NASA Astrophysics Data System (ADS)
Jang, J. Y.; Chi, G. X.
2017-02-01
In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.
Cylinder head for internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, D.W.
1992-10-06
This patent describes a cylinder head for attachment to a block assembly having at least one cylinder bore therein. It comprises: a cylinder head body adapted for attachment to the block assembly and having at least one side-entry fluid intake opening in communication with the cylinder bore, and having at least one side-exit exhaust fluid opening in communication with the cylinderbore; an intake spool mounted for axial rotation within the intake spool cavity; an exhaust spool mounted for axial rotation within the exhaust spool cavity; timing means for rotating the intake spool and the exhaust spool; and at least onemore » intake port and at least one exhaust port.« less
Integrated approach for stress analysis of high performance diesel engine cylinder head
NASA Astrophysics Data System (ADS)
Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.
2018-03-01
Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harr, D.
1986-05-01
New materials and techniques make it easier to build today's tight, energy-efficient homes. One system that has won many converts recently is the airtight drywall approach (ADA). ADA relies heavily on the use of foam gasketing. In the ADA building system, nearly all joints--sill to foundation, band joist, wall plate to subfloor, and drywall to frame-are gasketed with foam tapes. The combination of gaskets, drywall, and caulk creates an airtight envelope. Foam gasketing tape is well suited from many of these joints because it is clean, economical, and easy to apply. The right gasket will maintain the seal even ifmore » the joint moves, and won't squeeze out of the joint under compression. Caulk, on the other hand, is messy, hard to apply, and squeezes out of the joint under compression. Saturated urethanes are elastic sealants that always recover, even after being completely compressed. Some saturated urethanes recover faster than others, depending on what saturant is used, but all exert a force to recover because they are urethanes. In the construction industry, where gaskets are likely to be buried permanently within the framework, saturated urethane foam gaskets really make sense.« less
Rothgeb, Timothy Moore [Norfolk, VA; Reece, Charles Edwin [Yorktown, VA
2009-06-02
A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.
Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine
NASA Astrophysics Data System (ADS)
Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.
2018-02-01
In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.
Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes
1998-01-01
An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.
Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.
1998-12-29
An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.
Sunnarborg, Duane A.
2000-01-01
A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Engine joints. 36.24 Section 36.24 Mineral... Construction and Design Requirements § 36.24 Engine joints. (a) Cylinder head. The joint between the cylinder head and block of the engine shall be fitted with a metal or metal-clad gasket satisfactory to MSHA...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Engine joints. 36.24 Section 36.24 Mineral... Construction and Design Requirements § 36.24 Engine joints. (a) Cylinder head. The joint between the cylinder head and block of the engine shall be fitted with a metal or metal-clad gasket satisfactory to MSHA...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Engine joints. 36.24 Section 36.24 Mineral... Construction and Design Requirements § 36.24 Engine joints. (a) Cylinder head. The joint between the cylinder head and block of the engine shall be fitted with a metal or metal-clad gasket satisfactory to MSHA...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Engine joints. 36.24 Section 36.24 Mineral... Construction and Design Requirements § 36.24 Engine joints. (a) Cylinder head. The joint between the cylinder head and block of the engine shall be fitted with a metal or metal-clad gasket satisfactory to MSHA...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Engine joints. 36.24 Section 36.24 Mineral... Construction and Design Requirements § 36.24 Engine joints. (a) Cylinder head. The joint between the cylinder head and block of the engine shall be fitted with a metal or metal-clad gasket satisfactory to MSHA...
Filter holder and gasket assembly for candle or tube filters
Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.
1999-03-02
A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.
Filter holder and gasket assembly for candle or tube filters
Lippert, T.E.; Alvin, M.A.; Bruck, G.J.; Smeltzer, E.E.
1999-03-02
A filter holder and gasket assembly are disclosed for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut. 9 figs.
NASA Technical Reports Server (NTRS)
Povolny, John H.; Bogdan, Louis J.
1947-01-01
An investigation was conducted to determine the coolant-flow distribu tion, the cylinder temperatures, and the heat rejections of the V-165 0-7 engine . The tests were run a t several power levels varying from minimum fuel consumption to war emergency power and at each power l evel the coolant flows corresponded to the extremes of those likely t o be encountered in typical airplane installations, A mixture of 30-p ercent ethylene glycol and 70-percent water was used as the coolant. The temperature of each cylinder was measured between the exhaust val ves, between the intake valves, in the center of the head, on the exh aust-valve guide, at the top of the barrel on the exhaust side, and o n each exhaust spark-plug gasket. For an increase in engine power fro m 628 to approximately 1700 brake horsepower the average temperature for the cylinder heads between the exhaust valves increased from 437 deg to 517 deg F, the engine coolant heat rejection increased from 12 ,600 to 22,700 Btu. per minute, the oil heat rejection increased from 1030 to 4600 Btu per minute, and the aftercooler-coolant heat reject ion increased from 450 to 3500 Btu -per minute.
Manifold gasket accommodating differential movement of fuel cell stack
Kelley, Dana A.; Farooque, Mohammad
2007-11-13
A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.
46 CFR 56.30-35 - Gasketed mechanical couplings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35... APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a) This... Inspection. (b) Gasketed mechanical couplings may be used within the service limitations of pressure...
Fiber gasket and method of making same
Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.
2003-01-01
A gasket (1) is made by repetitively spirally winding a fiber (3) back on itself in a closed path. The gasket (1) so made has a multi-layer spiral winding (1) formed in a loop (5). The fiber (3) can be wound at a constant wrap rate to form a gasket with a uniform cross-section around the loop. Alternatively, the wrap rate can be varied, increased to increase cross-sectional bulk, and decreased to reduce cross-section bulk around the loop (5). Also, the spiral winding (7) can be applied over a core (13) of either strands of the fiber (3) or a dissimilar material providing a desired property such as resiliency, stiffness or others. For high temperature applications, a ceramic fiber (3) can be used. The gasket (1) can have any of various geometric configurations with or without a core (13).
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
Knudsen, Julian R.; Welch, Christopher B.
2005-04-26
In an engine having a rocker member adapted to rock about an axis intermediate the rocker member and a pushrod extending from a lower body to an upper body and engaging an end of the rocker member, a gasket for sealing the lower body to the upper body is provided. The gasket includes a sealing portion adapted to substantially seal at least a portion of the upper body to the lower body, and a pushrod support portion extending outwardly from the sealing portion adapted to engage the pushrod. At least a portion of the pushrod support portion engaging the pushrod is constructed from a material that is softer than the material of the pushrod.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuster, M.; Deis, M.
1996-12-31
A system approach to solving the tribological problems associated with sealing joints implies comprehensive investigation of all the components. Any measurable parameters, including geometry, density (porosity), hardness distributions, microstructure and grain size changes observed during routine metallurgical analysis could provide evidence of the root cause of failure. In the head-gasket-block sealing system of the internal combustion engine, the EDS evaluation of the chlorine and sulfur distribution through the head gasket flange fracture in conjunction with analysis of the sludge between the head, block and gasket surfaces pointed to the corrosive nature of the gasket flange cracking. This approach is evenmore » more useful for the closed tribological system of telescopic hydraulic cylinders or rotary axle shaft oil seals. In these cases in addition to the routine metallurgical analysis of the metal shaft surface, we have to analyze the rubber or plastic sealing elements. The influence of oil contamination as a destructive mechanism must also be evaluated.« less
Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins
NASA Technical Reports Server (NTRS)
Siegel, R.; Graham, R. W.
1977-01-01
The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.
Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets
Schotzko, Timo; Lang, Walter
2014-01-01
A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099
Liquid-Oxygen-Compatible Cement for Gaskets
NASA Technical Reports Server (NTRS)
Elmore, N. L.; Neale, B. C.
1984-01-01
Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.
Integrated hydraulic cooler and return rail in camless cylinder head
Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO
2011-12-13
An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.
Development and Evaluation of High Temperature Gaskets for Hypersonic and Reentry Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Shpargel, Tarah
2007-01-01
A wide variety of flexible gasket compositions were developed and tested at high temperatures. The gasket material system has high temperature capability. GRABER sealants were very effective in sealing machined ACC-4 composite surfaces. The gasket composition do not bond strongly with the ACC-4 substrate materials. The density of gasket materials can be tailored to show appropriate compressibility.
DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Coughlin, Jeffrey
2009-05-05
The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired
46 CFR 56.30-35 - Gasketed mechanical couplings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a) This...
46 CFR 56.30-35 - Gasketed mechanical couplings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a) This...
46 CFR 56.30-35 - Gasketed mechanical couplings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a) This...
46 CFR 56.30-35 - Gasketed mechanical couplings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Gasketed mechanical couplings. 56.30-35 Section 56.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Selection and Limitations of Piping Joints § 56.30-35 Gasketed mechanical couplings. (a) This...
21 CFR 177.1210 - Closures with sealing gaskets for food containers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Closures with sealing gaskets for food containers... sealing gaskets for food containers. Closures with sealing gaskets may be safely used on containers... containers are manufactured from substances generally recognized as safe for contact with food; substances...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hai-Feng, E-mail: hanlor@163.com; Key Laboratory of Radar Imaging and Microwave Photonics; Liu, Shao-Bin
2016-08-15
In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1more » PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.« less
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Seals and gaskets in fuel filters... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) [Reserved] (b) Each gasket and each sealed joint in a fuel filter and strainer must not leak when subjected for 24 hours to a gasoline that...
33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Seals and gaskets in fuel filters... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) [Reserved] (b) Each gasket and each sealed joint in a fuel filter and strainer must not leak when subjected for 24 hours to a gasoline that...
33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Seals and gaskets in fuel filters... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) [Reserved] (b) Each gasket and each sealed joint in a fuel filter and strainer must not leak when subjected for 24 hours to a gasoline that...
33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Seals and gaskets in fuel filters... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) [Reserved] (b) Each gasket and each sealed joint in a fuel filter and strainer must not leak when subjected for 24 hours to a gasoline that...
33 CFR 183.536 - Seals and gaskets in fuel filters and strainers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Seals and gaskets in fuel filters... Standards § 183.536 Seals and gaskets in fuel filters and strainers. (a) [Reserved] (b) Each gasket and each sealed joint in a fuel filter and strainer must not leak when subjected for 24 hours to a gasoline that...
Integrated-fin gasket for palm cubic-anvil high pressure apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J.-G.; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Matsubayashi, K.
2014-09-15
We described an integrated-fin gasket technique for the palm cubic-anvil apparatus specialized for the high-pressure and low-temperature measurements. By using such a gasket made from the semi-sintered MgO ceramics and the tungsten-carbide anvils of 2.5 mm square top, we successfully generate pressures over 16 GPa at both room and cryogenic temperatures down to 0.5 K. We observed a pressure self-increment for this specific configuration and further characterized the thermally induced pressure variation by monitoring the antiferromagnetic transition temperature of chromium up to 12 GPa. In addition to enlarge the pressure capacity, such a modified gasket also improves greatly the survivingmore » rate of electrical leads hanging the sample inside a Teflon capsule filled with the liquid pressure-transmitting medium. These improvements should be attributed to the reduced extrusion of gasket materials during the initial compression.« less
Gasket Assembly for Sealing Mating Surfaces
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III (Inventor)
2003-01-01
A pair of substantially opposed mating surfaces are joined to each other and sealed in place by means of an electrically-conductive member which is placed in proximity to the mating surfaces. The electrically-conductive member has at least one element secured thereto which is positioned to contact the mating surfaces, and which softens when the electrically-conductive member is heated by passing an electric current therethrough. The softened element conforms to the mating surfaces, and upon cooling of the softened element the mating surfaces are joined together in an effective seal. Of particular significance is an embodiment of the electrically-conductive member which is a gasket having an electrically-conductive gasket base and a pair of the elements secured to opposite sides of the gasket base. This embodiment is positioned between the opposed mating surfaces to be joined to each other. Also significant is an embodiment of the electrically-conductive member which is an electrically-conductive sleeve having an element secured to its inner surface. This embodiment surrounds cylindrical members the bases of which are the substantially opposed mating surfaces to be joined, and the element on the inner surface of the sleeve contacts the outer surfaces of the cylindrical members.
Gasket and snap ring installation tool
Southerland, Jr., James M.; Barringer, Jr., Curtis N.
1994-01-01
A tool for installing a gasket and a snap ring including a shaft, a first plate attached to the forward end of the shaft, a second plate slidably carried by the shaft, a spring disposed about the shaft between the first and second plates, and a sleeve that is free to slide over the shaft and engage the second plate. The first plate has a loading surface with a loading groove for receiving a snap ring and a shoulder for holding a gasket. A plurality of openings are formed through the first plate, communicating with the loading groove and approximately equally spaced about the groove. A plurality of rods are attached to the second plate, each rod slidable in one of the openings. In use, the loaded tool is inserted into a hollow pipe or pipe fitting having an internal flange and an internal seating groove, such that the gasket is positioned against the flange and the ring is in the approximate plane of the seating groove. The sleeve is pushed against the second plate, sliding the second plate towards the first plate, compressing the spring and sliding the rods forwards in the openings. The rods engage the snap ring and urge the ring from the loading groove into the seating groove.
Constitutive Modeling of a Glass Fiber-Reinforced PTFE Gasketed-Joint Under a Re-torque
NASA Astrophysics Data System (ADS)
Williams, James; Gordon, Ali P.
Joints gasketed with viscoelastic seals often receive an application of a secondary torque, i.e., retorque, in order to ensure joint tightness and proper sealing. The motivation of this study is to characterize and analytically model the load and deflection re-torque response of a single 25% glass-fiber reinforced polytetrafluorethylene (PTFE) gasket-bolted joint with serrated flange detail. The Burger-type viscoelastic modeling constants of the material are obtained through isolating the gasket from the bolt by performing a gasket creep test via a MTS electromechanical test frame. The re-load creep response is also investigated by re-loading the gasket after a period of initial creep to observe the response. The modeling constants obtained from the creep tests are used with a Burger-type viscoelastic model to predict the re-torque response of a single bolt-gasket test fixture in order to validate the ability of the model to simulate the re-torque response under various loading conditions and flange detail.
Asbestos exposure from gaskets during disassembly of a medium duty diesel engine.
Liukonen, Larry R; Weir, Francis W
2005-03-01
Diesel engines have historically used asbestos-containing gaskets leading to concerns of fiber release and mechanic exposure. Other published studies regarding asbestos fiber release during gasket removal have reported on short-duration events; were conducted under simulated work conditions; or had other limitations. There are no comprehensive studies relating to diesel engine gaskets under conditions similar to those reported herein, evaluating asbestos fiber release from gaskets during all facets of a complete disassembly and cleaning of a medium duty diesel engine in a busy repair and service shop by a journeyman mechanic. Asbestos content of all gaskets was identified; all disassembly tasks were described and timed; and personal and area air monitoring was conducted for each task. Twenty seven of thirty three gaskets contained chrysotile asbestos in concentrations that ranged from 5 to 70%. All but one air monitoring sample reported results below the limit of reliable detection even though plumes of visible dust were evident during various removal, cleaning, and buffing procedures. The detection limit for airborne asbestos fibers in this investigation was influenced by the presence of other shop dust in the air. Our investigation demonstrates that using shop-standard procedures in an established repair facility, a journeyman mechanic has very little potential for exposure to airborne asbestos fibers during disassembly of an engine, approximately 10% or less than that currently considered to be acceptable by OSHA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gaskets. 18.27 Section 18.27 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.27...
Flexible ceramic gasket for SOFC generator
Zafred, Paolo [Murrysville, PA; Prevish, Thomas [Trafford, PA
2009-02-03
A solid oxide fuel cell generator (10) contains stacks of hollow axially elongated fuel cells (36) having an open top end (37), an oxidant inlet plenum (52), a feed fuel plenum (11), a combustion chamber (94) for combusting reacted oxidant/spent fuel; and, optionally, a fuel recirculation chamber (106) below the combustion chamber (94), where the fuel recirculation chamber (94) is in part defined by semi-porous fuel cell positioning gasket (108), all within an outer generator enclosure (8), wherein the fuel cell gasket (108) has a laminate structure comprising at least a compliant fibrous mat support layer and a strong, yet flexible woven layer, which may contain catalytic particles facing the combustion chamber, where the catalyst, if used, is effective to further oxidize exhaust fuel and protect the open top end (37) of the fuel cells.
Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Thomas; Haase, Jürgen
2015-12-15
Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It ismore » shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.« less
Effect of intake swirl on the performance of single cylinder direct injection diesel engine
NASA Astrophysics Data System (ADS)
Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra
2017-11-01
In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, I.S.; Gaines, A.
1987-11-01
The W.R. Grace Chemical Division plant in Lake Charles, LA had to stop producing catalysts for the oil refining industry whenever a piping system for 98% sulfuric acid developed a leak. Gaskets of a nonasbestos material were being used between the flanges of the steel pipe lined with TFE or polypropylene. The flange bolts were kept tight, but the gaskets usually failed to maintain a leaktight seal with the acid at 60 psi for more than a few weeks or months. The acid lines had to be drained before the faulty gasket could be replaced, and production downtime would rangemore » from one to three hours. In July 1986, the plant decided to try a chemical resistant gasket of Teflon molded and bonded to a core of Shore A 65-66 durometer EPDM rubber in the acid lines. The resilient gasket also has patented double convex rings on both faces for optimum sealing with only one-eighth the bolt tightening torque commonly required with flat-faced gaskets. The low sealing force requirement prolongs the life of the gasket, eliminates plastic cold flow at the flange of lined steel pipe, and avoids stresses that can damage thermoplastic and fiberglass piping systems. The gasket has a temperature range of {minus}4 to 210{degree}F and is available in 1/2 through 12 inch sizes that conform to ANSI B16.1 flange dimensions. Alternative gasket materials are Kynar PVDF-bonded EPDM and EPDM without a fluoropolymer laminate. The Teflon-bonded EPDM gaskets eliminated unscheduled catalyst production downtime due to leakage from the sulfuric acid piping system. The plant maintains an inventory of the low torque gasket, but has never had to replace any that have been in service since July 1986.« less
Membrane electrode gasket assembly (MEGA) technology for polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Pozio, A.; Giorgi, L.; De Francesco, M.; Silva, R. F.; Lo Presti, R.; Danzi, A.
A new technology for the production of a membrane electrode gasket assembly (MEGA) for polymer electrolyte fuel cells (PEFCs) is defined. The MEGA system was prepared by sealing a previously prepared membrane electrode assembly (MEA) in a moulded gasket. For this aim, a proprietary silicone based liquid mixture was injected directly into the MEA borders. Gaskets obtained in different shapes and hardness grades are stable in a wide temperature range. The MEGA technology shows several advantages with respect to traditional PEFCs stack assembling systems: effective membrane saving, reduced fabrication time, possibility of quality control and failed elements substitution. This technology was successfully tested at the ENEA laboratories and the results were acquired in laboratory scale, but industrial production appears to be simple and cheap.
CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head
NASA Astrophysics Data System (ADS)
Balaji, S.; Ganesh, N.; Kumarasamy, A.
2017-05-01
Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.
NASA Astrophysics Data System (ADS)
Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Porter, Wallace D.; Shyam, Amit
2017-05-01
The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.
On the packing measure of the Sierpinski gasket
NASA Astrophysics Data System (ADS)
Llorente, Marta; Mera, M. Eugenia; Morán, Manuel
2018-06-01
We show that the s-dimensional packing measure P s (S) of the Sierpinski gasket S, where is the similarity dimension of S, satisfies . The formula presented in theorem 6 enables the achievement of the above measure bounds for this non-totally disconnected set as it shows that the symmetries of the Sierpinski gasket can be exploited to simplify the density characterization of P s obtained in Morán (2005 Nonlinearity 18 559–70) for self-similar sets satisfying the so-called open set condition. Thanks to the reduction obtained in theorem 6 we are able to handle the problem of computability of P s (S) with a suitable algorithm.
Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...
2017-03-08
The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systemsmore » (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres
The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systemsmore » (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.« less
Exposures to asbestos arising from bandsawing gasket material.
Fowler, D P
2000-05-01
A simulation of bandsawing sheet asbestos gasket material was performed as part of a retrospective exposure evaluation undertaken to assist in determining causation of a case of mesothelioma. The work was performed by bandsawing a chrysotile asbestos (80%)/neoprene gasket sheet with a conventional 16-inch woodworking bandsaw inside a chamber. Measurements of airborne asbestos were made using conventional area and personal sampling methods, with analysis of collected samples by transmission electron microscopy (TEM) and phase contrast microscopy (PCM). These were supplemented by qualitative scanning electron microscopy (SEM) examinations of some of the airborne particles collected on the filters. In contrast with findings from studies examining manual handling (installation and removal) of gaskets, airborne asbestos concentrations from this operation were found to be well above current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) (eight-hour time-weighted average [TWA]) and excursion limit (30-minute) standards. Although some "encapsulation" effect of the neoprene matrix was seen on the particles in the airborne dust, unencapsulated individual fiber bundles were also seen. Suggestions for the implications of the work are given. In summary, the airborne asbestos concentrations arising from this work were quite high, and point to the need for careful observation of common sense precautions when manipulation of asbestos-containing materials (even those believed to have limited emissions potential) may involved machining operations.
Madl, Amy K; Hollins, Dana M; Devlin, Kathryn D; Donovan, Ellen P; Dopart, Pamela J; Scott, Paul K; Perez, Angela L
2014-08-01
Exposures to airborne asbestos during the removal and installation of internal gaskets and packing associated with a valve overhaul were characterized and compared to published data according to different variables (e.g., product, equipment, task, tool, setting, duration). Personal breathing zone and area samples were collected during twelve events simulating gasket and packing replacement, clean-up and clothing handling. These samples were analyzed using PCM and TEM methods and PCM-equivalent (PCME) airborne asbestos concentrations were calculated. A meta-analysis was performed to compare these data with airborne asbestos concentrations measured in other studies involving gaskets and packing. Short-term mechanic and assistant airborne asbestos concentrations during valve work averaged 0.013f/cc and 0.008f/cc (PCME), respectively. Area samples averaged 0.008f/cc, 0.005f/cc, and 0.003f/cc (PCME) for center, bystander, and remote background, respectively. Assuming a tradesman conservatively performs 1-3 gasket and/or packing replacements daily, an average 8-h TWA was estimated to be 0.002-0.010f/cc (PCME). Combining these results in a meta-analysis of the published exposure data showed that the majority of airborne asbestos exposures during work with gaskets and packing fall within a consistent and low range. Significant differences in airborne concentrations were observed between power versus manual tools and removal versus installation tasks. Airborne asbestos concentrations resulting from gasket and packing work during a valve overhaul are consistent with historical exposure data on replacement of asbestos-containing gasket and packing materials involving multiple variables and, in nearly all plausible scenarios, result in average airborne asbestos concentrations below contemporaneous occupational exposure limits for asbestos. Copyright © 2014 Elsevier Inc. All rights reserved.
Partial-Vacuum-Gasketed Electrochemical Corrosion Cell
NASA Technical Reports Server (NTRS)
Bonifas, Andrew P.; Calle, Luz M.; Hintze, Paul E.
2006-01-01
An electrochemical cell for making corrosion measurements has been designed to prevent or reduce crevice corrosion, which is a common source of error in prior such cells. The present cell (see figure) includes an electrolyte reservoir with O-ring-edged opening at the bottom. In preparation for a test, the reservoir, while empty, is pressed down against a horizontal specimen surface to form an O-ring seal. A purge of air or other suitable gas is begun in the reservoir, and the pressure in the reservoir is regulated to maintain a partial vacuum. While maintaining the purge and partial vacuum, and without opening the interior of the reservoir to the atmosphere, the electrolyte is pumped into the reservoir. The reservoir is then slowly lifted a short distance off the specimen. The level of the partial vacuum is chosen such that the differential pressure is just sufficient to keep the electrolyte from flowing out of the reservoir through the small O-ring/specimen gap. Electrochemical measurements are then made. Because there is no gasket (and, hence, no crevice between the specimen and the gasket), crevice corrosion is unlikely to occur.
REVIEW OF ENERGY EFFICIENCY OF REFRIGERATOR/FREEZER GASKETS
The report gives results of an investigation of the significance of heat leakage through gaskets in household refrigerator/freezers, explores different design features, and suggests further study if necessary. he report gives results of an extensive literature review, interviews ...
REVIEW OF ENERGY EFFICIENCY OF REFRIGERATOR/FREEZER GASKETS
The report gives results of an investigation of the significance of heat leakage through gaskets in household refrigerator/freezers, explores different design features, and suggests further study if necessary. The report gives results of an extensive literature review, interviews...
Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1940-01-01
The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed.
Marchetti, George A.
2003-01-03
The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.
Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon
2012-10-01
Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.
Mangold, Carl; Clark, Katherine; Madl, Amy; Paustenbach, Dennis
2006-02-01
From 1982 until 1991, a series of studies was performed to evaluate the airborne concentration of chrysotile asbestos associated with replacing gaskets and packing materials. These studies were conducted by the senior author in response to concerns raised by a report from the Navy in 1978 on asbestos exposures associated with gasket work. A series of studies was conducted because results of those who worked with gaskets within the Navy study did not address the background concentrations of asbestos in the work areas, which may have been significant due to the presence of asbestos insulation in the ships and shipyards. The intent of the studies performed from 1982 through 1991 was to re-create the Navy's work practices in a contaminant-free environment during an 8-hour workday (so the data could be compared with the OSHA permissible exposure limit [PEL]). Samples were collected to characterize personal and area airborne asbestos concentrations associated with the formation, removal, and storage of gaskets, as well as the scraping of flanges and the replacement of valve packing. The results indicate that the 8-hour time-weighted average (TWA) exposures of pipefitters and other tradesmen who performed these activities were below the current PEL and all previous PELs. Specifically, the highest average 8-hour TWA concentration measured for workers manipulating asbestos gaskets during this study was 0.030 f/cc (during gasket removal and flange face scraping onboard a naval ship). Likewise, the 8-hour TWA breathing zone concentrations of a worker removing and replacing asbestos valve packing did not exceed 0.016 f/cc. In most cases, the concentrations were not distinguishable from ambient levels of asbestos in the ships or the general environment. These results are not surprising given that asbestos fibers in gasket materials are encapsulated within a binder.
A Visual Photographic Study of Cylinder Lubrication
NASA Technical Reports Server (NTRS)
Shaw, Milton C; Nussdorfer, Theodore
1946-01-01
A V-type engine provided with a glass cylinder was used to study visually the lubrication characteristics of an aircraft-type piston. Photographs and data were obtained with the engine motored at engine speeds up to 1000 r.p.m. and constant cylinder-head pressures of 0 and 50 pounds per square inch. A study was made of the orientation of the piston under various operating conditions, which indicated that the piston was inclined with the crown nearest the major-thrust cylinder face throughout the greater part of the cycle. The piston moved laterally in the cylinder under the influence of piston side thrust.
Blake, Charles L; Dotson, G Scott; Harbison, Raymond D
2006-07-01
Five test sessions were conducted to assess asbestos exposure during the removal or installation of asbestos-containing gaskets on vehicles. All testing took place within an operative automotive repair facility involving passenger cars and a pickup truck ranging in vintage from late 1960s through 1970s. A professional mechanic performed all shop work including engine disassembly and reassembly, gasket manipulation and parts cleaning. Bulk sample analysis of removed gaskets through polarized light microscopy (PLM) revealed asbestos fiber concentrations ranging between 0 and 75%. Personal and area air samples were collected and analyzed using National Institute of Occupational Safety Health (NIOSH) methods 7400 [phase contrast microscopy (PCM)] and 7402 [transmission electron microscopy (TEM)]. Among all air samples collected, approximately 21% (n = 11) contained chrysotile fibers. The mean PCM and phase contrast microscopy equivalent (PCME) 8-h time weighted average (TWA) concentrations for these samples were 0.0031 fibers/cubic centimeters (f/cc) and 0.0017 f/cc, respectively. Based on these findings, automobile mechanics who worked with asbestos-containing gaskets may have been exposed to concentrations of airborne asbestos concentrations approximately 100 times lower than the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) of 0.1 f/cc.
The Gasket of Circles: A Fractal of Circular Nature
ERIC Educational Resources Information Center
Haggar, Fred; Kricic, Senida
2017-01-01
Subdividing an equilateral triangle into four congruent triangles, then doing likewise to each of the three non-central triangles, and then again and again, leads to the Sierpinski gasket, from which the chaos game originated. An analogous procedure is hereforth applied to a circle, where a subdivision consists of two pairs of inscribed circles,…
Boesgaard, Kristine S; Mikkelsen, Teis N; Ro-Poulsen, Helge; Ibrom, Andreas
2013-07-01
There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non-ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf-mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi-laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant material such as grass leaves with circular cross section, and the effectiveness is shown with respiration measurements on a harp of Deschampsia flexuosa leaves. We conclude that the best solution for measurements with portable photosynthesis systems is to avoid LMP rather than trying to correct for the effects. © 2013 John Wiley & Sons Ltd.
Madl, Amy K; Clark, Katherine; Paustenbach, Dennis J
2007-01-01
In recent years, questions have been raised about the health risks to persons who have been occupationally exposed to asbestos-containing gaskets and packing materials used in pipes, valves, and machinery (pumps, autos, etc.). Up until the late 1970s, these materials were widely used throughout industrial and maritime operations, refineries, chemical plants, naval ships, and energy plants. Seven simulation studies and four work-site industrial hygiene studies of industrial and maritime settings involving the collection of more than 300 air samples were evaluated to determine the likely airborne fiber concentrations to which a worker may have been exposed while working with encapsulated asbestos-containing gaskets and packing materials. Each study was evaluated for the representativeness of work practices, analytical methods, sample size, and potential for asbestos contamination (e.g., insulation on valves or pipes used in the study). Specific activities evaluated included the removal and installation of gaskets and packings, flange cleaning, and gasket formation. In all but one of the studies relating to the replacement of gaskets and packing using hand-held tools, the short-term average exposures were less than the current 30-min OSHA excursion limit of 1 fiber per cubic centimeter (f/cc) and all of the long-term average exposures were less than the current 8-h permissible exposure limit time-weighted average (PEL-TWA) of 0.1 f/cc. The weight of evidence indicates that the use of hand tools and hand-operated power tools to remove or install gaskets or packing as performed by pipefitters or other tradesmen in nearly all plausible situations would not have produced airborne concentrations in excess of contemporaneous regulatory levels.
Heat-transfer processes in air-cooled engine cylinders
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin
1938-01-01
From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.
Berntell, John O.
1983-01-01
A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.
1999-01-01
In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.
NASA Technical Reports Server (NTRS)
Lundin, Bruce T; Povolny, John H; Chelko, Louis J
1949-01-01
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.
SEAL FOR HIGH SPEED CENTRIFUGE
Skarstrom, C.W.
1957-12-17
A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.
Evaluation of elastomers as gasket materials in pneumatic and hydraulic systems
NASA Technical Reports Server (NTRS)
Bright, C. W.; Lockhart, B. J.
1972-01-01
In the search for superior materials from which to make gaskets for pneumatic and hydraulic systems, promising materials were selected and tested. The testing was conducted in two phases. Those materials that passed the tests of Phase 1 were tested in Phase 2, and categorized in the order of preference.
Madl, Amy K; Devlin, Kathryn D; Perez, Angela L; Hollins, Dana M; Cowan, Dallas M; Scott, Paul K; White, Katherine; Cheng, Thales J; Henshaw, John L
2015-02-01
A simulation study was conducted to evaluate worker and area exposure to airborne asbestos associated with the replacement of asbestos-containing gaskets and packing materials from flanges and valves and assess the influence of several variables previously not investigated. Additionally, potential of take home exposures from clothing worn during the study was characterized. Our data showed that product type, ventilation type, gasket location, flange or bonnet size, number of flanges involved, surface characteristics, gasket surface adherence, and even activity type did not have a significant effect on worker exposures. Average worker asbestos exposures during flange gasket work (PCME=0.166 f/cc, 12-59 min) were similar to average worker asbestos exposures during valve overhaul work (PCME=0.165 f/cc, 7-76 min). Average 8-h TWA asbestos exposures were estimated to range from 0.010 to 0.062 f/cc. Handling clothes worn during gasket and packing replacement activities demonstrated exposures that were 0.71% (0.0009 f/cc 40-h TWA) of the airborne asbestos concentration experienced during the 5 days of the study. Despite the many variables considered in this study, exposures during gasket and packing replacement occur within a relatively narrow range, are below current and historical occupational exposure limits for asbestos, and are consistent with previously published data. Copyright © 2014 Elsevier Inc. All rights reserved.
21 CFR 177.1210 - Closures with sealing gaskets for food containers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Closures with sealing gaskets for food containers... paragraph (b)(3) (v), (xxxi), and (xxxii) of that section, and from other optional substances, including the... provisions of a prior sanction or approval within the meaning of section 201(s) of the act. (3) Substances...
21 CFR 177.1210 - Closures with sealing gaskets for food containers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Closures with sealing gaskets for food containers... identified in § 175.300(b) of this chapter, with the exception of paragraph (b)(3) (v), (xxxi), and (xxxii... sanction or approval within the meaning of section 201(s) of the act. (3) Substances that are the subject...
21 CFR 177.1210 - Closures with sealing gaskets for food containers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Closures with sealing gaskets for food containers... identified in § 175.300(b) of this chapter, with the exception of paragraph (b)(3) (v), (xxxi), and (xxxii... sanction or approval within the meaning of section 201(s) of the act. (3) Substances that are the subject...
Colbert, H.P.
1962-10-23
An improved tool head arrangement is designed for the automatic expanding of a plurality of ferruled tubes simultaneously. A plurality of output shafts of a multiple spindle drill head are driven in unison by a hydraulic motor. A plurality of tube expanders are respectively coupled to the shafts through individual power train arrangements. The axial or thrust force required for the rolling operation is provided by a double acting hydraulic cylinder having a hollow through shaft with the shaft cooperating with an internally rotatable splined shaft slidably coupled to a coupling rigidly attached to the respectlve output shaft of the drill head, thereby transmitting rotary motion and axial thrust simultaneously to the tube expander. A hydraulic power unit supplies power to each of the double acting cylinders through respective two-position, four-way valves, under control of respective solenoids for each of the cylinders. The solenoids are in turn selectively controlled by a tool selection control unit which in turn is controlled by signals received from a programmed, coded tape from a tape reader. The number of expanders that are extended in a rolling operation, which may be up to 42 expanders, is determined by a predetermined program of operations depending upon the arrangement of the ferruled tubes to be expanded in the tube bundle. The tape reader also supplies dimensional information to a machine tool servo control unit for imparting selected, horizontal and/or vertical movement to the tool head assembly. (AEC)
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Jun
2018-05-01
A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.
A tale of two fractals: The Hofstadter butterfly and the integral Apollonian gaskets
NASA Astrophysics Data System (ADS)
Satija, Indubala I.
2016-11-01
This paper unveils a mapping between a quantum fractal that describes a physical phenomena, and an abstract geometrical fractal. The quantum fractal is the Hofstadter butterfly discovered in 1976 in an iconic condensed matter problem of electrons moving in a two-dimensional lattice in a transverse magnetic field. The geometric fractal is the integer Apollonian gasket characterized in terms of a 300 BC problem of mutually tangent circles. Both of these fractals are made up of integers. In the Hofstadter butterfly, these integers encode the topological quantum numbers of quantum Hall conductivity. In the Apollonian gaskets an infinite number of mutually tangent circles are nested inside each other, where each circle has integer curvature. The mapping between these two fractals reveals a hidden D3 symmetry embedded in the kaleidoscopic images that describe the asymptotic scaling properties of the butterfly. This paper also serves as a mini review of these fractals, emphasizing their hierarchical aspects in terms of Farey fractions.
NASA Astrophysics Data System (ADS)
Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, Linbo
2008-11-01
Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 μm in diameter and ˜50 μm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 °C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 °C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90° angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 μm, a pressure of 76 MPa at 500 °C was maintained for 2 h with no change in the original fluid density.
Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, L.
2008-01-01
Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 ??m in diameter and ???50 ??m deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 ??C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 ??C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90?? angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 ??m, a pressure of 76 MPa at 500 ??C was maintained for 2 h with no change in the original fluid density. ?? 2008 American Institute of Physics.
Chou, I-Ming; Bassett, William A; Anderson, Alan J; Mayanovic, Robert A; Shang, Linbo
2008-11-01
Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 microm in diameter and approximately 50 microm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 degrees C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 degrees C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90 degrees angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 microm, a pressure of 76 MPa at 500 degrees C was maintained for 2 h with no change in the original fluid density.
Microstructure and Mechanical Properties of Heat-Treated B319 Alloy Diesel Cylinder Heads
NASA Astrophysics Data System (ADS)
Chaudhury, S. K.; Apelian, D.; Meyer, P.; Massinon, D.; Morichon, J.
2015-07-01
Microstructure and mechanical properties of B319 alloy diesel cylinder heads were investigated in this study. Cylinder heads were heat treated to T5, T6, and T7 tempers using fluidized bed technology. Three different fluidized beds were used, each to solutionize, quench, and age the castings. For comparative purposes, castings were also aged using conventional forced-air circulation electric-resistance furnace. Effects of processing parameters such as temperature, time, and heating rate on microstructural evolution and mechanical properties namely tensile properties and hardness of B319 alloy castings were studied. The number density and size range of precipitates were measured. Results show that the T5 temper has no effect on eutectic phases such as Si- and Fe-rich intermetallic, and Al2Cu. On contrary, both T6 and T7 tempers result in spherodization of the eutectic Si and partial dissolution of the Al2Cu phase. Prolonged solution heat treatment for 8 hours in fluidized bed results in limited dissolution of the secondary eutectic Al2Cu phase. Aging (T6, T7, and T5) results in precipitation of Al5Cu2Mg8Si6 and Al2Cu phases in B319 alloy. The number density of precipitates in T6 temper is greater than in T7 and T5 tempers. The number density of precipitates is also affected by the duration of solution heat treatment. In general, long solution heat treatment (8 hours) results in greater precipitate density than short solution treatment (2 hours). The distribution of precipitates is inhomogeneous and varied across the dendritic structure. In general, precipitation rate of Al5Cu2Mg8Si6 phase is greater near the periphery of the dendrite as compared to the center. This is because Al5Cu2Mg8Si6 nucleates on Si particle, grain boundaries, and triple junction between recrystallized Al grains and Si particles. Similarly, heterogeneous sites such as grain boundaries and Al/Si interface also act as nucleating sites for the precipitation of Al2Cu phase. In general, the
7. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING CYLINDER AND ...
7. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING CYLINDER AND CROSS HEAD OF PISTON AT THE LOW PRESSURE SIDE OF ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH
8. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING CYLINDER AND ...
8. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING CYLINDER AND CROSS HEAD OF PISTON AT THE HIGH-PRESSURE SIDE OF ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH
NASA Technical Reports Server (NTRS)
Wilson, Robert W.; Richard, Paul H.; Brown, Kenneth D.
1945-01-01
Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.
NASA Astrophysics Data System (ADS)
Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit
2017-05-01
The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.
Ceramic port shields cast in an iron engine head
NASA Technical Reports Server (NTRS)
Hakim, Nabil S.; Groeneweg, Mark A.
1989-01-01
Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.
Experimental investigation of head resistance reduction in bubbly Couette-Taylor flow
NASA Astrophysics Data System (ADS)
Maryami, R.; Javadpoor, M.; Farahat, S.
2016-12-01
Small bubble experiments are carried out in a circulating vertical Couette-Taylor flow system to investigate the effect of air bubbles on head resistance. In the system with inner rotating cylinder and circulating flow, flow is combined with circumferential and axial flow. Moreover, the variation range of rotational Reynolds number is 7 × 103 ≤ {Re}_{ω } ≤ 70 × 103 and small bubbles are dispersed into fully turbulent flow which consists of Taylor vortices. The modification of head resistance is examined by measuring the pressure difference between two certain holes along the cylinders axis. The results show that head resistance is decreased in the presence of small bubbles and a head resistance reduction greater than 60 % is achieved in low {Re}_{ω } s and in all {Re}_{ax} s changing from 299.15 to 396.27. The effect of air bubbles on vortices could be possible reason for head resistance reduction. Since Taylor vortices are stable in this regime, bubbles decrease the momentum transfer by elongating vortices along the axis of cylinders and decreasing their numbers. The positive effect of air bubbles on head resistance reduction is diminished when {Re}_{ω } is increased. Moreover, in certain ranges of {Re}_{ω }, small bubbles enhance head resistance when {Re}_{ax} is increased. It is predicted that negative effect of small bubbles on head resistance reduction is due to flow turbulence enhancement when {Re}_{ω } and {Re}_{ax} are increased.
The effect of preignition on cylinder temperatures, pressures, power output, and piston failures
NASA Technical Reports Server (NTRS)
Corrington, Lester C; Fisher, William F
1947-01-01
An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres
The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less
Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...
2017-03-06
The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less
Cylinder To Cylinder Balancing Using Intake Valve Actuation
Duffy, Kevin P.; Kieser, Andrew J.; Kilkenny, Jonathan P.
2005-01-18
A method and apparatus for balancing a combustion phasing between a plurality of cylinders located in an engine. The method and apparatus includes a determining a combustion timing in each cylinder, establishing a baseline parameter for a desired combustion timing, and varying actuation of at least one of a plurality of intake valves, each intake valve being in fluid communication with a corresponding cylinder, such that the combustion timing in each cylinder is substantially equal to the desired combustion timing.
Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P
2010-10-01
Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.
An analysis of pipe flange connections using epoxy adhesives/anaerobic sealant instead of gaskets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Sasaki, R.; Yoneno, M.
1995-11-01
This paper deals with the strength and the sealing performance of pipe flange connections combining the bonding force of adhesives with the clamping force of bolts. The epoxy adhesives or anaerobic sealants are bonded at the interface partially instead of gaskets in pipe flange connections. The stress distribution in the epoxy adhesives (anaerobic sealant), which governs the sealing performance, and the variations in axial bolt force are analyzed, using an axisymmetrical theory of elasticity, when an internal pressure is applied to a connection in which two pipe flanges are clamped together buy bolts and nuts with an initial clamping forcemore » after being joined by epoxy adhesives or anaerobic sealant. In addition, a method for estimating the strength of the combination connection is demonstrated. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination connections. It can be seen that the strength of connections increases with a decrease in the bolt pitch circle diameter. Furthermore, it is seen that the sealing performance of such combination connections in which the interface is bonded partially is improved over that of pipe flange connections with metallic gaskets.« less
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2013 CFR
2013-10-01
... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2012 CFR
2012-10-01
... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2014 CFR
2014-10-01
... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Catanach; Larry Hill; Herbert Harry
1999-10-01
The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radialmore » wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.« less
Fracture mechanics analysis of NGV fuel cylinders. Part 1: Steel cylinders
NASA Astrophysics Data System (ADS)
Connolly, M. P.; Hudak, S. J.; Roy, S.
1993-02-01
Compressed natural gas (CNG) cylinders for natural gas vehicles (NGVs) are subject to a combination of pressure cycles, associated with periodic refueling, and a potentially corrosive CNG environment. Under these conditions it has been shown that the life of the cylinder is governed by the corrosion-fatigue crack growth of internal flaws such as voids, pits or folds that may be present after manufacture. For NGV applications, these cylinders are required to operate for at least 15 years and the report, through a detailed fracture mechanics analysis, describes approaches to achieving the desired life. The analysis shows that a 15 year cylinder life can be obtained by using quality control to ensure that no initial defects greater than 0.045 in. X 0.090 in. exist after manufacture. Alternatively, gas drying can be used at the distribution stations to reduce the detrimental effects of the remaining CNG impurities, and thereby, produce long cylinder lives. The analysis also considers the role of in-service inspection/retest and shows that in-service NDE has little advantage, either technically or economically, for ensuring the fitness-for-service of steel NGV cylinders. The analysis also shows that hydrostatic testing of cylinders, either at manufacture or in service, is ineffective for detecting fatigue cracks and therefore should not be implemented as part of a fitness-for-service plan for NGV fuel cylinders. The issue of cylinder geometry was also considered and the analysis shows that improperly designed flat-bottomed CNG cylinders can result in premature fatigue failures originating at the inner wall in the transition region between the cylinder end and sidewall.
’Head-On’ Scattering of a Tubular Cylinder of Finite Length for Radar Target Identification Purposes
1985-03-01
environment. The anechoic chamber is enclosed with aluminium plates and internally lined with a radio frequency absorbing material. The absorbing material...provides the necessary attenuation to the reflections from the walls, floor and ceiling, and the aluminium surface provides protection against external...inch aluminium sphere is used. Some measurements are taken with a cylinder with fins attached .The description of the cylinder with fins is shown in
Behavior of a tapered hub flange with a bolted flat cover in transient temperature field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Nakagomi, Y.; Hirose, T.
1996-02-01
When bolted flange connections with gaskets are used in mechanical structures such as pipe connections, bolted covers of casks, and pressure vessels in nuclear and chemical plants and cylinder heads in internal combustion engines, they are usually subjected to transient thermal conditions. An experimental and analytical study was made on a bolted connection subjected to thermal loading. The connection consists of an aluminum alloy tapered hub flange and a flat cover, including a gasket fastened by steel bolts and nuts. Temperature distribution in the connection was measured with thermocouples, and the axial bolt force, the maximum bolt stress, and themore » hub stress were measured by strain gages under a thermal condition that the inner surface of the flanges was heated and the outer surfaces of the flanges and the cover were held at room temperature. Finite difference analysis was made to obtain the temperature distributions in the connection due to a transient thermal condition. This paper demonstrates the method for obtaining an increment in axial bolt force and the maximum bolt stress. In all cases, the analytical results were fairly consistent with the experimental results.« less
BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN ON THE SIERPIŃSKI GASKET
NASA Astrophysics Data System (ADS)
Priyadarshi, Amit; Sahu, Abhilash
In this paper, we study the following boundary value problem involving the weak p-Laplacian. -Δpu=λa(x)|u|q-1u + b(x)|u|l-1uin 𝒮∖𝒮 0; u=0on 𝒮0, where 𝒮 is the Sierpiński gasket in ℝ2, 𝒮0 is its boundary, λ > 0, p > 1, 0 < q < p - 1 < l and a,b : 𝒮→ ℝ are bounded nonnegative functions. We will show the existence of at least two nontrivial weak solutions to the above problem for a certain range of λ using the analysis of fibering maps on suitable subsets.
Engine Cylinder Temperature Control
Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick
2005-09-27
A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.
Delamination of Composite Cylinders
NASA Astrophysics Data System (ADS)
Davies, Peter; Carlsson, Leif A.
The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.
Ezerskis, Z; Morkūnas, V; Suman, M; Simoneau, C
2007-11-26
Fourteen poly(vinyl chloride) (PVC) gasket seals and 15 samples of pesto, tomatoes sauces, olive oil and olives in oil were analysed for the additives and plasticisers. The systematic screening of the representative samples revealed that epoxidised soybean oil (ESBO) was the principal plasticiser in eight gaskets and the concentrations of the substance ranged from 15% to 42%. Diisodecyl phthalate (DIDP) as main plasticiser was revealed in three samples and the amount ranged from 37 to 41%. Polyadipate was added in four samples at 16-46%. The concentration of ESBO exceeded 60 mg kg(-1) in three food samples with extreme at 281.9 mg kg(-1) and average 61.3 mg kg(-1). Di-(2-ethylhexyl) phthalate (DEHP) was detected in six food samples and it ranged from 2.5 to 8.7 mg kg(-1). The concentration of DEHP exceeded SML (3 mg kg(-1)) in five cases. The concentration of total polyadipate (PA) was 16.3 mg kg(-1) in average. All eight positive food samples for total PA showed the concentrations below SML (30 mg kg(-1)), which are specified for the fraction of polyadipates lower than 1000 Da. The migration rate of polyadipate in the food ranged from 1 to 7%. At such low transfer rate the polyadipates could be promising plasticisers for PVC gasket seals used in food industry.
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
4. View showing cylinder end of two, cylinder, compound Corliss ...
4. View showing cylinder end of two, cylinder, compound Corliss steam engine with tandem air compressor. - International Smelting & Refining Company, Tooele Smelter, Powerhouse, State Route 178, Tooele, Tooele County, UT
A MEMS SOI-based piezoresistive fluid flow sensor
NASA Astrophysics Data System (ADS)
Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.
2018-02-01
In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.
NASA Technical Reports Server (NTRS)
Ransone, Philip O. (Inventor)
1995-01-01
A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.
Enhancement of polarizabilities of cylinders with cylinder-slab resonances
Xiao, Meng; Huang, Xueqin; Liu, H.; Chan, C. T.
2015-01-01
If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much “brighter” is actually closely related to the reverse effect known in the literature as “cloaking by anomalous resonance” which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder. PMID:25641391
Anaesthesia Gas Supply: Gas Cylinders
Srivastava, Uma
2013-01-01
Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883
Anaesthesia gas supply: gas cylinders.
Srivastava, Uma
2013-09-01
Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment.
Gas Cylinder Safety, Course 9518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
2016-10-27
This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).
Behrens, R
2012-09-01
The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.
Tandem Cylinder Noise Predictions
NASA Technical Reports Server (NTRS)
Lockard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.
2007-01-01
In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to
NASA Astrophysics Data System (ADS)
Kim, Dae Ho; Kim, Jin Min
2012-09-01
A conserved discrete model on the Sierpinski gasket substrate is studied. The interface width W in the model follows the Family-Vicsek dynamic scaling form with growth exponent β ≈ 0.0542, roughness exponent α ≈ 0.240 and dynamic exponent z ≈ 4.42. They satisfy a scaling relation α + z = 2zrw, where zrw is the random walk exponent of the fractal substrate. Also, they are in a good agreement with the predicted values of a fractional Langevin equation \\frac{\\partial h}{\\partial t}={\
4 x 8 inch concrete cylinders versus 6 x 12 cylinders.
DOT National Transportation Integrated Search
1984-01-01
Laboratory and field investigations were conducted to compare the compressive strengths obtained for 4 x 8 in. (100 x 200 mm) cylinders with those for standard 6 x 12 in. (150 x 300 mm) cylinders, both made with aggregate having a nominal maximum siz...
Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.
Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian
2015-11-01
A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.
Reducing cylinder drag by adding a plate
NASA Astrophysics Data System (ADS)
Frolov, Vladimir A.; Kozlova, Anna S.
2017-10-01
Reducing the drag of bodies is a central problem of modern aerohydrodynamics. The paper presents theoretical and experimental studies of a new method for reducing the drag of a circular cylinder. To reduce the drag we propose to install a flat plate along the flow in front of the cylinder. The theoretical investigation of the drag was carried out using FlowSimulation software. An experimental study of the body drag was performed in an open wind tunnel. The drag coefficient results of the cylinder depended on the different locations of the flat plate relative to the cylinder. The following geometric characteristics of the cylinder/plate are studied: the width of the gap between the cylinder and the plate and the meridional angle of the plate with respect to the cylinder. On the basis of Numerical and Physical Modeling, the values of the drag coefficient for the cylinder/plate are presented. The results included establishment the locations of the cylinder/plate which give the value of the drag coefficient for the combination of the two bodies. That total drag coefficient of the cylinder/plate can be less than the cylinder alone.
NASA Astrophysics Data System (ADS)
Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier
2009-12-01
In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.
Focal surfaces of hyperbolic cylinders
NASA Astrophysics Data System (ADS)
Georgiev, Georgi Hristov; Pavlov, Milen Dimov
2017-12-01
Cylindrical surfaces have many applications in geometric modeling, architecture and other branches of engineering. In this paper, we describe two cylindrical surfaces associated to a given hyperbolic cylinder. The first one is a focal surface which is determined by reciprocal principle curvature of the hyperbolic cylinder. The second one is a generalized focal surface obtained by reciprocal mean curvature of the same hyperbolic cylinder. In particular, we show that each of these surfaces admits three different parametric representations. As consequence, it is proved that the focal and generalized focal surfaces of the hyperbolic cylinder are rational surfaces. An illustrative example is included.
Leakage Through a Channel Formed by a Gasket, a Sealing Surface, and a Filament Trapped Between Them
NASA Technical Reports Server (NTRS)
Russell, John; Adams, Frederick
1996-01-01
Plumbing for the transport of liquid Hydrogen or liquid Oxygen at the Kennedy Space Center (KSC) is very critical. Every piece of hardware for handling such a hazardous cryogen is subject to testing prior to installation and use. Safe, realistic testing of all such hardware is prohibitively expensive, which leads, perforce, to expidients such as: (1) lead testing with non-flammable tracer fluids (e.g, liquid nitrogen) and (2) leak testing with room temperature tracer fluids (e.g. liquid helium). Such expedients undermine the realism of the tests. If however, one could apply rational fluid dynamics methods to derive a general analytical expression with which one could relate the throughput of gaseous Helium through a given leak channel to the throughput of liquid Hydrogen through the same channel, then one could recover much of the information that one would otherwise forfeit through these expedients. These facts lead to the following questions: (1) What would be an example of a generic flaw in a gasket?; and (2) How can one calculate the flow of fluid in it? The report addresses these questions. It considers a particular leak geometry, namely one formed by a gasket, a sealing surface, and a filament trapped between them (so that the cross section of the leak channel is a flat bottomed curvilinear triangle, two sides of which are circular arcs and which has cusps on all three corners).
Numerical investigation of flow past 17-cylinder array of square cylinders
NASA Astrophysics Data System (ADS)
Shams-ul-Islam, Nazeer, Ghazala; Ying, Zhou Chao
2018-06-01
In this work, flow past 17-cylinder array is simulated using the two-dimensional lattice Boltzmann method. Effect of gap spacings (0.5 ≤ gx* ≤ 3, 0.5 ≤ gy* ≤ 3) and Reynolds number (Re = 75 - 150) is analyzed in details. Results are presented in the form of vorticity contours plots, time-histories of drag and lift coefficients and power spectrum of lift coefficient. Six distinct flow regimes are identified for different gap spacings and Reynolds numbers: steady flow regime, single bluff body flow regime, non-fully developed flow regime, chaotic flow regime, quasi-periodic-I flow regime and quasi-periodic-II flow regime. Chaotic flow regime is the mostly observed flow regime while the single bluff body flow regime rarely occurs for this configuration. It is observed that drag force along each cylinder in 17-cylinder array decreases in the streamwise direction for fixed Reynold number and gap spacing. C1 and C2 cylinders experience the maximum drag at small gap spacing and Reynolds number. Also the Reynolds number is found to be more effective on flow characteristics as compared to gap spacings.
Massless rotating fermions inside a cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth
2015-12-07
We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1992-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-10-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
Hydromechanical planer with cutting and breaking heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goris, H.; Gunther, R.; Ogorek, K.
1980-12-16
A hydromatic planer particularly for mining materials in a mining seam is comprised of a planer housing which advantageously has a cutting and breaking head on each end thereof, each of which includes a substantially identical construction. Each cutting head includes a vertically arranged support member which is mounted on the housing of the planer by a parallel linkage so that it may be moved upwardly and downwardly under the control of an adjustment means such as a fluid pressure operated piston and cylinder combination. Each cutting and breaking head also includes a first substantially vertically arranged support member whichmore » is connected by the linkage for upward and downward movement relative to the housing and a second support member which is movable relative to the first and mounted on this first in vertical guides for upward and downward movement. A second fluid pressure operated piston and cylinder combination is connected between first and second support members so that they may be shifted relative to each other. A second support member advantageously carries a cutting and breaking wedge which is oriented to engage the mining seam, for example, on a side thereof, and which may be adjusted relative to a similarly oriented cutting and breaking wedge carried by the first member. In addition, a separate cutting and breaking wedge is carried by the first member and it may be engaged for example against the floor thereof in a plane different from the other two wedges.« less
A novel multiport cylinder dryer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, S. U.; Yu, W.; France, D. M.
2001-02-01
A multiport dryer design concept that could create breakthroughs in the drying of pulp and paper is under development. The feasibility of this novel concept was demonstrated in a proof-of-concept test. Experiments were performed in a specially designed test apparatus to investigate the condensing heat-transfer characteristics of a single channel (representative of a multiport cylinder dryer) under typical operating conditions. The experimental results showed that multiport cylinder-dryer technology provides very high heat-transfer coefficients of 15,000 W/m{sup 2}{center_dot}K (2600 Btu/h{center_dot}ft{sup 2} {sup o}F) and a highly uniform distribution of cylinder-wall temperature. These experimental results suggest that a multiport cylinder dryer canmore » increase the rate of paper drying compared with a conventional cylinder dryer. The increased dryer efficiency translates into either a reduction in the number of dryers at the same level of production or an increase in the rate of production with the same number of dryers.« less
NASA Astrophysics Data System (ADS)
Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek
2018-04-01
In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.
NASA Technical Reports Server (NTRS)
Schock, H. J.; Sosoka, D. J.; Ramos, J. I.
1983-01-01
A finite-difference procedure which solves the conservation equations of mass, momentum, and energy is used to investigate the effects of the compression ratio, engine speed, bore-to-stroke ratio, and air intake flow angle on the turbulent flow field within an axisymmetric piston-cylinder configuration. It is shown that in a four-stroke piston-cylinder configuration, the intake stroke is characterized by the formation of a piston vortex. The piston vortex is stretched during the intake stroke, and the head vortex has an almost constant diameter. For a 0-deg air intake flow angle, both vortices disappear by the end of the compression stroke; for an air intake flow angle of 45 deg, the flow field within the cylinder shows three elongated vortices which persist into the compression stroke and then break up and merge. It is also shown that larger bore-to-stroke ratios give rise to lower turbulent levels than smaller bore-to-stroke ratios and that the turbulent intensity is almost independent of the rpm.
Multiple Cylinder Free-Piston Stirling Machinery
NASA Astrophysics Data System (ADS)
Berchowitz, David M.; Kwon, Yong-Rak
In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.
Natural convective heat transfer from square cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
ERIC Educational Resources Information Center
Johnson, Erica
2006-01-01
Hoping to develop in her students an understanding of mathematics as a way of thinking more than a way of doing, the author of this article describes how her students worked on a spatial reasoning problem stemming from an iteratively constructed sequence of cylinders. She presents an activity of making cylinders out of paper models, and for every…
NASA Astrophysics Data System (ADS)
Wei, Wei; Marston, Philip L.
2005-09-01
Using an appropriate grouping of terms, a radiation force expression for cylinders in a standing wave based on far-field scattering [W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202-208 (2004)] is transformed to an expression given elsewhere [F. G. Mitri, Eur. Phys. J. B 44, 71-78 (2005)]. Mitri's result is from a near-field derivation for the specific case of a circular cylinder. In the usual case, in an ideal lossless media the far-field derivation is not an approximation. The far-field derivation also applies to noncircular objects having mirror symmetry about the incident wave vector. Some general and historical aspects of far-field derivations of optical and acoustical radiation force (going back to 1909) will be noted. Our formulation yields a simple low-frequency approximation for the radiation force on elliptical cylinders by introducing approximations for the partial-wave scattering coefficients of elliptical cylinders first derived by Rayleigh. [Work supported by NASA.
NASA Technical Reports Server (NTRS)
Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.
1947-01-01
An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).
Free Surface Wave Interaction with a Horizontal Cylinder
NASA Astrophysics Data System (ADS)
Oshkai, P.; Rockwell, D.
1999-10-01
Classes of vortex formation from a horizontal cylinder adjacent to an undulating free-surface wave are characterized using high-image-density particle image velocimetry. Instantaneous representations of the velocity field, streamline topology and vorticity patterns yield insight into the origin of unsteady loading of the cylinder. For sufficiently deep submergence of the cylinder, the orbital nature of the wave motion results in multiple sites of vortex development, i.e., onset of vorticity concentrations, along the surface of the cylinder, followed by distinctive types of shedding from the cylinder. All of these concentrations of vorticity then exhibit orbital motion about the cylinder. Their contributions to the instantaneous values of the force coefficients are assessed by calculating moments of vorticity. It is shown that large contributions to the moments and their rate of change with time can occur for those vorticity concentrations having relatively small amplitude orbital trajectories. In a limiting case, collision with the surface of the cylinder can occur. Such vortex-cylinder interactions exhibit abrupt changes in the streamline topology during the wave cycle, including abrupt switching of the location of saddle points in the wave. The effect of nominal depth of submergence of the cylinder is characterized in terms of the time history of patterns of vorticity generated from the cylinder and the free surface. Generally speaking, generic types of vorticity concentrations are formed from the cylinder during the cycle of the wave motion for all values of submergence. The proximity of the free surface, however, can exert a remarkable influence on the initial formation, the eventual strength, and the subsequent motion of concentrations of vorticity. For sufficiently shallow submergence, large-scale vortex formation from the upper surface of the cylinder is inhibited and, in contrast, that from the lower surface of the cylinder is intensified. Moreover
Laser head for simultaneous optical pumping of several dye lasers. [with single flash lamp
NASA Technical Reports Server (NTRS)
Mumola, P. B.; Mcalexander, B. T. (Inventor)
1975-01-01
The invention is a laser head for simultaneous pumping several dye lasers with a single flash lamp. The laser head includes primarily a multi-elliptical cylinder cavity with a single flash lamp placed along the common focal axis of the cavity and with capillary tube dye cells placed along each of the other focal axes of the cavity. The inside surface of the cavity is polished. Hence, the single flash lamp supplies the energy to the several dye cells.
1946-01-01
plating, it will affect a choke as desired in the cylinder. When the clearance between the anode and the cathode (cylinder barrel) is decreased, an...National Advisory Commltteo for Aeronautics, Cltivel« oid , Ohio. RSFEFKICE3 1. Johnson, Robert L., wad Anderson, Roy I.: S.’.nglo-Cylindor Engine Tests...plating a choke in the bore. Choice la obtained by decreasing the clear- ance between the anode and the cylinder barrel ( cathode ). Taper on anode la
Stabilization of flow past a rounded cylinder
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Zhang, Wei
2016-11-01
We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...
Maximal liquid bridges between horizontal cylinders
NASA Astrophysics Data System (ADS)
Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...
46 CFR 197.338 - Compressed gas cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat; (c... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gas cylinders. 197.338 Section 197.338...
Vision-guided gripping of a cylinder
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.
Measurements of the Flowfield Interaction Between Tandem Cylinders
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.
2009-01-01
This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.
Comparison of aerodynamic noise from three nose-cylinder combinations
NASA Technical Reports Server (NTRS)
Guenther, R. A.; Reding, M. P.
1970-01-01
Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone.
Dragging a floating horizontal cylinder
NASA Astrophysics Data System (ADS)
Lee, Duck-Gyu; Kim, Ho-Young
2010-11-01
A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.
An investigation of crankshaft oscillations for cylinder health diagnostics
NASA Astrophysics Data System (ADS)
Geveci, Mert; Osburn, Andrew W.; Franchek, Matthew A.
2005-09-01
The vibrational characteristics of an internal combustion engine crankshaft are investigated from a cylinder health diagnostics point of view. Experimental results from a six-cylinder industrial diesel engine are presented to demonstrate the effects of cylinder imbalance on the individual harmonic components of the engine speed signal. A crank-angle domain numerical model of the crankshaft dynamics for a six-cylinder industrial diesel engine is also adopted to establish the effects of continuous low-power production in individual cylinders of a multi-cylinder engine. Outline of a diagnostics algorithm that makes use of the properties of crankshaft vibration behaviour is provided. In particular, crank-angle domain notch filters are employed to extact the harmonic components of engine speed. The outlined method can be implemented for individual cylinder health diagnostics across a family of multi-cylinder engines and can be formulated to handle changes in crankshaft characteristics due to replacement of mechanical components and/or wear.
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... to cylinder by welding by inert gas shielded arc process or by threads. If threads are used, they... process and cylinders with longitudinal seams are not authorized. (b) Authorized material. The cylinder...'s lot number. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate...
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to cylinder by welding by inert gas shielded arc process or by threads. If threads are used, they... process and cylinders with longitudinal seams are not authorized. (b) Authorized material. The cylinder...'s lot number. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate...
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to cylinder by welding by inert gas shielded arc process or by threads. If threads are used, they... process and cylinders with longitudinal seams are not authorized. (b) Authorized material. The cylinder...'s lot number. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate...
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.
2009-04-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and
CNG Cylinder Safety - Education, Outreach, and Next Steps (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.; Schroeder, A.
2014-01-01
Mr. Schroeder discussed the work that NREL is performing for the U.S. Department of Transportation on compressed natural gas cylinder end-of-life requirements. CNG vehicles are different from most other vehicles in that the CNG fuel storage cylinders have a pre-determined lifetime that may be shorter than the expected life of the vehicle. The end-of-life date for a cylinder is based on construction and test protocols, and is specific to the construction and material of each cylinder. The end-of-life date is important because it provides a safe margin of error against catastrophic cylinder failure or rupture. The end-of-life dates range frommore » 15 to 25 years from the date of manufacture. NREL worked to develop outreach materials to increase awareness of cylinder end-of-life dates, has provided technical support for individual efforts related to cylinder safety and removal, and also worked with CVEF to document best practices for cylinder removal or inspection after an accident. Mr. Smith discussed the engagement of the DOE Clean Fleets Partners, which were surveyed to identify best practices on managing cylinder inventories and approached to provide initial data on cylinder age in a fleet environment. Both DOE and NREL will continue to engage these fleets and other stakeholders to determine how to best address this issue moving forward.« less
Viscous free-surface flows on rotating elliptical cylinders
NASA Astrophysics Data System (ADS)
Li, Weihua; Carvalho, Marcio S.; Kumar, Satish
2017-09-01
The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.
Method for Making a Carbon-Carbon Cylinder Block
NASA Technical Reports Server (NTRS)
Ransone, Phillip O. (Inventor)
1997-01-01
A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.
Charging Characteristics of an Insulating Hollow Cylinder in Vacuum
NASA Astrophysics Data System (ADS)
Yamamoto, Osamu; Hayashi, Hirotaka; Wadahama, Toshihiko; Takeda, Daisuke; Hamada, Shoji; Ohsawa, Yasuharu
This paper deals with charging characteristics of the inner surface of an insulating hollow cylinder in vacuum. We conducted measurements of electric field strength near the triple points on cathode by using an electrostatic probe. Also we conducted a computer simulation of charging based on the Secondary Electron Emission Avalanche (SEEA) mechanism. These results are compared with those obtained previously for solid cylinders. As a result, we have clarified that hollow cylinders acquire surface charge which is larger than that of solid cylinders. We have also found that charge controlling effect by roughening the inner surface, which have been proved effective to depress charging on the surface of solid cylinders in our previous studies, is limited for hollow cylinders.
Theory of interacting dislocations on cylinders.
Amir, Ariel; Paulose, Jayson; Nelson, David R
2013-04-01
We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...
49 CFR 173.316 - Cryogenic liquids in cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...
Turbine endwall single cylinder program
NASA Technical Reports Server (NTRS)
Langston, L. S.
1982-01-01
Detailed measurement of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel is discussed. A better understanding of the three dimensional separation occuring in front of the cylinder on the endwall, and of the vortex system that is formed is sought. A data base with which to check analytical and numerical computer models of three dimensional flows is also anticipated.
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...
PIV measurements of airflow past multiple cylinders
NASA Astrophysics Data System (ADS)
Wodziak, Waldemar; Sobczyk, Jacek
2018-06-01
Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.
Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.
2014-01-01
Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.
The Cylinder and Semicylinder in Subsonic Flow
NASA Technical Reports Server (NTRS)
Bingham, Harry J.; Weimer, David K..; Griffith, Wayland
1952-01-01
In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.
In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV
NASA Astrophysics Data System (ADS)
Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap
2017-09-01
For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.
Water entry and exit of horizontal circular cylinders
NASA Astrophysics Data System (ADS)
Greenhow, M.; Moyo, S.
This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.
JEL Cylinder is moved into Crawler Transporter No. 2
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- After technicians removed and replaced all of the 32 bearings located in the JEL (jacking, equalization and leveling) cylinders and reinstalled the 16 cylinders on Crawler Transporter No. 2, workers take the crawler for a test run. During routine inspections, technicians found cracks in some of the bearings in the 16 JEL cylinders on the vehicle. There are 16 cylinders and 32 bearings per crawler.
ERIC Educational Resources Information Center
Lee, Dorothy Sara, Ed; And Others
This catalog describes wax cylinder recordings of music collected by two pioneers in ethnomusicology. The 101 cylinders in the Benjamin Ives Gilman Collection recorded at the 1893 World's Columbian Exposition in Chicago contain Fijian, Samoan, Uvean, Javanese, Turkish, and Kwakiutl or Vancouver Island Indian music. The Gilman Collection is…
Label inspection of approximate cylinder based on adverse cylinder panorama
NASA Astrophysics Data System (ADS)
Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo
2013-12-01
This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.
Unsteady characteristics of low-Re flow past two tandem cylinders
NASA Astrophysics Data System (ADS)
Zhang, Wei; Dou, Hua-Shu; Zhu, Zuchao; Li, Yi
2018-06-01
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4-10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.
A Study of Gas Economizing Pneumatic Cylinder
NASA Astrophysics Data System (ADS)
Li, T. C.; Wu, H. W.; Kuo, M. J.
2006-10-01
The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air.
Size effect and cylinder test on several commercial explosives
NASA Astrophysics Data System (ADS)
Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul
2012-03-01
Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.
Enrichment Assay Methods Development for the Integrated Cylinder Verification System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.
2009-10-22
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify eachmore » cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.« less
NASA Technical Reports Server (NTRS)
Hoff, N J; Boley, Bruno A
1946-01-01
Ten 24S-T alclad cylinders of 20-inch diameter, 45- or 58-inch length, and 0.012-inch wall thickness, reinforced with 24S-T aluminum alloy stringers and rings were tested in pure bending. In the middle of the compression side of the cylinders there was a cutout extending over 19 inches in the longitudinal direction, and over an angle of 45 degrees, 90 degrees, or 135 degrees in the circumferential direction. The strain in the stringers and in the sheet covering was measured with metal electric strain gages. The stress distribution in the cylinders deviate considerably from the linear law valid for cylinders without a cutout. The maximum strain measured was about four-thirds of the value calculated from the Mc/I formula when I was taken as the moment of inertia of the cross section of the portion of the cylinder where the cutout was situated. A diagram is presented containing the strain factors defined as the ratios of measured strain to strain calculated with the Mc/I formula. All the 10 cylinders tested failed in general instability. Two symmetric and one antisymmetric pattern of buckling were observed and the buckling load appeared to be independent of the method of manufacture and the length of the cylinder. The buckling load of the cylinders having cutouts extending over 45 degrees, 90 degrees, and 135 degrees was 66, 47, and 31 percent, respectively, of the buckling load of the cylinder without a cutout.
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.
Austin, Daniel; Dinwoodie, Ian H
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS
AUSTIN, DANIEL; DINWOODIE, IAN H
2014-01-01
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks. PMID:25620893
Saka, Masayuki; Yamauchi, Hiroki; Hoshi, Kenji; Yoshioka, Toru; Hamada, Hidetoshi; Gamada, Kazuyoshi
2015-05-01
Humeral retroversion is defined as the orientation of the humeral head relative to the distal humerus. Because none of the previous methods used to measure humeral retroversion strictly follow this definition, values obtained by these techniques vary and may be biased by morphologic variations of the humerus. The purpose of this study was 2-fold: to validate a method to define the axis of the distal humerus with a virtual cylinder and to establish the reliability of 3-dimensional (3D) measurement of humeral retroversion by this cylinder fitting method. Humeral retroversion in 14 baseball players (28 humeri) was measured by the 3D cylinder fitting method. The root mean square error was calculated to compare values obtained by a single tester and by 2 different testers using the embedded coordinate system. To establish the reliability, intraclass correlation coefficient (ICC) and precision (standard error of measurement [SEM]) were calculated. The root mean square errors for the humeral coordinate system were <1.0 mm/1.0° for comparison of all translations/rotations obtained by a single tester and <1.0 mm/2.0° for comparison obtained by 2 different testers. Assessment of reliability and precision of the 3D measurement of retroversion yielded an intratester ICC of 0.99 (SEM, 1.0°) and intertester ICC of 0.96 (SEM, 2.8°). The error in measurements obtained by a distal humerus cylinder fitting method was small enough not to affect retroversion measurement. The 3D measurement of retroversion by this method provides excellent intratester and intertester reliability. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Performance of Air-cooled Engine Cylinders Using Blower Cooling
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Ellerbrock, Herman H , Jr
1936-01-01
An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.
Sub-grid drag model for immersed vertical cylinders in fluidized beds
Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...
2017-01-03
Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less
The nonlinear bending response of thin-walled laminated composite cylinders
NASA Technical Reports Server (NTRS)
Fuchs, Hannes P.; Hyer, Michael W.
1992-01-01
The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.
Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System
NASA Astrophysics Data System (ADS)
Chang, Ho; Lan, Chou-wei; Chen, Liang-Chia
2006-10-01
This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder.
Investigation of head group behaviour of lamellar liquid crystals
NASA Astrophysics Data System (ADS)
Delikatny, E. J.; Burnell, E. E.
A mean field equilibrium statistical mechanical model, based on the Samulski inertial frame model, was developed to simulate experimental dipolar and quadrupolar nmr couplings of isotopically substituted potassium palmitates. An isolated four spin system was synthesized (2,2,3,3,-H4-palmitic acid-d27) and in conjunction with data presented in a previous paper on perdeuterated and carbon 13 labelled soaps, the head group behaviour of the molecule was investigated. Two interactions were considered in the modelling procedure: a mean field steric interaction characterized by a constraining cylinder, and a head group interaction characterized by a mass on the end of a rod of variable length. The rod lies along the first C-C bond direction and accounts for the interaction between polar head group and water via its effect on the moment of inertia of the molecule. In potassium palmitate mean field steric repulsive forces remain constant over the entire temperature range studied. In contrast, electrostatic interactions between polar head group and water, approximately constant at higher temperatures, increase dramatically as the phase transition is approached. This evidence supports a previously proposed model of lipidwater interaction.
Optical disguising of orbital deformity with prism and cylinder lenses.
Speculand, B; Jackson, M; James, D D; Rouse, C; Roberts, V G; Killingback, N; Stephens, C D
1992-04-01
This paper describes the way in which prism and cylinder lenses may be used to disguise orbital dystopia when the affected eye is blind. The lenses used can correct the height of the eye, the opening of the eyelids or the rotation or slant of the eye. Four cases are presented to illustrated this technique, which may be used either instead of, or as an adjunct to orbital surgery. An investigation of these effects is described using a mannikin head fitted with an optician's trial frame, with measuring by the reflex metrograph. This revealed that an inferiorly displaced eye may be elevated by 4 to 5 mm, that the vertical eyelid opening may be widened (or narrowed) by just under 20% and that an adverse slant of the eye may be rotated in either direction by about 4 degrees.
Materials for a Stirling engine heater head
NASA Technical Reports Server (NTRS)
Noble, J. E.; Lehmann, G. A.; Emigh, S. G.
1990-01-01
Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.
ERIC Educational Resources Information Center
Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.
2011-01-01
A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…
Modeling flow for modified concentric cylinder rheometer geometry
NASA Astrophysics Data System (ADS)
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
NASA Astrophysics Data System (ADS)
Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.
2007-06-01
The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization
77 FR 37712 - High Pressure Steel Cylinders From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed in the subject... cylinders from China, provided for in subheading 7311.00.00 of the Harmonized Tariff Schedule of the United... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were...
Pistons and Cylinders Made of Carbon-Carbon Composite Materials
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)
2000-01-01
An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.
Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing
NASA Astrophysics Data System (ADS)
Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin
2018-04-01
To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.
A characteristic analysis of the fluidic muscle cylinder
NASA Astrophysics Data System (ADS)
Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In
2005-12-01
The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.
Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L
2004-03-01
We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18 x 7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186+/-8 mm and 147+/-8 mm, respectively, with an average HU value of 209+/-40. An infant head was found to be equivalent to a water cylinder with a radius of approximately 60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is approximately 20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors.
Steady flow past a vertical surface-piercing circular cylinder
NASA Astrophysics Data System (ADS)
Chaplin, J. R.; Teigen, P.
2003-09-01
This paper describes experiments in which a vertical surface-piercing circular cylinder with a large draught was towed at steady speeds through water initially at rest. The cylinder diameter d was 210mm, and measurements were made of pressures around its circumference at elevations between 2.4d below still water level to 0.7d above, at Froude numbers (based on d) up to 1.67. The tests were carried out at a constant ratio of Reynolds number to Froude number of 2.79×105. The total resistance coefficient reached a maximum at a Froude number of about 1, when that part of the loading that can be attributed to the presence of the free surface was equivalent to the submerged form drag on a length of cylinder of about 0.9d. Measurements are also presented of the run-up on the front of the cylinder and of the depth of the depression at the back. Previous measurements by Hay (Flow about Semi-submerged Cylinders of Finite Length. Princeton University Report, Princeton, NJ, 1947) for the case of a cylinder with a submerged free end, and by Hsieh (Proc. Am. Soc. Civil Eng. 90 (1964) 161) of forces on cylinders standing on the floor of an open channel, are reanalysed. In most respects these results are found to be compatible with the present data for a cylinder of large draught.
Beating motion of a circular cylinder in vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Shen, Linwei; Chan, Eng-Soon; Wei, Yan
2018-04-01
In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.
77 FR 1975 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... Jackson Plaza, Ann Arbor, MI improperly requalified and marked high pressure compressed gas cylinders... DOT specification cylinders after its authority to requalifiy high pressure cylinders expired on... that Spears Fire & Safety continued to requalify and mark high pressure cylinders after their authority...
Studies on shock interactions with moving cylinders using immersed boundary method
NASA Astrophysics Data System (ADS)
Luo, Kun; Luo, Yujuan; Jin, Tai; Fan, Jianren
2017-06-01
The process of shock interaction with a rigid cylinder is studied using a compressible immersed boundary method combined with a high-order weighted essentially nonoscillatory scheme. Movement of the cylinder is coupled to the flow field. First, the accuracy of the numerical scheme is validated. Then the influences of the incident shock Mach number and the cylinder diameter are discussed. The results are compared with those from cases with stationary cylinders. It is found that variation of either the incident shock Mach number or the cylinder diameter can cause different schlieren images. At a given dimensionless time, the trajectory of the upper triple point varies nonmonotonically with the incident shock Mach number while the primary reflected shock gets closer to the cylinder with increasing incident shock Mach number. For any moving case with a given incident shock Mach number and cylinder diameter, the trajectory of the upper triple point, the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder, and the time evolution of the normalized shock detachment distance can all be predicted by linear correlation. As for the time evolution of the force exerted on the cylinder, the peak of the moving cylinder appears earlier than the stationary one in dimensionless time, with much lower value. Correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers and cylinder diameters are proposed. The resulting cylinder movement is also briefly discussed.
78 FR 16044 - Hazardous Materials Packaging-Composite Cylinder Standards; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
.... PHMSA-2013-0017; Notice No. 13-02] Hazardous Materials Packaging--Composite Cylinder Standards; Public..., marking, sale and use of non-DOT specification composite cylinders. The non-DOT specification cylinders... Organization (ISO) standards for composite cylinders ISO 11119 Parts - 1, -2, -3 incorporated by reference into...
NASA Technical Reports Server (NTRS)
Foley, J. E.
1971-01-01
An analysis was made to determine the effects of Mach number and Reynolds number on the local and total crossflow drag characteristics of ogive-cylinders and ogive-cylinder-frustum-cylinders at angles of the MSFC 14 in TWT and the LTV 4 ft HSWT, and pressure data obtained in the TWT, at Mach numbers 0.14, 0.8, 1.2, and 2.0, and a wide range of Reynolds numbers. Results indicate that the streamwise Reynolds number, VD/nusin alpha, is an important correlation parameter in the subcritical Reynolds number range at imcompressible speeds and that the crossflow Mach number correlates compressibility effects.
Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2000-01-01
A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.
Precision cylinder optics for higher requirements; Techical Digest
NASA Astrophysics Data System (ADS)
Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland
2005-05-01
JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV Lambda/2 to Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.
Precision cylinder optics for higher requirements; Techical Digest
NASA Astrophysics Data System (ADS)
Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland
2005-05-01
JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV~Lambda/2 to ~Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV~Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.
Dynamical instability of a charged gaseous cylinder
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2017-10-01
In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.
NASA Astrophysics Data System (ADS)
Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui
2018-04-01
A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.
Process for manufacturing hollow fused-silica insulator cylinder
Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.
2001-01-01
A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakalyar, D; Feng, W; McKenney, S
Purpose: The radiation dose absorbed at a particular radius ρ within the central plane of a long cylinder following a CT scan is a function of the length of the scan L and the cylinder radius R along with kVp and cylinder composition. An analytic function was created that that not only expresses these dependencies but is integrable in closed form over the area of the central plane. This feature facilitates explicit calculation of the planar average dose. The “approach to equilibrium” h(L) discussed in the TG111 report is seamlessly included in this function. Methods: For a cylindrically symmetric radiationmore » field, Monte Carlo calculations were performed to compute the dose distribution to long polyethylene cylinders for scans of varying L for cylinders ranging in radius from 5 to 20 cm. The function was developed from the resultant Monte Carlo data. In addition, the function was successfully fit to data taken from measurements on the 30 cm diameter ICRU/TG200 phantom using a real-time dosimeter. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. There are competing effects as the beam penetrates the cylinder from the outside: attenuation, resulting in a decrease; scatter, abruptly increasing at the circumference. This competition may result in an absolute maximum between the center and outer edge leading to a “gull wing” shape for the radial dependence. For the smallest cylinders, scatter may dominate to the extent that there is an absolute maximum at the center. Conclusion: An integrable, analytic function has been developed that provides the radial dependency of dose for the central plane of a scan of length L for cylinders of varying diameter. Equivalently, we have developed h(L,R,ρ).« less
A Convenient Storage Rack for Graduated Cylinders
ERIC Educational Resources Information Center
Love, Brian
2004-01-01
An attempt is made to find a solution to the occasional problem of a need for storing large numbers of graduated cylinders in many teaching and research laboratories. A design, which involves the creation of a series of parallel channels that are used to suspend inverted graduated cylinders by their bases, is proposed.
Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds
NASA Astrophysics Data System (ADS)
Samaha, Mohamed A.; Kahwaji, Ghalib Y.
2017-11-01
Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.
Analysis of thermoelastic characteristics in a thick walled FGM cylinder
NASA Astrophysics Data System (ADS)
Tanvir, A. N. M.; Islam, Md. Didarul; Ahmed, Faisal
2017-12-01
This study is concerned with the behavior of stress and strain in a thick walled functionally graded material (FGM) cylinder under internal pressure. The incompatible eigenstrain and equivalent eigenstrain developed in the cylinder, are taken into account. As a demonstration, a TiC/Al2O3 FGM cylinder is considered and different components of stress and strain are presented in order to study the effects of internal pressure, temperature difference (between room and sintering temperature), cylinder wall thickness and material distribution. The numerical result presented here shows that the thermoelastic characteristic like stress and strain of an FGM cylinder is significantly influenced by some of the above-mentioned parameters and can be controlled by properly controlling these parameters.
Nonlinear Deformation of a Piecewise Homogeneous Cylinder Under the Action of Rotation
NASA Astrophysics Data System (ADS)
Akhundov, V. M.; Kostrova, M. M.
2018-05-01
Deformation of a piecewise cylinder under the action of rotation is investigated. The cylinder consists of an elastic matrix with circular fibers of square cross section made of a more rigid elastic material and arranged doubly periodically in the cylinder. Behavior of the cylinder under large displacements and deformations is examined using the equations of a nonlinear elasticity theory for cylinder constituents. The problem posed is solved by the finite-difference method using the method of continuation with respect to the rotational speed of the cylinder.
Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine
Roth, Gregory T; Husted, Harry L; Sellnau, Mark C
2015-04-07
A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.
The three-dimensional flow past a rapidly rotating circular cylinder
NASA Technical Reports Server (NTRS)
Denier, James P.; Duck, Peter W.
1993-01-01
The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is investigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface. Additionally, three integral conditions, analogous to the single condition determined in two dimensions by Batchelor, are derived, based on the condition of periodicity in the azimuthal direction.
Hanušová, Kristýna; Vrbík, Karel; Rajchl, Aleš; Dobiáš, Jaroslav; Sosnovcová, Jitka
2015-01-01
Previous studies have shown that a large number of polyvinylchloride (PVC) lid gaskets exceed the existing migration limits for epoxidised soybean oil (ESBO) and correct prediction of ESBO release into food therefore appears to be a difficult issue. ESBO migration from PVC gaskets of metal closures into food simulants and food products from the Czech market is evaluated during a survey in 2009 and subsequently one in 2012 to assess progress in lid manufacturing and official testing conditions. ESBO migration from lids into various food simulants was studied at various temperatures (25, 40 and 60°C) during storage times up to 12 months. ESBO released into food simulants or food products was transmethylated, derivatised and analysed by GC-MS. The levels of ESBO migration in foodstuffs in 2012 exceeded the specific migration limit (SML) in fewer products in comparison with the previous survey. However, most of the products were analysed at a time far from the expiry date and exceedance of the SML at the end of the product shelf life is not therefore excluded. More severe test conditions (60°C for 10 days) for specific migration given by the current European Union legislation (Regulation (EU) No. 10/2011) still seem to be insufficient for the simulation of ESBO migration during long-term storage.
Manufacturing stresses and strains in filament wound cylinders
NASA Technical Reports Server (NTRS)
Calius, E. P.; Kidron, M.; Lee, S. Y.; Springer, G. S.
1988-01-01
Tests were performed to verify a previously developed model for simulating the manufacturing process of filament wound cylinders. The axial and hoop strains were measured during cure inside a filament wound Fiberite T300/976 graphite-epoxy cylinder. The measured strains were compared to those computed by the model. Good agreements were found between the data and the model, indicating that the model is a useful representation of the process. For the conditions of the test, the manufacturing stresses inside the cylinder were also calculated using the model.
Advanced diesel engine component development program, tasks 4-14
NASA Astrophysics Data System (ADS)
Kaushal, Tony S.; Weber, Karen E.
1994-11-01
This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system
Advanced diesel engine component development program, tasks 4-14
NASA Technical Reports Server (NTRS)
Kaushal, Tony S.; Weber, Karen E.
1994-01-01
This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system
Levi-Civita cylinders with fractional angular deficit
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2011-05-01
The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index α. When the fractional index is continued into the negative α region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.
Vibrations and stresses in layered anisotropic cylinders
NASA Technical Reports Server (NTRS)
Mulholland, G. P.; Gupta, B. P.
1976-01-01
An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.
Reordering transitions during annealing of block copolymer cylinder phases
Majewski, Pawel W.; Yager, Kevin G.
2015-10-06
While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene- block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the finalmore » horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less
Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Gregory T.; Sellnau, Mark C.
A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less
Curing A Large Composite Cylinder Without An Autoclave
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1992-01-01
Proposed technique provides application of heat and pressure to cure fiber-wound composite cylinder too large to fit in autoclave. Tube wound around cylinder applies pressure. Blanket distributes pressure. Pressure expels gas bubbles from material. Heat applied by conventional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.G.; Catanach, R.A.
1998-07-01
Five 1-inch diameter cylinder tests were fired in support of the W-76 high explosive surveillance program. Three of the tests used baseline material, and two used stockpile return material. The diagnostics were electrical pins to measure detonation velocity and a streak camera to measure wall motion. The data was analyzed for cylinder energy, Gurney energy, and detonation velocity. The results of all three measures were consistent for all five tests, to within the experimental accuracy.
Study of Multi-Cylinder Engine Manifolds
1944-10-31
were developed so that mnifolds for any number of cylinders could be analyzed for max- I= zm volumetrie efficiency. Eletricaleebanioal analoCies can be...deceleration of the air& The vibrations are almot Identical to thse In single cylinder intake pipes. The mmi- a= volumetrie efficiency bould be...pipe 14 in. total volume 7- In- 3 area of pipew 0.86 in 2 Table I gives the actual and calculated speeds for peak volumetri efficiencies for a sIngle
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2015-07-01
The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on the results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. This is because even at very high cylinder Reynolds numbers, ReD, the flow regime remains subcritical in the vicinity of the bed surface due to the reduction of the incoming flow velocity within the bottom boundary layer. The paper provides a detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (ReD = 16 000, subcritical flow regime) and Reynolds numbers at which the transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (ReD = 5 ∗ 105, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed. Being able to quantitatively and qualitatively describe these changes is critical to understand Reynolds-number-induced scale effects on sediment erosion mechanisms around cylinders mounted on a loose bed, which is a problem of
Characteristic analysis and experimental evaluation of artificial pneumatic cylinder
NASA Astrophysics Data System (ADS)
Kim, Dong-Soo; Bae, Sang-Kyu; Choi, Kyung-Hyun
2005-12-01
The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. Its features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was fabricated and tested. Finally, we compared the results between the test and the finite element analysis.
Non-invasive determination of external forces in vortex-pair-cylinder interactions
NASA Astrophysics Data System (ADS)
Hartmann, D.; Schröder, W.; Shashikanth, B. N.
2012-06-01
Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized
An asymmetric pair of vortices adjacent to a spinning cylinder
NASA Astrophysics Data System (ADS)
Iosilevskii, G.; Seginer, A.
The two-dimensional flow field over a spinning circular cylinder is analyzed using an extension of the Foeppl method. Equilibrium equations for two asymmetric point vortices in the wake of the cylinder are solved for a case when both vortices are equidistant from the cylinder. The two Foeppl solutions for the cylinder are presented. It is observed that the spin does not affect the angle between the two vortices; however, it displaces the vortex pair in the spin direction and the sinus of the displacement angle is proportional to the spin rate.
Utilising flags to reduce drag around a short finite circular cylinder
NASA Astrophysics Data System (ADS)
Javadi, Kh.; Kiani, F.; Tahaye Abadi, M.
2018-03-01
This paper utilises flags to decrease the drag around a short finite circular cylinder. Wall-adapted large eddy simulation and two-way fluid-structure interaction methods were applied to resolve unsteady turbulent flow structure. The far-field Reynolds number of the current configuration based on the cylinder diameter was chosen to be 20,000. In addition, the length-to-diameter ratio of the cylinder was assumed to be L/D = 2 whereas the flexible flag had a width-to-diameter ratio of W/D = 1.5. The results were compared with the regular short finite circular cylinder and the rigid flagged cylinder in our previous work. The results indicate that utilising flags inside the near-wake region of the cylinder reduces the pressure drag. The physical mechanism of this drag reduction is presented.
Stratified spin-up in a sliced, square cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, R. J.; Foster, M. R.
We previously reported experimental and theoretical results on the linear spin-up of a linearly stratified, rotating fluid in a uniform-depth square cylinder [M. R. Foster and R. J. Munro, “The linear spin-up of a stratified, rotating fluid in a square cylinder,” J. Fluid Mech. 712, 7–40 (2012)]. Here we extend that analysis to a “sliced” square cylinder, which has a base-plane inclined at a shallow angle α. Asymptotic results are derived that show the spin-up phase is achieved by a combination of the Ekman-layer eruptions (from the perimeter region of the cylinder's lid and base) and cross-slope-propagating stratified Rossby waves.more » The final, steady state limit for this spin-up phase is identical to that found previously for the uniform depth cylinder, but is reached somewhat more rapidly on a time scale of order E{sup −1/2}Ω{sup −1}/log (α/E{sup 1/2}) (compared to E{sup −1/2}Ω{sup −1} for the uniform-depth cylinder), where Ω is the rotation rate and E the Ekman number. Experiments were performed for Burger numbers, S, between 0.4 and 16, and showed that for S≳O(1), the Rossby modes are severely damped, and it is only at small S, and during the early stages, that the presence of these wave modes was evident. These observations are supported by the theory, which shows the damping factors increase with S and are numerically large for S≳O(1)« less
49 CFR 180.205 - General requirements for requalification of specification cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...
49 CFR 180.205 - General requirements for requalification of specification cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...
49 CFR 180.205 - General requirements for requalification of specification cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...
49 CFR 180.205 - General requirements for requalification of specification cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...
Adiabatic diesel engine component development: Reference engine for on-highway applications
NASA Technical Reports Server (NTRS)
Hakim, Nabil S.
1986-01-01
The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.
Modal and Impact Dynamics Analysis of an Aluminum Cylinder
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
2002-01-01
This paper presents analyses for the modal characteristics and impact response of an all-aluminum cylinder. The analyses were performed in preparation for impact tests of the cylinder at The Impact Dynamics Research Facility (IDRF) at the NASA Langley Research Center. Mode shapes and frequencies were computed using NASTRAN and compared with existing experimental data to assess the overall accuracy of the mass and stiffness of the finite element model. A series of non-linear impact analyses were then performed using MSC Dytran in which the weight distribution on the floor and the impact velocity of the cylinder were varied. The effects of impact velocity and mass on the rebound and gross deformation of the cylinder were studied in this investigation.
Optimal viscous damping of vibrating porous cylinders
NASA Astrophysics Data System (ADS)
Jafari Kang, Saeed; Masoud, Hassan
2017-11-01
We theoretically study small-amplitude oscillations of permeable cylinders immersed in an unbounded fluid. Specifically, we examine the effects of permeability and oscillation frequency on the damping coefficient, which is proportional to the power required to sustain the vibrations. Cylinders of both circular and non-circular cross-sections undergoing transverse and rotational vibrations are considered. Our calculations indicate that the damping coefficient often varies non-monotonically with the permeability. Depending on the oscillation period, the maximum damping of a permeable cylinder can be many times greater than that of an otherwise impermeable one. This might seem counter-intuitive at first since generally the power it takes to steadily drag a permeable object through the fluid is less than the power needed to drive the steady motion of the same but impermeable object. However, the driving power (or damping coefficient) for oscillating bodies is determined by not only the amplitude of the cyclic fluid force experienced by them but also by the phase shift between the force and their periodic motion. An increase in the latter is responsible for excess damping coefficient of vibrating porous cylinders.
NASA Astrophysics Data System (ADS)
Mandal, S.; Datta, N.; Sahoo, T.
2013-10-01
The present study deals with the hydroelastic analysis of gravity wave interaction with concentric porous and flexible cylinder systems, in which the inner cylinder is rigid and the outer cylinder is porous and flexible. The problems are analyzed in finite water depth under the assumption of small amplitude water wave theory and structural response. The cylinder configurations in the present study are namely (a) surface-piercing truncated cylinders, (b) bottom-touching truncated cylinders and (c) complete submerged cylinders extended from free surface to bottom. As special cases of the concentric cylinder system, wave diffraction by (i) porous flexible cylinder and (ii) flexible floating cage with rigid bottom are analyzed. The scattering potentials are evaluated using Fourier-Bessel series expansion method and the least square approximation method. The convergence of the double series is tested numerically to determine the number of terms in the Fourier-Bessel series expansion. The effects of porosity and flexibility of the outer cylinder, in attenuating the hydrodynamic forces and dynamic overturning moments, are analyzed for various cylinder configurations and wave characteristics. A parametric study with respect to wave frequency, ratios of inner-to-outer cylinder radii, annular spacing between the two cylinders and porosities is done. In order to understand the flow distribution around the cylinders, contour plots are provided. The findings of the present study are likely to be of immense help in the design of various types of marine structures which can withstand the wave loads of varied nature in the marine environment. The theory can be easily extended to deal with a large class of problems associated with acoustic wave interaction with flexible porous structures.
21 CFR 886.1840 - Simulatan (including crossed cylinder).
Code of Federal Regulations, 2010 CFR
2010-04-01
... of cylinder lenses that provides various equal plus and minus refractive strengths. The lenses are arranged so that the user can exchange the positions of plus and minus cylinder lenses of equal strengths... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class I...
The flow dynamics behind a flexible finite cylinder as a flexible agitator
NASA Astrophysics Data System (ADS)
Yong, T. H.; Chan, H. B.; Dol, S. S.; Wee, S. K.; Kumar, P.
2017-06-01
This paper investigates the flow dynamics behind a flexible finite cylinder in a single-phase flow using a water tunnel. The cylinder was individually submerged in water at ReD = 4000, 6000 and 8000. The cylinder investigated has a AR = 10 and 16 and is made of EVA in order to achieve the lower stiffness for flexibility. A same AR of its aluminium rigid cylinder was investigated to serve as a benchmark to the flow dynamics behind a flexible cylinder. The results the downwash that hinders the transportation of vortices to the downstream was diminished. As a direct consequence of this phenomenon, the turbulence production has seen significant improvement for flexible finite cylinder.
JEL Cylinder is moved into Crawler Transporter No. 2
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The final Jacking, Equalization and Leveling (JEL) cylinder is moved to Crawler Transporter No. 2 (CT-2) for installation. During recent routine maintenance inspections, cracks were found on four bearings in two JEL cylinders. Further eddy current inspections indicated that cracks were present on 15 bearings. There are 16 cylinders and 32 bearings per crawler. CT-2 was repaired in order to enable Atlantis' rollout for mission STS-112, scheduled for launch no earlier than Oct. 2.
Response of Buried Vertically Oriented Cylinders to Dynamic Loading,
1980-06-01
BALSARA • , . / ,, _,-, -. 1i S ,LESPONSE OF BURIED VERTICALLY 9RIENTED CYLINDERS .-TO DINAMIC LOADING_ 9AYLE E. LRTOrwW&-N JIIMY P./BALSARA Nk...1.7, 2,8, and 4.0 inches). The end caps for the cylinders consisted of a steel shell filled with high- strength concrete; however, the end caps were...not designed to be test articles. The average concrete compressive strength of the cylinders on test day was 44.0 MPa (6,380 psi). The three DEOT
Advanced engine management of individual cylinders for control of exhaust species
Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E
2008-12-30
A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.
76 FR 33023 - Safety Advisory; Unauthorized Marking of Compressed Gas Cylinders
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... cylinders. The cylinders were neither marked nor certified by an authorized independent inspection agency... mark, the cylinder did not undergo the complete series of safety tests and inspections required by the... contents under pressure during normal transportation and use. Extensive property damage, serious personal...
76 FR 71124 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... requalification company and properly marked. FOR FURTHER INFORMATION CONTACT: Morgan Welding and Supply, Mr... high pressure DOT cylinders. The evidence suggests that if a cylinder purchased from Morgan Welding and... cylinders from service and contact Morgan Welding and Supply, Albion, MI for further instructions. However...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVicker, J.P.; Conner, J.T.; Hasrouni, P.N.
1995-11-01
In-Core Instrumentation (ICI) assemblies located on a Reactor Pressure Vessel Head have a history of boric acid leakage. The acid tends to corrode the nuts and studs which fasten the flanges of the assembly, thereby compromising the assembly`s structural integrity. This paper provides a simplified practical approach in determining the likelihood of an undetected progressing assembly stud deterioration, which would lead to a catastrophic loss of reactor coolant. The structural behavior of the In-Core Instrumentation flanged assembly is modeled using an elastic composite section assumption, with the studs transmitting tension and the pressure sealing gasket experiencing compression. Using the abovemore » technique, one can calculate the flange relative deflection and the consequential coolant loss flow rate, as well as the stress in any stud. A solved real life example develops the expected failure sequence and discusses the exigency of leak detection for safe shutdown. In the particular case of Calvert Cliffs Nuclear Power Plant (CCNPP) it is concluded that leak detection occurs before catastrophic failure of the ICI flange assembly.« less
Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos
2016-11-01
The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 <= Re <= 325 (based on the diameter of the cylinder) where steady-state solutions have been obtained. Direct numerical simulations were computed using an in-house parallel finite element code. Results indicate that symmetry breaking occurs at Re = 1 , while the first prominent structure is a horseshoe vortex downstream from the cylinder. At Re = 150 , two foci are observed, indicating the formation of two tornadolike vortices downstream. Concurrently, another horseshoe vortex is formed upstream from the cylinder. For higher Reynolds numbers, the flow downstream is segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder
Transient thermal stress problem for a circumferentially cracked hollow cylinder
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1982-01-01
The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.
Cylinder wakes in flowing soap films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobieff, P.; Ecke, R.E.; Vorobieff, P.
1999-09-01
We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society
46 CFR 95.16-20 - Extinguishing agent: Cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cylinder storage room and the protected spaces must meet the insulation criteria for Class A-60, as defined... pneumatic heat actuator as well as a remote manual control. (c) The cylinder storage space must be properly...
46 CFR 95.16-20 - Extinguishing agent: Cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cylinder storage room and the protected spaces must meet the insulation criteria for Class A-60, as defined... pneumatic heat actuator as well as a remote manual control. (c) The cylinder storage space must be properly...
46 CFR 95.16-20 - Extinguishing agent: Cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cylinder storage room and the protected spaces must meet the insulation criteria for Class A-60, as defined... pneumatic heat actuator as well as a remote manual control. (c) The cylinder storage space must be properly...
JEL Cylinder is moved into Crawler Transporter No. 2
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Workers help guide the final Jacking, Equalization and Leveling (JEL) cylinder into place on Crawler Transporter No. 2 (CT-2) for installation. During recent routine maintenance inspections, cracks were found on four bearings in two JEL cylinders. Further eddy current inspections indicated that cracks were present on 15 bearings. There are 16 cylinders and 32 bearings per crawler. CT-2 was repaired in order to enable Atlantis' rollout for mission STS-112, scheduled for launch no earlier than Oct. 2.
Failure of Non-Circular Composite Cylinders
NASA Technical Reports Server (NTRS)
Hyer, M. W.
2004-01-01
In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane
An online ID identification system for liquefied-gas cylinder plant
NASA Astrophysics Data System (ADS)
He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao
2017-11-01
An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.
NASA Astrophysics Data System (ADS)
Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin
2011-12-01
This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces
Flow around a helically twisted elliptic cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woojin; Lee, Jungil; Choi, Haecheon, E-mail: choi@snu.ac.kr
In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing amore » wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.« less
A pneumatic cylinder driving polyhedron mobile mechanism
NASA Astrophysics Data System (ADS)
Ding, Wan; Kim, Sung-Chan; Yao, Yan-An
2012-03-01
A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.
The provision of clearances accuracy in piston - cylinder mating
NASA Astrophysics Data System (ADS)
Glukhov, V. I.; Shalay, V. V.
2017-08-01
The paper is aimed at increasing the quality of the pumping equipment in oil and gas industry. The main purpose of the study is to stabilize maximum values of productivity and durability of the pumping equipment based on the selective assembly of the cylinder-piston kinematic mating by optimization criterion. It is shown that the minimum clearance in the piston-cylinder mating is formed by maximum material dimensions. It is proved that maximum material dimensions are characterized by their own laws of distribution within the tolerance limits for the diameters of the cylinder internal mirror and the outer cylindrical surface of the piston. At that, their dispersion zones should be divided into size groups with a group tolerance equal to half the tolerance for the minimum clearance. The techniques for measuring the material dimensions - the smallest cylinder diameter and the largest piston diameter according to the envelope condition - are developed for sorting them into size groups. Reliable control of the dimensions precision ensures optimal minimum clearances of the piston-cylinder mating in all the size groups of the pumping equipment, necessary for increasing the equipment productivity and durability during the production, operation and repair processes.
An Experiment in Heat Conduction Using Hollow Cylinders
ERIC Educational Resources Information Center
Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.
2011-01-01
An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less
Cylinder stitching interferometry: with and without overlap regions
NASA Astrophysics Data System (ADS)
Peng, Junzheng; Chen, Dingfu; Yu, Yingjie
2017-06-01
Since the cylinder surface is closed and periodic in the azimuthal direction, existing stitching methods cannot be used to yield the 360° form map. To address this problem, this paper presents two methods for stitching interferometry of cylinder: one requires overlap regions, and the other does not need the overlap regions. For the former, we use the first order approximation of cylindrical coordinate transformation to build the stitching model. With it, the relative parameters between the adjacent sub-apertures can be calculated by the stitching model. For the latter, a set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials, was developed. With these polynomials, individual sub-aperture data can be expanded as composition of inherent form of partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all sub-aperture data with LF polynomials. Finally the two proposed methods are compared under various conditions. The merits and drawbacks of each stitching method are consequently revealed to provide suggestion in acquisition of 360° form map for a precision cylinder.
78 FR 42817 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-17
... transportation high pressure compressed gas cylinders without verifying that they met the appropriate safety... in turn alerted PHMSA of an incident on June 25, 2013, in which a high pressure DOT 3A 1800 cylinder... high pressure US DOT and special permit cylinders with compressed gases without verifying that they met...
Clean Air Program : cylinder issues associated with alternative fuels
DOT National Transportation Integrated Search
1999-01-01
A number of incidents of compressed natural gas (CNG) cylinder leaks have occurred while transit buses were either in service or at a bus maintenance facility. This study was initiated to determine the degree to which cylinder problems still exist in...
Fluid forces on two circular cylinders in crossflow
NASA Astrophysics Data System (ADS)
Jendrzejczyk, J. A.; Chen, S. S.
1986-07-01
Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.
Combustion engine variable compression ratio apparatus and method
Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL
2006-06-06
An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2014-11-01
The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely-long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. A detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (Re = 16,000, subcritical flow regime) and Reynolds numbers at which transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (Re = 500,000, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed.
Low head, high volume pump apparatus
Avery, Don E.; Young, Bryan F.
1989-01-01
An inner cylinder and a substantially larger outer cylinder are joined as two verticle concentric cylinders. Verticle partitions between the cylinders divide the space between the cylinders into an inlet chamber and an outlet chamber which is substantially larger in volume than the inner chamber. The inner cylinder has a central pumping section positioned between upper and lower valve sections. In the valve section ports extend through the inner cylinder wall to the inlet and outlet chambers. Spring loaded valves close the ports. Tension springs extend across the inlet chamber and compression springs extend across the inner cylinder to close the inlet valves. Tension springs extend across the inner cylinder the close the outlet valves. The elastomeric valve flaps have rigid curved backing members. A piston rod extends through one end cover to move a piston in the central section. An inlet is connected to the inlet chamber and an outlet is connected to the outlet chamber.
Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder
NASA Astrophysics Data System (ADS)
Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming
2018-05-01
To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.
ERIC Educational Resources Information Center
Gray, Judith A., Ed.; And Others
Two catalogs inventory field-recorded wax cylinders which document the music and language of Indian tribes in northeastern and southeastern United States from 1890-1930. The Northeastern Indian Catalog contains entries for 738 cylinders comprising 16 music and spoken word collections from the Chippewa, Fox, Iroquois, Kickapoo, Menominee,…
Dynamic Fracture Simulations of Explosively Loaded Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Carly W.; Goto, D. M.
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...
49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...
49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...
49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...
Flow of wormlike micellar solutions around confined microfluidic cylinders.
Zhao, Ya; Shen, Amy Q; Haward, Simon J
2016-10-26
Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena, including the formation of stable gel-like structures known as a Flow-Induced Structured Phase (FISP), which undoubtedly play an important role in applications of WLM fluids, but are still poorly understood. A first step in understanding flows of WLM fluids through porous media can be made by examining the flow around a single micro-scale cylinder aligned on the flow axis. Here we study flow behavior of an aqueous WLM solution consisting of cationic surfactant cetyltrimethylammonium bromide (CTAB) and a stable hydrotropic salt 3-hydroxy naphthalene-2-carboxylate (SHNC) in microfluidic devices with three different cylinder blockage ratios, β. We observe a rich sequence of flow instabilities depending on β as the Weissenberg number (Wi) is increased to large values while the Reynolds number (Re) remains low. Instabilities upstream of the cylinder are associated with high stresses in fluid that accelerates into the narrow gap between the cylinder and the channel wall; vortex growth upstream is reminiscent of that seen in microfluidic contraction geometries. Instability downstream of the cylinder is associated with stresses generated at the trailing stagnation point and the resulting flow modification in the wake, coupled with the onset of time-dependent flow upstream and the asymmetric division of flow around the cylinder.
Optimization of In-Cylinder Pressure Filter for Engine Research
2017-06-01
ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...
Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2002-01-01
Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.
System and method of cylinder deactivation for optimal engine torque-speed map operation
Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min
2014-11-11
This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.
49 CFR 178.35 - General requirements for specification cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...
49 CFR 178.35 - General requirements for specification cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...
49 CFR 178.35 - General requirements for specification cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...
49 CFR 178.35 - General requirements for specification cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...
Numerical study of axial turbulent flow over long cylinders
NASA Technical Reports Server (NTRS)
Neves, J. C.; Moin, P.; Moser, R. D.
1991-01-01
The effects of transverse curvature are investigated by means of direct numerical simulations of turbulent axial flow over cylinders. Two cases of Reynolds number of about 3400 and layer-thickness-to-cylinder-radius ratios of 5 and 11 were simulated. All essential turbulence scales were resolved in both calculations, and a large number of turbulence statistics were computed. The results are compared with the plane channel results of Kim et al. (1987) and with experiments. With transverse curvature the skin friction coefficient increases and the turbulence statistics, when scaled with wall units, are lower than in the plane channel. The momentum equation provides a scaling that collapses the cylinder statistics, and allows the results to be interpreted in light of the plane channel flow. The azimuthal and radial length scales of the structures in the flow are of the order of the cylinder diameter. Boomerang-shaped structures with large spanwise length scales were observed in the flow.
Finite deformations in pressurized thick-walled circular cylinder with steady state temperature
NASA Astrophysics Data System (ADS)
Sharma, Sanjeev; Sharma, Richa
2017-10-01
In this paper finite elastic and plastic stresses have been investigated using the concept of transition theory with the use of generalized strain measure i.e. nonlinear terms in the displacement are also included which are not included in classical theory. In this paper, we analyze the impact of temperature and pressure on the circular cylinder which is the cause of failure of cylinder. It has been noticed from the results that pressure and temperature play a significant role in the failure of the cylinder. It has been noticed that cylinder made up of the material whose compressibility is at the higher side is best for the designing purpose as compared to cylinder with less compressible material.
Modeling of composite hydrogen storage cylinders using finite element analysis
DOT National Transportation Integrated Search
2008-02-01
Pressurized hydrogen storage cylinders are critical components of hydrogen transportation systems. Composite cylinders have pressure/thermal relief devices that are activated in case of an emergency. The difficulty in accurately analyzing the behavio...
State of practice for concrete cylinder match curing and effect of test cylinder size.
DOT National Transportation Integrated Search
2014-01-01
The prestressed concrete element industry is interested in exploring the application of different types of matchcuring : technologies and in using 4 x 8-in. (100 x 200-mm) cylinders to measure concrete compressive strength : instead of the standard 6...
Impact fragmentation of polyurethane and polypropylene cylinder
NASA Astrophysics Data System (ADS)
Kishimura, Hiroaki; Noguchi, Daisuke; Preechasupanya, Worrayut; Matsumoto, Hitoshi
2013-11-01
The impact fragmentation of a bulk polyurethane elastomer (PU) and polypropylene (PP) cylinder have been investigated using a Cu plate projectile launched by a propellant gun at a velocity of 0.53-1.4 km/s. A projectile drills into a PU sample and forms a cavity in the sample. A small number of tiny fragments are formed. When the projectile smashes in at 1.4 km/s, the PU cylinder bursts and PU fragments form. On the other hand, a brittle fracture occurs on the PP cylinder. The mass of fragments from the PU sample generated at a lower impact velocity is distributed in the lognormal form, whereas the mass of fragments from the PU sample generated by a 1.4 km/s impact follows a power-law distribution. The fragment mass distribution of the PP sample generated at a lower impact velocity obeys the power-law form, whereas that generated at a higher impact velocity follows the lognormal form.
Electric line source illumination of a chiral cylinder placed in another chiral background medium
NASA Astrophysics Data System (ADS)
Aslam, M.; Saleem, A.; Awan, Z. A.
2018-05-01
An electric line source illumination of a chiral cylinder embedded in a chiral background medium is considered. The field expressions inside and outside of a chiral cylinder have been derived using the wave field decomposition approach. The effects of various chiral cylinders, chiral background media and source locations upon the scattering gain pattern have been investigated. It is observed that the chiral background reduces the backward scattering gain as compared to the free space background for a dielectric cylinder. It is also studied that by moving a line source away from a cylinder reduces the backward scattering gain for a chiral cylinder placed in a chiral background under some specific conditions. A unique phenomenon of reduced scattering gain has been observed at a specific observation angle for a chiral cylinder placed in a chiral background having an electric line source location of unity free space wavelength. An isotropic scattering gain pattern is observed for a chiral nihility background provided that if cylinder is chiral or chiral nihility type. It is also observed that this isotropic behaviour is independent of background and cylinder chirality.
49 CFR 178.35 - General requirements for specification cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... finished cylinder has been welded by the spinning process, or effected by plugging. (ii) As prescribed in...
Method of making superconducting cylinders for flux detectors
Goodkind, J.M.; Stolfa, D.L.
1971-07-06
A method of making superconducting cylinders of the ''weak link'' type is provided. The method allows the weak link to be made much smaller than was heretofore possible, thereby greatly increasing sensitivity and operating temperature range when the cylinder is used in a flux detector. The resistance of the weak link is monitored continuously as metal is removed from the link by electrochemical action.
Engine having a variable valve actuation system
Hefler, Gregory W [Chillicothe, IL
2004-10-12
An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.
Engine having a variable valve actuation system
Hefler, Gregory W.
2005-10-12
An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.
Rotation of an immersed cylinder sliding near a thin elastic coating
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.
2017-07-01
It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.
Transient thermal stress problem for a circumferentially cracked hollow cylinder
NASA Technical Reports Server (NTRS)
Nied, H. F.; Erdogan, F.
1983-01-01
The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.
Controllable parabolic-cylinder optical rogue wave.
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
Aeroacoustic Simulations of Tandem Cylinders with Subcritical Spacing
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.; Khorrami, Mehdi R.; Neuhart, Dan H.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.
2008-01-01
Tandem cylinders are being studied because they model a variety of component level interactions of landing gear. The present effort is directed at the case of two identical cylinders with their centroids separated in the streamwise direction by 1.435 diameters. Experiments in the Basic Aerodynamic Research Tunnel and Quiet Flow Facility at NASA Langley Research Center have provided an extensive experimental database of the nearfield flow and radiated noise. The measurements were conducted at a Mach number of 0.1285 and Reynolds number of 1.66x10(exp 5) based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent flow separation and, hence, to simulate a major aspect of high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The experiments exhibited an asymmetry in the surface pressure that was persistent despite attempts to eliminate it through small changes in the configuration. To model the asymmetry, the simulations were run with the cylinder configuration at a nonzero but small angle of attack. The computed results and experiments are in general agreement that vortex shedding for the spacing studied herein is weak relative to that observed at supercritical spacings. Although the shedding was subdued in the simulations, it was still more prominent than in the experiments. Overall, the simulation comparisons with measured near-field data and the radiated acoustics are reasonable, especially if one is concerned with capturing the trends relative to larger cylinder spacings. However, the flow details of the 1.435 diameter spacing have not been captured in full even though very fine grid computations have been performed. Some of the discrepancy may be associated with the simulation s inexact representation of the
Elastic Cheerios effect: Self-assembly of cylinders on a soft solid
NASA Astrophysics Data System (ADS)
Chakrabarti, Aditi; Ryan, Louis; Chaudhury, Manoj K.; Mahadevan, L.
2015-12-01
A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders are placed on the surface, they interact with each other via the topography of the deformed gel which serves as an energy landscape; as they move, the landscape changes which in turn changes their interaction. We use a combination of experiments, simple scaling estimates and numerical simulations to study the self-assembly of cylinders in this elastic analog of the "Cheerios Effect", which describes capillary interactions on a fluid interface. Our results show that the effective two-body interaction can be well described by an exponential attraction potential as a result of which the dynamics also show an exponential behavior with respect to the separation distance. When many cylinders are placed on the gel, the cylinders cluster together if they are not too far apart; otherwise their motion gets elastically arrested.
Finite element analysis and experiment on high pressure apparatus with split cylinder
NASA Astrophysics Data System (ADS)
Zhao, Liang; Li, Mingzhe; Yang, Yunfei; Wang, Bolong; Li, Yi
2017-07-01
Ultra-high pressure belt-type die was designed with a large sample volume prism cavity and a split cylinder which was divided into eight segments to eliminate circumferential stress. The cylinder of this type die has no cambered surface on inner wall, and the inner hole is a hexagonal prism-type cavity. The divided bodies squeeze with each other, providing the massive support and lateral support effect of the cylinder. Simulation results indicate that the split cylinder with the prism cavity possesses much smaller stress and more uniform stress distribution. The split cylinder with the prism cavity has been shown to bear larger compressive stresses in radial, circumferential and axial directions due to its structure, and tungsten carbide is most effective in pure compression so this type cylinder could bear higher pressure. Experimental results prove that the high pressure apparatus with a prism-type cavity could bear higher pressure. The apparatus with a prism cavity could bear 52.2% more pressure than the belt-type die.
Pressure fluctuations on the surface of a cylinder in uniform flow
NASA Technical Reports Server (NTRS)
Ayoub, A.; Karamcheti, K.
1976-01-01
The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.
Damage tolerance and arrest characteristics of pressurized graphite/epoxy tape cylinders
NASA Technical Reports Server (NTRS)
Ranniger, Claudia U.; Lagace, Paul A.; Graves, Michael J.
1993-01-01
An investigation of the damage tolerance and damage arrest characteristics of internally-pressurized graphite/epoxy tape cylinders with axial notches was conducted. An existing failure prediction methodology, developed and verified for quasi-isotropic graphite/epoxy fabric cylinders, was investigated for applicability to general tape layups. In addition, the effect of external circumferential stiffening bands on the direction of fracture path propagation and possible damage arrest was examined. Quasi-isotropic (90/0/plus or minus 45)s and structurally anisotropic (plus or minus 45/0)s and (plus or minus 45/90)s coupons and cylinders were constructed from AS4/3501-6 graphite/epoxy tape. Notched and unnotched coupons were tested in tension and the data correlated using the equation of Mar and Lin. Cylinders with through-thickness axial slits were pressurized to failure achieving a far-field two-to-one biaxial stress state. Experimental failure pressures of the (90/0/plus or minus 45)s cylinders agreed with predicted values for all cases but the specimen with the smallest slit. However, the failure pressures of the structurally anisotropic cylinders, (plus or minus 45/0)s and (plus or minus 45/90)s, were above the values predicted utilizing the predictive methodology in all cases. Possible factors neglected by the predictive methodology include structural coupling in the laminates and axial loading of the cylindrical specimens. Furthermore, applicability of the predictive methodology depends on the similarity of initial fracture modes in the coupon specimens and the cylinder specimens of the same laminate type. The existence of splitting which may be exacerbated by the axial loading in the cylinders, shows that this condition is not always met. The circumferential stiffeners were generally able to redirect fracture propagation from longitudinal to circumferential. A quantitative assessment for stiffener effectiveness in containing the fracture, based on cylinder
Failure analysis of thick composite cylinders under external pressure
NASA Technical Reports Server (NTRS)
Caiazzo, A.; Rosen, B. W.
1992-01-01
Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.
76 FR 38697 - High Pressure Steel Cylinders From China
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... than fair value (LTFV) and subsidized by the Government of China. \\1\\ The record is defined in sec. 207...
Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions
NASA Astrophysics Data System (ADS)
Lin, Shuyu
2007-08-01
In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis shows that the results from these two methods are in a good agreement with each other.
Viscous Effects on Wave Forces on A Submerged Horizontal Circular Cylinder
NASA Astrophysics Data System (ADS)
Teng, Bin; Mao, Hong-Fei; Lu, Lin
2018-06-01
Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.
1991-04-01
SEALS - _------ OIL LEVEL STAINLESS STEEL INDICATOR EXPANSION CHAMBER MULTIPLE COMPRESSION GASKET SPRINGS CONDUCTOR RO) UPPER PORCELAIN_ OIL...GENERATED WAVEFORM) FIELD Electric (E) 40 kV/m 50 kV/m 10 kV/m STRENGTH ( FREE SPACE) Magnetic(M) 300 A/m 1000 A/m 300 A/m Rise time 20-500 ns 10 ns 10 ns...Laboratory Interaction Note IN435, 1983. 4. P. R_ Barnes, "The Axial Current Induced on an Infinitely Long, Perfectly Conducting, Circular Cylinder in Free
104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF ...
104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF THE INCLINED BUTTRESSES FOR POWER HOUSE REINFORCEMENT IN 1916. AN AIR LOCK WAS PLACED ON TOP OF THE CYLINDER: THE LOWER PORTION OF THE VERTICAL ELEMENT RESTED ON THE POWER HOUSE FOUNDATION APRON: THE INCLINED ELEMENT WAS CUT LEVEL WITH THE RIVER BED. THE INCLINED PORTION OF THE CYLINDER CONTAINED THE SHIELD USED TO BEGIN THE ERECTION OF THE SEGMENTED INCLINED CAST IRON BUTTRESSES. (764) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Asymmetric vortex pair in the wake of a circular cylinder
NASA Astrophysics Data System (ADS)
Iosilevskii, G.; Seginer, A.
1994-10-01
Stationary configurations of two asymmetric point vortices in the wake of an infinite circular cylinder, spinning or not about its axis, are analytically investigated using an ideal fluid approximation. Four different vortex configurations (patterns) in the wake of a spinning cylinder are found in the case when vortex asymmetry is weak; each configuration is associated with a certain direction of the Magnus force. The qualitative relation between a pattern and a direction of the Magnus force is in agreement with experimental data. Also obtained are asymmetrical vortex configurations in the wake of a nonspinning cylinder.
Lutman, D; Petros, A J
2006-01-01
When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator. PMID:16921085
Lutman, D; Petros, A J
2006-09-01
When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.
NASA Technical Reports Server (NTRS)
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.
NASA Technical Reports Server (NTRS)
Kornreich, Philip
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.
Vortex shedding noise of a cylinder with hairy flaps
NASA Astrophysics Data System (ADS)
Kamps, Laura; Geyer, Thomas F.; Sarradj, Ennes; Brücker, Christoph
2017-02-01
This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such a modified cylinder and the results were compared to the reference case of a plain cylinder. The acoustic spectrum was measured using two microphones while simultaneously recording the flap motion. To further examine the flow structures in the downstream vicinity of the cylinder, constant temperature anemometry measurements as well as flow visualizations were also performed. The results show that, above a certain Reynolds number, the hairy flaps lead to a jump in the vortex shedding frequency. This phenomenon is similarly observed in the water flow experiments as a jump in the non-dimensional Strouhal number that is related to the change of the shedding cycle. This jump appears to be coupled to a resonant excitation of the flaps. The specific Reynolds number at which the jump occurs is higher in the present case, which is attributed to the lower added mass in air as compared with the one in water. The flow visualizations confirmed that such action of the flaps lead to a more slender elongated shape of the time-averaged separation bubble. In addition, the hairy flaps induce a noticeable reduction of the tonal noise as well as broadband noise as long as the flaps do not touch each other.
Actuator placement for active sound and vibration control of cylinders
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
1995-01-01
Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to
Flow past an axially aligned spinning cylinder: Experimental Study
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2017-11-01
Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.
Stress intensity factors in a reinforced thick-walled cylinder
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1984-01-01
An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.
Filament winding cylinders. II - Validation of the process model
NASA Technical Reports Server (NTRS)
Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.
1990-01-01
Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.
Cylinder expansion test and gas gun experiment comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrier, Danielle
This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.
Gas-lubricated seal for sealing between a piston and a cylinder wall
Hoult, David P.
1985-01-01
A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal.
Gas-lubricated seal for sealing between a piston and a cylinder wall
Hoult, D.P.
1985-09-10
A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal. 4 figs.
Mobile Robot Localization by Remote Viewing of a Colored Cylinder
NASA Technical Reports Server (NTRS)
Volpe, R.; Litwin, T.; Matthies, L.
1995-01-01
A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.
Effect of location in an array on heat transfer to a cylinder in crossflow
NASA Technical Reports Server (NTRS)
Simoneau, R. J.; Vanfossen, G. J., Jr.
1982-01-01
An experiment was conducted to measure the heat transfer from a heated cylinder in crossflow in an array of circular cylinders. All cylinders had a length-to-diameter ratio of 3.0. Both in-line and staggered array patterns were studied. The cylinders were spaced 2.67 diameters apart center-to-center in both the axial and transverse directions to the flow. The row containing the heated cylinder remained in a fixed position in the channel and the relative location of this row within the array was changed by adding up to five upstream rows. The working fluid was nitrogen gas at pressures from 100 to 600 kPa. The Reynolds number ranged based on cylinder diameter and average unobstructed channel velocity was from 5,000 to 125,000. Turbulence intensity: profiles were measured for each case at a point one half space upstream of the row containing the heated cylinder. The basis of comparison for all the heat transfer data was the single row with the heated cylinder. For the in-line cases the addition of a single row of cylinders upstream of the row containing the heated cylinder increased the heat transfer by an average of 50 percent above the base case. Adding up to five more rows caused no increase or decrease in heat transfer. Adding rows in the staggered array cases resulted in average increases in heat transfer of 21, 64, 58, 46, and 46 percent for one to five upstream rows, respectively.
Piezoelectric actuator models for active sound and vibration control of cylinders
NASA Technical Reports Server (NTRS)
Lester, Harold C.; Lefebvre, Sylvie
1993-01-01
Analytical models for piezoelectric actuators, adapted from flat plate concepts, are developed for noise and vibration control applications associated with vibrating circular cylinders. The loadings applied to the cylinder by the piezoelectric actuators for the bending and in-plane force models are approximated by line moment and line force distributions, respectively, acting on the perimeter of the actuator patch area. Coupling between the cylinder and interior acoustic cavity is examined by studying the modal spectra, particularly for the low-order cylinder modes that couple efficiently with the cavity at low frequencies. Within the scope of this study, the in-plane force model produced a more favorable distribution of low-order modes, necessary for efficient interior noise control, than did the bending model.
Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders
NASA Technical Reports Server (NTRS)
Mettu, Sambi R.; Raju, Ivatury S.; Forman, Royce G.
1992-01-01
Flaws resulting from improper welding and forging are usually modeled as cracks in flat plates, hollow cylinders or spheres. The stress intensity factor solutions for these crack cases are of great practical interest. This report describes some recent efforts at improving the stress intensity factor solutions for cracks in such geometries with emphasis on hollow cylinders. Specifically, two crack configurations for cylinders are documented. One is that of a surface crack in an axial plane and the other is a part-through thumb-nail crack in a circumferential plane. The case of a part-through surface crack in flat plates is used as a limiting case for very thin cylinders. A combination of the two cases for cylinders is used to derive a relation for the case of a surface crack in a sphere. Solutions were sought which cover the entire range of the geometrical parameters such as cylinder thickness, crack aspect ratio and crack depth. Both the internal and external position of the cracks are considered for cylinders and spheres. The finite element method was employed to obtain the basic solutions. Power-law form of loading was applied in the case of flat plates and axial cracks in cylinders and uniform tension and bending loads were applied in the case of circumferential (thumb-nail) cracks in cylinders. In the case of axial cracks, the results for tensile and bending loads were used as reference solutions in a weight function scheme so that the stress intensity factors could be computed for arbitrary stress gradients in the thickness direction. For circumferential cracks, since the crack front is not straight, the above technique could not be used. Hence for this case, only the tension and bending solutions are available at this time. The stress intensity factors from the finite element method were tabulated so that results for various geometric parameters such as crack depth-to-thickness ratio (a/t), crack aspect ratio (a/c) and internal radius-to-thickness ratio (R
Implant abutment deformation during prosthetic cylinder screw tightening: an in vitro study.
Neto, Rafael Tobias Moretti; Moura, Marcio Silva; Souza, Edson Antonio Capello; Rubo, José Henrique
2009-01-01
Nonpassive fit frameworks are believed to lead to implant overload and consequently loss of osseointegration. This is one of the most commonly reported failures of implant prostheses. In an ideal situation of passive fit, when torque is applied to bring the abutment-cylinder interface together some amount of deformation can be expected, and it should be homogeneous along the periphery of the abutment. The aim of this study was to verify the amount of abutment deformation that can be expected when a free-standing cylinder is screwed into place. This could give insight into what should be accepted as passive fit. Strain gauges were bonded to the sides of five standard abutments that had machined palladium-silver cylinders or cobalt-chromium cast cylinders screwed into place. Measurements were taken to verify the deformation at each site. Values of abutment deformation after abutment screw tightening ranged from -127.70 to -590.27 microepsilon. The deformation recorded for palladium-silver prosthetic cylinder tightening ranged from 56.905 to -381.50 microepsilon (mean: 173.298 microepsilon) and from -5.62638 to -383.86 microepsilon (mean: 200.474 microepsilon) for cobalt-chromium cylinders. There was no statistically significant difference among the two groups. Both abutment screw tightening and prosthetic cylinder screw tightening result in abutment deformation, which is compressive most of the time.
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...
Speed control with end cushion for high speed air cylinder
Stevens, Wayne W.; Solbrig, Charles W.
1991-01-01
A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.
Numerical simulation of VAWT on the effects of rotation cylinder
NASA Astrophysics Data System (ADS)
Xing, Shuda; Cao, Yang; Ren, Fuji
2017-06-01
Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.
NASA Technical Reports Server (NTRS)
Harris, Herbert B.; Duffy, Robert T.; Erwin, Robert D., Jr.
1945-01-01
A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.
Rotating Cylinder Treatment System Demonstration
In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
generate electromagnetic effects which can disrupt the electronic components contained inside the round. Finite element analyses were conducted to...which affect the magnetic field inside the cylinder were analyzed by varying the angular velocities and the electromagnetic properties (permeability and...the magnetic field distribution inside the cylinder was affected by angular velocity and the electromagnetic properties of the cylinder. 15
NASA Astrophysics Data System (ADS)
Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa
The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.
Aspects of CO2 laser engraving of printing cylinders.
Atanasov, P A; Maeno, K; Manolov, V P
1999-03-20
Results of the experimental and theoretical investigations of CO(2) laser-engraved cylinders are presented. The processed surfaces of test samples are examined by a phase-stepping laser interferometer, digital microscope, and computer-controlled profilometer. Fourier analysis is made on the patterns parallel to the axis of the laser-scribed test ceramic cylinders. The problem of the visually observed banding is discussed.
A Hybrid Approach To Tandem Cylinder Noise
NASA Technical Reports Server (NTRS)
Lockard, David P.
2004-01-01
Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.
Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder
NASA Astrophysics Data System (ADS)
Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet
2016-03-01
In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.
Optimizing power cylinder lubrication on a large bore natural gas engine
NASA Astrophysics Data System (ADS)
Luedeman, Matthew R.
More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.
NASA Astrophysics Data System (ADS)
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Variable compression ratio device for internal combustion engine
Maloney, Ronald P.; Faletti, James J.
2004-03-23
An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.
Online Condition Monitoring of Gripper Cylinder in TBM Based on EMD Method
NASA Astrophysics Data System (ADS)
Li, Lin; Tao, Jian-Feng; Yu, Hai-Dong; Huang, Yi-Xiang; Liu, Cheng-Liang
2017-11-01
The gripper cylinder that provides braced force for Tunnel Boring Machine (TBM) might fail due to severe vibration when the TBM excavates in the tunnel. Early fault diagnosis of the gripper cylinder is important for the safety and efficiency of the whole tunneling project. In this paper, an online condition monitoring system based on the Empirical Mode Decomposition (EMD) method is established for fault diagnosis of the gripper cylinder while TBM is working. Firstly, the lumped mass parameter model of the gripper cylinder is established considering the influence of the variable stiffness at the rock interface, the equivalent stiffness of the oil, the seals, and the copper guide sleeve. The dynamic performance of the gripper cylinder is investigated to provide basis for its health condition evaluation. Then, the EMD method is applied to identify the characteristic frequencies of the gripper cylinder for fault diagnosis and a field test is used to verify the accuracy of the EMD method for detection of the characteristic frequencies. Furthermore, the contact stiffness at the interface between the barrel and the rod is calculated with Hertz theory and the relationship between the natural frequency and the stiffness varying with the health condition of the cylinder is simulated based on the dynamic model. The simulation shows that the characteristic frequencies decrease with the increasing clearance between the barrel and the rod, thus the defects could be indicated by monitoring the natural frequency. Finally, a health condition management system of the gripper cylinder based on the vibration signal and the EMD method is established, which could ensure the safety of TBM.
Hydrodynamic force characteristics of slender cylinders in the splash zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haritos, N.; Daliri, M.R.
1995-12-31
This paper presents results from a pilot experimental program of research being performed on segmented vertical surface-piercing cylinders in the Department of Civil and Environmental Engineering at The University of Melbourne. The primary aim of this investigation is to determine the influence of the splash zone on the hydrodynamic force characteristics of such cylinders to wave loading in the Morison regime. This influence is assessed from a comparison of the observed force characteristics of instrumented segments located in the splash zone with the corresponding results obtained from similarly instrumented segments located in the fully submerged zone and from those obtainedmore » for the cylinder as a whole via measurements of the cylinder tip restraint force. Results to hand for uni-directional regular waves suggest that there appears to be a mild frequency dependence in the inertia force coefficient in the splash zone which only marginally exceeds the corresponding values observed for a submerged segment immediately below this zone.« less
Algebraic Approximations to Extinction from Randomly Oriented Circular and Elliptical Cylinders
1995-06-01
amplitude (Ref. 3). The strict limit of validity of the formula is therefore the region where ( n - 1) < < 1. The cylinder is in effect treated as a slit... cylinders , l¢1x = 2Im -1lx << 1. This occurs since what we have been calling an edge effect is in fact the field distortion around the boundaries of the...ALGERBRAIC APPROXIMATIONS TO EXTINCTION FROM RANDOMLY ORIENTED CIRCULAR AND ELLIPTICAL CYLINDERS system Number: Patron Number: Requester: Notes
The structural response of unsymmetrically laminated composite cylinders
NASA Technical Reports Server (NTRS)
Butler, T. A.; Hyer, M. W.
1989-01-01
The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.
Effect of the cross sectional aspect ratio on the flow past a twisted cylinder
NASA Astrophysics Data System (ADS)
Jung, Jae Hwan; Yoon, Hyun Sik
2013-11-01
The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).
Pulsatile blood flow and oxygen transport past a circular cylinder.
Zierenberg, Jennifer R; Fujioka, Hideki; Hirschl, Ronald B; Bartlett, Robert H; Grotberg, James B
2007-04-01
The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.
NASA Technical Reports Server (NTRS)
Syed, Hasnain H.; Volakis, John L.
1991-01-01
Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.
49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... material; or (ii) Obtaining a certified chemical analysis from the material or cylinder manufacturer for each melt, or cast of material; or (iii) Obtaining a certified check analysis on one cylinder out of...) Selecting the samples for check analyses performed by other than the material producer; (ii) Verifying that...
Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders
NASA Technical Reports Server (NTRS)
Thornburgh, Robert P.; Hilburger, Mark W.
2010-01-01
Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.
Analysis and Design of Variable Stiffness Composite Cylinders
NASA Technical Reports Server (NTRS)
Tatting, Brian F.; Guerdal, Zafer
1998-01-01
An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.
2018-03-01
The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.
Investigating adsorption/desorption of carbon dioxide in aluminum compressed gas cylinders.
Miller, Walter R; Rhoderick, George C; Guenther, Franklin R
2015-02-03
Between June 2010 and June 2011, the National Institute of Standards and Technology (NIST) gravimetrically prepared a suite of 20 carbon dioxide (CO2) in air primary standard mixtures (PSMs). Ambient mole fraction levels were obtained through six levels of dilution beginning with pure (99.999%) CO2. The sixth level covered the ambient range from 355 to 404 μmol/mol. This level will be used to certify cylinder mixtures of compressed dry whole air from both the northern and southern hemispheres as NIST standard reference materials (SRMs). The first five levels of PSMs were verified against existing PSMs in a balance of air or nitrogen with excellent agreement observed (the average percent difference between the calculated and analyzed values was 0.002%). After the preparation of a new suite of PSMs at ambient level, they were compared to an existing suite of PSMs. It was observed that the analyzed concentration of the new PSMs was less than the calculated gravimetric concentration by as much as 0.3% relative. The existing PSMs had been used in a Consultative Committee for Amount of Substance-Metrology in Chemistry Key Comparison (K-52) in which there was excellent agreement (the NIST-analyzed value was -0.09% different from the calculated value, while the average of the difference for all 18 participants was -0.10%) with those of other National Metrology Institutes and World Meteorological Organization designated laboratories. In order to determine the magnitude of these losses at the ambient level, a series of "daughter/mother" tests were initiated and conducted in which the gas mixture containing CO2 from a "mother" cylinder was transferred into an evacuated "daughter" cylinder. These cylinder pairs were then compared using cavity ring-down spectroscopy under high reproducibility conditions (the average percent relative standard deviation of sample response was 0.02). A ratio of the daughter instrument response to the mother response was calculated, with the
Flow around a slotted circular cylinder at various angles of attack
NASA Astrophysics Data System (ADS)
Gao, Dong-Lai; Chen, Wen-Li; Li, Hui; Hu, Hui
2017-10-01
We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D ( D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.
78 FR 58604 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... questions the condition of all of the cylinders owned and filled by Komer Carbonic Corp. in the past 5 years... through a visual inspection and a pressure test at least once every 5 years. Cylinders that are not...
Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder
NASA Technical Reports Server (NTRS)
Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.
Multiple buoyancy driven flows in a vertical cylinder heated from below
NASA Technical Reports Server (NTRS)
Yamaguchi, Y.; Chang, C. J.; Brown, R. A.
1983-01-01
The structure of axisymmetric buoyancy-driven convection in a vertical cylinder heated from below is probed by finite element solution of the Boussinesq equations coupled with computed-implemented perturbation techniques for detecting and tracking multiple flows and for determining flow stability. Results are reported for fluids with Prandtl number of one and for cylinders with aspect ratio (Lambda) (defined as the height to radius of the cylinder) between 0.5 and 2.25. Extensive calculations of the neutral stability curve for the static solution and of the nonlinear motions along the bifurcating flow families show a continuous evolution of the primary cellular motion from a single toroidal cell to two and three cells nested radially in the cylinder, instead of the sharp transitions found for a cylinder with shear-free sidewalls. The smooth transitions in flow structure with Rayleigh number and lambda are explained by nonlinear connectivity between the first two bifurcating flow families formed either by a secondary bifurcation point for Lambda or = Lambda * approximately 0.80 or by a limit point for Lambda Lambda *. The transition between these two modes may be described by the theory of multiple limit point bifurcation.
Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykins, M.L.
1995-08-01
A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made frommore » the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.« less
Elastic torsional buckling of thin-walled composite cylinders
NASA Technical Reports Server (NTRS)
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets
NASA Technical Reports Server (NTRS)
Tiwari, S. N .; Pidugu, S. B.
1999-01-01
The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.
AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VIII. ENGINE COMPONENTS--PART I.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF DIESEL ENGINE CYLINDER HEADS AND CYLINDER ASSEMBLIES. TOPICS ARE CYLINDER ASSEMBLY (LINERS), CYLINDER HEADS, VALVES AND VALVE MECHANISMS, AND PISTON AND PISTON RINGS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water capacity... steel cylinder with a water capacity not less than 1,000 pounds and a service pressure of at least 500... per unit of length of the straight cylindrical portion filled with water and compressed to the...
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water capacity... steel cylinder with a water capacity not less than 1,000 pounds and a service pressure of at least 500... per unit of length of the straight cylindrical portion filled with water and compressed to the...
49 CFR 178.37 - Specification 3AA and 3AAX seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conform to the following: (1) A DOT-3AA cylinder is a seamless steel cylinder with a water capacity... a seamless steel cylinder with a water capacity of not less than 1,000 pounds and a service pressure... the weight per unit of length of the straight cylindrical portion filled with water and compressed to...
Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yunfei; Li, Mingzhe, E-mail: limz@jlu.edu.cn; Wang, Bolong
2015-12-15
A new high pressure device with a split cylinder was investigated on the basis of the belt-type apparatus. The belt-type die is subjected to excessive tangential tensile stress and the tungsten carbide cylinder is easily damaged in the running process. Taking into account the operating conditions and material properties of the tungsten carbide cylinder, it is divided into 6 blocks to eliminate the tangential tensile stress. We studied two forms of the split type: radial split and tangential split. Simulation results indicate that the split cylinder has more uniform stress distribution and smaller equivalent stress compared with the belt-type cylinder.more » The inner wall of the tangential split cylinder is in the situation that compressive stress is distributed in the axial, radial, and tangential directions. It is similar to the condition of hydrostatic pressure, and it is the best condition for tungsten carbide materials. The experimental results also verify that the tangential split die can bear the highest chamber pressure. Therefore, the tangential split structure can increase the pressure bearing capacity significantly.« less
Thermal convection of liquid sodium in inclined cylinders
NASA Astrophysics Data System (ADS)
Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter
2018-04-01
The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘<β <60∘ ), the LSC fluctuations are weak and the turbulence decreases with inclination. The maximum Nusselt number corresponds to the border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two
A high- Tc SQUID-based sensor head cooled by a Joule-Thomson cryocooler
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; ter Brake, H. J. M.; de Vries, E.; Nijhof, N.; Holland, H. J.; Rogalla, H.
2002-08-01
The goal of the so-called FHARMON project is to develop a high- Tc SQUID-based magnetometer system for the measurement of fetal heart activity in standard clinical environments. To lower the threshold for the application of this fetal heart monitor, it should be simple to operate. It is, therefore, advantageous to replace the liquid cryogen bath by a closed-cycle refrigerator. For this purpose, we selected a mixed-gas Joule-Thomson cooler; the APD Cryotiger ©. Because of its magnetic interference, the compressor of this closed-cycle cooler will be placed at a distance of ≈2 m from the actual sensor, which is an axial second order gradiometer. The gradiometer is formed by three magnetometers placed on an alumina cylinder, which is connected to the cold head of the cooler. This paper describes the sensor head in detail and reports on test experiments.
ERIC Educational Resources Information Center
Gray, Judith A., Ed.
Two catalogs inventory wax cylinder collections, field recorded among Native American groups, 1890-1942. The catalog for Great Basin and Plateau Indian tribes contains entries for 174 cylinders in 7 collections from the Flathead, Nez Perce, Thompson/Okanagon, Northern Ute, and Yakima tribes. The catalog for Northwest Coast and Arctic Indian tribes…
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test; D = outside... and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity (nominal... stress at twice service pressure may not exceed the lesser value of either of the following: (i) 20,000...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity of...) Wall thickness. The minimum wall thickness must be such that the wall stress at the minimum specified... the physical tests required in paragraphs (j) and (k) of this section. A wall stress of more than 90...
NASA Astrophysics Data System (ADS)
Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo
2018-03-01
A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.
Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet
NASA Technical Reports Server (NTRS)
Buckwalter, John C; Reed, Warren D; Niles, Alfred S
1937-01-01
Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.
Antisymmetric vortex interactions in the wake behind a step cylinder
NASA Astrophysics Data System (ADS)
Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.
2017-10-01
Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.
Hidden Criticality of Counterion Condensation Near a Charged Cylinder.
Cha, Minryeong; Yi, Juyeon; Kim, Yong Woon
2017-09-05
Counterion condensation onto a charged cylinder, known as the Manning transition, has received a great deal of attention since it is essential to understand the properties of polyelectrolytes in ionic solutions. However, the current understanding is still far from complete and poses a puzzling question: While the strong-coupling theory valid at large ionic correlations suggests a discontinuous nature of the counterion condensation, the mean-field theory always predicts a continuous transition at the same critical point. This naturally leads to a question how one can reconcile the mean-field theory with the strong-coupling prediction. Here, we study the counterion condensation transition on a charged cylinder via Monte Carlo simulations. Varying the cylinder radius systematically in relation to the system size, we find that in addition to the Manning transition, there exists a novel transition where all counterions are bound to the cylinder and the heat capacity shows a drop at a finite Manning parameter. A finite-size scaling analysis is carried out to confirm the criticality of the complete condensation transition, yielding the same critical exponents with the Manning transition. We show that the existence of the complete condensation is essential to explain how the condensation nature alters from continuous to discontinuous transition.
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water capacity (nominal) not over 125 pounds water capacity (nominal) and a service pressure at least 150 to not over 500...) Wall thickness. The wall stress may not exceed 15,000 psi. A minimum wall thickness of 0.100 inch is...
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water capacity (nominal) not over 125 pounds water capacity (nominal) and a service pressure at least 150 to not over 500...) Wall thickness. The wall stress may not exceed 15,000 psi. A minimum wall thickness of 0.100 inch is...
Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, K.E.
1996-09-15
The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating inmore » consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.« less
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
NASA Astrophysics Data System (ADS)
Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao
2016-08-01
Induced charge electrophoresis of a conducting cylinder suspended in a nonconducting cylindrical pore is theoretically analyzed and a micromotor is proposed that utilizes the cylinder rotation. The cylinder velocities are analytically obtained in the Dirichlet and the Neumann boundary conditions of the electric field on the cylindrical pore. The results show that the cylinder not only translates but also rotates when it is eccentric with respect to the cylindrical pore. The influences of a number of parameters on the cylinder velocities are characterized in detail. The cylinder trajectories show that the cylinder approaches and becomes stationary at certain positions within the cylindrical pore. The proposed micromotor is capable of working under a heavy load with a high rotational velocity when the eccentricity is large and the applied electric field is strong.
Numerical investigation of cylinder wake flow with a rear stagnation jet
NASA Astrophysics Data System (ADS)
Mo, J. D.; Duke, M. R., Jr.
1994-05-01
Upon visualization of the flow past a cylinder with a rear stagnation jet (RSJ), the flow appears fully attached as conventional inviscid flow does. Therefore, at first glance, it would be suspected that the form drag on the cylinder has been reduced to zero as predicted by inviscid flow theory. However, a detailed numerical simulation reveals that the form drag coefficient increases as the jet velocity increases. The mechanics of the increasing form drag are addressed. The following conclusions were drawn: (1) flow behind a cylinder can be effectively influenced by a RSJ; (2) the unsymmetric wake flow becomes symmetric when the RSI is in operation with a velocity ratio as low as 1; the size of the symmetric recirculation region becomes smaller as the jet speed increases; (3) a RSJ forces a symmetrical wake flow pattern, thus eliminating the lateral force; (4) the pressure on the cylinder surface decreases over the entire surface, but significantly more on the downstream side of the cylinder, as the jet velocity increases, causing an increase in form drag as jet velocity ratio increases; and (5) the RSJ to significantly increase form drag on a bluff body has direct applications in aerodynamic controls of reentry or fligths at high angles of attack.
Flow-induced oscillations of a floating moored cylinder
NASA Astrophysics Data System (ADS)
Carlson, Daniel; Modarres-Sadeghi, Yahya
2016-11-01
An experimental study of flow-induced oscillations of a floating model spar buoy was conducted. The model spar consisted of a floating uniform cylinder moored in a water tunnel test section, and free to oscillate about its mooring attachment point near the center of mass. For the bare cylinder, counter-clockwise (CCW) figure-eight trajectories approaching A* =1 in amplitude were observed at the lower part of the spar for a reduced velocity range of U* =4-11, while its upper part experienced clockwise (CW) orbits. It was hypothesized that the portion of the spar undergoing CCW figure eights is the portion within which the flow excites the structure. By adding helical strakes to the portion of the cylinder with CCW figure eights, the response amplitude was significantly reduced, while adding strakes to portions with clockwise orbital motion had a minimal influence on the amplitude of response. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).
Thermal and mechanical analysis of major components for the advanced adiabatic diesel engine
NASA Technical Reports Server (NTRS)
1983-01-01
The proposed design for the light duty diesel is an in-line four cylinder spark assisted diesel engine mounted transversely in the front of the vehicle. The engine has a one piece cylinder head, with one intake valve and one exhaust valve per cylinder. A flat topped piston is used with a cylindrical combustion chamber recessed into the cylinder head directly under the exhaust valve. A single ceramic insert is cast into the cylinder head to insulate both the combustion chamber and the exhaust port. A similar ceramic insert is cast into the head to insulate the intake port. A ceramic faceplate is pressed into the combustion face of the head to insulate the face of the head from hot combustion gas. The valve seats are machined directly into the ceramic faceplate for the intake valve and into the ceramic exhaust pot insert for the exhaust valve. Additional ceramic applications in the head are the use of ceramic valve guides and ceramic insulated valves. The ceramic valve guides are press fit into the head and are used for increased wear resistance. The ceramic insulated valves are conventional valves with the valve faces plasma spray coated with ceramic for insulation.
Ion acceleration in shell cylinders irradiated by a short intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, A.; ELI-ALPS, Szeged; Platonov, K.
The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.
Thermally driven film climbing a vertical cylinder
NASA Astrophysics Data System (ADS)
Smolka, Linda
2017-11-01
The dynamics of a Marangoni driven film climbing the outside of a vertical cylinder is examined in numerical simulations of a thin film model. The model has three parameters: the scaled cylinder radius R̂, upstream film height h∞ and downstream precursor film thickness b , and reduces to the model for Marangoni driven film climbing a vertical plate when R̂ -> ∞ . The advancing front displays dynamics similar to that along a vertical plate where, depending on h∞ , the film forms a Lax shock, an undercompressive double shock or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form below R̂ 1.15 with b = 0.1 . The substrate curvature controls the Lax shock height, bounds on h∞ that define the three solutions and the maximum growth rate of perturbations when R̂ = O (1) , whereas the shape of solutions and the stability of the Lax shock converge to the behavior on a vertical plate when R̂ >= O (10) . The azimuthal curvatures of the base state and perturbation, arising from the annular geometry of the film, promote instability of the advancing contact line.
NASA Technical Reports Server (NTRS)
Priest, Stacy Marie
1993-01-01
The damage tolerance behavior of internally pressurized, axially slit, graphite/epoxy tape cylinders was investigated. Specifically, the effects of axial stress, structural anisotropy, and subcritical damage were considered. In addition, the limitations of a methodology which uses coupon fracture data to predict cylinder failure were explored. This predictive methodology was previously shown to be valid for quasi-isotropic fabric and tape cylinders but invalid for structurally anisotropic (+/-45/90)(sub s) and (+/-45/0)(sub s) cylinders. The effects of axial stress and structural anisotropy were assessed by testing tape cylinders with (90/0/+/-45)(sub s), (+/-45/90)(sub s), and (+/-45/0)(sub s) layups in a uniaxial test apparatus, specially designed and built for this work, and comparing the results to previous tests conducted in biaxial loading. Structural anisotropy effects were also investigated by testing cylinders with the quasi-isotropic (0/+/-45/90)(sub s) layup which is a stacking sequence variation of the previously tested (90/0/+/-45)(sub s) layup with higher D(sub 16) and D(sub 26) terms but comparable D(sub 16) and D(sub 26) to D(sub 11) ratios. All cylinders tested and used for comparison are made from AS4/3501-6 graphite/epoxy tape and have a diameter of 305 mm. Cylinder slit lengths range from 12.7 to 50.8 mm. Failure pressures are lower for the uniaxially loaded cylinders in all cases. The smallest percent failure pressure decreases are observed for the (+/-45/90)(sub s) cylinders, while the greatest such decreases are observed for the (+/-45/0)(sub s) cylinders. The relative effects of the axial stress on the cylinder failure pressures do not correlate with the degree of structural coupling. The predictive methodology is not applicable for uniaxially loaded (+/-45/90)(sub s) and (+/-45/0)(sub s) cylinders, may be applicable for uniaxially loaded (90/0/+/-45)(sub s) cylinders, and is applicable for the biaxially loaded (90/0/+/-45)(sub s) and (0
Cylinders out of a top hat: counts-in-cells for projected densities
NASA Astrophysics Data System (ADS)
Uhlemann, Cora; Pichon, Christophe; Codis, Sandrine; L'Huillier, Benjamin; Kim, Juhan; Bernardeau, Francis; Park, Changbom; Prunet, Simon
2018-06-01
Large deviation statistics is implemented to predict the statistics of cosmic densities in cylinders applicable to photometric surveys. It yields few per cent accurate analytical predictions for the one-point probability distribution function (PDF) of densities in concentric or compensated cylinders; and also captures the density dependence of their angular clustering (cylinder bias). All predictions are found to be in excellent agreement with the cosmological simulation Horizon Run 4 in the quasi-linear regime where standard perturbation theory normally breaks down. These results are combined with a simple local bias model that relates dark matter and tracer densities in cylinders and validated on simulated halo catalogues. This formalism can be used to probe cosmology with existing and upcoming photometric surveys like DES, Euclid or WFIRST containing billions of galaxies.
The Present Status of Using Natural Gas Cylinders and Acoustic Emission in Thailand
NASA Astrophysics Data System (ADS)
Jomdecha, C.; Jirarungsatian, C.; Methong, W.; Poopat, B.
This chapter presents the status of using natural gas cylinders (CNG/NGV) and acoustic emission (AE) in Thailand. During the period from 2006 to 2013, more than 600,000 CNG cylinder units for vehicles were installed and used for transportation, cars, and trucks in Thailand. The number of cylinder units will be tentatively increased in the future due to the increase in gasoline price. Due to the use of high-pressurization equipment in public, the issue of a risk to public safety has been raised. As of this writing, in 2013, the testing standard from the Thai Department of Energy Business recommends inspection every 5 years using effective inspection methods in order to guarantee safe usage of gas cylinders, including the AE method, following ISO 16148. Normally in Thailand, AE is used in research and petrochemical plants as a special technique. The main applications are testing of pressure vessels, aboveground storage tanks, and university research. Few companies are available to conduct AE for testing natural gas cylinders due to the limited safety of the high-pressure operation and AE equipment and a lack of qualified AE personnel. To develop AE techniques, equipment, procedures, and acceptance criteria of natural gas cylinders are the main focus of AE personnel in Thailand. A desired achievement for current development is for natural gas cylinder testing, which can be applied in field tests and supported by a national testing standard.
Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.
1986-01-01
Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.
Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni
2005-08-05
The migration of epoxidized soy bean oil (ESBO) from the gasket in the lids of glass jars into foods, particularly those rich in edible oil, often far exceeds the legal limit (60 mg/kg). ESBO was determined through a methyl ester isomer of diepoxy linoleic acid. Transesterification occurred directly in the homogenized food. From the extracted methyl esters, the diepoxy components were isolated by normal-phase LC and transferred on-line to gas chromatography with flame ionization detection using the on-column interface in the concurrent solvent evaporation mode. The method involves verification elements to ensure the reliability of the results for every sample analyzed. The detection limit is 2-5 mg/kg, depending on the food. Uncertainty of the procedure is below 10%.
Effect of Free Stream Turbulence on Flow Past a Circular Cylinder at Low Reynolds Numbers
NASA Astrophysics Data System (ADS)
Kumar, Vinoth; Singh, Mrityunjay; Thangadurai, Murugan; Chatterjee, P. K.
2018-01-01
Circular cylinders experiencing different upstream flow conditions have been studied for low Reynolds numbers using hot-wire anemometry and smoke flow visualizations. The upstream condition of the cylinder in the test section is varied using a wire mesh placed at the entrance of the test section. The Reynolds number is varied by varying the diameter of the cylinder and the mean velocity in the test section. Smooth cylinders of diameter varying from 1.25 to 25 mm are used in the present study. A multi-channel hot-wire anemometry is used for measuring the fluctuating velocities in the test section and the wake behind the cylinder. The sectional views of the wake behind the cylinder are obtained using a 4 MP CCD camera, 200 mJ pulsed laser and a fog generator. The flow quality in the test section is examined using higher order turbulence statistics. The effect of free stream turbulence levels and their frequencies on wake structures and the shedding frequencies of circular cylinders are studied in detail. It has been observed that the alteration in wake structure and the shedding frequency depend strongly on the frequencies and the amplitudes of upstream disturbances besides the diameter of the circular cylinder.
Torque on a sphere inside a rotating cylinder.
NASA Technical Reports Server (NTRS)
Mena, B.; Levinson, E.; Caswell, B.
1972-01-01
A circular cylinder of finite dimensions is made to rotate around a sphere fixed in the center of the cylinder. The couple on the sphere is measured over a wide range of rotational speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids a comparison of the experimental results is made with Collins' (1955) expansion of the couple as a series in even powers of the angular Reynolds number. For non-Newtonian liquids the apparatus proves to be extremely useful for an accurate determination of the zero shear rate viscosity using only a small amount of fluid.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
Video Analysis of Rolling Cylinders
ERIC Educational Resources Information Center
Phommarach, S.; Wattanakasiwich, P.; Johnston, I.
2012-01-01
In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal) of... permitted in paragraph (d) of this section. (f) Wall thickness. The wall stress may not exceed 24,000 psi.... Calculation must be made by the following formula: S = [P(1.3D2+0.4d2)]/(D2−d2) Where: S = wall stress in psi...
49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...
49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...
49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...
49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...
Gas storage cylinder formed from a composition containing thermally exfoliated graphite
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)
2012-01-01
A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.
Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin
2014-01-01
A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors. PMID:25097877
Rotating Cylinder Treatment System Demonstration (Presentation)
In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...
NASA Astrophysics Data System (ADS)
Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.
2017-02-01
A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.
Analysis of an Indirect Neutron Signature for Enhanced UF6 Cylinder Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulisek, Jonathan A.; McDonald, Benjamin S.; Smith, Leon E.
2017-02-21
The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF6) cylinders. The current method provides relatively low accuracy for the assay of 235U enrichment, especially for natural and depleted UF6. Furthermore, the current method provides no capability to assay the absolute mass of 235U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from 235U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capablemore » cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVANT). HEVANT enables full-volume assay of UF6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVANT in terms of the individual contributions to HEVANT from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVANT signature to manipulation by the nearby placement of neutron-conversion materials.« less
Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Clark, J Denny
1939-01-01
The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.
Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming
2008-08-15
This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.
Natural Gas Vehicle Cylinder Safety, Training and Inspection Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hank Seiff
2008-12-31
Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators andmore » training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.« less
Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder
NASA Astrophysics Data System (ADS)
Moshari, Shahab; Nikseresht, Amir Hossein; Mehryar, Reza
2014-06-01
With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.
NASA Astrophysics Data System (ADS)
Lam, K. M.; Liu, P.; Hu, J. C.
2010-07-01
This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.
Design of on line detection system for static evaporation rate of LNG vehicle cylinders
NASA Astrophysics Data System (ADS)
Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.
2017-06-01
In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.
Viscous near-wall flow in a wake of circular cylinder at moderate Reynolds numbers
NASA Astrophysics Data System (ADS)
Okhotnikov, D. I.; Molochnikov, V. M.; Mazo, A. B.; Malyukov, A. V.; Goltsman, A. E.; Saushin, I. I.
2017-11-01
Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.
Strength Tests on Thin-walled Duralumin Cylinders in Torsion
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E
1932-01-01
This report is the first of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptical section; it comprises the results obtained to date from torsion (pure shear) tests on 65 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The effect of variations in the length/radius and radius/thickness ratios on the type of failure is indicated, and a semi-empirical equation for the shearing stress at maximum load is given.
Natural convection in a cubical cavity with a coaxial heated cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a water capacity (nominal) not over 1,000 pounds water capacity and a service pressure of 480 psig. Closures welded... that the calculated wall stress at the minimum test pressure (in paragraph (i) of this section) may not...
Traction-free vibrations of finite trigonal elastic cylinders.
Heyliger, Paul R; Johnson, Ward L
2003-04-01
The unrestrained, traction-free vibrations of finite elastic cylinders with trigonal material symmetry are studied using two approaches, based on the Ritz method, which formulate the weak form of the equations of motion in cylindrical and rectangular coordinates. Elements of group theory are used to divide approximation functions into orthogonal subsets, thus reducing the size of the computational problem and classifying the general symmetries of the vibrational modes. Results for the special case of an isotropic cylinder are presented and compared with values published by other researchers. For the isotropic case, the relative accuracy of the formulations in cylindrical and rectangular coordinates can be evaluated, because exact analytical solutions are known for the torsional modes. The calculation in cylindrical coordinates is found to be more accurate for a given number of terms in the series approximation functions. For a representative trigonal material, langatate, calculations of the resonant frequencies and the sensitivity of the frequencies on each of the elastic constants are presented. The dependence on geometry (ratio of length to diameter) is briefly explored. The special case of a transversely isotropic cylinder (with the elastic stiffness C14 equal to zero) is also considered.
Scattering by multiple cylinders located on both sides of an interface
NASA Astrophysics Data System (ADS)
Lee, Siu-Chun
2018-07-01
The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.
NASA Astrophysics Data System (ADS)
Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.
2018-03-01
The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.
Two-dimensional subsonic compressible flow past elliptic cylinders
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1938-01-01
The method of Poggi is used to calculate, for perfect fluids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned. Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleight and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is considerably reduced by the present solution.
Modeling light scattering in the shadow region behind thin cylinders for diameter analysis
NASA Astrophysics Data System (ADS)
Blohm, Werner
2018-03-01
In this paper, the scattered light intensities resulting in the shadow region at an observation plane behind monochromatically illuminated circular cylinders are modeled by sinusoidal sequences having a squared dependence on spatial position in the observation plane. Whereas two sinusoidal components appear to be sufficient for modeling the light distribution behind intransparent cylinders, at least three sinusoidal components are necessary for transparent cylinders. Based on this model, a novel evaluation algorithm for a very fast retrieval of the diameter of thin cylindrical products like metallic wires and transparent fibers is presented. This algorithm was tested in a cylinder diameter range typical for these products (d ≈ 70 … 150 μm; n ≈ 1.5). Numerical examples are given to illustrate its application by using both synthetic and experimental scattering data. Diameter accuracies below 0.05 μm could be achieved for intransparent cylinders in the tested diameter range. However, scattering effects due to morphological-dependent resonances (MDRs) are problematical in the diameter analysis of transparent products. In order to incorporate these effects into the model, further investigations are needed.
Pretest fracture evaluation of the NESC-1 spinning-cylinder experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeney, J.A.; Bass, B.R.; Williams, P.T.
This paper describes a pretest fracture analysis of the cylinder specimen being used in the Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). Organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards, the NESC is currently focusing on a research project funded by United Kingdom Health and Safety Executive (HSE) to study the total process of structural integrity assessments of aged reactor pressure vessels (RPVs) containing subclad cracks. The intent is to have the problem studied by a wide rangemore » of organizations involved in RPV safety assessment. In this project, important safety assessment issues are being investigated by inspection and analysis of a spinning cylinder test which was performed at the AEA Technology facility at Risley, UK. Thermoelastic-plastic analyses were carried out for a clad cylinder model with a 74-mm-deep through-clad inner-surface crack. For this loading, the analytical results indicate that cleavage initiation may be achieved. The intervention of warm prestressing and loss of constraint may make cleavage initiation difficult to achieve in the heat-affected zone (HAZ) and near-HAZ regions.« less
NASA Astrophysics Data System (ADS)
Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.
2017-12-01
Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.
Stitching interferometry of a full cylinder without using overlap areas
NASA Astrophysics Data System (ADS)
Peng, Junzheng; Chen, Dingfu; Yu, Yingjie
2017-08-01
Traditional stitching interferometry requires finding out the overlap correspondence and computing the discrepancies in the overlap regions, which makes it complex and time-consuming to obtain the 360° form map of a cylinder. In this paper, we develop a cylinder stitching model based on a new set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials. With these polynomials, individual subaperture data can be expanded as a composition of the inherent form of a partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all subaperture data with the LF polynomials. A metal shaft was measured to experimentally verify the proposed method. In contrast to traditional stitching interferometry, our technique does not require overlapping of adjacent subapertures, thus significantly reducing the measurement time and making the stitching algorithm simple.
Suppression of vortex-induced vibrations in a flexible cylinder with elastic splitter plates
NASA Astrophysics Data System (ADS)
Huera-Huarte, Francisco
2013-11-01
Suppression of vortex-induced vibrations (VIV) is a topic that has received a lot of attention due to its practical implications in engineering design. Experiments have been conducted in a recirculating free surface water channel, with a working section of dimensions 1 × 1.1 × 2.5 m. A cylinder model made of a spring and a plastic cover was used for the experiments. It was placed horizontally and fully submerged in the water channel's free stream, hanging from two submersible load cells arranged to measure the total drag force on the cylinder. The model had several white points painted on its surface, so its VIV motion was obtained by imaging it with two cameras synchronised with a strobe light. Image processing allowed to obtain the displacements along the length of the cylinder with sub-pixel accuracy. Digital Particle Image Velocimetry (DPIV) was also used to quantify the wake downstream the cylinder. A full set of experiments was made for reference purposes with a plain cylinder without suppressors, and for the same conditions, several passive suppression devices such as elastic splitter plates of different sizes and shapes, were installed on the cylinder. Passive VIV suppression with drag reduction was achieved with some of the configurations tested. Funding provided by the Spanish Ministry of Science through grant DPI2012-37904 is acknowledged.
Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro
2016-10-01
The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1983-01-01
The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.
Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1984-01-01
The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
Numerical procedure to determine geometric view factors for surfaces occluded by cylinders
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1978-01-01
A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.
Integrated two-cylinder liquid piston Stirling engine
NASA Astrophysics Data System (ADS)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-10-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
Magnetic drops in a soft-magnetic cylinder
NASA Astrophysics Data System (ADS)
Hertel, Riccardo; Kirschner, Jürgen
2004-07-01
Magnetization reversal in a cylindrical ferromagnetic particle seems to be a simple textbook problem in magnetism. But at a closer look, the magnetization reversal dynamics in a cylinder is far from being trivial. The difficulty arises from the central axis, where the magnetization switches in a discontinuous fashion. Micromagnetic computer simulations allow for a detailed description of the evolution of the magnetic structure on the sub-nanosecond time scale. The switching process involves the injection of a magnetic point singularity (Bloch point) into the cylinder. Further point singularities may be generated and annihilated periodically during the reversal process. This results in the temporary formation of micromagnetic drops, i.e., isolated, non-reversed regions. This surprising feature in dynamic micromagnetism is due to different mobilities of domain wall and Bloch point.
Nonlinear fracture mechanics-based analysis of thin wall cylinders
NASA Technical Reports Server (NTRS)
Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.
1994-01-01
This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.
Buckling behavior of composite cylinders subjected to compressive loading
NASA Technical Reports Server (NTRS)
Carri, R. L.
1973-01-01
Room temperature compressive buckling strengths of eight cylinders, four boron-epoxy and four boron-epoxy reinforced-titanium, with diameter to thickness ratios ranging between 40 and 67 are determined experimentally and compared with analytical predictions. Numerical buckling strengths are presented for Donnell's, Flugge's and Sanders' shell theories for anisotropic and orthotropic material cases. Comparison of analytical predictions with experimental results indicates good agreement and the recommended correlation factor suggested in the literature is applicable for design. For the cylinders tested, the correlation between experiment and theory ranged from 0.73 to 0.97.
Lock-in in forced vibration of a circular cylinder
NASA Astrophysics Data System (ADS)
Kumar, Samvit; Navrose, Mittal, Sanjay
2016-11-01
The phenomenon of lock-in/synchronization in uniform flow past an oscillating cylinder is investigated via a stabilized finite element method at Re = 100. Computations are carried out for various amplitudes and frequencies of cylinder oscillation to accurately obtain the boundary of the lock-in regime. Results from earlier studies show a significant scatter in the lock-in boundary. The scatter might be an outcome of the difference in data collection or the use of a different criterion for identifying lock-in. A new criterion for lock-in is proposed, wherein the following two conditions are to be satisfied. (i) The most dominant frequency in the power spectrum of lift coefficient matches the frequency of cylinder oscillation (fy) and (ii) other peaks in the power spectrum, if any, are present only at super-harmonics of fy. Utilizing this criterion, three flow regimes are identified on the frequency-amplitude plane: lock-in, transition, and no lock-in. The behaviour of the wake is also investigated by examining the power spectra of the velocity traces at various locations downstream of the cylinder. Wake-lock-in is observed during lock-in. A wake-transition regime is identified wherein the near wake, up to a certain streamwise location, is in a lock-in state while the downstream region is in a desynchronized state. For a fixed fy, the location beyond which the wake is desynchronized moves downstream as the amplitude of oscillation is increased. The proposed criterion for lock-in addresses the wide scatter in the boundary of the lock-in regime among earlier studies. Energy transfer from the fluid to the structure, per cycle of cylinder oscillation, is computed from the data for forced vibration. The data is utilized to generate iso-energy transfer contours in the frequency-amplitude plane. The free vibration response with zero structural damping is found to be in very good agreement with the contour corresponding to zero energy transfer.
Duprez, Frédéric; Michotte, Jean Bernard; Cuvelier, Gregory; Legrand, Alexandre; Mashayekhi, Sharam; Reychler, Gregory
2018-03-01
Oxygen cylinders are widely used both in hospital and prehospital care. Excessive or inappropriate F IO 2 may be critical for patients with hypercapnia or hypoxia. Moreover, over-oxygenation could be deleterious in ischemic disorders. Supplemental oxygen from oxygen cylinder should therefore be delivered accurately. The aim of this study was to assess the accuracy of oxygen flows for oxygen cylinder in hospital and prehospital care. A prospective trial was conducted to evaluate accuracy of delivered oxygen flows (2, 4, 6, 9 and 12 L/min) for different oxygen cylinder ready for use in different hospital departments. Delivered flows were analyzed randomly using a calibrated thermal mass flow meter. Two types of oxygen cylinder were evaluated: 78 oxygen cylinder with a single-stage regulator and 70 oxygen cylinder with a dual-stage regulator. Delivered flows were compared to the required oxygen flow. The residual pressure value for each oxygen cylinder was considered. A coefficient of variation was calculated to compare the variability of the delivered flow between the two types of oxygen cylinder. The median values of delivered flows were all ≥ 100% of the required flow for single stage (range 100-109%) and < 100% of required flow for dual stage (range 95-97%). The median values of the delivered flow differed between single and dual stage. It was found that single stage is significantly higher than dual stage ( P = .01). At low flow, the dispersion of the measures for single stage was higher than with a high oxygen flow. Delivered flow differences were also found between low and high residual pressures, but only with single stage ( P = .02). The residual pressure for both oxygen cylinders (no. = 148) ranged from 73 to 2,900 pounds per square inch, and no significant difference was observed between the 2 types ( P = .86). The calculated coefficient of variation ranged from 7% (±1%) for dual stage to 8% (±2%) for single stage. This study shows good accuracy of
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... countervailing duty (``CVD'') petition concerning imports of high pressure steel cylinders (``steel cylinders... of Antidumping Duties and Countervailing Duties on High Pressure Steel Cylinders from the People's...
"Spilling Over": Fish Swimming Kinematics in Cylinder Wakes
NASA Astrophysics Data System (ADS)
Wilson, C. A.; Muhawenimana, V.; Cable, J.
2016-12-01
Our understanding of fish swimming kinematics and behaviour in turbulent altered and pseudo-natural flows remains incomplete. This study aims to examine velocity, turbulence and wake metrics that govern fish stability and other behavioural traits in the turbulent wake of a horizontal cylinder. In a free surface flume, the swimming behaviour of Nile tilapia (Oreochromis niloticus, Silver strain) was monitored over a range of cylinder diameter (D) Reynolds numbers from 2.8 x103 to 25.8 x103. Spills, defined as loss of both balance and posture, were inversely correlated with fish length and weight; where smaller fish in the 50th percentile of standard length, lost balance more often and accounted for 65% of the total number (533) of spills. Additionally, the bigger fish in the 95th percentile, experienced <0.5% of all recorded spills. Such findings are in keeping with a previous study where the spill occurrence increased with decreasing fish length to eddy size ratio. Fish spent the majority of station holding time within a two diameter (2D) distance closest to the flume bed and in a downstream distance of 3D to 6D from the cylinder. The frequency of occurrence of spills increased with increasing Reynolds number for the whole fish population until an intermediate Reynolds number of 11.5 x103 was reached, where the frequency in spills steadily declined with increasing Reynolds number until the end of the test duration. The spill frequency-Reynolds number relationship indicates a shift in cylinder wake dynamics. Further analysis of the measured velocity statistics will help determine the intensity, periodicity and the turbulence length scale of the wake structure and their correlations with the observed fish swimming kinematics.
NASA Astrophysics Data System (ADS)
Liu, Mingyue; Xiao, Longfei; Yang, Lijun
2015-09-01
The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
NASA Astrophysics Data System (ADS)
Naderipour, S.; Yousefi, T.; Ashjaee, M.; Naylor, D.
2016-08-01
An experimental study using Mach-Zehnder interferometer has been carried out to investigate the heat transfer from an isothermal horizontal circular cylinder, which is exposed to an air slot jet at different angles of jet impingement. A square edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the side of the cylinder at angles Θ = 0°, 30°, 60° and 90°. The Reynolds number varied from 240 to 1900 while the Grashof number and slot- to cylinder-spacing is kept constant at Gr = 22,300 and H/w = 7 respectively. The Richardson number varied from 0.006 to 0.4. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. The local Nusselt number around the cylinder has been calculated using the infinite fringe interferograms at 10° intervals. Average Nusselt number shows that heat transfer is decreased when the angle of jet impingement is increased .
49 CFR 173.302 - Filling of cylinders with nonliquefied (permanent) compressed gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be configured with straight threads only. (3) Each UN pressure receptacle must be cleaned in... filler should allow only those individuals essential to the filling process to be in the vicinity of the cylinder during the filling process. (f) Compressed oxygen and oxidizing gases by aircraft. A cylinder...
49 CFR 173.302 - Filling of cylinders with nonliquefied (permanent) compressed gases.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be configured with straight threads only. (3) Each UN pressure receptacle must be cleaned in... filler should allow only those individuals essential to the filling process to be in the vicinity of the cylinder during the filling process. (f) Compressed oxygen and oxidizing gases by aircraft. A cylinder...
49 CFR 173.302 - Filling of cylinders with nonliquefied (permanent) compressed gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be configured with straight threads only. (3) Each UN pressure receptacle must be cleaned in... filler should allow only those individuals essential to the filling process to be in the vicinity of the cylinder during the filling process. (f) Compressed oxygen and oxidizing gases by aircraft. A cylinder...
49 CFR 173.302 - Filling of cylinders with nonliquefied (permanent) compressed gases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be configured with straight threads only. (3) Each UN pressure receptacle must be cleaned in... filler should allow only those individuals essential to the filling process to be in the vicinity of the cylinder during the filling process. (f) Compressed oxygen and oxidizing gases by aircraft. A cylinder...
49 CFR 173.302 - Filling of cylinders with nonliquefied (permanent) compressed gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be configured with straight threads only. (3) Each UN pressure receptacle must be cleaned in... filler should allow only those individuals essential to the filling process to be in the vicinity of the cylinder during the filling process. (f) Compressed oxygen and oxidizing gases by aircraft. A cylinder...
Reiners, Eric A.; Taher, Mahmoud A.; Fei, Dong; McGilvray, Andrew N.
2007-10-30
In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.
Compressible viscous flows generated by oscillating flexible cylinders
NASA Astrophysics Data System (ADS)
Van Eysden, Cornelis A.; Sader, John E.
2009-01-01
The fluid dynamics of oscillating elastic beams underpin the operation of many modern technological devices ranging from micromechanical sensors to the atomic force microscope. While viscous effects are widely acknowledged to have a strong influence on these dynamics, fluid compressibility is commonly neglected. Here, we theoretically study the three-dimensional flow fields that are generated by the motion of flexible cylinders immersed in viscous compressible fluids and discuss the implications of compressibility in practice. We consider cylinders of circular cross section and flat blades of zero thickness that are executing flexural and torsional oscillations of arbitrary wave number. Exact analytical solutions are derived for these flow fields and their resulting hydrodynamic loads.
Sedimentation and fluttering of a cylinder in a confined liquid
NASA Astrophysics Data System (ADS)
D'Angelo, Maria Veronica; Cachile, Mario; Hulin, Jean-Pierre; Auradou, Harold
2017-10-01
The sedimentation and fluttering (angular oscillation of the axis) of straight cylinders are studied in a viscous fluid at rest filling a vertical Hele-Shaw cell for different density contrasts ρs-ρf and fluid viscosities μf and for two cylinder densities ρs and diameters D . The influence of confinement in the cell is studied by comparing the present results to those of the literature for nonconfined fluids. While the confinement and the cylinder length L both influence strongly the mean sedimentation velocity Vs, the characteristics of the fluttering instability are much more similar in the confined and nonconfined cases. While the drag coefficient is nearly constant in a nonconfined fluid, it is larger here and depends both on L (due to flow blockage) and on the Reynolds number ReD=VsD ρf/μf ; the inertial and viscous drag components have equal magnitudes for ReD≃40 . For fluttering, instead, the key parameter is the Froude number Fr=Vs/Vg [Vg=√{(ρs-ρf) g L /ρf }] , and the fluttering oscillations vanish below Fr˜0.07 for all cylinders and fluids investigated. Above this threshold, the angular amplitude increases with Fr up to a plateau value, while that of the horizontal oscillations is, at first, very large and then decreases; both amplitudes are reduced when the viscous drag is dominant, but, if inertial drag is dominant, all data points follow a common trend. For all fluids and cylinders, too, the fluttering frequency varies as f =0.102 Vg/L . These features of fluttering are generally qualitatively similar to those reported in nonconfined fluids, but this instability is observable down to lower ReD values (≃24 instead of ˜200 ).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel...''), the Department is issuing a countervailing duty order on high pressure steel cylinders (``steel... investigation of steel cylinders from the PRC. See High Pressure Steel Cylinders From the People's Republic of...
Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires
NASA Astrophysics Data System (ADS)
Choi, Eunsoo; Nam, Tae-Hyun; Yoon, Soon-Jong; Cho, Sun-Kyu; Park, Joonam
2010-05-01
This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mm×300 mm (phi×L). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.
Numerical and experimental investigation of the bending response of thin-walled composite cylinders
NASA Technical Reports Server (NTRS)
Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.
1993-01-01
A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end
Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian
2015-03-01
Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.
Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders
NASA Astrophysics Data System (ADS)
Kiu, K. Y.; Stappenbelt, B.; Thiagarajan, K. P.
2011-09-01
The present study was motivated by a desire to understand the vortex-induced vibration (VIV) of cylindrical offshore structures such as spars in strong currents. In particular, the consequences of marine growth on the surface as well as natural surface roughness that occurs with years in service are studied. Of special interest is the effect of surface roughness on the response amplitudes and the forces experienced by these structures while undergoing VIV. The experimental apparatus employed for the present study consisted of an elastically mounted rigid vertical cylinder with no end plates, towed along the length of a water tank. The cylinder was attached to a parallel linkage mechanism allowing motion in the transverse direction only. The cylinder surface was covered by sandpapers with known mean particle diameters, thus providing controlled values of roughness coefficient from 0.28×10 -3 to 1.38×10 -2. The tests covered the subcritical range of Reynolds number from 1.7×10 4 to 8.3×10 4, and a reduced velocity range from 4 to 16. It was found that as the roughness of the cylinder was increased the maximum response amplitude and the maximum mean drag coefficient decreased, levelling off to constant values. The onset of lock-in was progressively delayed for rougher cylinders, and the width of the lock-in region showed remarkable reduction at higher roughness values. The Strouhal number was found to display a modest increase with roughness. The dynamic mean drag of the rough cylinders was also found to be lower than that for a smooth cylinder. It is felt that uniform roughness such as caused in marine environments may act favorably to lower VIV incidence and effects in the range of Reynolds number tested.
Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kashish; Hall, Robert A.; George, Steven M., E-mail: Steven.George@Colorado.Edu
2015-01-15
Spatial atomic layer deposition (ALD) is a new version of ALD based on the separation of reactant gases in space instead of time. In this paper, the authors present results for spatial ALD on flexible substrates using a modular rotating cylinder reactor. The design for this reactor is based on two concentric cylinders. The outer cylinder remains fixed and contains a series of slits. These slits can accept a wide range of modules that attach from the outside. The modules can easily move between the various slit positions and perform precursor dosing, purging, or pumping. The inner cylinder rotates withmore » the flexible substrate and passes underneath the various spatially separated slits in the outer cylinder. Trimethyl aluminum and ozone were used to grow Al{sub 2}O{sub 3} ALD films at 40 °C on metallized polyethylene terephthalate (PET) substrates to characterize this spatial ALD reactor. Spectroscopic ellipsometry measurements revealed a constant Al{sub 2}O{sub 3} ALD growth rate of 1.03 Å/cycle with rotation speeds from 40 to 100 RPM with the outer cylinder configured for one Al{sub 2}O{sub 3} ALD cycle per rotation. The Al{sub 2}O{sub 3} ALD growth rate then decreased at higher rotation rates for reactant residence times < 5 ms. The Al{sub 2}O{sub 3} ALD films were also uniform to within <1% across the central portion of metallized PET substrate. Fixed deposition time experiments revealed that Al{sub 2}O{sub 3} ALD films could be deposited at 2.08 Å/s at higher rotation speeds of 175 RPM. Even faster deposition rates are possible by adding more modules for additional Al{sub 2}O{sub 3} ALD cycles for every one rotation of the inner cylinder.« less
Shaped superconductor cylinder retains intense magnetic field
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Wahlquist, H.
1964-01-01
The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.
Motion of a cylinder adjacent to a free-surface: flow patterns and loading
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, J.-C.; Unal, M. F.; Rockwell, D.
The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence.
Cylinder surface test with Chebyshev polynomial fitting method
NASA Astrophysics Data System (ADS)
Yu, Kui-bang; Guo, Pei-ji; Chen, Xi
2017-10-01
Zernike polynomials fitting method is often applied in the test of optical components and systems, used to represent the wavefront and surface error in circular domain. Zernike polynomials are not orthogonal in rectangular region which results in its unsuitable for the test of optical element with rectangular aperture such as cylinder surface. Applying the Chebyshev polynomials which are orthogonal among the rectangular area as an substitution to the fitting method, can solve the problem. Corresponding to a cylinder surface with diameter of 50 mm and F number of 1/7, a measuring system has been designed in Zemax based on Fizeau Interferometry. The expressions of the two-dimensional Chebyshev polynomials has been given and its relationship with the aberration has been presented. Furthermore, Chebyshev polynomials are used as base items to analyze the rectangular aperture test data. The coefficient of different items are obtained from the test data through the method of least squares. Comparing the Chebyshev spectrum in different misalignment, it show that each misalignment is independence and has a certain relationship with the certain Chebyshev terms. The simulation results show that, through the Legendre polynomials fitting method, it will be a great improvement in the efficient of the detection and adjustment of the cylinder surface test.
High-Frequency Normal Mode Propagation in Aluminum Cylinders
Lee, Myung W.; Waite, William F.
2009-01-01
Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
Integrated two-cylinder liquid piston Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ning; Rickard, Robert; Pluckter, Kevin
2014-10-06
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less
Upgraded Analytical Model of the Cylinder Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P. Clark; Lauderbach, Lisa; Garza, Raul
2013-03-15
A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of aboutmore » 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... duty order on high pressure steel cylinders (cylinders) from the People's Republic of China (PRC) for... High Pressure Steel Cylinders from the People's Republic of China.'' \\3\\ See BTIC's August 23, 2013...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed on Various... directive (AD), which applies to certain AVOX Systems and B/E Aerospace oxygen cylinder assemblies, as installed on various transport airplanes. That AD currently requires removing certain oxygen cylinder...
Locking apparatus for gate valves
Fabyan, J.; Williams, C.W.
A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.
Heat transfer head for a Stirling cycle machine
NASA Technical Reports Server (NTRS)
Emigh, Stuart G. (Inventor); Noble, Jack E. (Inventor); Lehmann, Gregory A. (Inventor)
1991-01-01
A common heat acceptor is provided between opposed displacers in a Stirling cycle machine. It includes two sets of open channels in separate fluid communications with the expansion spaces of the receptive cyclinders. The channels confine movement of working fluid in separate paths that extend between the expansion space of one cylinder and the compression space of the other. The method for operating the machine involves alternatively directing working fluid from the expansion space of each cylinder in a fluid path leading to the compression space of the other cylinder and from the compression space of each cylinder in a fluid path leading to the expansion space of the other cylinder.
Pressure Distribution at Subsonic Speeds over the Forepart of Two Blunt Circular Cylinders
NASA Technical Reports Server (NTRS)
Lockwood, V. E.
1975-01-01
A wind tunnel investigation was made at subsonic speeds to determine the pressure distribution over the forward part of a circular cylinder. The cylinder was equipped with interchangeable faces, one having a flat face and one having a dome shaped face. The investigation was made over angle of attack range from -1 deg to 26 deg and a Mach number range from 0.30 to 0.89. Pressure coefficients are presented in tabular form and plotted data are presented for some selected angles of attack about the surface of the cylinder.
View forward in starboard engine room, compartment C1. Lagged cylinders ...
View forward in starboard engine room, compartment C-1. Lagged cylinders at lower right are part of a steam engine that poers the salt water circulating pumps. Note main throttle wheel at lower center of photograph. Handles at lower center are cylinder manifold drains. Handles to the right are engine starting valves. (062) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
Heat storage capability of a rolling cylinder using Glauber's salt
NASA Technical Reports Server (NTRS)
Herrick, C. S.; Zarnoch, K. P.
1980-01-01
The rolling cylinder phase change heat storage concept was developed to the point where a prototype design is completed and a cost analysis is prepared. A series of experimental and analytical tasks are defined to establish the thermal, mechanical, and materials behavior of rolling cylinder devices. These tasks include: analyses of internal and external heat transfer; performance and lifetime testing of the phase change materials; corrosion evaluation; development of a mathematical model; and design of a prototype and associated test equipment.
Laminar forced convection from a rotating horizontal cylinder in cross flow
NASA Astrophysics Data System (ADS)
Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.
2017-04-01
The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.
Comparison of Slab and Cylinder Expansion Test Geometries for PBX 9501
NASA Astrophysics Data System (ADS)
Jackson, Scott; Anderson, Eric; Aslam, Tariq; Whitley, Von
2017-06-01
The slab expansion test or ``sandwich test'' is the two-dimensional analog of the axisymmetric cylinder expansion test. The test consists of a high-aspect-ratio rectangular cuboid of high explosive with the two large sides confined by a thin metal confiner. Analysis of the confiner motion after the passage of the detonation yields the detonation product isentrope, which is a specialized form of the product equation of state. The slab expansion geometry inherently exhibits a lower product expansion rate and lower plastic work on the confiner than the cylinder expansion geometry. The slab geometry does, however, have a shorter test time. We review recent slab and cylinder expansion data with PBX 9501, the associated equation of state analysis, and the advantages of each geometry for different applications.
Effect of a surface tension imbalance on a partly submerged cylinder
NASA Astrophysics Data System (ADS)
Janssens, Stoffel; Chaurasia, Vikash; Fried, Eliot
We perform a force analysis of a circular cylinder which lays between a liquid-gas interface and acts as a barrier between a surfactant-free surface and a surfactant-loaded surface. The respective surfaces have uniform surface tensions γa and γb which generate a surface tension imbalance Δγ =γa -γb , also referred to as surface pressure. In addition to the general force analysis, we determine the effect of Δγ on the load-bearing capacity of a floating cylinder upon sinking for a specific set of parameters. Moreover, we demonstrate that Δγ induces a horizontal force component which in magnitude is equal to Δγ , when measured per unit length cylinder, and use an energetic argument to prove that this relation applies to prismatic bodies in general.
BORAZJANI, IMAN; SOTIROPOULOS, FOTIS
2009-01-01
We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant
NASA Astrophysics Data System (ADS)
Kiselev, Nikolay; Ryabinin, Anatoly
2018-05-01
The experimental study of shielding effects of the disk placed upstream of a cylinder is described. The disk reduces the drag of the cylinder and changes its dynamic characteristics. Two cylinders with different aspect ratio are studied. Without a disk, an elastically fixed cylinder in the airflow performs rotational oscillations with constant amplitude. The influence of the aerodynamic force on the damping of the oscillations depends on the disk diameter, the gap between disk and cylinder and aspect ratio of the cylinder. The disk reduces the amplitude of steady rotational oscillations or causes the damped rotational oscillations. A mathematical model is proposed for describing the rotational steady and damped oscillations of a cylinder with the disk.
The Strength of Thin-wall Cylinders of D Cross Section in Combined Pure Bending and Torsion
NASA Technical Reports Server (NTRS)
Sherwood, A W
1943-01-01
The results of tests of 56 cylinders of D cross section conducted in the Aeronautical Laboratory of the University of Maryland are presented in this report. These cylinders were subjected to pure bending and torsional moments of varying proportions to give the strength under combined loading conditions. The average buckling stress of these cylinders has been related to that of circumscribing circular cylinders for conditions of pure torsion and pure bending and the equation of the interaction curve has been determined for conditions of combined loading.
Heading and head injuries in soccer.
Kirkendall, D T; Jordan, S E; Garrett, W E
2001-01-01
In the world of sports, soccer is unique because of the purposeful use of the unprotected head for controlling and advancing the ball. This skill obviously places the player at risk of head injury and the game does carry some risk. Head injury can be a result of contact of the head with another head (or other body parts), ground, goal post, other unknown objects or even the ball. Such impacts can lead to contusions, fractures, eye injuries, concussions or even, in rare cases, death. Coaches, players, parents and physicians are rightly concerned about the risk of head injury in soccer. Current research shows that selected soccer players have some degree of cognitive dysfunction. It is important to determine the reasons behind such deficits. Purposeful heading has been blamed, but a closer look at the studies that focus on heading has revealed methodological concerns that question the validity of blaming purposeful heading of the ball. The player's history and age (did they play when the ball was leather and could absorb significant amounts of water), alcohol intake, drug intake, learning disabilities, concussion definition and control group use/composition are all factors that cloud the ability to blame purposeful heading. What does seem clear is that a player's history of concussive episodes is a more likely explanation for cognitive deficits. While it is likely that the subconcussive impact of purposeful heading is a doubtful factor in the noted deficits, it is unknown whether multiple subconcussive impacts might have some lingering effects. In addition, it is unknown whether the noted deficits have any affect on daily life. Proper instruction in the technique is critical because if the ball contacts an unprepared head (as in accidental head-ball contacts), the potential for serious injury is possible. To further our understanding of the relationship of heading, head injury and cognitive deficits, we need to: learn more about the actual impact of a ball on the
Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses
Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; ...
2015-05-12
Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less
Pressure-sensing performance of upright cylinders in a Mach 10 boundary-layer
NASA Technical Reports Server (NTRS)
Johnson, Steven; Murphy, Kelly
1994-01-01
An experimental research program to provide basic knowledge of the pressure-sensing performance of upright, flushported cylinders in a hypersonic boundary layer is described. Three upright cylinders of 0.25-, 0.5- and l.0-in. diameters and a conventional rake were placed in the test section sidewall boundary layer of the 31 Inch Mach 10 Wind Tunnel at NASA Langley Research Center, Hampton, Virginia. Boundary-layer pressures from these cylinders were compared to those measured with a conventional rake. A boundary-layer thickness-to-cylinder-diameter ratio of 8 proved sufficient to accurately measure an overall pressure profile and ascertain the boundary-layer thickness. Effects of Reynolds number, flow angularity, and shock wave impingement on pressure measurement were also investigated. Although Reynolds number effects were negligible at the conditions studied, flow angularity above 10 deg significantly affects the measured pressures. Shock wave impingement was used to investigate orifice-to-orifice pressure crosstalk. No crosstalk was measured. The lower pressure measured above the oblique shock wave impingement showed no influence of the higher pressure generated at the lower port locations.
Gas gun driven dynamic fracture and fragmentation of Ti-6Al-4V cylinders
NASA Astrophysics Data System (ADS)
Jones, D. R.; Chapman, D. J.; Eakins, D. E.
2014-05-01
The dynamic fracture and fragmentation of a material is a complex late stage phenomenon occurring in many shock loading scenarios. Improving our predictive capability depends upon exercising our current failure models against new loading schemes and data. We present axially-symmetric high strain rate (104 s-1) expansion of Ti-6Al-4V cylinders using a single stage light gas gun technique. A steel ogive insert was located inside the target cylinder, into which a polycarbonate rod was launched. Deformation of this rod around the insert drives the cylinder into rapid expansion. This technique we have developed facilitates repeatable loading, independent of the temperature of the sample cylinder, with straightforward adjustment of the radial strain rate. Expansion velocity was measured with multiple channels of photon Doppler velocimetry. High speed imaging was used to track the overall expansion process and record strain to failure and crack growth. Results from a cylinder at a temperature of 150 K are compared with work at room temperature, examining the deformation, failure mechanisms and differences in fragmentation.
NASA Astrophysics Data System (ADS)
Chen, Du-Xing; Pardo, Enric; Zhu, Yong-Hong; Xiang, Li-Xiong; Ding, Jia-Quan
2018-03-01
A technique is proposed for demagnetizing correction of the measured magnetization curve and hysteresis loop, i.e., the M∗ (Ha) curve, of a ferromagnetic cylinder into the true M (H) curve of the material, where Ha is the uniform applied field provided by a long solenoid and M∗ is the magnetization measured by a fluxmeter with the measuring coil surrounding the cylinder midplane. Different from ordinary demagnetizing correction by using a fixed demagnetizing factor, an (Ha,M∗) -dependent fluxmetric demagnetizing factor Nf (γ,χd) is used in this technique, where γ is the ratio of cylinder length to diameter, χd is the differential susceptibility on the corrected M (H) curve, and Nf (γ,χd) is approximated by accurately calculated Nf (γ, χ) of paramagnetic cylinders of the same γ and χ =χd . The validity of the technique is studied by comparing results for several samples of different lengths cut from the same cylinder. Such a demagnetizing correction is unambiguous but its success requires very high accuracy in the Nf determination and M∗ (Ha) measurements.
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-03-07
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.
Flow and coherent structures around circular cylinders in shallow water
NASA Astrophysics Data System (ADS)
Zeng, Jie; Constantinescu, George
2017-06-01
Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid