Modeling flow for modified concentric cylinder rheometer geometry
NASA Astrophysics Data System (ADS)
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
Wei, Q.; Dalvit, D. A. R.; Lombardo, F. C.; Mazzitelli, F. D.; Onofrio, R.
2010-05-15
We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range. We also report on measurements performed in the parallel-plane configuration, showing that the dependence on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane geometries. General considerations on the interplay between the distance-dependent minimizing potential and the precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries are finally reported.
Electromagnetic Casimir forces of parabolic cylinder and knife-edge geometries
Graham, Noah; Shpunt, Alexander; Kardar, Mehran; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L.
2011-06-15
An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is employed to compute Casimir forces in several configurations. These include interactions between a parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder. To elucidate the effect of boundaries, special attention is focused on the 'knife-edge' limit in which the parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis. A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.
The Effect of Body Geometry on the Flow Noise of Cylinders in Cross Flow.
NASA Astrophysics Data System (ADS)
McEachern, James F.
This is an experimental thesis that examines the effects of body geometry on the flow noise of cylindrical inertial pressure gradient hydrophones in cross flow. Flow noise is characterized as a fluctuating force on the surface of the body. Variable geometry inertial hydrophones have been fabricated, calibrated and towed in water in an acoustically quiet facility. Flow noise expressed as equivalent sound pressure level is presented for a blunt ended cylinder with a length to diameter ratio of 0.5. The results of the acoustic tow testing show some agreement with existing models for noise generated by pressure fluctuations in the turbulent boundary layer. The fluctuating force is measured at Reynolds numbers from 4 cdot 10^3 to 1.8 cdot 10^4 on cylindrical bodies with length to diameter ratios ranging from 0.5 to 2.5 and end cap shapes ranging from flat to hemispherical. Results are expressed in terms of dimensionless spectra. The experimental results show that increased end cap radius and body aspect ratio can attenuate the fluctuating force level.
Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution
Rothe, Robert Emil; Briggs, Joseph Blair
1999-06-01
About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.
J. B. Briggs; R. E. Rothe
1999-06-14
About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.
NASA Astrophysics Data System (ADS)
Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire
2015-04-01
This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.
Sunnarborg, Duane A.
2000-01-01
A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.
Beam impedance of a split cylinder
Lambertson, G.
1990-04-01
A common geometry for position electrodes at moderately low frequencies is the capacitive pickup consisting of a diagonally- divided cylinder that encloses the beam trajectory. For the simplified system here, a relatively direct approach will given the longitudinal and transverse beam impedances (Z{parallel}and Z{perpendicular}) at low frequencies. This paper discusses the determination of this impedance.
Alderson, J.H.
1991-12-31
Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.
Collapsing bacterial cylinders
NASA Astrophysics Data System (ADS)
Betterton, M. D.; Brenner, Michael P.
2001-12-01
Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially collapse into cylindrical structures, which subsequently destabilize and break up into spherical aggregates. This paper presents a theoretical description of the process, from the structure of the collapsing cylinder to the spacing of the final aggregates. We show that cylindrical collapse involves a delicate balance in which bacterial attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional analysis. The instability of a collapsing cylinder is composed of two distinct stages: Initially, slow modulations to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ultimately, one point on the cylinder pinches off. At this final stage of the instability, a front propagates from the pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the front propagation.
Delamination of Composite Cylinders
NASA Astrophysics Data System (ADS)
Davies, Peter; Carlsson, Leif A.
The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.
ERIC Educational Resources Information Center
Johnson, Erica
2006-01-01
Hoping to develop in her students an understanding of mathematics as a way of thinking more than a way of doing, the author of this article describes how her students worked on a spatial reasoning problem stemming from an iteratively constructed sequence of cylinders. She presents an activity of making cylinders out of paper models, and for every…
Evolution of an eroding cylinder in single and lattice arrangements
NASA Astrophysics Data System (ADS)
Hewett, James N.; Sellier, Mathieu
2017-04-01
The coupled evolution of an eroding cylinder immersed in a fluid within the subcritical Reynolds range is explored with scale resolving simulations. Erosion of the cylinder is driven by fluid shear stress. K\\'arm\\'an vortex shedding features in the wake and these oscillations occur on a significantly smaller time scale compared to the slowly eroding cylinder boundary. Temporal and spatial averaging across the cylinder span allows mean wall statistics such as wall shear to be evaluated; with geometry evolving in 2-D and the flow field simulated in 3-D. The cylinder develops into a rounded triangular body with uniform wall shear stress which is in agreement with existing theory and experiments. We introduce a node shuffle algorithm to reposition nodes around the cylinder boundary with a uniform distribution such that the mesh quality is preserved under high boundary deformation. A cylinder is then modelled within an infinite array of other cylinders by simulating a repeating unit cell and their profile evolution is studied. A similar terminal form is discovered for large cylinder spacings with consistent flow conditions and an intermediate profile was found with a closely packed lattice before reaching the common terminal form.
Tandem Cylinder Noise Predictions
NASA Technical Reports Server (NTRS)
Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.
2007-01-01
In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to
Dopant Cylinder Lifetime Monitor
NASA Astrophysics Data System (ADS)
Bishop, Steve; Wodjenski, Michael; Kaim, Robert; Lurcott, Steve; McManus, Jim; Smith, Gordon
2006-11-01
The cost of consumable materials is a significant component in the cost of implanter operation. With the higher cost of sub-atmospheric gas alternatives it is increasingly important to accurately monitor its usage. The ATMI® SDS® GasGauge™ monitoring system accurately monitors gas level in four cylinders simultaneously, throughout their lifetime, in order to optimize usage of gas and related implanter productivity. This paper displays how the GasGauge monitoring system accurately monitors the cylinder contents in SDS®, VAC® and high pressure gas cylinders. Internal and customer test data is also presented to verify these claims.
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.
Radiation dose rates from UF{sub 6} cylinders
Friend, P.J.
1991-12-31
This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.
Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders
NASA Technical Reports Server (NTRS)
Thornburgh, Robert P.; Hilburger, Mark W.
2010-01-01
Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.
Gas Cylinder Safety, Course 9518
Glass, George
2016-10-27
This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-10-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-11-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
Wake characteristics of a porous square cylinder formed by a multi-scale array of obstacles
NASA Astrophysics Data System (ADS)
Wise, Daniel J.; Avoustin, Pauline; Cassadour, Martin; Brevis, Wernher
2015-11-01
The characteristics of the flow developed behind arrays of square cylinders are investigated through Particle Image Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) measurements in an open-channel water flume. Four arrangements of cylinders are examined: three are multi-scale arrays of cylinders based on the Sierpinski carpet fractal, and the fourth is a regular aligned array of single length-scale cylinders. The porosity, frontal area and external length scale is the same for each cylinder array, while the internal geometry is changed. The relative effect on the dynamics of the wake of the fractal parameters defining the array geometry, such as lacunarity and succolarity is quantified. Special focus is given to the effect of these parameters on the extension and properties of the separated shear layers and on the low-velocity zone developed downstream the cylinders.
Cylinder To Cylinder Balancing Using Intake Valve Actuation
Duffy, Kevin P.; Kieser, Andrew J.; Kilkenny, Jonathan P.
2005-01-18
A method and apparatus for balancing a combustion phasing between a plurality of cylinders located in an engine. The method and apparatus includes a determining a combustion timing in each cylinder, establishing a baseline parameter for a desired combustion timing, and varying actuation of at least one of a plurality of intake valves, each intake valve being in fluid communication with a corresponding cylinder, such that the combustion timing in each cylinder is substantially equal to the desired combustion timing.
Diameter estimation of cylinders by the rigorous diffraction model.
Sanchez-Brea, Luis Miguel
2005-07-01
The Fraunhofer diffraction formula is commonly used for estimating the diameter of thin cylinders by far field diffractometry. However, an experimental systematic overestimation of the value of the cylinder diameter by this diffraction model and other three-dimensional models has been reported when this estimation is compared with those obtained from interferometric techniques. In this work, a rigorous electromagnetic diffraction model is analyzed to determine the cylinder diameter by using the envelope minima of the far field diffraction pattern. The results of this rigorous model are compared with those from the Fraunhofer diffraction formula. The overestimation by the Fraunhofer model is predicted theoretically, presenting a dependence on the wavelength, the polarization state of the incident wave, and the cylinder diameter. The discrepancies are shown to be due to the three-dimensional geometry.
Turbine endwall single cylinder program
NASA Technical Reports Server (NTRS)
Langston, L. S.; Eckerle, W. A.
1983-01-01
Measurements of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel are discussed. Static pressures on the endwall and cylinder surfaces, extensive five-hole probe pressures in front of and around the cylinder, and velocity fluctuations using a hot-wire probe where the flow is steady enough to yield meaningful results are included.
Development of the gas gun driven expanding cylinder technique
NASA Astrophysics Data System (ADS)
Jones, David Robert; Eakins, Daniel E.; Hazell, Paul; Chapman, David James; Appleby-Thomas, Gareth James
2012-03-01
Using a gas gun to create rapid expansion in metal cylinders to investigate fracture and fragmentaion has been commonplace for the last several decades. Results from such experiments alongside data from explosive and electromagnetic expansion techniques have produced several models for fragment size and mass distributions. We present a new geometry for expansion that can be applied to cylinders at elevated & reduced temperatures whilst keeping the drive mechanism constant, enabling us in the future to experiment over a range of sample temperatures at a fixed strain rate and loading path. This new geometry has been investigated through a series of gas gun experiments employing X-ray radiography and AUTODYN simulations to reveal the deformation and failure behaviour within the cylinder.
NASA Astrophysics Data System (ADS)
Fertelli, Ahmet; Günhan, Gökhan; Buyruk, Ertan
2017-02-01
In the present study, it is aimed to calculate the effect of ice formation on different cylinder geometries placed in a rectangular cavity filled with water. For this aim Fluent package program was used to solve the flow domain numerically and temperature distribution and ice formation depending on time were illustrated. Water temperature in the cavity and cylinder surface temperature were assumed as 4, 8 and -10 °C respectively and firstly temperature distribution, velocity vector, liquid fraction and ratio of Ai/Ac (formed ice area/cross sectional area of cylinder) were determined for cylinders with different placement in fixed volume.
NASA Astrophysics Data System (ADS)
Fertelli, Ahmet; Günhan, Gökhan; Buyruk, Ertan
2016-06-01
In the present study, it is aimed to calculate the effect of ice formation on different cylinder geometries placed in a rectangular cavity filled with water. For this aim Fluent package program was used to solve the flow domain numerically and temperature distribution and ice formation depending on time were illustrated. Water temperature in the cavity and cylinder surface temperature were assumed as 4, 8 and -10 °C respectively and firstly temperature distribution, velocity vector, liquid fraction and ratio of Ai/Ac (formed ice area/cross sectional area of cylinder) were determined for cylinders with different placement in fixed volume.
Current collection by a long conducting cylinder in a flowing magnetized plasma
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Vashi, Bharat I.
1990-01-01
The numerical techniques, the definitions, and the normalizations used in the simulations of plasma flow past a long conducting cylinder with a magnetic field along the cylinder axis are described. The effect of cross-field plasma transport on the current collection without any contribution to the current from the field-aligned motion of the plasma particles is highlighted. The electric fields in the structure create a two-cell circulation of the electrons near the cylinder. The cell in the wake region has negative potentials. A fan-shaped circulation cell forms around the cylinder and in this cell the potential is generally positive. The geometry and the size of this positive cell affect the current collection. The potential structure around the cylinder is examined, along with its effect on the current collection and its oscillatory behavior. The variation of the time-average current as a function of the relative motion between the plasma and the cylinder is also investigated.
Comparing standard Bonner spheres and high-sensitivity Bonner cylinders.
Lee, Kuo-Wei; Yuan, Ming-Chen; Jiang, Shiang-Huei; Sheu, Rong-Jiun
2014-10-01
Standard Bonner spheres and proposed high-sensitivity Bonner cylinders were calibrated in a neutron calibration room, using a (252)Cf source. The Bonner sphere system consists of 11 polyethylene (PE) spheres of various diameters and 4 extended spheres that comprise embedded metal shells. Similar to the design of Bonner spheres, a set of Bonner cylinders was assembled using a large cylindrical (3)He tube as the central probe, which was wrapped using various thicknesses of PE. A layer of lead was employed inside one of the PE cylinders to increase the detection efficiency of high-energy neutrons. The central neutron probe used in the Bonner cylinders exhibited an efficiency of ∼17.9 times higher than that of the Bonner spheres. However, compared with the Bonner spheres, the Bonner cylinders are not fully symmetric in their geometry, exhibiting angular dependence in their responses to incoming neutrons. Using a series of calculations and measurements, this study presents a systematic comparison between Bonner spheres and cylinders in terms of their response functions, detection efficiencies, angular dependences and spectrum unfolding.
Adaptronic tools for superfinishing of cylinder bores
NASA Astrophysics Data System (ADS)
Roscher, Hans-Jürgen; Hochmuth, Carsten; Hoffmann, Michael; Praedicow, Michael
2012-04-01
Today in the production of internal combustion engines it is possible to make pistons as well as cylinders, for all practical purposes, perfectly round. The negative consequences of the subsequent assembly processes and operation of the engine is that the cylinders and pistons are deformed, resulting in a loss of power and an increase in fuel consumption. This problem can be solved by using an adaptronic tool, which can machine the cylinder to a predetermined nonround geometry, which will deform to the required geometry during assembly and operation of the engine. The article describes the actuatory effect of the tool in conjunction with its measuring and controlling algorithms. The adaptronic tool consists out the basic tool body and three axially-staggered floating cutter groups, these cutter groups consist out of guides, actuators and honing stones. The selective expansion of the tool is realised by 3 piezoelectric multilayer-actuators deployed in a series - parallel arrangement. It is also possible to superimpose actuator expansion on the conventional expansion. A process matrix is created during the processing of the required and actual contour data in a technology module. This is then transferred over an interface to the machine controller where it is finally processed and the setting values for the piezoelectric actuators are derived, after which an amplifier generates the appropriate actuator voltages. A slip ring system on the driveshaft is used to transfer the electricity to the actuators in the machining head. The functioning of the adaptronic form-honing tool and process were demonstrated with numerous experiments. The tool provides the required degrees of freedom to generate a contour that correspond to the inverse compound contour of assembled and operational engines.
Orientifolded locally AdS3 geometries
NASA Astrophysics Data System (ADS)
Loran, F.; Sheikh-Jabbari, M. M.
2011-01-01
Continuing the analysis of [Loran F and Sheikh-Jabbari M M 2010 Phys. Lett. B 693 184-7], we classify all locally AdS3 stationary axi-symmetric unorientable solutions to AdS3 Einstein gravity and show that they are obtained by applying certain orientifold projection on AdS3, BTZ or AdS3 self-dual orbifold, respectively, O-AdS3, O-BTZ and O-SDO geometries. Depending on the orientifold fixed surface, the O-surface, which is either a space-like 2D plane or a cylinder, or a light-like 2D plane or a cylinder, one can distinguish four distinct cases. For the space-like orientifold plane or cylinder cases, these geometries solve AdS3 Einstein equations and are hence locally AdS3 everywhere except at the O-surface, where there is a delta-function source. For the light-like cases, the geometry is a solution to Einstein equations even at the O-surface. We discuss the causal structure for static, extremal and general rotating O-BTZ and O-SDO cases as well as the geodesic motion on these geometries. We also discuss orientifolding Poincaré patch AdS3 and AdS2 geometries as a way to geodesic completion of these spaces and comment on the 2D CFT dual to the O-geometries.
15. CYLINDER DETAILS; DETAILS OF STEEL FOR CYLINDERS NO. 50 ...
15. CYLINDER DETAILS; DETAILS OF STEEL FOR CYLINDERS NO. 50 (PIER 5) AND NO. 66 (PIER 6), DWG. 83, CH BY AF, ECL, APPROVED BY O.F. LACKEY, MAY 18, 1908 - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD
NASA Technical Reports Server (NTRS)
Ransone, Philip O. (Inventor)
1998-01-01
A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.
Individual cylinder knock control by detecting cylinder pressure
Sawamoto, K.; Kawamura, Y.; Kita, T.; Matsushita, K.
1987-01-01
To improve available power, tolerance to variation in fuel octane number and high engine speed knock control, an individual cylinder knock control has been developed. Knock are detected by spark plug washer transducers, which indicate individual cylinder pressures.) Last year the authors read a paper entitled ''Cylinder Pressure Vibration Analysis Indicates Accurate Knock Detection''. They read continuously on the following items. Spark plug washer transducers - These are piezoelectric ceramic rings which fit beneath individual spark plugs. These can detect knock at high engine speed, and are very durable. Knock detection and control algorithm - Knock is indicated by the transducer's cylinder pressure vibration signal. When knock occurs in the cylinder, the ignition timing of the cylinder is controlled. During the transient condition, control response is fast by learning control. Fail safe - At transducer trouble, the ignition timing of the cylinder is controlled by other transducer signals. Electric control unit - It is included in NISSANs Electronic Concentrated Engine Control System (ECCS). Effects of this control - It improved WOT torque by 7-15%, torelance to variation in fuel octane number, and high engine speed control performance.
Flow of wormlike micellar solutions around confined microfluidic cylinders.
Zhao, Ya; Shen, Amy Q; Haward, Simon J
2016-10-26
Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena, including the formation of stable gel-like structures known as a Flow-Induced Structured Phase (FISP), which undoubtedly play an important role in applications of WLM fluids, but are still poorly understood. A first step in understanding flows of WLM fluids through porous media can be made by examining the flow around a single micro-scale cylinder aligned on the flow axis. Here we study flow behavior of an aqueous WLM solution consisting of cationic surfactant cetyltrimethylammonium bromide (CTAB) and a stable hydrotropic salt 3-hydroxy naphthalene-2-carboxylate (SHNC) in microfluidic devices with three different cylinder blockage ratios, β. We observe a rich sequence of flow instabilities depending on β as the Weissenberg number (Wi) is increased to large values while the Reynolds number (Re) remains low. Instabilities upstream of the cylinder are associated with high stresses in fluid that accelerates into the narrow gap between the cylinder and the channel wall; vortex growth upstream is reminiscent of that seen in microfluidic contraction geometries. Instability downstream of the cylinder is associated with stresses generated at the trailing stagnation point and the resulting flow modification in the wake, coupled with the onset of time-dependent flow upstream and the asymmetric division of flow around the cylinder.
Solvable critical dense polymers on the cylinder
NASA Astrophysics Data System (ADS)
Pearce, Paul A.; Rasmussen, Jørgen; Villani, Simon P.
2010-02-01
A lattice model of critical dense polymers is solved exactly on a cylinder with finite circumference. The model is the first member {\\cal LM}(1,2) of the Yang-Baxter integrable series of logarithmic minimal models. The cylinder topology allows for non-contractible loops with fugacity α that wind around the cylinder or for an arbitrary number \\ell of defects that propagate along the full length of the cylinder. Using an enlarged periodic Temperley-Lieb algebra, we set up commuting transfer matrices acting on states whose links are considered distinct with respect to connectivity around the front or back of the cylinder. These transfer matrices satisfy a functional equation in the form of an inversion identity. For even N, this involves a non-diagonalizable braid operator J and an involution R = - (J3 - 12J)/16 = (-1)F with eigenvalues R=(-1)^{\\ell /2} . This is reminiscent of supersymmetry with a pair of defects interpreted as a fermion. The number of defects \\ell thus separates the theory into Ramond (\\ell /2 even), Neveu-Schwarz (\\ell /2 odd) and \\mathbb {Z}_4 (\\ell odd) sectors. For the case of loop fugacity α = 2, the inversion identity is solved exactly sector by sector for the eigenvalues in finite geometry. The eigenvalues are classified according to the physical combinatorics of the patterns of zeros in the complex spectral-parameter plane. This yields selection rules for the physically relevant solutions to the inversion identity. The finite-size corrections are obtained from Euler-Maclaurin formula. In the scaling limit, we obtain the conformal partition functions as sesquilinear forms and confirm the central charge c = - 2 and conformal weights \\Delta,\\bar {\\Delta }=\\Delta_t=(t^2-1)/8 . Here t=\\ell /2 and t=2r-s\\in \\mathbb {N} in the \\ell even sectors with Kac labels r = 1, 2, 3,...;s = 1, 2 while t\\in \\mathbb {Z}-\\frac 12 in the \\ell odd sectors. Strikingly, the \\ell /2 odd sectors exhibit a {\\cal W} -extended symmetry but the
ERIC Educational Resources Information Center
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
Tracking an imploding cylinder with photonic Doppler velocimetry.
Dolan, D H; Lemke, R W; McBride, R D; Martin, M R; Harding, E; Dalton, D G; Blue, B E; Walker, S S
2013-05-01
Cylindrical implosion offers a path to extreme material states, reaching considerably higher pressures than planar geometry. However, diagnosing compressed material in cylindrical geometry is challenging. Time-resolved velocimetry, a standard technique in planar compression, is difficult to incorporate into cylindrical experiments. This paper describes the use of photonic Doppler velocimetry (PDV) in magnetically driven cylindrical compression experiments at the Sandia Z machine. With this diagnostic, it is possible to track the interior of an imploding cylinder beyond 20 km/s. A "leapfrog" implementation is described to support velocities well above the bandwidth limits of standard PDV measurements.
Axial cylinder internal combustion engine
Gonzalez, C.
1992-03-10
This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.
Conformal microstrip arrays on cylinders
NASA Astrophysics Data System (ADS)
Ashkenazy, J.; Shtrikman, S.; Treves, D.
1988-04-01
Design and measured results for two X-band conformal microstrip arrays are presented. The two 4 x 4 arrays are built on the surface of a cylinder of small radius. They differ by the orientation of small radius. They differ by the orientation of the elements relative to the cylinder axis. The measured directivities and radiation patterns are in reasonable agreement with theoretical predictions.
Turbine endwall single cylinder program
NASA Technical Reports Server (NTRS)
Langston, L. S.
1982-01-01
Detailed measurement of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel is discussed. A better understanding of the three dimensional separation occuring in front of the cylinder on the endwall, and of the vortex system that is formed is sought. A data base with which to check analytical and numerical computer models of three dimensional flows is also anticipated.
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
Turbulent Flow Past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Carlucci, Donald; Carlucci, Pasquale; Thangam, Siva
2009-11-01
Flow past cylinders aligned along their axis where a base freely spins while attached to a non-spinning forebody is considered from a computational and experimental point of view. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. Experiments are performed for a range of spin rates and free stream flow conditions. The experimental results of Carlucci & Thangam (2001) are used to benchmark flow over spinning cylinders. The data is extended to munitions spinning in the wake of other munitions. Applications involving the design of projectiles are discussed.
Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.
2011-08-07
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Magnetism in curved geometries
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-08-17
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Magnetism in curved geometries
Streubel, Robert; Fischer, Peter; Kronast, Florian; ...
2016-08-17
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. Asmore » a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.« less
Large eddy simulations of in-cylinder turbulent flows.
NASA Astrophysics Data System (ADS)
Banaeizadeh, Araz; Afshari, Asghar; Schock, Harold; Jaberi, Farhad
2007-11-01
A high-order numerical model is developed and tested for large eddy simulation (LES) of turbulent flows in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved via a generalized high-order multi-block compact differencing scheme. The LES model has been applied to three flow configurations: (1) a fixed poppet valve in a sudden expansion, (2) a simple piston-cylinder assembly with a stationary open valve and harmonically moving flat piston, (3) a laboratory single-cylinder engine with three moving intake and exhaust valves. The first flow configuration is considered for studying the flow around the valves in IC engines. The second flow configuration is closer to that in IC engines but is based on a single stationary intake/exhaust valve and relatively simple geometry. It is considered in this work for better understating of the effects of moving piston on the large-scale unsteady vortical fluid motions in the cylinder and for further validation of our LES model. The third flow configuration includes all the complexities involve in a realistic single-cylinder IC engine. The predicted flow statistics by LES show good comparison with the available experimental data.
Blower Cooling of Finned Cylinders
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Ellerbrock, Herman H , Jr
1937-01-01
Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.
Filament winding cylinders. I - Process model
NASA Technical Reports Server (NTRS)
Lee, Soo-Yong; Springer, George S.
1990-01-01
A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.
Solitary surface waves on a plasma cylinder
NASA Astrophysics Data System (ADS)
Gradov, O. M.; Stenflo, L.
1983-03-01
By considering electrostatic surface waves propagating along a plasma cylinder, it is demonstrated that solitary variations in the cylinder radius may appear. The properties of these slow perturbations are determined by the surface wave intensities.
Rotating Cylinder Treatment System Demonstration
In August 2008, a rotating cylinder treatment system (RCTS^{TM}) demonstration was conducted near Gladstone, CO. The RCTS^{TM} is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...
Video Analysis of Rolling Cylinders
ERIC Educational Resources Information Center
Phommarach, S.; Wattanakasiwich, P.; Johnston, I.
2012-01-01
In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…
Turbulent Flow Between Rotating Cylinders
NASA Technical Reports Server (NTRS)
Shih-I, Pai
1943-01-01
The turbulent air flow between rotating cylinders was investigated. The distributions of mean speed and of turbulence were measured in the gap between a rotating inner and a stationary outer cylinder. The measurements led to the conclusion that the turbulent flow in the gap cannot be considered two dimensional, but that a particular type of secondary motion takes place. It is shown that the experimentally found velocity distribution can be fully understood under the assumption that this secondary motion consists of three-dimensional ring-shape vortices. The vortices occur only in pairs, and their number and size depend on the speed of the rotating cylinder; the number was found to decrease with increasing speed. The secondary motion has an essential part in the transmission of the moment of momentum. In regions where the secondary motion is negligible, the momentum transfer follows the laws known for homologous turbulence. Ring-shape vortices are known to occur in the laminar flow between rotating cylinders, but it was hitherto unknown that they exist even at speeds that are several hundred times the critical limit.
Enrichment Activities for Geometry.
ERIC Educational Resources Information Center
Usiskin, Zalman
1983-01-01
Enrichment activities that teach about geometry as they instruct in geometry are given for some significant topics. The facets of geometry included are tessellations, round robin tournaments, geometric theorems on triangles, and connections between geometry and complex numbers. (MNS)
Comparison of aerodynamic noise from three nose-cylinder combinations
NASA Technical Reports Server (NTRS)
Guenther, R. A.; Reding, M. P.
1970-01-01
Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone.
Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers
NASA Astrophysics Data System (ADS)
Gloerfelt, X.; Pérot, F.; Bailly, C.; Juvé, D.
2005-10-01
The role of surfaces in the mechanism of sound generation by low Mach number flows interacting with solid nonvibrating surfaces is well established by the classical aeroacoustic papers by Powell, Doak, Ffowcs Williams, Crighton, or Howe. It can be formulated as a problem of diffraction of the flow sources by the rigid body. The present study illustrates this statement in the case of flow-induced cylinder noise. Curle's formulation is analytically and numerically compared to a formulation based on an exact Green's function tailored to a cylindrical geometry. The surface integral of Curle's formulation represents exactly the diffraction effects by the rigid body. The direct and scattered parts of the sound field are studied. In this low Mach number configuration, the cylinder is compact, and the scattered (dipole) field dominates the direct (quadrupole) field. The classical properties of the scattering by a cylinder are retrieved by considering a point quadripole source near the cylinder surface.
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.
1999-01-01
In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.
Size Effect in Ferroelectric Long Cylinders
NASA Astrophysics Data System (ADS)
Wang, Yuguo; Zhang, Peilin; Wang, Chunlei; Zhong, Weilie; N, Napp; D, R. Tilly
1995-02-01
The Curie temperature and polarization in a ferroelectric cylinder with infinite length have been examined using Landau free energy expansion. The Curie temperature and polarization decrease with decreasing cylinder diameter for the positive extrapolation length, and reach zero at the critical size. For negative extrapolation length, both Curie temperature and polarization increase with decreasing cylinder diameter.
Massless rotating fermions inside a cylinder
Ambruş, Victor E.; Winstanley, Elizabeth
2015-12-07
We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, while the spectral boundary condition is nonlocal.
Conjugate natural convection between horizontal eccentric cylinders
NASA Astrophysics Data System (ADS)
Nasiri, Davood; Dehghan, Ali Akbar; Hadian, Mohammad Reza
2017-03-01
This study involved the numerical investigation of conjugate natural convection between two horizontal eccentric cylinders. Both cylinders were considered to be isothermal with only the inner cylinder having a finite wall thickness. The momentum and energy equations were discretized using finite volume method and solved by employing SIMPLER algorithm. Numerical results were presented for various solid-fluid conductivity ratios ( KR) and various values of eccentricities in different thickness of inner cylinder wall and also for different angular positions of inner cylinder. From the results, it was observed that in an eccentric case, and for KR < 10, an increase in thickness of inner cylinder wall resulted in a decrease in the average equivalent conductivity coefficient (overline{{K_{eq} }}); however, a KR > 10 value caused an increase in overline{{K_{eq} }}. It was also concluded that in any angular position of inner cylinder, the value of overline{{K_{eq} }} increased with increase in the eccentricity.
Generalized Bistability in Origami Cylinders
NASA Astrophysics Data System (ADS)
Reid, Austin; Adda-Bedia, Mokhtar; Lechenault, Frederic
Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight, medicine, and even experimental nuclear physics. In spite of this interest, a general understanding of the dynamics of an origami folded cylinder has been elusive. By solving the fully constrained behavior of a periodic fundamental origami cell defined by unit vectors, we have found an analytic solution for all possible rigid-face states accessible from a cylindrical Miura-ori pattern. Although an idealized bellows has two rigid-face configurations over a well-defined region, a physical device, limited by nonzero material thickness and forced to balance hinge with plate-bending energy, often cannot stably maintain a stowed configuration. We have identified and measured the parameters which control this emergent bistability, and have demonstrated the ability to fabricate bellows with tunable deployability.
Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques
Miller, Karen A.
2012-05-02
Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential
Fire testing of bare uranium hexafluoride cylinders
Pryor, W.A.
1991-12-31
In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.
Fire testing of bare uranium hexafluoride cylinders
Pryor, W.A.
1991-12-31
In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.
Comparison of calculated and experimental results of fragmenting cylinder experiments
WILSON,L.T.; REEDAL,D.R.; KIPP,MARLIN E.; MARTINEZ,REINA R.; GRADY,D.E.
2000-06-02
The Grady-Kipp fragmentation model provides a physically based method for determining the fracture and breakup of materials under high loading rates. Recently, this model has been implemented into the CTH Shock Physics Code and has been used to simulate several published experiments. Materials studied in this paper are AerMet 100 steel and a 90% tungsten alloy. The experimental geometry consists of a right circular cylinder filled with an explosive main charge that is initiated at its center. The sudden expansion of the resulting detonation products causes fracture of the cylinder. Strain rates seen in the cylinder are on the order of 10{sup 4} s{sup {minus}1}. The average fragment sizes calculated with the Grady-Kipp fragmentation model successfully replicate the mean fragment size obtained from the experimental fragment distribution. When Poisson statistics are applied to the calculated local average fragment sizes, good correlation is also observed with the shape of the experimental cumulative fragment distribution. The experimental fragmentation results, CTH numerical simulations, and correlation of these numerical results with the experimental data are described.
High-Frequency Normal Mode Propagation in Aluminum Cylinders
Lee, Myung W.; Waite, William F.
2009-01-01
Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.
Slow light and band gaps in metallodielectric cylinder arrays.
Shainline, Jeffrey M; Xu, Jimmy
2009-05-25
We consider two-dimensional three-component photonic crystals wherein one component is modeled as a drude-dispersive metal. It is found that the dispersion relation of light in this environment depends critically on the configuration of the metallic and dielectric components. In particular, for the case of an incident electromagnetic wave with electric field vector parallel to the axis of the cylinders it is shown that the presence of dielectric shells covering the metallic cylinders leads to a closing of the structural band gap with increased filling factor, as would be expected for a purely dielectric photonic crystal. For the same polarization, the photonic band structure of an array of metallic shell cylinders with dielectric cores do not show the closing of the structural band gap with increased filling factor of the metallic component. In this geometry, the photonic band structure contains bands with very small values of group velocity with some bands having a maximum of group velocity as small as .05c.
Analysis of an indirect neutron signature for enhanced UF6 cylinder verification
NASA Astrophysics Data System (ADS)
Kulisek, J. A.; McDonald, B. S.; Smith, L. E.; Zalavadia, M. A.; Webster, J. B.
2017-02-01
The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF6) cylinders. The current method provides relatively low accuracy for the assay of 235U enrichment, especially for natural and depleted UF6. Furthermore, the current method provides no capability to assay the absolute mass of 235U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from 235U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVANT). HEVANT enables full-volume assay of UF6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVANT in terms of the individual contributions to HEVANT from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVANT signature to manipulation by the nearby placement of neutron-conversion materials.
Transition to Taylor vortex flow between combinations of circular and conical cylinders
NASA Astrophysics Data System (ADS)
Lalaoua, Adel
2017-01-01
The stability and flow transitions in the annular gap between two coaxial rotating bodies, termed Taylor-Couette flow, presents a great importance in the field of fluid dynamics. In this paper, the fluid motion in an annulus between cylinder-cone combinations is investigated numerically using CFD simulations for a three dimensional viscous and incompressible flow. The transitional phenomena occurring in this flow are discussed under the effect of opening angles of the outer cylinder. The main goal it is to show how operates the change in the structure of the movement when changing the geometry of the flow through angular deviation, i.e., from coaxial rotating cylinders to an inner cylinder rotating in a conical container. Particular attention is given to the transitional regime and the onset of Taylor vortices when the outer cylinder is replaced with a cone. The numerical calculations are carried out over a range of apex angle α from 0 (classical case) up to 12°. The critical Taylor number, Tac1, characterizing the occurrence of Taylor vortices in the flow, decreases drastically: the first instability mode of transition changes from Tac1 = 41.6, corresponding to the classical case to Tac1 = 20.3 when the apex angle reaches 12°. The velocity distribution and the wavelengths are also presented. It is established that the number of vortices occurring in the gap between rotating cylinder in a cone is inversely proportional to the apex angles.
Parameters of a Steady State Model for In-Cylinder Flow of an Internal Combustion Engine
NASA Astrophysics Data System (ADS)
Fortner, Elizabeth; Puzinauskas, Paul; Bolus, Nicholas
2013-11-01
Flow structures in an internal combustion engine are critical to engine performance and fuel consumption. Experiments are often conducted to explore how intake port geometry can be modified to induce desired tumble and swirl flow structures within the cylinder. To make these experiments cost-effective, they are often first conducted using a model cylinder on a steady flow bench prior to, or in lieu of, performing full unsteady engine tests. This research examines how model characteristics and experimental configuration choices affect results on these steady-flow tests. The experimental set-up uses DPIV to visualize the flow and a horizontally extracting swirl meter to measure the strength of the tumble structure. The configurations and characteristics examined included model geometry, seeding particle type and location of flow induction. The symmetric geometry experiment investigates how extraction affects the flow structures inside the cylinder. Three different seeding particles were used to see how particle properties affect DPIV results. Reversing the direction of flow through the system causes set-up challenges with removing leaks and introducing seeding particles, but is safer as it directs particles away from the flow bench. Deviation of results from the different test set-ups may indicate that cylinder model experiments need to be carefully designed to ensure high quality results accurate enough for use in designing full scale engine tests. Support from NSF REU Grant #1062611 is gratefully acknowledged.
Numerical and experimental investigation of the bending response of thin-walled composite cylinders
NASA Technical Reports Server (NTRS)
Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.
1993-01-01
A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end
Two interacting cylinders in cross flow.
Alam, Md Mahbub; Meyer, J P
2011-11-01
Cylindrical structures in a group are frequently seen on land and in the ocean. Mutual flow interaction between the structures makes the wake very excited or tranquil depending on the spacing between the structures. The excited wake-enhancing forces in some cases cause a catastrophic failure of the structures. This paper presents results of an experimental investigation of Strouhal number (St), time-mean, and fluctuating forces on, and flow structures around, two identical circular cylinders at stagger angle α = 0°-180° and gap-spacing ratio T/D=0.1-5, where T is the gap width between the cylinders, and D is the diameter of a cylinder. While forces were measured using a load cell, St was from spectral analysis of fluctuating pressures measured on the side surfaces of the cylinders. A flow visualization test was conducted to observe flow structures around the cylinders. Based on forces, St, and flow structures, 19 distinct flow categories in the ranges of α and T/D investigated are observed, including one quadristable flow, three kinds of tristable flows, and four kinds of bistable flows. The quadristable, tristable, and bistable flows ensue from instabilities of the gap flow, shear layers, vortices, separation bubbles, and wakes, engendering a strong jump or drop in forces and St of the cylinders. The two cylinders interact with each other in six different mechanisms, namely interaction between boundary layer and cylinder, shear layer or wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex. While the interaction between vortex and cylinder results in a very high fluctuating drag, that between vortex and shear layer results in a high fluctuating lift. On the other hand, the interaction between shear layer or wake and cylinder weakens mean and fluctuating forces and flow unsteadiness. A mutual discussion of forces, St, and flow structures is presented in this paper.
Cylinder valve packing nut studies
Blue, S.C.
1991-12-31
The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.
Transonic Flow Past Cone Cylinders
NASA Technical Reports Server (NTRS)
Solomon, George E
1955-01-01
Experimental results are presented for transonic flow post cone-cylinder, axially symmetric bodies. The drag coefficient and surface Mach number are studied as the free-stream Mach number is varied and, wherever possible, the experimental results are compared with theoretical predictions. Interferometric results for several typical flow configurations are shown and an example of shock-free supersonic-to-subsonic compression is experimentally demonstrated. The theoretical problem of transonic flow past finite cones is discussed briefly and an approximate solution of the axially symmetric transonic equations, valid for a semi-infinite cone, is presented.
Fire exposure of empty 30B cylinders
Ziehlke, K.T.
1991-12-31
Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.
Overseas shipments of 48Y cylinders
Tanaka, R.T.; Furlan, A.S.
1991-12-31
This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.
Vortex motion behind a circular cylinder
NASA Technical Reports Server (NTRS)
Foeppl, L.
1983-01-01
Vortex motion behind a circular cylinder moving through water is discussed. It is shown that a pair of vortices form behind a moving cylinder and that their centers will move along a predictable curve. This curve represents an equilibrium condition which, however, is subject to perturbation. The stability of the vortex pair is investigated. Movement of the vortex pair away from the cylinder is calculated as an explanation of the resistance of the cylinder. Finally, the principles elaborated are applied to the flow around a flat plate.
Cylinder head cover structure for a V-type engine
Okada, M.; Nishida, M.; Hokazono, K.
1988-11-15
This patent describes a cylinder head cover structure for a cylinder engine having first and second cylinder heads for forming first and second cylinder banks, each cylinder head being provided, in an inner side wall thereof, with intake ports each communicating with a cylinder formed in the cylinder bank, at least one camshaft provided in each cylinder bank above intake and exhaust valves to drive the valves in synchronization with rotation of the engine and supported for rotation by a plurality of bearings, discrete intake passages each of which is connected to one of the intake ports of one of the cylinder banks and extends above the other cylinder bank, and cylinder head covers mounted on the respective cylinder heads, characterized in that recessed portions are formed in each of the cylinder head covers at corresponding portions of the camshaft and respective the discrete intake passages extend through corresponding ones of the recessed portions.
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
ERIC Educational Resources Information Center
Cukier, Mimi; Asdourian, Tony; Thakker, Anand
2012-01-01
Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…
Vibrations and stresses in layered anisotropic cylinders
NASA Technical Reports Server (NTRS)
Mulholland, G. P.; Gupta, B. P.
1976-01-01
An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.
Topping pressure for gas-storage cylinders
NASA Technical Reports Server (NTRS)
Haben, R. L.
1979-01-01
With charts derived from gas-storage system model, required topping pressure can be determined from initial cylinder pressure and temperature of gas entering cylinder. Charts are available for hydrogen and oxygen and can be developed for other important industrial gases as well.
Positive displacement cylinder measures corrosive liquid volume
NASA Technical Reports Server (NTRS)
Mariman, R. A.; Vendl, C. J.
1966-01-01
Positive displacement cylinder accurately measures volumetric flow rates of corrosive liquids. The cylinder is compatible with corrosive liquids and handles flow rates from zero to 75 gpm at pressures to 900 psig with an accuracy of 0.25 per cent.
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
Extinction properties of infinitely long graphite cylinders
NASA Astrophysics Data System (ADS)
Jazbi, B.; Hoyle, F.; Wickramasinghe, N. C.
1991-12-01
The extinction efficiencies of randomly oriented infinite graphite cylinders, including hollow cylinders are calculated, using the rigorous Kerker-Matijevic formulas. The peak in the mid-UV extinction varies in wavelength with particle radius and cavity size in a way that makes such particles of limited interest as models of interstellar grains.
Stabilization of flow past a rounded cylinder
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Zhang, Wei
2016-11-01
We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.
9. General view of engine between cylinders with high pressure ...
9. General view of engine between cylinders with high pressure cylinder on left and low pressure cylinder on right. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH
Schlieren measurements in the round cylinder of an optically accessible internal combustion engine.
Kaiser, Sebastian Arnold; Salazar, Victor Manuel; Hoops, Alexandra A
2013-05-10
This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system's sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Kanazawa, Kazuaki; Matsuda, Yu; Niimi, Tomohide; Polikarpov, Alexey; Graur, Irina
2012-06-01
The heat flux between two coaxial cylinders was measured in the range from the free molecular to the early transitional flow regimes for extraction of the thermal accommodation coefficient using an approximate relation on the pressure dependence of the heat flux. The experimental coaxial cylinders' geometry has been traditionally implemented for the measurement of the thermal accommodation coefficient using the low-pressure method; however, the actual experimental setup was characterized by large temperature difference and large cylinders' radius ratio. Compared to the original low-pressure method, much higher pressure range was applied. In order to verify assumptions in the accommodation coefficient extraction, the heat flux under measurement conditions was simulated numerically by the nonlinear S-model kinetic equation. Very good agreement was found between the measured and the simulated heat flux. The proposed procedure of the thermal accommodation coefficient extraction was discussed in detail and verified. The temperature dependence of the thermal accommodation coefficient was also found.
Spin-up in a rectangular cylinder
NASA Astrophysics Data System (ADS)
Stewart, Dawn L.
1993-12-01
We examined the spin-up from rest of water in a rectangular cylinder. The presence of corners in the cylinder causes the formation of eddies. We found that the number of eddies, as well as eddy size, position, and rotation rate were dependent on the aspect ratio of the cylinder, the depth of the fluid, and the final angular velocity of the cylinder. Two time scales were found to be important in this experiment: the traditional Ekman number based on depth, which defines the time scale required for spin-up and an additional Ekman number based on the cylinder length which provides some information about the evolution of the fluid pathlines in route to spin-up. This second Eckman number appears to provide an explanation for both the agreement and disagreement of the experimental results herein and previously published results.
Learning Geometry through Dynamic Geometry Software
ERIC Educational Resources Information Center
Forsythe, Sue
2007-01-01
In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…
Tests on Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Holt, Marshall
1941-01-01
Compressive tests were made of two series of stiffened circular cylindrical shells under axial load. All the shells were 16 inches in diameter by 24 inches in length and were made of aluminum-alloy sheet curved to the proper radius and welded with one longitudinal weld. The ratios of diameter to thickness of shell wall in the two series of specimens were 258 and 572. Strains were measured with Huggenberger tensometers at a number of gage lines on the stiffeners and shell. The results of these tests indicate that a spacing of circumferential stiffeners equal to 0.67 times the radius is too great to strengthen the shell wall appreciably. The results are not inclusive enough to show the optimum in stiffeners. Plain cylinders without stiffeners developed ultimate strengths approximately half as great as the buckling strengths computed by the equation resulting from the classical theory and slightly greater than those computed by Donnell's large deflection theory.
Morton, C.; Yarusevych, S.; Scarano, F.
2016-02-15
This experimental study focuses on the near wake development of a dual step cylinder geometry consisting of a long base cylinder of diameter d to which a larger diameter (D) cylinder of length L is attached coaxially at mid-span. The experiments cover a range of Reynolds numbers, 2000 ≤ Re{sub D} ≤ 5000, diameter ratios, 1.33 ≤ D/d ≤ 2.0 and large cylinder aspect ratios, 0.5 ≤ L/D ≤ 5 using Tomographic particle image velocimetry. Distinct changes in wake topology are observed varying the above parameters. Supporting previous experimental studies on the same geometry involving flow visualization and planar measurements, four distinct flow regimes are identified to which a distinct three-dimensional wake topology can be associated. The vortex-dominated wake dynamical behaviour is investigated with Proper Orthogonal Decomposition (POD) and conditional averaging of three-dimensional velocity fields is used to exemplify the different shedding regimes. The conditionally averaged flow fields are shown to quantitatively resolve flow features equivalent to those obtained from a reduced order model consisting of the first ten to twenty POD modes, identifying the dominant vortex shedding cells and their interactions.
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.
2005-01-01
A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.
Spanwise plumes in wakes behind heated cylinder
NASA Astrophysics Data System (ADS)
Kumar, S. Ajith; Lal, S. Anil; Sameen, A.
2013-11-01
3D wake transition in flow past cylinder is interesting theoretically and industrially. A three dimensional Finite volume computation has been performed on an incompressible flow past heated cylinder to understand the wake behavior behind the cylinder, under the Boussinesq assumption. We study the heat transfer characteristics and the coherent structures behind the cylinder at different Prandtl numbers. In forced convection, the 3D transition occurs above Reynolds number, Re = 180-190 (Re is based on the cylinder diameter). However, the present 3D computational analyses show that in mixed convection, the so called ``mode-E'' instability (3D transition of wake behind the cylinder caused by the heating of the cylinder) happens at a much lower Reynolds number. The co-existence of mushroom like coherent structures called the plumes along with the shed vortices is observed for a range of heating conditions. These plumes originates from the core of the upper vortex rows at a definite span wise wavelengths. The dependence of Prandtl number on the span wise wavenumber of these plumes is also analyzed.
Gas cylinder release rate testing and analysis
NASA Astrophysics Data System (ADS)
Despres, Joseph; Sweeney, Joseph; Yedave, Sharad; Chambers, Barry
2012-11-01
There are varying cylinder technologies employed for the storage of gases, each resulting in a potentially different hazard level to the surroundings in the event of a gas release. Subatmospheric Gas delivery Systems Type I (SAGS I) store and deliver gases subatmospherically, while Subatmospheric Gas delivery Systems Type II (SAGS II) deliver gases subatmospherically, but store them at high pressure. Standard high pressure gas cylinders store and deliver their contents at high pressure. Due to the differences in these cylinder technologies, release rates in the event of a leak or internal component failure, can vary significantly. This paper details the experimental and theoretical results of different Arsine (AsH3) gas cylinder release scenarios. For the SAGS II experimental analysis, Fourier Transform Infrared Spectroscopy (FTIR) was used to determine the spatial concentration profiles when a surrogate gas, CF4, was released via a simulated leak within an ion implanter. Various SAGS I and SAGS II cylinder types and failure modes were tested. Additionally, theoretical analysis was performed to support an understanding of the different potential AsH3 leak rates. The results of this work show that the effects of a leak from the various cylinder types can be quite different, with the concentrations resulting from cylinders containing high pressure gas often being in excess of IDLH levels.
Electrostatic field between non-concentric cylinders
Garcia, M
2000-01-10
This report describes a closed-form solution to the electrostatic potential, and the electric field, between non-concentric cylinders, with the inner cylinder charged and the outer cylinder grounded. This problem is an abstraction of the situation of an electron beam within a drift tube. Capacitive and surface current probes on the inner wall of the outer cylinder are used to detect the asymmetry of the field when the beam is off center. The solution of this problem allows for a quantitative relationship between probe-array signals and beam deflection. probe-arrays of this type are called ''beam bugs'' at LLNL. The solution described here is suggested by the analysis presented in [3]. The essential point is that the 2D potential for a line source decreases along a radius as the logarithm of the distance. The non-concentric cylinder problem has a unique profile of this type for each ray from ({rho}, {sigma}) linking the inner cylinder at equipotential V{sub 2}, and the outer cylinder at equipotential 0.
The measurement of maximum cylinder pressures
NASA Technical Reports Server (NTRS)
Hicks, Chester W
1929-01-01
The work presented in this report was undertaken at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics to determine a suitable method for measuring the maximum pressures occurring in aircraft engine cylinders. The study and development of instruments for the measurement of maximum cylinder pressures has been conducted in connection with carburetor and oil engine investigations on a single cylinder aircraft-type engine. Five maximum cylinder-pressure devices have been designed, and tested, in addition to the testing of three commercial indicators. Values of maximum cylinder pressures are given as obtained with various indicators for the same pressures and for various kinds and values of maximum cylinder pressures, produced chiefly by variation of the injection advance angle in high-speed oil engine. The investigations indicate that the greatest accuracy in determining maximum cylinder pressures can be obtained with an electric, balanced-pressure, diaphragm or disk-type indicator so constructed as to have a diaphragm or disk of relatively large area and minimum seat width and mass.
2009-08-10
used as a scrapper. After this operation the I-beams were removed and the cylinder deployed using a lift system that consists of a flotation bladder...angles (left column , green curves), and finite element results using experimental geometry with first order accurate Green’s function (center column ...magenta curves), 3-D finite element results (right column , red curves): top row) broadside, top center row) 17o relative to broadside, bottom center row
Measurement of convective heat transfer to solid cylinders inside ventilated shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Germain, E. F.; Ash, R. L.
1984-01-01
The influence of ventilated cylindrical shrouds on the convective heat transfer to circular cylinders has been studied experimentally. Geometries studied were similar to those used in commercially available platinum resistance thermometers. Experiments showed that thermal response (convection) was enhanced when the shroud ventilation factor was approximately 20 percent (80 percent solid), and that maximum enhancement occurred when the ventilation holes were located symmetrically on either side of the stagnation lines.
ERIC Educational Resources Information Center
McDonald, Nathaniel J.
2001-01-01
Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…
Pulsatile flow and gas transfer over arrays of cylinders
NASA Astrophysics Data System (ADS)
Chan, Kit Yan; Fujioka, Hideki; Grotberg, James B.
2004-11-01
In an artificial lung device, blood passes through arrays of porous microfibers and the gas transfer occurring across the fiber surfaces strongly depends on the flow field. Pulsatile flow distribution and gas transfer over arrays of porous microfibers (modeled as cylinders) are numerically simulated for both Newtonian and Casson fluids using Finite Volume method. Different arrangements of the cylinders: square array, rectangular array, staggered array are considered in this study. For some of the studies, the average x-velocity U(t) is described by U(t) = U0 ( 1 +A sin ( ω t) ) [1], where U0 is the time-average x-velocity, A is the amplitude of the oscillation, and ω is the frequency. For other studies, half of a cycle is described by [1] and half of the cycle U(t) = 0. The inclusion of a zero average velocity period in U(t) is physiologically a better description of the time-average velocity of blood exiting the heart. Interestingly, gas transfer increases when U(t) is described this way, due to the appearance of large vortices that enhance mixing. The existence, the size and the location of the recirculation zones are found to be controlled by array geometry and flow parameters. In general, conditions that enhance the gas transfer also at the same time increase the maximum flow resistance; such as the increase of the Reynolds number, the Womersley number, A, and cylinder density, with the exception of the increase of the yield stress for a Casson fluid. This work is supported by NIH: HL 69420.
The flow past a cactus-inspired grooved cylinder
NASA Astrophysics Data System (ADS)
El-Makdah, Adnan M.; Oweis, Ghanem F.
2013-02-01
The star-shaped cross section of giant cylindrical cactus plants is thought to be aerodynamically favorable for protection against toppling by strong winds. Particle image velocimetry is used to investigate the flow details within the surface grooves and in the immediate wake of a cactus-inspired model cylinder with eight longitudinal grooves, at biologically relevant Reynolds numbers between 50 × 103 and 170 × 103. The wake flow is analyzed and compared to a similarly sized circular cylinder. At the lowest Re tested, the wakes from the two geometries are similar. At higher Re, the cactus wake exhibits superior behavior as seen from the mean and turbulent velocities, suggesting that the flow mechanisms are Re dependent. The flow within the surface grooves reveals counter rotating rollers, while the geometrical ridges act as vortex generators known to help with the surface flow attachment. Lastly, a simplistic analysis is described to recover, qualitatively, certain time-dependent flow features from the randomly acquired PIV realizations.
Improved turbine cylinder bolting system
Gosling, M.C.
1997-10-01
This paper describes the design and development of a new cylinder bolting system to replace the main joint hardware for both combustion (and steam) turbine applications. The new bolts are designed to be hydraulically tensioned to the specified preload and utilize ultrasonic verification of elongation. The new bolting system uses a reduced number of components in each assembly and the individual components themselves are of a simplified design. The new hardware can be applied to new equipment without modification and retrofitted to customer-owned equipment as a direct replacement for existing joint hardware. The prototype, production, and field testing of this hardware, the installation tooling; and ultrasonic elongation measuring equipment are described. This testing has shown significant savings in assembly and disassembly cycle times even after prolonged exposure to turbine operating temperatures in a corrosive environment. The new design of bolting is now standard equipment for the CE251B11/B12 combustion turbine manufactured by Westinghouse P.G.B.U.
NASA Astrophysics Data System (ADS)
Bru, Luis A.; de Valcárcel, Germán J.; Di Molfetta, Giuseppe; Pérez, Armando; Roldán, Eugenio; Silva, Fernando
2016-09-01
We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.
Investigations of Flow past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald; Aljallis, Elias; Thangam, Siva
2013-11-01
A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders. The blunt cylinders are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 1.2 (based on cylinder diameter). The results for spinning cylinders with both rear-mounted and fore-mounted stings are presented. Computations are performed using a two-equation anisotropic turbulence model that is based on proper representation of the energy spectrum to capture rotation and curvature. The model performance is validated with benchmark experimental flows and implemented for analyzing the flow configuration used in the experimental study. Funded in part by U. S. Army, ARDEC.
Experimental Investigations of Flow past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2015-11-01
Experimental investigations of flow past spinning cylinders is presented in the context of their application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders that are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 2 (based on cylinder diameter). The experimental validation of the tunnel characteristics and the benchmarking of the flow field in the tunnel are described. The experimental results for spinning cylinders with both rear-mounted and fore-mounted stings are presented along with available computational and experimental findings. This work was funded in part by U. S. Army ARDEC.
A Study of Gas Economizing Pneumatic Cylinder
NASA Astrophysics Data System (ADS)
Li, T. C.; Wu, H. W.; Kuo, M. J.
2006-10-01
The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air.
Theory of interacting dislocations on cylinders
NASA Astrophysics Data System (ADS)
Amir, Ariel; Paulose, Jayson; Nelson, David R.
2013-04-01
We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.
Heat transfer in geometrically similar cylinders
NASA Technical Reports Server (NTRS)
Riekert, P; Held, A
1941-01-01
The power and heat-stress conditions of geometrically similar engines are discussed. The advantages accruing from smaller cylinder dimensions are higher specific horsepower, lower weight per horsepower, lower piston temperature, and less frontal area, with reduced detonation tendency.
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
Steady streaming around a cylinder pair
NASA Astrophysics Data System (ADS)
Coenen, W.
2016-11-01
The steady streaming motion that appears around a pair of circular cylinders placed in a small-amplitude oscillatory flow is considered. Attention is focused on the case where the Stokes layer thickness at the surface of the cylinders is much smaller than the cylinder radius, and the streaming Reynolds number is of order unity or larger. In that case, the steady streaming velocity that persists at the edge of the Stokes layer can be imposed as a boundary condition to numerically solve the outer streaming motion that it drives in the bulk of the fluid. It is investigated how the gap width between the cylinders and the streaming Reynolds number affect the flow topology. The results are compared against experimental observations.
An Improved Protein Surface Extraction Method Using Rotating Cylinder Probe.
Singh, Kalpana; Lahiri, Tapobrata
2017-03-01
For extraction of information on binding sites of a protein, the commonly known geometry-based methods utilize the corresponding PDB file to extract its surface as a first step. Finally, the surface is used to find the binding site atoms. As shown in this paper work, since none of the mostly used surface extraction methods can retrieve a sizeable percentage of the binding site atoms, the scope of development of a better method remains. In this direction, this paper presents a new benchmarking criteria based on utilization of binding site information to compare performance of these surface extraction methods. Also, a new surface extraction method is introduced based on the use of a rotating cylinder probe adapting from the work of Weisel et al. (Chem Cent J 1:7-23, 2007. doi: 10.1186/1752-153X-1-7 ). The result of the new method shows a significant improvement of performance in comparison to the existing methods.
Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Nemeth, Michael P.
2010-01-01
Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.
ERIC Educational Resources Information Center
Scanlon, Regina M.
2003-01-01
Describes an engaging project in which students have to design and construct a three-dimensional candy box that would appeal to children. Requires students to make the box out of prisms, pyramids, or cylinders, determine the surface area and volume of the solids, and write a persuasive business letter. (YDS)
NASA Astrophysics Data System (ADS)
Bratek, Łukasz
2008-07-01
The class of static, spherically symmetric, and finite energy hedgehog solutions in the SU(2) Skyrme model is examined on a metric three-cylinder. The exact analytic shape function of the 1-Skyrmion is found. It can be expressed via elliptic integrals. Its energy is calculated, and its stability with respect to radial and spherically symmetric deformations is analyzed. No other topologically nontrivial solutions belonging to this class are possible on the three-cylinder.
Dynamic Fracture Simulations of Explosively Loaded Cylinders
Arthur, Carly W.; Goto, D. M.
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
Automatic visualization of 3D geometry contained in online databases
NASA Astrophysics Data System (ADS)
Zhang, Jie; John, Nigel W.
2003-04-01
In this paper, the application of the Virtual Reality Modeling Language (VRML) for efficient database visualization is analyzed. With the help of JAVA programming, three examples of automatic visualization from a database containing 3-D Geometry are given. The first example is used to create basic geometries. The second example is used to create cylinders with a defined start point and end point. The third example is used to processs data from an old copper mine complex in Cheshire, United Kingdom. Interactive 3-D visualization of all geometric data in an online database is achieved with JSP technology.
Statistical analyses of a screen cylinder wake
NASA Astrophysics Data System (ADS)
Mohd Azmi, Azlin; Zhou, Tongming; Zhou, Yu; Cheng, Liang
2017-02-01
The evolution of a screen cylinder wake was studied by analysing its statistical properties over a streamwise range of x/d={10-60}. The screen cylinder was made of a stainless steel screen mesh of 67% porosity. The experiments were conducted in a wind tunnel at a Reynolds number of 7000 using an X-probe. The results were compared with those obtained in the wake generated by a solid cylinder. It was observed that the evolution of the statistics in the wake of the screen cylinder was different from that of a solid cylinder, reflecting the differences in the formation of the organized large-scale vortices in both wakes. The streamwise evolution of the Reynolds stresses, energy spectra and cross-correlation coefficients indicated that there exists a critical location that differentiates the screen cylinder wake into two regions over the measured streamwise range. The formation of the fully formed large-scale vortices was delayed until this critical location. Comparison with existing results for screen strips showed that although the near-wake characteristics and the vortex formation mechanism were similar between the two wake generators, variation in the Strouhal frequencies was observed and the self-preservation states were non-universal, reconfirming the dependence of a wake on its initial condition.
Evolution of Vortex Rings Exiting Inclined Cylinders
NASA Astrophysics Data System (ADS)
Longmire, E. K.; Webster, D. R.; Reetz, M.; Gefroh, D.
1996-11-01
Vortex rings initiated in cylinders with exit incline lengths of 0, D/4, and D/2 were investigated for Reynolds numbers up to 30,000. The fluid exiting each cylinder was visualized with an ionized bromothymol blue solution, and velocity fields were obtained with PIV. In each inclined case, vortex rings form at angles smaller than the cylinder incline angle. Entrainment of ambient fluid on the short side of the cylinder is much stronger than that on the long side. This results in a larger circulation about the short side of the ring and a greater propagation velocity on that side. The incline angle of the ring thus decreases as it moves downstream. Behind the ring core, an impulsive wave of entrained ambient fluid flows parallel to the cylinder exit plane. Some of this fluid is wrapped into the core, while the rest is ejected outward past the long cylinder edge. The vortex ring dynamics differ significantly from those observed in jets from inclined nozzles where neighboring rings are connected by straining zones, and ring incline angles increase with downstream distance.
Maximal liquid bridges between horizontal cylinders.
Cooray, Himantha; Huppert, Herbert E; Neufeld, Jerome A
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
Maximal liquid bridges between horizontal cylinders
NASA Astrophysics Data System (ADS)
Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders
NASA Technical Reports Server (NTRS)
Mettu, Sambi R.; Raju, Ivatury S.; Forman, Royce G.
1992-01-01
Flaws resulting from improper welding and forging are usually modeled as cracks in flat plates, hollow cylinders or spheres. The stress intensity factor solutions for these crack cases are of great practical interest. This report describes some recent efforts at improving the stress intensity factor solutions for cracks in such geometries with emphasis on hollow cylinders. Specifically, two crack configurations for cylinders are documented. One is that of a surface crack in an axial plane and the other is a part-through thumb-nail crack in a circumferential plane. The case of a part-through surface crack in flat plates is used as a limiting case for very thin cylinders. A combination of the two cases for cylinders is used to derive a relation for the case of a surface crack in a sphere. Solutions were sought which cover the entire range of the geometrical parameters such as cylinder thickness, crack aspect ratio and crack depth. Both the internal and external position of the cracks are considered for cylinders and spheres. The finite element method was employed to obtain the basic solutions. Power-law form of loading was applied in the case of flat plates and axial cracks in cylinders and uniform tension and bending loads were applied in the case of circumferential (thumb-nail) cracks in cylinders. In the case of axial cracks, the results for tensile and bending loads were used as reference solutions in a weight function scheme so that the stress intensity factors could be computed for arbitrary stress gradients in the thickness direction. For circumferential cracks, since the crack front is not straight, the above technique could not be used. Hence for this case, only the tension and bending solutions are available at this time. The stress intensity factors from the finite element method were tabulated so that results for various geometric parameters such as crack depth-to-thickness ratio (a/t), crack aspect ratio (a/c) and internal radius-to-thickness ratio (R
Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.
Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian
2015-11-01
A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.
Developments in special geometry
NASA Astrophysics Data System (ADS)
Mohaupt, Thomas; Vaughan, Owen
2012-02-01
We review the special geometry of Script N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we disucss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.
NASA Technical Reports Server (NTRS)
Paraska, Peter J.
1993-01-01
This report documents an analytical study of the response of unsymmetrically laminated cylinders subjected to thermally-induced preloading effects and compressive axial load. Closed-form solutions are obtained for the displacements and intralaminar stresses and recursive relations for the interlaminar shear stress were obtained using the closed-form intralaminar stress solutions. For the cylinder geometries and stacking sequence examples analyzed, several important and as yet undocumented effects of including thermally-induced preloading in the analysis are observed. It should be noted that this work is easily extended to include uniform internal and/or external pressure loadings and the application of strain and stress failure theories.
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
Chi, Y; Tian, Z; Jiang, S; Jia, X
2015-06-15
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
Park, S.H.
1991-12-31
With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.
Guided Circumferential Waves in Layered Poroelastic Cylinders
NASA Astrophysics Data System (ADS)
Shah, S. A.; Apsar, G.
2016-12-01
The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly). The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.
Vision-guided gripping of a cylinder
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.
The Cylinder and Semicylinder in Subsonic Flow
NASA Technical Reports Server (NTRS)
Bingham, Harry J.; Weimer, David K..; Griffith, Wayland
1952-01-01
In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.
Compressive testing of filament-wound cylinders
NASA Technical Reports Server (NTRS)
Jensen, David W.; Hipp, Patrick A.
1991-01-01
An experimental investigation has been conducted on the compressive buckling and failure of filament-wound circular cylinders. This investigation identifies one of the relationships between structural performance and scale, as well as some of the causes of reduced structural performance in large-scale structures. It is hypothesized that this effect is related to two conditions: first, the number of fiber tow undulations; and second, the percentage of weak interfaces within the structure. The effect of winding pattern and the resulting location of the fiber undulations were studied by varying the winding parameters. Three types of cylinders were manufactured from Amoco T650-35/1908 graphite/epoxy preimpregnated tow with different winding sequences (0/+/-60)s, (+/-30/90)s, and (90/+/-30)s. The (90/+/-30)s cylinders were manufactured with two different winding patterns (distributed and classical) and radius-to-thickness ratios (15 and 55). All cylinders were loaded in compression to failure. Comparisons of the compressive strength and failure modes demonstrate the relationship between the winding parameters, scale, and structural performance of filament-wound composite cylinders.
Horseshoe vortex formation around a cylinder
NASA Astrophysics Data System (ADS)
Eckerle, W. A.
A turbulent boundary layer approaching a local obstruction, such as when annulus wall boundary layers encounter airfoils and support struts, creates a critical problem in gas turbine engines. The slower portion of the approaching boundary layer cannot negotiate the adverse pressure gradient generated by the obstruction and consequently separates from the endwall. The resulting flow field includes a horseshoe vortex that is swept downstream around the body. The separation affects both the local heat transfer coefficients and aerodynamic losses in the endwall region. This investigation evaluated the detailed flow processes that lead to the symmetric horseshoe vortex formation around a large-diameter cylinder. Test conditions included a freestream velocity of 30.5 m/sec, a Reynolds number based on cylinder diameter of 5.5 x 10 to the 5th power, and a boundary-layer thickness equal to 13 percent of the cylinder diameter. The final report presents endwall and cylinder surface flow visualizations, endwall and cylinder static pressure distributions, and five-hole probe measurements in the separation region.
Geometry of multihadron production
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
ERIC Educational Resources Information Center
Lyublinskaya, Irina; Funsch, Dan
2012-01-01
Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…
Euclidean Geometry via Programming.
ERIC Educational Resources Information Center
Filimonov, Rossen; Kreith, Kurt
1992-01-01
Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability…
ERIC Educational Resources Information Center
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Flow interaction between a streamwise oscillating cylinder and a downstream stationary cylinder
NASA Astrophysics Data System (ADS)
Xu, S. J.; Gan, L.; Zhou, Y.
2016-11-01
In this paper, we present some experimental results about the physical effects of a cylinder's streamwise oscillation motion on a downstream one in a tandem arrangement. The upstream cylinder undergoes a controlled simple harmonic oscillation at amplitudes A/ d = 0.2-0.8, where d is the cylinder diameter, and the frequency ratio of f_e/f_s = 0-3.0, where f_e is the cylinder oscillation frequency and f_s is the natural frequency of vortex shedding from a single stationary cylinder. Under these conditions, the vortex shedding is locked to the controlled oscillation motion. Flow visualisation using the planar laser-induced fluorescence and qualitative measurements using hot-wire anemometry reveal three distinct flow regimes behind the downstream cylinder. For f_e/f_s > (f_e/f_s)_c, where (f_e/f_s)_c is a critical frequency ratio which depends on A/ d and Reynolds number Re, a so-called SA-mode occurs. The upstream oscillating cylinder generates binary vortices symmetrically arranged about the centreline, each containing a pair of counter-rotating vortices, and the downstream cylinder sheds vortices alternately at 0.5f_e. For 0.7-1.0 < f_e/f_s < (f_e/f_s)_c a complex vortex street that consists of two outer rows of vortices generated by the oscillating cylinder and two inner rows of vortices shed from the downstream stationary cylinder, which is referred to as AA-mode. For 0.3-0.6 < f_e/f_s< 0.8-1.0, one single staggered vortex street (A-mode) is observed. It is also found that, when f_e/f_s is near unity, the streamwise interaction of the two cylinders gives rise to the most energetic wake in the cross-stream direction, in terms of its maximum width, and the wake is AA-mode-like. The effects of other parameters such as the spacing between the two cylinders, Re and A/ d on the flow pattern are also discussed in details. The observations are further compared to the stationary tandem cylinder cases.
NASA Astrophysics Data System (ADS)
Abdel-Aziz, M. H.; El-Ashtoukhy, E.-S. Z.; Bassyouni, M.
2016-02-01
Recovery of copper from synthetic waste solution using cementation technique in a new agitated vessel employing multirotating aluminum cylinders impeller was investigated. Parameters studied are cylinder diameter, rotation speed, initial copper ion concentrations, and effect of surfactants. Solution analysis and scanning electron microscopy were employed to investigate the kinetic and mechanism of the process. The rate of recovery was found to be at its maximum value at the operating conditions of 350 rpm rotation speed, 5000 ppm initial CuSO4 concentration, and 1.2 cm cylinder diameter. All data were correlated by the dimensionless equation: {Sh} = 1.16 {Sc}^{0.33} {Re}^{0.63} ( {{d_{{c}} }/L} )^{0.54}, with an average deviation of ±8.5 pct and a standard deviation of 5.88 pct. Presence of nonylphenol ethoxylate surfactant in the solution decreased the rate of recovery by an amount ranging from 2.94 to 38.57 pct depending on the operating conditions. The present geometry gave higher rates of recovery compared to both the single rotating cylinder and rotating disc reactor.
Stress Analysis of Laminated Composite Cylinders Under Non-Axisymmetric Loading
Starbuck, J.M.
1999-10-26
The use of thick-walled composite cylinders in structural applications has seen tremendous growth over the last decade. Applications include pressure vessels, flywheels, drive shafts, spoolable tubing, and production risers. In these applications, the geometry of a composite cylinder is axisymmetric but in many cases the applied loads are non-axisymmetric and more rigorous analytical tools are required for an accurate stress analysis. A closed-form solution is presented for determining the layer-by-layer stresses, strains, and displacements and first-ply failure in laminated composite cylinders subjected to non-axisymmetric loads. The applied loads include internal and external pressure, axial force, torque, axial bending moment, uniform temperature change, rotational velocity, and interference fits. The formulation is based on the theory of anisotropic elasticity and a state of generalized plane deformation along the axis of the composite cylinder. Parametric design trade studies can be easily and quickly computed using this closed-form solution. A computer program that was developed for performing the numerical calculations is described and results from specific case studies are presented.
Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V
2015-01-01
Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.
A pneumatic cylinder driving polyhedron mobile mechanism
NASA Astrophysics Data System (ADS)
Ding, Wan; Kim, Sung-Chan; Yao, Yan-An
2012-03-01
A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.
Optimum cylinder cooling for advanced diesel engines
Trenc, F.; Rodman, S.; Skerget, L.; Delic, M.
1998-07-01
Continuous demand for higher specific engine output simultaneously introduces problems of higher mechanical and thermal stresses of the engine components. Uneven temperature distribution in the cylinder wall of a diesel engine, especially when air-cooled, is well known. Peak local temperatures, large circumferential and longitudinal temperature gradients provoke deformations that, in turn, affect the reliability of the engine. As the result of intensive numerical and experimental investigations, a horizontal, curved channel fed with engine lubrication oil was introduced in the upper part of the air-cooled cylinder. Optimization of the channel design, its position, and determination of suitable asymmetrical split oil flow have led to more favorable cylinder temperature distribution, similar to that obtained by advanced water-cooled engines. Analyses of the local laminar oil-flow phenomena and local heat transfer distribution is curved channels are discussed in the paper and can be successfully applied to advanced liquid-cooled engines.
Optimum cylinder cooling for advanced diesel engines
Trenc, F.; Rodman, S.; Skerget, L.; Delic, M.
1996-12-31
Continuous demand for higher specific engine output simultaneously introduces problems of higher mechanical and thermal stresses of the engine components. Uneven temperature distribution in the cylinder wall of a Diesel engine, especially when air-cooled, is well known. Peak local temperatures, large circumferential and longitudinal temperature gradients provoke deformations that in turn affect the reliability of the engine. As the result of intensive numerical and experimental investigations a horizontal, curved channel fed with engine lubrication oil was introduced in the upper part of the air-cooled cylinder. Optimization of the channel design, its position, and determination of suitable asymmetrical split oil-flow have led to more favorable cylinder temperature distribution, similar to that obtained by advanced water-cooled engines. Analyses of the local laminar oil-flow phenomena and local heat transfer distribution in curved channels can be successfully and effectively applied to advanced liquid-cooled engines.
Sky reconstruction for the Tianlai cylinder array
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Zuo, Shi-Fan; Ansari, Reza; Chen, Xuelei; Li, Yi-Chao; Wu, Feng-Quan; Campagne, Jean-Eric; Magneville, Christophe
2016-10-01
We apply our sky map reconstruction method for transit type interferometers to the Tianlai cylinder array. The method is based on spherical harmonic decomposition, and can be applied to a cylindrical array as well as dish arrays and we can compute the instrument response, synthesized beam, transfer function and noise power spectrum. We consider cylinder arrays with feed spacing larger than half a wavelength and, as expected, we find that the arrays with regular spacing have grating lobes which produce spurious images in the reconstructed maps. We show that this problem can be overcome using arrays with a different feed spacing on each cylinder. We present the reconstructed maps, and study the performance in terms of noise power spectrum, transfer function and beams for both regular and irregular feed spacing configurations.
Vortex noise from nonrotating cylinders and airfoils
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.; Fink, M. R.
1976-01-01
An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.
Flow in a partially filled rotating cylinder
NASA Astrophysics Data System (ADS)
Shadday, M. A., Jr.
Axial flow in a rapidly rotating cylinder, partially filled with a viscous, incompressible fluid is measured with a laser-Doppler velocimeter. The cylinder has a vertical axis of rotation, and the axial circulation is induced by rotating a coaxially mounted disk at the top endcap slightly faster than the cylinder. The experimental results are compared with the predictions of a finite-difference model of the flow, and the correlation is qualitatively good. The axial circulation in the fluid layer is confined primarily to E(1/3) shear layers along the lateral boundaries, where E is the Ekman number. The radial transport in the Ekman layers is essentially unaffected by the presence of the free surface. It will be shown that this leads to axial transport in an E(1/3) boundary layer along the free surface.
Flow in a partially filled rotating cylinder
NASA Astrophysics Data System (ADS)
Shadday, M. A., Jr.
1982-05-01
Axial flow in a rapidly rotating cylinder, partially filled with a viscous, incompressible fluid is measured with a laser Doppler velocimeter. The cylinder has a vertical axis of rotation, and the axial circulation is induced by rotating a coaxially mounted disk at the top endcap slightly faster than the cylinder. The experimental results are compared with the prediction of a finite difference model of the flow, and the correlation is qualitatively good. The axial circulation in the fluid layer is confined primarily to E/sup 1/3/ shear layers along the lateral boundaries, where E is the Ekman number. The radial transport in the Ekman layers is essentially unaffected by the presence of the free surface. It will be shown that this leads to axial transport in an E/sup 1/3/ boundary layer along the free surface.
UF{sub 6} cylinder inspections at PGDP
Lamb, G.W.; Whinnery, W.N.
1991-12-31
Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.
Pulsatile flow past an oscillating cylinder
Qamar, Adnan; Seda, Robinson; Bull, Joseph L.
2011-01-01
A fundamental study to characterize the flow around an oscillating cylinder in a pulsatile flow environment is investigated. This work is motivated by a new proposed design of the total artificial lung (TAL), which is envisioned to provide better gas exchange. The Navier–Stokes computations in a moving frame of reference were performed to compute the dynamic flow field surrounding the cylinder. Cylinder oscillations and pulsatile free-stream velocity were represented by two sinusoidal waves with amplitudes A and B and frequencies ωc and ω, respectively. The Keulegan–Carpenter number (Kc=Uo∕Dωc) was used to describe the frequency of the oscillating cylinder while the pulsatile free-stream velocity was fixed by imposing ω∕Kc=1 for all cases investigated. The parameters of interest and their values were amplitude (0.5Dcylinder values (A=0.5, Kc=0.3, and Re=10 and 20). A lock-in phenomenon (cylinder oscillating frequency matched the vortex shedding frequency) was found when Kc=1 for all cases. This lock-in condition was attributed to be the cause of the rise in drag observed in that operating regime. For optimal performance of the modified TAL design it is recommended to operate the device at higher fiber oscillation amplitudes and lower Kc (avoiding the lock-in regime). PMID:21580804
Pulsatile flow past an oscillating cylinder
NASA Astrophysics Data System (ADS)
Qamar, Adnan; Seda, Robinson; Bull, Joseph L.
2011-04-01
A fundamental study to characterize the flow around an oscillating cylinder in a pulsatile flow environment is investigated. This work is motivated by a new proposed design of the total artificial lung (TAL), which is envisioned to provide better gas exchange. The Navier-Stokes computations in a moving frame of reference were performed to compute the dynamic flow field surrounding the cylinder. Cylinder oscillations and pulsatile free-stream velocity were represented by two sinusoidal waves with amplitudes A and B and frequencies ωc and ω, respectively. The Keulegan-Carpenter number (Kc=Uo/Dωc) was used to describe the frequency of the oscillating cylinder while the pulsatile free-stream velocity was fixed by imposing ω /Kc=1 for all cases investigated. The parameters of interest and their values were amplitude (0.5Dcylinder values (A=0.5, Kc=0.3, and Re=10 and 20). A lock-in phenomenon (cylinder oscillating frequency matched the vortex shedding frequency) was found when Kc=1 for all cases. This lock-in condition was attributed to be the cause of the rise in drag observed in that operating regime. For optimal performance of the modified TAL design it is recommended to operate the device at higher fiber oscillation amplitudes and lower Kc (avoiding the lock-in regime).
Magnetic moment jumps in flat and nanopatterned Nb thin-walled cylinders
NASA Astrophysics Data System (ADS)
Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.
2017-02-01
Penetration of magnetic flux into hollow superconducting cylinders is investigated by magnetic moment measurements. The magnetization curves of a flat and a nanopatterned thin-walled superconducting Nb cylinders with a rectangular cross section are reported for the axial field geometry. In the nanopatterned sample, a row of micron-sized antidots (holes) was milled in the film along the cylinder axis. Magnetic moment jumps are observed for both samples at low temperatures for magnetic fields not only above Hc1, but also in fields lower than Hc1, i. e., in the vortex-free regime. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than Hc1. At temperatures above 0.66Tc and 0.78Tc the magnetization curves become smooth for the patterned and the as-prepared sample, respectively. The magnetization curve of a reference flat Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures.
Flow over an inline oscillating circular cylinder in the wake of a stationary circular cylinder
NASA Astrophysics Data System (ADS)
Zhang, Yang; Zhu, Keqiang
2017-02-01
Flow interference between an upstream stationary cylinder and an inline oscillating cylinder is studied with the lattice Boltzmann method. With a fixed Reynolds number Re = 100 and pitch ratio L/D = 4, the effects of oscillation amplitude A/D = [0.25, 1] and frequency f e/f s = [0.5, 2] are investigated. The wake response state is categorized into lock-in and non-lock-in. The lock-in zone in the bifurcation diagram of amplitude versus frequency is discontinuous. Response states of upstream and downstream wakes are similar under the conditions of small amplitude or low frequency. However, with large oscillating parameters, the two wakes are prone to be in different states as the flow field becomes irregular. Two distinct flow regimes have been identified, i.e., single-cylinder and two-cylinder shedding regimes. The presence of single-cylinder shedding regime is attributed to the low shedding frequency of the downstream cylinder at large amplitude. Hydrodynamic forces of the oscillating tandem system are discussed. The results reveal that forces on the two cylinders behave differently and that the absence of vortices in the gap flow significantly reduces the forces exerting on the tandem system.
A Hybrid Approach To Tandem Cylinder Noise
NASA Technical Reports Server (NTRS)
Lockard, David P.
2004-01-01
Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.
Cylinder head structure for internal combustion engines
Taguchi, T.; Takata, Y.; Tanaka, Y.
1986-02-04
This patent describes an engine cylinder head structure including a top wall formed with camshaft bearings, a bottom wall adapted to be attached to a cylinder block, and side walls connecting the top and bottom walls together. It also includes a cooling watter passage defined by the top, bottom and side walls, a transversely extending reinforcement rib formed in the top wall to project into the cooling water passage beneath each of the camshaft bearings and to extend between and interconnect the side walls.
Cylinder wakes in flowing soap films
Vorobieff, P.; Ecke, R.E. ); Vorobieff, P. )
1999-09-01
We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society
Controllable parabolic-cylinder optical rogue wave.
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
Stress tests on cylinders and aluminum panels
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Agarwal, B. L.
1974-01-01
An optimization study of composite stiffened cylinders is discussed. The mathematical model for the buckling has been coupled successfully with the optimization program AESOP. The buckling analysis is based on the use of the smeared theory for the buckling of stiffened orthotropic cylindrical shells. The loading, radius, and length of the cylinder are assumed to be known parameters. An optimum solution gives the value of cross-sectional dimensions and laminate orientations. The different types of buckling modes are identified. Mathematical models are developed to show the relationships of the parameters.
NASA Astrophysics Data System (ADS)
Neary, V. S.; Gunawan, B.; Chamorro, L. P.; Stekovic, S.; Hill, C.
2012-12-01
Numerous investigators have examined vortex-shedding in the wake of cylinders. This is a classical flow problem that has many engineering applications, including pronounced flow disturbance, turbulence generation, and sediment scour in the wakes of in stream structures, e.g. bridge piers and towers for marine and hydrokinetic (MHK) turbines. It is also important to understand the contribution of large coherent motions on the unsteady loading and performance of hydrokinetic turbines. Unsteady vortex shedding is caused by flow separation and detachment within the near-wall region along the cylinder surface. Our aim is to examine the unsteady flow field and von Karman vortex shedding resulting from unsteady turbulent flow around an emergent cylinder mounted perpendicular to a fixed surface by conducting physical and numerical modeling experiments. The numerical simulation emulates an open-channel flow experiment at the St. Anthony Falls Laboratory at the University of Minnesota, where instantaneous velocity was measured using three synchronized acoustic Doppler velocimeters (ADVs). The open-channel flume is 80 m long, and 2.75 m wide. The flow depth is 1.15 m. The cylinder diameter is 0.116 m. The flow is turbulent, with a cylinder Reynolds number equal to 5.44E4. We use the commercial CFD software, STAR-CCM+, to generate the computational mesh that models the flow geometry around the cylinder, and to numerically solve the unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The generated mesh is fine enough (> 2 million elements) to resolve the coherent structures of vortex shedding. The Frost high-performance cluster (an ORNL supercomputer) is used to run the simulation. The results show how a validated CFD model can be used to design the layout and spacing of synchronized ADV point measurements to characterize essential features of the Karman shedding in the cylinder wake. A similar approach can be used to design field ADV arrays for measuring more complex
McElroy, Robert Dennis; Croft, Dr. Stephen; Young, Brian M; Venkataraman, Ram
2011-01-01
The construction of three new uranium enrichment facilities in the United States has sparked renewed interest in the development and enhancement of methods to determine the enrichment and fissile mass content of UF6 cylinders. We describe the design and examine the expected performance of a UF6 bottle counter developed for the assay of Type 5A cylinders. The counter, as designed and subsequently constructed, is a tall passive neutron well counter with a clam-shell configuration and graphite end plugs operated in fast neutron mode. Factory performance against expectation is described. The relatively high detection efficiency and effectively 4 detection geometry provide a near-ideal measurement configuration, making the UF6 bottle counter a valuable tool for the evaluation of the neutron coincidence approach to UF6 cylinder assay. The impacts of non-uniform filling, voids, enrichment, and mixed enrichments are examined
Breached cylinder incident at the Portsmouth gaseous diffusion plant
Boelens, R.A.
1991-12-31
On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.
Flow mediated interactions between two cylinders at finite Re numbers
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Mimeau, Chloe; Tchieu, Andrew A.; Koumoutsakos, Petros
2012-04-01
We present simulations of two interacting moving cylinders immersed in a two-dimensional incompressible, viscous flow. Simulations are performed by coupling a wavelet-adapted, remeshed vortex method with the Brinkman penalization and projection approach. This method is validated on benchmark problems and applied to simulations of a master-slave pair of cylinders. The master cylinder's motion is imposed and the slave cylinder is let free to respond to the flow. We study the relative role of viscous and inertia effects in the cylinders interactions and identify related sharp transitions in the response of the slave. The observed differences in the behavior of cylinders with respect to corresponding potential flow simulations are discussed. In addition, it is observed that in certain situations the finite size of the slave cylinders enhances the transport so that the cylinders are advected more effectively than passive tracers placed, respectively, at the same starting position.
21 CFR 886.1840 - Simulatan (including crossed cylinder).
Code of Federal Regulations, 2014 CFR
2014-04-01
... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class I... cylinder). (a) Identification. A simulatan (including crossed cylinder) is a device that is a set of...
21 CFR 886.1840 - Simulatan (including crossed cylinder).
Code of Federal Regulations, 2011 CFR
2011-04-01
... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class I... cylinder). (a) Identification. A simulatan (including crossed cylinder) is a device that is a set of...
Steady Deflagration of PBX-9501 Within a Copper Cylinder
Pemberton, Steven J.; Herrera, Dennis H.; Herrera, Tommy J.; Arellano, Jesus C.; Sandoval, Thomas D.
2012-06-26
A copper cylinder cook-off experiment has been designed to cause steady deflagration in PBX-9501 explosive material. The design is documented and preliminary copper expansion results are presented for steady deflagration with a reaction speed of 1092 +/- 24 m/s. The expansion of reaction products from the detonation of an explosive is something that is well understood, and reasonably simulated using documented equations of state (EOS) for many explosives of interest. These EOS were historically measured using a 'standard' copper cylinder test design; this design comprised an annealed, oxygen-free high conductivity (OFHC) copper tube filled with explosive material and detonated from one end. Expansion of the copper wall was measured as a function of time using either a streak camera (for classic testing), or more recently using laser velocimetry techniques. Expansion data were then used to derive the EOS in various preferred forms - which are not discussed here for the sake of brevity. [Catanach, et. al., 1999] When an explosive deflagrates rather than detonating, simulation becomes more difficult. Reaction products are released on a slower time scale, and the reactions are much more affected by the geometry and local temperature within the reaction environment. It is assumed that the standard, documented EOS will no longer apply. In an effort to establish a first order approximation of deflagration product behavior, a cook-off test has been designed to cause steady deflagration in PBX-9501 explosive material, and to record the copper expansion profile as a function of time during this test. The purpose of the current paper is to document the initial test design and report some preliminary results. A proposal for modification of the design is also presented.
Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka)
NASA Astrophysics Data System (ADS)
Brès, Guillaume A.; Freed, David; Wessels, Michael; Noelting, Swen; Pérot, Franck
2012-03-01
Flow and noise predictions for the tandem cylinder benchmark are performed using lattice Boltzmann and Ffowcs Williams-Hawkings methods. The numerical results are compared to experimental measurements from the Basic Aerodynamic Research Tunnel and Quiet Flow Facility (QFF) at NASA Langley Research Center. The present study focuses on two configurations: the first configuration corresponds to the typical setup with uniform inflow and spanwise periodic boundary condition. To investigate installation effects, the second configuration matches the QFF setup and geometry, including the rectangular open jet nozzle, and the two vertical side plates mounted in the span to support the test models. For both simulations, the full span of 16 cylinder diameters is simulated, matching the experimental dimensions. Overall, good agreement is obtained with the experimental surface data, flow field, and radiated noise measurements. In particular, the presence of the side plates significantly reduces the excessive spanwise coherence observed with periodic boundary conditions and improves the predictions of the tonal peak amplitude in the far-field noise spectra. Inclusion of the contributions from the side plates in the calculation of the radiated noise shows an overall increase in the predicted spectra and directivity, leading to a better match with the experimental measurements. The measured increase is about 1 to 2 dB at the main shedding frequency and harmonics, and is likely caused by reflections on the spanwise side plates. The broadband levels are also slightly higher by about 2 to 3 dB, likely due to the shear layers from the nozzle exit impacting the side plates.
Metlov, Konstantin L.; Michels, Andreas
2016-01-01
Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron scattering (SANS) cross sections. Specifically, for the perpendicular and parallel scattering geometries, we have computed the cross sections for the case of small vortex-center displacements without formation of magnetic charges on the side faces of the cylinder. The results represent a significant qualitative and quantitative step forward in SANS-data analysis on isolated magnetic nanoparticle systems, which are commonly assumed to be homogeneously or stepwise-homogeneously magnetized. We suggest a way to extract the fine details of the magnetic vortex structure during the magnetization process from the SANS measurements in order to help resolving the long-standing question of the magnetic vortex displacement mode. PMID:27112640
Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder
NASA Technical Reports Server (NTRS)
Weislogel, M. M.; Hsieh, K. C.
1998-01-01
The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.
Model of laser/composite interaction based on scattering by multiple cylinders
NASA Astrophysics Data System (ADS)
Dedieu, Cyril; Chinesta, Francisco; Barasinski, Anaïs; Leygue, Adrien; Dupillier, Jean-Marc
2016-10-01
In the context of processing long-fiber reinforced thermoplastic composites with laser-heating, the spatial distribution of the heat flux is one of the main parameters which controls the induced processing temperature. Unfortunately, the illuminated geometry might be not trivial, and the optical properties related to absorption and scattering phenomena of such a material are not well-established. In order to study and characterize the laser/composite interaction at the scale of the micro-structure, a model based on multiple cylinders is envisaged. The method consists in the calculation of a semi-analytical solution for the electromagnetic scattering from an array of circular cylinders due to an obliquely incident plane wave.
NASA Astrophysics Data System (ADS)
Metlov, Konstantin L.; Michels, Andreas
2016-04-01
Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron scattering (SANS) cross sections. Specifically, for the perpendicular and parallel scattering geometries, we have computed the cross sections for the case of small vortex-center displacements without formation of magnetic charges on the side faces of the cylinder. The results represent a significant qualitative and quantitative step forward in SANS-data analysis on isolated magnetic nanoparticle systems, which are commonly assumed to be homogeneously or stepwise-homogeneously magnetized. We suggest a way to extract the fine details of the magnetic vortex structure during the magnetization process from the SANS measurements in order to help resolving the long-standing question of the magnetic vortex displacement mode.
Stability analysis of cylinders with circular cutouts
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.
1973-01-01
The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.
Frequency spectra of laminated piezoelectric cylinders
NASA Astrophysics Data System (ADS)
Siao, J. C.-T.; Dong, S. B.; Song, J.
1994-07-01
A finite-element method is presented for determining the vibrational characteristics of a circular cylinder composed of bonded piezoelectric layers. Finite-element modeling occurs in the radial direction only using quadratic polynomials and the variationally derived partial differential equations are functions of the hoop and axial coordinates (theta, z) and time t. Using solution form Q exp (i(xi(z) + n(theta) + (omega)t)), with Q as the nodal amplitudes, leads to an algebraic eigensystem where any one of the three parameters (n, xi, omega), the circumferential or axial wave number or natural frequency, can act as the eigenvalue. Integer values always are assigned to n, leaving two possible eigenvalue problems. With omega as the eigenvalue and real values assigned to xi, the solutions represent propagating waves or harmonic standing vibrations in an infinite cylinder. When xi is the eigenvalue and real values assigned to omega, this eigensystem admits both real and complex eigendata. Real xi's represent propagating waves or harmonic standing vibrations as noted before. Complex conjugate pairs of xi 's describe end vibrations, which arise when an incident wave impinges upon a free end of a cylindrical bar. They are standing waves whose amplitudes decay sinusoidally or exponentially from the free end into the interior. Two examples are given to illustrate the method of analysis, viz., a solid piezoelectric cylinder of PZT-4 ceramic material and a two-layer cylinder of PZT-4 covering an isotropic material.
Laminar flow past a rotating circular cylinder
NASA Astrophysics Data System (ADS)
Kang, Sangmo; Choi, Haecheon; Lee, Sangsan
1999-11-01
The present study numerically investigates two-dimensional laminar flow past a circular cylinder rotating with a constant angular velocity, for the purpose of controlling vortex shedding and understanding the underlying flow mechanism. Numerical simulations are performed for flows with Re=60, 100, and 160 in the range of 0⩽α⩽2.5, where α is the circumferential speed at the cylinder surface normalized by the free-stream velocity. Results show that the rotation of a cylinder can suppress vortex shedding effectively. Vortex shedding exists at low rotational speeds and completely disappears at α>αL, where αL is the critical rotational speed which shows a logarithmic dependence on Re. The Strouhal number remains nearly constant regardless of α while vortex shedding exists. With increasing α, the mean lift increases linearly and the mean drag decreases, which differ significantly from those predicted by the potential flow theory. On the other hand, the amplitude of lift fluctuation stays nearly constant with increasing α (<αL), while that of drag fluctuation increases. Further studies from the instantaneous flow fields demonstrate again that the rotation of a cylinder makes a substantial effect on the flow pattern.
Pulsatile flow past a single oscillating cylinder
NASA Astrophysics Data System (ADS)
Seda, Robinson; Qamar, Adnan; Bull, Joseph
2010-11-01
The potential for oscillating fibers to modify flow within a new artificial lung design is first examined in the present fundamental fluid mechanics study of flow past a single oscillating cylinder. This new design is intended to provide better gas exchange through vorticity enhancement by oscillating microfibers (cylinders) in a pulsatile flow environment. The Keulegan-Carpenter number (Kc=Uo/Dφc) was used to describe the frequency of the oscillating cylinder (φc) while the pulsatile free stream velocity was fixed by imposing φ/Kc=1 for all cases investigated. The parameters investigated in this study were amplitude of oscillation (0.5Dcylinder oscillating frequency matching the vortex shedding frequency) was found when KC=1 for all cases. A jump in the drag coefficient was observed and attributed to this operating regime. These results suggest that this new design of the TAL could potentially enhance gas exchange through oscillation of the microfibers with a decrease in the drag coefficient if operating far from the lock-in regime. This work was supported by NIH grants R01HL69420 and R01HL089043.
Stationary Flux in Mesoscopic Noisy Cylinders
NASA Astrophysics Data System (ADS)
Dajka, J.; Łuczka, J.; Szopa, M.
2003-07-01
The aim of this paper is to investigate the existence of the stationary states of current in the mesoscopic cylinder. The dynamics of the flux is governed by a stochastic differential equation. We discuss both the influence of equilibrium (thermal) and non-equilibrium noise sources.
Rotating Cylinder Treatment System Demonstration (Presentation)
In August 2008, a rotating cylinder treatment system (RCTS^{TM}) demonstration was conducted near Gladstone, CO. The RCTS^{TM} is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...
Flyby Geometry Optimization Tool
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.
2007-01-01
The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.
ERIC Educational Resources Information Center
Chern, Shiing-Shen
1990-01-01
Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)
ERIC Educational Resources Information Center
Emenaker, Charles E.
1999-01-01
Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)
Facilitating Understandings of Geometry.
ERIC Educational Resources Information Center
Pappas, Christine C.; Bush, Sara
1989-01-01
Illustrates some learning encounters for facilitating first graders' understanding of geometry. Describes some of children's approaches using Cuisenaire rods and teacher's intervening. Presents six problems involving various combinations of Cuisenaire rods and cubes. (YP)
Proof in Transformation Geometry
ERIC Educational Resources Information Center
Bell, A. W.
1971-01-01
The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China... duty order on high pressure steel cylinders (``steel cylinders'') from the People's Republic of China.... See High Pressure Steel Cylinders From the People's Republic of China: Final...
Tautges, Timothy J.
2005-01-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.
Software Geometry in Simulations
NASA Astrophysics Data System (ADS)
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
Failure of Non-Circular Composite Cylinders
NASA Technical Reports Server (NTRS)
Hyer, M. W.
2004-01-01
In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane
Nonlinear bending and collapse analysis of a poked cylinder and other point-loaded cylinders
Sobel, L.H.
1983-06-01
This paper analyzes the geometrically nonlinear bending and collapse behavior of an elastic, simply supported cylindrical shell subjected to an inward-directed point load applied at midlength. The large displacement analysis results for this thin (R/t = 638) poked cylinder were obtained from the STAGSC-1 finite element computer program. STAGSC-1 results are also presented for two other point-loaded shell problems: a pinched cylinder (R/t = 100), and a venetian blind (R/t = 250).
Investigation of breached depleted UF{sub 6} cylinders
DeVan, J.H.
1991-12-31
In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.
46 CFR 197.338 - Compressed gas cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Compressed gas cylinders. 197.338 Section 197.338... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat;...
30 CFR 57.16005 - Securing gas cylinders.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Securing gas cylinders. 57.16005 Section 57.16005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Storage and Handling § 57.16005 Securing gas cylinders. Compressed and liquid gas cylinders shall...
46 CFR 197.338 - Compressed gas cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Compressed gas cylinders. 197.338 Section 197.338... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat;...
30 CFR 57.16005 - Securing gas cylinders.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Securing gas cylinders. 57.16005 Section 57.16005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Storage and Handling § 57.16005 Securing gas cylinders. Compressed and liquid gas cylinders shall...
30 CFR 56.16005 - Securing gas cylinders.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Securing gas cylinders. 56.16005 Section 56.16005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Handling § 56.16005 Securing gas cylinders. Compressed and liquid gas cylinders shall be...
30 CFR 56.16005 - Securing gas cylinders.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Securing gas cylinders. 56.16005 Section 56.16005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Handling § 56.16005 Securing gas cylinders. Compressed and liquid gas cylinders shall be...
46 CFR 197.338 - Compressed gas cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Compressed gas cylinders. 197.338 Section 197.338... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat;...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is... 49 Transportation 2 2014-10-01 2014-10-01 false Cylinders laden in vehicles. 176.92 Section...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is... 49 Transportation 2 2012-10-01 2012-10-01 false Cylinders laden in vehicles. 176.92 Section...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is... 49 Transportation 2 2011-10-01 2011-10-01 false Cylinders laden in vehicles. 176.92 Section...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is... 49 Transportation 2 2013-10-01 2013-10-01 false Cylinders laden in vehicles. 176.92 Section...
49 CFR 176.92 - Cylinders laden in vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is... 49 Transportation 2 2010-10-01 2010-10-01 false Cylinders laden in vehicles. 176.92 Section...
Pistons and Cylinders Made of Carbon-Carbon Composite Materials
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)
2000-01-01
An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.
49 CFR 174.201 - Class 2 (gases) material cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Class 2 (gases) material cylinders. 174.201... RAIL Detailed Requirements for Class 2 (Gases) Materials § 174.201 Class 2 (gases) material cylinders. (a) Except as provided in paragraphs (b) and (c) of this section, cylinders containing Class 2...
49 CFR 174.201 - Class 2 (gases) material cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Class 2 (gases) material cylinders. 174.201... RAIL Detailed Requirements for Class 2 (Gases) Materials § 174.201 Class 2 (gases) material cylinders. (a) Except as provided in paragraphs (b) and (c) of this section, cylinders containing Class 2...
49 CFR 174.201 - Class 2 (gases) material cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Class 2 (gases) material cylinders. 174.201... RAIL Detailed Requirements for Class 2 (Gases) Materials § 174.201 Class 2 (gases) material cylinders. (a) Except as provided in paragraphs (b) and (c) of this section, cylinders containing Class 2...
49 CFR 174.201 - Class 2 (gases) material cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Class 2 (gases) material cylinders. 174.201... RAIL Detailed Requirements for Class 2 (Gases) Materials § 174.201 Class 2 (gases) material cylinders. (a) Except as provided in paragraphs (b) and (c) of this section, cylinders containing Class 2...
49 CFR 174.201 - Class 2 (gases) material cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Class 2 (gases) material cylinders. 174.201... RAIL Detailed Requirements for Class 2 (Gases) Materials § 174.201 Class 2 (gases) material cylinders. (a) Except as provided in paragraphs (b) and (c) of this section, cylinders containing Class 2...
58. (Credit JTL) View looking northeast across steam cylinders of ...
58. (Credit JTL) View looking northeast across steam cylinders of Allis-Chalmers pumping engine. High-pressure cylinder is in foreground, low-pressure cylinder in background with part of Corliss valve gear visible. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
76 FR 38697 - High Pressure Steel Cylinders From China
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading 7311... pressure steel cylinders from China. Accordingly, effective May 11, 2011, the Commission...
30 CFR 56.16006 - Protection of gas cylinder valves.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Storage and Handling § 56.16006 Protection of gas cylinder valves. Valves on compressed gas cylinders... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of gas cylinder valves. 56.16006 Section 56.16006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL...
30 CFR 57.16006 - Protection of gas cylinder valves.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Storage and Handling § 57.16006 Protection of gas cylinder valves. Valves on compressed gas cylinders... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of gas cylinder valves. 57.16006 Section 57.16006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL...
Global aerodynamic instability of twin cylinders in cross flow
NASA Astrophysics Data System (ADS)
Alam, Md. Mahbub; Meyer, J. P.
2013-08-01
This paper comprises an in-depth physical discussion of the flow-induced vibration of two circular cylinders in view of the time-mean lift force on stationary cylinders and interaction mechanisms. The gap-spacing ratio T/D is varied from 0.1 to 5 and the attack angle α from 0° to 180° where T is the gap width between the cylinders and D is the diameter of a cylinder. Mechanisms of interaction between two cylinders are discussed based on time-mean lift, fluctuating lift, flow structures and flow-induced responses. The whole regime is classified into seven interaction regimes, i.e., no interaction regime; boundary layer and cylinder interaction regime; shear-layer/wake and cylinder interaction regime; shear-layer and shear-layer interaction regime; vortex and cylinder interaction regime; vortex and shear-layer interaction regime; and vortex and vortex interaction regime. Though a single non-interfering circular cylinder does not correspond to a galloping following quasi-steady galloping theory, two circular cylinders experience violent galloping vibration due to shear-layer/wake and cylinder interaction as well as boundary layer and cylinder interaction. A larger magnitude of fluctuating lift communicates to a larger amplitude vortex excitation.
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders...
30 CFR 57.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not...
30 CFR 56.4601 - Oxygen cylinder storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not...
Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation
NASA Astrophysics Data System (ADS)
Yang, Yidong; Armour, Michael; Kang-Hsin Wang, Ken; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-07-01
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry
Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation
Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-01-01
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry
Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.
Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John
2015-07-07
The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Mikulas, Martin M., Jr.
2009-01-01
Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.
The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges
Lisovskiy, V.; Martins, S.; Landry, K.; Douai, D.; Booth, J.-P.; Cassagne, V.; Yegorenkov, V.
2005-09-15
This paper reports measured and calculated breakdown curves in several gases of rf capacitive discharges excited at 13.56 MHz in chambers of three different geometries: parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'), parallel plates surrounded by a grounded metallic cylinder ('asymmetric parallel plate'), and parallel plates inside a much larger grounded metallic chamber ('large chamber'). The breakdown curves for the symmetric chamber have a multivalued section at low pressure. For the asymmetric chamber the breakdown curves are shifted to lower pressures and rf voltages, but the multivalued feature is still present. At higher pressures the breakdown voltages are much lower than for the symmetric geometry. For the large chamber geometry the multivalued behavior is not observed. The breakdown curves were also calculated using a numerical model based on fluid equations, giving results that are in satisfactory agreement with the measurements.
Integrable Background Geometries
NASA Astrophysics Data System (ADS)
Calderbank, David M. J.
2014-03-01
This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ≤4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the {SU}(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the {Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the {SDiff}(Σ^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ! ones. The nondegenerate reductions have a long ancestry. More ! recently
Performance of Air-cooled Engine Cylinders Using Blower Cooling
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Ellerbrock, Herman H , Jr
1936-01-01
An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.
Radiation levels on empty cylinders containing heel material
Shockley, C.W.
1991-12-31
Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.
2011-01-01
Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Students Discovering Spherical Geometry Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
Coalescence of two viscous cylinders by capillarity; Part 2, Shape evolution
Hopper, R.W. )
1993-12-01
The theoretical geometry of the creeping plane-flow coalescence of two viscous cylinders driven by surface tension is described. Normalized results are given for initial diameter ratios D = (1,2,5,20, [infinity]). Typical shapes are displayed. Time-dependencies of geometric features, and interrelationships between them, are presented graphically. The following features are noted: the relationships between reduced time and most dimensions depend rather weakly on D. There is no undercutting at the neck. Two-dimensional Frenkel theory is seriously incorrect. The theory describes experiments accurately for small times, but differences eventually appear. Their sources are uncertain.
Cylinder Flow Control Using Plasma Actuators
NASA Astrophysics Data System (ADS)
Kozlov, Alexey; Thomas, Flint
2007-11-01
In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. Two optimized quartz dielectric plasma actuators mounted on the cylinder surface utilizing an improved saw-tooth waveform high-voltage generator allowed flow control at Reynolds number approaching supercritical. Using either steady or unsteady actuation, it is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. PIV based flow fields and wake velocity profiles obtained with hot-wire anemometry show large reductions in vortex shedding, wake width and turbulence intensity.
Micromagnetic behavior of electrodeposited cylinder arrays
NASA Astrophysics Data System (ADS)
Ross, C. A.; Hwang, M.; Shima, M.; Cheng, J. Y.; Farhoud, M.; Savas, T. A.; Smith, Henry I.; Schwarzacher, W.; Ross, F. M.; Redjdal, M.; Humphrey, F. B.
2002-04-01
Arrays of cylindrical magnetic particles have been made using interference lithography combined with electrodeposition. The cylinders are made from Ni, Co, CoP, or CoNi, with diameters of 57-180 nm, aspect ratios of 0.4-3, and array periods of 100-200 nm. The remanent states of the cylinders correspond to single-domain ``flower'' states or to magnetization vortices depending on the particle size and aspect ratio. Experimental data are in good agreement with a magnetic-state map calculated using a three-dimensional micromagnetic model, which shows the remanent state as a function of particle size and aspect ratio. The interactions between the particles, and their switching-field distribution, have been quantified.
Bilateral symmetry breaking in nonlinear circular cylinders.
Yuan, Lijun; Lu, Ya Yan
2014-12-01
Symmetry breaking is a common phenomenon in nonlinear systems, it refers to the existence of solutions that do not preserve the original symmetries of the underlying system. In nonlinear optics, symmetry breaking has been previously investigated in a number of systems, usually based on simplified model equations or temporal coupled mode theories. In this paper, we analyze the scattering of an incident plane wave by one or two circular cylinders with a Kerr nonlinearity, and show the existence of solutions that break a lateral reflection symmetry. Although symmetry breaking is a known phenomenon in nonlinear optics, it is the first time that this phenomenon was rigorously studied in simple systems with one or two circular cylinders.
Upgraded Analytical Model of the Cylinder Test
Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis; Vitello, Peter
2013-03-15
A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.
Locomotion gaits of a rotating cylinder pair
NASA Astrophysics Data System (ADS)
van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.
2015-11-01
Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.
Anomalous magnetoresistance in magnetized topological insulator cylinders
Siu, Zhuo Bin; Jalil, Mansoor B. A.
2015-05-07
The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.
DDES and IDDES of tandem cylinders.
Balakrishnan, R.; Garbaruk, A.; Shur, M.; Strelets, M.; Spalart, P.; New Technologies and Services - Russia; St.-Peterburg State Polytechnic Univ.; Boeing Commercial Airplanes
2010-09-09
The paper presents an overview of the authors contribution to the BANC-I Workshop on the flow past tandem cylinders (Category 2). It includes an outline of the simulation approaches, numerics, and grid used, the major results of the simulations, their comparison with available experimental data, and some preliminary conclusions. The effect of varying the spanwise period in the simulations is strong for some quantities, and not others.
Compressive strength of axially loaded composite cylinders
NASA Astrophysics Data System (ADS)
Kollar, Laszlo P.; Springer, George C.; Spingarn, Jay; McColskey, J. D.
1993-10-01
Tests were performed to measure the failure loads of axially compressed glass-fiber-reinforced and graphite-fiber-reinforced composite cylinders. The data were compared with the results of a previous model, which was based on a three-dimensional stress analysis and the Tsai-Wu quadratic first-ply failure criterion. This model predicted the failure loads for glass-fiber-reinforced composites with good accuracy, but less accurately for failure loads of graphite-epoxy composites.
NASA Technical Reports Server (NTRS)
Kornreich, Philip
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.
NASA Technical Reports Server (NTRS)
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.
Parabolic cylinder functions of large order
NASA Astrophysics Data System (ADS)
Jones, D. S.
2006-06-01
The asymptotic behaviour of parabolic cylinder functions of large real order is considered. Various expansions in terms of elementary functions are derived. They hold uniformly for the variable in appropriate parts of the complex plane. Some of the expansions are doubly asymptotic with respect to the order and the complex variable which is an advantage for computational purposes. Error bounds are determined for the truncated versions of the asymptotic series.
Roller bearing geometry design
NASA Technical Reports Server (NTRS)
Savage, M.; Pinkston, B. H. W.
1976-01-01
A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.
Analysis of mechanical joint in composite cylinder
NASA Astrophysics Data System (ADS)
Hong, C. S.; Kim, Y. W.; Park, J. S.
Joining techniques of composite materials are of great interest in cylindrical structures as the application of composites is widely used for weight-sensitive structures. Little information for the mechanical fastening joint of the laminated shell structure is available in the literature. In this study, a finite element program, which was based on the first order shear deformation theory, was developed for the analysis of the mechanical joint in the laminated composite structure. The failure of the mechanical fastening joint for the laminated graphite/epoxy cylinder subject to internal pressure was analyzed by using the developed program. Modeling of the bolt head in the composite cylinder was studied, and the effect of steel reinforcement outside the composite cylinder on the failure was investigated. The stress component near the bolt head was influenced by the size of the bolt head. The failure load and the failure mode were dependent on the bolt diameter, the number of bolts, and fiber orientation. The failure load was constant when the edge distance exceeds three times the bolt diameter.
Electron bounce resonance heating in a bumpy cylinder
Chen, G.L.
1984-10-01
In bumpy cylinder geometry, the electrons are classified into trapped and passing particles. The interaction between a wave near the electron bounce frequency and the electrons is studied both numerically and analytically for the appropriate parameters of ELMO Bumpy Torus-Scale (EBT-S). It is shown that coupling of the waves to the electron bounce motion parallel to the magnetic field can lead to heating of those electrons near the passing/trapped boundary in velocity space. The stochastic threshold condition is eE/sub 0/k/sub 0//m..omega../sub b//sup 2/ approx. = 0.1. For this mechanism, it is found that the wave energy density required to induce stochastic heating in EBT by rf (in the frequency range of ion cyclotron resonance heating (ICRH)) is about an order of magnitude more than that estimated on the basis of cold plasma wave theory. It is hypothesized that this discrepancy would disappear when the thermal correction to the wave propagation and the effects of collisions and toroidicity are included. We also suggest that the bounce resonance can enhance the electron cyclotron resonance heating (ECRH) efficiency in an EBT-like heating scheme.
Flow of an electrorheological fluid between eccentric rotating cylinders
NASA Astrophysics Data System (ADS)
Průša, Vít; Rajagopal, K. R.
2012-01-01
Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.
ERIC Educational Resources Information Center
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
Emergent Hyperbolic Network Geometry.
Bianconi, Ginestra; Rahmede, Christoph
2017-02-07
A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
Hsü, K J; Hsü, A J
1990-01-01
Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061
ERIC Educational Resources Information Center
Martin, John
2010-01-01
The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.
Emergent Hyperbolic Network Geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2017-02-01
A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.
Emergent Hyperbolic Network Geometry
Bianconi, Ginestra; Rahmede, Christoph
2017-01-01
A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry. PMID:28167818
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
ERIC Educational Resources Information Center
Fielker, David
2007-01-01
Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".…
Geometry of spinor regularization
NASA Technical Reports Server (NTRS)
Hestenes, D.; Lounesto, P.
1983-01-01
The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.
ERIC Educational Resources Information Center
Hartz, Viggo
1981-01-01
Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)
ERIC Educational Resources Information Center
Cooper, Brett D.; Barger, Rita
2009-01-01
The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…
ERIC Educational Resources Information Center
KLIER, KATHERINE M.
PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…
ERIC Educational Resources Information Center
Hirata, Li Ann
Core Geometry is a course offered in the Option Y sequence of the high school mathematics program described by the Hawaii State Department of Education's guidelines. The emphasis of this course is on the general awareness and use of the relationships among points, lines, and figures in planes and space. This sample course is based on the…
ERIC Educational Resources Information Center
Case, Christine L.
1991-01-01
Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
Advanced geometries and regimes
Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.
2013-07-26
We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
Measurements of the Flowfield Interaction Between Tandem Cylinders
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.
2009-01-01
This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.
A review of the Model 5A uranium hexafluoride cylinder
Dorning, R.E. II
1989-05-23
Both the Model 5A (Monel 400) and 5A (Monel 400) Modified five-inch cylinders have been used at the Portsmouth GDP to withdraw, store, and ship highly enriched uranium hexafluoride. As a result of a generic cracking problem with Monel 400 valve-boss material, a cylinder modification was implemented in the mid 1970s. This modification resulted in the violation of the ASME ''Code'' stamp status of the Model 5A Modified cylinder. Hydrostatic testing-to- rupture data indicated that the Model 5A Modified cylinders had ruptured strengths equivalent to that of the original Model 5A cylinders. An independent consultant reviewed the available information and confirmed that the Model 5A Modified cylinders ''will with proper maintenance continue to perform satisfactorily for many additional years of service.'' Based on the test data and consultant's review, DOE approved continued use of the 5A Modified cylinder and also requested procurement of replacement 5B cylinders be expedited. Currently, the 5A modified cylinders are in the production, storage, shipment cycle, and a sufficient number of 5B cylinders has been ordered to accommodate the projected product shipping requirements for the Navy flow. 3 tabs.
CNG Cylinder Safety - Education, Outreach, and Next Steps (Presentation)
Smith, M.; Schroeder, A.
2014-01-01
Mr. Schroeder discussed the work that NREL is performing for the U.S. Department of Transportation on compressed natural gas cylinder end-of-life requirements. CNG vehicles are different from most other vehicles in that the CNG fuel storage cylinders have a pre-determined lifetime that may be shorter than the expected life of the vehicle. The end-of-life date for a cylinder is based on construction and test protocols, and is specific to the construction and material of each cylinder. The end-of-life date is important because it provides a safe margin of error against catastrophic cylinder failure or rupture. The end-of-life dates range from 15 to 25 years from the date of manufacture. NREL worked to develop outreach materials to increase awareness of cylinder end-of-life dates, has provided technical support for individual efforts related to cylinder safety and removal, and also worked with CVEF to document best practices for cylinder removal or inspection after an accident. Mr. Smith discussed the engagement of the DOE Clean Fleets Partners, which were surveyed to identify best practices on managing cylinder inventories and approached to provide initial data on cylinder age in a fleet environment. Both DOE and NREL will continue to engage these fleets and other stakeholders to determine how to best address this issue moving forward.
N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James
2002-10-01
The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.
NASA Astrophysics Data System (ADS)
Lovinger, Zev; Rosenberg, Zvi; Rittel, Daniel
2015-09-01
Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC) provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.
Convective heat transfer from circular cylinders located within perforated cylindrical shrouds
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.
1986-01-01
The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.
Marangoni stresses and drop breakup due to wall shear in a partially filled rotating cylinder
NASA Astrophysics Data System (ADS)
White, Andrew; Odesanya, Azeez; Ward, Thomas
2015-11-01
Drop deformation and breakup in a rotating cylinder partially filled with oil is studied. Experiments using a rotating cylinder are relatively new but we will demonstrate that they are analogous to studies involving tubes and other geometries. Surfactants are added to the drop phase in concentrations at and below the CMC while the rotation rate of the cylinder is varied. Of interest is the effect of interfacial surfactant transport on changes in oil film thickness, drop shape and the onset of tail streaming. Two Biot numbers comparing the importance of surfactant adsorption and desorption to convection of surfactant on the interface are estimated. As shown in previous work on drops and bubbles in tubes, the balance between surface convection, diffusion and adsorption can affect the placement of Marangoni stresses, resulting in thicker or thinner films than with clean surfaces. When surface convection is large, surfactant builds up at the tail and Marangoni stresses can lead to tail streaming when surface tensions are sufficiently small. Experimental results are compared to numerical simulations and to previous work on drops and bubbles in tubes. National Science Foundation (#1262718).
Nayani, Karthik; Chang, Rui; Fu, Jinxin; Ellis, Perry W.; Fernandez-Nieves, Alberto; Park, Jung Ok; Srinivasarao, Mohan
2015-01-01
The presumed ground state of a nematic fluid confined in a cylindrical geometry with planar anchoring corresponds to that of an axial configuration, wherein the director, free of deformations, is along the long axis of the cylinder. However, upon confinement of lyotropic chromonic liquid crystals in cylindrical geometries, here we uncover a surprising ground state corresponding to a doubly twisted director configuration. The stability of this ground state, which involves significant director deformations, can be rationalized by the saddle-splay contribution to the free energy. We show that sufficient anisotropy in the elastic constants drives the transition from a deformation-free ground state to a doubly twisted structure, and results in spontaneous symmetry breaking with equal probability for either handedness. Enabled by the twist angle measurements of the spontaneous twist, we determine the saddle-splay elastic constant for chromonic liquid crystals for the first time. PMID:26287517
C. AVILES-RAMOS; C. RUDY
2000-11-01
The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Geometry of thermodynamic control.
Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R
2012-10-01
A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.
Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.
2014-01-01
Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.
Freezing in confined geometries
NASA Technical Reports Server (NTRS)
Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.
NASA Astrophysics Data System (ADS)
Cederwall, Martin; Rosabal, J. A.
2015-07-01
We investigate exceptional generalised diffeomorphisms based on E 8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL( n + 1) is sketched. Some related issues are discussed.
NASA Astrophysics Data System (ADS)
Beggs, Edwin J.; Majid, Shahn
2017-04-01
We study noncommutative bundles and Riemannian geometry at the semiclassical level of first order in a deformation parameter λ, using a functorial approach. This leads us to field equations of 'Poisson-Riemannian geometry' between the classical metric, the Poisson bracket and a certain Poisson-compatible connection needed as initial data for the quantisation of the differential structure. We use such data to define a functor Q to O(λ2) from the monoidal category of all classical vector bundles equipped with connections to the monoidal category of bimodules equipped with bimodule connections over the quantised algebra. This is used to 'semiquantise' the wedge product of the exterior algebra and in the Riemannian case, the metric and the Levi-Civita connection in the sense of constructing a noncommutative geometry to O(λ2) . We solve our field equations for the Schwarzschild black-hole metric under the assumption of spherical symmetry and classical dimension, finding a unique solution and the necessity of nonassociativity at order λ2, which is similar to previous results for quantum groups. The paper also includes a nonassociative hyperboloid, nonassociative fuzzy sphere and our previously algebraic bicrossproduct model.
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less
Emergent Complex Network Geometry
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-01-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS_{3}/CFT_{2} correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS_{3} whose kinematic space is two-dimensional de Sitter space.
Noncommutative geometry and arithmetics
NASA Astrophysics Data System (ADS)
Almeida, P.
2009-09-01
We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7-9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.
A model of filament-wound thin cylinders
NASA Technical Reports Server (NTRS)
Calius, Emilio P.; Springer, George S.
1990-01-01
A model was developed for simulating he manufacturing process of filament-wound cylinders made of a thermoset matrix composite. The model relates the process variables (winding speed, fiber tension, applied temperature) to the parameters characterizing the composite cylinder and the mandrel. The model is applicable to cylinders for which the diameter is large compared to the wall thickness. The model was implemented by a user-friendly computer code suitable for generating numerical results.
An In-Cylinder Study of Soot and NO in a DI Diesel Engine. Final report
Litzinger, T.A.
1995-10-18
Clearly the reduction of NOx and particulate emissions remains a major challenge to Diesel engine manufacturers due to increasingly stringent emission standards in the US and other countries. The well documented NOx/particulate trade-off observed in Diesel engines makes the simultaneous reduction of both emissions particularly difficult for manufacturers to achieve. In an effort to provide an improved understanding of the fundamental processes which result in this trade-off, a program was carried out at Penn State to develop the appropriate engine facilities and laser diagnostics to permit in-cylinder studies of Diesel combustion and emissions production with the support of the Department of Energy Advanced Industrial Technology Division . This work has also been supported by the Cummins Engine Company, Lubrizol Corporation and the National Science Foundation. An optically accessible, direct injection, Diesel engine was constructed for these studies. The major objective of the, design of the engine was to maximize optical access under conditions representative of Diesel engine combustion in small bore, commercial engines. Intake air is preheated and boosted in pressure to make the in-cylinder conditions of heat release and pressure as realistic as possible. Another important objective of the design was flexibility in combustion chamber geometry to permit a variety of head and bowl geometries to be studied. In all the results reported in this report a square bowl was used to simplify the introduction of laser light sheets into the engine.
Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders
NASA Astrophysics Data System (ADS)
Patel, A.; Hopkins, S. C.; Baskys, A.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.
2015-11-01
Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications.
Spin-Up in a Rectangular Cylinder
1993-12-01
Graduate Programs in Mathematics S- QdR&r 1DTI 0TA.B 03Uxuaw:c.1ZC O d Q] Justtfieatl o DTriC QU /•ALnT I•fPECTED S ____ ,._-_ - I Distribution/ L iAvallab...I 5.7 Path of the Center of the Cyclonic Eddy ............................... 49 5.8 Distance from the Cylinder’s Comer to the Center of the Cyclonic ... cyclonic and anti- cyclonic cells whose centers are not on a 3 common horizontal axis. This result is true when the change in rotation rate, AQ, is
[Fire by spontaneous combustion of oxygen cylinders].
Coumans, Tanja; Maissan, Iscander M; Wolff, André P; Stolker, Robert Jan; Damen, Johan; Scheffer, Gert Jan
2010-01-01
The use of medicinal oxygen can be dangerous. The spontaneous combustion of an oxygen cylinder was the cause of a fire in an operating theatre and an emergency medical service. The fire developed after turning on the gas main while the flow supply valve was already open. Not opening the pressure reduction valve while the oxygen flow supply valve is open can prevent this type of fire. Information from the contractor shows that the probability of such an incident is 1 in a million.
Regional stress in a noncircular cylinder.
Janz, R F; Ozpetek, S; Ginzton, L E; Laks, M M
1989-01-01
Several mathematical formulas are presented for estimating regional average circumferential stress and shear stress in a thick-wall, noncircular cylinder with a plane of symmetry. The formulas require images of exterior and interior chamber silhouettes plus surface pressures. The formulas are primarily intended for application to the left ventricle in the short axis plane near the base (where the meridional radius of curvature is normally much larger than the circumferential radius of curvature) and to blood vessels. The formulas predict stresses in a variety of chambers to within 3% of finite element values determined from a large-scale structural analysis computer program called ANSYS.
Mounting with compliant cylinders for deformable mirrors.
Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael
2015-04-01
A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.
Coalescence of two viscous cylinders by capillarity
Hopper, R.W. )
1993-12-01
The creeping plane flow of two viscous cylinders coalescing under the influence of surface tension is described theoretically in a series of three articles. Part I is a theoretical overview. The physical assumptions affecting applicability of the theory are discussed. The shape as a function of time and of the initial diameter ratio D [>=] 1 is given in parametric form. For D = 1 and D = [infinity], the shape sequences are known exactly; for finite D > 1, a first-order differential equation is solved numerically. The time requires a quadrature. This is accurate, and easier than solving the fluid-dynamical field equations. The theory encompasses time-dependent liquid properties.
Steady viscous flow past a circular cylinder
NASA Technical Reports Server (NTRS)
Fornberg, B.
1984-01-01
Viscous flow past a circular cylinder becomes unstable around Reynolds number Re = 40. With a numerical technique based on Newton's method and made possible by the use of a supercomputer, steady (but unstable) solutions have been calculated up to Re = 400. It is found that the wake continues to grow in length approximately linearly with Re. However, in conflict with available asymptotic predictions, the width starts to increase very rapidly around Re = 300. All numerical calculations have been performed on the CDC CYBER 205 at the CDC Service Center in Arden Hills, Minnesota.
An update on corrosion monitoring in cylinder storage yards
Henson, H.M.; Newman, V.S.; Frazier, J.L.
1991-12-31
Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.
An asymmetric pair of vortices adjacent to a spinning cylinder
NASA Astrophysics Data System (ADS)
Iosilevskii, G.; Seginer, A.
The two-dimensional flow field over a spinning circular cylinder is analyzed using an extension of the Foeppl method. Equilibrium equations for two asymmetric point vortices in the wake of the cylinder are solved for a case when both vortices are equidistant from the cylinder. The two Foeppl solutions for the cylinder are presented. It is observed that the spin does not affect the angle between the two vortices; however, it displaces the vortex pair in the spin direction and the sinus of the displacement angle is proportional to the spin rate.
Enrichment Assay Methods Development for the Integrated Cylinder Verification System
Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.
2009-10-22
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.
Experimental free convection heat transfer from inclined square cylinders
NASA Astrophysics Data System (ADS)
Ali, Mohamed
2016-10-01
Natural convection from axisymmetric objects such as vertical or horizontal cylinders and spheres are two dimensional. However, for inclined circular or noncircular cylinders the flow and heat transfer is three dimensional and hence more complex and needs more attention. This study investigates the steady state mechanism of natural convection from inclined square cylinders in air. Five different cylinders of 1 m length, 8 × 8, 7 × 7, 6 × 6, 4 × 4 and 2.5 × 2.5 cm2 cross sections are used. The cylinders are heated using inserted heating element of 6 mm in diameter. Self-adhesive thermocouples are used at the upper, bottom and at one side of the cylinders for temperature measurement. Three inclination angles to the horizontal 30, 45 and 60o are used for each cylinder with uniform heat flux boundary conditions. For each cylinder, about ten heat fluxes are used to generate the heat transfer data. Local and average heat transfer coefficient is determined for each cylinder at each inclination angle for each uniform heat flux. Laminar and transition to turbulent regimes are obtained and characterized. Local critical axial distance where heat transfer coefficient changes the mode is obtained for each heat flux. Local and averaged Nusselt numbers are correlated with the modified Rayleigh numbers for all angles.
Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2000-01-01
A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.
Stability of Flow around a Cylinder in Plane Poiseuille Flow
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Ben, An-Qing; Fluid Mechanics Research Team
2013-11-01
Simulation of Navier-Stokes equations is carried out to study the stability of flow around a cylinder in plane Poiseuille flow. The energy gradient method is employed to analyze the mechanism of instability of cylinder wake. The ratio of the channel width to the cylinder diameter is 30, and the Reynolds number based on the cylinder diameter and incoming centerline velocity is 26 and 100, respectively. The incoming flow is given as being laminar. It is found that the instability of the cylinder wake, starting near the front stagnation point upstream. The recirculation zone behind the cylinder has no effect on the stability of the wake. In the wake behind the recirculation zone, the flow stability is controlled by the energy gradient in the shear layer along the two sides of the wake. At high Re, the energy gradient of averaged flow in the channel interacts with the wake vortex, strengthening the wake vortex structure. Due to the large ratio of the channel width to the cylinder diameter, the disturbance caused by the cylinder mainly occurs in the vicinity of the centerline and has little effect on the flow near the wall. The velocity profile on the two sides of the cylinder wake in the downstream channel remains laminar (parabolic profile). Professor in Fluid Mechanics; AIAA Associate Fellow.
Effects of Geometry on Turbulent Rayleigh-Benard Convection
NASA Astrophysics Data System (ADS)
Song, Hao
A systematic study of turbulent thermal convection is carried out in horizontal cylindrical cells of different lengths filled with water. The aim of the thesis work is to study the geometry effect on the fluid dynamics of the large-scale circulation (LSC) and the scaling laws in turbulent Rayleigh-Benard convection. The results obtained in the horizontal cylinders are compared with those obtained in the upright cylinders. The large-scale flow shows interesting new dynamics in the horizontal cylindrical cells. Four different flow modes are found in the cells with varying aspect ratio Gamma: two-dimensional rotation (2DR), small-Gamma diagonal switching (SDS), large-Gamma diagonal switching (LDS) and periodic reversals (PR). In the 2DR phase (Gamma ≤ 0.16), the flow is quasi-two-dimensional and is confined in the circular plane of the horizontal cylinder. In this phase, a well-defined in-plane oscillation of LSC is observed, resulting from the periodical eruption of thermal plumes from the top and bottom thermal boundary layers. In the SDS phase (0.16 < Gamma < 0.82), the rotation plane of LSC switches periodically between the two diagonals of the cell, spanning across the curved sidewalls. The switching period is found to be equal to the LSC turnover time. In the LDS phase (0.82 ≤ Gamma ≤ 1.69), the periodic switching of the LSC orientation still remains, but the switching is now spanning across the flat end walls of the cell. The switching period has a large jump at the transition aspect ratio Gammac = 0.82 and then exponentially decays with increasing Gamma. For even larger aspect ratios (1.30 ≤ Gamma ≤ 1.69), the bulk fluid as a whole rotates around the central axis of the horizontal cylinder with periodic reversals. The reversal period is found to change linearly with the length of the cell. The scaling laws of turbulent convection are also investigated in the horizontal cylinders. The scaling behavior of the measured Nusselt number (total heat flux
49 CFR 180.205 - General requirements for requalification of specification cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Periodic requalification of cylinders. Each cylinder bearing a DOT specification marking must be requalified and marked as specified in the Requalification Table in this subpart. Each cylinder bearing a DOT... inspection of cylinders. Without regard to any other periodic requalification requirements, a cylinder...
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3BN seamless nickel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.39 Specification 3BN seamless nickel cylinders. (a) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water...
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3BN seamless nickel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.39 Specification 3BN seamless nickel cylinders. (a) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water...
49 CFR 178.39 - Specification 3BN seamless nickel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3BN seamless nickel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.39 Specification 3BN seamless nickel cylinders. (a) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cylinder bursts below five times the service pressure, then two additional cylinders must be selected and subjected to this test. If either of these cylinders fails by bursting below five times the service pressure... cylinders and plugged cylinders must be tested for leakage by gas or air pressure after the bottom has...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cylinder bursts below five times the service pressure, then two additional cylinders must be selected and subjected to this test. If either of these cylinders fails by bursting below five times the service pressure... cylinders and plugged cylinders must be tested for leakage by gas or air pressure after the bottom has...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cylinder bursts below five times the service pressure, then two additional cylinders must be selected and subjected to this test. If either of these cylinders fails by bursting below five times the service pressure... cylinders and plugged cylinders must be tested for leakage by gas or air pressure after the bottom has...
49 CFR 178.42 - Specification 3E seamless steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3E seamless steel cylinders. 178.42... PACKAGINGS Specifications for Cylinders § 178.42 Specification 3E seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3E cylinder is a seamless steel cylinder with an outside diameter...
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3B seamless steel cylinders. 178.38... PACKAGINGS Specifications for Cylinders § 178.38 Specification 3B seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal)...
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3A and 3AX seamless steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.36 Specification 3A and 3AX seamless steel cylinders... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water...
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3B seamless steel cylinders. 178.38... PACKAGINGS Specifications for Cylinders § 178.38 Specification 3B seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal)...
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3A and 3AX seamless steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.36 Specification 3A and 3AX seamless steel cylinders... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3B seamless steel cylinders. 178.38... PACKAGINGS Specifications for Cylinders § 178.38 Specification 3B seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal)...
49 CFR 178.42 - Specification 3E seamless steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3E seamless steel cylinders. 178.42... PACKAGINGS Specifications for Cylinders § 178.42 Specification 3E seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3E cylinder is a seamless steel cylinder with an outside diameter...
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 8AL steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.60 Specification 8AL steel cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8AL cylinder is a seamless steel cylinder...
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 8AL steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.60 Specification 8AL steel cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8AL cylinder is a seamless steel cylinder...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 8AL steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.60 Specification 8AL steel cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8AL cylinder is a seamless steel cylinder...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...
49 CFR 178.38 - Specification 3B seamless steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3B seamless steel cylinders. 178.38... PACKAGINGS Specifications for Cylinders § 178.38 Specification 3B seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal)...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...
49 CFR 178.42 - Specification 3E seamless steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3E seamless steel cylinders. 178.42... PACKAGINGS Specifications for Cylinders § 178.42 Specification 3E seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3E cylinder is a seamless steel cylinder with an outside diameter...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3A and 3AX seamless steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.36 Specification 3A and 3AX seamless steel cylinders... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water...
49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3A and 3AX seamless steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.36 Specification 3A and 3AX seamless steel cylinders... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3T seamless steel cylinder. 178.45... PACKAGINGS Specifications for Cylinders § 178.45 Specification 3T seamless steel cylinder. (a) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity...
49 CFR 178.42 - Specification 3E seamless steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3E seamless steel cylinders. 178.42... PACKAGINGS Specifications for Cylinders § 178.42 Specification 3E seamless steel cylinders. (a) Type, size, and service pressure. A DOT 3E cylinder is a seamless steel cylinder with an outside diameter...
49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 8AL steel cylinders with porous...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.60 Specification 8AL steel cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8AL cylinder is a seamless steel cylinder...
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...
49 CFR 178.68 - Specification 4E welded aluminum cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...
NASA Astrophysics Data System (ADS)
Daichin, K. V.; Lee, Sang Joon
The flow fields behind elliptic cylinders adjacent to a free surface were investigated experimentally in a circulating water channel. A range of cylinder aspect ratios (AR=2, 3, 4) were considered, while the cross-sectional area of the elliptical cylinder was kept constant. The main objective of this study was to investigate the effect of cylinder aspect ratio and a free surface on the flow structure in the near-wake behind elliptic cylinders. For each elliptic cylinder, the flow structure was analyzed for various values of the submergence depth of the cylinder beneath the free surface. The flow fields were measured using a single-frame double-exposure PIV (Particle Image Velocimetry) system. For each experimental condition, 350 instantaneous velocity fields were obtained and ensemble-averaged to obtain the mean velocity field and spatial distribution of the mean vorticity statistics. The results show that near-wake can be classified into three typical flow patterns: formation of a Coanda flow, generation of substantial jet-like flow, and attachment of this jet flow to the free surface. The general flow structure observed behind the elliptic cylinders resembles the structure previously reported for a circular cylinder submerged near a free surface. However, the wake width and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder differ from those observed for a circular cylinder. These trends are enhanced as cylinder aspect ratio is increased. In addition, the free surface distortion is also discussed in the paper.
NASA Astrophysics Data System (ADS)
Lawrence, K. Deepak; Ramamoorthy, B.
2016-03-01
Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.
Uniaxially aligned nanofibrous cylinders by electrospinning.
Jana, Soumen; Cooper, Ashleigh; Ohuchi, Fumio; Zhang, Miqin
2012-09-26
Aligned nanofibers have drawn increasing interest for applications in biomedical engineering, electronics, and energy storage systems owing to the unique physicochemical properties provided by their anisotropy and high surface-to-volume ratio. Nevertheless, direct fabrication or assembly of aligned nanofibers into a 3-dimensional standalone construct with practically applicable dimensions presents an enormous challenge. We report a facile method to fabricate aligned nanofibrous cylinders, a widely used geometric form, by electrospinning aligned nanofibers across the gap between a pair of pin electrodes placed apart uniaxially. With this approach, cylindrical nanofibrous constructs of several millimeters in diameter and several centimeters in length can be readily produced. The versatility of the approach was demonstrated with several commonly used polymeric and ceramic materials, including polycaprolactone (PCL), chitosan/PCL, polyvinylidene fluoride, and titania. For a model application in tissue engineering, skeletal muscle cells were cultured on nanofibrous cylinders, which effectively produced highly aligned and densely populated myotubes along the nanofiber orientation, favorable for muscle tissue regeneration. With high structural integrity and stability, these can be directly integrated into devices or implanted in vivo as a standalone construct without the support of a substrate, thus increasing the portability, efficiency, and applicability of aligned nanofibers.
CYLINDER LENS ALIGNMENT IN THE LTP
TAKACS, P.Z.
2005-07-26
The Long Trace Profiler (LTP), is well-suited for the measurement of the axial figure of cylindrical mirrors that usually have a long radius of curvature in the axial direction but have a short radius of curvature in the sagittal direction. The sagittal curvature causes the probe beam to diverge in the transverse direction without coming to a focus on the detector, resulting in a very weak signal. It is useful to place a cylinder lens into the optical system above the mirror under test to refocus the sagittal divergence and increase the signal level. A positive cylinder lens can be placed at two positions above the surface: the Cat's Eye reflection position and the Wavefront-Matching position. The Cat's Eye position, is very tolerant to mirror misalignment, which is not good if absolute axial radius of curvature is to be measured. Lateral positioning and rotational misalignments of lens and the mirror combine to produce unusual profile results. This paper looks at various alignment issues with measurements and by raytrace simulations to determine the best strategy to minimize radius of curvature errors in the measurement of cylindrical aspheres.
Sandwich Cylinder Technology for Cryogenic Tank
NASA Astrophysics Data System (ADS)
Rambaud, Wladimir; Lukowiak, Denis; Damas, Alain; Michelot, David; Jousset, Frederic; Mercier, Antoine; Bouilly, Thibault; Leudiere, Vincent
2014-06-01
In the frame of the Research and Technology activities, CNES Launcher Directorate and EuroCryospace performed studies on cryogenic tank.Since 2009/2010, we realized analyses and tests on a promising technology for cryogenic tank submitted to high compressive loads. Indeed, the "Sandwich cylinder" (metallic shell, insulating core, composite shell) is a way to improve performance and costs with respect to classical structure. This concept presents specific stiffness behavior (advantageous stiffness/mass ratio) higher than an aluminum alloy structure and scalable thermal behavior.The relevancy of the Sandwich concept was first evaluated by calculation in comparison with 3 other cylinder architectures and then this R&T project was conducted from elementary characterizations to a buckling test of a representative demonstrator.The paper provides an overview of the different steps of the project and the main results obtained. Potential benefits for Ariane 6 launcher are also presented.The concept is submitted to ECSP patent and so, numerical values will not be present in the paper.
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2012-08-01
The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.
Geometrie verstehen: statisch - kinematisch
NASA Astrophysics Data System (ADS)
Kroll, Ekkehard
Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.
UF{sub 6} pressure excursions during cylinder heating
Brown, P.G.
1991-12-31
As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.
Graded geometry and Poisson reduction
Cattaneo, A. S.; Zambon, M.
2009-02-02
The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.
Computer-Aided Geometry Modeling
NASA Technical Reports Server (NTRS)
Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)
1984-01-01
Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.
Teaching of Geometry in Bulgaria
ERIC Educational Resources Information Center
Bankov, Kiril
2013-01-01
Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…
Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.
Thoreson, Gregory G.; Mitchell, Dean J; Harding, Lee T.
2013-02-01
The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.
Senecal, P. K.; Pomraning, E.; Anders, J. W.; Weber, M. R.; Gehrke, C. R.; Polonowski, C. J.; Mueller, C. J.
2014-05-28
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate, and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.
Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...
2014-05-28
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
Dillon, Moira R.; Spelke, Elizabeth S.
2015-01-01
Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world. PMID:25441089
NGSI: FUNCTION REQUIREMENTS FOR A CYLINDER TRACKING SYSTEM
Branney, S.
2012-06-06
While nuclear suppliers currently track uranium hexafluoride (UF{sub 6}) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF{sub 6} cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF{sub 6} cylinder' and reviewed IAEA practices related to UF{sub 6} cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF{sub 6} cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF{sub 6} cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.
Fluid forces on two circular cylinders in crossflow
NASA Astrophysics Data System (ADS)
Jendrzejczyk, J. A.; Chen, S. S.
1986-07-01
Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.
14. VIEW OF OPERATING VALVE TO HYDRAULIC CYLINDER, SHOWING CAR ...
14. VIEW OF OPERATING VALVE TO HYDRAULIC CYLINDER, SHOWING CAR OPERATING ROPE SHELVE, FIXED SHEAVES OF CYLINDER JUST VISIBLE BEHIND AIR CHAMBER PIPE; RISING THROUGH FLOOR ARE WATER DISCHARGE PIPE TO SEWER (LEFT) AND WATER SUPPLY FROM STREET MAIN (RIGHT); WATER CONSUMPTION METER MOUNTED TO WALL ABOVE OPERATING SHELVE - 72 Marlborough Street, Residential Hydraulic Elevator, Boston, Suffolk County, MA
Critical point drying: contamination in transitional fluid supply cylinders.
Hoagland, K D; Rosowski, J R; Cohen, A L
1980-01-01
We call attention to the occurrence of an oily residue in the CPD bomb after critical point drying, as well as the presence of rust, dirt, and an oily residue in CO2 and Freon supply cylinders. Bottled gas is often tested for purity once after manufacturing and then is pumped and stored, perhaps several times, before the consumer's cylinders are filled. The cylinders may be in use for over 40 years, and may never be chemically cleaned, although they are hydrostatically pressure tested every five years, with the date of each test stamped on the cylinder. To the bottled gas industry we recommend regular inspection of tanks for bottom contamination, and vacuum and chemical cleaning when contamination is found. To users of bottled gas for critical point drying, we recommend becoming aware of the procedures of cylinder inspection, cleaning, and circulation among users. We suggest reporting to the gas supplier any contamination produced by inadvertently backfilling the supply cylinder. Although a common awareness of the problem of supply cylinder residues should lead to failures, the best assurance of clean, oil-free, dry liquid CO2 and other transitional fluids may be in the development of in-line filters which would remove particles, oil and moisture between the supply cylinder and the CPD bomb. We also suggest the use of gas grades higher than commercial, such as welding anhydrous (CO2) or specialty gases.
21 CFR 886.1840 - Simulatan (including crossed cylinder).
Code of Federal Regulations, 2012 CFR
2012-04-01
... of cylinder lenses that provides various equal plus and minus refractive strengths. The lenses are arranged so that the user can exchange the positions of plus and minus cylinder lenses of equal strengths... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class...
21 CFR 886.1840 - Simulatan (including crossed cylinder).
Code of Federal Regulations, 2013 CFR
2013-04-01
... of cylinder lenses that provides various equal plus and minus refractive strengths. The lenses are arranged so that the user can exchange the positions of plus and minus cylinder lenses of equal strengths... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class...
46 CFR 197.338 - Compressed gas cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gas cylinders. 197.338 Section 197.338 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders....
77 FR 37712 - High Pressure Steel Cylinders From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of the... following notification of preliminary determinations by Commerce that imports of high pressure...
An Experiment in Heat Conduction Using Hollow Cylinders
ERIC Educational Resources Information Center
Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.
2011-01-01
An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…
Equations for solitary surface waves on a plasma cylinder
NASA Astrophysics Data System (ADS)
Stenflo, L.; Gradov, O. M.
1986-08-01
The theory for high-frequency envelope solitons, propagating along a plasma cylinder, is generalized. It is then shown that previously neglected second harmonic terms are of the same order of magnitude as the nonlinear density terms, if the axial wavelength is comparable, to, or larger than, the cylinder radius.
Increasing the Utility of the Copper Cylinder Expansion Test
2012-04-01
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments...Garza, Detonation En- ergies from the Cylinder Test and CHEETAH V3.0, Propel- lants, Explos., Pyrotech. 2001, 26, 180. [10] W. C. Davis, Cylinder Test
21 CFR 886.1840 - Simulatan (including crossed cylinder).
Code of Federal Regulations, 2010 CFR
2010-04-01
... of cylinder lenses that provides various equal plus and minus refractive strengths. The lenses are arranged so that the user can exchange the positions of plus and minus cylinder lenses of equal strengths... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class...
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
....209 Requirements for requalification of specification cylinders. (a) Periodic qualification of cylinders. Each specification cylinder that becomes due for periodic requalification, as specified in the following table, must be requalified and marked in conformance with the requirements of this...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China; Initiation...'') petition concerning imports of high pressure steel cylinders (``steel cylinders'') from the People's... Petitions for the Imposition of Antidumping and Countervailing Duties Against High Pressure Steel...
Method for Making a Carbon-Carbon Cylinder Block
NASA Technical Reports Server (NTRS)
Ransone, Phillip O. (Inventor)
1997-01-01
A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.
Reordering transitions during annealing of block copolymer cylinder phases
Majewski, Pawel W.; Yager, Kevin G.
2015-10-06
While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.
``Reverse'' Lock-in Regime on a Freely Oscillating Cylinder
NASA Astrophysics Data System (ADS)
Atsavapranee, P.; Voorhees, A. V.; Benaroya, H.; Wei, T.
1998-11-01
DPIV and flow visualizations were used to characterize the flow in the near wake of a freely oscillating cylinder. A rigid cylinder with a low mass ratio was fixed at one end to a leaf spring and free to oscillate, pendulum-like, at the other end in the cross stream plane. It was found that only a subset of the synchronization range follows the behavior of a ``classical'' lock-in, i.e., when the difference between the natural Strouhal frequency and the natural frequency of the cylinder is small enough, vortex shedding frequency deviates from the linear Strouhal dependence and follows instead the cylinder natural frequency. However, over a range of flow speed in which the response amplitude of the cylinder is significant, it was found that the frequency of oscillation and of vortex shedding follow instead the natural Strouhal frequency, instead of the mechanical natural frequency.
A Study of Air Flow in an Engine Cylinder
NASA Technical Reports Server (NTRS)
Lee, Dana W
1939-01-01
A 4-stroke-cycle test engine was equipped with a glass cylinder and the air movements within it were studied while the engine was being motored. Different types of air flow were produced by using shrouded intake valves in various arrangements and by altering the shape of the intake-air passage in the cylinder head. The air movements were made visible by mixing feathers with the entering air, and high-speed motion pictures were taken of them so that the air currents might be studied in detail and their velocities measured. Motion pictures were also taken of gasoline sprays injected into the cylinder on the intake stroke. The photographs showed that: a wide variety of induced air movements could be created in the cylinder; the movements always persisted throughout the compression stroke; and the only type of movement that persisted until the end of the cycle was rotation about the cylinder axis.
Rotating cylinder drag balance with application to riblets
NASA Astrophysics Data System (ADS)
Hall, T.; Joseph, D.
2000-12-01
Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5cylinder surface and to use cylinders for which the curvature of the flow is minimized.
Investigation of breached depleted UF{sub 6} cylinders
Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.
1991-09-01
In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.
Investigation of breached depleted UF sub 6 cylinders
Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.
1991-09-01
In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.
Relativistic currents on ideal Aharonov-Bohm cylinders
NASA Astrophysics Data System (ADS)
Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel S.; Cotăescu, Ion I.
2016-06-01
The relativistic theory of the Dirac fermions moving on cylinders in external Aharonov-Bohm (AB) field is built starting with a suitably restricted Dirac equation whose spin degrees of freedom are not affected. The exact solutions of this equation on finite or infinite AB cylinders allow one to derive the relativistic circular and longitudinal currents pointing out their principal features. It is shown that all the circular currents are related to the energy in the same manner on cylinders or rings either in the relativistic approach or in the nonrelativistic one. The specific relativistic effect is the saturation of the circular currents for high values of the total angular momentum. Based on this property some approximative closed formulas are deduced for the total persistent current at T = 0 on finite AB cylinders. Moreover, it is shown that all the persistent currents on finite cylinders or rings have similar nonrelativistic limits.
Heat-transfer processes in air-cooled engine cylinders
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin
1938-01-01
From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.
Self-assembly of Janus cylinders into hierarchical superstructures.
Walther, Andreas; Drechsler, Markus; Rosenfeldt, Sabine; Harnau, Ludger; Ballauff, Matthias; Abetz, Volker; Müller, Axel H E
2009-04-08
We present in-depth studies of the size tunability and the self-assembly behavior of Janus cylinders possessing a phase segregation into two hemicylinders. The cylinders are prepared by cross-linking the lamella-cylinder morphology of a polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block terpolymer. The length of the Janus cylinders can be adjusted by both the amplitude and the duration of a sonication treatment from the micro- to the nanometer length. The corona segregation into a biphasic particle is evidenced by selective staining of the PS domains with RuO(4) and subsequent imaging. The self-assembly behavior of these facial amphiphiles on different length scales is investigated combining dynamic light scattering (DLS), small-angle neutron scattering (SANS), and imaging procedures. Cryogenic transmission electron microscopy images of the Janus cylinders in THF, which is a good solvent for both blocks, exhibit unimolecularly dissolved Janus cylinders with a core-corona structure. These results are corroborated by SANS measurements. Supramolecular aggregation takes place in acetone, which is a nonsolvent for polystyrene, leading to the observation of fiber-like aggregates. The length of these fibers depends on the concentration of the solution. A critical aggregation concentration is found, under which unimolecularly dissolved Janus cylinders exist. The fibers are composed of 2-4 Janus cylinders, shielding the inner insoluble polystyrene hemicylinder against the solvent. Herein, the SANS data reveal a core-shell structure of the aggregates. Upon deposition of the Janus cylinders from more concentrated solution, a second type of superstructure is formed on a significantly larger length scale. The Janus cylinders form fibrillar networks, in which the pore size depends on the concentration and deposition time of the sample.
Multiple Concentric Cylinder Model (MCCM) user's guide
NASA Technical Reports Server (NTRS)
Williams, Todd O.; Pindera, Marek-Jerzy
1994-01-01
A user's guide for the computer program mccm.f is presented. The program is based on a recently developed solution methodology for the inelastic response of an arbitrarily layered, concentric cylinder assemblage under thermomechanical loading which is used to model the axisymmetric behavior of unidirectional metal matrix composites in the presence of various microstructural details. These details include the layered morphology of certain types of ceramic fibers, as well as multiple fiber/matrix interfacial layers recently proposed as a means of reducing fabrication-induced, and in-service, residual stress. The computer code allows efficient characterization and evaluation of new fibers and/or new coating systems on existing fibers with a minimum of effort, taking into account inelastic and temperature-dependent properties and different morphologies of the fiber and the interfacial region. It also facilitates efficient design of engineered interfaces for unidirectional metal matrix composites.
MacBurn's cylinder test problem
Shestakov, Aleksei I.
2016-02-29
This note describes test problem for MacBurn which illustrates its performance. The source is centered inside a cylinder with axial-extent-to-radius ratio s.t. each end receives 1/4 of the thermal energy. The source (fireball) is modeled as either a point or as disk of finite radius, as described by Marrs et al. For the latter, the disk is divided into 13 equal area segments, each approximated as a point source and models a partially occluded fireball. If the source is modeled as a single point, one obtains very nearly the expected deposition, e.g., 1/4 of the flux on each end and energy is conserved. If the source is modeled as a disk, both conservation and energy fraction degrade. However, errors decrease if the source radius to domain size ratio decreases. Modeling the source as a disk increases run-times.
Self-Contact for Rods on Cylinders
NASA Astrophysics Data System (ADS)
van der Heijden, G. H. M.; Peletier, M. A.; Planqué, R.
2006-11-01
We study self-contact phenomena in elastic rods that are constrained to lie on a cylinder. By choosing a particular set of variables to describe the rod centerline the variational setting is made particularly simple: the strain energy is a second-order functional of a single scalar variable, and the self-contact constraint is written as an integral inequality. Using techniques from ordinary differential equation theory (comparison principles) and variational calculus (cut-and-paste arguments) we fully characterize the structure of constrained minimizers. An important auxiliary result states that the set of self-contact points is continuous, a result that contrasts with known examples from contact problems in free rods.
Switchable and Tunable Aerodynamic Drag on Cylinders
NASA Astrophysics Data System (ADS)
Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Switchable and Tunable Aerodynamic Drag on Cylinders
NASA Astrophysics Data System (ADS)
Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro
2015-11-01
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Torsion Tests of Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1944-01-01
The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)
Noncommutative geometry of Zitterbewegung
NASA Astrophysics Data System (ADS)
Eckstein, Michał; Franco, Nicolas; Miller, Tomasz
2017-03-01
Drawing from the advanced mathematics of noncommutative geometry, we model a "classical" Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung—the "trembling motion" of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's "internal space." Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.
Critique of information geometry
Skilling, John
2014-12-05
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.
ERIC Educational Resources Information Center
Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.
2011-01-01
A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…
NASA Astrophysics Data System (ADS)
Gardner, Judd Steven
1999-10-01
Optical proximity sensing is often used in industry and the commercial realm to provide a system with information it may use in some decision making process. The applications for optical proximity sensing have changed and expanded over the years, and has presented a continually increased demand for higher accuracy. In order to satisfy this demand, new optical techniques have been established which have provided more precise proximity data than ever before, e.g. Atomic Force Microscopy and Photothermal Detection. To accommodate the increase in sensing precision, the precision of the mathematical models used to predict the behavior of the optical scheme must also increase. The particular interest pursued in this dissertation involves the detection of the change in the position of a beam due to some phenomena, e.g. Photothermal Deflection or Atomic Force Microscopy. The deflection of the beam in these cases may be on the order of microradians, and too small to detect with ordinary means. To remedy this, a reflecting cylinder is strategically positioned to reflect the incident deflected beam and, by the cylinder geometry, the reflected beam from the cylinder shows an increased deflection angle compared to the incident beam. If the optical scheme has been designed successfully, the resulting deflection of the reflected beam will be large enough to be detected by a sensor. In order to predict the optical behavior of an incident deflected beam reflected from a cylinder, three mathematical methods, Geometrical Optics, Physical Optics, and an Exact Formulation rigorously based on Maxwell's equations are employed. From these methods, a Geometrical Optics solution, two Physical Optics solutions, and an Exact solution are obtained and compared to demonstrate the accuracy of these mathematical models to predict the electric field behavior of a beam reflected from a cylinder. In all cases a Gaussian, well focused beam is used. The near, transitional, and far zones are considered
Enhancement of the maximum proton energy by funnel-geometry target in laser-plasma interactions
NASA Astrophysics Data System (ADS)
Yang, Peng; Fan, Dapeng; Li, Yuxiao
2016-09-01
Enhancement of the maximum proton energy using a funnel-geometry target is demonstrated through particle simulations of laser-plasma interactions. When an intense short-pulse laser illuminate a thin foil target, the foil electrons are pushed by the laser ponderomotive force, and then form an electron cloud at the target rear surface. The electron cloud generates a strong electrostatic field, which accelerates the protons to high energies. If there is a hole in the rear of target, the shape of the electron cloud and the distribution of the protons will be affected by the protuberant part of the hole. In this paper, a funnel-geometry target is proposed to improve the maximum proton energy. Using particle-in-cell 2-dimensional simulations, the transverse electric field generated by the side wall of four different holes are calculated, and protons inside holes are restricted to specific shapes by these field. In the funnel-geometry target, more protons are restricted near the center of the longitudinal accelerating electric field, thus protons experiencing longer accelerating time and distance in the sheath field compared with that in a traditional cylinder hole target. Accordingly, more and higher energy protons are produced from the funnel-geometry target. The maximum proton energy is improved by about 4 MeV compared with a traditional cylinder-shaped hole target. The funnel-geometry target serves as a new method to improve the maximum proton energy in laser-plasma interactions.
78 FR 58604 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... cylinders containing Carbon dioxide, for restaurants and other establishments. FOR FURTHER INFORMATION... safety requirements for continued use. US DOT Cylinders filled with carbon dioxide must be...
NASA Astrophysics Data System (ADS)
Abramov, Arnold; Kostikov, Alexander
2017-03-01
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.
NASA Technical Reports Server (NTRS)
Stoner, Mary Cecilia; Hehir, Austin R.; Ivanco, Marie L.; Domack, Marcia S.
2016-01-01
This cost-benefit analysis assesses the benefits of the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. These preliminary, rough order-of-magnitude results report a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Production cost savings of 35 to 58 percent were reported over the composite manufacturing technique used in this study for comparison; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. A case study compared these three alternatives for manufacturing a cylinder of specified geometry, with particular focus placed on production costs and process complexity, with cost analyses performed by the analogy and parametric methods. Furthermore, a scalability study was conducted for three tank diameters to assess the highest potential payoff of the ANNST process for manufacture of large-diameter cryogenic tanks. The analytical hierarchy process (AHP) was subsequently used with a group of selected subject matter experts to assess the value of the various benefits achieved by the ANNST method for potential stakeholders. The AHP study results revealed that decreased final cylinder mass and quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.
NASA Astrophysics Data System (ADS)
Gualtieri, Marco
2014-10-01
Generalized Kähler geometry is the natural analogue of Kähler geometry, in the context of generalized complex geometry. Just as we may require a complex structure to be compatible with a Riemannian metric in a way which gives rise to a symplectic form, we may require a generalized complex structure to be compatible with a metric so that it defines a second generalized complex structure. We prove that generalized Kähler geometry is equivalent to the bi-Hermitian geometry on the target of a 2-dimensional sigma model with (2, 2) supersymmetry. We also prove the existence of natural holomorphic Courant algebroids for each of the underlying complex structures, and that these split into a sum of transverse holomorphic Dirac structures. Finally, we explore the analogy between pre-quantum line bundles and gerbes in the context of generalized Kähler geometry.
Cylinder head structure for V-type engine
Okada, M.; Asanomi, K.; Choshi, M.; Abe, R.
1988-03-08
A cylinder head structure for a V-type engine having a pair of cylinder banks is described comprising a pair of cylinder head members which are the same in shape and oriented in opposite directions and which are provided in each of the front and rear end wall portions with an opening, and camshaft supported for rotation in the respective cylinder head members so that the respective one ends of the camshafts project outside through the openings on the same end of the engine. A cam pulley is mounted on the projecting portion of each cam shaft, a transmission belt means is for transmitting the driving force off the crankshaft to the cam pulley on each camshaft, a pair of first cover members are mounted on the end wall portions of the respective cylinder head members through which the camshafts project to form closed cross section spaces together with the corresponding cylinder head members for covering the transmission belt means, and second cover members are mounted on the end wall portions of the respective cylinder heads opposite to the end wall portions through which the camshafts project to cover the openings therein.
Benefits of an International Database for UF6 Cylinders
Babcock, R A; Whitaker, J M; Murphy, J; Oakberg, J
2008-06-30
A reasonable expectation regarding the nuclear energy renaissance is that the location of fuel cycle nuclear materials throughout the world will be known. We ask--would an international system for uranium hexafluoride (UF{sub 6}) cylinders provide the effective assurances expected for international fuel supply and of the international fuel centers? This paper introduces the question and discusses the potential benefits of tracking UF{sub 6} cylinders through the development of an international database. The nonproliferation benefits of an international database for UF{sub 6} cylinders being used in the fuel cycle include an enhanced capability to reconcile nuclear material imports and exports. Currently, import and export declarations only require the reporting of total 'rolled up' quantities of nuclear materials contained in all items--not the quantities of materials in individual items like individual UF{sub 6} cylinders. The database could provide supplier countries with more assurance on the location of the UF{sub 6} cylinders they export. Additionally, a comprehensive database on all declared cylinders would be a valuable resource in detecting and recognizing undeclared cylinders. The database could potentially be administered by the IAEA and be accessible to authorized countries around the world. During the nuclear renaissance, the general public, as well as the participants will expect transparency and quality information about movement of nuclear fuel cycle nuclear materials. We will discuss the potential benefits of such a database for the suppliers, inspectorates, and general public.
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
Roth, Gregory T.; Sellnau, Mark C.
2016-08-09
A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.
Thermodynamics of Asymptotically Conical Geometries.
Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H
2015-06-12
We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.
Investigating Fractal Geometry Using LOGO.
ERIC Educational Resources Information Center
Thomas, David A.
1989-01-01
Discusses dimensionality in Euclidean geometry. Presents methods to produce fractals using LOGO. Uses the idea of self-similarity. Included are program listings and suggested extension activities. (MVL)
Kligfield, R.; Geiser, P.; Geiser, J.
1985-01-01
Blind thrusts are structures which at no time in their history broke the erosion surface and along which displacement progressively changes upwards. Faults of the stiff layer along which displacement progressively decreases to zero (tip) are one prominent type of blind thrust structure. Shortening above such tips is accommodated entirely by folding whereas shortening below the tip is partitioned between folding and faulting. For these types of faults it is possible to determine the original length of the stiff layer for balancing purposes. A systematic methodology for line length and area restoration is outlined for determining blind thrust geometry. Application of the methodology is particularly suitable for use with microcomputers. If the folded form of the cover is known along with the position of the fault and its tip, then it is possible to locate hanging and footwall cutoffs. If the fault trajectory, tip, and a single hanging wall footwall cutoff pair are known, then the folded form of the cover layer can be determined. In these constructions it is necessary to specify pin lines for balancing purposes. These pin lines may or may not have a zero displacement gradient, depending upon the amount of simple shear deformation. Examples are given from both Laramide structures of the western USA and the Appalachians.
104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF ...
104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF THE INCLINED BUTTRESSES FOR POWER HOUSE REINFORCEMENT IN 1916. AN AIR LOCK WAS PLACED ON TOP OF THE CYLINDER: THE LOWER PORTION OF THE VERTICAL ELEMENT RESTED ON THE POWER HOUSE FOUNDATION APRON: THE INCLINED ELEMENT WAS CUT LEVEL WITH THE RIVER BED. THE INCLINED PORTION OF THE CYLINDER CONTAINED THE SHIELD USED TO BEGIN THE ERECTION OF THE SEGMENTED INCLINED CAST IRON BUTTRESSES. (764) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Nonlinear standing waves on a periodic array of circular cylinders.
Yuan, Lijun; Lu, Ya Yan
2015-08-10
A periodic array of parallel and infinitely long dielectric circular cylinders surrounded by air can be regarded as a simple two-dimensional periodic waveguide. For linear cylinders, guided modes exist continuously below the lightline in various frequency intervals, but standing waves, which are special guided modes with a zero Bloch wavenumber, could exist above the lightline at a discrete set of frequencies. In this paper, we consider a periodic array of nonlinear circular cylinders with a Kerr nonlinearity, and show numerically that nonlinear standing waves exist continuously with the frequency and their amplitudes depend on the frequency. The amplitude-frequency relations are further investigated in a perturbation analysis.
Manufacturing stresses and strains in filament wound cylinders
NASA Technical Reports Server (NTRS)
Calius, E. P.; Kidron, M.; Lee, S. Y.; Springer, G. S.
1988-01-01
Tests were performed to verify a previously developed model for simulating the manufacturing process of filament wound cylinders. The axial and hoop strains were measured during cure inside a filament wound Fiberite T300/976 graphite-epoxy cylinder. The measured strains were compared to those computed by the model. Good agreements were found between the data and the model, indicating that the model is a useful representation of the process. For the conditions of the test, the manufacturing stresses inside the cylinder were also calculated using the model.
Speed control with end cushion for high speed air cylinder
Stevens, Wayne W.; Solbrig, Charles W.
1991-01-01
A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.
EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation
Fan, Xuetong
2000-08-20
Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.
Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat
NASA Technical Reports Server (NTRS)
Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.
2014-01-01
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat
Heat transfer measurements for Stirling machine cylinders
NASA Technical Reports Server (NTRS)
Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.
1994-01-01
The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially
Meng, Xiangyin; Li, Yan
2015-01-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Hilburger, Mark W.; Chunchu, Prasad B.
2010-01-01
A design study was conducted to investigate the effect shell buckling knockdown factor (SBKF), internal pressure and aluminum alloy material selection on the structural weight of stiffened cylindrical shells. Two structural optimization codes were used for the design study to determine the optimum minimum-weight design for a series of design cases, and included an in-house developed genetic algorithm (GA) code and PANDA2. Each design case specified a unique set of geometry, material, knockdown factor combinations and loads. The resulting designs were examined and compared to determine the effects of SBKF, internal pressure and material selection on the acreage design weight and controlling failure mode. This design study shows that use of less conservative SBKF values, including internal pressure, and proper selection of material alloy can result in significant weight savings for stiffened cylinders. In particular, buckling-critical cylinders with integrally machined stiffener construction can benefit from the use of thicker plate material that enables taller stiffeners, even when the stiffness, strength and density properties of these materials appear to be inferior.
NASA Technical Reports Server (NTRS)
Coats, T. J.; Silcox, R. J.; Lester, H. C.
1993-01-01
Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.
NASA Astrophysics Data System (ADS)
Coats, T. J.; Silcox, R. J.; Lester, H. C.
Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.
NASA Astrophysics Data System (ADS)
Toppaladoddi, Srikanth; Dixit, Harish N.; Tatavarti, Rao; Govindarajan, Rama
2011-11-01
Different vortex shedding patterns arising in the flow past inline oscillating rectangular cylinders, at a Reynolds number of 200 is studied numerically in two-dimensions. The S-II mode of symmetric shedding, discovered in 2006, as well as the Couder-Basdevant mode [J. Fluid Mech. 173, 225-251 (1986)], seen in experiments earlier, are found numerically for the first time. Besides, a new mode of symmetric shedding, named here as S-III, is also reported. Chaotic flow in the wake of a circular cylinder, recently reported by Perdikaris et al. [Phys. Fluids 21(10), 101705 (2009)] is also seen in flow past the rectangular geometries here, and we show that this is indeed due to mode competition, between antisymmetric and symmetric modes of vortex shedding, in the sense of Ciliberto & Gollub [Phys. Rev. Lett. 52, 922 (1984)]. A global and reliable parameter has been constructed to ``quantify'' this chaos. The Lattice Boltzmann Method (LBM) has been used to solve for the flow. The Naval Physical and Oceanic Labs, Kochi are gratefully acknowledged for a grant which enabled this work to begin.
CORSSTOL: Cylinder Optimization of Rings, Skin, and Stringers with Tolerance sensitivity
NASA Technical Reports Server (NTRS)
Finckenor, J.; Bevill, M.
1995-01-01
Cylinder Optimization of Rings, Skin, and Stringers with Tolerance (CORSSTOL) sensitivity is a design optimization program incorporating a method to examine the effects of user-provided manufacturing tolerances on weight and failure. CORSSTOL gives designers a tool to determine tolerances based on need. This is a decisive way to choose the best design among several manufacturing methods with differing capabilities and costs. CORSSTOL initially optimizes a stringer-stiffened cylinder for weight without tolerances. The skin and stringer geometry are varied, subject to stress and buckling constraints. Then the same analysis and optimization routines are used to minimize the maximum material condition weight subject to the least favorable combination of tolerances. The adjusted optimum dimensions are provided with the weight and constraint sensitivities of each design variable. The designer can immediately identify critical tolerances. The safety of parts made out of tolerance can also be determined. During design and development of weight-critical systems, design/analysis tools that provide product-oriented results are of vital significance. The development of this program and methodology provides designers with an effective cost- and weight-saving design tool. The tolerance sensitivity method can be applied to any system defined by a set of deterministic equations.
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Radaev, Yu. N.
2014-05-01
The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.
Reda, D.C.
1983-01-01
An experimental effort is presently underway to investigate natural convection phenomena in liquid-saturated porous media utilizing a geometry, and hydrodynamic/thermal boundary conditions, relevant to the problem of nuclear-waste isolation in geologic repositories. During the first phase of this research program, detailed measurements were made of the steady-state thermal field throughout an annular test region bounded by a vertical, constant-heat-flux, inner cylinder and a concentrically-placed, constant-temperature, outer cylinder. An overlying, constant-pressure, fluid layer was utilized to supply a permeable upper surface boundary condition. Results showed the heater surface temperature to increase with increasing vertical distance due to the presence of a buoyantly-driven upflow. The measured temperature difference (..delta..T) between the average heater surface temperature and the constant, outer-surface, temperature was found to be progressively below the straight-line/conduction-only solution for ..delta..T vs power input as the latter was systematically increased. Comparisons between measured results and numerical predictions generated with the finite-element code MARIAH showed very good agreement, thereby contributing to the qualification of this code for repository-design applications.
Linguistic geometry for autonomous navigation
Stilman, B.
1995-09-01
To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.
GPS: Geometry, Probability, and Statistics
ERIC Educational Resources Information Center
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Strain Localization in an Oscillating Maxwell Viscoelastic Cylinder.
Massouros, Panagiotis G; Bayly, Philip V; Genin, Guy M
2014-01-15
The transient rotation responses of simple, axisymmetric, viscoelastic structures are of interest for interpretation of experiments designed to characterize materials and closed structures such as the brain using magnetic resonance techniques. Here, we studied the response of a Maxwell viscoelastic cylinder to small, sinusoidal displacement of its outer boundary. The transient strain field can be calculated in closed form using any of several conventional approaches. The solution is surprising: the strain field develops a singularity that appears when the wavefront leaves the center of the cylinder, and persists as the wavefront reflects to the outer boundary and back to the center of the cylinder. The singularity is alternately annihilated and reinitiated upon subsequent departures of the wavefront from the center of the cylinder until it disappears in the limit of steady state oscillations. We present the solution for this strain field, characterize the nature of this singularity, and discuss its potential role in the mechanical response and evolved morphology of the brain.
Experimental and Computational Investigations of Flow past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Mehmedagic, Igbal; Buckley, Liam; Carlucci, Donald; Thangam, Siva
2011-11-01
Experiments are performed in a low speed subsonic wind tunnel to analyze flow past spinning cylinders. The sting-mounted cylinders are oriented such that their axis of rotation is aligned with the mean flow. Data from spinning cylinders with both rear-mounted and fore-mounted stings are presented for a Reynolds numbers of up to 260000 and rotation numbers of up to 1.2 (based on cylinder diameter). Computations are performed using a two-equation turbulence model that is capable of capturing the effects of swirl and curvature. The model performance was validated with benchmark experimental flows and implemented for analyzing the flow configuration used in the experimental study. The results are analyzed and the predictive capability of the model is discussed. Funded in part by U. S. Army, ARDEC.
Indicator system provides complete data of engine cylinder pressure variation
NASA Technical Reports Server (NTRS)
Mc Jones, R. W.; Morgan, N. E.
1966-01-01
Varying reference pressure used together with a balanced pressure pickup /a diaphragm switch/ to switch the electric output of the pressure transducer in a reference pressure line obtains precise engine cylinder pressure data from a high speed internal combustion engine.
View of hydrodynamic support cylinders, removed from structure and relocated ...
View of hydrodynamic support cylinders, removed from structure and relocated for reconditioning to return them to service. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
46 CFR 58.30-30 - Fluid power cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of part 54 of this subchapter. (c) Cylinders shall be designed for a bursting pressure of not less... steering gear rams, shall either be of corrosion resistant material or shall be of steel protected by...
46 CFR 58.30-30 - Fluid power cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of part 54 of this subchapter. (c) Cylinders shall be designed for a bursting pressure of not less... steering gear rams, shall either be of corrosion resistant material or shall be of steel protected by...
46 CFR 58.30-30 - Fluid power cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of part 54 of this subchapter. (c) Cylinders shall be designed for a bursting pressure of not less... steering gear rams, shall either be of corrosion resistant material or shall be of steel protected by...
46 CFR 58.30-30 - Fluid power cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of part 54 of this subchapter. (c) Cylinders shall be designed for a bursting pressure of not less... steering gear rams, shall either be of corrosion resistant material or shall be of steel protected by...
Steady particulate flows in a horizontal rotating cylinder
Yamane, K.; Nakagawa, M.; Altobelli, S.A.; Tanaka, T.; Tsuji, Y.
1998-06-01
Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio {approximately}7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit. {copyright} {ital 1998 American Institute of Physics.}
LOW VELOCITY INDICATOR USING SHED VORTICITY FREQUENCY OF CYLINDER.
of accurately determining the velocity of a fluid and its rate of change . Static pressure variations across the top and bottom of the cylinder...instrument is highly feasible for determining velocity and its rate of change . (Author)
13. View of disassembled steam engine showing cylinder, piston rod, ...
13. View of disassembled steam engine showing cylinder, piston rod, parallel motion links and steam chest. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR
20. Engine identified as a 'single cylinder vacuum assist engine ...
20. Engine identified as a 'single cylinder vacuum assist engine for the Tod tandem compound engine' showing crank end. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH
19. Engine identified as a single cylinder vacuum assist engine ...
19. Engine identified as a single cylinder vacuum assist engine for the Filer and Stowell 15-inch continuous mill. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH
21. Engine identified as a 'single cylinder vacuum assist engine ...
21. Engine identified as a 'single cylinder vacuum assist engine for Tod tandem compound engine' showing compressor. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH
7. Detail view of steam engine showing cylinder, crosshead guide, ...
7. Detail view of steam engine showing cylinder, crosshead guide, eccentric red and valve mechanism. - Hacienda Azucarera la Igualdad, Sugar Mill Ruins & Steam Engine, PR Route 332, Guanica, Guanica Municipio, PR
Theoretical investigation of noise transmission into a finite cylinder
NASA Astrophysics Data System (ADS)
Li, Deyu; Vipperman, Jeffrey S.
2004-05-01
A new mathematical model for characterizing noise transmission into a finite elastic cylindrical structure with application to a ChamberCore composite cylinder is presented. A plane wave obliquely impinges on the structure, the external sound field is approximated by the solution for an infinite cylinder, and the internal sound field is solved with the structural and acoustic modal interaction method. The noise reduction spectrum for characterizing noise transmission into the cylinder is defined, and the analytical model for the calculation of the noise reduction spectrum is developed. The analytical results show that the cavity resonances dominate the noise transmission into the finite cylinder, and the longitudinal acoustic modes play an important role in the noise transmission at the low frequencies. These results are matched with experimental results.
On the flow in an annulus surrounding a whirling cylinder
NASA Technical Reports Server (NTRS)
Brennen, C.
1976-01-01
When fluid in an annulus between two cylinders is set in motion by whirling movements of one or both of the cylinders, dynamic forces are imposed by the fluid on the cylinders. Knowledge of these forces is frequently important, indeed often critical, to the engineer designing rotor systems or journal bearings. Quite general solutions of the Navier-Stokes equations are presented for this problem and are limited only by restrictions on the amplitude of the whirl motion. From these solutions, the forces are derived under a wide variety of circumstances, including large and small annular widths, high and low Reynolds numbers, and the presence and absence of a mean flow created by additional net rotation of one or both of the cylinders.
Modal and Impact Dynamics Analysis of an Aluminum Cylinder
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
2002-01-01
This paper presents analyses for the modal characteristics and impact response of an all-aluminum cylinder. The analyses were performed in preparation for impact tests of the cylinder at The Impact Dynamics Research Facility (IDRF) at the NASA Langley Research Center. Mode shapes and frequencies were computed using NASTRAN and compared with existing experimental data to assess the overall accuracy of the mass and stiffness of the finite element model. A series of non-linear impact analyses were then performed using MSC Dytran in which the weight distribution on the floor and the impact velocity of the cylinder were varied. The effects of impact velocity and mass on the rebound and gross deformation of the cylinder were studied in this investigation.
27. UPPER STATION, LOWER FLOOR, BULL WHEEL, BRAKE AIR CYLINDER. ...
27. UPPER STATION, LOWER FLOOR, BULL WHEEL, BRAKE AIR CYLINDER. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
9. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING HIGHPRESSURE CYLINDER ...
9. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING HIGH-PRESSURE CYLINDER AND EXTENSION OF HOUSING. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH
49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... change in cylinder wall thickness, service pressure, or diameter; a 30 percent or greater change in water...) Size and service pressure. A DOT 3AL cylinder is a seamless aluminum cylinder with a maximum water... specimen 6061-T6 38,000 35,000 214 1 “D” represents specimen diameters. When the cylinder wall is...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3HT seamless steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.44 Specification 3HT seamless steel cylinders for aircraft use. (a) Type, size and service pressure. A DOT 3HT cylinder is a seamless steel...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3HT seamless steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.44 Specification 3HT seamless steel cylinders for aircraft use. (a) Type, size and service pressure. A DOT 3HT cylinder is a seamless steel...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3HT seamless steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.44 Specification 3HT seamless steel cylinders for aircraft use. (a) Type, size and service pressure. A DOT 3HT cylinder is a seamless steel...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...
49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3HT seamless steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.44 Specification 3HT seamless steel cylinders for aircraft use. (a) Type, size and service pressure. A DOT 3HT cylinder is a seamless steel...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...
Two-Fluid Couette Flow between Concentric Cylinders.
1984-01-01
CONCENTRIC CYLINDERS Yuriko Renardy and Daniel D. Joseph* Technical Summary Report #2622 January 1984 ABSTRACT -1W considers,he flow of two immiscible...CYLINDERS Yuriko Renardy and Daniel D. Joseph* Introduction We consider linear stability of the flow of two immiscible fluids separated by an interface...AUTiOR(,) 8. CONTRACT OR GRANT NUMBER(@) Yuriko Renardy and Daniel D. Joseph DAAGZ9-80-C-0041 11. PERFORMING ORGANIZATION NAME AND ADDRESS 10
On the stability of compressible differentially rotating cylinders
NASA Astrophysics Data System (ADS)
Glatzel, W.
1987-03-01
The stability of differentially rotating fluid cylinders obeying a polytropic equation of state is tested. Non-axisymmetric perturbations induce dynamical instabilities discovered previously by Papaloizou & Pringle (1984, 1985) for the case of accretion tori. Their growth rate is calculated as a function of the azimuthal wavenumber, the rotation law and the radial extension of the cylinder. A connection between the surface wave instability of incompressible cylindrical shells (Blaes &Glatzel, 1986) and the compressible instability of vortices (Broadbent & Moore, 1979) is constructed.
Cylinder expansion test and gas gun experiment comparison
Harrier, Danielle
2016-06-30
This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.
Scattering of light by polydisperse, randomly oriented, finite circular cylinders.
Mishchenko, M I; Travis, L D; Macke, A
1996-08-20
We use the T-matrix method, as described by Mishchenko [Appl. Opt. 32, 4652 (1993)], to compute rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical aspects of T -matrix computations specific for finite cylinders and present results of benchmark computations for a simple cylinder model. Then we report results of extensive computations for polydisperse, randomly oriented cylinders with a refractive index of 1.53 + 0.008i, diameter-to-length ratios of 1/2, 1/1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare scattering properties of the two classes of simple convex particles. Despite the significant difference in shape between the two particle types (entirely smooth surface for spheroids and sharp rectangular edges for cylinders), the comparison shows rather small differences in the integral photometric characteristics (total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function) and the phase function. The general patterns of the other elements of the scattering matrix for cylinders and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative differences can be found in some particular cases. In general, cylinders demonstrate much less shape dependence of the elements of the scattering matrix than do spheroids. Our computations show that, like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can strongly depolarize backscattered light, thus suggesting that backscattering depolarization for nonspherical particles cannot be universally explained by using only geometric-optics considerations.
Criticality concerns in cleaning large uranium hexafluoride cylinders
Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.
1995-06-01
Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF{sub 6}) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented.
Mechanisms of active control for noise inside a vibrating cylinder
NASA Technical Reports Server (NTRS)
Lester, Harold C.; Fuller, Chris R.
1987-01-01
The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.
Simulation of Flow Around Cylinder Actuated by DBD Plasma
NASA Astrophysics Data System (ADS)
Wang, Yuling; Gao, Chao; Wu, Bin; Hu, Xu
2016-07-01
The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around the cylinder.
Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media.
Guo, Yihong; Liu, Celong; Zeng, Nan; He, Honghui; Du, E; He, Yonghong; Ma, Hui
2014-06-01
We report an anisotropic tissue model containing well-ordered birefringent cylinders. Using simulations and experiments, we examined the different polarization features for nonbirefringent and birefringent cylinders and analyzed the influence of the birefringent cylinders on the retardance obtained from Mueller matrix polar decomposition. For the well-ordered birefringent cylinders, retardance increases linearly with the intrinsic birefringence and the scattering coefficient. Furthermore, the cylinders with a larger diameter generate more retardance. Compared with the cylinder-birefringence model, in which birefringent medium exists between the scatterers, the intrinsic birefringence on the cylinders usually contributes much less to the total retardance.
Inspection of compressed natural gas cylinders on school buses
1995-07-01
The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.
Bank Angle of a V-Type 12-Cylinder Engine
NASA Astrophysics Data System (ADS)
Ito, Norio; Nakagawa, Akihito; Kitamura, Ryuji
As the automobile engine advances towards higher performance and higher power, the increase in displacement and the number of cylinders in the engine has led to larger engines. As a result, the need for rigidity countermeasures and reductions in size and weight have brought about the switch from in-line type engines to V-type engines. Currently, most of the V-type automobile engines produced have six or eight cylinders, and some large passenger cars produced in Europe and America have V-type engines with 10 or 12 cylinders. The bank angles of engines in these passenger are almost fixed based on the cylinder number. Therefore, the form of the V-type engine is limited according to the number of cylinders. The present study examines the bank angle of a V-12 engine by performing a detailed analysis of the relationship between the cylinder arrangement and the exciting moment. The goal of the present study is to find a bank angle that has as of yet not been applied to the V-type engine so that the layouts of the absorption and exhaust systems, as well as the attached apparatuses, can be reconfigured.
Analysis of viscous micropump with single rotating cylinder
NASA Astrophysics Data System (ADS)
Mondal, Md. Nur Alam; Islam, Md. Shafiqul; Hasan, A. B. M. Toufique; Mitsutake, Y.
2016-07-01
This study presents the transient nature and performance of viscous micropump for low Reynolds number where flow is assumed laminar, unsteady, incompressible and two dimensional. The device consists of a cylinder placed eccentrically inside an extremely narrow channel, where channel axis is perpendicular to cylinder axis. When the cylinder rotates, it generates a net force on fluid due to unequal shear stresses on the top and bottom surfaces of the cylinder. This net force is capable of generating a net flow against a pressure gradient. The flow field inside the micro channel has been analyzed by using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The effect of the channel height (S), the cylinder eccentricity (ɛ), the Reynolds number (Re) and Pump load (P*) have been studied. Various flow patterns inside the micro pump as well as variations in flow velocity with time are obtained. Both the steady state and transient results of viscous micro pump are validated. It is found that the average velocity of fluid increases with increasing cylinder eccentricity and decreases with increasing the channel height.
Evaluation of Satisfaction and Axial Rigidity with Titan XL Cylinders
Henry, Gerard D.; Jennermann, Caroline; Eid, J. Francois
2012-01-01
The inflatable penile prosthesis (IPP) has high patient satisfaction rates and good mechanical reliability rates in multiple studies. The number one patient compliant at six months is penile length. Recently, new technique for aggressive sizing of the cylinders has been published on in the literature. One IPP company has produced a new product that has longer length cylinders (XL) than those available. However, traditionally long cylinders were felt to lack axial rigidity. Therefore, a prospective, multicenter, central IRB-approved, monitored study was performed on the new product to address these concerns. At 2 centers, a total of 17 patients underwent surgical implantation of these new XL cylinders. These patients were questioned for patient satisfaction and tested for axial rigidity using a Fastsize Erectile Quality Monitor. The results showed excellent patient satisfaction rates and great axial rigidity with the Fastsize Erectile Quality Monitor. The XL cylinders appear to give the IPP surgeon the ability to use longer cylinders with good patient satisfaction and great axial rigidity. PMID:22997510
Kinematics investigations of cylinders rolling down a ramp using tracker
NASA Astrophysics Data System (ADS)
Prima, Eka Cahya; Mawaddah, Menurseto; Winarno, Nanang; Sriwulan, Wiwin
2016-02-01
Nowadays, students' exploration as well as students' interaction in the application stage of learning cycle can be improved by directly model real-world objects based on Newton's Law using Open Source Physics (OSP) computer-modeling tools. In a case of studying an object rolling down a ramp, a traditional experiment method commonly uses a ticker tape sliding through a ticker timer. However, some kinematics parameters such as the instantaneous acceleration and the instantaneous speed of object cannot be investigated directly. By using the Tracker video analysis method, all kinematics parameters of cylinders rolling down a ramp can be investigated by direct visual inspection. The result shows that (1) there are no relations of cylinders' mass as well as cylinders' radius towards their kinetics parameters. (2) Excluding acceleration data, the speed and position as function of time follow the theory. (3) The acceleration data are in the random order, but their trend-lines closely fit the theory with 0.15% error. (4) The decrease of acceleration implicitly occurs due to the air friction acting on the cylinder during rolling down. (5) The cylinder's inertial moment constant has been obtained experimentally with 3.00% error. (6) The ramp angle linearly influences the cylinders' acceleration with 2.36% error. This research implied that the program can be further applied to physics educational purposes.
Overhead cam shaft type V-engine cylinder block
Tominaga, N.; Kurai, N.; Ueno, H.; Suzuki, S.
1987-01-06
This patent describes an overhead camshaft type V-engine having V-shaped cylinders equipped with and overhead camshaft drive by a timing chain disposed and arranged on either side of the cylinders at a right angle to a crankshaft. The improvement comprises: a cylinder block; a timing chain passage in the cylinder block, the passage housing the timing chain movement in a plane of the chain. The passage includes a spacing on each side of a pair of runs of the chain, and in the plane, the spacing on each side of a pair of runs of the chain being substantially the same; the block further including a wall at least partially bounding the spacings and intersecting the plane. The wall has symmetrical wall openings therethrough symmetrically disposed on opposite sides of the chain and its plane, and opening into a respective substantially same spacing; a plurality of chain guide means, each mounted in a respective substantially same spacing; and tensioning means resiliently biasing one of the chain guide means toward and against a run of the chain to place the chain in tension, at least a portion of the tensioning means being mounted in one of the symmetrical wall openings adjacent to the respective run. The symmetry of the symmetrical wall openings enable the tensioning means to be positioned adjacent to either run, whereby the cylinder block may be used for diametrically opposite cylinders.
Regimes of flow induced vibration for tandem, tethered cylinders
NASA Astrophysics Data System (ADS)
Nave, Gary; Stremler, Mark
2015-11-01
In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.
Flow induced vibrations in arrays of irregularly spaced cylinders
NASA Astrophysics Data System (ADS)
Taub, Gordon; Michelin, Sébastien
2014-11-01
Historically the main industrial applications of cylinder arrays in cross flows favored regular arrangements of cylinders. For this reason, most past studies of Flow Induced Vibrations (FIV) in large cylinder arrays have focused on such arrangements. Recently there has been some interest in generating renewable energy using FIV of bluff bodies. In such applications it will likely be beneficial to enhance, rather than suppress FIV. It is not known a priori if regular or irregularly spaced arrays are most adequate for this type of application. In this study, wind tunnel experiments were conducted on one regularly spaced array and four different irregularly spaced arrays of cylinders in a cross flow. Each arrangement of cylinders was examined under eight different orientations to a cross flow ranging between 10 m/s and 17 m/s. The average amplitude of vibration of the cylinders was found to highly depend on arrangement and orientation. The typical amplitude of vibration of the rods in the irregular arrangements were found to be an order of magnitude larger than that of the regular array. A simple model was proposed in order to predict if a given arrangement was likely to produce large oscillations, and the validity of the model was examined. This research was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (Grant PIRG08-GA-2010-276762).
Two-dimensional wakes of a variable diameter cylinder
NASA Astrophysics Data System (ADS)
Yang, Wenchao; Stremler, Mark
2016-11-01
It is well known that periodic variations in the position of a circular cylinder can produce a variety of complex vortex wake patterns. We will discuss what we believe is the first investigation of the wake patterns produced by a stationary circular cylinder undergoing periodic variations in the cylinder diameter. In our experiments, cylinder variations are produced by oscillating a cone perpendicularly through a flowing soap film. The wake flow generates thickness variations in the thin soap film, allowing direct observation of wake patterns through visualization of interference fringes. We consider diameter variations ranging from 0.1 to 0.5 times the mean diameter, with the Reynolds number varying from 50 to 150. The frequency of the diameter's variation influences the wake patterns. When the variation frequency is negligible compared to the vortex shedding frequency, the wake is a quasi-steady representation of fixed cylinder shedding. We will discuss wake pattern bifurcations that occur as the variation frequency becomes comparable to the vortex shedding frequency. Comparisons will be made with the wake patterns generated by a constant-diameter circular cylinder forced to oscillate transverse to the free stream.
Quantum phase transition in ultra small doubly connected superconducting cylinders
NASA Astrophysics Data System (ADS)
Sternfeld, I.; Koret, R.; Shtrikman, H.; Tsukernik, A.; Karpovski, M.; Palevski, A.
2008-02-01
The kinetic energy of Cooper pairs, in doubly connected superconducting cylinders, is a function of the applied flux and the ratio between the diameter of the cylinder and the zero temperature coherence length d/ ξ(0). If d >ξ(0) the known Little-Parks oscillations are observed. On the other hand if d <ξ(0), the superconducting state is energetically not favored around odd multiples of half flux quanta even at T∼0, resulting in the so called destructive regime [Y. Liu, et al., Science 294 (2001) 2332]. We developed a novel technique to fabricate superconducting doubly connected nanocylinders with both diameter and thickness less than 100 nm, and performed magnetoresistance measurements on such Nb and Al cylinders. In the Nb cylinders, where d >ξ(0), we observed the LP oscillations. In the Al cylinders we did not observe a transition to the superconducting state due to the proximity effect, resulted from an Au layer coating the Al. However, we did observe Altshuler-Aronov-Spivak (h/2e) oscillations in these cylinders.
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine
Roth, Gregory T; Husted, Harry L; Sellnau, Mark C
2015-04-07
A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.
Reverse engineering: algebraic boundary representations to constructive solid geometry.
Buchele, S. F.; Ellingson, W. A.
1997-12-17
Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.
Static Pressure Distribution on Long Cylinders as Function of Angle of Yaw and Reynolds Number,
1983-07-01
pressure coefficient around a perpendicularly aligned cylinder xiv 1. INTRODUCTION The problem addressed in this investigation is that of the static...pressure distribution developed on the surface of a long circular cylinder immersed in a laminar flow at small angles of yaw. The interest in this problem ...cylinder. The problem of flow over yawed cylinders or cylinders at angle of attack first attracted attention in the 1950’s. At that time, r esearch was
Oxygen fugacity and piston cylinder capsule assemblies
NASA Astrophysics Data System (ADS)
Jakobsson, S.
2011-12-01
A double capsule assembly designed to control oxygen fugacity in piston cylinder experiments has been tested at 1200 °C and 10 kbar. The assembly consists of an outer Pt-capsule containing a solid buffer (Ni-NiO or Co-CoO plus H2O) and an inner AuPd-capsule containing the sample, H2O and a Pt-wire. To prevent direct contact with the buffer phases the AuPd-capsule is embedded in finely ground Al2O3 along with some coarser, fractured Al2O3 facilitating fluid inclusion formation. No water loss is observed in the sample even after 48 hrs but a slight increase in water content is observed in longer duration runs due to oxygen and hydrogen diffusion into the AuPd-capsule. Carbon from the furnace also diffuses through the outer Pt-capsule but reacts with H2O in the outer capsule to form CO2 and never reaches the inner capsule. Oxygen fugacity of runs in equilibrium with the Ni-NiO and Co-CoO buffers was measured by analyzing the Fe content of the Pt-wire in the sample1 and by analyzing Fe dissolved in the AuPd capsule2. The second method gives values that are in good agreement with established buffer whereas results from the first method are one half to one log units higher than the established values. References 1. E. Medard, C. A. McCammon, J. A. Barr, T. L. Grove, Am. Mineral. 93, 1838 (2008). 2. J. Barr, T. Grove, Contrib. Mineral. Petrol. 160, 631 (2010)
NASA Astrophysics Data System (ADS)
Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Semennikov, A.
2011-12-01
Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. An original set of tools has been developed for building a GEANT4/ROOT compatible geometry in the CATIA CAD system and exchanging it with mentioned MC packages using GDML file format. A Special structure of a CATIA product tree, a wide range of primitives, different types of multiple volume instantiation, and supporting macros have been implemented.
An improved combinatorial geometry model for arbitrary geometry in DSMC
NASA Astrophysics Data System (ADS)
Kargaran, H.; Minuchehr, A.; Zolfaghari, A.
2017-03-01
This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.
Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf
2010-01-01
In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.
Virtual photons in imaginary time: Computing Casimir forces in new geometries
NASA Astrophysics Data System (ADS)
Johnson, Steven G.
2009-03-01
One of the most dramatic manifestations of the quantum nature of light in the past half-century has been the Casimir force: a force between neutral objects at close separations caused by quantum vacuum fluctuations in the electromagnetic fields. In classical photonics, wavelength-scale structures can be designed to dramatically alter the behavior of light, so it is natural to consider whether analogous geometry-based effects occur for Casimir forces. However, this problem turns out to be surprisingly difficult for all but the simplest planar geometries. (The deceptively simple case of an infinite plate and infinite cylinder, for perfect metals, was first solved in 2006.) Many formulations of the Casimir force, indeed, correspond to impossibly hard numerical problems. We will describe how the availability of large-scale computing resources in NSF's Teragrid, combined with reformulations of the Casimir-force problem oriented towards numerical computation, are enabling the exploration of Casimir forces in new regimes of geometry and materials.
Compositions of bosonic string amplitudes with cylinder topology
Trisnadi, J.I.
1989-01-01
Many issues in string theory are conveniently addressed and handled in a quantum fleld theoretical framework, from which Feynman rules can then be derived. Although at present a generally acceptable quantum field theory of closed strings does not yet exist, the Feynman rules are known. This is due to another development in string theory, namely, the Polyakov path integral approach. In this approach, scattering amplitudes are calculated directly without appealing to the quantum fleld theoretical description. It is therefore important to examine if the scattering amplitude can be reconstructed by composing propagators and vertices. In general, the author is interested in knowing if Polyakov amplitudes can be consistently composed. Composition of amplitudes in general has been studied formally. Explicit composition, however, is limited to amplitudes that have been calculated explicitly. Among them is the amplitude with cylinder topology. In this dissertation, the author will rederive this cylinder amplitude. The author uses the action principle in the evaluation of the path integral. This way, the contributions of the ghost zero modes, which are usually introduced by hand, come out automatically. Then, the author studies three compositions of the cylinder amplitude: two cylinder amplitudes into one, a single cylinder amplitude into a torus amplitude, and a cylinder amplitude into a Klein-bottle amplitude. The author shows that the resulting amplitudes agree with known results. Using the cylinder amplitude, the author also demonstrates the derivation of the (imaginary time) Schrodinger equation for the free closed bosonic string. Finally, the author applies the techniques to derive the composable transition amplitude of gravity in a Friedmann-RobertsonWalker cosmology.
Emergent geometry from quantized spacetime
Yang, Hyun Seok; Sivakumar, M.
2010-08-15
We examine the picture of emergent geometry arising from a mass-deformed matrix model. Because of the mass deformation, a vacuum geometry turns out to be a constant curvature spacetime such as d-dimensional sphere and (anti-)de Sitter spaces. We show that the mass-deformed matrix model giving rise to the constant curvature spacetime can be derived from the d-dimensional Snyder algebra. The emergent geometry beautifully confirms all the rationale inferred from the algebraic point of view that the d-dimensional Snyder algebra is equivalent to the Lorentz algebra in (d+1)-dimensional flat spacetime. For example, a vacuum geometry of the mass-deformed matrix model is completely described by a G-invariant metric of coset manifolds G/H defined by the Snyder algebra. We also discuss a nonlinear deformation of the Snyder algebra.
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-07
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
The Common Geometry Module (CGM).
Tautges, Timothy James
2004-12-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.
The impulsive motion of a small cylinder at an interface
NASA Astrophysics Data System (ADS)
Vella, Dominic; Li, Jie
2010-05-01
We study the unsteady motion caused by an impulse acting at time t =0 on a small cylinder floating horizontally at a liquid-gas interface. This is a model for the impact of a cylinder onto a liquid surface after the initial splash. Following the impulse, the motion of the cylinder is determined by its weight per unit length (pulling it into the bulk liquid) and resistance from the liquid, which acts to keep the cylinder at the interface. The range of cylinder radii r and impact speeds U considered is such that the resistance from the liquid comes from both the interfacial tension and hydrodynamic pressures. We use two theoretical approaches to investigate this problem. In the first, we apply the arbitrary Lagrangian Eulerian (ALE) method developed by Li et al. ["An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water," J. Comput. Phys. 208, 289 (2005)] to compute the fluid flow caused by the impulse and the (coupled) motion of the cylinder. We show that at early times the interfacial deformation is given by a family of shapes parametrized by r /t2/3. We also find that for a given density and radius there is a critical impulse speed below which the cylinder is captured by the interface and floats but above which it pierces the interface and sinks. Our second theoretical approach is a simplified one in which we assume that the interface is in equilibrium and derive an ordinary differential equation for the motion of the cylinder. Solving this we again find the existence of a critical impulse speed for sinking giving us some quantitative understanding of the results from the ALE simulations. Finally, we compare our theoretical predictions with the results of experiments for cylinder impacts by Vella and Metcalfe ["Surface tension dominated impact," Phys. Fluids 19, 072108 (2007)]. This comparison suggests that the influence of contact line effects, neglected here, may be important in the transition from floating
Casimir force between a microfabricated elliptic cylinder and a plate
Decca, R. S.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; Lopez, D.; Mostepanenko, V. M.
2011-10-15
We investigate the Casimir force between a microfabricated elliptic cylinder (cylindrical lens) and a plate made of real materials. After a brief discussion of the fabrication procedure, which typically results in elliptic rather than circular cylinders, the Lifshitz-type formulas for the Casimir force and for its gradient are derived. In the specific case of equal semiaxes, the resulting formulas coincide with those derived previously for circular cylinders. The nanofabrication procedure may also result in asymmetric cylindrical lenses obtained from parts of two different cylinders, or rotated through some angle about the axis of the cylinder. In these cases, the Lifshitz-type formulas for the Casimir force between a lens and a plate and for its gradient are also derived, and the influence of lens asymmetry is determined. Additionally, we obtain an expression for the shift of the natural frequency of a micromachined oscillator with an attached elliptic cylindrical lens interacting with a plate via the Casimir force in a nonlinear regime.
Packing of hard spheres in cylinders and applications
NASA Astrophysics Data System (ADS)
Mughal, Adil; Weaire, Denis; Hutzler, Stefan; Chan, Ho Kei
2014-03-01
We study the optimal packing of hard spheres in an infinitely long cylinder. Our simulations have yielded dozens of periodic, mechanically stable, structures as the ratio of the cylinder (D) to sphere (d) diameter is varied. Up to D/d =2.715 the densest structures are composed entirely of spheres which are in contact with the cylinder. The density reaches a maximum at discrete values of D/d when a maximum number of contacts are established. These maximal contact packings are of the classic ``phyllotactic'' type, familiar in biology. However, between these points we observe another type of packing, termed line-slip. An analytic understanding of these rigid structures follows by recourse to a yet simpler problem: the packing of disks on a cylinder. We show that maximal contact packings correspond to the perfect wrapping of a honeycomb arrangement of disks around a cylindrical tube. While line-slip packings are inhomogeneous deformations of the honeycomb lattice modified to wrap around the cylinder. Beyond D/d =2.715 the structures are more complex, since they incorporate internal spheres. We review some relevant experiments with hard spheres, small bubbles and discuss similar structures found in nature. We discuss the chirality of these packings and potential applications in photonics.
Flow around a semicircular cylinder with passive flow control mechanisms
NASA Astrophysics Data System (ADS)
Hamed, A. M.; Vega, J.; Liu, B.; Chamorro, L. P.
2017-03-01
Wind tunnel experiments were performed to study the effect of passive flow control strategies on the wake and drag of a semicircular cylinder of infinite aspect ratio. High-resolution planar particle image velocimetry was used to obtain flow statistics around the semicircular cylinder at Reynolds number Re≈ 3.2× 10^4 based on the cylinder diameter. The control mechanisms under consideration include rigid flaps of various lengths placed at the edges of the structure and a small slot along the symmetry plane of the cylinder. Mean velocity fields reveal the distinctive effects of each passive mechanism on the flow, such as velocity recovery, size of the recirculation bubble and location of the reattachment point. The distributions of turbulence kinetic energy and kinematic shear stress show the modulation of each passive control mechanism on the wake, including the onset and location of the maximum turbulence levels. Instantaneous and mean fields of swirling strength further highlight the role of the passive mechanisms in the vortex dynamics. Drag coefficient for the various cases was estimated indirectly from the flow measurements using a momentum balance. This approach shows that long flaps and slot were able to reduce drag with respect to the base case. The rigid flaps with length coincident with the diameter of the cylinder offered the best performance with drag reduction of ˜25%.
Spatial damping of propagating sausage waves in coronal cylinders
NASA Astrophysics Data System (ADS)
Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-09-01
Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
Analysis of aerodynamic noise generated from inclined circular cylinder
NASA Astrophysics Data System (ADS)
Haramoto, Yasutake; Yasuda, Shouji; Matsuzaki, Kazuyoshi; Munekata, Mizue; Ohba, Hideki
2000-06-01
Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery. The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind tunnel. In this study, aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numerically by the following two step method. First, the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme. Next, the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder, based on modified Lighthill-Curl’s equation. It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow. In other words, the peak level of the radiated noise decreases rapidly with inclination of the circular cylinder. The simulated SPL for the inclined circular cylinder is compared with the measured value, and good agreement is obtained for the peak spectrum frequency of the sound pressure level and tendency of noise reduction. So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.
Measurements of Unsteady Wake Interference Between Tandem Cylinders
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Neuhart, Dan H.; McGinley, Cahterine B.; Choudhari, Meelan M.; Khorrami, Mehdi R.
2006-01-01
A multi-phase, experimental study in the Basic Aerodynamics Research Tunnel at the NASA Langley Research Center has provided new insight into the unsteady flow interaction around cylinders in tandem arrangement. Phase 1 of the study characterized the mean and unsteady near-field flow around two cylinders of equal diameter using 2-D Particle Image Velocimetry (PIV) and hot-wire anemometry. These measurements were performed at a Reynolds number of 1.66 x 10(exp 5), based on cylinder diameter, and spacing-to-diameter ratios, L/D, of 1.435 and 3.7. The current phase, Phase 2, augments this dataset by characterizing the surface flow on the same configurations using steady and unsteady pressure measurements and surface flow visualization. Transition strips were applied to the front cylinder during both phases to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the front and rear cylinders show the effects of L/D on flow symmetry, pressure recovery, and the location of flow separation and attachment. Mean streamlines and instantaneous vorticity obtained from the PIV data are used to explain the flow structure in the gap and near-wake regions and its relationship to the unsteady surface pressures. The combination of off-body and surface measurements provides a comprehensive dataset to develop and validate computational techniques for predicting the unsteady flow field at higher Reynolds numbers.
Mechanism of Secondary Instability of Flow around a Circular Cylinder
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Ben, An-Qing; Fluid Mechanics Research Team Team
2016-11-01
Flow around a circular cylinder in infinite domain is simulated with large eddy simulation at Re =200, and the mechanism of the origin of secondary vortex street is analyzed. The simulation results show that the vortex street generated in the cylinder near wake disappears as the flow moving downstream. Secondary instability occurs in far wake of the cylinder after the primary vortex street dying away. The processes of first instability and secondary instability in the cylinder wake are recorded in the simulation. The instability of the entire flow field is studied with the energy gradient theory. It is found that it is the high value of the energy gradient function generated by the zero velocity gradients that leads to the instability. As the vortex developing at rear of the cylinder, the value of the energy gradient function becomes low downstream, which leads to the vortex dying away. At further downstream, the value of the energy gradient function is enlarged again because of the role of perturbation, which leads to the secondary instability. It can be concluded that the interaction of the variation of the value of the energy gradient function and the perturbation leads to the occurrence of secondary instability.
Reordering transitions during annealing of block copolymer cylinder phases
Majewski, Pawel W.; Yager, Kevin G.
2015-10-06
While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontalmore » state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less
Composite reinforced metallic cylinder for? high-speed rotation
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-01-01
The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby? improve the separation performance in a centrifugal gas separation processes through? proper optimization of the internal parameters. According to Dirac equation (Cohen? (1951)), the maximum separative work for a centrifugal gas separation process increase? with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the? metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable? epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can? be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of? a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading? A detailed analysis is carried out to underline the basic hypothesis of each formulation? Further, we evaluate the steady state creep response of the rotating cylinder and analyze? the stresses and strain rates in the cylinder.
Failure analysis of thick composite cylinders under external pressure
NASA Technical Reports Server (NTRS)
Caiazzo, A.; Rosen, B. W.
1992-01-01
Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.
Crystal Ice Formation of Solution and Its Removal Phenomena around Vertical Cooled Cylinder
NASA Astrophysics Data System (ADS)
Hirata, Tetsuo; Ishikawa, Masaaki; Akutsu, Nobuaki
Experimental and analytical studies for freezing phenomena of ethylene glycol solution around a vertical cooled polyvinyl-chloride cylinder have been performed. It is found that the crystal ice formed around the vertical cylinder is removed from the cylinder surface due to buoyancy force acting on the crystal ice. The crystal ice slides along the cylinder surface due to buoyancy force and grows in a shape of tube by joining with the neighbour ice. It is shown that the onset of ice removal condition is related to the heat flux at the cylinder surface when the latent heat of fusion is discharged with freezing, and that the heat flux ratio of 'from the cylinder surface into the cylinder' to 'from the cylinder surface to the solution' is an important parameter for the onset conditions. The ice removal occurs easily for short cylinders than for long ones.
Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine
NASA Astrophysics Data System (ADS)
Ladd, John
There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-07-01
This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Toxic gases and mixtures. Cylinders containing toxic gases and toxic gas mixtures meeting the criteria... cylinder certified to ISO-11119-3 may not be used for a toxic gas or toxic gas mixture meeting the criteria... a DOT 39 cylinder or a cylinder used for acetylene in solution; or (iii) A cylinder containing...
An experimental investigation of supersonic flow past a wedge-cylinder configuration
NASA Technical Reports Server (NTRS)
Barnette, D. W.
1976-01-01
An experimental investigation of supersonic flow past double-wedge configurations was conducted. Over the range of geometries tested, it was found that, while theoretical solutions both for a Type V pattern and for a Type VI pattern could be generated for a particular flow condition (as defined by the geometry and the free-stream conditions), the weaker, Type VI pattern was observed experimentally. More rigorous flow-field solutions were developed for the flow along the wing leading-edge. Solutions were developed for the three-dimensional flow in the plane of symmetry of a swept cylinder (which represented the wing leading-edge) which was mounted on a wedge (which generated the "bow" shock wave). A numerical code was developed using integral techniques to calculate the flow in the shock layer upstream of the interaction region (i.e., near the wing root). Heat transfer rates were calculated for various free stream conditions. The present investigation was undertaken to examine the effects of crossflow on the resultant flow-field and to verify the flow model used in theoretical calculations.
NASA Astrophysics Data System (ADS)
Martins, Alexandre A.
2012-06-01
In this work, we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per unit electrode length. These results are important to establish the validity of this simulation tool for the future study and development of this effect for practical purposes.
Explosively driven facture and fragmentation of metal cylinders and rings
Goto, D; Becker, R C; Orzechowski, T J; Springer, H K; Sunwoo, A J; Syn, C K
2007-01-03
Cylinders and rings fabricated from AerMet{reg_sign} 100 alloy and AISI 1018 steel have been explosively driven to fragmentation in order to determine the fracture strains for these materials under plane strain and uniaxial stress conditions. The phenomena associated with the dynamic expansion and subsequent break up of the cylinders are monitored with high-speed diagnostics. In addition, complementary experiments are performed in which fragments from the explosively driven cylinder are recovered and analyzed to determine the statistical distribution associated with the fragmentation process as well as to determine failure mechanisms. The data are used to determine relevant coefficients for the Johnson-Cook (Hancock-McKenzie) fracture model. Metallurgical analysis of the fragments provides information on damage and failure mechanisms.
Stress intensity factors in a reinforced thick-walled cylinder
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1984-01-01
An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.