diamond films. A 2.45 GHz magnetron from a commercial microwave oven is used as the microwave power source. A conventional mixture of 0.5% methane in hydrogen is ionized in a bell jar reaction chamber located within a simple microwave cavity. By using a small hydrogen reservoir adjacent to the gas supply, an empty hydrogen tank can be replaced without interrupting film synthesis or causing any drift in plasma characteristics. Hence, films can be grown continuously while storing only a 24-hour supply of explosive gases. System interlocks provide safe start-up and shut-down, and allow unsupervised operation. Here the authors describe the electrical, microwave and mechanical aspects of the system, and summarize the performance of the facility as used to reproducibly synthesize high quality diamond thin films.

  13. Investigation of sewage sludge treatment using air plasma assisted gasification.

    PubMed

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-03-18

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power.

  14. A PLASIMO global model for plasma assisted CO2 conversion

    NASA Astrophysics Data System (ADS)

    Graef, Wouter; Rehman, Tafizur; Mihailova, Diana; van Dijk, Jan

    2014-10-01

    Conversion of CO2 has become a major challenge of our time as it is of interest for the reduction of greenhouse gases in our atmosphere, but also to store energy thereby relieving the supply and demand discrepancy of many alternative forms of energy. Plasma assisted CO2 conversion is heavily investigated as an efficient method to achieve this goal. Numerical modeling is an important aspect of this investigation, but is difficult due to the complex chemistry. A global model has been constructed to focus on the CO2 chemistry including its vibrational kinetics. The model has been realized using the global model module of PLASIMO, a highly modular plasma modeling framework. It is based on another model that was constructed using the well-established code Global_kin. The aim of the model is therefore twofold. First, to study the chemistry and identify the most important species and reactions and perform parametric studies. The knowledge gained can be applied to other, spatially resolved models. Second, by implementing the same chemistry in the two different global model codes, a cross validation can be performed, a vital scientific process often overlooked in practice.

  15. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    SciTech Connect

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  16. Probing cyclotron resonant signatures and the AC quantum Hall effect in monolayer and heterogeneous graphene multilayers through mid-infrared, magneto-optical, polarization-sensitive spectroscopy

    NASA Astrophysics Data System (ADS)

    Ellis, Chase Trevor

    In 1947 Phillip Wallace introduced the fundamental electronic properties of a single layer of graphite, known as graphene. At that time, graphene was introduced as a theoretical tool that could be used to approximate the band structure of bulk 3D graphite. However, decades later theorists found that graphene had remarkable electronic properties of its own, including charge carriers that behave like massless, relativistic particles. Fifty years after graphene's initial theoretical introduction, the first experimental realization of graphene arrived. Leading to a myriad of experiments were able to confirm many of graphene's extraordinary properties. Today, graphene is a booming field of research, which is continually revealing new surprises and novel technologies. In this Dissertation Project we are mainly concerned with the electronic properties of heterogeneous, epitaxial, graphene multilayers that are formed by annealing Si out of carbon face terminated (C-face) 4H-SiC. Graphene layers grown by this method are of particular interest due to their large-area and high mobility, which can exceed 200,000 cm2i -1s-1. Moreover, the heterogeneous nature of C-face graphene samples allows us to simultaneously probe the electronic structure of many types of graphene within a single sample. In this study we reveal over 18 interband cyclotron resonances (CR) from a variety of graphene multilayers in our mid-infrared, magneto-optical, polarization-sensitive measurements that are performed in the polar Kerr geometry. Furthermore, we introduce a new technique that is capable of simplifying CR measurements on highly-heterogeneous samples; confirm three theories concerning the magneto-electronic structure of graphene; explore electron-hole band asymmetries; determine the optical effects of SiC the substrate. Interestingly, we find that the Fermi energy plays a major role in the production of large polarization changes that occur near CR. Also, we have discovered that the magnitude

  17. Plasma-assisted ignition and deflagration-to-detonation transition.

    PubMed

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  18. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  19. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

    DTIC Science & Technology

    2009-11-04

    intrusive diagnostics • Task 2: Laminar Flow Reactor and Nanoparticle Studies at Low to Intermediate Temperatures (Radar REMPI and Filtered Rayleigh...using counterflow flames Thrust 2. Intermediate Species Measurements at Elevated Pressures by Using a Plasma Assisted Jet Stirred Reactor with...Molecular Beam Sampling – Task 1: Development of plasma assisted a jet stirred reactor Task 2: Measurements of intermediate species of fuel oxidation

  20. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and