Science.gov

Sample records for cyclotron wall conditioning

  1. Ion Cyclotron Wall Conditioning Experiments on Tore Supra in Presence of the Toroidal Magnetic Field

    SciTech Connect

    Wauters, T.; Douai, D.; Bremond, S.; Lombard, G.; Pegourie, B.; Tsitrone, E.; de la Cal, E.; Lyssoivan, A.; Van Schoor, M.

    2009-11-26

    Wall conditioning techniques applicable in the presence of the high toroidal magnetic field will be required for the operation of ITER for tritium removal, isotopic ratio control and recovery to normal operation after disruptions. Recently ion cyclotron wall conditioning (ICWC) experiments have been carried out on Tore Supra in order to assess the efficiency of this technique in ITER relevant conditions. The ICRF discharges were operated in He/H{sub 2} mixtures at the Tore Supra nominal field (3.8 T) and a RF frequency of 48 MHz, i.e. within the ITER operational space. RF pulses of 60 s (max.) were applied using a standard Tore Supra two-strap resonant double loop antenna in ICWC mode, operated either in {pi} or 0-phasing with a noticeable improvement of the RF coupling in the latter case. In order to assess the efficiency of the technique for the control of isotopic ratio the wall was first preloaded using a D{sub 2} glow discharge. After 15 minutes of ICWC in He/H{sub 2} gas mixtures the isotopic ratio was altered from 4% to 50% at the price of an important H implantation into the walls. An overall analysis comparing plasma production and the conditioning efficiency as a function of discharge parameters is given.

  2. Ion Cyclotron Wall Conditioning Experiments on Tore Supra in Presence of the Toroidal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Brémond, S.; de la Cal, E.; Lombard, G.; Lyssoivan, A.; Pegourié, B.; Tsitrone, E.; Van Schoor, M.; Van Oost, G.

    2009-11-01

    Wall conditioning techniques applicable in the presence of the high toroidal magnetic field will be required for the operation of ITER for tritium removal, isotopic ratio control and recovery to normal operation after disruptions. Recently ion cyclotron wall conditioning (ICWC) experiments have been carried out on Tore Supra in order to assess the efficiency of this technique in ITER relevant conditions. The ICRF discharges were operated in He/H2 mixtures at the Tore Supra nominal field (3.8 T) and a RF frequency of 48 MHz, i.e. within the ITER operational space. RF pulses of 60 s (max.) were applied using a standard Tore Supra two-strap resonant double loop antenna in ICWC mode, operated either in π or 0-phasing with a noticeable improvement of the RF coupling in the latter case. In order to assess the efficiency of the technique for the control of isotopic ratio the wall was first preloaded using a D2 glow discharge. After 15 minutes of ICWC in He/H2 gas mixtures the isotopic ratio was altered from 4% to 50% at the price of an important H implantation into the walls. An overall analysis comparing plasma production and the conditioning efficiency as a function of discharge parameters is given.

  3. Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Lyssoivan, A.; Philipps, V.; Brémond, S.; Freisinger, M.; Kreter, A.; Lombard, G.; Marchuk, O.; Mollard, P.; Paul, M. K.; Pegourié, B.; Reimer, H.; Sergienko, G.; Tsitrone, E.; Vervier, M.; Van Wassenhove, G.; Wünderlich, D.; Van Schoor, M.; Van Oost, G.

    2011-08-01

    This contribution reports on isotope exchange studies with both Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) in TEXTOR and TORE SUPRA. The discharges have been carried out in H2, D2 (ICWC and GDC) and He/H2 mixtures (ICWC). The higher reionization probability in ICWC compared to GDC, following from the 3 to 4 orders of magnitude higher electron density, leads to a lower pumping efficiency of wall desorbed species. GDC has in this analysis (5-10) times higher removal rates of wall desorbed species than ICWC, although the wall release rate is 10 times higher in ICWC. Also the measured high retention during ICWC can be understood as an effect of the high reionization probability. The use of short RF pulses (∼1 s) followed by a larger pumping time significantly improves the ratio of implanted over recovered particles, without severely lowering the total amount of removed particles.

  4. Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR

    NASA Astrophysics Data System (ADS)

    Carrasco, A. G.; Möller, S.; Petersson, P.; Ivanova, D.; Kreter, A.; Rubel, M.; Wauters, T.

    2014-04-01

    Ion cyclotron wall conditioning (ICWC) is based on low temperature and low density plasmas produced and sustained by ion cyclotron resonance (ICR) pulses in reactive or noble gases. The technique is being developed for ITER. It is tested in tokamaks in the presence of toroidal magnetic field (0.2-3.8 T) and heating power of the order of 105 W. ICWC with hydrogen, deuterium and oxygen-helium mixture was studied in the TEXTOR tokamak. The exposed samples were pre-characterized limiter tiles mounted on specially designed probes. The objectives were to assess the reduction of deuterium content, the uniformity of the reduction and the retention of seeded oxygen. For the last objective oxygen-18 was used as a marker. ICWC in hydrogen caused a drop of deuterium content in the tile by a factor of more than 2: from 4.5 × 1018 to 1.9 × 1018 D cm-2. A decrease of the fuel content by approximately 25% was achieved by the ICWC in oxygen, while no reduction of the fuel content was measured after exposure to discharges in deuterium. These are the first data ever obtained showing quantitatively the local decrease of deuterium in wall components treated by ICWC in a tokamak. The oxygen retention in the tiles exposed to ICWC with oxygen-helium was analyzed for different orientations and radial positions with respect to plasma. An average retention of 1.38 × 1016 18O cm-2 was measured. A maximum of the retention, 4.4 × 1016 18O cm-2, was identified on a sample surface near the plasma edge. The correlation with the gas inlet and antennae location has been studied.

  5. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P. Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A.; Colas, L.; Czarnecka, A.; Lerche, E.; Van-Eester, D.; Mayoral, M.-L.; Brezinsek, S.; Campergue, A.-L.; Klepper, C. C.; Milanesio, D.; and others

    2014-06-15

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ∼ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  6. OTVE combustor wall condition monitoring

    NASA Technical Reports Server (NTRS)

    Szemenyei, Brian; Nelson, Robert S.; Barkhoudarian, S.

    1989-01-01

    Conventional ultrasonics, eddy current, and electromagnetic acoustic transduction (EMAT) technologies were evaluated to determine their capability of measuring wall thickness/wear of individual cooling channels in test specimens simulating conditions in the throat region of an OTVE combustion chamber liner. Quantitative results are presented for the eddy current technology, which was shown to measure up to the optimum 20-mil wall thickness with near single channel resolution. Additional results demonstrate the capability of the conventional ultrasonics and EMAT technologies to detect a thinning or cracked wall. Recommendations for additional eddy current and EMAT development tests are presented.

  7. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  8. Design of the shielding wall of a cyclotron room and the activation interpretation using the Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jang, D. G.; Kim, J. M.; Kim, J. H.

    2017-01-01

    Medical cyclotron is mainly a facility used for producing radiopharmaceutical products, which secondarily generate high energy radiation when producing a radiopharmaceutical product. In this study, the intention is that the reductions in spatial dose rate for the radiation generated when cyclotron is operated and the absorbed dose rate, according to the width of shielding wall, will be analyzed. The simulation planned targetry and protons of 16.5 MeV, 60μA through a Monte Carlo simulation, and as a result of the simulation, it has been found through an analysis that a concrete shielding wall of 200 cm is needed, according to the absorbed dose rate of the shielding wall thickness of cyclotron, and the concrete gives an external exposure level of 1 μSv/hr after 19 years of cyclotron operation as it is activated by the nuclear reaction of cyclotron. When taking into account the mechanical life span of cyclotron, it is deemed necessary to develop additional shielding and a low activation material.

  9. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  10. Residual long-lived radioactivity distribution in the inner concrete wall of a cyclotron vault.

    PubMed

    Kimura, K; Ishikawa, T; Kinno, M; Yamadera, A; Nakamura, T

    1994-12-01

    We measured the depth distribution of residual long-lived radioactivity in the inner concrete wall of a cyclotron vault by assaying concrete cores and we estimated the neutron flux distribution in the inner concrete wall by means of activation detectors. Nine long-lived radioactive nuclides (46Sc, 59Fe, 60Co, 65Zn, 134Cs, 152Eu, 154Eu, 22Na, and 54Mn) were identified from the gamma-ray spectra measured in the concrete samples. It was confirmed that the radionuclides induced by thermal neutrons through the (n, gamma) reaction are dominant, and that the induced activity by thermal neutrons is greatest at a depth of 5 to 10 cm rather than at the surface of the concrete and decreases exponentially beyond a depth of about 20 cm. By comparing the radioactivity and neutron flux distributions, we can estimate the induced long-lived radioactivity in concrete after a long period of operation from the short-term activation measurement.

  11. Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Lennholm, M.; Chapman, I. T.; Lerche, E.; Reich, M.; Alper, B.; Bobkov, V.; Dumont, R.; Faustin, J. M.; Jacquet, P.; Jaulmes, F.; Johnson, T.; Keeling, D. L.; Liu, Yueqiang; Nicolas, T.; Tholerus, S.; Blackman, T.; Carvalho, I. S.; Coelho, R.; Van Eester, D.; Felton, R.; Goniche, M.; Kiptily, V.; Monakhov, I.; Nave, M. F. F.; Perez von Thun, C.; Sabot, R.; Sozzi, C.; Tsalas, M.

    2015-01-01

    New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.

  12. Conditions for electron-cyclotron maser emission in the solar corona

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Zucca, P.; Bloomfield, D. S.; Gallagher, P. T.

    2016-05-01

    Context. The Sun is an active source of radio emission ranging from long duration radio bursts associated with solar flares and coronal mass ejections to more complex, short duration radio bursts such as solar S bursts, radio spikes and fibre bursts. While plasma emission is thought to be the dominant emission mechanism for most radio bursts, the electron-cyclotron maser (ECM) mechanism may be responsible for more complex, short-duration bursts as well as fine structures associated with long-duration bursts. Aims: We investigate the conditions for ECM in the solar corona by considering the ratio of the electron plasma frequency ωp to the electron-cyclotron frequency Ωe. The ECM is theoretically possible when ωp/ Ωe< 1. Methods: Two-dimensional electron density, magnetic field, plasma frequency, and electron cyclotron frequency maps of the off-limb corona were created using observations from SDO/AIA and SOHO/LASCO, together with potential field extrapolations of the magnetic field. These maps were then used to calculate ωp/Ωe and Alfvén velocity maps of the off-limb corona. Results: We found that the condition for ECM emission (ωp/ Ωe< 1) is possible at heights <1.07 R⊙ in an active region near the limb; that is, where magnetic field strengths are >40 G and electron densities are >3 × 108 cm-3. In addition, we found comparatively high Alfvén velocities (>0.02c or >6000 km s-1) at heights <1.07 R⊙ within the active region. Conclusions: This demonstrates that the condition for ECM emission is satisfied within areas of the corona containing large magnetic fields, such as the core of a large active region. Therefore, ECM could be a possible emission mechanism for high-frequency radio and microwave bursts.

  13. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    SciTech Connect

    Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S.; Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T.; Czarnecka, A.; Coenen, J. W.; and others

    2014-02-12

    The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  14. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Jacquet, P.; Bobkov, V.; Czarnecka, A.; Coenen, J. W.; Colas, L.; Crombé, K.; Graham, M.; Jachmich, S.; Joffrin, E.; Klepper, C. C.; Kiptily, V.; Lehnen, M.; Maggi, C.; Marcotte, F.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Nave, M. F. F.; Neu, R.; Noble, C.; Ongena, J.; Pütterich, T.; Rimini, F.; Solano, E. R.; van Rooij, G.; JET-EFDA contributors

    2014-02-01

    The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  15. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    SciTech Connect

    Kato, Yushi Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  16. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  17. Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; Gary, S. Peter; Reeves, Geoffrey D.; Winske, Dan

    2016-11-01

    Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.

  18. Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Borodkina, I.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Meigs, A.; Moulton, D.; O'Mullane, M.; Stamp, M.; contributors, JET

    2016-02-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (˜10 μs) allowing very precise description of the W sputtering source during ELMs.

  19. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  20. Velocity boundary conditions at a tokamak resistive wall

    SciTech Connect

    Strauss, H. R.

    2014-03-15

    Velocity boundary conditions appropriate for magnetohydrodynamic simulations have been controversial recently. A comparison of numerical simulations of sideways wall force in disruptions is presented for Dirichlet, Neumann, Robin, and DEBS boundary conditions. It is shown that all the boundary conditions give qualitatively similar results. It is shown that Dirichlet boundary conditions are valid in the small Larmor radius limit of electromagnetic sheath boundary conditions.

  1. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  2. Electron cyclotron emission spectra in X- and O-mode polarisation at JET: Martin-Puplett interferometer, absolute calibration, revised uncertainties, inboard/outboard temperature profile, and wall properties

    NASA Astrophysics Data System (ADS)

    Schmuck, S.; Fessey, J.; Boom, J. E.; Meneses, L.; Abreu, P.; Belonohy, E.; Lupelli, I.

    2016-09-01

    At the tokamak Joint European Torus (JET), the electron cyclotron emission spectra in O-mode and X-mode polarisations are diagnosed simultaneous in absolute terms for several harmonics with two Martin-Puplett interferometers. From the second harmonic range in X-mode polarisation, the electron temperature profile can be deduced for the outboard side (low magnetic field strength) of JET but only for some parts of the inboard side (high magnetic field strength). This spatial restriction can be bypassed, if a cutoff is not present inside the plasma for O-mode waves in the first harmonic range. Then, from this spectral domain, the profile on the entire inboard side is accessible. The profile determination relies on the new absolute and independent calibration for both interferometers. During the calibration procedure, the antenna pattern was investigated as well, and, potentially, an increase in the diagnostic responsivity of about 5% was found for the domain 100-300 GHz. This increase and other uncertainty sources are taken into account in the thorough revision of the uncertainty for the diagnostic absolute calibration. The uncertainty deduced and the convolution inherent for Fourier spectroscopy diagnostics have implications for the temperature profile inferred. Having probed the electron cyclotron emission spectra in orthogonal polarisation directions for the first harmonic range, a condition is derived for the reflection and polarisation-scrambling coefficients of the first wall on the outboard side of JET.

  3. Arterial wall tethering as a distant boundary condition

    NASA Astrophysics Data System (ADS)

    Hodis, S.; Zamir, M.

    2009-11-01

    A standing difficulty in the problem of blood vessel tethering has been that only one of the two required boundary conditions can be fully specified, namely, that at the inner (endothelial) wall surface. The other, at the outer layer of the vessel wall, is not known except in the limiting case where the wall is fully tethered such that its outer layer is prevented from any displacement. In all other cases, where the wall is either free or partially tethered, a direct boundary condition is not available. We present a method of determining this missing boundary condition by considering the limiting case of a semi-infinite wall. The result makes it possible to define the degree of tethering imposed by surrounding tissue more accurately in terms of the displacement of the outer layer of the vessel wall, rather than in terms of equivalent added mass which has been done in the past. This new approach makes it possible for the first time to describe the effect of partial tethering in its full range, from zero to full tethering. The results indicate that high tethering leads to high stresses and low displacements within the vessel wall, while low tethering leads to low stresses and high displacements. Since both extremes would be damaging to wall tissue, particularly elastin, this suggest that moderate tethering would be optimum in the physiological setting.

  4. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  5. The power absorption and the penetration depth of electromagnetic radiation in lead telluride under cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Özalp, S.; Güngör, A.

    1999-10-01

    Cyclotron resonance absorption in n- and p-type PbTe was observed by Nii and was analysed under classical skin effect conditions. When the values of DC magnetic field corresponding to peaks are plotted against the field directions, a close fit is obtained between the calculated and observed results based on the assumption of a <1 1 1> ellipsoids of revolution model for the both conduction and valance band extrema. From the best fit mt=0.024 m0 and 0.03 m0 for the transverse effective masses and K= ml/ mt=9.8 and 12.2 for the anisotropic mass rations are obtained for the conduction and valance band, respectively. The observed absorption curve shows weak structures at low magnetic field. They are supposed to be due to second harmonics of Azbel'-Kaner cyclotron resonance. However, it turns out to be unnecessary to introduce other bands to explain the experimental results. The applicability of the classical magneto-optical theory is examined by calculating the power absorption coefficient and penetration depth as a function of DC magnetic field.

  6. Wall conditioning and particle control in Extrap T2

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Larsson, D.; Brunsell, P.; Möller, A.; Tramontin, L.

    1997-02-01

    The Extrap T2 reversed field pinch experiment is operated with the former OHTE vacuum vessel, of dimensions R = 1.24 m and a = 0.18 m and with a complete graphite liner. It is shown that a rudimentary density control can be achieved by means of frequent helium glow discharge conditioning of the wall. The standard He-GDC is well characterized and reproducible. The trapping and release of hydrogen and impurities at the wall surfaces have been studied by mass spectrometry and surface analysis. The shot to shot particle exchange between wall and plasma can be approximately accounted for.

  7. Wall Conditioning and Impurity Measurements in the PEGASUS Experiment

    NASA Astrophysics Data System (ADS)

    Ono, M.; Fonck, R.; Toonen, R.; Thorson, T.; Tritz, K.; Winz, G.

    1999-11-01

    Wall conditioning and impurity effects on plasma evolution are increasingly relevant to the PEGASUS program. Surface conditioning consists of hydrogen glow discharge cleaning (GDC) to remove water and oxides, followed by He GDC to reduce the hydrogen inventory. Isotope exchange measurements indicate that periodic He GDC almost eliminates uncontrolled fueling from gas desorbed from the limiting surfaces. Additional wall conditioning will include Ti gettering and/or boronization. Impurity monitoring is provided by the recent installation of a SPRED multichannel VUV spectrometer (wavelength range = 10-110 nm; 1 msec time resolution), several interference filter (IF) monochromators, and a multichannel Ross-filter SXR diode assembly (for CV, CVI, OVII, and OVIII). The IF monitors indicate increased C radiation upon contact of the plasma with the upper and lower limiters for highly elongated plasmas. This radiation appears correlated with a subsequent rollover in the plasma current, and motivates an upgrade to the poloidal limiters to provide better plasma-wall interaction control.

  8. Exterior view of south and east walls of Oxidizer Conditioning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of south and east walls of Oxidizer Conditioning Structure (T-28D), looking northwest. This structure was designed to condition nitrogen tetroxide, the oxidizer used in the Titan II's fuel system, to specified temperatures. The taller structure to the rear is the Long-Term Oxidizer Silo (T-28B) - Air Force Plant PJKS, Systems Integration Laboratory, Oxidizer Conditioning Structure, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    SciTech Connect

    Timofeev, A. V.

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  10. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Timofeev, A. V.

    2015-11-01

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  11. Boundary conditions for the Boltzmann equation for rough walls

    NASA Astrophysics Data System (ADS)

    Brull, Stéphane; Charrier, Pierre

    2014-12-01

    In some applications, rarefied gases have to considered in a domain whose boundary presents some nanoscale roughness. That is why, we have considered (Brull,2014) a new derivation of boundary conditions for the Boltzmann equation, where the wall present some nanoscale roughness. In this paper, the interaction between the gas and the wall is represented by a kinetic equation defined in a surface layer at the scale of the nanometer close to the wall. The boundary conditions are obtained from a formal asymptotic expansion and are describded by a scattering kernel satisfying classical properties (non-negativeness, normalization, reciprocity). Finally, we present some numerical simulations of scattering diagrams showing the importance of the consideration of roughness for small scales in the model.

  12. Chloroplasts move towards the nearest anticlinal walls under dark condition.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2012-03-01

    Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1-5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24-36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.

  13. Inflation and cyclotron motion

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-01-01

    We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying unconventional dispersion relations.

  14. Wall Conditioning and Power Balance for Spheromak Plasmas in SSPX

    SciTech Connect

    Hill, D N; Wood, R D; Bulmer, R; McLean, H S; Ryutov, D D; Stallard, B W; Woodruff, S

    2002-08-07

    We report here results from power balance measurements for ohmically-heated plasmas in the Sustained Spheromak Physics Experiment (SSPX). The plasma is formed inside a close-fitting tungsten-coated copper shell; wall conditioning by baking, glow discharge cleaning (GDC), Ti gettering, and helium shot conditioning produces clean plasmas (Z{sub eff} < 2.5) and reduces impurity radiation to a small fraction of the input energy, except when the molybdenum divertor plate has been overheated. We find that most of the input energy is lost by conduction to the walls (the divertor plate and the inner electrode in the coaxial source region). Recently, carborane was added during GDC to boronize the plasma-facing surfaces, but little benefit was obtained.

  15. Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Jackson, Gregory

    2000-11-01

    Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.

  16. Wall conditioning and plasma surface interactions in DIII-D

    SciTech Connect

    Jackson, G.L.; Petersen, P.I.; Schaffer, M.S.; Taylor, P.L.; Taylor, T.S. ); Doyle, B.L.; Walsh, D.S. ); Hill, D.N. ); Hsu, W.L. ); Winter, J. . Inst. fuer Plasmaphysik)

    1990-09-01

    Wall conditioning is used in DIII-D for both reduction of impurity influxes and particle control. The methods used include: baking, pulsed discharge cleaning, hydrogen glow cleaning, helium and neon glow conditioning, and carbonization. Helium glow wall conditioning applied before every tokamak discharge has been effective in impurity removal and particle control and has significantly expanded the parameter space in which DIII-D operates to include limiter and ohmic H-mode discharges and higher {beta}{sub T} at low q. The highest values of divertor plasma current (3.0 MA) and stored energy (3.6 MJ) and peaked density profiles in H-mode discharges have been observed after carbonization. Divertor physics studies in DIII-D include sweeping the X-point to reduce peak heat loads, measurement of particle and heat fluxes in the divertor region, and erosion studies. The DIII-D Advanced Divertor has been installed and bias and baffle experiments will begin in the fall of 1991. 15 refs., 4 figs.

  17. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    SciTech Connect

    Remya, B.; Reddy, R. V.; Lakhina, G. S.; Tsurutani, B. T.; Falkowski, B. J.; Echer, E.; Glassmeier, K.-H.

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  18. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  19. Power and Particle Handling and Wall Conditioning in NCSX

    SciTech Connect

    Owen, Larry W; Mioduszewski, Peter K; Spong, Donald A; Fenstermacer, M. E.; Koniges, A. E.; Rognlien, T. D.; Umansky, M. V.; Grossman, A.

    2007-01-01

    Plasma boundary control in stellarators has been shown to be very effective in improving plasma performance and, accordingly, is an important element from the very beginning of the National Compact Stellarator Experiment (NCSX) design. Studies of the magnetic field topology outside the last closed magnetic surface (LCMS) indicate the possibility of many toroidal revolutions of field lines launched within a couple of centimeters of the LCMS. Field line connection lengths, typically in the order of 100 m, should be sufficient to allow for the necessary separation of divertor and separatrix temperatures. In the top and bottom of the bean-shaped cross section (toroidal angle {psi} = 0), afield expansion of >5 is observed, which will help to spread out the heat flux on limiters and divertor plates. Plasma-facing components (PFCs) will be developed systematically according to our respective understanding of the NCSX boundary; the phased PFC development will start out with a set of limiters and has the eventual goal to develop a divertor with all the benefits of impurity and neutrals control. Neutrals calculations have been started to investigate the effect of neutrals penetration at various plasma cross sections, especially at the location of {psi} = 0 deg. Advanced wall conditioning techniques, as employed in other major fusion devices, will be incorporated in the NCSX operation.

  20. Conditionally-averaged structures in wall-bounded turbulent flows

    NASA Technical Reports Server (NTRS)

    Guezennec, Yann G.; Piomelli, Ugo; Kim, John

    1987-01-01

    The quadrant-splitting and the wall-shear detection techniques were used to obtain ensemble-averaged wall layer structures. The two techniques give similar results for Q4 events, but the wall-shear method leads to smearing of Q2 events. Events were found to maintain their identity for very long times. The ensemble-averaged structures scale with outer variables. Turbulence producing events were associated with one dominant vortical structure rather than a pair of counter-rotating structures. An asymmetry-preserving averaging scheme was devised that allowed a picture of the average structure which more closely resembles the instantaneous one, to be obtained.

  1. Tire shreds as lightweight retaining wall backfill: Active conditions

    SciTech Connect

    Tweedie, J.J.; Humphrey, D.N.; Sandford, T.C.

    1998-11-01

    A 4.88-m-high retaining wall test facility was constructed to test tire shreds as retaining wall backfill. The front wall of the facility could be rotated outward away from the fill and was instrumented to measure the horizontal stress. Measurement of movement within the backfill and settlement of the backfill surface during wall rotation allowed estimation of the pattern of movement within the fill. Tests were conducted with tire shreds from three suppliers. Moreover, horizontal stress at this rotation for tire shreds was about 35% less than the active stress expected for conventional granular backfill. Design parameters were developed using two procedures; the first used the coefficient of lateral earth pressure and the other was based on equivalent fluid pressure. The inclination of the sliding plane with respect to horizontal was estimated to range from 61{degree} to 70{degree} for the three types of shreds.

  2. Wall-resolved LES of high Reynolds number airfoil flow near stall condition for wall modeling in LES: LESFOIL revisited

    NASA Astrophysics Data System (ADS)

    Asada, Kengo; Kawai, Soshi

    2016-11-01

    Wall-resolved large-eddy simulation (LES) of an airfoil flow involving a turbulent transition and separations near stall condition at a high Reynolds number 2.1 x 106 (based on the freestream velocity and the airfoil chord length) is conducted by using K computer. This study aims to provide the wall-resolved LES database including detailed turbulence statistics for near-wall modeling in LES and also to investigate the flow physics of the high Reynolds number airfoil flow near stall condition. The LES well predicts the laminar separation bubble, turbulent reattachment and turbulent separation. The LES also clarified unsteady flow features associated with shear-layer instabilities: high frequency unsteadiness at St = 130 at the laminar separation bubble near the leading edge and low frequency unsteadiness at St = 1.5 at the separated turbulent shear-layer near the trailing edge. Regarding the near-wall modeling in LES, the database indicates that the pressure term in the mean streamwise-momentum equation is not negligible at the laminar and turbulent separated regions. This fact suggests that widely used equilibrium wall model is not sufficient and the inclusion of the pressure term is necessary for wall modeling in LES of such flow. This research used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140028). This work was supported by KAKENHI (Grant Number: 16K18309).

  3. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  4. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  5. Consistent HYLIFE wall design that withstands transient loading conditions

    SciTech Connect

    Pitts, J.H.

    1980-10-01

    The design for a first structural wall (FSW) promises to satisfy the impact and thermal stress loads for the 30-year lifetime anticipated for the HYLIFE reaction chamber. The FSW is a 50-mm-thick cylindrical plate that is 10 m in diameter; it can withstand a rapidly varying liquid metal impact stress up to a peak of 60 MPa, combined with slowly varying thermal stresses up to 86 MPa. We selected 2 1/4 Cr-1 Mo ferritic steel as the structural material because it has adequate fatigue properties and yield strength at the peak operating temperature of 810/sup 0/K, is compatible with liquid lithium, and has good neutron activation characteristics.

  6. Effect of different wall boundary conditions on the numerical simulation of bubbling fluidized beds

    NASA Astrophysics Data System (ADS)

    Haghgoo, Mohammad Reza; Bergstrom, Donald J.; Spiteri, Raymond J.

    2015-11-01

    There are distinct wall boundary conditions proposed in the literature for the particulate phase in the context of a continuum description of gas-particle flows. It is not yet clear how these different wall boundary conditions affect the simulated flow behavior, nor is it clear which are the most realistic. To investigate this issue, an Eulerian-Eulerian two-fluid model was used to investigate the effect of different particle-phase wall boundary conditions on the numerical prediction of bubbling/slugging gas-particle fluidized beds. Because the bed dynamics are strongly influenced by the motion of the bubbles, the impact of wall boundary conditions on the bubble statistics was examined specifically. In addition, the averaged field variables, such as the particle velocity, were compared to published experimental measurements. The comparison shows good agreement between the numerical results, generated by the Mfix code, and their experimental counterparts. It is found that the particle wall boundary condition does play a significant role in predicting the flow behavior. However, it appears that the influence of the wall boundary conditions is more significant for the instantaneous flow variables and bubble statistics than for the averaged quantities.

  7. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    SciTech Connect

    Sowa, Mark J.

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  8. Generalized adjoint consistent treatment of wall boundary conditions for compressible flows

    NASA Astrophysics Data System (ADS)

    Hartmann, Ralf; Leicht, Tobias

    2015-11-01

    In this article, we revisit the adjoint consistency analysis of Discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations with application to the Reynolds-averaged Navier-Stokes and k- ω turbulence equations. Here, particular emphasis is laid on the discretization of wall boundary conditions. While previously only one specific combination of discretizations of wall boundary conditions and of aerodynamic force coefficients has been shown to give an adjoint consistent discretization, in this article we generalize this analysis and provide a discretization of the force coefficients for any consistent discretization of wall boundary conditions. Furthermore, we demonstrate that a related evaluation of the cp- and cf-distributions is required. The freedom gained in choosing the discretization of boundary conditions without loosing adjoint consistency is used to devise a new adjoint consistent discretization including numerical fluxes on the wall boundary which is more robust than the adjoint consistent discretization known up to now. While this work is presented in the framework of Discontinuous Galerkin discretizations, the insight gained is also applicable to (and thus valuable for) other discretization schemes. In particular, the discretization of integral quantities, like the drag, lift and moment coefficients, as well as the discretization of local quantities at the wall like surface pressure and skin friction should follow as closely as possible the discretization of the flow equations and boundary conditions at the wall boundary.

  9. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-03-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  10. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farenc, Mathilde; Witt, Matthias; Craven, Kirsten; Barrère-Mangote, Caroline; Afonso, Carlos; Giusti, Pierre

    2017-01-01

    Polyolefins such as polyethylene (PE) and polypropylene (PP) are often characterized from their pyrolysis products by Py-MS. Nowadays the development of plasma-based direct probe atmospheric pressure sources allow the direct analysis of these polymers. These sources operate at atmospheric pressure, which implies a limited control of the ionization conditions. It was shown that side reactions could occur with species present in air, such as O2, which may lead to the formation of oxidized compounds. In this work, ion mobility-mass spectrometry (IM-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR) were used for the exhaustive characterization of the PP and PE pyrolysis ions produced using plasma-based atmospheric pressure ion sources. Both PP and PE yielded distributions of pyrolysis products presenting different amounts of unsaturation but also different numbers of oxygen atoms. In addition, the ions produced from PP presented a lower collision cross-section (CCS) than those produced from PE. In the same way, both PP and PE present repeated patterns separated by 14 m/z in the bidimensional drift time versus m/z plots. Within these plots, several trend lines can be evidenced, which are specific of each polymer investigated. Differences were observed between isotactic and atactic samples concerning the pyrolysis profile relative abundance and collision cross-section.

  11. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop

  12. First-wall and limiter conditioning in TFTR

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.; Hawryluk, R.J.; Hill, K.W.; Krawchuk, R.B.; Mueller, D.; Owens, D.K.; Ramsey, A.T.; Sesnic, S.; Tenney, F.H.

    1984-10-01

    A progress report on the experimental studies of vacuum vessel conditioning during the first year of TFTR operation is presented. A previous paper described the efforts expended to condition the TFTR vessel prior to and during the initial plasma start-up experiments. During the start-up phase, discharge cleaning was performed with the vessel at room temperature. For the second phase of TFTR operations, which was directed towards the optimization of ohmically heated plasmas, the vacuum vessel could be heated to 150/sup 0/C. The internal configuration of the TFTR vessel was more complex during the second phase with the addition of a TiC/C moveable limiter array, Inconel bellows cover plates, and ZrAl getter pumps. A quantitative comparison is given on the effectiveness of vessel bakeout, glow discharge cleaning, and pulse discharge cleaning in terms of the total quantity of removed carbon and oxygen, residual gas base pressures and the resulting plasma impurity levels as measured by visible, uv, and soft x-ray spectroscopy. The initial experience with hydrogen isotope changeover in TFTR is presented including the results of the attempt to hasten the changeover time by using a glow discharge to precondition the vessel with the new isotope.

  13. Spectroscopic Analysis of Wall Conditioning Methods in NSTX

    NASA Astrophysics Data System (ADS)

    Forbes, Eleanor; Soukhanovskii, Vlad

    2015-11-01

    Plasma confinement and performance in NSTX are reliant upon well-conditioned plasma facing components (PFCs). Past conditioning techniques used in NSTX include hot and cold boronization, lithium pellet injection (LPI), and lithium evaporation. The influx of hydrogen-containing molecules and radicals can be studied through spectroscopic observation of the hydrogen to deuterium (H/D) intensity ratio in the edge plasma. A code to determine H/D ratios has been developed and tested on known light sources before being applied to data from prior NSTX experiments. In general, boronization was found to reduce the H/D ratio, with further H reduction seen from cold boronization when compared to hot boronization. No correlation between LPI and H/D ratio was observed. Lithium evaporation produced a significant H decrease. In the future this analysis will be applied immediately following NSTX-U pulses to provide data on plasma-surface interactions. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-AC52-07NA27344.

  14. Exterior view of south wall of Oxidizer Conditioning Structure (T28D), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of south wall of Oxidizer Conditioning Structure (T-28D), looking north. The taller structure immediately to the rear in the upper left background is the Long-Term Oxidizer Silo (T-28B) - Air Force Plant PJKS, Systems Integration Laboratory, Oxidizer Conditioning Structure, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. [Research on the inner wall condition monitoring method of ring forgings based on infrared spectra].

    PubMed

    Fu, Xian-bin; Liu, Bin; Wei, Bin; Zhang, Yu-cun; Liu, Zhao-lun

    2015-01-01

    In order to grasp the inner wall condition of ring forgings, an inner wall condition monitoring method based on infrared spectra for ring forgings is proposed in the present paper. Firstly, using infrared spectroscopy the forgings temperature measurement system was built based on the three-level FP-cavity LCTF. The two single radiation spectra from the forgings' surface were got using the three-level FP-cavity LCTF. And the temperature measuring of the surface forgings was achieved according to the infrared double-color temperature measuring principle. The measuring accuracy can be greatly improved by this temperature measurement method. Secondly, on the basis of the Laplace heat conduction differential equation the inner wall condition monitoring model was established by the method of separating variables. The inner wall condition monitoring of ring forgings was realized via combining the temperature data and the forgings own parameter information. Finally, this method is feasible according to the simulation experiment. The inner wall condition monitoring method can provide the theoretical basis for the normal operating of the ring forgings.

  16. Changes in cell wall architecture of wheat coleoptiles grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Modifications of cell wall structure of wheat coleoptiles in response to continuous hypergravity (300 g) treatment were investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The net amounts of cell wall polysaccharides, such as hemicellulose and cellulose, of hypergravity-treated coleoptiles increased as much as those of 1 g control coleoptiles during the incubation period. As a result, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. Particularly, the amounts of hemicellulosic polymers with middle molecular mass (0.2-1 MDa) largely increased from day 2 to 3 under hypergravity conditions. The major sugar components of the hemicellulose fraction are arabinose, xylose and glucose. The ratios of arabinose and xylose to glucose were higher in hypergravity-treated coleoptiles than in control coleoptiles. The fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers (mainly composed of arabinoxylans) in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. In addition to wall polysaccharides, the amounts of cell wall-bound phenolics, such as ferulic acid and diferulic acid, substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. Especially, the levels of diferulic acid which cross-links hemicellulosic polymers were higher in hypergravity-treated coleoptiles than in control coleoptiles during the incubation period. These results suggest that hypergravity stimuli from the germination stage bias the type of synthesized hemicellulosic polysaccharides, although they do not restrict the net synthesis of cell wall constituents in wheat coleoptiles. The stimulation of the synthesis of arabinoxylans and of the

  17. Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, R.; Gunell, H.; Hamrin, M.

    2017-01-01

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

  18. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.; Rodrigues, G.; Kanjilal, D.; Roy, A.

    2008-02-15

    From the ECR plasma, hot electrons leak across the magnetic lines of force and by striking the plasma chamber produce bremsstrahlung x-rays. The wall bremsstrahlung gives information on the confinement status of hot electron. In our studies, experimental measurements are carried out in NANOGAN electron cyclotron resonance (ECR) ion source for the wall bremsstrahlung x-rays and the results are presented. While optimizing a particular charge state in ECR ion source, experimental parameters are adjusted to get a maximum current. The wall bremsstrahlung components are studied in these cases for understanding the hot electron confinement conditions.

  19. Technology Solutions Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    SciTech Connect

    2015-03-01

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However, cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.

  20. 88-Inch Cyclotron newsletter

    SciTech Connect

    Stokstad, R.

    1987-02-01

    Activities at the 88-Inch Cyclotron are discussed. Increased beam time demand and operation of the ECR source and cyclotron are reported. Experimental facility improvements are reported, including improvements to the High Energy Resolution Array and to the Recoil Atom Mass Analyzer, a new capture beamline, development of a low background counting facility. Other general improvements are reported that relate to the facility computer network and electronics pool. Approved heavy nuclei research is briefly highlighted. Also listed are the beams accelerated by the cyclotron. (LEW)

  1. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.

    PubMed

    Szalmás, Lajos

    2006-06-01

    A slip-flow boundary condition has been developed in the lattice Boltzmann model combining an interpolation method and a simple slip boundary condition for straight walls placed at arbitrary distance from the last fluid node. An analytical expression has been derived to connect the model parameters with the slip velocity for Couette and Poiseuille flows in the nearly continuum limit. The proposed interpolation method ensures that the slip velocity is independent of the wall position in first order of the Knudsen number. Computer simulations have been carried out to validate the model. The Couette and Poiseuille flows agree with the analytical results to machine order. Numerical simulation of a moving square demonstrates the accuracy of the model for walls moving in both the tangential and normal directions.

  2. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  3. Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Winske, Dan

    1993-01-01

    Enhanced transverse magnetic fluctuations observed below the proton cyclotron frequency in the terrestrial magnetosheath have been identified as due to the proton cyclotron and helium cyclotron instabilities driven by the T-perpendicular greater than T-parallel condition of the sheath ions. One-dimensional hybrid computer simulations are used here to examine the nonlinear properties of these two growing modes at relatively weak fluctuation energies and for wave vectors parallel to the background magnetic field. Second-order theory predicts fluctuating magnetic field energies at saturation of the proton cyclotron anisotropy instability in semiquantitative agreement with the simulation results. Introduction of the helium component enhances the wave-particle exchange rate for proton anisotropy reduction by that instability, thereby reducing the saturation energy of that mode. The simulations demonstrate that wave-particle interactions by the proton cyclotron and helium cyclotron instabilities lead to the anticorrelation observed by Anderson and Fuselier (1993).

  4. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    SciTech Connect

    Li, Tingwen; Benyahia, Sofiane

    2013-10-01

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  5. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  6. Radiation Sources at Electron Cyclotron Harmonic Frequencies.

    DTIC Science & Technology

    1983-01-28

    KEY WORDS (Continue on reverse side it necesear and Identify by block number) Radiation source, electron cyclotron frequency, gyrotron, travelling ...investigation of gyrotron devices operating in cylindrical geometry. Specific topics include an analysis of oscillations in a gyrotron travelling wave...amplifier, the study of the effects of velocity spread and wall resistivity on gain and bandwidth in a gyrotron travell - ing wave amplifier, an

  7. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    SciTech Connect

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  8. Effect of thermal boundary condition on wall-bounded, stably-stratified turbulence

    NASA Astrophysics Data System (ADS)

    Flores, Oscar; Garcia-Villalba, Manuel

    2012-11-01

    The dynamics of stably stratified wall-bounded turbulent flows are of great importance for many engineering and geophysical problems. In some cases, like the stably stratified atmospheric boundary layer, it is unclear which is the most appropriate thermal boundary condition, i.e. constant temperature or constant flux at the ground. Here, we analyze the effect that this boundary condition has on the dynamics of turbulent motions in the near-wall region in the case of strong stable stratification. Two Direct Numerical Simulations of turbulent channels will be used, at Reτ =uτ h / ν = 560 and Riτ = Δρgh /ρ0uτ2 = 600 - 900 , which are described in detail in Flores & Riley (2011, Boundary-Layer Meteorol) and Garcia-Villalba & del Alamo (2011, Phys.Fluids). For this range of Reynolds and Richardson numbers, the near-wall region is intermittent, with patches of laminar flow embedded in the otherwise turbulent flow. It is in this regime where the differences between the constant temperature and the constant flux boundary conditions are expected to be larger, with the thermal boundary condition affecting how the local relaminarization of the flow takes place. This research has been supported by ARO, NSF and the German Research Foundation.

  9. Coagulating activity of the blood, vascular wall, and myocardium under hypodynamia conditions

    NASA Technical Reports Server (NTRS)

    Petrovskiy, B. V. (Editor); Chazov, E. I. (Editor); Andreyev, S. V. (Editor)

    1980-01-01

    In order to study the effects of hypodynamia on the coagulating properties of the blood, vascular wall, and myocardium, chinchilla rabbits were kept for varying periods in special cages which restricted their movements. At the end of the experiment, blood samples were taken and the animals were sacrificed. Preparations were made from the myocardium venae cavae, and layers of the aorta. Two resultant interrelated and mutually conditioned syndromes were discovered: thrombohemorrhagic in the blood and hemorrago-thrombotic in the tissues.

  10. Deuterium uptake in magnetic-fusion devices with lithium-conditioned carbon walls.

    PubMed

    Krstic, P S; Allain, J P; Taylor, C N; Dadras, J; Maeda, S; Morokuma, K; Jakowski, J; Allouche, A; Skinner, C H

    2013-03-08

    Lithium wall conditioning has lowered hydrogenic recycling and dramatically improved plasma performance in many magnetic-fusion devices. In this Letter, we report quantum-classical atomistic simulations and laboratory experiments that elucidate the roles of lithium and oxygen in the uptake of hydrogen in amorphous carbon. Surprisingly, we show that lithium creates a high oxygen concentration on a carbon surface when bombarded by deuterium. Furthermore, surface oxygen, rather than lithium, plays the key role in trapping hydrogen.

  11. Enhanced-recycling H-mode regimes with edge coherent modes achieved by RF heating with lithium-wall conditioning in the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Xu, G. S.; Guo, H. Y.; Wan, B. N.; Chen, R.; Ding, S. Y.; Yan, N.; Wang, L.; Gong, X. Z.; Liu, S. C.; Shao, L. M.; Chen, L.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Li, Y. L.; Zhao, N.

    2014-12-01

    Two enhanced-recycling H-mode regimes, named low-enhanced-recycling (LER) and high-enhanced-recycling (HER) H-mode regimes, with edge coherent modes, have been achieved by lower hybrid current drive and ion cyclotron resonance heating with lithium-wall conditioning in the EAST superconducting tokamak. In the LER H-mode regime, the density and radiation increase during the ELM-free phase until the onset of edge-localized modes (ELMs), while in the HER H-mode regime, the density and radiation are well controlled without the presence of ELMs. Both LER and HER H-modes exhibit a low-frequency (frequency <100 kHz) edge quasi-coherent mode (ECM) with an initial frequency chirping down phase, following the L-H transition. In addition, an electromagnetic high-frequency coherent mode (HFM) with frequency >170 kHz appears shortly (<1 ms) after the transition during HER H-modes. Both ECM and HFM propagate in the electron diamagnetic drift direction in the lab frame with a low poloidal wavelength and may be responsible for enhanced recycling during the ELM-free phase. These two enhanced-recycling H-mode regimes may have significant implications for long-pulse high-performance operations in future fusion experiments.

  12. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. II. ELECTRON HEATING EFFICIENCY AS A FUNCTION OF FLOW CONDITIONS

    SciTech Connect

    Sironi, Lorenzo

    2015-02-20

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma has two temperatures, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is T {sub 0e}/T {sub 0i} ≲ 0.2, the ion cyclotron instability is the dominant mode for ion betas β{sub 0i} ∼ 5-30 (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-luminosity accretion flows. In this work, we employ analytical theory and one-dimensional PIC simulations (with the box aligned with the fastest-growing wave vector of the ion cyclotron mode) to fully characterize how the electron heating efficiency during the growth of the ion cyclotron instability depends on the electron-to-proton temperature ratio, the plasma beta, the Alfvén speed, the amplification rate of the mean field (in units of the ion Larmor frequency), and the proton-to-electron mass ratio. Our findings can be incorporated as a physically grounded subgrid model into global fluid simulations of low-luminosity accretion flows, thus helping to assess the validity of the two-temperature assumption.

  13. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  14. Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Sahmani, S.; Rouhi, H.

    2011-02-01

    Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.

  15. Boundary conditions at the walls with thermionic electron emission in two temperature modeling of “thermal” plasmas

    SciTech Connect

    Pekker, Leonid; Hussary, Nakhleh

    2015-08-15

    In this paper, we propose new boundary conditions for the electric potential, the electron energy equation, and the energy equation for heavy particles (ions and neutrals) at the hot walls with thermionic electron emission for two-temperature thermal arc models. The derived boundary conditions assume that the walls are made from refractory metals and, consequently, the erosion of the wall is small and can be neglected. In these boundary conditions, the plasma sheath formed at the electrode is viewed as the interface between the plasma and the wall. The derived boundary conditions allow the calculation of the heat flux to the walls from the plasma. This allows the calculation of the thermionic electron current that makes the model of electrode-plasma interaction self-consistent.

  16. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  17. Effect of yeast strain and fermentation conditions on the release of cell wall polysaccharides.

    PubMed

    Giovani, Giovanna; Canuti, Valentina; Rosi, Iolanda

    2010-02-28

    To improve our understanding of the factors involved in polysaccharide release during alcoholic fermentation, we investigated three Saccharomyces cerevisiae strains in fermentation trials conducted at two temperatures (25 degrees C and 32 degrees C) and three sugar concentrations (20%, 23.5%, and 27%), with or without supplementation of grape juice with diammonium phosphate (DAP) or microcrystalline cellulose. In two yeast strains, the release of cell wall polysaccharides increased significantly with an increase in fermentation temperature and sugar concentration of the grape juice; the polysaccharide release was greater in stressed conditions, in which the cells were less viable and less metabolically active. In the third strain, the average amount of polysaccharides released into the medium decreased significantly at 32 degrees C with 27% sugar, and increased in grape juice supplemented with DAP. Thus, this strain released more polysaccharides when conditions were nearer to optimal and the yeast cells were more viable and metabolically active. Our results suggest that the yeast strains released cell wall polysaccharides via different mechanisms, and that the cell wall integrity pathway may account for some of the differences in polysaccharide release among the strains.

  18. Flow boundary conditions for fluid mixtures at solid walls and moving contact lines

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2005-11-01

    Molecular simulations of slip at solid surfaces have focused on single component systems, but polymers are frequently blended to optimize performance. This talk will examine counterintuitive behavior that can arise when binary fluid mixtures flow past stationary solid walls in simple shear and at moving contact lines. In general the velocities of the two species do not go to zero at the walls. In addition to the slip found for single fluids, there may be velocity discontinuities due to diffusive fluxes and to interfacial forces when there is a concentration gradient.^1 Cases where the fluid velocity is largest near the wall and where the apparent slip length diverges will be shown, and a general boundary condition for multi-phase flow presented. The no-slip boundary condition leads to singular dissipation when the contact line between a fluid interface and solid moves, but it was suggested that a diffusive flux could remove this singularity.^2 The flow and stress near moving contact lines are analyzed for a range of interfacial widths, velocities and interactions. A significant diffusive flux is only observed in the layer closest to the solid and is not sufficient to remove the singularity. Instead, the finite molecular size and non-Newtonian effects cutoff the singularity.1. C. Denniston and M. O. Robbins, Phys. Rev. Lett. 87, 178302 (2001).2. H.-Y. Chen and D. Jasnow and J. Vinals, Phys. Rev. Lett. 85, 1686 (2000).

  19. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    SciTech Connect

    Moeller, C P

    1987-08-18

    It is an object of this invention to provide a method and apparatus for preventing cyclotron breakdown in a partially evacuated waveguide used to insert microwave energy for electron cyclotron heating in a plasma magnetic confinement device. An electrostatic field is applied along a section of such a waveguide in order to run seed electrons into the wall of the waveguide.

  20. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  1. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  2. Building America Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  3. Cyclotron Research and Applications

    SciTech Connect

    Mach, Rostislav

    2010-01-05

    The twenty years old cyclotron U-120M was upgraded for R and D and Production of Radiopharmaceuticals. R and D on short-lived Radiopharmaceuticals production is done at this accelerator. These Radiopharmaceuticals are eventually delivered to nearby hospitals. Development of new diagnostic radiopharmaceuticals is also pursued at the facility. your paper.

  4. Technical Note: Formation of airborne ice crystals in a wall independent reactor (WIR) under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Fries, E.; Haunold, W.; Starokozhev, E.; Palitzsch, K.; Sitals, R.; Jaeschke, W.; Püttmann, W.

    2008-07-01

    Both, gas and particle scavenging contribute to the transport of organic compounds by ice crystals in the troposphere. To simulate these processes an experimental setup was developed to form airborne ice crystals under atmospheric conditions. Experiments were performed in a wall independent reactor (WIR) installed in a walk-in cold chamber maintained constantly at -20°C. Aerosol particles were added to the carrier gas of ambient air by an aerosol generator to allow heterogeneous ice formation. Temperature variations and hydrodynamic conditions of the WIR were investigated to determine the conditions for ice crystal formation and crystal growth by vapour deposition. In detail, the dependence of temperature variations from flow rate and temperature of the physical wall as well as temperature variations with an increasing reactor depth were studied. The conditions to provide a stable aerosol concentration in the carrier gas flow were also studied. The temperature distribution inside the reactor was strongly dependent on flow rate and physical wall temperature. At an inlet temperature of -20°C, a flow rate of 30 L•min-1 and a physical wall temperature of +5°C turned out to provide ideal conditions for ice formation. At these conditions a sharp and stable laminar down draft "jet stream" of cold air in the centre of the reactor was produced. Temperatures measured at the chamber outlet were kept well below the freezing point in the whole reactor depth of 1.0 m. Thus, melting did not affect ice formation and crystal growth. The maximum residence time for airborne ice crystals was calculated to at 40 s. Ice crystal growth rates increased also with increasing reactor depth. The maximum ice crystal growth rate was calculated at 2.82 mg• s-1. Further, the removal efficiency of the cleaning device for aerosol particles was 99.8% after 10 min. A reliable particle supply was attained after a preliminary lead time of 15 min. Thus, the minimum lead time was determined at 25

  5. Improvement of Plasma Performance with Lithium Wall Conditioning in Aditya Tokamak

    NASA Astrophysics Data System (ADS)

    B. Chowdhuri, M.; Manchanda, R.; Ghosh, J.; B. Bhatt, S.; Ajai, Kumar; K. Das, B.; A. Jadeja, K.; A. Raijada, P.; Manoj, Kumar; Banerjee, S.; Nilam, Ramaiya; Aniruddh, Mali; Ketan, M. Patel; Vinay, Kumar; Vasu, P.; Bhattacharyay, R.; L. Tanna, R.; Y. Shankara, Joisa; K. Atrey, P.; V. S. Rao, C.; Chenna Reddy, D.; K. Chattopadhyay, P.; Jha, R.; C. Saxena, Y.; Aditya Team

    2013-02-01

    Lithiumization of the vacuum vessel wall of the Aditya tokamak using a lithium rod exposed to glow discharge cleaning plasma has been done to understand its effect on plasma performance. After the Li-coating, an increment of ~100 eV in plasma electron temperature has been observed in most of the discharges compared to discharges without Li coating, and the shot reproducibility is considerably improved. Detailed studies of impurity behaviour and hydrogen recycling are made in the Li coated discharges by observing spectral lines of hydrogen, carbon, and oxygen in the visible region using optical fiber, an interference filter, and PMT based systems. A large reduction in O I signal (up to ~40% to 50%) and a 20% to 30% decrease of Hα signal indicate significant reduction of wall recycling. Furthermore, VUV emissions from O V and Fe XV monitored by a grazing incidence monochromator also show the reduction. Lower Fe XV emission indicates the declined impurity penetration to the core plasma in the Li coated discharges. Significant increase of the particle and energy confinement times and the reduction of Zeff of the plasma certainly indicate the improved plasma parameters in the Aditya tokamak after lithium wall conditioning.

  6. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions.

    PubMed

    Raffo, María D; Ponce, Nora M A; Sozzi, Gabriel O; Vicente, Ariel R; Stortz, Carlos A

    2011-11-23

    Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.

  7. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  8. Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2012-01-01

    The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.

  9. Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis: Dysregulation under pro-atherosclerotic conditions

    PubMed Central

    van Gils, Janine M.; Ramkhelawon, Bhama; Fernandes, Luciana; Stewart, Merran C.; Guo, Liang; Seibert, Tara; Menezes, Gustavo B.; Cara, Denise C.; Chow, Camille; Kinane, T. Bernard; Fisher, Edward A.; Balcells, Mercedes; Alvarez-Leite, Jacqueline; Moore, Kathryn J.

    2013-01-01

    Objective Emerging evidence suggests that neuronal guidance cues, typically expressed during development, are involved in both physiological and pathological immune responses. We hypothesized that endothelial expression of such guidance cues may regulate leukocyte trafficking into the vascular wall during atherogenesis. Approach/Results We demonstrate that members of the Netrin, Semaphorin and Ephrin family of guidance molecules are differentially regulated under conditions that promote or protect from atherosclerosis. Netrin-1 and Semaphorin3A are expressed by coronary artery endothelial cells and potently inhibit chemokine-directed migration of human monocytes. Endothelial expression of these negative guidance cues is down-regulated by pro-atherogenic factors, including oscillatory shear stress and pro-inflammatory cytokines associated with monocyte entry into the vessel wall. Furthermore, we show using intravital microscopy that inhibition of Netrin-1 or Semaphorin3A using blocking peptides increases leukocyte adhesion to the endothelium. Unlike Netrin-1 and Semaphorin3A, the guidance cue EphrinB2 is up-regulated under pro-atherosclerotic flow conditions and functions as a chemoattractant, increasing leukocyte migration in the absence of additional chemokines. Conclusions The concurrent regulation of negative and positive guidance cues may facilitate leukocyte infiltration of the endothelium through a balance between chemoattraction and chemorepulsion. These data indicate a previously unappreciated role for axonal guidance cues in maintaining the endothelial barrier and regulating leukocyte trafficking during atherogenesis. PMID:23430612

  10. Slip conditions with wall catalysis and radiation for multicomponent, nonequilibrium gas flow. [for predicting heat transfer to the space shuttle

    NASA Technical Reports Server (NTRS)

    Hendricks, W. L.

    1974-01-01

    The slip conditions for a multicomponent mixture with diffusion, wall-catalyzed atom recombination and thermal radiation are derived, and simplified expressions for engineering applications are presented. The gas mixture may be in chemical nonequilibrium with finite-rate catalytic recombination occurring on the wall. These boundary conditions, which are used for rarefied flow regime flow field calculations, are shown to be necessary for accurate predictions of skin friction and heat transfer coefficients in the rarefied portion of the space shuttle trajectory.

  11. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  12. LES of the flow field around a 45 wing-wall abutment in different scour conditions

    NASA Astrophysics Data System (ADS)

    Bressan, Filippo; Armenio, Vincenzo; Ballio, Francesco

    2008-11-01

    Scouring process around bridge abutment is one of the main causes leading to the hydraulic structure failure, thus the determination of the maximum scour depth assumes a central role. Resolved LES of the turbulent flow field around a 45 wing wall abutment are carried out for three main scouring conditions: Initial phase (flat bed), logarithmic phase of scouring and equilibrium scour depth. The bathymetry and the flow parameters are taken from data of a laboratory experiment. Mean flow field, secondary flows and turbulent quantities such as Reynolds stresses and turbulent kinetic energy are calculated and compared for the three cases. The purpose of this study is to understand how the statistics of the wall stresses change with the increase of the scour depth. Preliminary results indicate that the bottom stresses decrease as the scour hole increases and that the bed deforms itself in order to minimize the effect of the obstacle on the Bernoulli trinomial. The results of this research will help in finding new erosion models based on the knowledge of turbulence-bed interaction.

  13. Wall catalytic recombination and boundary conditions in nonequilibrium hypersonic flows - With applications

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1992-01-01

    The meaning of catalysis and its relation to aerodynamic heating in nonequilibrium hypersonic flows are discussed. The species equations are described and boundary conditions for them are derived for a multicomponent gas and for a binary gas. Slip effects are included for application of continuum methods to low-density flows. Measurement techniques for determining catalytic wall recombination rates are discussed. Among them are experiments carried out in arc jets as well as flow reactors. Diagnostic methods for determining the atom or molecule concentrations in the flow are included. Results are given for a number of materials of interest to the aerospace community, including glassy coatings such as the RCG coating of the Space Shuttle and for high temperature refractory metals such as coated niobium. Methods of calculating the heat flux to space vehicles in nonequilibrium flows are described. These methods are applied to the Space Shuttle, the planned Aeroassist Flight Experiment, and a hypersonic slender vehicle such as a transatmospheric vehicle.

  14. Buoyant Jets in Stratification; Mixing Efficiencies, Entropy Conditions and Wall Effects

    NASA Astrophysics Data System (ADS)

    Tzou, Chung-Nan; Camassa, Roberto; Durbin, Marlow; McLaughlin, Richard; Ward, Jeremy; Whetstone, Cole; White, Brian; UNC Joint Fluids Lab Team

    2013-11-01

    An exact integral solution to the steady buoyant jet closure model in linearly stratified ambient environment is derived so that in the limit of a sharply stratified environment an entropy (nonlinear jump) condition can be established. Comparing the density evolution for the buoyant jet in the extremes of linear and sharp stratification using experiments and exact formulas, mixing efficiencies can be assessed. In turn, wall effects are explored experimentally in sharp stratification and compared to the closure theory. Lastly, the modeling of entrainment in these systems will be revisited. DMS-0502266, NSF RTG DMS-0943851, NSF RAPID CBET-1045653, NSF CMG ARC- 1025523, and NSF DMS-1009750, ONR DURIP N00014-09-1-0840.

  15. Lithium wall conditioning by high frequency pellet injection in RFX-mod

    NASA Astrophysics Data System (ADS)

    Innocente, P.; Mansfield, D. K.; Roquemore, A. L.; Agostini, M.; Barison, S.; Canton, A.; Carraro, L.; Cavazzana, R.; De Masi, G.; Fassina, A.; Fiameni, S.; Grando, L.; Rais, B.; Rossetto, F.; Scarin, P.

    2015-08-01

    In the RFX-mod reversed field pinch experiment, lithium wall conditioning has been tested with multiple scopes: to improve density control, to reduce impurities and to increase energy and particle confinement time. Large single lithium pellet injection, lithium capillary-pore system and lithium evaporation has been used for lithiumization. The last two methods, which presently provide the best results in tokamak devices, have limited applicability in the RFX-mod device due to the magnetic field characteristics and geometrical constraints. On the other side, the first mentioned technique did not allow injecting large amount of lithium. To improve the deposition, recently in RFX-mod small lithium multi-pellets injection has been tested. In this paper we compare lithium multi-pellets injection to the other techniques. Multi-pellets gave more uniform Li deposition than evaporator, but provided similar effects on plasma parameters, showing that further optimizations are required.

  16. DSMC simulation of rarefied gas flows under cooling conditions using a new iterative wall heat flux specifying technique

    NASA Astrophysics Data System (ADS)

    Akhlaghi, H.; Roohi, E.; Myong, R. S.

    2012-11-01

    Micro/nano geometries with specified wall heat flux are widely encountered in electronic cooling and micro-/nano-fluidic sensors. We introduce a new technique to impose the desired (positive/negative) wall heat flux boundary condition in the DSMC simulations. This technique is based on an iterative progress on the wall temperature magnitude. It is found that the proposed iterative technique has a good numerical performance and could implement both positive and negative values of wall heat flux rates accurately. Using present technique, rarefied gas flow through micro-/nanochannels under specified wall heat flux conditions is simulated and unique behaviors are observed in case of channels with cooling walls. For example, contrary to the heating process, it is observed that cooling of micro/nanochannel walls would result in small variations in the density field. Upstream thermal creep effects in the cooling process decrease the velocity slip despite of the Knudsen number increase along the channel. Similarly, cooling process decreases the curvature of the pressure distribution below the linear incompressible distribution. Our results indicate that flow cooling increases the mass flow rate through the channel, and vice versa.

  17. Casimir-Polder interaction between an atom and a cavity wall under the influence of real conditions

    SciTech Connect

    Babb, J.F.; Klimchitskaya, G.L.; Mostepanenko, V.M.

    2004-10-01

    The Casimir-Polder interaction between an atom and a metal wall is investigated under the influence of real conditions including the dynamic polarizability of the atom, finite conductivity of the wall metal, and nonzero temperature of the system. Both analytical and numerical results for the free energy and force are obtained over a wide range of atom-wall distances. Numerical computations are performed for an Au wall and metastable He*, Na, and Cs atoms. For the He* atom we demonstrate, as an illustration, that at short separations of about the Au plasma wavelength at room temperature the free energy deviates up to 35% and the force up to 57% from the classical Casimir-Polder result. Accordingly, such large deviations should be taken into account in precision experiments on atom-wall interactions. The combined account of different corrections to the Casimir-Polder interaction leads to the conclusion that at short separations the corrections due to the dynamic polarizability of an atom play a more important role than--and suppress--the corrections due to the nonideality of the metal wall. By comparison of the exact atomic polarizabilities with those in the framework of the single oscillator model, it is shown that the obtained asymptotic expressions enable calculation of the free energy and force for the atom-wall interaction under real conditions with a precision of 1%.

  18. Fractal structures of single-walled carbon nanotubes in biologically relevant conditions: role of chirality vs. media conditions.

    PubMed

    Khan, Iftheker A; Aich, Nirupam; Afrooz, A R M Nabiul; Flora, Joseph R V; Schierz, P Ariette; Ferguson, P Lee; Sabo-Attwood, Tara; Saleh, Navid B

    2013-11-01

    Aggregate structure of covalently functionalized chiral specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied employing static light scattering (SLS). Fractal dimensions (Df) of two specific chirality SWNTs-SG65 and SG76 with (6, 5) and (7, 6) chiral enrichments-were measured under four biological exposure media conditions, namely: Dulbecco's Modified Eagle Medium (DMEM), Minimum Essential Medium (MEM), Roswell Park Memorial Institute (RPMI) 1640 medium, and 0.9% saline solution. The SWNTs exhibited chiral dependence on Df with SG65 showing more fractal or loosely bound aggregate structures, i.e., lower Df values (range of 2.24±0.03 to 2.64±0.05), compared to the SG76 sample (range of 2.58±0.13 to 2.90±0.08). All the Df values reported are highly reproducible, measured from multiple SLS runs and estimated with 'random block-effects' statistical analysis that yielded all p values to be <0.001. The key mechanism for such difference in Df between the SWNT samples was identified as the difference in van der Waals (VDW) interaction energies of these samples, where higher VDW of SG76 resulted in tighter packing density. Effect of medium type showed lower sensitivity; however, presence of di-valent cations (Ca(2+)) in DMEM and MEM media resulted in relatively loose or more fractal aggregates. Moreover, presence of fetal bovine serum (FBS) and bovine serum albumin (BSA), used to mimic the in vitro cell culture condition, reduced the Df values, i.e., created more fractal structures. Steric hindrance to aggregation was identified as the key mechanism for creating the fractal structures. Also, increase in FBS concentration from 1% to 10% resulted in increasingly lower Df values.

  19. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  20. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  1. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  2. Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions.

    PubMed

    Khan, Iftheker A; Berge, Nicole D; Sabo-Attwood, Tara; Ferguson, P Lee; Saleh, Navid B

    2013-08-06

    Single-walled carbon nanotubes (SWNTs) are being used in many consumer products and devices. It is likely that as some of these products reach the end of their useful life, they will be discarded in municipal solid waste landfills. However, there has been little work evaluating the fate of nanomaterials in solid waste environments. The purpose of this study is to systematically evaluate the influence of organic matter type and concentration in landfill-relevant conditions on SWNT transport through a packed-bed of mixed municipal solid waste collectors. The influence of individual waste materials on SWNT deposition is also evaluated. Transport experiments were conducted through saturated waste-containing columns over a range of simulated leachate conditions representing both mature and young leachates. Results indicate that SWNT transport may be significant in mature waste environments, with mobility decreasing with decreasing humic acid concentration. SWNT mobility in the presence of acetic acid was inhibited, suggesting their mobility in young waste environments may be small. SWNTs also exhibited collector media-dependent transport, with greatest transport in glass and least in paper. These results represent the first study evaluating how leachate age and changes in waste composition influence potential SWNT mobility in landfills.

  3. Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions--An analytical solution.

    PubMed

    Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola

    2016-01-25

    An analytical solution for Low-Density Lipoprotein transport through an arterial wall under hyperthermia conditions is established in this work. A four-layer model is used to characterize the arterial wall. Transport governing equations are obtained as a combination between Staverman-Kedem-Katchalsky membrane equations and volume-averaged porous media equations. Temperature and solute transport fields are coupled by means of Ludwig-Soret effect. Results are in excellent agreement with numerical and analytical literature data under isothermal conditions, and with numerical literature data for the hyperthermia case. Effects of hypertension combined with hyperthermia, are also analyzed in this work.

  4. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  5. Performance of boron/carbon first wall materials under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.; Bolt, H.; Doerner, R.; Grübmeier, H.; Hirooka, Y.; Hoven, H.; Mingam, C.; Schulze, H.; Seki, M.; Wallura, E.; Weber, T.; Winter, J.

    1990-12-01

    The conditioning of the plasma facing wall in thermonuclear confinement experiments has been performed very successfully by the application of amorphous boron containing hydrogenated carbon films. Boronization leads to tokamak discharges with significantly reduced oxygen and carbon contaminations. For high heat flux components (especially in future quasi-stationary confinement experiments) new boron/carbon materials have to be developed: monolithic tiles of boronated graphites which can be brazed to watercooled substrates or thick B 4C-coatings on graphite or high-Z coolant tubes. A variety of bulk materials (boronated graphites with boron contents in the range from 3 to 30%, so-called coat mix material on the basis of B 4C) and coatings (amorphous B/C films, thick B 4C layers applied by LPPS or CVD methods) were characterized systematically. In addition the behaviour of these materials was investigated under thermal loads; erosion and disruption simulation experiments were performed in electron and ion beam high heat flux test facilities. Physical and chemical sputtering of the coat-mix-material was studied in the PISCES-B facility in dependence on the hydrogen ions fluence.

  6. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions.

    PubMed

    Zhang, Rufan; Ning, Zhiyuan; Zhang, Yingying; Zheng, Quanshui; Chen, Qing; Xie, Huanhuan; Zhang, Qiang; Qian, Weizhong; Wei, Fei

    2013-12-01

    Friction and wear are two main causes of mechanical energy dissipation and component failure, especially in micro/nanomechanical systems with large surface-to-volume ratios. In the past decade there has been an increasing level of research interest regarding superlubricity, a phenomenon, also called structural superlubricity, in which friction almost vanishes between two incommensurate solid surfaces. However, all experimental structural superlubricity has been obtained on the microscale or nanoscale, and predominantly under high vacuum. Here, we show that superlubricity can be realized in centimetres-long double-walled carbon nanotubes (DWCNTs) under ambient conditions. Centimetres-long inner shells can be pulled out continuously from such nanotubes, with an intershell friction lower than 1 nN that is independent of nanotube length. The shear strength of the DWCNTs is only several pascals, four orders of magnitude lower than the lowest reported value in CNTs and graphite. The perfect structure of the ultralong DWCNTs used in our experiments is essential for macroscale superlubricity.

  7. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rufan; Ning, Zhiyuan; Zhang, Yingying; Zheng, Quanshui; Chen, Qing; Xie, Huanhuan; Zhang, Qiang; Qian, Weizhong; Wei, Fei

    2013-12-01

    Friction and wear are two main causes of mechanical energy dissipation and component failure, especially in micro/nanomechanical systems with large surface-to-volume ratios. In the past decade there has been an increasing level of research interest regarding superlubricity, a phenomenon, also called structural superlubricity, in which friction almost vanishes between two incommensurate solid surfaces. However, all experimental structural superlubricity has been obtained on the microscale or nanoscale, and predominantly under high vacuum. Here, we show that superlubricity can be realized in centimetres-long double-walled carbon nanotubes (DWCNTs) under ambient conditions. Centimetres-long inner shells can be pulled out continuously from such nanotubes, with an intershell friction lower than 1 nN that is independent of nanotube length. The shear strength of the DWCNTs is only several pascals, four orders of magnitude lower than the lowest reported value in CNTs and graphite. The perfect structure of the ultralong DWCNTs used in our experiments is essential for macroscale superlubricity.

  8. Robust thermal boundary conditions applicable to a wall along which temperature varies in lattice-gas cellular automata.

    PubMed

    Shim, Jae Wan; Gatignol, Renée

    2010-04-01

    We show that the heat exchange between fluid particles and boundary walls can be achieved by controlling the velocity change rate following the particles' collision with a wall in discrete kinetic theory, such as the lattice-gas cellular automata and the lattice Boltzmann method. We derive a relation between the velocity change rate and temperature so that we can control the velocity change rate according to a given temperature boundary condition. This relation enables us to deal with the thermal boundary whose temperature varies along a wall in contrast to the previous works of the lattice-gas cellular automata. In addition, we present simulation results to compare our method to the existing and give an example in a microchannel with a high temperature gradient boundary condition by the lattice-gas cellular automata.

  9. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  10. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  11. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions.

    PubMed

    Meychik, N R; Nikolaeva, Yu I; Yermakov, I P

    2006-07-01

    Ion-exchange properties of the polymeric matrix of cell walls isolated from roots of 55-day-old Spinacia oleracea L. (Matador cv.) plants grown in nutrient solution in the presence of 0.5, 150, and 250 mM NaCl and from roots of Suaeda altissima L. Pall plants of the same age grown in the presence of 0.5 and 250 mM NaCl were studied. The ion-exchange capacity of the spinach cell walls was determined at pH values from 2 to 12 and different ionic strength of the solution (10 and 250 mM NaCl). In the structure of the root cell walls, four types of ionogenic groups were found: amine, two types of carboxyl (the first being galacturonic acid residue), and phenolic groups. The content of each type of group and their ionization constants were evaluated. The ion-exchange properties of spinach and the halophyte Suaeda altissima L. Pall were compared, and the qualitative composition of the ion-exchange groups in the cell walls of roots of these plants appeared to be the same and not depend on conditions of the root nutrition. The content of carboxyl groups of polygalacturonic acid changed in the cell walls of the glycophyte and halophyte depending on the salt concentration in the medium. These changes in the composition of functional groups of the cell wall polymers seemed to be a response of these plants to salt and were more pronounced in the halophyte. A sharp increase in the NaCl concentration in the medium caused a decrease in pH in the extracellular water space as a result of exchange reactions between sodium ions entering from the external solution and protons of carboxyl groups of the cell walls. The findings are discussed from the standpoint of involvement of root cell walls of different plant species in response to salinity.

  12. Boundary conditions at the ablative walls in two-temperature modelling of thermal plasmas with reactive working gas

    NASA Astrophysics Data System (ADS)

    Pekker, Leonid; Murphy, Anthony B.

    2016-09-01

    In this paper, we propose a new set of boundary conditions at ablative hot walls with thermionic electron emission for two-temperature thermal arc models in which the temperature of electrons can deviate from the temperature of heavy particles,~{{T}\\text{e}}\

  13. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  14. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  15. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  16. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  17. Ultrasonic Estimation of Mechanical Properties of Pulmonary Arterial Wall Under Normoxic and Hypoxic Conditions

    NASA Astrophysics Data System (ADS)

    Waters, Kendall R.; Mukdadi, Osama M.

    2005-04-01

    Secondary pediatric pulmonary hypertension is a disease that could benefit from improved ultrasonic diagnostic techniques. We perform high-frequency in vitro ultrasound measurements (25 MHz to 100 MHz) on fresh and fixed pulmonary arterial walls excised from normoxic and hypoxic Long-Evans rat models. Estimates of the elastic stiffness coefficients are determined from measurements of the speed of sound. Preliminary results indicate that hypoxia leads to up to increase of 20 % in stiffening of the pulmonary arterial wall.

  18. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees.

    PubMed

    van der Giessen, Alina G; Groen, Harald C; Doriot, Pierre-André; de Feyter, Pim J; van der Steen, Antonius F W; van de Vosse, Frans N; Wentzel, Jolanda J; Gijsen, Frank J H

    2011-04-07

    Patient specific geometrical data on human coronary arteries can be reliably obtained multislice computer tomography (MSCT) imaging. MSCT cannot provide hemodynamic variables, and the outflow through the side branches must be estimated. The impact of two different models to determine flow through the side branches on the wall shear stress (WSS) distribution in patient specific geometries is evaluated. Murray's law predicts that the flow ratio through the side branches scales with the ratio of the diameter of the side branches to the third power. The empirical model is based on flow measurements performed by Doriot et al. (2000) in angiographically normal coronary arteries. The fit based on these measurements showed that the flow ratio through the side branches can best be described with a power of 2.27. The experimental data imply that Murray's law underestimates the flow through the side branches. We applied the two models to study the WSS distribution in 6 coronary artery trees. Under steady flow conditions, the average WSS between the side branches differed significantly for the two models: the average WSS was 8% higher for Murray's law and the relative difference ranged from -5% to +27%. These differences scale with the difference in flow rate. Near the bifurcations, the differences in WSS were more pronounced: the size of the low WSS regions was significantly larger when applying the empirical model (13%), ranging from -12% to +68%. Predicting outflow based on Murray's law underestimates the flow through the side branches. Especially near side branches, the regions where atherosclerotic plaques preferentially develop, the differences are significant and application of Murray's law underestimates the size of the low WSS region.

  19. The rotating wall machine: A device to study ideal and resistive magnetohydrodynamic stability under variable boundary conditions

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Bergerson, W. F.; Brookhart, M. I.; Hannum, D. A.; Kendrick, R.; Fiksel, G.; Forest, C. B.

    2010-12-01

    The rotating wall machine, a basic plasma physics experimental facility, has been constructed to study the role of electromagnetic boundary conditions on current-driven ideal and resistive magnetohydrodynamic instabilities, including differentially rotating conducting walls. The device, a screw pinch magnetic geometry with line-tied ends, is described. The plasma is generated by an array of 19 plasma guns that not only produce high density plasmas but can also be independently biased to allow spatial and temporal control of the current profile. The design and mechanical performance of the rotating wall as well as diagnostic capabilities and internal probes are discussed. Measurements from typical quiescent discharges show the plasma to be high β ( {le} p> {2μ _0}/{B_z^2}), flowing, and well collimated. Internal probe measurements show that the plasma current profile can be controlled by the plasma gun array.

  20. Wall-function boundary conditions in the solution of the Navier-Stokes equations for complex compressible flows

    NASA Technical Reports Server (NTRS)

    Viegas, J. R.; Rubesin, M. W.

    1983-01-01

    To make computer codes for two-dimensional compressible flows more robust and economical, wall functions for these flows, under adiabatic conditions, have been developed and tested. These wall functions have been applied to three two-equation models of turbulence. The tests consist of comparisons of calculated and experimental results for transonic and supersonic flow over a flat plate and for two-dimensional and axisymmetrical transonic shock-wave/boundary-layer interaction flows with and without separation. The calculations are performed with an implicit algorithm that solves the Reynolds-averaged Navier-Stokes equations. It is shown that results obtained agree very well with the data for the complex compressible flows tested, provided criteria for use of the wall functions are followed. The expected savings in cost of the computations and improved robustness of the code were achieved.

  1. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit.

  2. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    PubMed Central

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy. PMID:26148792

  3. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    SciTech Connect

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  4. A stable high-order finite difference scheme for the compressible Navier Stokes equations: No-slip wall boundary conditions

    NASA Astrophysics Data System (ADS)

    Svärd, Magnus; Nordström, Jan

    2008-05-01

    A stable wall boundary procedure is derived for the discretized compressible Navier-Stokes equations. The procedure leads to an energy estimate for the linearized equations. We discretize the equations using high-order accurate finite difference summation-by-parts (SBP) operators. The boundary conditions are imposed weakly with penalty terms. We prove linear stability for the scheme including the wall boundary conditions. The penalty imposition of the boundary conditions is tested for the flow around a circular cylinder at Ma=0.1 and Re=100. We demonstrate the robustness of the SBP-SAT technique by imposing incompatible initial data and show the behavior of the boundary condition implementation. Using the errors at the wall we show that higher convergence rates are obtained for the high-order schemes. We compute the vortex shedding from a circular cylinder and obtain good agreement with previously published (computational and experimental) results for lift, drag and the Strouhal number. We use our results to compare the computational time for a given for a accuracy and show the superior efficiency of the 5th-order scheme.

  5. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Arslan, Nurullah; Turmuş, Hakan

    2014-08-01

    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  6. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.

    PubMed

    Kambali, I; Suryanto, H; Parwanto

    2016-06-01

    Routine production of F-18 radionuclide using proton beams accelerated in a cyclotron could potentially generate residual radioisotopes in the cyclotron vicinity which eventually become major safety concerns over radiation exposure to the workers. In this investigation, a typical 11-MeV proton, self-shielded cyclotron has been assessed for its residual radiation sources in the cyclotron's shielding, tank/chamber, cave wall as well as target system. Using a portable gamma ray spectroscopy system, the radiation measurement in the cyclotron environment has been carried out. Experimental results indicate that relatively long-lived radioisotopes such as Mn-54, Zn-65 and Eu-152 are detected in the inner and outer surface of the cyclotron shielding respectively while Mn-54 spectrum is observed around the cyclotron chamber. Weak intensity of Eu-152 radioisotope is again spotted in the inner and outer surface of the cyclotron cave wall. Angular distribution measurement of the Eu-152 shows that the intensity slightly drops with increasing observation angle relative to the proton beam incoming angle. In the target system, gamma rays from Co-56, Mn-52, Co-60, Mn-54, Ag-110 m are identified. TALYS-calculated nuclear cross-section data are used to study the origins of the radioactive by-products.

  7. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  8. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  9. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  10. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  11. Vertical-viewing electron cyclotron emission diagnostic for the DIII-D tokamak

    SciTech Connect

    James, R.; Janz, S.; Ellis, R.; Boyd, D.; Lohr, J.

    1988-08-01

    The vertical-viewing electron cyclotron emission diagnostic on DIII-D will be used to assess the nonthermal electron distributions resulting from electron cyclotron heating and electron cyclotron current drive experiments. Electron cyclotron emission along a vertical chord is collected using an ellipsoidal focusing mirror and retroreflector (the latter to minimize wall reflections). The emission is then transported approx.20 m using a quasioptical transport system composed of eight lenses and three mirrors, and detected between the 2nd and the 10th harmonics by a fast-scanning (40-Hz) Michelson interferometer. The entire system has been aligned using a Gaussian beam simulator and absolutely calibrated in situ using a cold liquid-nitrogen bath. Details of the design, installation, and calibration will be discussed.

  12. Time-dependent Poiseuille flow of a viscous compressible fluid confined between two planar walls with dynamic partial slip boundary condition.

    PubMed

    Felderhof, B U

    2012-06-01

    Time-dependent Poiseuille flow of a viscous compressible fluid confined between two planar walls is studied for a partial slip boundary condition with frequency-dependent slip length. After an initial uniform impulse parallel to the walls, the flow pattern quickly becomes nearly parabolic. For a narrow gap, a dynamic slip length can lead to damped oscillations of total fluid momentum.

  13. Turbulent separation delay via tuned wall-impedance on a NACA 4412 airfoil in pre-stalled conditions

    NASA Astrophysics Data System (ADS)

    Bodart, Julien; Shelekhov, Grigory; Scalo, Carlo; Joly, Laurent

    2016-11-01

    We have performed large-eddy simulations of turbulent separation control via imposed wall-impedance on a NACA-4412 airfoil in near-stalled conditions (Mach, M∞ = 0 . 3 , and chord-Reynolds numbers, Rec = 1 . 5 ×106 and angle of attack, α =14°), inspired by the experimental setup of Coles & Woodcock (1979). We impose complex impedance boundary conditions (IBCs) using the implementation developed by Scalo, Bodart and Lele, representing an array of sub-surface-mounted tunable Helmholtz cavities with resonant frequency, fres, covered by a porous sheet with permeability inversely proportional to the impedance resistance. Generation of spanwise-oriented Kelvin-Helmholtz (KH) rollers of size lKH , 0 =U∞ /fres is observed in areas of sustained mean shear, which are convectively amplified along the shear-layer and reenergizing the separated flow via vortical-induced mixing and entrainment of irrotational fluid. Their characteristic initial size lKH , 0 is determined by the periodic wall-transpiration pattern induced, in turn, by acoustic resonance in the cavities. Several resonant frequencies and impedance have been tested, bracketing optimal conditions for control.

  14. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    SciTech Connect

    R. Majeski

    2010-01-15

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  15. On the motion through a viscous fluid of a spherical particle touching a plane wall: Slip boundary conditions

    SciTech Connect

    Davis, A.M.J.; Kezirian, M.T.; Brenner, H.

    1992-01-01

    Understanding the hydrodynamic forces acting upon immersed particles touching surfaces, is of central importance in clean room technology and a variety of rheological and biological applications. This paper addresses the translation and rotation of a sphere translating and rotating parallel to a nearby plane wall bounding an otherwise quiescent semi-infinite viscous fluid, allowing for slip on the wall and/or the sphere. The motivation for disregarding the classical, no-slip boundary condition on solid surfaces aries from an embarrassing discrepancy between theoretical and observed predictions of the translational velocity of a sphere rolling' under the influence of gravity down an inclined plane bounding an effectively semi-infinite viscous fluid. According to theory the force and torque on a translating and/or rotating sphere moving parallel to the plane wall become logarithmically infinite with the gap width as the gap between the sphere and well goes to zero. As such, the theoretical conclusion is that the sphere cannot translate down the plane, despite the gravity force that acts to animate it. Experiments, however, reveal that the sphere does, in fact, roll down the plane - at a reproducible mean terminal velocity. In the noninertial, small Reynolds number limit, the experimentally observed drag coefficient was found to be about 8.9 times that given by Stokes law for the unbounded case - thereby suggesting a conventional hydrodynamic wall effect, rather than the logarithmically singular behavior predicted by the theory. It was in an attempt to resolve this glaring contradiction that we have elected here to examine the possible effects of slip.

  16. On the motion through a viscous fluid of a spherical particle touching a plane wall: Slip boundary conditions

    SciTech Connect

    Davis, A.M.J.; Kezirian, M.T.; Brenner, H.

    1992-12-31

    Understanding the hydrodynamic forces acting upon immersed particles touching surfaces, is of central importance in clean room technology and a variety of rheological and biological applications. This paper addresses the translation and rotation of a sphere translating and rotating parallel to a nearby plane wall bounding an otherwise quiescent semi-infinite viscous fluid, allowing for slip on the wall and/or the sphere. The motivation for disregarding the classical, no-slip boundary condition on solid surfaces aries from an embarrassing discrepancy between theoretical and observed predictions of the translational velocity of a sphere `rolling` under the influence of gravity down an inclined plane bounding an effectively semi-infinite viscous fluid. According to theory the force and torque on a translating and/or rotating sphere moving parallel to the plane wall become logarithmically infinite with the gap width as the gap between the sphere and well goes to zero. As such, the theoretical conclusion is that the sphere cannot translate down the plane, despite the gravity force that acts to animate it. Experiments, however, reveal that the sphere does, in fact, roll down the plane - at a reproducible mean terminal velocity. In the noninertial, small Reynolds number limit, the experimentally observed drag coefficient was found to be about 8.9 times that given by Stokes law for the unbounded case - thereby suggesting a conventional hydrodynamic wall effect, rather than the logarithmically singular behavior predicted by the theory. It was in an attempt to resolve this glaring contradiction that we have elected here to examine the possible effects of slip.

  17. New approximate boundary conditions for large eddy simulations of wall-bounded flows

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Ferziger, Joel; Moin, Parviz; Kim, John

    1989-01-01

    Two new approximate boundary conditions have been applied to the large eddy simulation of channel flow with and without transpiration. These new boundary conditions give more accurate results than those previously in use, and allow significant reduction of the required CPU time over simulations in which no-slip conditions are applied. Mean velocity profiles and turbulence intensities compare well both with experimental data and with the results of resolved simulations. The influence of the approximate boundary conditions remains confined near the point of application and does not affect the turbulence statistics in the core of the flow.

  18. Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Bucur, Dorin; Feireisl, Eduard; Nečasová, Šárka

    2010-07-01

    We consider a family of solutions to the evolutionary Navier-Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of Γ-convergence arguments, and identify a general class of boundary conditions.

  19. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  20. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  1. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  2. LES of fluid and heat flow over a wall-bounded short cylinder at different inflow conditions

    NASA Astrophysics Data System (ADS)

    Borello, D.; Hanjalić, K.

    2011-12-01

    We report on LES studies of flow patterns, vortical structures and heat transfer in flows over a short single cylinder of diameter D placed in a plane channel of height h = 0.4D in which the bottom wall is heated. The Reynolds number of 6150, based on D, corresponds to the water experiments reported by Sahin et al. (2008). For the basic computational domain of 24×14×0.4D three different inflow conditions have been considered: a non-turbulent flow with a uniform initial velocity developing along the channel (NT), a fully developed channel flows (FD) (generated a priori) and periodic conditions (PC). The latter boundary conditions have also been considered for two shorter domain lengths of 6D and 3D corresponding to a cylinder in a compact matrix. For the long domain, despite the length of the channel of 9.5 D before (and after) the cylinder, the inlet conditions show strong effects on the formation and evolution of the multiple vortex systems both in front and behind the cylinder, influencing significantly also friction and heat transfer. Simulations show some agreement with experimental data though the comparison is impaired by the uncertainty in the experimental inflow conditions. For the shortest cylinder spacing the wake never closes and the flow shows enhanced unsteadiness and turbulence level. Interestingly, the comparison for the same short domain (3Dx3D) using the mean temperature at the inflow to this domain as a reference shows the lowest average base-wall Nusselt number in the PC 3D case that corresponds to compact heat exchangers.

  3. Leaching of Terbutryn and Its Photodegradation Products from Artificial Walls under Natural Weather Conditions.

    PubMed

    Bollmann, Ulla E; Minelgaite, Greta; Schlüsener, Michael; Ternes, Thomas; Vollertsen, Jes; Bester, Kai

    2016-04-19

    Terbutryn is a commonly used biocide in construction materials. Especially polymer-resin-based renders and paints, used in external thermal insulation composite systems, are very susceptible to microbial deterioration. Previous studies have shown that biocides leach out of the material when contacted with rainwater; thus, they reach surface waters where they might have adverse effects on aquatic organisms. The knowledge on the long-term leaching performance and especially the formation and fate of degradation products is rare. In the present study, the leaching of terbutryn from artificial walls equipped with two types of render was observed for 19 months. In addition to concentration and mass load determinations for terbutryn, photodegradation products were identified and studied in the leachate and render. The results show that terbutryn leached mainly within the first 6-12 months. During the exposure, only 3% of the initial terbutryn was emitted to the runoff, while 64-80% remained in the coating. The overall mass balance could be closed by including several degradation products. Contrary to expectations, the major fraction of transformation products remained in the material and was not washed off immediately, which is of high importance for the long-term assessment of biocides in coating materials.

  4. Self-diffusion of methane in single-walled carbon nanotubes at sub- and supercritical conditions.

    PubMed

    Cao, Dapeng; Wu, Jianzhong

    2004-04-27

    The diffusivities of methane in single-walled carbon nanotubes (SWNTs) are investigated at various temperatures and pressures using classical molecular dynamics (MD) simulations complemented with grand canonical Monte Carlo (GCMC) simulations. The carbon atoms at the nanotubes are structured according to the (m, m) armchair arrangement and the interactions between each methane molecule and all atoms of the confining surface are explicitly considered. It is found that the parallel self-diffusion coefficient of methane in an infinitely long, defect-free SWNT decreases dramatically as the temperature falls, especially at subcritical temperatures and high loading of gas molecules when the adsorbed gas forms a solidlike structure. With the increase in pressure, the diffusion coefficient first declines rapidly and then exhibits a nonmonotonic behavior due to the layering transitions of the adsorbed gas molecules as seen in the equilibrium density profiles. At a subcritical temperature, the diffusion of methane in a fully loaded SWNT follows a solidlike behavior, and the value of the diffusion coefficient varies drastically with the nanotube diameter. At a supercritical temperature, however, the diffusion coefficient at high pressure reaches a plateau, with the limiting value essentially independent of the nanotube size. For SWNTs with the radius larger than approximately 2 nm, capillary condensation occurs when the temperature is sufficiently low, following the layer-by-layer adsorption of gas molecules on the nanotube surface. For SWNTs with a diameter less than about 2 nm, no condensation is observed because the system becomes essentially one-dimensional.

  5. TRIUMF cyclotron vacuum system refurbishing

    NASA Astrophysics Data System (ADS)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  6. Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Martin, F. W., Jr.

    1991-01-01

    Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.

  7. Theoretical and Experimental Studies of the Transonic Flow Field and Associated Boundary Conditions near a Longitudinally-Slotted Wind-Tunnel Wall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Everhart, Joel Lee

    1988-01-01

    A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.

  8. DNA minor groove binding of cross-linked lexitropsins: experimental conditions required to observe the covalently linked WPPW (groove wall-peptide-peptide-groove wall) motif.

    PubMed Central

    Chen, Y H; Lown, J W

    1995-01-01

    A theoretical analysis of binding interactions between covalently cross-linked lexitropsins and DNA is undertaken, in which a novel cyclic symmetric 2:2 dimeric lexitropsin-DNA-binding model is proposed. Applicability of commonly used techniques including NMR, quantitative footprinting, CD, and ethidium fluorometry to differentiate the covalently linked WPPW (groove Wall-Peptide-Peptide-groove Wall) from a 2:2 cross-linked lexitropsin-DNA duplex structure is examined. PMID:7612846

  9. Evaluation of the latent radiation dose from the activated radionuclides in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Cho, Gyuseong; Kim, Sun A.; Kang, Bo Sun

    2015-02-01

    The production of short-lived radioisotopes for the synthesis of radiopharmaceuticals typically takes advantage of a cyclotron that accelerates a proton beam up to a few tens of MeV. The number of cyclotrons has been continuously increasing since the first operation of the MC-50 for the production of radiopharmaceuticals at the Korea Institute of Radiological & Medical Sciences (KIRAMS) in 1986, and currently 35 cyclotrons are under operation throughout the nation. As the number of operating cyclotrons has increased, concerns about radiation safety for the persons who are working at the facilities and dwelling in the vicinity of the facilities are becoming important issues. Radiation that could emit a time-dependent dose was shown to exist in a cyclotron vault after its shutdown. The calculation of the latent radiation dose rate was performed by using the MCNPX and the FISPACT. The calculated results for the activated long-lived radioisotopes in the concrete wall and the structural components of the cyclotron facility were compared with the measured data that were obtained by using gamma-ray spectroscopy with a HPGe detector.

  10. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  11. Future cyclotron systems: An industrial perspective

    SciTech Connect

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market`s potential and the cyclotron system`s abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century.

  12. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  13. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.

    PubMed

    Evju, Øyvind; Valen-Sendstad, Kristian; Mardal, Kent-André

    2013-11-15

    Recent computational fluid dynamics (CFD) studies relate abnormal blood flow to rupture of cerebral aneurysms. However, it is still debated how to model blood flow with sufficient accuracy. Common assumptions made include Newtonian behaviour of blood, traction free outlet boundary conditions and inlet boundary conditions based on available literature. These assumptions are often required since the available patient specific data is usually restricted to the geometry of the aneurysm and the surrounding vasculature. However, the consequences of these assumptions have so far been inadequately addressed. This study investigates the effects of 4 different viscosity models, 2 different inflow conditions and 2 different outflow conditions in 12 middle cerebral artery aneurysms. The differences are quantified in terms of 3 different wall shear stress (WSS) metrics, involving maximal WSS, average WSS, and proportion of aneurysm sac area with low WSS. The results were compared with common geometrical metrics such as volume, aspect ratio, size ratio and parent vessel diameter and classifications in terms of sex and aneurysm type. The results demonstrate strong correlations between the different viscosity models and boundary conditions. The correlation between the different WSS metrics range from weak to medium. No strong correlations were found between the different WSS metrics and the geometrical metrics or classifications.

  14. SEPARATED FLOW CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS - Project Summary

    EPA Science Inventory

    The objectives of this research project were to develop and evaluate a method for determining residence times for separated recirculation cavity flow conditions, and to determine the rate of growth and surface ramp contours developed from particulate deposits at obstacles that i...

  15. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  16. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    SciTech Connect

    Lee, Min-Sang; Park, Soo-Jin

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  17. Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites.

    PubMed

    Song, Byung Ju; Ahn, Jin Woo; Cho, Kwon Koo; Roh, Jae Seung; Lee, Dong Yun; Yang, Yong Suk; Lee, Jae Beom; Hwang, Dae Youn; Kim, Hye Sung

    2013-11-01

    We investigated the electrical conductivity (sigma) and mechanical property of polyvinylchloride/carbon nanotube composites as a function of the CNT content and processing time during a solid-state process of high speed vibration mixing (HSVM) and high energy ball milling (HEBM). Both processes were suggested to avoid high temperatures, solvents, chemical modification of carbon nanotubes. In this study, the percolation threshold (phi(c)) for electrical conduction is about 1 wt% CNT with a sigma value of 0.21 S/m, and the electrical conductivity is higher value than that reported by other researchers from melt mixing process or obtained from the other solid-state processes. We found that the dispersion of CNTs and morphology change from CNT breaking are closely related to sigma. Especially, a large morphology change in the CNTs was occurred at the specific processing time, and a significant decrease in the electrical conductivity of polyvinylchloride/carbon nanotube composite occurred in this condition. A meaningful increase of electrical properties and mechanical property is observed in the sample with about 1-2 wt% CNT contents sintered at 200 degrees C after the milling for 20 min by HEBM process. Our study indicates the proper process condition required to improve sigma of PVC/CNT composites.

  18. Preliminary Results Of Hydrodynamic Responses To Ship Movements And Weather Conditions Along The Coastal Walls Of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Cagatay, Namık; Ozeren, Sinan; Sarı, Erol; Eris, Kadir; Vardar, Denizhan; Arslan, Tugce; Basegmez, Koray

    2016-04-01

    Water-level variations in coastal areas and shallow channels take place under the influence of more complex factors, compared to those in deeper areas. Atmospheric pressure, wind, and wave interactions with bottom morphological characteristics are some important natural features while human-induced factors are usually maritime traffic and manoeuvres the ships. While weather conditions cause long-term changes in water level, water level interactions in near shore areas, can occur very quickly depending on the ship manoeuvres and squat characteristics, and these rapid changes can lead to unpredictable water level lowering. Such rapid changes may cause various dangerous incidents and ship accidents, particularly in areas where rapid water oscillations occur. Improper calculations of propulsion power or orientation of the ship body, especially in the areas where geological and morphological characteristics permit fast water movements, are the most important additional causes of accidents due to sudden water level decreases. For an example, even though a 200-m-long vessel can complete its 35° rotation in a circular area with radius of 250 m, if it is calm and sufficiently deep, this diameter increases 5 times at the shallow waters also depending on the hydrodynamic flow conditions. In 2005, "Gerardus Mercator" has bumped into the inside bottom wall of the channel with a low speed (4 knots) turn of when she had just made a 200° turn. Seven years later the cruise ship "Costa Concordia" struck a rock, before she drifted and grounded, in the calm seas of the coast of Isola del Giglio in Italy, due to a combined effects of waves generated by side waves of ship manoeuvres, atmospheric pressure and squat specifications as well. The waves reflected from the seawalls complicate the navigation problems which should be examined in detail. Thus, three prototype models with various angular seawall features were prepared, simple in shape with perpendicular and sloped seawalls with

  19. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Rafiq, M.; Ahmad, B.

    2016-07-01

    This article aims to predict the effects of convective condition and particle deposition on peristaltic transport of Jeffrey fluid in a channel. The whole system is in a rotating frame of reference. The walls of channel are taken flexible. The fluid is electrically conducting in the presence of uniform magnetic field. Non-uniform heat source/sink parameter is also considered. Mass transfer with chemical reaction is considered. Relevant equations for the problems under consideration are first modeled and then simplified using lubrication approach. Resulting equations for stream function and temperature are solved exactly whereas mass transfer equation is solved numerically. Impacts of various involved parameters appearing in the solutions are carefully analyzed.

  20. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India.

    PubMed

    Shaiju, V S; Sharma, S D; Kumar, Rajesh; Sarin, B

    2009-07-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as (18)F, (11)C, (15)O, (13)N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel.

  1. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions

    PubMed Central

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates. PMID:26121693

  2. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions.

    PubMed

    Martín, José; Ortega, Jesús; López, Pilar

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates.

  3. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  4. Lawrence's Legacy : Seaborg's Cyclotron - The 88-Inch Cyclotron turns 40

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Clark, David

    2003-04-01

    In 1958, Sputnik had recently been launched by the Russians, leading to worry in Congress and increased funding for science and technology. Ernest Lawrence was director of the "Rad Lab" at Berkeley. Another Nobel Prize winner, Glenn Seaborg, was Associate Laboratory Director and Director of the Nuclear Chemistry Division. In this atmosphere, Lawrence was phoned by commissioners of the Atomic Energy Commission and asked what they could do for Seaborg, "because he did such a fine job of setting up the chemistry for extracting plutonium from spent reactor fuel" [1]. In this informal way, the 90-Inch (eventually 88-Inch) Cyclotron became a line item in the federal budget at a cost of 3M (later increased to 5M). The 88-Inch Cyclotron achieved first internal beam on Dec. 12, 1961 and first external beam in May 1962. Forty years later it is still going strong. Pieced together from interviews with the retirees who built it, Rad Lab reports and archives from the Seaborg and Lawrence collections, the story of its design and construction - on-time and under-budget - provides a glimpse into the early days of big science. [1] remarks made by Elmer Kelly, "Physicist-in-charge' of the project on the occasion of the 40th anniversary celebration.

  5. Formation of cyclotron lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1989-01-01

    A transmission model of gamma-ray burst sources is studied using the relativistic QED magnetic-resonant opacities including multiple photon scattering, incorporated into a discrete-ordinate radiative-transport scheme. The physics of the cyclotron line-producing region is discussed in general, and the expected line profiles, relative harmonic strengths, and polarizations are indicated under various conditions. The calculated spectra for these models show good agreement with the spectra reported from Ginga for GB 880205 and GB 870303.

  6. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  7. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions

    PubMed Central

    Houston, Kelly; Tucker, Matthew R.; Chowdhury, Jamil; Shirley, Neil; Little, Alan

    2016-01-01

    The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them. PMID:27559336

  8. Optimal conditions for decorating outer surface of single-walled carbon nanotubes with RecA proteins

    NASA Astrophysics Data System (ADS)

    Oura, Shusuke; Umemura, Kazuo

    2016-03-01

    In this study, we estimated the optimal reaction conditions for decorating the outer surface of single-walled carbon nanotubes (SWNTs) with RecA proteins by comparison with hybrids of RecA and single-stranded DNA (ssDNA). To react SWNTs with RecA proteins, we first prepared ssDNA-SWNT hybrids. The heights of the ssDNA-SWNT hybrids increased as the amount of RecA used in the reaction increased, as determined from atomic force microscopy images. We further confirmed the increasing adsorption of RecA proteins onto ssDNA on SWNT surfaces by agarose gel electrophoresis. These results suggest that the combination of RecA proteins and ssDNA-SWNT hybrids forms RecA-ssDNA-SWNT hybrids. We also successfully controlled the amount of RecA adsorbed on the ssDNA-SWNT hybrids. Our results thus indicate the optimized reaction conditions for decorating the outer surface of SWNTs with RecA proteins, which is the key to the development of novel biosensors and nanomaterial-based bioelectronics.

  9. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.

  10. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  11. Effect of Commercial Enzymes on Berry Cell Wall Deconstruction in the Context of Intravineyard Ripeness Variation under Winemaking Conditions.

    PubMed

    Gao, Yu; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A; Moore, John P

    2016-05-18

    Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking. The vineyard was dissected into defined panels, which were selected for winemaking with or without enzyme addition. Cell wall material was prepared and subjected to high-throughput profiling combined with multivariate data analysis. The study showed that significant ripening-related variation was present at the berry cell wall polymer level and occurred within the experimental vineyard block. Furthemore, all enzyme treatments reduced cell wall variation via depectination. Interestingly, cell wall esterification levels were unaffected by enzyme treatments. This study provides clear evidence that enzymes can positively influence the consistency of winemaking and provides a foundation for further research into the relationship between grape berry cell wall architecture and enzyme formulations.

  12. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu

    2014-02-01

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10-9-10-6 ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a 12C5+ beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  13. Advanced Techniques for Neoclassical Tearing Mode Control by Electron Cyclotron Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Volpe, F.

    2008-11-01

    Novel techniques have been developed in DIII-D for (1) control of rapidly rotating neoclassical tearing modes (NTMs) and (2) control of NTMs that have locked to a residual error field or the resistive wall. Electron cyclotron current drive (ECCD) has been successful at suppression of NTMs in present tokamaks, but will face new challenges in ITER where NTMs are expected to be more prone to locking. In order to avoid locking, rotating islands must be controlled at small widths that are expected to be narrower than the ECCD deposition. Under these conditions, modulated ECCD is predicted to stabilize more efficiently than continuous current drive. (1) A new technique developed at DIII-D detects the island using oblique electron cyclotron emission with a line of sight equivalent to that of the ECCD. This removes much of the uncertainty in mapping the island structure from the detector to the current drive location. This method was used both to measure the radial alignment between ECCD and the island, and to synchronize the modulation in phase with the island O-point, successfully stabilizing an NTM with mode numbers m/n=3/2. (2) If islands do grow large enough to lock, locked mode control will be necessary for recovery or avoiding disruption in ITER. A potential difficulty associated with locking is that the mode can lock in a position not necessarily accessible to ECCD. To obviate this problem, magnetic perturbations were used for the first time to unlock and reposition a locked m/n=2/1 mode in order to bring it in view of the gyrotron beam, leading to a significant reduction in island size. Once unlocked, magnetic perturbations were also used to sustain and control the mode rotation, which has the potential for easier ECCD modulation

  14. Cyclotrons: From Science to Human Health

    NASA Astrophysics Data System (ADS)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  15. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  16. LH wave absorption by mode conversion near ion cyclotron harmonics

    SciTech Connect

    Ko, K.; Bers, A.; Fuchs, V.

    1981-02-01

    Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.

  17. Electron cyclotron resonance plasma photos.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  18. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  19. Combined complementary plasma diagnostics to characterize a 2f plasma with additional DC current with conditioning effects at the chamber wall

    NASA Astrophysics Data System (ADS)

    Klick, Michael; Rothe, Ralf; Baek, Kye Hyun; Lee, Eunwoo

    2016-09-01

    Multiple frequencies and DC current used in a low-pressure plasma rf discharge result in an increased complexity. This needs plasma diagnostics applied, in particular in a plasma process chamber. That is done under manufacturing conditions which restrict the applicable plasma diagnostics to non-invasive methods with small footprint. So plasma chamber parameters, optical emission spectroscopy (OES), and self-excited electron spectroscopy (SEERS) are used to characterize the plasma and to understand chamber wall conditioning effects in an Ar plasma. The parameters are classified according to their origin--the region they are representative for. The center ion density is estimated from the DC current and compared to the SEERS electron density reflecting the electron density close to that at the chamber wall. The conditioning effects are caused by Si sputtering at a Si wafer changing the chamber wall state only when the chamber is clean, subsequent plasmas in the same chamber are not affected in that way. Through the combination of the complementary methods it can be shown that the chamber wall condition finally changes the radial plasma density distribution. Also the heating of electrons in the sheath is shown to be influenced by conditioning effects.

  20. Activity of Co-N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions

    NASA Astrophysics Data System (ADS)

    Osmieri, Luigi; Monteverde Videla, Alessandro H. A.; Specchia, Stefania

    2015-03-01

    Two catalysts are synthesized by wet impregnation of multi walled carbon nanotubes (MWCNT) with a complex formed between Co(II) ions and the nitrogen-containing molecule 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), followed by one or two identical heat treatments in N2 atmosphere at 800 °C for 3 h. Catalysts are fully characterized by FESEM, EDX, BET, XRD, FTIR, TGA, XPS analyses, and electrochemical techniques. The electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalysts in acid conditions is assessed by means of a rotating disk electrode (RDE) apparatus and a specific type of cell equipped with a gas diffusion working electrode (GDE). In both testing approaches, the catalyst heat-treated twice (Co-N/MWCNT-2) exhibits higher electroactivity than the catalyst heat-treated once (Co-N/MWCNT-1). Chronoamperometries both in RDE and GDE cell are also performed, showing less electroactivity decay and better current performance for the catalyst heat-treated twice.

  1. The impact of extraction with a chelating agent under acidic conditions on the cell wall polymers of mango peel.

    PubMed

    Jamsazzadeh Kermani, Zahra; Shpigelman, Avi; Kyomugasho, Clare; Van Buggenhout, Sandy; Ramezani, Mohsen; Van Loey, Ann M; Hendrickx, Marc E

    2014-10-15

    The objective of this research was to evaluate whether mango peel is a potential source of functional cell wall polymers. To reach this objective, the native pectin polymers (NPP) extracted as alcohol insoluble residue from mango peel, were characterised in terms of uronic acid content, degree of methoxylation, neutral sugar content, and molar mass and compared to citric acid (pH 2.5, 2h at 80°C) extracted polymers, mimicking industrial pectin extraction conditions. Water-solubilised NPP were highly methoxylated having two populations with a Mw of 904 and 83kDa and a degree of methoxylation of 66%. Citric acid extraction with a yield higher than H2SO4 extraction resulted in a very branched pectin with an extremely high DM (83%) and a high molar mass. Comparing the Fourier Transform Infra-Red spectroscopy of extracted and native WSF showed that citric acid remained partially associated to the extracted pectin due to its chelating properties.

  2. Cyclotron resonance absorption in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  3. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe2O3/zeolite was prepared by dissolving Fe2O3 fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe2O3/Al2O3, Co/zeolite/Al2O3, Co/zeolite, and Co/Al2O3 were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C2H2/N2 = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al2O3. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al2O3. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  4. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  5. A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for Diels-Alder reactions under ambient conditions.

    PubMed

    Wu, Yang; Xu, Hong; Chen, Xiong; Gao, Jia; Jiang, Donglin

    2015-06-25

    We report a strategy for developing π-electronic covalent organic frameworks as heterogeneous catalysts that enable the use of columnar π-walls as catalytic beds to facilitate organic transformations in their one-dimensional open channels. The π-frameworks exhibit outstanding catalytic activity, promote Diels-Alder reactions under ambient conditions and are robust for cycle use.

  6. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  7. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  8. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  9. Building 211 cyclotron characterization survey report

    SciTech Connect

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  10. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  11. Quench analysis of a novel compact superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Ghosh, Sundeep; Dutta Gupta, Anjan; Kanti Dey, Malay; Pal, Gautam

    2017-02-01

    Design and analysis of a compact superconducting cyclotron dedicated for medical applications in the fields of nuclear medicine and therapy is presently being pursued in our organization. The novelty of this cyclotron lies in the fact that it does not consist of any iron-pole. The cyclotron magnet will be made of a set of NbTi coils comprising of solenoid and sector coils which are housed in two halves on either sides of the median plane. The average magnetic field is 1.74 T and the maximum extraction energy is 25 MeV, which is sufficient for production of 99mTc from Mo. In this paper, quench analyses of the coils have been discussed in details considering adiabatic condition. The entire cryostat magnet along with coils, formers and support links were modelled for the quench simulation. Self and mutual inductances of all the coils were obtained from a separate magnetic analysis and used in the simulation. Parametric analyses were carried out with different quench initiation energy at various critical locations on the coil surface. The corresponding quench behaviour, i.e. maximum temperature rise, maximum voltage and current decay in each of the coils have been studied.

  12. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  13. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  14. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    SciTech Connect

    Suda, Yoshiyuki Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru; Ue, Hitoshi; Umeda, Yoshito

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe{sub 2}O{sub 3}/zeolite was prepared by dissolving Fe{sub 2}O{sub 3} fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}, Co/zeolite/Al{sub 2}O{sub 3}, Co/zeolite, and Co/Al{sub 2}O{sub 3} were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C{sub 2}H{sub 2}/N{sub 2} = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al{sub 2}O{sub 3}. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al{sub 2}O{sub 3}. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  15. Cyclotron autoresonance maser in the millimeter region

    NASA Astrophysics Data System (ADS)

    Nikolov, N. A.; Spasovski, I. P.; Kostov, K. G.; Velichkov, J. N.; Spasov, V. A.

    1990-06-01

    This paper investigates the optimal experimental conditions for a cyclotron autoresonance maser (CARM) regime realized by a nonadiabatic magnetic beam pumping in the millimeter wavelength region. In the experiment, a Blumline-type accelerator with a voltage up to 650 kV and maximal current up to 10 kA is used to generate a hollow beam with a pulse duration of 30 ns. The electron beam, emitted from a graphite cathode with a 10-mm diameter, propagates in a cylindrical drift tube of 56 mm diam and a length of 500 mm. The external magnetic field B, provided by a solenoidal magnet, is homogeneous along the drift tube up to a distance of 300 mm from the cathode. The experiment demonstrated the generation of microwave radiation in the time interval from 0.0016 to 0.0023 sec after the switch-on of the external magnetic field. Two maxima of the output microwave power (8 and 10 MW) at a wavelength of 5 and 5.5 mm, respectively, were observed.

  16. The Utilization of Plant Facilities on the International Space Station-The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions.

    PubMed

    Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning

    2015-01-20

    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8-14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station.

  17. The Utilization of Plant Facilities on the International Space Station—The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions

    PubMed Central

    Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning

    2015-01-01

    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8–14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station. PMID:27135317

  18. Various computational conditions of oscillatory natural convection of zero Prandtl number fluid in an open boat heated and cooled from opposing vertical walls

    SciTech Connect

    Okada, Kazuto . Interdisciplinary Graduate School of Engineering Science); Ozoe, Hiroyuki . Inst. of Advanced Material Study)

    1993-03-01

    The finite-difference computational scheme is developed for two-dimensional oscillatory natural convection of zero Prandtl number fluid in an open boat heated and cooled from opposing vertical walls. Various computational conditions are tested, such as the initial condition, time step length, finite-difference width, and finite-difference scheme. Instantaneous contour maps and velocity vectors in oscillatory states are presented in a series of maps to represent the fluctuating characteristics of two-dimensional roll cells. The physical conditions are for a boat with aspect ratio A = 3[minus]5 at Pr = 0 and Gr = 14,000-40,000.

  19. Laboratory study of pulsed regimes of electron cyclotron instabilities in a mirror-confined plasma for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Izotov, Ivan; Gospodchikov, Egor; Shalashov, Alexander; Demekhov, Andrei

    2014-05-01

    We discuss the use of a mirror-confined plasma of the electron cyclotron resonance discharge for modeling of burst processes in the inner magnetosphere of the Earth associated with the implementation of the plasma cyclotron maser. Heating under the electron cyclotron resonance conditions allows to create two component plasma which is typical for the inner magnetosphere of the Earth. One of the most interesting electron cyclotron resonance manifestations is the generation of bursts of electromagnetic radiation that are related to the explosive growth of cyclotron instabilities of the magnetoactive plasma confined in magnetic traps of various kinds and that are accompanied by particle precipitations from the trap. We investigate several regimes of cyclotron maser which are realized in dense and rarefied plasma, in the presence and absence of a permanent powerful gyrotron microwave radiation as a source of nonequilibrium particles in the plasma. Using the new technique for detection of microwave radiation we studied the dynamical spectrum and the intensity of stimulated electromagnetic radiation from the plasma in a wide frequency band covering all types of cyclotron instabilities. Also possible applications for astrophysical plasma are discussed.

  20. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  1. Linear coupling of acoustic and cyclotron waves in plasma flows

    SciTech Connect

    Rogava, Andria; Gogoberidze, Grigol

    2005-05-15

    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are mathematically equal to the ones describing coupling of sound waves with internal gravity waves [Rogava and Mahajan, Phys. Rev. E 55, 1185 (1997)] in neutral fluids. For flows with low shearing rates a fully analytic, quantitative description of the coupling efficiency, based on a noteworthy quantum-mechanical analogy, is given and transformation coefficients are calculated.

  2. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  3. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  4. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  5. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  6. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  7. Memory effect of a single-walled carbon nanotube on nitride-oxide structure under various bias conditions.

    SciTech Connect

    Park, H.; Shin, H.; Kim, J. H.; Hong, S.; Xu, J.; Materials Science Division; Brown Univ.; Kookmin Univ.

    2010-01-11

    We report on the memory effect of single-walled carbon nanotubes (SWNTs) placed on a nitride-oxide layer structure designed as a charge storage medium. The conductance of the SWNT was modulated by the injected charge in the nitride-oxide interface and the polarities of injected charges were then detected. A large on/off-state current ratio (>10{sup 4}) was obtained at a small program/erase voltage range (<3 V). We also studied the effect of a half-selected cell on the conductance of the SWNTs to identify the issues with cross-point memory architecture.

  8. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  9. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  10. Imaging Cyclotron Orbits of Electrons in Graphene.

    PubMed

    Bhandari, Sagar; Lee, Gil-Ho; Klales, Anna; Watanabe, Kenji; Taniguchi, Takashi; Heller, Eric; Kim, Philip; Westervelt, Robert M

    2016-03-09

    Electrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away. By tuning the magnetic field B and electron density n in the graphene layer, we observe magnetic focusing peaks. We use a cooled scanning gate microscope to image cyclotron trajectories in graphene at 4.2 K. The tip creates a local change in density that casts a shadow by deflecting electrons flowing nearby; an image of flow can be obtained by measuring the transmission between contacts as the tip is raster scanned across the sample. On the first magnetic focusing peak, we image a cyclotron orbit that extends from one contact to the other. In addition, we study the geometry of orbits deflected into the second point contact by the tip.

  11. Currents driven by electron cyclotron waves

    SciTech Connect

    Karney, C.F.F.; Fisch, N.J.

    1981-07-01

    Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the nonlinear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered.

  12. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  13. Helium retention and surface blistering characteristics of tungsten with regard to first wall conditions in an inertial fusion energy reactor

    NASA Astrophysics Data System (ADS)

    Gilliam, S. B.; Gidcumb, S. M.; Forsythe, D.; Parikh, N. R.; Hunn, J. D.; Snead, L. L.; Lamaze, G. P.

    2005-12-01

    The first wall of an inertial fusion energy reactor may suffer from surface blistering and exfoliation due to helium ion fluxes and extreme temperatures. Tungsten is a candidate for the first wall material. A study of helium retention and surface blistering with regard to helium dose, temperature and tungsten microstructure was conducted to learn how the damaging effects of helium may be diminished. Single crystal and polycrystalline tungsten samples were implanted with 1.3 MeV 3He in doses ranging from 1019/m2 to 1022/m2. Implanted samples were analyzed by 3He(d, p)4He nuclear reaction analysis and neutron depth profiling techniques. Surface blistering occurred for doses greater than 1021 He/m2 and was analyzed by scanning electron microscopy. Repeated cycles of implantation and flash annealing indicated that helium retention was reduced with decreasing implant dose per cycle. A carbon foil energy degrader, currently in development, will allow a continuous spectrum of helium implantation energy matching the theoretical models of He ion fluxes within the IFE reactor.

  14. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  15. Gamma ray facilities at the University of Maryland cyclotron. [data acquisition and radiation measurement

    NASA Technical Reports Server (NTRS)

    Hornyak, W. F.

    1978-01-01

    A special beam line was set up in a separate shielded experimental room to provide a low background station for gamma-ray measurements at the University of Maryland cyclotron. The transmitted beam leaving the target is gathered in by a magnetic quadrupole lens located 1.8 m further downstream and focused on a Faraday cup located on the far side of the 2.5 m thick concrete shielding wall of the experimental room. A software computer program permits timing information ot be obtained using the cyclotron beam fine structure as a time reference for the observed gamma-ray events. Measurements indicate a beam fine structure width of less than 1.2 nanoseconds repeated, for example, in the case of 140 MeV alpha particles every 90 nanoseconds. Twelve contiguous time channels of adjustable width may be set as desired with reference to the RF signal. This allows the creation of 12 separate 8192 channel analyzers.

  16. Determinant representation of the domain-wall boundary condition partition function of a Richardson-Gaudin model containing one arbitrary spin

    NASA Astrophysics Data System (ADS)

    Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas

    2016-05-01

    In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.

  17. Omental infarction and its mimics: imaging features of acute abdominal conditions presenting with fat stranding greater than the degree of bowel wall thickening.

    PubMed

    Tonerini, Michele; Calcagni, Francesca; Lorenzi, Silvia; Scalise, Paola; Grigolini, Alessandro; Bemi, Pietro

    2015-08-01

    The segmental omental infarction is a rare self-limited disorder presenting with aspecific clinical symptoms that may mimic several acute abdominal conditions. Therefore, a correct noninvasive diagnosis is important because treatment approaches range from monitoring to surgery. As omental infarction results in an important fat stranding that is much greater than the degree of bowel wall thickening, it suggests a narrower differential diagnosis: appendicitis, diverticulitis, epiploic appendagitis, and mesenteric panniculitis. In this pictorial essay, we point out the importance of imaging in identifying this typical sign allowing alternate diagnoses such as segmental omental infarction that can be conservatively managed.

  18. Effect of storage conditions on the microbial ecology and biochemical stability of cell wall components in brewers' spent grain.

    PubMed

    Robertson, James A; I'Anson, Kerry J A; Brocklehurst, Tim F; Faulds, Craig B; Waldron, Keith W

    2010-06-23

    The composition of brewers' spent grain (BSG) makes it susceptible to microbial attack and chemical deterioration. This can constrain its appeal as an industrial feedstock. The current study has monitored the effects of BSG storage as fresh material (20 degrees C), refrigerated and autoclaved, measured against frozen material in relation to microbial proliferation and modification to plant cell wall polysaccharides and component phenolic acids. At 20 degrees C there was a rapid colonization by microbes and an associated loss of components from BSG. Refrigeration gave a similar but lower level response. When stored frozen, BSG showed no changes in composition but autoclaving resulted in a solubilization of polysaccharides and associated phenolics. Changes were associated with the temperature profile determined during autoclaving and were also partially due to the breakdown of residual starch. Losses of highly branched arabinoxylan (AX) and the related decrease in ferulic acid cross-linking were also found. The results confirm the need for storage stabilization of BSG and demonstrate that the methods selected for stabilization can themselves lead to a substantial modification to BSG.

  19. Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions.

    PubMed

    Vasconcelos, R B; Salles, L P; Oliveira e Silva, I; Gulart, L V M; Souza, D K; Torres, F A G; Bocca, A L; Rosa e Silva, A A M

    2013-08-01

    Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures.

  20. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma.

    PubMed

    Kogej, Tina; Gorbushina, Anna A; Gunde-Cimerman, Nina

    2006-06-01

    Melanized yeast-like meristematic fungi are characteristic inhabitants of highly stressed environments and are rare eukaryotic extremophiles. Therefore, they are attractive organisms for studies of adaptations. In this study we compared two meristematic species of the genus Trimmatostroma on media of differing water potentials isolated from distinct water-stressed environments: T. salinum from the hypersaline water of a solar saltern, and T. abietis from a marble monument in Crimea. The morphology and melanization of both isolates in response to sodium chloride-induced water stress were investigated by means of light and electron microscopy. We describe and compare the colony form and structure, ultrastructure, and degree of cell-wall melanization of both species in reaction to salinity and to inhibited melanin synthesis. The halophilic T. salinum responded to changed salinity conditions on the level of individual cell ultrastructure and degree of cell wall melanization, whereas the xerophilic rock-inhabiting T. abietis responded with modification of its colony structure. Surprisingly, both the halophilic and the xerophilic Trimmatostroma species were able to adapt to hypersaline growth conditions, although their growth patterns show distinct adaptation of each species to their natural ecological niches.

  1. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  3. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  4. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  5. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  6. Cyclotron Wave Electrostatic and Parametric Amplifiers.

    DTIC Science & Technology

    2008-02-15

    Plasma Physics Division GEORGE EwEI.• Georgia Tech Research Institute Atlanta, Georgia, 30332 February 28, 1997 Approved for public release...and transmitted to the external circuit load. Thus, as far as the input resonator is concerned, noises of the electron gun on the fast cyclotron wave...characteristics of CWESA. Engineering the permanent magnet system is often the most challenging part CWESA design at ISTOK. The plane cathode electron gun

  7. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  8. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  9. Adaptation of multidimensional group particle tracking and particle wall-boundary condition model to the FDNS code

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Farmer, R. C.

    1992-01-01

    A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.

  10. Looking beyond School Walls: Examining the Impact of Superintendent Longevity on Teachers' Perceptions of Their Working Conditions

    ERIC Educational Resources Information Center

    Jordan, Derrick D.

    2012-01-01

    The purpose of this study was to determine if superintendent longevity significantly impacted teachers' perceptions of their working conditions. In addition, the study sought to determine if there were differences in perceptions among teachers whose superintendent was beginning (1 or fewer years in current position), emerging (between 2 to 6 years…

  11. Functional characterization of the rice UDP-glucose 4-epimerase 1, OsUGE1: a potential role in cell wall carbohydrate partitioning during limiting nitrogen conditions.

    PubMed

    Guevara, David R; El-Kereamy, Ashraf; Yaish, Mahmoud W; Mei-Bi, Yong; Rothstein, Steven J

    2014-01-01

    Plants grown under inadequate mineralized nitrogen (N) levels undergo N and carbon (C) metabolic re-programming which leads to significant changes in both soluble and insoluble carbohydrate profiles. However, relatively little information is available on the genetic factors controlling carbohydrate partitioning during adaptation to N-limitation conditions in plants. A gene encoding a uridine-diphospho-(UDP)-glucose 4-epimerase (OsUGE-1) from rice (Oryza sativa) was found to be N-responsive. We developed transgenic rice plants to constitutively over-express the OsUGE-1 gene (OsUGE1-OX1-2). The transgenic rice lines were similar in size to wild-type plants at the vegetative stage and at maturity regardless of the N-level tested. However, OsUGE1-OX lines maintained 18-24% more sucrose and 12-22% less cellulose in shoots compared to wild-type when subjected to sub-optimal N-levels. Interestingly, OsUGE1-OX lines maintained proportionally more galactose and glucose in the hemicellulosic polysaccharide profile of plants compared to wild-type plants when grown under low N. The altered cell wall C-partitioning during N-limitation in the OsUGE1-OX lines appears to be mediated by OsUGE1 via the repression of the cellulose synthesis associated genes, OsSus1, OsCesA4, 7, and 9. This relationship may implicate a novel control point for the deposition of UDP-glucose to the complex polysaccharide profiles of rice cell walls. However, a direct relationship between OsUGE1 and cell wall C-partitioning during N-limitation requires further investigation.

  12. Functional Characterization of the Rice UDP-glucose 4-epimerase 1, OsUGE1: A Potential Role in Cell Wall Carbohydrate Partitioning during Limiting Nitrogen Conditions

    PubMed Central

    Guevara, David R.; El-Kereamy, Ashraf; Yaish, Mahmoud W.; Mei-Bi, Yong; Rothstein, Steven J.

    2014-01-01

    Plants grown under inadequate mineralized nitrogen (N) levels undergo N and carbon (C) metabolic re-programming which leads to significant changes in both soluble and insoluble carbohydrate profiles. However, relatively little information is available on the genetic factors controlling carbohydrate partitioning during adaptation to N-limitation conditions in plants. A gene encoding a uridine-diphospho-(UDP)-glucose 4-epimerase (OsUGE-1) from rice (Oryza sativa) was found to be N-responsive. We developed transgenic rice plants to constitutively over-express the OsUGE-1 gene (OsUGE1-OX1–2). The transgenic rice lines were similar in size to wild-type plants at the vegetative stage and at maturity regardless of the N-level tested. However, OsUGE1-OX lines maintained 18–24% more sucrose and 12–22% less cellulose in shoots compared to wild-type when subjected to sub-optimal N-levels. Interestingly, OsUGE1-OX lines maintained proportionally more galactose and glucose in the hemicellulosic polysaccharide profile of plants compared to wild-type plants when grown under low N. The altered cell wall C-partitioning during N-limitation in the OsUGE1-OX lines appears to be mediated by OsUGE1 via the repression of the cellulose synthesis associated genes, OsSus1, OsCesA4, 7, and 9. This relationship may implicate a novel control point for the deposition of UDP-glucose to the complex polysaccharide profiles of rice cell walls. However, a direct relationship between OsUGE1 and cell wall C-partitioning during N-limitation requires further investigation. PMID:24788752

  13. Geometric analysis of phase bunching in the central region of cyclotron

    NASA Astrophysics Data System (ADS)

    Miyawaki, Nobumasa; Fukuda, Mitsuhiro; Kurashima, Satoshi; Kashiwagi, Hirotsugu; Okumura, Susumu; Arakawa, Kazuo; Kamiya, Tomihiro

    2013-07-01

    An optimum condition for realizing phase bunching in the central region of a cyclotron was quantitatively clarified by a simplified geometric trajectory analysis of charged particles from the first to the second acceleration gap. The phase bunching performance was evaluated for a general case of a cyclotron. The phase difference of incident particles at the second acceleration gap depends on the combination of four parameters: the acceleration harmonic number h, the span angle θD of the dee electrode, the span angle θF from the first to the second acceleration gap, the ratio RV of the peak acceleration voltage between the cyclotron and ion source. Optimum values of θF for phase bunching were limited by the relationship between h and θD, which is 90°/h+θD/2≤θF≤180°/h+θD/2, and sin θF>0. The phase difference with respect to the reference particle at the second acceleration gap is minimized for voltage-ratios between two and four for an initial phase difference within 40 RF degrees. Although the slope of the first acceleration gap contributes to the RF phase at which the particles reach the second acceleration gap, phase bunching was not affected. An orbit simulation of the AVF cyclotron at the Japan Atomic Energy Agency verifies the evaluation based on geometric analysis.

  14. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  15. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions.

    PubMed

    Kabinejadian, Foad; Ghista, Dhanjoo N; Su, Boyang; Nezhadian, Mercedeh Kaabi; Chua, Leok Poh; Yeo, Joon Hock; Leo, Hwa Liang

    2014-10-01

    This study documents the superior hemodynamics of a novel coupled sequential anastomoses (SQA) graft design in comparison with the routine conventional end-to-side (ETS) anastomoses in coronary artery bypass grafts (CABG). The flow fields inside three polydimethylsiloxane (PDMS) models of coronary artery bypass grafts, including the coupled SQA graft design, a conventional ETS anastomosis, and a parallel side-to-side (STS) anastomosis, are investigated under pulsatile flow conditions using particle image velocimetry (PIV). The velocity field and distributions of wall shear stress (WSS) in the models are studied and compared with each other. The measurement results and WSS distributions, computed from the near wall velocity gradients reveal that the novel coupled SQA design provides: (i) a uniform and smooth flow at its ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) more favorable WSS distribution; and (iii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses. This in vitro investigation complements the previous computational studies of blood flow in this coupled SQA design, and is another necessary step taken toward the clinical application of this novel design. At this point and prior to the clinical adoption of this novel design, in vivo animal trials are warranted, in order to investigate the biological effects and overall performance of this anastomotic configuration in vivo.

  16. Excitation of Electron Cyclotron Harmonic Waves in Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojia

    This dissertation investigates the generation mechanism, spatial distribution and characteristics of electrostatic electron cyclotron harmonic (ECH) waves under different plasma sheet conditions, and quantifies the role of these waves in producing the diffuse aurora. THEMIS observations from five magnetotail seasons, along with ray-tracing, and electron diffusion codes have been utilized towards that goal. By modeling the wave growth and quasi-linear pitch-angle diffusion of electrons with realistic parameters for the magnetic field, loss-cone distribution and wave intensity (obtained from observations as a function of magnetotail location), we estimate the loss-cone fill ratio and the contribution of auroral energy flux from wave-induced electron precipitation. We conclude that ECH waves are the dominant driver of electron precipitation in the middle to outer magnetotail.

  17. Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia

    2016-10-01

    The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.

  18. Soft-spring wall based non-periodic boundary conditions for non-equilibrium molecular dynamics of dense fluids

    SciTech Connect

    Ghatage, Dhairyashil; Tomar, Gaurav Shukla, Ratnesh K.

    2015-03-28

    Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient.

  19. Studies on x-ray and UV emissions in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.

    2008-02-15

    A novel electron cyclotron resonance x-ray source is constructed based on the ECR technique. In this paper, the possibility of using the ECR x-ray source for producing UV rays by optimizing the plasma parameters is explored. X-ray and UV emissions from the ECR x-ray source are carried out for argon, nitrogen, and CO{sub 2} plasma. The x-ray spectral and dose measurements are carried with NaI(Tl) based spectrometer and dosimeter, respectively. For UV measurement, a quartz window arrangement is made at the exit port and the UV intensity is measured at 5 cm from the quartz plate using UV meter. The x-ray and UV emissions are carried out for different microwave power levels and gas pressures. The x-ray emission is observed in the pressure range {<=}10{sup -5} Torr, whereas the UV emission is found to be negligible for the gas pressures <10{sup -5} Torr and it starts increasing in the pressure range between 10{sup -5} and 10{sup -3} Torr. At high-pressure range, collision frequency of electron-atom is large which leads to the higher UV flux. At low pressure, the electron-atom collision frequency is low and hence the electrons reach high energy and by hitting the cavity wall produces higher x-ray flux. By choosing proper experimental conditions and plasma gas species, the same source can be used as either an x-ray source or an UV source.

  20. Growth of La{sub 2}CuO{sub 4} nanofibers under a mild condition by using single walled carbon nanotubes as templates

    SciTech Connect

    Gao Lizhen . E-mail: lizhen@mech.uwa.edu.au; Wang Xiaolin; Chua, H.T.; Kawi, Sibudjing

    2006-07-15

    La{sub 2}CuO{sub 4} nanofibers (ca. 30 nm in diameter and 3 {mu}m in length) have been grown in situ by using single walled carbon nanotubes (SWNTs; ca. 2 nm in inner diameter; made via cracking CH{sub 4} over the catalyst of Mg{sub 0.8}Mo{sub 0.05}Ni{sub 0.10}Co{sub 0.05}O {sub x} at 800 deg. C) as templates under mild hydrothermal conditions and a temperature around 60 deg. C. During synthesis, the surfactant poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) and H{sub 2}O{sub 2} were added to disperse SWNTs and oxidize the reactants, respectively. The structure of La{sub 2}CuO{sub 4} nanofibers was confirmed by powder X-ray diffraction (XRD) and their morphologies were observed with field emission scanning electron microscope (FESEM) at the hydrothermal synthesis lasting for 5, 20 and 40 h, respectively. The La{sub 2}CuO{sub 4} crystals grew from needle-like (5 h) through stick-like (20 h) and finally to plate-like (40 h) fibers. Twenty hours is an optimum reaction time to obtain regular crystal fibers. The La{sub 2}CuO{sub 4} nanofibers are probably cubic rather than round and may capsulate SWNTs. - Graphical abstract: La{sub 2}CuO{sub 4} nanofibers have been grown in situ by using single walled carbon nanotubes as templates under mild hydrothermal conditions and a temperature around 60 deg. C. The La{sub 2}CuO{sub 4} crystals grew from needle-like (5 h) through stick-like (20 h) and finally to plate-like (40 h) fibers. The La{sub 2}CuO{sub 4} nanofibers are probably cubic rather than round and may capsulate SWNTs.

  1. Cyclotron resonance in plasma flow

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>ω>kv{sub sw}−Ω{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ω and Ω{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  2. Plume properties measurement of an Electron Cyclotron Resonance Accelerator

    NASA Astrophysics Data System (ADS)

    Correyero, Sara; Vialis, Theo; Jarrige, Julien; Packan, Denis

    2016-09-01

    Some emergent technologies for Electric Propulsion, such as the Electron Cyclotron Resonance Accelerator (ECRA), include magnetic nozzles to guide and expand the plasma. The advantages of this concept are well known: wall-plasma contact is avoided, it provides a current-free plume, it can allow to control thrust by modifying the magnetic field geometry, etc. However, their industrial application requires the understanding of the physical mechanisms involved, such as the electron thermodynamics at the plasma plume expansion, which is crucial to determine propulsive performances. This work presents a detailed characterization of the plasma plume axial profile in an ECR plasma thruster developed at ONERA. Langmuir, emissive, Faraday and ion energy probes are used to measure the electric potential space evolution, the current and electron energy distribution function in the plume, from the near field to the far field. The experimental results are compared with a quasi-1D (paraxial) steady-state kinetic model of a quasineutral collisionless magnetized plasma which is able to determine consistently the axial evolution of the electric potential and the electron and ion distribution functions with their associated properties.

  3. SPECE: a code for Electron Cyclotron Emission in tokamaks

    SciTech Connect

    Farina, D.; Figini, L.; Platania, P.; Sozzi, C.

    2008-03-12

    The code SPECE has been developed for the analysis of electron cyclotron emission (ECE) in a general tokamak equilibrium. The code solves the radiation transport equation along the ray trajectories in a tokamak plasma, in which magnetic equilibrium and plasma profiles are given either analytically or numerically, for a Maxwellian plasma or a non thermal plasma characterized by a distribution function that is the sum of drifting Maxwellian distributions. Ray trajectories are computed making use of the cold dispersion relation, while the absorption and emission coefficients are obtained solving the relevant fully relativistic dispersion relation valid at high electron temperature. The actual antenna pattern is simulated by means of a multi-rays calculation, and the spatial resolution of the ECE measurements is computed by means of an algorithm that takes properly into account the emission along each ray of the beam. Wall effects are introduced in the code by means of a heuristic model. Results of ECE simulations in a standard ITER scenario are presented.

  4. Numerical and Experimental Studies of the Natural Convection Flow Within a Horizontal Cylinder Subjected to a Uniformly Cold Wall Boundary Condition. Ph.D. Thesis - Va. Poly. Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.

    1972-01-01

    Numberical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time dependent natural convection flow within a horizontal cylinder. The early time flow development and wall heat transfer is obtained after imposing a uniformly cold wall boundary condition on the cylinder. Solutions are also obtained for the case of a time varying cold wall boundary condition. Windware explicit differ-encing is used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first order accuracy is maintained in time and space. The results encompass a range of Grashof numbers from 8.34 times 10,000 to 7 times 10 to the 7th power which is within the laminar flow regime for gravitationally driven fluid flows. Experiments within a small scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer and also the decay of wall heat transfer with time.

  5. Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Sahmani, S.

    2012-04-01

    The free vibration response of single-walled carbon nanotubes (SWCNTs) is investigated in this work using various nonlocal beam theories. To this end, the nonlocal elasticity equations of Eringen are incorporated into the various classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Reddy beam theory (RBT) to consider the size-effects on the vibration analysis of SWCNTs. The generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations of each nonlocal beam theory corresponding to four commonly used boundary conditions. Then molecular dynamics (MD) simulation is implemented to obtain fundamental frequencies of nanotubes with different chiralities and values of aspect ratio to compare them with the results obtained by the nonlocal beam models. Through the fitting of the two series of numerical results, appropriate values of nonlocal parameter are derived relevant to each type of chirality, nonlocal beam model, and boundary conditions. It is found that in contrast to the chirality, the type of nonlocal beam model and boundary conditions make difference between the calibrated values of nonlocal parameter corresponding to each one.

  6. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  7. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed.

  8. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  9. Electron cyclotron resonance acceleration of electrons to relativistic energies by a microwave field in a mirror trap

    SciTech Connect

    Sergeichev, K. F.; Karfidov, D. M.; Lukina, N. A.

    2007-06-15

    Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of {>=}10 V/cm and air pressures of 10{sup -6}-10{sup -4} Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3-0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as 'red sprites.'.

  10. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  11. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  12. Electron Cyclotron Heating on DIII-D

    SciTech Connect

    Prater, R.; Petty, C.C.

    2005-10-15

    Electron cyclotron heating (ECH) has proved to be a very flexible system for heating applications in DIII-D. The outstanding characteristics of ECH - controllable heating location, a high degree of localization of the power, ability to heat without introducing particles, and ability to heat only the electron fluid - have been used in a wide variety of experiments to study wave physics and transport, to control magnetohydrodynamic activity, and to improve discharges. These characteristics along with relatively easy coupling to the plasma make ECH a valuable resource for both heating and instability control in burning plasmas.

  13. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  14. Cavity QED of the graphene cyclotron transition.

    PubMed

    Hagenmüller, David; Ciuti, Cristiano

    2012-12-28

    We investigate theoretically the cavity quantum electrodynamics of the cyclotron transition for Dirac fermions in graphene. We show that the ultrastrong coupling regime characterized by a vacuum Rabi frequency comparable or even larger than the transition frequency can be obtained for high enough filling factors of the graphene Landau levels. Important qualitative differences occur with respect to the corresponding physics of massive electrons in a semiconductor quantum well. In particular, an instability for the ground state analogous to the one occurring in the Dicke model is predicted for an increasing value of the electron density.

  15. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  16. Upstream proton cyclotron waves at Venus near solar maximum

    NASA Astrophysics Data System (ADS)

    Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.

    2015-01-01

    magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of

  17. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  18. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Giruzzi, G.; Napoli, F.; Galli, A.; Schettini, G.; Tuccillo, A. A.

    2014-02-01

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (Te_periphery). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (Te_periphery). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a˜0.8, f0=144 GHz), an increase of Te in the outer plasma (from 40 eV to 80 eV at r/a˜0.8) is expected by the JETTO code

  19. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A.; Giruzzi, G.; Napoli, F.; Schettini, G.

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  20. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  1. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  2. Critical electron pitch angle anisotropy necessary for chorus generation. [Doppler-shifted cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Burton, R. K.

    1976-01-01

    Simultaneous wave, resonant-particle, and ambient-plasma data from OGO 5 for chorus emissions on August 15, 1968, were found consistent with the theoretical critical pitch-angle-anisotropy condition for whistler-mode instability by Doppler-shifted electron cyclotron resonance. Local generation, as determined by wave normal measurements, occurred only when the pitch-angle anisotropy of resonant electrons required for instability substantially exceeded the critical anisotropy defined by Kennel and Petschek (1966).

  3. Ion Cyclotron Waves in the VASIMR

    NASA Astrophysics Data System (ADS)

    Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.

    2008-12-01

    The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.

  4. Loss cone-driven cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Yi, Sibaek; Lim, Dayeh; Kim, Hee-Eun; Seough, Jungjoon; Yoon, Peter H.

    2013-11-01

    The weakly (or mildly) relativistic cyclotron maser instability has been successfully applied to explain the Earth's auroral kilometric radiation and other radio sources in nature and laboratory. Among the most important physical parameters that determine the instability criteria is the ratio of plasma-to-electron cyclotron frequencies, ωp/Ω. It is therefore instructive to consider how the normalized maximum growth rate, γmax/Ω, varies as a function of ωp/Ω. Although many authors have already discussed this problem, in order to complete the analysis, one must also understand how the radiation emission angle corresponding to the maximum growth, θmax, scales with ωp/Ω, since the propagation angle determines the radiation beaming pattern. Also, the behavior of the frequency corresponding to the maximum growth rate at each harmonic, (ωmax-sΩ)/Ω, where s=1,2,3,ċ , as a function of ωp/Ωis of importance for a complete understanding of the maser excitation. The present paper computes these additional quantities for the first time, making use of a model loss cone electron distribution function.

  5. Cyclotron resonance heating systems for SST-1

    NASA Astrophysics Data System (ADS)

    Bora, D.; Kumar, Sunil; Singh, Raj; Sathyanarayana, K.; Kulkarni, S. V.; Mukherjee, A.; Shukla, B. K.; Singh, J. P.; Srinivas, Y. S. S.; Khilar, P.; Kushwah, M.; Kumar, Rajnish; Sugandhi, R.; Chattopadhyay, P.; Raghuraj, Singh; Jadav, H. M.; Kadia, B.; Singh, Manoj; Babu, Rajan; Jatin, P.; Agrajit, G.; Biswas, P.; Bhardwaj, A.; Rathi, D.; Siju, G.; Parmar, K.; Varia, A.; Dani, S.; Pragnesh, D.; Virani, C.; Patel, Harsida; Dharmesh, P.; Makwana, A. R.; Kirit, P.; Harsha, M.; Soni, J.; Yadav, V.; Bhattacharya, D. S.; Shmelev, M.; Belousov, V.; Kurbatov, V.; Belov, Yu.; Tai, E.

    2006-03-01

    RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during a pulse length of 1000 s. For different heating scenarios at 1.5 and 3.0 T, a wide band of operating frequencies (20-92 MHz) is required. To meet this requirement two CW 1.5 MW rf generators are being developed in-house. A pressurized as well as vacuum transmission line and launcher for the SST-1-ICRF system has been commissioned and tested successfully. A gyrotron for the 82.6 GHz ECRF system has been tested for a 200 kW/1000 s operation on a water dummy load with 17% duty cycle. High power tests of the transmission line have been carried out and the burn pattern at the exit of transmission line shows a gaussian nature. Launchers used to focus and steer the microwave beam in plasma volume are characterized by a low power microwave source and tested for UHV compatibility. Long pulse operation has been made feasible by actively cooling both the systems. In this paper detailed test results and the present status of both the systems are reported.

  6. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  7. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  8. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  9. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    NASA Astrophysics Data System (ADS)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  10. Ion cyclotron emission calculations using a 2D full wave numerical code

    NASA Astrophysics Data System (ADS)

    Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.

    1987-09-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.

  11. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    SciTech Connect

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  12. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T {perpendicular} {ne} T{parallel}and with appreciable drift velocity along the confining magnetic field. Single ``dressed`` test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between ``kinetic or causal instabilities`` and ``hydrodynamic instabilities`` are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k{parallel} = 0 for k{parallel} {ne} 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an ``inverted`` population of states.

  13. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T [perpendicular] [ne] T[parallel]and with appreciable drift velocity along the confining magnetic field. Single dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between kinetic or causal instabilities'' and hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k[parallel] = 0 for k[parallel] [ne] 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an inverted'' population of states.

  14. Electron cyclotron heating and current drive studies during current ramp-up in Tore-Supra

    NASA Astrophysics Data System (ADS)

    Rimini, F. G.; Basiuk, V.; Bourdelle, C.; Bucalossi, J.; Fenzi-Bonizec, C.; Giruzzi, G.; Hoang, G. T.; Lennholm, M.; Sabot, R.; Ségui, J. L.; Thomas, P. R.

    2005-06-01

    In a recent series of experiments, electron cyclotron current drive (ECCD) has been successfully used, at a level of 0.75 MW, for current profile tailoring during the current ramp-up in Tore-Supra. The electron cyclotron resonance heating power deposition was varied from on-axis to off-axis and the direction of the driven current from co to counter. In these conditions, the current profile is significantly modified with respect to those typically obtained in pure ohmic scenarios. Central reversed magnetic shear conditions have been achieved with on-axis counter-ECCD, accompanied by high electron temperature gradients, exhibiting internal transport barrier features. This improved electron transport is maintained for some time on the current flat-top when combining ECCD with ion cyclotron resonance heating in a (H)D minority scheme. Integrated interpretative analysis with the CRONOS code confirms that deeply reversed magnetic shear is indeed attained by on-axis counter-ECCD in low density conditions and in combination with a relatively fast controlled current ramp. The high electron temperature gradient is found to be located inside the negative magnetic shear region.

  15. Wind tunnels with adapted walls for reducing wall interference

    NASA Technical Reports Server (NTRS)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  16. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  17. Performance of Variable Energy Cyclotron Centre superconducting cyclotron liquid nitrogen distribution system

    NASA Astrophysics Data System (ADS)

    Pal, Gautam; Nandi, Chinmay; Bhattacharyya, Tamal Kumar; Chakrabarti, Alok

    2014-01-01

    The liquid nitrogen distribution at Variable Energy Cyclotron Centre, Kolkata, India K500 superconducting cyclotron uses parallel branches to cool the thermal shield of helium vessel housing the superconducting coil and the cryopanels. Liquid nitrogen is supplied to the thermal shields from a pressurised liquid nitrogen dewar. Direct measurement of flow is quite difficult and seldom used in an operational cryogenic system. The total flow and heat load of the liquid nitrogen system was estimated indirectly by continuous measurement of level in the liquid nitrogen tanks. A mathematical model was developed to evaluate liquid nitrogen flow in the parallel branches. The model was used to generate flow distribution for different settings and the total flow was compared with measured data.

  18. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.

  19. Filamental quenching of the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.; Krumm, P. H.

    1985-01-01

    Since their discovery by D'Angelo and Motley (1962), ion-cyclotron waves have been an area of active research. Drummond and Rosenbluth (1962) have first conducted a theoretical analysis of the current-driven ion-cyclotron wave instability, taking into account a uniform, magnetized plasma, without magnetic shear, in which electrons drift along B field lines with the same drift velocity at all points in the plasma. Bakshi et al. (1983) have found conditions for which the instability is completely quenched. This phenomenon has been referred to as filamental quenching. The present investigation is concerned with a systematic test of the filamental quenching effect. It is found that filamental quenching operates at widths of the current channel comparable to the local Larmor radius, in agreement with the conclusions of Bakshi et al.

  20. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  1. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  2. Electron cyclotron heating and current drive for maintaining minimum q in negative central shear discharges

    NASA Astrophysics Data System (ADS)

    Casper, T. A.; Kaiser, T. B.; Jong, R. A.; Destro, L. L. Lo; Moller, J.; Pearlstein, L. D.; Dodge, T.

    2003-07-01

    Toroidal plasmas created with negative magnetic shear in the core region offer advantages in terms of MHD stability properties. These plasmas, transiently created in several tokamaks, have exhibited high-performance as measured by normalized stored energy and neutron production rates. A critical issue with extending the duration of these plasmas is the need to maintain the off-axis-peaked current distribution required to support the minimum in the safety factor q at large radii. We present equilibrium and transport simulations that explore the use of electron cyclotron heating and current drive to maintain this negative shear configuration. Using parameters consistent with DIII-D tokamak operation (Strait E et al 1995 Phys. Rev. Lett. 75 4421, Rice B W et al 1996 Nucl. Fusion 36 1271), we find that with sufficiently high injected power, it is possible to achieve steady-state conditions employing well aligned electron cyclotron and bootstrap current drive in fully non-inductively current-driven configurations.

  3. Sensitive test for ion-cyclotron resonant heating in the solar wind.

    PubMed

    Kasper, Justin C; Maruca, Bennett A; Stevens, Michael L; Zaslavsky, Arnaud

    2013-03-01

    Plasma carrying a spectrum of counterpropagating field-aligned ion-cyclotron waves can strongly and preferentially heat ions through a stochastic Fermi mechanism. Such a process has been proposed to explain the extreme temperatures, temperature anisotropies, and speeds of ions in the solar corona and solar wind. We quantify how differential flow between ion species results in a Doppler shift in the wave spectrum that can prevent this strong heating. Two critical values of differential flow are derived for strong heating of the core and tail of a given ion distribution function. Our comparison of these predictions to observations from the Wind spacecraft reveals excellent agreement. Solar wind helium that meets the condition for strong core heating is nearly 7 times hotter than hydrogen on average. Ion-cyclotron resonance contributes to heating in the solar wind, and there is a close link between heating, differential flow, and temperature anisotropy.

  4. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.

  5. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  6. Experimental Study of a Gyrotron with a Sectioned Klystron-Type Cavity Operated at Higher Cyclotron Harmonics

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kalynov, Yu. K.; Savilov, A. V.

    2016-02-01

    We are planning to use extended cavities in order to excite gyrotrons with large electron orbits, which are operated at higher cyclotron harmonics in the terahertz frequency range. This is determined by both the weakness of the electron-wave interaction, and relatively low operating currents. Since the diffraction Q-factor of such cavities is high, a significant part of the highfrequency power produced by the electron beam is lost due to the ohmic loss in the cavity walls. As a way to solve this problem, we proposed a sectioned klystron-type cavity, where an extended length of the electron-wave interaction region can be combined with a relatively low diffraction Q-factor of the system. This work presents the results of the first experiment on a gyrotron with a sectioned cavity, where selective excitation of higher (second and third) cyclotron harmonics was observed in the terahertz frequency range (0 .55 and 0 .74 THz).

  7. Analytical study of effects of positron density and temperature anisotropy on electrostatic ion cyclotron instability

    NASA Astrophysics Data System (ADS)

    Barati Moqadam Niyat, M.; Khorashadizadeh, S. M.; Niknam, A. R.

    2017-03-01

    The effects of the positron concentration and ion temperature anisotropy on the electrostatic ion cyclotron instability are studied analytically, in a magnetized electron-positron-ion plasma with temperature anisotropy, using the linear kinetic theory. Positrons and electrons are supposed to drift either in the same direction or in opposite directions relative to singly ionized stationary ions and parallel to the magnetic field. The dispersion relation of the electrostatic ion cyclotron waves is derived, and then the conditions for exciting the instability of the waves are investigated. Moreover, the condition for the marginally stable state is also studied. It is found that as the positron concentration and perpendicular ion temperature increase, the growth rate of the electrostatic ion cyclotron instability decreases, whereas the critical drift velocity increases. It is also found that for the chosen set of parameters, with electrons and positrons drifting in the same direction, the instability in the plasma is stronger than when the electrons and positrons drift in opposite directions. In addition, a comparison is made to the normal electron-ion plasma.

  8. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  9. Electron Cyclotron Emission Diagnostics on ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Phillips, Perry; Rowan, William; Beno, Joseph; Auroua, Abelhamid; Feder, Russell; Patel, Ashish; Hubbard, Amanda; Pandya, Hitesh

    2010-11-01

    Electron cyclotron emission (ECE) will be employed on ITER to measure the radial profile of electron temperature and non thermal features of the electron distribution as well as measurements of ELMs, magnetic islands, high frequency instabilities, and turbulence. There are two quasioptical systems, designed with Gaussian beam analysis. One view is radial, primarily for temperature profile measurement, the other views at a small angle to radial for measuring non-thermal emission. Radiation is conducted to by a long corrugated waveguide to a multichannel Michelson interferometer which provides wide wavelength coverage but limited time response as well as two microwave radiometers which cover the fundamental and second harmonic ECE and provide excellent time response. Measurements will be made in both X and O mode. In-situ calibration is provided by a novel hot calibration source. We discuss spatial resolution and the implications for physics studies.

  10. Cyclotron maser using the anomalous Doppler effect

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Borisov, A. R.; Fomenko, G. P.; Shlapakovskii, A. S.; Shtein, Iu. G.

    1983-11-01

    The operation of an anomalous-Doppler-effect cyclotron-resonance maser using a waveguide partially filled with dielectric as the slow-wave system is reported. The device investigated is similar to that of Didenko et al. (1983) and comprises a 300-mm-long 50-mm-o.d. 30-mm-i.d. waveguide with fabric-laminate dielectric, located 150 mm from the cathode in a 500-mm-long region of uniform 0-20-kG magnetic field, and a coaxial magnetic-insulation gun producing a 13-mm-i.d. 25-mm-o.d. hollow electron beam. Radiation at 12 + or - 1 mm wavelength and optimum power 20 MW is observed using hot-carrier detectors, with a clear peak in the power-versus-magnetic-field curve at about 6.4 kG.

  11. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  12. Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Ping; Lai, Wei-Wen

    2015-04-01

    The nonlocal Timoshenko beam theories (TBTs), based on the Reissner mixed variation theory (RMVT) and principle of virtual displacement (PVD), are derived for the free vibration analysis of a single-walled carbon nanotube (SWCNT) embedded in an elastic medium and with various boundary conditions. The strong formulations of the nonlocal TBTs are derived using Hamilton's principle, in which Eringen's nonlocal constitutive relations are used to account for the small-scale effect. The interaction between the SWCNT and its surrounding elastic medium is simulated using the Winkler and Pasternak foundation models. The frequency parameters of the embedded SWCNT are obtained using the differential quadrature (DQ) method. In the cases of the SWCNT without foundations, the results of RMVT- and PVD-based nonlocal TBTs converge rapidly, and their convergent solutions closely agree with the exact ones available in the literature. Because the highest order with regard to the derivatives of the field variables used in the RMVT-based nonlocal TBT is lower than that used in its PVD-based counterpart, the former is more efficient than the latter with regard to the execution time. The former is thus both faster and obtains more accurate solutions than the latter for the numerical analysis of the embedded SWCNT.

  13. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  14. Superconducting cyclotron and its vacuum system

    NASA Astrophysics Data System (ADS)

    Sur, A.; Bhandari, R. K.

    2008-05-01

    A large superconducting cyclotron is under construction at this Centre and will be used to accelerate heavy ion beams to energy up to 80 MeV/A for light heavy ions and about 10 MeV/A for medium mass heavy ions. The vacuum system for this accelerator has several different aspects. The main acceleration chamber will be evacuated to a level of about 10-7 torr using both turbo molecular pumps and specially designed cryopanels. The surfaces exposed to this 'vacuum' are mostly made of OFE copper. The cryogenic transfer lines, to cool the cryopanels, are of several meters in length and they pass through RF resonators extending below the magnet. The cryostat that will house the superconducting coils has an annular vacuum chamber, which is evacuated to a level of approximately 10-5 torr using a turbo molecular pump. Cryopumping action starts once the coils are cooled to low temperatures. A differential pumping is provided below the RF liner that encloses the pole tip of the main magnet. The space that is pumped in this case contains epoxy-potted trim coils wound around the pole tips. Crucial interlocks are provided between the differential vacuum and the acceleration chamber vacuum to avoid distortion of the RF liner, which is made of thin copper sheets. The other important vacuum system provides thermal insulation for the liquid helium transfer lines. In this paper a brief description of the superconducting cyclotron will be given. Details of various vacuum aspects of the accelerator and the logistics of their operation will be presented. Introduction of some of the improved equipment now available and improved techniques are also discussed.

  15. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  16. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  17. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2007-12-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  18. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  19. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  20. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    NASA Astrophysics Data System (ADS)

    Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasché, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pittà, G.; Puggioni, P.; Rosso, E.; Verdú Andrés, S.; Wegner, R.; Weiss, M.; Zennaro, R.

    2010-08-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.

  1. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.

    PubMed

    Kaiser, Nathan K; Bruce, James E

    2005-09-15

    Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as

  2. Measurements of Escaping Fast Ions at the DIII-D Vessel Wall

    NASA Astrophysics Data System (ADS)

    Pickering, L. D.; Heidbrink, W. W.; Zhu, Y.

    2006-10-01

    The loss of fast ions is detected by two pairs of thin foil Faraday collectors [1] that are installed just behind the graphite first wall in a vacuum port. Collimating apertures select fast ions that have energies >10 keV and that travel either with or against the plasma current. The strong correlation of beam-ion loss detector (BILD) signals with neutral beam modulation shows that, under appropriate conditions, prompt losses from nearly every beam source are detected. Orbit calculations indicate that the correlation occurs when injected neutrals are deposited at a location that “connects” with an orbit observed by the detector; as expected, these correlations depend strongly on plasma current. In addition to these classical effects, enhanced signals sometimes occur during ion cyclotron heating (presumably due to parametric decay instabilities) and during Alfvén activity (due to transport by the instabilities). 6pt[1] F.E. Cecil, et al., Rev. Sci. Instrum. 74, 1747 (2003).

  3. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  4. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    DOE PAGES

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less

  5. Cyclotrons for clinical and biomedical research with PET

    SciTech Connect

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use.

  6. Vacuum Control Systems of the Cyclotrons in VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Akhtar, Javed; Yadav, R. C.; Bhole, R. B.; Pal, Sarbajit; Sarkar, D.; Bhandari, R. K.

    2012-11-01

    VECC has undertaken the modernization of the K-130 Room Temperature Cyclotron (RTC) (operational since 1978) and commissioning of K-500 Superconducting Cyclotron (SCC) at present. The control system of RTC vacuum system has been upgraded to Programmable Logic Controller (PLC) based automated system from relay based manual system. A distributed PLC based system is under installation for SCC vacuum system. The requirement of high vacuum in both the cyclotrons (1×10-6 mbar for RTC and 5 × 10-8 mbar SCC) imposes the reliable local and remote operation of all vacuum components and instrumentation. The design and development of the vacuum control system of two cyclotrons using the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  7. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; Doe, P. J.; Fernandes, J. L.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Furse, D.; Jones, A. M.; Kofron, J. N.; LaRoque, B. H.; Leber, M.; McBride, E. L.; Miller, M. L.; Mohanmurthy, P.; Monreal, B.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Rysewyk, D.; Sternberg, M. G.; Tedeschi, J. R.; Thummler, T.; VanDevender, B. A.; Woods, N. L.

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  8. Design Study Of Cyclotron Magnet With Permanent Magnet

    SciTech Connect

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 and the All field calculations had been performed by OPERA-3D TOSCA. The self-made beam dynamics program OPTICY is used for making isochronous field and other calculations.

  9. Design Study Of Cyclotron Magnet With Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  10. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  11. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  12. PET computer programs for use with the 88-inch cyclotron

    SciTech Connect

    Gough, R.A.; Chlosta, L.

    1981-06-01

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected.

  13. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  14. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  15. The distribution of organic-walled dinoflagellate cysts in marine surface samples of the eastern Indian Ocean in relation to environmental conditions

    NASA Astrophysics Data System (ADS)

    Hessler, I.; Young, M.; Mohtadi, M.; Lückge, A.; Behling, H.

    2012-04-01

    The eastern Indian Ocean is characterised by a complex system of surface currents that move according to the monsoon-dominated wind regime and show a strong seasonality. The Indonesian Throughflow, which originates in the northwestern and tropical Pacific and passes through the Indonesian archipelago into the Indian Ocean, is the only low-latitude oceanic connection between the Pacific and Indian Oceans and represents a key element in the global thermohaline circulation and hence the global climate system. In recent decades it has become increasingly important to understand the atmospheric and oceanographic processes involved in climate variations. Assemblages of organic-walled dinoflagellate cysts (dinocysts) from marine surface samples provide insights into the relationship between the spatial distribution of dinocysts and modern local environmental conditions (e.g. sea surface temperature, sea surface salinity, productivity). These information are of great value for the interpretation of past variations in surface water conditions. We present an extensive data-set of marine surface samples (n=116) from the Eastern Indian Ocean. The conducted Principal Component Analysis (PCA) illustrates the variation of species association between the sites and reveals a geographical affinity of the samples to the regions of (1) Western Indonesia, (2) Java, (3) the Indonesian Throughflow and (4) Western Australia including the Timor Sea. The results of the PCA further indicate the existence of two environmental gradients in the study area, a nutrient gradient increasing from Western Indonesia towards the Indonesian Throughflow region and a temperature gradient increasing from Western Australia towards Western Indonesia. The Redundancy Analysis indicates the presence of three dominating taxa in the sample set, namely Spiniferites spp., Operculodinium centrocarpum and Brigantedinium spp., and reveals significant correlations of the three dominant taxa to specific environmental

  16. Characterization of electron cyclotron resonance hydrogen plasmas

    SciTech Connect

    Outten, C.A. . Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. )

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

  17. Two Dimensional Synthetic Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Valeo, Ernest J.; Tobias, Benjamin J.; Kramer, Gerrit J.; Liu, Chang; Tang, William M.

    2016-10-01

    Electron Cyclotron Emission (ECE) has been widely used as a measurement of the electron temperature profile in magnetically confined plasmas. The ECE Imaging (ECEI) system provides additional vertical resolutions, and is used to measure the electron temperature fluctuations. The vertical resolution is typically a few centi-meters which is sometimes comparable to the vertical wave length of the underlying fluctuations. The ray-tracing technique used in most synthetic ECE codes to determine the origin and spatial extent of the ECE radiations is not accurate when the refraction and diffraction due to the fluctuations are important. In this presentation, we introduce a new synthetic ECEI code which solves the wave propagation up to the 2nd order of the WKB approximation, and provides full 2D information of the ECE source. We'll show that when the ECE frequency is near the cutoff, the refraction due to the fluctuations is important. A ``trapping'' of the ECE source by the density fluctuations is identified, and is potentially useful for determining the cross phase between electron temperature and density fluctuations. The new formalism is also used to study the Runaway Electrons contribution to the ECE signal, and provides insights to the measured ECE spectrum on DIII-D. This work has been funded by the US Department of Energy under Contract Number DE-AC02-09CH11466.

  18. The Oak Ridge Isochronous Cyclotron Refurbishment Project

    SciTech Connect

    Mendez, II, Anthony J; Ball, James B; Dowling, Darryl T; Mosko, Sigmund W; Tatum, B Alan

    2011-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) has been in operation for nearly fifty years at the Oak Ridge National Laboratory (ORNL). Presently, it serves as the driver accelerator for the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), where radioactive ion beams are produced using the Isotope Separation Online (ISOL) technique for post-acceleration by the 25URC tandem electrostatic accelerator. Operability and reliability of ORIC are critical issues for the success of HRIBF and have presented increasingly difficult operational challenges for the facility in recent years. In February 2010, a trim coil failure rendered ORIC inoperable for several months. This presented HRIBF with the opportunity to undertake various repairs and maintenance upgrades aimed at restoring the full functionality of ORIC and improving the reliability to a level better than what had been typical over the previous decade. In this paper, we present details of these efforts, including the replacement of the entire trim coil set and measurements of their radial field profile. Comparison of measurements and operating tune parameters with setup code predictions will also be presented.

  19. A storage ring for the JULIC cyclotron

    NASA Astrophysics Data System (ADS)

    Martin, S. A.; Prasuhn, D.; Schott, W.; Wiedner, C. A.

    1985-05-01

    The storage ring COSY is planned to provide higher intensity and resolution for nuclear structure experiments using the light heavy ion beams (p, d, τ, α) of the JULIC cyclotron and the magnet spectrograph BIG KARL. The ring contains the measuring target of BIG KARL as an internal target, two rf cavities for compensating the mean energy loss in the target and providing additional acceleration of the stored beam and an e --cooling section. In the recirculator mode, i.e., without e --cooling, a luminosity of L = 3.64 × 10 30 particles/(cm 2 s) is obtained for an experiment with 41 MeV protons and a 50 μg/cm 212C target at a spectrograph resolution p/d p = 10 4 and 100% duty factor. This corresponds to a gain in L of 546.5 in comparison with the same experiment without a storage ring. In the recirculator mode with acceleration L = 1.17 × 10 32 p/(cm 2 s) and 98.8% duty factor results for 1500 MeV protons on the same target at the same resolution. Using e --cooling L and the feasible p/d p can be enhanced, however, at a reduced duty factor.

  20. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  1. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-01

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV N20e7+ beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0°, top of the energy gain of cosine wave, and the beam phase width was about 6° in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h =1 and h =2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h =1, while phase compressions by a factor of about 3 were confirmed for h =2.

  2. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    SciTech Connect

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-15

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV {sup 20}Ne{sup 7+} beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0 deg., top of the energy gain of cosine wave, and the beam phase width was about 6 deg. in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h=1 and h=2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h=1, while phase compressions by a factor of about 3 were confirmed for h=2.

  3. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  4. Electron cyclotron emissions from an electron cyclotron heated discharge in ISX-B

    SciTech Connect

    Elder, G.B.

    1983-01-01

    Observation of the electron cyclotron emissions (ECE) is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code that predicts the ECE from an electron distribution in ISX-B, taking into a account the effect of the plasma's dielectric response to the emissions from a single electron, was developed.

  5. The Arabidopsis Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage1[OPEN

    PubMed Central

    Raggi, Sara; Ranocha, Philippe

    2015-01-01

    The structure of the cell wall has a major impact on plant growth and development, and alteration of cell wall structural components is often detrimental to biomass production. However, the molecular mechanisms responsible for these negative effects are largely unknown. Arabidopsis (Arabidopsis thaliana) plants with altered pectin composition because of either the expression of the Aspergillus niger polygalacturonase II (AnPGII; 35S:AnPGII plants) or a mutation in the QUASIMODO2 (QUA2) gene that encodes a putative pectin methyltransferase (qua2-1 plants), display severe growth defects. Here, we show that expression of Arabidopsis PEROXIDASE71 (AtPRX71), encoding a class III peroxidase, strongly increases in 35S:AnPGII and qua2-1 plants as well as in response to treatments with the cellulose synthase inhibitor isoxaben, which also impairs cell wall integrity. Analysis of atprx71 loss-of-function mutants and plants overexpressing AtPRX71 indicates that this gene negatively influences Arabidopsis growth at different stages of development, likely limiting cell expansion. The atprx71-1 mutation partially suppresses the dwarf phenotype of qua2-1, suggesting that AtPRX71 contributes to the growth defects observed in plants undergoing cell wall damage. Furthermore, AtPRX71 seems to promote the production of reactive oxygen species in qua2-1 plants as well as plants treated with isoxaben. We propose that AtPRX71 contributes to strengthen cell walls, therefore restricting cell expansion, during normal growth and in response to cell wall damage. PMID:26468518

  6. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  7. Improved system for perpendicular electron-cyclotron emission measurements on TMX-Upgrade

    SciTech Connect

    Lasnier, C.J.; Ellis, R.F.; James, R.A.

    1986-03-07

    Perpendicular electron-cyclotron emission (PECE) is used on TMX-U to diagnose thermal-barrier hot electrons (T/sub H/ approx. 100 to 400 keV); yielding the time history of the temperature of these relativistic electrons. We describe an improved quasi-optical viewing system for these measurements that uses high sensitivity superheterodyne receivers at fixed frequencies of 60, 98, 130, and 196 GHz. The improved viewing and transport system consists of an off-axis ellipsoidal mirror that images the plasma onto a V-band conical collection horn, an overmoded circular waveguide (7/8'' diam) that transports the radiation outside the vacuum vessel where the polarization is selected, and a high absorptivity Macor beam dump to prevent internal wall reflections from entering the viewing system. A relativistic code is used to calculate optically thin PECE signals from relativistic electrons for various energy and pitch angle distributions. 4 refs., 4 figs.

  8. Improved system for perpendicular electron-cyclotron emission measurements on TMX-U

    SciTech Connect

    Lasnier, C.J.; Ellis, R.F.; James, R.A.

    1986-08-01

    Perpendicular electron-cyclotron emission (PECE) is used on Tandem Mirror Experiment-Upgrade (TMX-U) to diagnose thermal-barrier hot electrons (T-italic/sub H-italic/--100--400 keV, yielding the time history of the temperature of these relativistic electrons. We describe an improved quasioptical viewing system for these measurements that uses high-sensitivity superheterodyne receivers at fixed frequencies of 60, 98, 130, and 196 GHz. The improved viewing and transport system consists of an off-axis ellipsoidal mirror that images the plasma onto a V-band conical collection horn, an overmoded circular waveguide ( 7/8 in. diam) that transports the radiation outside the vacuum vessel where the polarization is selected, and a high-absorptivity Macor beam dump to prevent internal wall reflections from entering the viewing system. A relativistic code is used to calculate optically thin PECE signals from relativistic electrons for various energy and pitch angle distributions.

  9. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  10. Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam

    SciTech Connect

    Zhao Ding; Ding Yaogen; Wang Yong; Ruan Cunjun

    2010-11-15

    A linear theory for a rectangular waveguide cyclotron maser with a sheet electron beam is developed by using the Laplace transformation approach. This theory can be applied to any TE{sub mn} rectangular waveguide mode. The corresponding equations for the TM{sub mn} mode in the rectangular waveguide are also derived as a useful reference. Especially, the effect from the coupling between degenerate modes, which is induced by the nonideal rectangular waveguide walls, on the dispersion relation is considered in order to provide a more accurate model for the real devices. Through numerical calculations, the linear growth rate, launching loss, and spontaneous oscillations (caused by the absolute instability and backward wave oscillation) of this new structure can be analyzed in detail. It is worthwhile to point out that the operation at higher power levels of the rectangular waveguide sheet beam system is possible.

  11. [Callose content in cell walls of leaf epidermis and mesophyll in Alisma plantago-aquatica L. plants growing in different conditions of water supply].

    PubMed

    Ovruts'ka, I I

    2014-01-01

    The relative callose content in Alisma plantago-aquatica leaves has been studied at the phases of budding and flowering--fruiting. The callose content in cell walls was shown to vary depending on the type of tissue, phase of ontogenesis and of water supply.

  12. FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS: ACOUSTIC PIPE WALL ASSESSMENT, INTERNAL INSPECTION, AND EXTERNAL INSPECTIONVOLUME 1: TECHNICAL REPORT AND VOLUME 2: APPENDICES

    EPA Science Inventory

    Nine pipe wall integrity assessment technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condi...

  13. Design, performance, and grounding aspects of the International Thermonuclear Experimental Reactor ion cyclotron range of frequencies antenna

    SciTech Connect

    Durodié, F. Dumortier, P.; Vrancken, M.; Messiaen, A.; Huygen, S.; Louche, F.; Van Schoor, M.; Vervier, M.; Winkler, K.

    2014-06-15

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV and limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the

  14. Electrostatic electron cyclotron harmonic instability near Ganymede

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2014-08-01

    Jupiter's moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave's growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.

  15. Design of RF system for CYCIAE-230 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  16. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  17. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  18. Effect of pulse-modulated microwaves on fullerene ion production with electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Uchida, T; Minezaki, H; Oshima, K; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2012-02-01

    Fullerene plasmas generated by pulse-modulated microwaves have been investigated under typical conditions at the Bio-Nano electron cyclotron resonance ion source. The effect of the pulse modulation is distinct from that of simply structured gases, and then the density of the fullerene plasmas increased as decreasing the duty ratio. The density for a pulse width of 10 μs at the period of 100 μs is 1.34 times higher than that for CW mode. We have studied the responses of fullerene and argon plasmas to pulsed microwaves. After the turnoff of microwave power, fullerene plasmas lasted ∼30 times longer than argon plasmas.

  19. Theory of electromagnetic cyclotron wave growth in a time-varying magnetoplasma

    NASA Technical Reports Server (NTRS)

    Gail, William B.

    1990-01-01

    The effect of a time-dependent perturbation in the magnetoplasma on the wave and particle populations is investigated using the Kennel-Petchek (1966) approach. Perturbations in the cold plasma density, energetic particle distribution, and resonance condition are calculated on the basis of the ideal MHD assumption given an arbitrary compressional magnetic field perturbation. An equation is derived describing the time-dependent growth rate for parallel propagating electromagnetic cyclotron waves in a time-varying magnetoplasma with perturbations superimposed on an equilibrium configuration.

  20. A simple and efficient method of nickel electrodeposition for the cyclotron production of (64)Cu.

    PubMed

    Manrique-Arias, Juan C; Avila-Rodriguez, Miguel A

    2014-07-01

    Nickel targets for the cyclotron production of (64)Cu were prepared by electrodeposition on a gold backing from nickel chloride solutions using boric acid as buffer. Parameters studied were nickel chloride and boric acid concentration, temperature and current density. All plating conditions studied were successful obtaining efficiencies of approximately 90% in 2-3 h, reaching almost quantitative plating (>97%) in 10-20 h depending on the current density. All plated targets withstood proton irradiations up to 40 µA for 2 h. Recovered nickel was successfully recycled and reused with an overall efficiency >95%.

  1. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  2. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  3. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  4. Spectra and Neutron Dosimetry Inside a PET Cyclotron Vault Room

    SciTech Connect

    Vega-Carrillo, Hector Rene; Mendez, Roberto; Iniguez, Maria Pilar; Marti-Climent, Joseph; Penuelas, Ivan; Barquero, Raquel

    2006-09-08

    The neutron field around a PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Pairs of thermoluminescent dosemeters, TLD600 and TLD700, were used as thermal neutron detector inside a Bonner Spheres Spectrometer to measure the neutron spectra at three different positions inside the cyclotron's vault room. Neutron spectra were also determined by Monte Carlo calculations. The hardest spectrum was observed in front of cyclotron target and the softest was noticed at the antipode of target. Neutron doses derived from the measured spectra vary between 11 and 377 mSv/{mu}A-h of proton integrated current, Doses were also measured with a single-moderator remmeter, with an active thermal neutron detector, whose response in affected by the radiation field in the vault room.

  5. Proton and helium cyclotron anisotropy instability thresholds in the magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. Peter; Convery, Patrick D.; Denton, Richard E.; Fuselier, Stephen A.; Anderson, Brian J.

    1994-01-01

    Both the protons and the helium ions of the terrestrial magnetosheath typically display T (sub perpendicular) greater than T (sub parallel), where perpendicular to and parallel to denote directions perpendicular and parallel to the background magnetic field. Observations of the highly compressed magnetosheath show an inverse correlation between these ion temperature anisotropies and the parallel proton beta. Computer simulations have demonstrated that these correlations are due to wave-particle scattering by electromagnetic ion cyclotron anisotropy instabilities. These correlations correspond to linear theory thresholds of the proton cyclotron and the helium cyclotron instabilities. This paper uses linear Vlasov theory and the assumption of a constant maximum growth rate to obtain closed-form expressions for these thresholds as a function of the relative helium density and the parallel proton beta in a parameter model of the magnetosheath.

  6. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  7. The next generation of electron cyclotron emission imaging diagnostics (invited).

    PubMed

    Zhang, P; Domier, C W; Liang, T; Kong, X; Tobias, B; Shen, Z; Luhmann, N C; Park, H; Classen, I G J; van de Pol, M J; Donné, A J H; Jaspers, R

    2008-10-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T(e) profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  8. The next generation of electron cyclotron emission imaging diagnostics (invited)

    SciTech Connect

    Zhang, P.; Domier, C. W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; Luhmann, N. C. Jr.; Park, H.; Classen, I. G. J.; Pol, M. J. van de; Donne, A. J. H.; Jaspers, R.

    2008-10-15

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T{sub e} profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  9. ICRF heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A.; Brezinsek, S.; Campergue, A-L.; Colas, L.; Czarnecka, A.; Klepper, C. C.; Lerche, E.; Van-Eester, D.; Milanesio, D.; Mlynar, J.; Collaboration: JET-EFDA Contributors

    2014-02-12

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.

  10. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  11. Electron Cyclotron Emissions from AN Electron Cyclotron Heated Discharge in Isx-B

    NASA Astrophysics Data System (ADS)

    Elder, Gerald Blaine

    1983-09-01

    Observation of the electron cyclotron emissions (ECE) at both optically thick and optically thin frequencies can be a very useful tool in studying the behavior of the electron distribution. It is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX-B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code which predicts the ECE from an electron distribution in ISX-B, taking into account the effect of the plasma's dielectric response to the emissions from a single electron, is developed. This code is the result of combining a ray tracing technique with the emissions from a single dressed test particle and summing over the electron distribution. The code confirms the sensitivity of the third harmonic emissions to small changes in the electron distribution. A Fokker-Planck code is combined with the emission code to predict the evolution of the ECE from a perturbed electron distribution. The codes clearly show that the rises in the emissions observed by the three detectors can be reasonably explained by consideration of the effect of pitch angle scattering

  12. Cyclotron modes of a multi-species ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C. F.

    1995-04-15

    Cyclotron modes varying as exp(il{theta}), with l=1, 2 and 3, have been observed in an unneutralized Mg ion plasma. The l=1 mode is observed to be down-shifted from the corresponding cyclotron frequency, while the l{>=}2 modes are found to be up-shifted. Good agreement is found between the observed down-shifts of the l=1 modes of Mg{sup +} and Mg{sup ++} and the predictions of a multi-species cold plasma theory. The down-shifts depend on the composition and size of the plasma, and the relative abundance of each ion can thus be determined.

  13. Electron cyclotron emission diagnostics on the large helical device

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Kawahata, K.; England, A.; Ito, Y.; Bretz, N.; McCarthy, M.; Taylor, G.; Doane, J.; Ikezi, H.; Edlington, T.; Tomas, J.

    1999-01-01

    The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH.

  14. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  15. A 600 MeV cyclotron for radioactive beam production

    SciTech Connect

    Clark, D.J.

    1993-05-17

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA.

  16. Fluid equations in the presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-01

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  17. Electron cyclotron heating experiments on the DIII-D tokamak

    SciTech Connect

    Prater, R.; Austin, M.E.; Bernabei, S.

    1998-01-01

    Initial experiments on heating and current drive using second harmonic electron cyclotron heating (ECH) are being performed on the DIII-D tokamak using the new 110 GHz ECH system. Modulation of the ECH power in the frequency range 50 to 300 Hz and detection of the temperature perturbation by ECE diagnostics is used to validate the location of the heating. This technique also determines an upper bound on the width of the deposition profile. Analysis of electron cyclotron current drive indicates that up to 0.17 MA of central current is driven, resulting in a negative loop voltage near the axis.

  18. Analysis of gamma-ray burst spectra with cyclotron lines

    NASA Technical Reports Server (NTRS)

    Kargatis, Vincent; Liang, Edison P.

    1992-01-01

    Motivated by the recent developments in the cyclotron resonance upscattering of soft photons or CUSP model of Gamma Ray Burst (GBR) continuum spectra, we revisit a select database of GRBs with credible cyclotron absorption features. We measure the break energy of the continuum, the slope below the break and deduce the soft photon energy or the electron beam Lorentz factor cutoff. We study the correlation (or lack of) between various parameters in the context of the CUSP model. One surprise result is that there appears to be marginal correlation between the break energy and the spectral index below the break.

  19. RF cavity design for KIRAMS-430 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, In Su; Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk; Kwon, Key Ho

    2015-03-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only 12C6+ ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  20. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  1. Fluid equations in the presence of electron cyclotron current drive

    SciTech Connect

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  2. Particle-In-Cell Simulations of Particle Energization from Low Mach Number Fast Mode Shocks Using the Moving Wall Boundary Condition

    NASA Astrophysics Data System (ADS)

    Workman, Jared C.; Park, J.; Blackman, E.; Ren, C.; Siller, R.

    2012-05-01

    Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell (PIC) simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfven Mach number MA = 6.8 and ratio of thermal to magnetic pressure β = 8. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive an theoretical electron distribution via SDA that compares favorably to the simulation results. We also show that a modified two-stream instability due to the incoming and reflecting ions in the shock transition region acts as the mechanism to generate collisionless plasma turbulence that sustains the shock.

  3. Dissipative ion-cyclotron oscillitons in a form of solitons with chirp in Earth's low-altitude ionosphere

    SciTech Connect

    Kovaleva, I. Kh.

    2012-10-15

    In this paper, we consider theoretically nonlinear ion-cyclotron gradient-drift dissipative structures (oscillitons) in low ionospheric plasmas. Similar to Nonlinear Optics and Condensed Matter Physics, the Ginzburg-Landau equation for the envelope of electric wave fields is derived, and solutions for oscillitons in the form of solitons with chirp are examined. The whole dissipative structure constitutes a soliton with a moving charge-neutral density hump. Conditions for excitation and properties of the structures are considered.

  4. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  5. Electron-cyclotron heating in the Constance 2 mirror experiment

    SciTech Connect

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  6. Heating and Current Drive by Electron Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Prater, R.

    2003-10-01

    The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. Work has shown that ECCD can be highly localized and robustly controlled, leading to applications including stabilization of MHD instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport. These physics applications and the study of the basic physics of ECH and ECCD were enabled by the advent of the gyrotron in the 1980s and of the diamond window for megawatt gyrotrons in the 1990s. The experimental work stimulated a broad base of theory based on first principles which is encapsulated in linear ray tracing codes and fully relativistic quasilinear Fokker-Planck codes. Recent experiments use measurements of the local poloidal magnetic field through the motional Stark effect to determine the magnitude and profile of the locally driven current. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well, an effect which can be used to advantage. Strong quasilinear effects and radial transport of electrons which may broaden the driven current profile have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. Additional advantages of ECH compared with other rf heating methods are that the antenna can be far removed from the plasma and the power density can be very high. The agreement of theory and experiment, the broad base of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators.

  7. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  8. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    SciTech Connect

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-04-23

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another.

  9. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  10. Electron-cyclotron-heating experiments in tokamaks and stellarators

    SciTech Connect

    England, A.C.

    1983-01-01

    This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.

  11. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  12. Cyclotron waves in a non-neutral plasma column

    SciTech Connect

    Dubin, Daniel H. E.

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  13. Higher Harmonic Generation in the Induced Resonance Electron Cyclotron Maser.

    DTIC Science & Technology

    1987-09-01

    direction of the electron beam along the external magnetic field. The index of refraction n = cosm is adjustable by varying the angle between the...exact Lorentz force equations in the vector potential representation over the fast (cyclotron) K5 ’I..--* -- , , ’ , 1,.,. . . ,- ,,.G

  14. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  15. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 35

    SciTech Connect

    Not Available

    1986-10-29

    Efforts are reported on the installation and checkout of cyclotron components which had been previously fabricated. Final integration of subsystems and major systems leading to internal beam tests is reported near completion. Progress is reported in relation to control system components, focus and steering magnet design, and rf system testing. (LEW)

  16. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  17. Parametric decay of an electromagnetic wave near electron cyclotron harmonics

    SciTech Connect

    Istomin, Y.N.; Leyser, T.B.

    1995-06-01

    A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  19. Axial injection and phase selection studies of the MSU K1200 cyclotron

    SciTech Connect

    Bailey, J.D. |

    1995-12-31

    Axial injection into a cyclotron through its iron yoke, a spiral inflector, and the central region electrodes couples the transverse coordinates of motion together, as well as with the longitudinal coordinates. The phase slits in the K1200 cyclotron use the r - {phi} correlations inherent in acceleration of ions in a cyclotron. Computer simulations of injection into and acceleration within the K1200 cyclotron encompassing the four transverse dimensions together with time were used to determine beam matching requirements for injection and phase selection in the K1200 cyclotron. The simulations were compared with measurements using an external timing detector.

  20. VASIMR Simulation Studies of Auroral Ion Cyclotron Heating

    NASA Astrophysics Data System (ADS)

    Brukardt, M.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Glover, T. W.; Jacobs0n, V. T.; McCaskill, G. E.; Cassady, L. D.; Bengtson, R. D.

    2006-12-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies and can be used to simulate several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating (ICRH) similar to auroral zone processes. The production of upward moving `ion conics' and ion heating are significant features in auroral processes. It is believed that ion cyclotron heating plays a role in these processes, but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once. In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) we have successfully simulated these effects. The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance. The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power. This is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been confirmed with several independent measurements. The ion cyclotron resonance heating (ICRH) shows a substantial increase in ion velocity. Pitch angle distribution studies

  1. Use of cyclotrons in medical research: Past, present, future

    NASA Astrophysics Data System (ADS)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  2. Electron heating and superthermal electron enhancement due to electron cyclotron heating in ISX-B at 28 GHz

    SciTech Connect

    Elder, G.B.; Hsuan, H.; England, A.C.

    1983-05-01

    A series of electron cyclotron heating (ECH) experiments was performed with a 28-GHz gyrotron on the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory. Up to 70 kW of microwave power was injected into ISX-B from the high field side. Bulk heating was observed with a central temperature rise of approx. 370 eV from an original temperature of approx. 600 eV, as measured by Thomson scattering. With ECH and under low density conditions, large nonthermal signals were observed on electron cyclotron emission diagnostics at the first, second, and third harmonics. These signals sometimes became quite large after the end of the ECH pulse. The effects observed can be attributed to relatively small changes in the electron distribution function. The temporal behavior of the enhanced emission is tentatively attributed to the pitch angle scattering of superthermal electrons.

  3. Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission

    SciTech Connect

    Wu, D. J.

    2014-06-15

    By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It is this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.

  4. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  5. Cell wall construction in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Boorsma, Andre; De Groot, Piet W J

    2006-02-01

    In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.

  6. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    PubMed

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  7. Plasma heating in stellarators by radio frequency electromagnetic waves at the fundamental ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir A.

    1998-11-01

    A perturbation method is developed to find the structure of Alfven wave modes in a cylindrical waveguide filled with a cold, collisional, uniform plasma with a vacuum layer between the plasma and a conducting wall when the magnetic field in the waveguide is a superposition of a uniform and an inhomogeneous /ell=2 (quadrupole) field created by helical windings. The influence of the helical field on the wave mode structure is treated as a perturbation. This innovative technique is applied in order to investigate the possibility of direct heating of plasma ions at the fundamental ion cyclotron resonance in stellarator magnetic field configuration. However, the theoretical development itself is unique and complete, and it can be useful for the analysis of other similar plasma models. We investigated the mode structure of an m=[+]1 (azimuthal wave number) fast wave which is modified by the magnetic field inhomogeneity. We found that the m=[- ]1 azimuthal component of the modified m=[+]1 fast Alfven wave is left-hand polarized in the central part of the plasma. This implies a coupling between the m=[+]1 fast (right-hand polarized) wave and m=[-]1 slow (left- hand polarized) waves due to the inhomogeneity of the /ell=2 fields. The coupling efficiency is examined for different plasma parameters. Results demonstrate that efficient coupling between the modes occurs for appropriate plasma parameters in this model, indicating that efficient plasma heating at the fundamental ion cyclotron frequency is possible in stellarators. The results of the analysis also point the way to a general theory of linear wave coupling in any inhomogeneous, anisotropic medium, since conventional mode conversion theory may be seen as just another example of this general theory.

  8. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    PubMed

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  9. Generation of Electron Cyclotron Harmonic waves around the Moon

    NASA Astrophysics Data System (ADS)

    Katayama, Y.; Kojima, H.; Saito, Y.; Kasahara, Y.; Omura, Y.; Yamamoto, T.; Yokota, S.; Nishino, M. N.; Hashimoto, K.; Ono, T.; Tsunakawa, H.

    2012-12-01

    The study of the electron cyclotron harmonic(ECH) waves has been extensively made in the view point of the magnetospheric physics as well as the microscopic wave-particle interaction. The Japanese lunar satellite Kaguya provides another observation of the ECH waves around the moon. The interaction between the moon and space plasmas results in the generation of the ECH waves. We performed the detailed data analyses using the plasma wave data observed by the Kaguya as well as the linear dispersion analyses. First of all we found the close relation of the ECH wave observation and the magnetic anomaly of the night side of the moon. In order to examine the generation condition of the ECH waves, we consult the Kaguya electron data. The data show that the importance of the coexistence of of electron loss cone velocity distribution and low energy electron beams. The loss cone velocity distribution can be formed by the mirror force at the magnetic anomaly on the surface of the moon. The low energy electron beam can be realized by the acceleration due to the negative potential of the moon surface on the night side. We then assume these two kinds of electron distribution are essential to excite ECH waves. However the loss cone distribution and low energy beam are observed not only in the magnetosphere but also in the wake region, where ECH waves are not observed. This means some parametric dependence of the ECH wave generation even under the coexistence of the electron loss cone distribution and low energy electron beam. In order to make clear the parametric condition of the ECH waves around the moon, we calculate the linear growth rate by solving the kinetic plasma dispersion relation using the realistic plasma parameters of the lobe, plasma sheet and wake regions based on the KAGUYA observation. In the linear dispersion analysis, we assumed hot electrons and cold electrons, and the former have loss cone distribution and the latter has drift velocity which equivalent

  10. Electromagnetic ion cyclotron resonance heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Díaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    2008-07-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2 4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient

  11. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  12. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    SciTech Connect

    F.W. Perkins; R.B. White; P. Bonoli

    2000-06-13

    Control of rotation in tokamak plasmas provides a method for suppressing fine-scale turbulent transport by velocity shear and for stabilizing large-scale magnetohydrodynamic instabilities via a close-fitting conducting shell. The experimental discovery of rotation in a plasma heated by the fast-wave minority ion cyclotron process is important both as a potential control method for a fusion reactor and as a fundamental issue, because rotation arises even though this heating process introduces negligible angular momentum. This paper proposes and evaluates a mechanism which resolves this apparent conflict. First, it is assumed that angular momentum transport in a tokamak is governed by a diffusion equation with a no-slip boundary condition at the plasma surface and with a torque-density source that is a function of radius. When the torque density source consists of two separated regions of positive and negative torque density, a non-zero central rotation velocity results, even when the total angular momentum input vanishes. Secondly, the authors show that localized ion-cyclotron heating can generate regions of positive and negative torque density and consequently central plasma rotation.

  13. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  14. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  15. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  16. Stable isotope and chemical systematics of pseudotachylyte and wall rock, Homestake shear zone, Colorado, USA: Meteoric fluid or rock-buffered conditions during coseismic fusion?

    NASA Astrophysics Data System (ADS)

    Moecher, David P.; Sharp, Zachary D.

    2004-12-01

    A hydrous fluid phase is critical in controlling effective stress and fault mechanics, and influencing the mineralogy and strength of materials within fault zones. Oxygen and hydrogen isotope and chemical analysis of wall rock gneiss, pseudotachylyte, and selected minerals in gneiss and pseudotachylyte from the Homestake shear zone was used to assess whether melting occurred in the presence of meteoric water or involved only minor amounts of H2O derived from micas in wall rock gneiss. Bulk pseudotachylyte has slightly lower δ18OSMOW than the whole rock protolith. δD for one bulk pseudotachylyte is essentially identical to biotite in gneiss; δD for two samples is lower by ˜20‰. Bulk pseudotachylyte has lower SiO2 and K2O, and higher Al2O3, FeO, MgO, CaO, and H2O, than gneiss. The lower SiO2 of pseudotachylyte compared to gneiss is explained by physical segregation of 25 to 72 volume % of quartz clasts from the mobile melt phase. Samples of gneiss and pseudotachylyte define a SiO2-δ18O mixing line between quartz and the most SiO2- and 18O-depleted pseudotachylyte. Physical segregation of quartz (highest oxygen isotope composition in the pseudotachylyte-gneiss system) accounts for the slightly lower oxygen isotope composition of bulk pseudotachylyte relative to gneiss. The similar δD of pseudotachylyte and biotite from gneiss in one sample is consistent with dehydration melting of biotite during frictional heating and dissolution of biotite-derived H2O in the melt. Late devitrification of glass and formation of greater amounts of fine-grained muscovite, accompanied by 10-30% loss of hydrogen as H2O, results in lower δD values in other samples. In general, melt generation occurred in a fault zone closed to infiltration of meteoric water. There was no free, H2O-rich pore fluid present at the time of slip to potentially influence the behavior of the fault.

  17. Decontamination of the Activation Product Based on a Legal Revision of the Cyclotron Vault Room on the Non-self-shield Compact Medical Cyclotron.

    PubMed

    Komiya, Isao; Umezu, Yoshiyuki; Fujibuchi, Toshioh; Nakamura, Kazumasa; Baba, Shingo; Honda, Hiroshi

    The non-self-shield compact medical cyclotron and the cyclotron vault room were in operation for 27 years. They have now been decommissioned. We efficiently implemented a technique to identify an activation product in the cyclotron vault room. Firstly, the distribution of radioactive concentrations in the concrete of the cyclotron vault room was estimated by calculation from the record of the cyclotron operation. Secondly, the comparison of calculated results with an actual measurement was performed using a NaI scintillation survey meter and a high-purity germanium detector. The calculated values were overestimated as compared to the values measured using the NaI scintillation survey meter and the high-purity germanium detector. However, it could limit the decontamination area. By simulating the activation range, we were able to minimize the concrete core sampling. Finally, the appropriate range of radioactivated area in the cyclotron vault room was decontaminated based on the results of the calculation. After decontamination, the radioactive concentration was below the detection limit value in all areas inside the cyclotron vault room. By these procedures, the decommissioning process of the cyclotron vault room was more efficiently performed.

  18. Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment.

    PubMed

    Ebaid, Abdelhalim; Aly, Emad H

    2013-01-01

    In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer's tissues. The dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownian motion parameters on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was considered in Akbar et al., "Peristaltic flow of a nanofluid with slip effects," 2012. The results reveal that remarkable differences are detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may be taken as a base for any future comparisons.

  19. Permanent magnet electron cyclotron resonance plasma source with remote window

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M. )

    1995-03-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved.

  20. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  1. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  2. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early

  3. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-01

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ˜10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ˜50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  4. PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; PRATER,R; LUCE,TC; ELLIS,RA; HARVEY,RW; KINSEY,JE; LAO,LL; LOHR,J; MAKOWSKI,MA

    2002-09-01

    OAK A271 PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  5. Examination of the plasma located in PSI Ring Cyclotron

    NASA Astrophysics Data System (ADS)

    Pogue, N. J.; Adelmann, A.; Schneider, M.; Stingelin, L.

    2016-06-01

    A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud may be a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results show that the plasma is comprised of elements consistent with the cyclotrons vacuum interior.

  6. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  7. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  8. Kinetic friction attributed to enhanced radiation by cyclotron maser instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.

    1991-01-01

    Along the auroral field lines, a fraction of the energetic electrons injected from the magnetotail is reflected by the earth's convergent geomagnetic field. The reflected loss-cone electrons are unstable with respect to the cyclotron maser instability, resulting in the auroral kilometric radiation. This paper investigates the kinetic friction force exerted on the energetic electrons by the enhanced radiation field. It is found that the enhanced radiation results in a deceleration of reflected electrons, thereby providing an effective resistivity. In addition, the rate of decrease (increase) of effective perpendicular (parallel) kinetic temperatures is also evaluated. The analysis is carried out over various physical parameters such as the degree of loss cone, average particle energy, and the ratio of plasma frequency to cyclotron frequency.

  9. Evidence for proton cyclotron waves near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Tsurutani, B. T.

    1993-02-01

    We have computed frequency spectra of power density and polarization parameters of magnetohydrodynamic waves from observations on board the ICE spacecraft as it flew past Comet Giacobini-Zinner on September 11, 1985. Since the spectral parameters are frequency dependent, we find that the analysis is best carried out in a 'wave' reference frame where one of the major axes is along the wave normal direction for each frequency component. The power density along the wave normal direction shows a systematic peak structure which we identify as belonging to cyclotron wave harmonics of pickup ions near the comet. The fundamental harmonics of the cyclotron waves are also consistent with the gyrofrequencies calculated from the magnetic field data.

  10. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  11. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  12. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  13. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  14. Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    NASA Astrophysics Data System (ADS)

    Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.

    2017-01-01

    Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo

  15. Pencil Beam Scanning System Based On A Cyclotron

    SciTech Connect

    Tachikawa, Toshiki; Nonaka, Hideki; Kumata, Yukio; Nishio, Teiji; Ogino, Takashi

    2011-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed a new pencil beam scanning system (PBS) for proton therapy in collaboration with National Cancer Center Hospital East (NCCHE). Taking advantage of the continuous beam from the cyclotron P235, the line scanning method is employed in order to realize continuous irradiation with high dose rate. 3D uniform and sphere field was irradiated and compared with the simulation.

  16. Cyclotron Auto-Resonance Accelerator for environmental applications

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A MW-level CW electron beam source for environmental remediation based on extensions of the scientifically-proven Cyclotron Auto-Resonance Accelerator, dubbed CARA, is described here. CARA is distinguished by its exceptionally high RF-to-beam efficiency, by its production of a self-scanning beam, and by its proportionately lower specific power loading on a beam output window. Its environmental applications include sterilization, flue gas and waste water treatment.

  17. Design options for an ITER ion cyclotron system

    SciTech Connect

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-09-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented.

  18. Wall to Wall Optimal Transport

    NASA Astrophysics Data System (ADS)

    Chini, Gregory P.; Hassanzadeh, Pedram; Doering, Charles R.

    2013-11-01

    How much heat can be transported between impermeable fixed-temperature walls by incompressible flows with a given amount of kinetic energy or enstrophy? What do the optimal velocity fields look like? We employ variational calculus to address these questions in the context of steady 2D flows. The resulting nonlinear Euler-Lagrange equations are solved numerically, and in some cases analytically, to find the maximum possible Nusselt number Nu as a function of the Péclect number Pe , a measure of the flow's energy or enstrophy. We find that in the fixed-energy problem Nu ~ Pe , while in the fixed-enstrophy problem Nu ~ Pe 10 / 17 . In both cases, the optimal flow consists of an array of convection cells with aspect ratio Γ (Pe) . Interpreting our results in terms of the Rayleigh number Ra for relevant buoyancy-driven problems, we find Nu <= 1 + 0 . 035 Ra and Γ ~ Ra - 1 / 2 for porous medium convection (which occurs with fixed energy), and Nu <= 1 + 0 . 115 Ra 5 / 12 and Γ ~ Ra - 1 / 4 for Rayleigh-Bénard convection (which occurs with fixed enstrophy and for free-slip walls). This work was supported by NSF awards PHY-0855335, DMS-0927587, and PHY-1205219 (CRD) and DMS-0928098 (GPC). Much of this work was completed at the 2012 Geophysical Fluid Dynamics (GFD) Program at Woods Hole Oceanographic Institution.

  19. A Suzaku View of Cyclotron Line Sources and Candidates

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.; Wilms, J.; Schoenherr, G.; Caballero, I.; Camero-Arranz, A.; Bodaghee, A.; Doroshenko, V.; Klochkov, D.; Santangelo, A.; Staubert, R.; Kretschmar, P.; Wilson-Hodge, C.; Finger, M. H.; Terada, Y.

    2012-01-01

    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.

  20. High Power Ion Cyclotron Heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.

    2009-12-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.

  1. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  2. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  3. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  4. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  5. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  6. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  7. Wall effects in wind tunnels

    NASA Technical Reports Server (NTRS)

    Chevallier, J. P.; Vaucheret, X.

    1986-01-01

    A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom applied due to a lesser need and to their complexity; (3) the supports holding the model of the probes have to be taken into account in the estimation of perturbatory effects.

  8. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  9. Conditioned Pain Modulation and Situational Pain Catastrophizing as Preoperative Predictors of Pain following Chest Wall Surgery: A Prospective Observational Cohort Study

    PubMed Central

    Grosen, Kasper; Vase, Lene; Pilegaard, Hans K.; Pfeiffer-Jensen, Mogens; Drewes, Asbjørn M.

    2014-01-01

    Background Variability in patients' postoperative pain experience and response to treatment challenges effective pain management. Variability in pain reflects individual differences in inhibitory pain modulation and psychological sensitivity, which in turn may be clinically relevant for the disposition to acquire pain. The aim of this study was to investigate the effects of conditioned pain modulation and situational pain catastrophizing on postoperative pain and pain persistency. Methods Preoperatively, 42 healthy males undergoing funnel chest surgery completed the Spielberger's State-Trait Anxiety Inventory and Beck's Depression Inventory before undergoing a sequential conditioned pain modulation paradigm. Subsequently, the Pain Catastrophizing Scale was introduced and patients were instructed to reference the conditioning pain while answering. Ratings of movement-evoked pain and consumption of morphine equivalents were obtained during postoperative days 2–5. Pain was reevaluated at six months postoperatively. Results Patients reporting persistent pain at six months follow-up (n = 15) were not significantly different from pain-free patients (n = 16) concerning preoperative conditioned pain modulation response (Z = 1.0, P = 0.3) or level of catastrophizing (Z = 0.4, P = 1.0). In the acute postoperative phase, situational pain catastrophizing predicted movement-evoked pain, independently of anxiety and depression (β = 1.0, P = 0.007) whereas conditioned pain modulation predicted morphine consumption (β = −0.005, P = 0.001). Conclusions Preoperative conditioned pain modulation and situational pain catastrophizing were not associated with the development of persistent postoperative pain following funnel chest repair. Secondary outcome analyses indicated that conditioned pain modulation predicted morphine consumption and situational pain catastrophizing predicted movement-evoked pain intensity in the acute postoperative

  10. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells

    PubMed Central

    2014-01-01

    Background Certain multi-walled carbon nanotubes (MWCNTs) have been shown to elicit asbestos-like toxicological effects. To reduce needs for risk assessment it has been suggested that the physicochemical characteristics or reactivity of nanomaterials could be used to predict their hazard. Fibre-shape and ability to generate reactive oxygen species (ROS) are important indicators of high hazard materials. Asbestos is a known ROS generator, while MWCNTs may either produce or scavenge ROS. However, certain biomolecules, such as albumin – used as dispersants in nanomaterial preparation for toxicological testing in vivo and in vitro - may reduce the surface reactivity of nanomaterials. Methods Here, we investigated the effect of bovine serum albumin (BSA) and cell culture medium with and without BEAS 2B cells on radical formation/scavenging by five MWCNTs, Printex 90 carbon black, crocidolite asbestos, and glass wool, using electron spin resonance (ESR) spectroscopy and linked this to cytotoxic effects measured by trypan blue exclusion assay. In addition, the materials were characterized in the exposure medium (e.g. for hydrodynamic size-distribution and sedimentation rate). Results The test materials induced highly variable cytotoxic effects which could generally be related to the abundance and characteristics of agglomerates/aggregates and to the rate of sedimentation. All carbon nanomaterials were found to scavenge hydroxyl radicals (•OH) in at least one of the solutions tested. The effect of BSA was different among the materials. Two types of long, needle-like MWCNTs (average diameter >74 and 64.2 nm, average length 5.7 and 4.0 μm, respectively) induced, in addition to a scavenging effect, a dose-dependent formation of a unique, yet unidentified radical in both absence and presence of cells, which also coincided with cytotoxicity. Conclusions Culture medium and BSA affects scavenging/production of •OH by MWCNTs, Printex 90 carbon black, asbestos and glass

  11. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  12. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  13. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    NASA Astrophysics Data System (ADS)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at

  14. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    SciTech Connect

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL`s Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field.

  15. Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Kuhl, David D.; Walker, Eric L.

    2004-01-01

    This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.

  16. Ion Cyclotron Waves Observed in the Comet Halley: A New Look to Giotto Observations

    NASA Astrophysics Data System (ADS)

    Rodriguez-Martinez, M. R.; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Haro-Corzo, S. S. A. R., Sr.; Arriaga-Contreras, V. V. R.

    2015-12-01

    Ion Cyclotron Waves (ICW) were observed with Giotto spacecraft. Magnetic field data have been analyzed in the past to determine the nature of ICW and compared with other comets, as Giacobini-Zinner and Grigg-Skjellerup. It is important to develop tools that allow re-analyze these data in order to know better the characteristics of these waves. In this work we have applied a Fast Fourier Transform (FFT) analysis in which we define the transverse and compressive powers for a better contrast and characterization of ICW. The information obtained will be presented through dynamic spectra in several time intervals. This tool will allow to explore the possibility to check the existence of Harmonic Mode Waves (HMW) of these waves. Finally, we use linear kinetic theory, using WHAMP code, in order to determine conditions for wave growth in a plasma resembling the regions where these waves were observed.

  17. Production and quality assurance of cyclotron produced iodine-124 from enriched tellurium targets

    SciTech Connect

    Balatoni, J.; Finn, R.; Blasberg, R.; Tjuvajev, J.; Larson, S.

    1999-06-01

    The production of iodine-124 and the formulation of specific radiopharmaceuticals are an important component of the Positron Emission Tomography Program at Memorial Sloan-Kettering Cancer Center. Preparation of iodine-124 using the CS-15 cyclotron employing the (p, n) nuclear reaction on an enriched {sup 124}TeO{sub 2} solid target has been initiated. The radioiodine is isolated by a dry distillation technique from the target matrix. The mass and oxidation states of iodine species isolated from the processing were analyzed using high pressure liquid chromatography. Employing a C-8 reverse-phase column (1) and isocratic elution conditions, the chemical purity and specific activity of the various radioiodine species was determined. The method provides a routine means for evaluation of the purity of the radioiodide prior to and post radiolabeling essential for the efficient utilization and recovery of this important radionuclide. {copyright} {ital 1999 American Institute of Physics.}

  18. Production and quality assurance of cyclotron produced iodine-124 from enriched tellurium targets

    SciTech Connect

    Balatoni, J.; Finn, R.; Blasberg, R.; Tjuvajev, J.; Larson, S.

    1999-06-10

    The production of iodine-124 and the formulation of specific radiopharmaceuticals are an important component of the Positron Emission Tomography Program at Memorial Sloan-Kettering Cancer Center. Preparation of iodine-124 using the CS-15 cyclotron employing the (p, n) nuclear reaction on an enriched {sup 124}TeO{sub 2} solid target has been initiated. The radioiodine is isolated by a dry distillation technique from the target matrix. The mass and oxidation states of iodine species isolated from the processing were analyzed using high pressure liquid chromatography. Employing a C-8 reverse-phase column (1) and isocratic elution conditions, the chemical purity and specific activity of the various radioiodine species was determined. The method provides a routine means for evaluation of the purity of the radioiodide prior to and post radiolabeling essential for the efficient utilization and recovery of this important radionuclide.

  19. Production and quality assurance of cyclotron produced iodine-124 from enriched tellurium targets

    NASA Astrophysics Data System (ADS)

    Balatoni, J.; Finn, R.; Blasberg, R.; Tjuvajev, J.; Larson, S.

    1999-06-01

    The production of iodine-124 and the formulation of specific radiopharmaceuticals are an important component of the Positron Emission Tomography Program at Memorial Sloan-Kettering Cancer Center. Preparation of iodine-124 using the CS-15 cyclotron employing the (p, n) nuclear reaction on an enriched 124TeO2 solid target has been initiated. The radioiodine is isolated by a dry distillation technique from the target matrix. The mass and oxidation states of iodine species isolated from the processing were analyzed using high pressure liquid chromatography. Employing a C-8 reverse-phase column (1) and isocratic elution conditions, the chemical purity and specific activity of the various radioiodine species was determined. The method provides a routine means for evaluation of the purity of the radioiodide prior to and post radiolabeling essential for the efficient utilization and recovery of this important radionuclide.

  20. Progress towards the development of a realistic electron cyclotron resonance ion source extraction model

    SciTech Connect

    Winklehner, D.; Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Strohmeier, M. M.

    2012-02-15

    In this paper, an ongoing effort to provide a simulation and design tool for electron cyclotron resonance ion source extraction and low energy beam transport is described and benchmarked against experimental results. Utilizing the particle-in-cell code WARP, a set of scripts has been developed: A semiempirical method of generating initial conditions, a 2D-3D hybrid method of plasma extraction and a simple beam transport deck. Measured emittances and beam profiles of uranium and helium beams are shown and the influence of the sextupole part of the plasma confinement field is investigated. The results are compared to simulations carried out using the methods described above. The results show that the simulation model (with some additional refinements) represents highly charged, well-confined ions well, but that the model is less applicable for less confined, singly charged ions.

  1. Laboratory investigation of auroral cyclotron emission in the presence of background plasma

    NASA Astrophysics Data System (ADS)

    McConville, Sandra; Speirs, David C.; Ronald, Kevin; Phelps, Alan; Gillespie, Karen; Cross, Adrian; Bingham, Robert; Robertson, Craig; Whyte, Colin G.; Vorgul, Irena; Cairns, Alan; Kellett, Barry

    2009-11-01

    In the auroral regions of the Earth's magnetosphere, particles are accelerated downwards into an increasing magnetic field. Due to conservation of the magnetic moment, magnetic compression leads to the formation of a horseshoe velocity distribution. This process is associated with the emission of Auroral Kilometric Radiation (AKR), polarised in the X-mode. A cyclotron maser instability driven by the horseshoe distribution is thought to be the generation mechanism of AKR. To simulate this naturally occurring phenomenon, a scaled laboratory experiment was created. Measurements of radiation conversion efficiency, mode and spectral content previously obtained were seen to be in close agreement with numerical predictions and satellite observations in the magnetosphere. To further replicate the magnetospheric conditions, a Penning trap was constructed and inserted into the interaction region of the experiment to generate a background plasma. The latest results from this modification shall be presented including characteristics of the background plasma.

  2. Effects of fundamental and second harmonic electron cyclotron resonances on ECRIS.

    PubMed

    Kato, Yushi; Satani, Takashi; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    A new concept on magnetic field of plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of comb-shaped magnet which has opposite polarity to each other, and which cylindrically surrounds the plasma chamber. This magnetic configuration suppresses the loss due to E x B drift, and then plasma confinement is enhanced. The profiles of the electron temperature and density are measured around the ECR zones of the fundamentals and the second harmonics for 2.45 GHz and 11-13 GHz microwaves by using Langmuir probe. Their characteristics and effects are clarified under various operating conditions in both of simple multipole and comb-shaped magnetic configurations.

  3. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  4. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  5. Comparison of Fine Structures of Electron Cyclotron Harmonic Emissions in Aurora

    NASA Astrophysics Data System (ADS)

    Labelle, J. W.; Dundek, M.

    2015-12-01

    Recent discoveries of emissions at four and five times the electron cyclotron frequency in aurora occuring under daylit conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-4 and 2014-5. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events revealed that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at locations where the upper hybrid frequency matches the cyclotron harmonic, which for higher harmonics requires higher electron densities which are associated with higher solar zenith angles. Detailed examination of 21 cases in which two harmonics occur simultaneously showed that only rarely, about ten percent of the time, are the frequencies of the fine structures of the emissions in exact integer ratio (e.g., 3:2, 4:3, or 5:4 depending on which combination of harmonics is observed). In the remaining approximately ninety percent of the cases, the higher harmonic occurred at a lower ratio than the appropriate integer ratio, as expected if the harmonics are generated independently at their separate matching conditions in the bottomside ionosphere, where the upper hybrid frequency increases with altitude while the gyroharmonics decrease with altitude. (The bottomside is the most likely source of the emissions, since from there the mode converted Z-modes have access to ground-level.) Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at locations where the upper hybrid frequency matches each harmonic, i.e., at a separate source altitude for each harmonic. Generation of higher harmonics through coalescence of lower harmonic waves explains at most a small minority of events.

  6. Experiments with biased side electrodes in electron cyclotron resonance ion sources.

    PubMed

    Drentje, A G; Kitagawa, A; Uchida, T; Rácz, R; Biri, S

    2014-02-01

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions - i.e., radial directions - that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six "side" electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  7. Experiments with biased side electrodes in electron cyclotron resonance ion sources

    SciTech Connect

    Drentje, A. G. Kitagawa, A.; Uchida, T.; Rácz, R.; Biri, S.

    2014-02-15

    The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions – i.e., radial directions – that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six “side” electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

  8. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  9. Cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    Cyclotron maser and plasma wave growth which results from electrons accelerated in magnetic loops are studied. The evolution of the accelerated electron distribution is determined by solving the kinetic equation including Coulomb collisions and magnetic convergence. It is found that for modest values of the column depth of the loop the growth rates of instabilities are significantly reduced and that the reduction is much larger for the cyclotron modes than for the plasma wave modes. The large decrease in the growth rate with column depth suggests that solar coronal densities must be much lower than commonly accepted in order for the cyclotron maser to operate. The density depletion has to be similar to that which occurs during auroral kilometric radiation events in the magnetosphere. The resulting distributions are much more complicated than the idealized distributions used in many theoretical studies, but the fastest growing mode can still simply be determined by the ratio of electron plasma to gyrofrequency, U=omega(sub p)/Omega(sub e). However, the dominant modes are different than for the idealized situations with growth of the z-mode largest for U approximately less than 0.5, and second harmonic x-mode (s=2) or fundamental o-mode (s=1) the dominant modes for 0.5 approximately less than U approximately less than 1. The electron distributions typically contain more than one inverted feature which could give rise to wave growth. It is shown that this can result in simultaneous amplification of more than one mode with each mode driven by a different feature and can be observed, for example, by differences in the rise times of the right and left circularly polarized components of the associated spike bursts.

  10. Electron cyclotron resonance microwave plasma deposition of a-Si:H and a-SiC:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1991-01-01

    The paper reports electron cyclotron resonance (ECR) deposition of a-Si:H and a-SiC:H thin films using SiH4, CH4, and hydrogen mixed gas plasmas. The ECR deposition conditions were investigated in the pressure region of 0.1 to 100 mtorr, and the film properties were characterized by light and dark conductivity measurements, XRD, Raman spectroscopy, optical transmission, and IR spectroscopy. In addition, the hydrogen dilution effect on ECR-deposited a-SiC:H was investigated.

  11. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  12. Personal computer based Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Jones, Patrick R.

    1988-12-01

    An IBM PC AT compatible computer is used to host the interface of a Fourier transform ion cyclotron resonance mass spectrometer or FTMS. A common fast memory bank for both ion-excitation waveform and data acquisition is reserved in the computer's system memory space. All the digital electronics circuitry is assembled on an IBM PC AT extension board. Neither an external frequency synthesizer nor a waveform digitizer is needed. Ion-excitation waveforms can be generated in either frequency-sweeping or inverse-Fourier transform modes. Both excitation and data acquisition can be carried out at eight megawords per second.

  13. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  14. Cyclotron scattering lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Preece, Robert D.

    1989-01-01

    If cyclotron scattering, rather than absorption, is responsible for the line features observed recently in two gamma-ray burst spectra (Murakami et al., 1988), then the second and higher harmonics are due to resonant scattering events that excite the electron to Landau levels above the ground state. Here, relativistic Compton scattering cross sections are used to estimate the expected ratio of third to second harmonics in the presence of Doppler broadening. At the field strength (1.7 TG) required to give first and second harmonics at 19 keV and 38 keV, there should be no detectable third harmonic in the spectrum.

  15. Ion-cyclotron turbulence and diagonal double layers in a magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Liperovskiy, V. A.; Pudovkin, M. I.; Skuridin, G. A.; Shalimov, S. L.

    1981-01-01

    A survey of current concepts regarding electrostatic ion-cyclotron turbulence (theory and experiment), and regarding inclined double potential layers in the magnetospheric plasma is presented. Anomalous resistance governed by electrostatic ion-cyclotron turbulence, and one-dimensional and two-dimensional models of double electrostatic layers in the magnetospheric plasma are examined.

  16. Quantum non demolition measurement of cyclotron excitations in a Penning trap

    NASA Technical Reports Server (NTRS)

    Marzoli, Irene; Tombesi, Paolo

    1993-01-01

    The quantum non-demolition measurement of the cyclotron excitations of an electron confined in a Penning trap could be obtained by measuring the resonance frequency of the axial motion, which is coupled to the cyclotron motion through the relativistic shift of the electron mass.

  17. Electron cyclotron maser based on the combination two-wave resonance

    SciTech Connect

    Savilov, A. V.

    2012-11-01

    A mechanism of a combination two-wave cyclotron interaction between an electron beam and the forward/backward components of a far-from-cutoff standing wave is analyzed. This regime can be promising for the realization of high-power continuous-wave electron cyclotron masers operating in the THz frequency range.

  18. Investigation on the electron flux to the wall in the VENUS ion source.

    PubMed

    Thuillier, T; Angot, J; Benitez, J Y; Hodgkinson, A; Lyneis, C M; Todd, D S; Xie, D Z

    2016-02-01

    The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.

  19. Investigation on the electron flux to the wall in the VENUS ion source

    SciTech Connect

    Thuillier, T. Angot, J.

    2016-02-15

    The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.

  20. Investigation on the electron flux to the wall in the VENUS ion source

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.

    2016-02-01

    The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.

  1. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  2. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  3. Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics

    SciTech Connect

    Waltz, R. E.; Deng Zhao

    2013-01-15

    A nonlinear theory of drift-cyclotron kinetics (termed cyclo-kinetics here) is formulated to test the breakdown of the gyro-kinetic approximations. Six dimensional cyclo-kinetics can be regarded as an extension of five dimensional gyro-kinetics to include high-frequency cyclotron waves, which can interrupt the low-frequency gyro-averaging in the (sixth velocity grid) gyro-phase angle. Nonlinear cyclo-kinetics has no limit on the amplitude of the perturbations. Formally, there is no gyro-averaging when all cyclotron (gyro-phase angle) harmonics of the perturbed distribution function (delta-f) are retained. Retaining only the (low frequency) zeroth cyclotron harmonic in cyclo-kinetics recovers both linear and nonlinear gyro-kinetics. Simple recipes are given for converting continuum nonlinear delta-f gyro-kinetic transport simulation codes to cyclo-kinetics codes by retaining (at least some) higher cyclotron harmonics.

  4. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    NASA Astrophysics Data System (ADS)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian

    2017-03-01

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  5. The variable cyclotron line of GX 301-2

    NASA Astrophysics Data System (ADS)

    Kreykenbohm, I.; Wilms, J.; Coburn, W.; Kuster, M.; Rothschild, R. E.; Heindl, W. A.; Kretschmar, P.; Staubert, R.

    2004-06-01

    We present a 200 ksec observation of the High Mass X-ray Binary GX 301-2 taken in 2000 November with the Rossi X-ray Timing Explorer during the pre-periastron flare and the actual periastron passage of the neutron star. To model the spectrum we use a power law with the Fermi Dirac cutoff and a cyclotron line at higher energies plus either a reflection component or a heavily absorbed partial covering component. Although completely different, both models describe the data equally well. Phase resolved spectra show that the energy and the depth of the cyclotron resonant scattering feature vary strongly with pulse phase: It is deepest in the fall of the main pulse, the rise of the secondary pulse, and the pulse minimum in-between with τC~0.3. In the other phase bins the line is much less deep with τC~0.1. The energy of the line correlates strongly with its depth and varies by 25 % from 30.1 keV in the fall of the secondary pulse to 37.9 keV in the fall of the main pulse.

  6. Benchmark experiments for cyclotron-based neutron source for BNCT.

    PubMed

    Yonai, S; Itoga, T; Baba, M; Nakamura, T; Yokobori, H; Tahara, Y

    2004-11-01

    In the previous study, we found the feasibility of a cyclotron-based BNCT using the Ta(p,n) neutrons at 90 degrees bombarded by 50 MeV protons, and the iron, AlF(3), Al and (6)LiF moderators by simulations using the MCNPX code. In order to validate the simulations to realize the cyclotron-based BNCT, we measured the epithermal neutron energy spectrum passing through the moderators with our new spectrometer consisting of a (3)He gas counter covered with a silicon rubber loaded with (nat)B and polyethylene moderator and the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in an acrylic phantom set behind the rear surface of the moderators. The measured results were compared with the calculations using the MCNPX code. We obtained the good agreement between the calculations and measurements within approximately 10% for the neutron energy spectra and within approximately 20% for the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in the phantom. The comparison clarified a good accuracy of the calculation of the neutron energy spectrum passing through the moderator and the thermalization in a phantom. These experimental results will be a good benchmark data to evaluate the accuracy of the calculation code.

  7. Electron cyclotron emission measurements on the Texas Experimental Tokamak

    SciTech Connect

    Austin, M.E. Jr.

    1992-01-01

    A ten-channel grating polychromator was designed, constructed, and installed on the Texas Experimental Tokamak to monitor the second harmonic electron cyclotron emission. Electron temperature profiles were derived from measurements of the optically thick radiation for a variety of plasma confinement experiments. The radial and temporal evolution of T[sub e] has been characterized for electron cyclotron heated discharges with 150 kW of 60 GHz power. Comparisons were made of the heating efficiency of two type of ECH launchers. A focussed launcher was shown to have slightly better heating efficiency than an unfocussed launcher; however, the focussed antenna did not yield significantly higher electron temperatures as expected. A study of the time evolution of the electron temperature indicated that increased sawtooth activity limited the effectiveness of the focussed launcher. A focussing hog-horn antenna was fabricated and installed on the inboard side of the tokamak to measure emission directed towards the high-field side during ECH. Comparison of the radiation temperature profiles from low-field side and high-field side antennas indicates the creation of a nonthermal electron distribution by the heating. The results of the experiment compare favorably with theoretical predictions from a quasi-linear Fokker-Planck code of a 6 keV nonthermal population with a density about 1 percent of the thermal density.

  8. Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Gratton, F.T.; Gnavi, G.

    1995-02-01

    The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.

  9. Mode conversion at the higher ion cyclotron harmonics

    NASA Astrophysics Data System (ADS)

    Chiu, S. C.; Chan, V. S.; Harvey, R. W.; Porkolab, M.

    1989-07-01

    It has been demonstrated that mode conversion of fast waves to ion Bernstein waves can be calculated from a reduced second order differential equation for the wave fields rather than the 4th order equations used in earlier studies near the ion-ion hybrid resonance and the second harmonic resonance. Here the underlying justification of the method is discussed. It is shown that the method works for high harmonic resonances and an analytical formula for the tunneling coefficient is derived. The result is a generalization of a previous result obtained by Ngan and Swanson and is applicable when κ⊥ρi is large. Recently, there is interest in using fast waves for current drive at high ion cyclotron harmonics frequencies in tokamaks. Generally, the fast wave will encounter ion cyclotron harmonics within the plasma cross-section. For efficient current drive, the minimization of the mode conversion processes sets restrictions to the choice of frequencies and magnetic fields. This is discussed using the derived formula.

  10. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  11. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  12. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  13. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  14. Wall surveyor project report

    SciTech Connect

    Mullenhoff, D.J.; Johnston, B.C.; Azevedo, S.G.

    1996-02-22

    A report is made on the demonstration of a first-generation Wall Surveyor that is capable of surveying the interior and thickness of a stone, brick, or cement wall. LLNL`s Micropower Impulse Radar is used, based on emitting and detecting very low amplitude and short microwave impulses (MIR rangefinder). Six test walls were used. While the demonstrator MIR Wall Surveyor is not fieldable yet, it has successfully scanned the test walls and produced real-time images identifying the walls. It is planned to optimize and package the evaluation wall surveyor into a hand held unit.

  15. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  16. Domain walls riding the wave.

    SciTech Connect

    Karapetrov, G.; Novosad, V.; Materials Science Division

    2010-11-01

    Recent years have witnessed a rapid proliferation of electronic gadgets around the world. These devices are used for both communication and entertainment, and it is a fact that they account for a growing portion of household energy consumption and overall world consumption of electricity. Increasing the energy efficiency of these devices could have a far greater and immediate impact than a gradual switch to renewable energy sources. The advances in the area of spintronics are therefore very important, as gadgets are mostly comprised of memory and logic elements. Recent developments in controlled manipulation of magnetic domains in ferromagnet nanostructures have opened opportunities for novel device architectures. This new class of memories and logic gates could soon power millions of consumer electronic devices. The attractiveness of using domain-wall motion in electronics is due to its inherent reliability (no mechanical moving parts), scalability (3D scalable architectures such as in racetrack memory), and nonvolatility (retains information in the absence of power). The remaining obstacles in widespread use of 'racetrack-type' elements are the speed and the energy dissipation during the manipulation of domain walls. In their recent contribution to Physical Review Letters, Oleg Tretiakov, Yang Liu, and Artem Abanov from Texas A&M University in College Station, provide a theoretical description of domain-wall motion in nanoscale ferromagnets due to the spin-polarized currents. They find exact conditions for time-dependent resonant domain-wall movement, which could speed up the motion of domain walls while minimizing Ohmic losses. Movement of domain walls in ferromagnetic nanowires can be achieved by application of external magnetic fields or by passing a spin-polarized current through the nanowire itself. On the other hand, the readout of the domain state is done by measuring the resistance of the wire. Therefore, passing current through the ferromagnetic wire is

  17. 11. VIEW, LOOKING WESTNORTHWEST, SHOWING STRUCTURAL BREACH IN WALL CAUSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW, LOOKING WEST-NORTHWEST, SHOWING STRUCTURAL BREACH IN WALL CAUSED BY MARSHY CONDITIONS. SORTED AND ASSEMBLED NATIVE BASALT COBBLES USED FOR BUILDING MATERIAL APPEAR IN BACKGROUND - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  18. A study on vacuum aspects of electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Taki, G. S.; Mallick, C.; Bhandari, R. K.

    2008-05-01

    The electron cyclotron resonance (ECR) ion source is special type hot plasma machine where the high temperature electrons co-exist with multiply charge state ions and neutrals. A few years ago 6.4 GHz. ECR ion source (VEC-ECR) was developed indigenously at VECC. This multiply charged ion source is being used continuously to inject heavy ion beams into the cyclotron. Vacuum plays the major role in ECR ion source. The water cooled plasma chamber is made from an oxygen free high conductivity copper billet to meet the suitable surface condition for vacuum purpose. The entire volume of the ion source is pumped by two 900 1/s special type oil diffusion pumps to achieve 5×10-8 Torr. Usually main plasma chamber is pumped by the plasma itself. Moreover a few 1/s additional pumping speed is provided through extraction hole and pumping slot on the extraction electrode. A study has been carried out to understand the role of vacuum on the multiply charged heavy ion production process. Considering the ion production and loss criteria, it is seen that for getting Ar18+ better vacuum is essential for lower frequency operation. So, an ECR ion source can give better charge state current output operating at higher frequency and stronger confining magnetic field under a specific vacuum condition. The low pressure condition is essential to minimize charge exchange loss due to recombination of multiply charged ions with the neutral atoms. A fixed ratio of neutral to electron density must be maintained for optimizing a particular charge state in the steady state condition. As the electron density is proportional to square of the injected microwave frequency (nevpropf2) a particular operating pressure is essential for a specific charge state. From the study, it has been obtained that the production of Ar18+ ions needs a pressure ~ 9.6×10-8 Torr for 6.4 GHz. ECR ion source. It is also obtained that an ECR ion source, works at a particular vacuum level, can give better charge state

  19. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  20. Cyclotrons with fast variable and/or multiple energy extraction

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.

    2013-10-01

    We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators). If one uses reverse bends between the sectors (instead of or in combination with drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H2+, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H2+ beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam) at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS), this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field strength compared to proton machines

  1. Mechanics of the Toxoplasma gondii oocyst wall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  2. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    SciTech Connect

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M.

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  3. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  4. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  5. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  6. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  7. Cyclotron resonance maser experiment in a nondispersive waveguide

    SciTech Connect

    Jerby, E.; Shahadi, A.; Drori, R.

    1996-06-01

    A cyclotron-resonance maser (CRM) oscillator experiment in which a spiraling electron beam interacts with a transverse electromagnetic wave in a nondispersive waveguide is presented. The experiment employs a low-energy low-current electron beam in a two-wire (Lecher type) waveguide. The microwave output frequency is tuned in this experiment by the axial magnetic field in the range 3.5--6.0 GHz. A second harmonic emission is observed at {approximately}7 GHz. CRM theory shows that in a free-space TEM-mode interaction, the gain might be canceled due to the equal and opposite effects of the axial (Weibel) and the azimuthal bunching mechanisms. This balance is violated in the large transverse velocity regime (V{sub {perpendicular}} {much_gt} V{sub z}) in which the experiment operates. The tunability measurements of the CRM oscillator experiment in the nondispersive waveguide are discussed in view of the CRM theory.

  8. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  9. Magnetic-field measurements for the Lewis Research Center cyclotron

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1973-01-01

    The magnetic field of the Lewis Center cyclotron was mapped by using a Hall-effect magnetic-field transducer. Main-field Fourier coefficients were determined on a polar mesh of 40 radii for each of seven levels of main-field coil current. Incremental fields for eight sets of trim coils and two sets of harmonic coils were also determined at four of these main-field levels. A stored-program, digital computer was used to perform the measurements. The process was entirely automatic; all data-taking and data-reduction activities were specified by the computer programs. A new method for temperature compensation of a Hall element was used. This method required no temperature control of the element. Measurements of the Hall voltage and Hall-element resistance were sufficient to correct for temperature effects.

  10. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  11. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  12. Recent developments of cyclotron produced radionuclides for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. V.; Jansen, D. E.; Corbett, J. R.

    1987-04-01

    For over a decade myocardial perfusion imaging with thallium-201, a cyclotron product, has been routinely used in clinical medicine. Recent advances have allowed the efficient production of very high purity (> 99.8%) iodine-123. New metabolically active 123I labeled radiopharmaceuticals, including alkyl and phenyl fatty acids, and norepinephrine analogs, have been developed and are undergoing clinical trials. Fab' fragments of monoclonal antibodies to cardiac myosin have been labeled with indium-111 ( 111In) and are undergoing clinical evaluation for imaging myocardial infarcts. Monoclonal antibodies to platelets, fibrin, and the thrombolytic agent, tissue plasminogen activator (TPA), have recently been labeled with 111In. Together these developments in radiotracers and instrumentation should have a significant impact on the future of cardiovascular nuclear medicine. This manuscript will discuss developments in single photon emitting radiotracers for myocardial imaging.

  13. On ion cyclotron current drive for sawtooth control

    NASA Astrophysics Data System (ADS)

    Eriksson, L.-G.; Johnson, T.; Mayoral, M.-L.; Coda, S.; Sauter, O.; Buttery, R. J.; McDonald, D.; Hellsten, T.; Mantsinen, M. J.; Mueck, A.; Noterdaeme, J.-M.; Santala, M.; Westerhof, E.; de Vries, P.; contributors, JET-EFDA

    2006-10-01

    Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.

  14. Commercial and PET radioisotope manufacturing with a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Boothe, T. E.; McLeod, T. F.; Plitnikas, M.; Kinney, D.; Tavano, E.; Feijoo, Y.; Smith, P.; Szelecsényi, F.

    1993-06-01

    Mount Sinai has extensive experience in producing radionuclides for commercial sales and for incorporation into radiopharmaceuticals, including PET. Currently, an attempt is being made to supply radiochemicals to radiopharmaceutical manufacturers outside the hospital, to prepare radiopharmaceuticals for in-house use, and to prepare PET radiopharmaceuticals, such as 2-[F-18] FDG, for outside sales. This use for both commercial and PET manufacturing is atypical for a hospital-based cyclotron. To accomplish PET radiopharmaceutical sales, the hospital operates a nuclear pharmacy. A review of operational details for the past several years shows a continuing dependence on commercial sales which is reflected in research and developmental aspects and in staffing. Developmental efforts have centered primarily on radionuclide production, target development, and radiochemical processing optimization.

  15. A simple electron cyclotron resonance ion source (abstract)a)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-03-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  16. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  17. Alternative optical concept for electron cyclotron emission imaging

    SciTech Connect

    Liu, J. X.; Milbourne, T.; Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B.; Kubota, S.; Kasparek, W.; Lu, J.; Park, H.

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  18. Normal and anomalous Doppler effects in periodic waveguide cyclotron maser

    SciTech Connect

    Korol, M.; Jerby, E.

    1995-12-31

    A linear analysis of the periodic-waveguide cyclotron (PWC) maser shows that the PWC interaction with fast-waves possesses properties of the known anomalous Doppler resonance interaction if the wave impedance of the resonant spatial harmonic, Z{sub n}, is much smaller than the free space impedance, i.e. if Z{sub n} {much_lt} Z{sub 0}. The feasibility of a fast-wave PWC interaction in a low impedance waveguide is examined theoretically in this paper. A practical scheme of a slotted-waveguide PWC operating in the fundamental harmonic near cutoff is proposed for a future experiment. The possible advantages of the quasi-anomalous Doppler effect in the fast-wave-PWC operating regime are the alleviation of the initial electron rotation and a high-efficiency operation.

  19. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2017-01-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the beta decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). We report on results for calibration measurements performed with Kr-83m in a gas cell that fulfills the stringent requirements for a measurement using tritium: cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged

  20. Determination of the Electron Cyclotron Current Drive Profile

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Schuster, D.I.; Makowski, M.A.

    1999-11-01

    Evaluation of the profile of non-inductive current density driven by absorption of electron cyclotron waves (ECCD) using time evolution of the poloidal flux indicated a broader profile than predicted by theory. To determine the nature of this broadening, a 1-1/2 D transport calculation of current density evolution was used to generate the signals which the DIII-D motional Stark effect (MSE) diagnostic would measure in the event that the current density evolution followed the neoclassical Ohm's law with the theoretical ECCD profile. Comparison with the measured MSE data indicates the experimental data is consistent with the ECCD profile predicted by theory. The simulations yield a lower limit on the magnitude of the ECCD which is at or above the value found in Fokker-Planck calculations of the ECCD including quasilinear and parallel electric field effects.