Sample records for cylindrical outer wall

  1. Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.

    2003-06-01

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  2. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.

    PubMed

    Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C

    2003-06-27

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  3. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  4. Theory of nanotube faraday cage

    NASA Astrophysics Data System (ADS)

    Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.

    2003-03-01

    Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.

  5. Temperature sensor with improved thermal barrier and gas seal between the probe and housing

    DOEpatents

    O'Connell, David Peter; Sumner, Randall Christian

    1998-01-01

    A temperature sensor comprising: a hollow tube with a first end and a second end, wherein the second end is closed sealing a cavity within the tube from an environment outside of the tube and wherein the first end has an exterior cylindrical surface; a temperature responsive sensing element within the tube proximate to the second end; a glass cylinder having an inner cylindrical surface in sealing engagement with the exterior cylindrical surface of the first end of the tube; and a sensor housing having an inner cylindrical cavity bounded by an inner cylindrical wall, wherein an outer cylindrical surface of the glass cylinder is sealingly engaged with the inner cylindrical wall.

  6. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  7. Temperature sensor with improved thermal barrier and gas seal between the probe and housing

    DOEpatents

    O`Connell, D.P.; Sumner, R.C.

    1998-04-28

    A temperature sensor is disclosed comprising: a hollow tube with a first end and a second end, wherein the second end is closed sealing a cavity within the tube from an environment outside of the tube and wherein the first end has an exterior cylindrical surface; a temperature responsive sensing element within the tube proximate to the second end; a glass cylinder having an inner cylindrical surface in sealing engagement with the exterior cylindrical surface of the first end of the tube; and a sensor housing having an inner cylindrical cavity bounded by an inner cylindrical wall, wherein an outer cylindrical surface of the glass cylinder is sealingly engaged with the inner cylindrical wall. 1 fig.

  8. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOEpatents

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  9. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  10. Superconducting magnetic energy storage apparatus structural support system

    DOEpatents

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  11. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  12. Pipe support for use in a nuclear system

    DOEpatents

    Pollono, Louis P.; Mello, Raymond M.

    1977-01-01

    A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.

  13. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  14. GRIPPING DEVICE FOR CYLINDRICAL OBJECTS

    DOEpatents

    Pilger, J.P.

    1964-01-21

    A gripping device is designed for fragile cylindrical objects such as for drawing thin-walled tubes. The gripping is done by multiple jaw members held in position by two sets of slots, one defined by keystone-shaped extensions of the outer shell of the device and the other in a movable sleeve held slidably by the extensions. Forward movement oi the sleeve advances the jaws, thereby exerting a controlled, radial pressure on the object being gripped. (AEC)

  15. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  16. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  17. Fluid sampling tool

    DOEpatents

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  18. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  19. Shoulder and hip joints for hard space suits and the like

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    For use in hard space suits and the like, a joint between the torso covering and the upper arm covering (i.e., shoulder) or between the torso covering and upper leg covering (i.e., hip) is disclosed. Each joint has an outer covering and a inner covering. The outer covering has plural perferably truncated toroidal sections decreasing in size proceeding outwardly. In one embodiment at each joint there are two bearings, the first larger than the second. The outer race of the larger bearing is attached to the outer edge of the smaller end of each section and the inner race of the larger bearing is attached to the end wall. The inner race of the smaller bearing is attached to the end wall. The outer race of the smaller bearing is attached to the larger end of the next section. Each bearing hask appropriate seals. Between each section is a rubber ring for the comfort of the wearer. Such rubber rings have radial flanges attached to the inner races of two adjacent bearings. Matching semicircular grooves are formed in the abutting overlapping surfaces. Bellows-like inner walls are also provided for each section fixed at one end to an inner cylindrical flange and, at the opposite end, to an end wall. Each outer section may rotate 360 deg relative to the next outer section, whereas the bellows sections do not rotate, but rather expand or contract locally as the rigid sections rotate relative to each other.

  20. Offshore platform structure intended to be installed in arctic waters, subjected to drifting icebergs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kure, G.; Jenssen, D.N.; Naesje, K.

    1984-09-11

    An offshore platform structure, particularly intended to be installed in waters where drifting iceberg frequently appear, the platform structure being intended to be founded in a sea bed and comprises a substructure, a superstructure rigidly affixed to the substructure and extending vertically up above the sea level supporting a deck superstructure at its upper end. The horizontal cross-sectional area of the substructure is substantially greater than tath of the superstructure. The substructure rigidly supports a fender structure, the fender structure comprising an outer peripherally arranged wall and an inner cylindrical wall the inner and outer wall being rigidly interconnected bymore » means of a plurality of vertical and/or horizontal partition walls, dividing the fender structure into a plurality of cells or compartlents. The fender structure is arranged in spaced relation with respect to the superstructure.« less

  1. High-voltage R-F feedthrough bushing

    DOEpatents

    Grotz, G.F.

    1982-09-03

    Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  2. High voltage RF feedthrough bushing

    DOEpatents

    Grotz, Glenn F.

    1984-01-01

    Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  3. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  4. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  5. Segmented lasing tube for high temperature laser assembly

    DOEpatents

    Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.

    1996-01-01

    A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.

  6. Catalytic cartridge SO/sub 3/ decomposer

    DOEpatents

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  7. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  8. Fabrication of cylindrical micro-parts using synchronous rotary scan-projection lithography and chemical etching

    NASA Astrophysics Data System (ADS)

    Ito, Kaiki; Suzuki, Yuta; Horiuchi, Toshiyuki

    2017-07-01

    Lithographical patterning on the surface of a fine pipe with a thin wall is required for fabricating three-dimensional micro-parts. For this reason, a new exposure system for printing patterns on a cylindrical pipe by synchronous rotary scan-projection exposure was developed. Using the exposure system, stent-like resist patterns with a width of 251 μm were printed on a surface of stainless-steel pipe with an outer diameter of 2 mm. The exposure time was 30 s. Next, the patterned pipe was chemically etched. As a result, a stent-like mesh pipe with a line width of 230 μm was fabricated. It was demonstrated that the new method had a potential to be applied to fabrications of stent and other cylindrical micro-parts.

  9. Toroidal cell and battery. [storage battery for high amp-hour load applications

    NASA Technical Reports Server (NTRS)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  10. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high thermal conductivity in the cryogenic temperature range and would typically be made of pure copper to satisfy this requirement. The metallic part is bonded to the nonmetallic part with epoxy. Copper screens are inserted in the metallic part to form the cold-end heat exchanger, then the assembled pulse tube is inserted in the cold tip.

  11. Shipping device for heater unit assembly

    DOEpatents

    Blaushild, Ronald M.; Abbott, Stephan L.; Miller, Phillip E.; Shaffer, Robert

    1991-01-01

    A shipping device for a heater unit assembly (23), the heater unit assembly (23) including a cylindrical wall (25) and a top plate (31) secured to the cylindrical wall (25) and having a flange portion which projects radially beyond the outer surface of the cylindrical wall (25), and the shipping device including: a cylindrical container (3) having a closed bottom (13); a support member (47) secured to the container (3) and having an inwardly directed flange for supporting the flange portion of the top plate (31); a supplemental supporting system (1) for positioning the heater unit assembly (23) in the container (3) at a spaced relation from the inner surface and bottom wall (13) of the container (3); a cover (15) for closing the top of the container (3); and a container supporting structure (5,7,8) supporting the container (3) in a manner to permit the container (3) to be moved, relative to the supporting structure (5,7,8 ), between a vertical position for loading and unloading the assembly (23) and a horizontal position for transport of the assembly (23). A seal (57) is interposed between the container (3) and the cover (15) for sealing the interior of the container (3) from the environment. An abutment member (41) is mounted on the container supporting structure (5,7,8) for supporting the container bottom (13), when the container (3) is in the vertical position, to prevent the container (3) from moving past the vertical position in the direction away from the horizontal position, and a retainer member (55) is secured within the cover (15) for retaining the assembly top plate (31) in contact with the support member (47) when the cover (15) closes the top of the container (3).

  12. pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter

    2015-11-01

    We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.

  13. Electrochemical cell having cylindrical electrode elements

    DOEpatents

    Nelson, Paul A.; Shimotake, Hiroshi

    1982-01-01

    A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

  14. Multiple cell radiation detector system, and method, and submersible sonde

    DOEpatents

    Johnson, Larry O.; McIsaac, Charles V.; Lawrence, Robert S.; Grafwallner, Ervin G.

    2002-01-01

    A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

  15. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    NASA Astrophysics Data System (ADS)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  16. Design and Construction of a Small Vacuum Furnace

    NASA Astrophysics Data System (ADS)

    Peawbang, P.; Thedsakhulwong, A.

    2017-09-01

    The purpose of this research is designed and constructed of a small vacuum furnace. A cylindrical graphite was chosen as the material of the furnace, the cylinder aluminium and copper sheets were employed to prevent the heat radiation that transfers from the furnace to the chamber wall. A rotary pump used, the pressure of graphite furnace can be pumped up to 30 mTorr and heated up to 700 °C driving by wire and the temperature of the chamber wall is relatively remained too low. In addition, heat loss obtained from the graphite furnace by conduction, convection, and radiation were analyzed. The dominating heat loss was found to be caused by the blackbody radiation, which can thus be used to estimate the relationship between graphite furnace temperature and the drive power needed. The cylindrical graphite furnace has an inner diameter of 44 mm, the outer diameter of 60 mm and 45 mm in height, the 355.5 W of power is needed to drive the furnace to 700 °C.

  17. Paragnomoxyala gen. nov. (Xyalidae, Monhysterida, Nematoda) from the East China Sea.

    PubMed

    Jiang, Weijun; Huang, Yong

    2015-11-05

    A new genus, Paragnomoxyala gen. nov., and a new species, Paragnomoxyala breviseta sp. nov. are described from the East China Sea. Paragnomoxyala gen. nov. is characterized by having large funnel-shaped buccal cavity with cuticularized walls and extended anteriorly; lips very high; striated cuticle; four cephalic setae, absence of outer labial setae; circular amphidial fovea; straight spicules and absence of gubernaculum; tail conico-cylindrical with three terminal setae; female monodelphic with an anterior outstretched ovary. It differs from similar genera by having a large buccal cavity unique in Xyalidae, straight spicules, lacking gubernaculum, and conico-cylindrical tail with terminal setae. Paragnomoxyala breviseta sp. nov. is characterized by having a large funnel-shaped buccal cavity, with cuticularized walls and extended anteriorly, 1.6-1.8 hd long and 63-79% cbd wide; four cephalic setae 3-4 µm long; circular amphids 6-9 µm in diameter; spicules straight but slightly bent at both ends; absence of gubernaculum and precloacal supplement.

  18. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  19. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  20. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    PubMed

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  1. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  2. Prediction of radial breathing-like modes of double-walled carbon nanotubes with arbitrary chirality

    NASA Astrophysics Data System (ADS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2014-10-01

    The radial breathing-like modes (RBLMs) of double-walled carbon nanotubes (DWCNTs) with arbitrary chirality are investigated by a simple analytical model. For this purpose, DWCNT is considered as double concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential and a molecular mechanics model are used to calculate the vdW forces and to predict the mechanical properties, respectively. The validity of these theoretical results is confirmed through the comparison of the experimental results. Finally, a new approach is proposed to determine the diameters and the chiral indices of the inner and outer tubes of the DWCNTs with high precision.

  3. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  4. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  5. Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects

    PubMed Central

    2015-01-01

    A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257

  6. Co-axial discharges

    DOEpatents

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  7. CO-AXIAL DISCHARGES

    DOEpatents

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  8. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  9. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  10. Secondary aspiration of aerosol particles into thin-walled nozzles facing the wind

    NASA Astrophysics Data System (ADS)

    Lipatov, G. N.; Grinshpun, S. A.; Semenyuk, T. I.; Sutugin, A. G.

    Problems of sampling aerosols from the turbulent atmosphere have been studied experimentally. The research was carried out with such particle sizes, type of samplers and sampling conditions that relate to those encountered in practical occupational hygiene and environmental monitoring. Distortion of the aerosol initial concentration was measured in a wind tunnel by a comparison method. Such distortions were caused by the external aspiration from a turbulent down flow using a vertical thin-walled cylindrical sampler. In addition, inertial errors themselves were determined by the limiting trajectory method. The difference between the results obtained with the help of the above methods showed the presence of secondary aspiration after the particles rebound from the outer nozzle surface for anisokinetical sampling. This fact was established by means of a set of special experiments with nozzles of various properties of the outer surface. Values of the rebound coefficient for Lycopodium particles aspirated into copper samplers over a range of diameters of 0.5-1 cm and anisokinetical coefficients (velocity ratio) of 1-40 were obtained. The conditions under which the efficiency of secondary aspiration is small were also defined.

  11. Tokamak blanket design study, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steelmore » is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.« less

  12. Tokamak blanket design study: FY 78 summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    A tokamak blanket cylindrical module concept was designed, developed, and analyzed after review of several existing generic concepts. The design is based on use of state-of-the-art structural materials (20% cold worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders and features direct wall cooling by flowing helium between the outer (first wall) cylinder and the inner lithium containing cylinder. Each cylinder is capable of withstanding full coolant pressure for enhanced reliability. Results show that stainless steel is a viable material for a first wall subjectedmore » to 4 MW/m/sup 2/ neutron and 1 MW/m/sup 2/ particle heat flux. A lifetime analysis showed that the first wall design meets the goal of operating at 20 minute cycles with 95% duty for 10/sup 5/ cycles. The design is attractive for further development, and additional work and supporting experiments are identified to reduce analytical uncertainties and enhance the design reliability.« less

  13. Quantitative ionization chamber alignment to a water surface: Theory and simulation.

    PubMed

    Siebers, Jeffrey V; Ververs, James D; Tessier, Frédéric

    2017-07-01

    To examine the response properties of cylindrical cavity ionization chambers (ICs) in the depth-ionization buildup region so as to obtain a robust chamber-signal - based method for definitive water surface identification, hence absolute ionization chamber depth localization. An analytical model with simplistic physics and geometry is developed to explore the theoretical aspects of ionization chamber response near a phantom water surface. Monte Carlo simulations with full physics and ionization chamber geometry are utilized to extend the model's findings to realistic ion chambers in realistic beams and to study the effects of IC design parameters on the entrance dose response. Design parameters studied include full and simplified IC designs with varying central electrode thickness, wall thickness, and outer chamber radius. Piecewise continuous fits to the depth-ionization signal gradient are used to quantify potential deviation of the gradient discontinuity from the chamber outer radius. Exponential, power, and hyperbolic sine functional forms are used to model the gradient for chamber depths of zero to the depth of the gradient discontinuity. The depth-ionization gradient as a function of depth is maximized and discontinuous when a submerged IC's outer radius coincides with the water surface. We term this depth the gradient chamber alignment point (gCAP). The maximum deviation between the gCAP location and the chamber outer radius is 0.13 mm for a hypothetical 4 mm thick wall, 6.45 mm outer radius chamber using the power function fit, however, the chamber outer radius is within the 95% confidence interval of the gCAP determined by this fit. gCAP dependence on the chamber wall thickness is possible, but not at a clinically relevant level. The depth-ionization gradient has a discontinuity and is maximized when the outer-radius of a submerged IC coincides with the water surface. This feature can be used to auto-align ICs to the water surface at the time of scanning and/or be applied retrospectively to scan data to quantify absolute IC depth. Utilization of the gCAP should yield accurate and reproducible depth calibration for clinical depth-ionization measurements between setups and between users. © 2017 American Association of Physicists in Medicine.

  14. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.

  15. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  16. High voltage coaxial switch

    DOEpatents

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  17. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  18. Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.

    2002-01-01

    Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Neal G.; Vu, M.; Kong, C.

    Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less

  20. Post-breakdown secondary discharges at the electrode/dielectric interface of a cylindrical barrier discharge

    NASA Astrophysics Data System (ADS)

    Carman, Robert; Ward, Barry; Kane, Deborah

    2011-10-01

    The electrical breakdown characteristics of a double-walled cylindrical dielectric barrier discharge (DBD) lamp with a neon buffer gas under pulsed voltage excitation have been investigated. Following the formation of plasma in the main discharge gap, we have observed secondary breakdown phenomena at the inner and outer mesh electrode/dielectric interfaces under specific operating conditions. Plasma formation at these interfaces is investigated by monitoring the Ozone production rate in controlled flows of ultra high purity oxygen together with the overall electrical voltage-charge characteristics of the lamp. The results show that this secondary breakdown only occurs after the main discharge plasma has been established, and that significant electrical power may be dissipated in generating these spurious secondary plasmas. The results are important with regards to optimising the design and identifying efficient operating regimes of DBD based devices that employ mesh-type or wire/strip electrodes.

  1. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  2. Systems to facilitate reducing flashback/flame holding in combustion systems

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Zuo, Baifang [Simpsonville, SC

    2012-02-21

    A method for assembling a premixing injector is provided. The method includes providing a centerbody including a center axis and a radially outer surface, and providing an inlet flow conditioner. The inlet flow conditioner includes a radially outer wall, a radially inner wall, and an end wall coupled substantially perpendicularly between the outer wall and the inner wall. Each of the outer wall and the end wall include a plurality of openings defined therein. The outer wall, the inner wall, and the end wall define a first passage therebetween. The method also includes coupling the inlet flow conditioner to the centerbody such that the inlet flow conditioner substantially circumscribes the centerbody, such that the inner wall is substantially parallel to the centerbody outer surface, and such that a second passage is defined between the centerbody outer surface and the inner wall.

  3. Plasma processing of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.

  4. Link module for a downhole drilling network

    DOEpatents

    Hall, David R [Provo, UT; Fox, Joe [Provo, UT

    2007-05-29

    A repeater is disclosed in one embodiment of the present invention as including a cylindrical housing, characterized by a proximal end and a distal end, and having a substantially cylindrical wall, the cylindrical wall defining a central bore passing therethrough. The cylindrical housing is formed to define at least one recess in the cylindrical wall, into which a repeater is inserted. The cylindrical housing also includes an annular recess formed into at least one of the proximal end and the distal end. An annular transmission element, operably connected to the repeater, is located in the annular recess. In selected embodiments, the annular transmission element inductively converts electrical energy to magnetic energy. In other embodiments, the annular transmission element includes an electrical contact to transmit electrical energy directly to another contact.

  5. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  6. Measurement of the refractive index of microquantity liquid filled in a capillary and a capillary wall without destruction.

    PubMed

    Li, Qiang; Pu, Xiaoyun

    2013-07-20

    A method for measuring the refractive index (RI) of a small volume of liquid and a capillary wall is presented in this paper. A transparent capillary filled with liquid is used as a cylindrical positive lens; subsequently, the focal length of the lens is derived through the base of paraxial approximation, which is recorded as a function of the RIs of the liquid and capillary wall. With the RI of a capillary wall known, the RI of the liquid can be obtained by measuring the focal length of the lens, which is characterized by a microquantity liquid, spatial resolution, and easy operation. The RI of the capillary wall can be calculated without ruining the capillary if the capillary is filled with a standard liquid (RI is known), the deviation of which is less than 0.003 RIU. The factors affecting accuracy of the measurement, for instance, the depth of a field (DOF) in a reading microscope system and the outer and inner diameters of a capillary are analyzed, while illustrating that the effective DOF plays an essential role in accurate measurement.

  7. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  8. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  9. Thermal casting of polymers in centrifuge for producing X-ray optics

    DOEpatents

    Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA

    2012-03-27

    An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.

  10. Capsule Shimming Developments for National Ignition Facility (NIF) Hohlraum Asymmetry Experiments

    DOE PAGES

    Rice, Neal G.; Vu, M.; Kong, C.; ...

    2017-12-20

    Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less

  11. Two Devices for Removing Sludge From Bioreactor Wastewater

    NASA Technical Reports Server (NTRS)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  12. CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR

    DOEpatents

    King, L.D.P.

    1960-07-01

    A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.

  13. Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets

    DOEpatents

    Weingart, Richard C.

    1989-01-01

    A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.

  14. The effect of cover use on plastic pyrolysis reactor heating process

    NASA Astrophysics Data System (ADS)

    Armadi, Benny H.; Rangkuti, Chalilullah; Fauzi, M. D.; Permatasari, R.

    2017-03-01

    Plastic pyrolysis process to produce liquid fuel is an endothermic process that uses heat from the combustion of fuel as heat source. The reactor used is usually a vertical cylindrical in shape, with LPG fuel combustion under the flat bottom of the reactor, and the combustion gases is dispersed into the surrounding environment, so that heat transferred to the plastic inside the reactor is not effective, causing high LPG consumption. In this study, the reactor is made of stainless steel plate, with a vertical cylindrical shape, with a basic cylindrical conical truncated by a pit pass hot flue gas in the middle that serves to deliver flue gas into the chimney. The contact area between the hot combusted LPG gases to the processed plastic inside the reactor becomes bigger and gets better heat transfer, and required less LPG consumption. For more effective heat transfer process, an outer cover of this reactor was made and the relatively hot combustion gases are used to heat the outside of the reactor by directing the flow of the flue gas from the chimney down along the outer wall of the reactor and out the bottom lid. This construction makes the heating process to be faster and the LPG fuel is used more efficiently. From the measurements, it was found to raise 1°C of temperature inside the covered reactor, the LPG consumed is 0.59 gram, and if the reactor cover is removed, the gas demand will rise nearly threefold to 1.43 grams. With this method, in addition to reducing the rate of heat loss will also help reduce LPG consumption significantly.

  15. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.

  16. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  17. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    DOEpatents

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  18. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  19. Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment.

    PubMed

    Liao, Zhijie; Popel, Aleksander S; Brownell, William E; Spector, Alexander A

    2005-04-01

    Cochlear outer hair cells (OHC) are critically important for the amplification and sharp frequency selectivity of the mammalian ear. The microchamber experiment has been an effective tool to analyze the OHC high-frequency performance. In this study, the OHC electrical stimulation in the microchamber is simulated. The model takes into account the inertial and viscous properties of fluids inside and outside the cell as well as the viscoelastic and piezoelectric properties of the cell composite membrane (wall). The closed ends of the cylindrical cell were considered as oscillatory rigid plates. The final solution was obtained in terms of Fourier series, and it was checked against the available results of the microchamber experiment. The conditions of the interaction between the cell and pipette was analyzed, and it was found that the amount of slip along the contact surface has a significant effect on the cell electromotile response. The cell's length changes were computed as a function of frequency, and their dependence on the viscosities of both fluids and the cell wall was analyzed. The distribution of the viscous losses inside the fluids was also estimated. The proposed approach can help in a better understanding of the high-frequency OHC electromotility under experimental and physiological conditions.

  20. Mechanically driven centrifugal pyrolyzer

    DOEpatents

    Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL

    2012-03-06

    An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.

  1. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  2. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    NASA Astrophysics Data System (ADS)

    Major, Maciej; Kosiń, Mariusz

    2017-12-01

    The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  4. Turbine stator vane segment having internal cooling circuits

    DOEpatents

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  5. Decoding structural complexity in conical carbon nanofibers.

    PubMed

    Zhu, Yi-An; Wang, Zi-Jun; Cheng, Hong-Ye; Yang, Qin-Min; Sui, Zhi-Jun; Zhou, Xing-Gui; Chen, De

    2017-06-07

    Conical carbon nanofibers (CNFs) exist primarily as graphitic ribbons that fold into a cylindrical structure with the formation of a hollow core. Structural analysis aided by molecular modeling proves useful for obtaining a full picture of how the size of the central channel varies from fiber to fiber. From a geometrical perspective, conical CNFs possibly have cone tips that are nearly closed. On the other hand, their fiber wall thickness can be reduced to a minimum possible value that is determined solely by the apex angle, regardless of the outer diameter. A formula has been developed to express the number of carbon atoms present in conical CNFs in terms of measurable structural parameters. It appears that the energetically preferred fiber wall thickness increases not only with the apex angle, but also with the number of atoms in the constituent graphitic cones. The origin of the empirical observation that conical CNFs with small apex angles tend to have a large hollow core lies in the fact that in graphene sheets that are more highly curved the curvature-induced strain energy rises more rapidly as the fiber wall thickens.

  6. Turbine airfoil with a compliant outer wall

    DOEpatents

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  7. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  8. Methods and systems to facilitate reducing NO.sub.x emissions in combustion systems

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Lipinski, John Joseph [Simpsonville, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    A method for assembling a gas turbine combustor system is provided. The method includes providing a combustion liner including a center axis, an outer wall, a first end, and a second end. The outer wall is orientated substantially parallel to the center axis. The method also includes coupling a transition piece to the liner second end. The transition piece includes an outer wall. The method further includes coupling a plurality of lean-direct injectors along at least one of the liner outer wall and the transition piece outer wall such that the injectors are spaced axially apart along the wall.

  9. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  10. Cooled airfoil in a turbine engine

    DOEpatents

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  11. Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Carvalho-Santos, V. L.; Espejo, A. P.; Laroze, D.; Chubykalo-Fesenko, O.; Altbir, D.

    2017-11-01

    Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes, in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same frequency. These results open the possibility of new oscillation-based applications.

  12. A two-electrode multichannel analyzer of charged particles with discrete outer cylindrical and flat end electrodes

    NASA Astrophysics Data System (ADS)

    Fishkova, T. Ya.

    2017-06-01

    Using computer simulation, I have determined the parameters of a multichannel analyzer of charged particles of a simple design that I have proposed having the form of a cylindrical capacitor with a discrete outer cylinder and closed ends in a wide range of simultaneously recorded energies ( E max/ E min = 100). When introducing an additional cylindrical electrode of small dimensions near the front end of the system, it is possible to improve the resolution by more than an order of magnitude in the low-energy region. At the same time, the energy resolution of the analyzer in all the above energy range is ρ = (4-6) × 10-3.

  13. Flow and heat transfer in a curved channel

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  14. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  15. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  16. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  17. Fuel injector for use in a gas turbine engine

    DOEpatents

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  18. Component with inspection-facilitating features

    DOEpatents

    Marra, John J; Zombo, Paul J

    2014-02-11

    A turbine airfoil can be formed with features to facilitate measurement of its wall thickness. An outer wall of the airfoil can include an outer surface and an inner surface. The outer surface of the airfoil can have an outer inspection target surface, and the inner surface of the airfoil can have an inner inspection target surface. The inner and outer target surfaces can define substantially flat regions in surfaces that are otherwise highly contoured. The inner and outer inspection target surfaces can be substantially aligned with each other. The inner and outer target surfaces can be substantially parallel to each other. As a result of these arrangements, a highly accurate measurement of wall thickness can be obtained. In one embodiment, the outer inspection target surface can be defined by an innermost surface of a groove formed in the outer surface of the outer wall of the airfoil.

  19. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  20. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, M.J.; Arzoumanidis, G.G.

    1997-09-02

    A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

  1. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, Michael J.; Arzoumanidis, Gregory G.

    1997-01-01

    A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

  2. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  3. Assembly for facilitating inservice inspection of a reactor coolant pump rotor

    DOEpatents

    Veronesi, Luciano

    1990-01-01

    A reactor coolant pump has an outer casing with an internal cavity holding a coolant and a rotor rotatably mounted in the cavity within the coolant. An assembly for permitting inservice inspection of the pump rotor without first draining the coolant from the casing cavity is attached to an end of the pump. A cylindrical bore is defined through the casing in axial alignment with an end of pump rotor and opening into the internal cavity. An extension attached on the rotor end and rotatable therewith has a cylindrical coupler member extending into the bore. An outer end of the coupler member has an element configured to receive a tool for performance of inservice rotor inspection. A hollow cylindrical member is disposed in the bore and surrounds the coupler member. The cylindrical member is slidably movable relative to the coupler member along the bore between a retracted position wherein the cylindrical member is stored for normal pump operation and an extended position wherein the cylindrical member is extended for permitting inservice rotor inspection. A cover member is detachably and sealably attached to the casing across the bore for closing the bore and retaining the cylindrical member at its retracted position for normal pump operation. Upon detachment of the cover member, the cylindrical member can be extended to permit inservice rotor inspection.

  4. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  5. Problems And Their Solutions When Thin-Walled Turned Parts Of High Precision With Quasi-Optical Surfaces Are Manufactured On A CNC Automatic Lathe Under Workshop Conditions

    NASA Astrophysics Data System (ADS)

    Jaeger, Valentin E.

    1989-04-01

    The geometrical accuracy and surface roughness of diamond-turned workpieces is influenced by several parameters: the properties of the machine tool, the cutting process and the environmental conditions. A thin-walled electrode made from an aluminium alloy (wall thickness: 1 mm, length: 169 mm, outer diameter: 126 mm) and intended for an electrostatic measuring instrument, serves as an example to show how quasi-optical surfaces with a surface roughness Rα < 10 nm and deviations from roundness of <= 5 μm can be achieved when some of these influence quantities are optimized. The cylindrical part of the electrode was turned by means of a rounded mirror-finish diamond tool, the width of the cutting edge being 2 mm, the rake angle -6° and the clearance angle 2°. Compliance with the tolerances of geometrical accuracy was particularly difficult. As age-hardened wrought aluminium alloys cannot be stress-relieved by annealing, or only insufficiently, the geometrical accuracy - in particular the roundness - of thin-walled, rotationally symmetric bodies decisively depends on the state of stress of the workpiece material, on the clamping fixture and on the balanced condition of this clamping fixture.

  6. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  7. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  8. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  9. Simple method for forming thin-wall pressure vessels

    NASA Technical Reports Server (NTRS)

    Erickson, A. L.; Guist, L. R.

    1972-01-01

    Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.

  10. Multiple-Cone Sunshade for a Spaceborne Telescope

    NASA Technical Reports Server (NTRS)

    Cafferty, Terry; Ford, Virginia

    2008-01-01

    A document describes a sunshade assembly for the spaceborne telescope of the Terrestrial Planet Finder Coronagraph mission. During operation, the telescope is aimed at target stars in the semihemisphere away from the Earth's Sun. The observatory rotates about its pointing axis during a single star observation, resulting in relative movement of the Sun. The sunshade assembly protects the telescope against excessive solar-induced thermal distortions for times long enough to complete observations. The assembly includes a cylindrical baffle immediately surrounding the telescope, and a series of coaxial conical shields at half-cone angle increments of between 3 and 6. The black inner surface of the cylindrical baffle suppresses stray light. The outer surface of the cylindrical baffle and all the surfaces of the conical shields except the outermost one are specular and highly reflective in the infrared. The outer surface of the outer shield is a material with low solar absorptance and high infrared emittance, such as silverized Teflon or white paint. This arrangement strongly radiatively couples each shield layer more effectively to cold space than to adjacent shield layers. The result is that the solar-driven temperature gradients in the cylindrical baffle are nearly negated, and only weakly communicated to the highly-infrared-reflective face of the primary telescope mirror.

  11. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  12. Current-induced three-dimensional domain wall propagation in cylindrical NiFe nanowires

    NASA Astrophysics Data System (ADS)

    Wong, D. W.; Purnama, I.; Lim, G. J.; Gan, W. L.; Murapaka, C.; Lew, W. S.

    2016-04-01

    We report on the magnetization configurations in single NiFe cylindrical nanowires grown by template-assisted electrodeposition. Angular anisotropic magnetoresistance measurements reveal that a three-dimensional helical domain wall is formed naturally upon relaxation from a saturated state. Micromagnetic simulations support the helical domain wall properties and its reversal process, which involves a splitting of the clockwise and anticlockwise vortices. When a pulsed current is applied to the nanowire, the helical domain wall propagation is observed with a minimum current density needed to overcome its intrinsic pinning.

  13. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  14. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOEpatents

    Blaushild, Ronald M.

    1987-01-01

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same.

  15. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    NASA Astrophysics Data System (ADS)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  16. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    PubMed Central

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  17. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOEpatents

    Fernandez, Felix E.

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  18. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  19. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1977-02-15

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  20. Inner-outer interactions in a turbulent boundary layer overlying complex roughness

    NASA Astrophysics Data System (ADS)

    Pathikonda, Gokul; Christensen, Kenneth T.

    2017-04-01

    Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.

  1. Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves

    NASA Astrophysics Data System (ADS)

    Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.

    2018-05-01

    In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.

  2. DC corona discharge ozone production enhanced by magnetic field

    NASA Astrophysics Data System (ADS)

    Pekárek, S.

    2010-01-01

    We have studied the effect of a stationary magnetic field on the production of ozone from air at atmospheric pressure by a negative corona discharge in a cylindrical electrode configuration. We used a stainless steel hollow needle placed at the axis of the cylindrical discharge chamber as a cathode. The outer wall of the cylinder was used as an anode. The vector of magnetic induction was perpendicular to the vector of current density. We found that: (a) the magnetic field extends the current voltage range of the discharge; (b) for the discharge in the Trichel pulses regime and in the pulseless glow regime, the magnetic field has no substantial effect on the discharge voltage or on the concentration of ozone that is produced; (c) for the discharge in the filamentary streamer regime for a particular current, the magnetic field increases the discharge voltage and consequently an approximately 30% higher ozone concentration can be obtained; (d) the magnetic field does not substantially increase the maximum ozone production yield. A major advantage of using a magnetic field is that the increase in ozone concentration produced by the discharge can be obtained without additional energy requirements.

  3. Self-adjustable supplemental support system for a cylindrical container in a housing

    DOEpatents

    Blaushild, R.M.

    1987-01-30

    A self-adjustable supplementary support system for a cylindrical container coaxially disposed in a cylindrical housing by upper flanged supports has a plurality of outwardly extending bracket units on the external surface of the container which coact with inwardly extending resiliently outwardly extending bracket units on the inner wall of the cylindrical housing. The bracket units have flanges which form a concave surface that seats on support bars, attached by links to torsion bars that are secured to ring segments annularly spaced about the inner wall of the cylindrical housing and the bracket units and support bars coact with each other to radially position and support the container in the housing during movement of the two components from a vertical to a horizontal position, and during transportation of the same. 14 figs.

  4. Structural heat pipe. [for spacecraft wall thermal insulation system

    NASA Technical Reports Server (NTRS)

    Ollendorf, S. (Inventor)

    1974-01-01

    A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.

  5. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  6. On the role of stress anisotropy in the growth of stems.

    PubMed

    Baskin, Tobias I; Jensen, Oliver E

    2013-11-01

    We review the role of anisotropic stress in controlling the growth anisotropy of stems. Instead of stress, growth anisotropy is usually considered in terms of compliance. Anisotropic compliance is typical of cell walls, because they contain aligned cellulose microfibrils, and it appears to be sufficient to explain the growth anisotropy of an isolated cell. Nevertheless, a role for anisotropic stress in the growth of stems is indicated by certain growth responses that appear too rapid to be accounted for by changes in cell-wall compliance and because the outer epidermal wall of most growing stems has microfibrils aligned axially, an arrangement that would favour radial expansion based on cell-wall compliance alone. Efforts to quantify stress anisotropy in the stem have found that it is predominantly axial, and large enough in principle to explain the elongation of the epidermis, despite its axial microfibrils. That the epidermis experiences a stress deriving from the inner tissue, the so-called 'tissue stress', has been widely recognized; however, the origin of the dominant axial direction remains obscure. Based on geometry, an isolated cylindrical cell should have an intramural stress anisotropy favouring the transverse direction. Explanations for tissue stress have invoked differential elastic moduli, differential plastic deformation (so-called differential growth), and a phenomenon analogous to the maturation stress generated by secondary cell walls. None of these explanations has been validated. We suggest that understanding the role of stress anisotropy in plant growth requires a deeper understanding of the nature of stress in hierarchical, organic structures.

  7. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  8. [Impedance between modiolus and different walls of scala tympani].

    PubMed

    Du, Qiang; Wang, Zhengmin

    2008-10-01

    To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.

  9. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  10. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  11. DSMC Simulations of High Mach Number Taylor-Couette Flow

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma =(Uw /√{ kbTw / m }) in the range 0.01

  12. Optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  13. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  14. Dish/stirling hybrid-receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  15. Steady flow instability in an annulus with deflectors at rotational vibration

    NASA Astrophysics Data System (ADS)

    Kozlov, Nikolai V.; Pareau, Dominique; Ivantsov, Andrey; Stambouli, Moncef

    2016-12-01

    Experimental study and direct numerical simulation of the dynamics of an isothermal low-viscosity fluid are done in a coaxial gap of a cylindrical container making rotational vibrations relative to its axis. On the inner surface of the outer wall of the container, semicircular deflectors are regularly situated, playing the role of flow activators. As a result of vibrations, the activators oscillate tangentially. In the simulation, a 2D configuration is considered, excluding the end-wall effects. In the experiment, a container with a large aspect ratio is used. Steady streaming is generated in the viscous boundary layers on the activators. On each of the latter, beyond the viscous domain, a symmetric vortices pair is formed. The steady streaming in the annulus has an azimuthal periodicity. With an increase in the vibration intensity, a competition between the vortices occurs, as a result of which one of the vortices (let us call it even) approaches the activator and the other one (odd) rolls away and couples with the vortices from the neighbouring pairs. Streamlines of the odd vortices close on each other, forming a cog-wheel shaped flow that encircles the inner wall. Comparison of the experiment and the simulation reveals an agreement at moderate vibration intensity.

  16. Finite element based stability-constrained weight minimization of sandwich composite ducts for airship applications

    NASA Astrophysics Data System (ADS)

    Khode, Urmi B.

    High Altitude Long Endurance (HALE) airships are platform of interest due to their persistent observation and persistent communication capabilities. A novel HALE airship design configuration incorporates a composite sandwich propulsive hull duct between the front and the back of the hull for significant drag reduction via blown wake effects. The sandwich composite shell duct is subjected to hull pressure on its outer walls and flow suction on its inner walls which result in in-plane wall compressive stress, which may cause duct buckling. An approach based upon finite element stability analysis combined with a ply layup and foam thickness determination weight minimization search algorithm is utilized. Its goal is to achieve an optimized solution for the configuration of the sandwich composite as a solution to a constrained minimum weight design problem, for which the shell duct remains stable with a prescribed margin of safety under prescribed loading. The stability analysis methodology is first verified by comparing published analytical results for a number of simple cylindrical shell configurations with FEM counterpart solutions obtained using the commercially available code ABAQUS. Results show that the approach is effective in identifying minimum weight composite duct configurations for a number of representative combinations of duct geometry, composite material and foam properties, and propulsive duct applied pressure loading.

  17. Gamma compensated, self powered neutron detector

    DOEpatents

    Brown, Donald P.

    1977-01-01

    An improved, self-powered, gamma compensated, neutron detector having two electrically conductive concentric cylindrical electrodes and a central rod emitter formed from a material which emits beta particles when bombarded by neutrons. The outer electrode and emitter are maintained at a common potential and the neutron representative current is furnished at the inner cylindrical electrode which serves as a collector. The two concentric cylindrical electrodes are designed to exhibit substantially equal electron emission induced by Compton scattering under neutron bombardment to supply the desired gamma compensation.

  18. Gas turbine nozzle vane insert and methods of installation

    DOEpatents

    Miller, William John; Predmore, Daniel Ross; Placko, James Michael

    2002-01-01

    A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

  19. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  20. Time-evolving of very large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  1. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.

    PubMed

    Shao, Wei; Mechefske, Chris K

    2005-04-01

    This paper describes an analytical model of finite cylindrical ducts with infinite flanges. This model is used to investigate the sound radiation characteristics of the gradient coil system of a magnetic resonance imaging (MRI) scanner. The sound field in the duct satisfies both the boundary conditions at the wall and at the open ends. The vibrating cylindrical wall of the duct is assumed to be the only sound source. Different acoustic conditions for the wall (rigid and absorptive) are used in the simulations. The wave reflection phenomenon at the open ends of the finite duct is described by general radiation impedance. The analytical model is validated by the comparison with its counterpart in a commercial code based on the boundary element method (BEM). The analytical model shows significant advantages over the BEM model with better numerical efficiency and a direct relation between the design parameters and the sound field inside the duct.

  2. Thermionic energy converters

    DOEpatents

    Monroe, Jr., James E.

    1977-08-09

    A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.

  3. Film cooling for a closed loop cooled airfoil

    DOEpatents

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  4. Steam exit flow design for aft cavities of an airfoil

    DOEpatents

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  5. A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams (70-250 MeV) for cylindrical and spherical ion chambers.

    PubMed

    Verhaegen, F; Palmans, H

    2001-10-01

    Current dosimetry protocols for clinical protons do not take into account any secondary electron fluence perturbation in ion chambers. In this work, we performed a systematic study of secondary electron fluence perturbation factors for spherical and cylindrical ion chambers in proton beams (70-250 MeV). The electron fluence perturbation factor, pe, was calculated using Monte Carlo transport of protons and secondary electrons. The influence of proton energy, cavity wall material (graphite, water, A150, PMMA, polystyrene), cavity radius, cavity wall thickness and positioning depth in water is studied. The influence of inelastic nuclear proton interactions is briefly discussed. It was found that pe depends on wall material; the largest values for pe were obtained for ion chambers with A150 walls (pe=1.009), the smallest values for graphite walls. The perturbation factor was found to be largely independent of proton energy. A slight decrease of pe with cavity radius was obtained, especially for low energy protons. The wall thickness was found to have no effect on pe in the range studied (0.025-0.1 cm). The depth of the cavity in a water phantom was also found to have an insignificant effect on pe. Based on the results in the paper for spherical and cylindrical ion chambers, a method to calculate pe for a thimble ion chamber is presented. The results presented in this paper for cylindrical and spherical ion chambers are in contradiction to the calculated electron fluence perturbation factors for planar ion chambers in the paper by Casnati et al.

  6. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  7. Quantitative evaluation of the relationship between dorsal wall length, sole thickness, and rotation of the distal phalanx in the bovine claw using computed tomography.

    PubMed

    Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T

    2014-10-01

    Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOEpatents

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  9. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  10. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  11. Colliding wall-jets on a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Tesař, Václav; Peszynski, Kazimierz

    2015-05-01

    Paper discusses aerodynamics and potential engineering applications of an unusual and in literature practically unknown fluid flow configuration, with two wall-jets attached to a cylindrical surface so that they collide head-on and by mutual conjunction generate a single jet directed away from the wall. Applications are envisaged in pneumatic sensors, particularly those operating at low Reynolds numbers. Performed experimental investigation, combined with numerical flowfield computations, revealed several interesting aspects. The most interesting among them is the discovery of symmetry-breaking existence of three different stable flow regimes. This opens a possibility for fluidic tristable amplifiers and systems operating with ternary logic.

  12. Investigation the effect of outdoor air infiltration on the heat-shielding characteristics the outer walls of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.

    2018-03-01

    The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.

  13. Uniform bulk material processing using multimode microwave radiation

    DOEpatents

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  14. Moisture separator reheater with round tube bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byerley, W. M.

    1984-11-27

    A moisture separator reheater having a central chamber with cylindrical wall protions and a generally round tube bundle, the tube bundle having arcuate plates disposed on each side of the bundle which form a wrapper on each side of the bundle and having a tongue and groove juncture between the wrapper and cylindrical wall portions to provide a seal therebetween and a track for installing and removing the tube bundle from the central chamber.

  15. Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.

    1978-01-01

    Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.

  16. Turbine airfoil having near-wall cooling insert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less

  17. Wave propagation reversal for wavy vortices in wide-gap counter-rotating cylindrical Couette flow.

    PubMed

    Altmeyer, S; Lueptow, Richard M

    2017-05-01

    We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored.

  18. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  19. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  20. Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model.

    PubMed

    Diercke, K; Lussi, A; Kersten, T; Seemann, R

    2009-12-01

    The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.

  1. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  2. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    NASA Astrophysics Data System (ADS)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  3. Alternative irradiation schemes for NIF and LMJ hohlraums

    DOE PAGES

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; ...

    2017-12-13

    Here, we explore two alternative irradiation schemes for the large ('outer') and small ('inner') angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only themore » outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.« less

  4. Alternative irradiation schemes for NIF and LMJ hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal

    Here, we explore two alternative irradiation schemes for the large ('outer') and small ('inner') angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only themore » outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.« less

  5. Fabrication of cylindrical superhydrophobic microchannels by replicating lotus leaf structures on internal walls

    NASA Astrophysics Data System (ADS)

    Das, Ajit; Bhaumik, Soubhik Kumar

    2018-04-01

    Cylindrical superhydrophobic microchannels are fabricated by replicating lotus leaf structures on internal walls. The fabrication process comprises of three steps: the creation of a cylindrical mold of a glass rod (125 µm) with polystyrene films bearing negative imprints of lotus leaf (superhydrophobic) structures; casting polydimethylsiloxane (PDMS, Sylgard 184) over the mold; and solvent-assisted pulling off of the glass rod to leave a positive replica on the inner wall of the PDMS cast. The last crucial step is achieved through selective dissolution of the intermediate negative replica layer in the cylindrical mold without any swelling effect. The high fidelity of the replication process is confirmed through scanning electron microscope (SEM) imaging. The attained superhydrophobicity is assessed by comparing the dynamics of the advancing meniscus in the fabricated microchannels with that over a similarly fabricated smooth microchannel. Contact angle studies of the meniscus reveal a lower capillary effect and drag force experienced by the superhydrophobic microchannel compared to smooth ones. Studies based on velocity lead to a prediction of a drag reduction of 35%. A new avenue is thus opened up for microfabrication and flow analysis of closed superhydrophobic (SH) conduits in lab on chip and microfluidic applications.

  6. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Zheng, Wudi

    2014-09-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  7. Steam Rankine Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.; Faust, M.

    1981-01-01

    A steam rankine solar receiver (SRSR) based on a tubular concept was designed and developed. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam is used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy. The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0 inches in diameter and 21.5 inches long. The tube size is 7/16 inch I.D. by 0.070 inch wall for the primary, and 3/4 inch I.D. by 0.125 inch wall for the reheat section. The materials used were corrosion resistant steel (CRES) type 321 and type 347 stainless steel. The core is insulated with 6 inches of cerablanket insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400 F and 2550 psig.

  8. Material migration studies with an ITER first wall panel proxy on EAST

    NASA Astrophysics Data System (ADS)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G.-N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.

    2015-02-01

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. Excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.

  9. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOEpatents

    DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN

    2010-02-23

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  10. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  11. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  12. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  13. Premixed direct injection nozzle for highly reactive fuels

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  14. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  15. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less

  16. [Moisture and mold on the inner walls of prefabricated building slabs--investigating a strange cause].

    PubMed

    Kaufhold, T; Fiedler, K; Jung, G; Lindner, M; Gassel, R P

    1997-04-01

    Reasons for indoor-moisture beyond the normal level can be caused by penetrating dampness, condensation-water, and apartment misuse. A fall in the air temperature below the dew point in connection with moulding inside buildings becomes evident mostly at places like badly insulated outer-walls or room-corners. In a number of houses built between 1980 and 1983 in the so called "Plattenbauweise" (prefabricated slabs), exclusively the inner-walls were covered in mould around cracks in the walls. Examinations showed connections between the apartment and the outer-corridor with a slight exchange of air through the cracks. Warm, wet air escaped from the apartment into the outer-corridor, and cold air entered the apartment from the outer-corridor. This temporary fall below the dewpoint caused by suitable variation of temperature probably resulted in the building materials and wallpapers becoming damp, as well as the growth of mould.

  17. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  18. Physical and Electronic Isolation of Carbon Nanotube Conductors

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.

  19. Development of Automotive Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  20. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  1. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).

    PubMed

    Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi

    2017-11-01

    To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1952-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made by means of a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and the outer-race bearing operating temperatures are computed for the laboratory test rig and the turbojet engine. A method is given that enables the designer to predict the inner- and outer-race turbine roller-bearing temperatures from single curves, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter, or any combination of these parameters.

  3. Diverter/bop system and method for a bottom supported offshore drilling rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.

    1986-07-01

    A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less

  4. Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2004-01-01

    A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.

  5. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  6. Turbine airfoil with laterally extending snubber having internal cooling system

    DOEpatents

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  7. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian

    2014-06-14

    We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less

  8. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  9. Determination of the Kwall correction factor for a cylindrical ionization chamber to measure air-kerma in 60Co gamma beams.

    PubMed

    Laitano, R F; Toni, M P; Pimpinella, M; Bovi, M

    2002-07-21

    The factor Kwall to correct for photon attenuation and scatter in the wall of ionization chambers for 60Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of Kwall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the Kwall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The Kwall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type.

  10. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    NASA Astrophysics Data System (ADS)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  11. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    PubMed Central

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-01-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum. PMID:27703250

  12. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition.

    PubMed

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-05

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  13. Construction of University of Missouri-Rolla’s Full Scale Cloud Simulation Chamber and Applied Research

    DTIC Science & Technology

    1985-03-01

    aluminum outer walls by a matrix of studs screwed into blind holes in the inner wall plates and extending through the outer walls. Thermoelectric cooling...studied. The problem of the uncooled sample ports might have been dealt with, however the failure of several sections of thermoelectric cooling...encountered with the Proto I chamber. It should be kept in mind that the basic cooled wall design consists of thermoelectric cooling modules (TEM’s

  14. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    PubMed

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch force. Sonomicrometry experiments revealed that the CMP circular muscle fibers operated in vivo primarily along the ascending limb of the length-tension curve. The CMP fibers functioned routinely over muscle lengths at which force output ranged from only 85% to 40% of P₀, and during escape jets from 100% to 30% of P₀. Our work shows that the functional diversity of obliquely striated muscles is much greater than previously recognized. © 2014. Published by The Company of Biologists Ltd.

  15. Alternative irradiation schemes for NIF and LMJ hohlraums

    NASA Astrophysics Data System (ADS)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; Landen, Otto

    2018-02-01

    We explore two alternative irradiation schemes for the large (‘outer’) and small (‘inner’) angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only the outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.

  16. Design and Operating Characteristics of High-Speed, Small-Bore Cylindrical-Roller Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley, I.; Signer, Hans R.; Zaretsky, Erwin V.

    2000-01-01

    The computer program SHABERTH was used to analyze 35-mm-bore cylindrical roller bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and the results were compared with the computer predictions. Bearings with a channeled inner ring were lubricated through the inner ring, while bearings with a channeled outer ring were lubricated with oil jets. Tests were run with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased contact stresses caused by centrifugal load. Lower temperatures, less roller skidding, and lower power losses were obtained with channeled inner rings. Power losses calculated by the SHABERTH computer program correlated reasonably well with the test results. The Parker formula for XCAV (used in SHABERTH as a measure of oil volume in the bearing cavity) needed to be adjusted to reflect the prevailing operating conditions. The XCAV formula will need to be further refined to reflect roller bearing lubrication, ring design, cage design, and location of the cage-controlling land.

  17. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1951-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.

  18. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

    2014-04-15

    Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

  19. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    NASA Astrophysics Data System (ADS)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  20. Far-field potentials in cylindrical and rectangular volume conductors.

    PubMed

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  1. Multi-Shock Shield Performance at 15 MJ for Catalogued Debris

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Davis, B. A.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, the assessment of the feasibility of protecting a spacecraft from this catalogued debris is described using numerical simulations and a test of a multi-shock shield system against a cylindrical projectile impacting normal to the surface with approximately 15 MJ of kinetic energy. The hypervelocity impact test has been conducted at the Arnold Engineering Development Complex (AEDC) with a 598 g projectile at 6.905 km/s on a NASA supplied multi-shock shield. The projectile used is a hollow aluminum and nylon cylinder with an outside diameter of 8.6 cm and length of 10.3 cm. Figure 1 illustrates the multi-shock shield test article, which consisted of five separate bumpers, four of which are fiberglass fabric and one of steel mesh, and two rear walls, each consisting of Kevlar fabric. The overall length of the test article was 2.65 m. The test article was a 5X scaled-up version of a smaller multi-shock shield previously tested using a 1.4 cm diameter aluminum projectile for an inflatable module project. The distances represented by S1 and S1/2 in the figure are 61 cm and 30.5 cm, respectively. Prior to the impact test, hydrodynamic simulations indicated that some enhancement to the standard multi-shock system is needed to address the effects of the cylindrical shape of the projectile. Based on the simulations, a steel mesh bumper has been added to the shield configuration to enhance the fragmentation of the projectile. The AEDC test occurred as planned, and the modified NASA multi-shock shield successfully stopped 598 g projectile using 85.6 kg/m(exp 2). The fifth bumper layer remained in tact, although it was torn free from its support structure and thrown into the first rear wall. The outer Kevlar layer of the first rear wall tore likely from the impact of the fifth bumper's support structure, but the back of the rear wall was intact. No damage occurred to the second rear wall, or to the witness plate behind the target.

  2. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  3. Material migration studies with an ITER first wall panel proxy on EAST

    DOE PAGES

    Ding, R.; Pitts, R. A.; Borodin, D.; ...

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed tomore » the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.« less

  4. Determining solid-fluid interface temperature distribution during phase change of cryogenic propellants using transient thermal modeling

    NASA Astrophysics Data System (ADS)

    Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2018-04-01

    Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.

  5. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  6. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  7. Built-up outer wall and roofing sections for double walled envelope homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodhead, B.

    1980-01-01

    A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.

  8. Material Characterization for Composite Materials in Load Bearing Wave Guides

    DTIC Science & Technology

    2012-03-01

    ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical

  9. WATER BOILER REACTOR

    DOEpatents

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  10. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  11. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  12. High speed cylindrical roller bearing analysis, SKF computer program CYBEAN. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1978-01-01

    The CYBEAN (Cylindrical Bearing Analysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. Input and output architectures containing guidelines for use and a sample execution are detailed.

  13. Analyses of radiation impedances of finite cylindrical ducts

    NASA Astrophysics Data System (ADS)

    Shao, W.; Mechefske, C. K.

    2005-08-01

    To aid in understanding the characteristics of acoustic radiation from finite cylindrical ducts with infinite flanges, mathematical expressions of generalized radiation impedances at the open ends have been developed. Newton's method is used to find the complex wavenumbers of radial modes for the absorption boundary condition. The self-radiation impedances and mutual impedances for some acoustic modes are calculated for the ducts with rigid and absorption walls. The results show that the acoustical conditions of the duct walls have a significant influence on the radiation impedance. The acoustical interaction between the two open ends of the ducts cannot be neglected, especially for plane waves. To increase the wall admittance will reduce this interference effect. This study creates the possibility for simulating the sound field inside finite ducts in future work.

  14. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  15. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  16. Development of a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA), and its application to Auger photoelectron coincidence spectroscopy (APECS)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Eiichi; Seo, Junya; Nambu, Akira; Mase, Kazuhiko

    2007-09-01

    We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be E/Δ E = 20. This value is better than that of the miniature single-pass CMA ( E/Δ E = 12) that was used in the previous APECS analyzer.

  17. Electrochemical cell design

    DOEpatents

    Arntzen, John D.

    1978-01-01

    An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.

  18. Apparatus and method to compensate for refraction of radiation

    DOEpatents

    Allen, Gary R.; Moskowitz, Philip E.

    1990-01-01

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided.

  19. Apparatus and method to compensate for refraction of radiation

    DOEpatents

    Allen, G.R.; Moskowitz, P.E.

    1990-03-27

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided. 4 figs.

  20. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a larger sample of interest, such as a liquid or powdered or granulated solid, inside a cylindrical container.

  1. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  2. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  3. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  4. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.

  5. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.

    PubMed

    Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R

    2018-05-23

    We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.

  6. Plastic mechanism of multi-pass double-roller clamping spinning for arc-shaped surface flange

    NASA Astrophysics Data System (ADS)

    Fan, Shuqin; Zhao, Shengdun; Zhang, Qi; Li, Yongyi

    2013-11-01

    Compared with the conventional single-roller spinning process, the double-roller clamping spinning(DRCS) process can effectively prevent the sheet metal surface wrinkling and improve the the production efficiency and the shape precision of final spun part. Based on ABAQUS/Explicit nonlinear finite element software, the finite element model of the multi-pass DRCS for the sheet metal is established, and the material model, the contact definition, the mesh generation, the loading trajectory and other key technical problems are solved. The simulations on the multi-pass DRCS of the ordinary Q235A steel cylindrical part with the arc-shaped surface flange are carried out. The effects of number of spinning passes on the production efficiency, the spinning moment, the shape error of the workpiece, and the wall thickness distribution of the final part are obtained. It is indicated definitely that with the increase of the number of spinning passes the geometrical precision of the spun part increases while the production efficiency reduces. Moreover, the variations of the spinning forces and the distributions of the stresses, strains, wall thickness during the multi-pass DRCS process are revealed. It is indicated that during the DRCS process the radical force is the largest, and the whole deformation area shows the tangential tensile strain and the radial compressive strain, while the thickness strain changes along the generatrix directions from the compressive strain on the outer edge of the flange to the tensile strain on the inner edge of the flange. Based on the G-CNC6135 NC lathe, the three-axis linkage computer-controlled experimental device for DRCS which is driven by the AC servo motor is developed. And then using the experimental device, the Q235A cylindrical parts with the arc-shape surface flange are formed by the DRCS. The simulation results of spun parts have good consistency with the experimental results, which verifies the feasibility of DRCS process and the reliability of the finite element model for DRCS.

  7. Action of sympathetic nerves of inner and outer muscle of sheep carotid artery, and effect of pressure on nerve distribution.

    PubMed Central

    Keatinge, W R; Torrie, C

    1976-01-01

    1. The direction of torsion produced during active shortening of helical strips of sheep carotid arteries was measured to assess whether inner or outer muscle was contracting. 2. Noradrenaline contracted inner (non-innervated) muscle in lower concentrations than were needed to contract outer (innervated) muscle, even with desipramine present to prevent uptake of noradrenaline by the nerves and with enough cyanide present to rise the normally low O2 tension of inner muscle to that of outer muscle. 3. Activation of sympathetic nerves in the outer part of the artery by nicotine caused almost evenly balanced contraction of both parts of the wall, with slight bias to outer contraction. 4. Moderate external constriction of the artery in vivo for 10-17 days, in order to raise pressure throughout the wall to intraluminal pressure, made the entire wall nerve-free. 5. The results provide evidence that the nerves can induce substantial activation of inner muscle, which is highly sensitive to noradrenaline, and that the absence of nerves from inner muscle can be explained by the high pressure there. Images Plate 1 PMID:950610

  8. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOEpatents

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  9. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  10. Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide

    NASA Astrophysics Data System (ADS)

    Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.

    2017-07-01

    We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.

  11. Spiral cooled fuel nozzle

    DOEpatents

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  12. Comparison of Performance of Experimental and Conventional Cage Designs and Materials for 75-millimeter-bore Cylindrical Roller Bearings at High Speed

    NASA Technical Reports Server (NTRS)

    Anderson, William J; Macks, E Fred; Nemeth, Zolton N

    1954-01-01

    The results of two investigations, one to determine the relative merits of four experimental and two conventional design 75-millimeter-bore (size 215) cylindrical roller bearings and one to determine the relative merits of nodular iron and bronze as cage materials for this size and type of bearing, are presented in this report. Nine test bearings were operated over a range of dn values (product of bearing bore in mm and shaft speed in r.p.m) from 0.3 x 10(6) to 2.3 x 20(6), radial loads for 7 to 1613 pounds, and oil flows from 2 to 8 pounds per minute with a single-jet circulatory oil feed. Of the six bearings used to evaluate designs, four were experimental types with outer-race-riding cages and inner-race-guided rollers, and two were conventional types, one with outer-race-guided rollers and cage and one with inner-race-guided rollers and cage. Each of these six test bearings was equipped with a different design cage made of nodular iron. The experimental combination of an outer-race-riding cage with a straight-through outer race and inner-race-guided rollers was found to give the best over-all performance based on limiting dn values and bearing temperatures.

  13. An in vitro comparison of tracheostomy tube cuffs

    PubMed Central

    Maguire, Seamus; Haury, Frances; Jew, Korinne

    2015-01-01

    Introduction The Shiley™ Flexible adult tracheostomy tube with TaperGuard™ cuff has been designed through its geometry, materials, diameter, and wall thickness to minimize micro-aspiration of fluids past the cuff and to provide an effective air seal in the trachea while also minimizing the risk of excessive contact pressure on the tracheal mucosa. The cuff also has a deflated profile that may allow for easier insertion through the stoma site. This unique design is known as the TaperGuard™ cuff. The purpose of the observational, in vitro study reported here was to compare the TaperGuard™ taper-shaped cuff to a conventional high-volume low-pressure cylindrical-shaped cuff (Shiley™ Disposable Inner Cannula Tracheostomy Tube [DCT]) with respect to applied tracheal wall pressure, air and fluid sealing efficacy, and insertion force. Methods Three sizes of tracheostomy tubes with the two cuff types were placed in appropriately sized tracheal models and lateral wall pressure was measured via pressure-sensing elements on the inner surface. Fluid sealing performance was assessed by inflating the cuffs within the tracheal models (25 cmH2O), instilling water above the cuff, and measuring fluid leakage past the cuff. To measure air leak, tubes were attached to a test lung and ventilator, and leak was calculated by subtracting the average exhaled tidal volume from the average delivered tidal volume. A tensile test machine was used to measure insertion force for each tube with the cuff deflated to simulate clinical insertion through a stoma site. Results The average pressure exerted on the lateral wall of the model trachea was lower for the taper-shaped cuff than for the cylindrical cuff under all test conditions (P<0.05). The taper-shaped cuff also demonstrated a more even, lower pressure distribution along the lateral wall of the model trachea. The average air and fluid seal performance with the taper-shaped cuff was significantly improved, when compared to the cylindrical-shaped cuff, for each tube size tested (P<0.05). The insertion force for the taper-shaped cuff was ~40% less than that for the cylindrical-shaped cuff. Conclusion In a model trachea, the Shiley™ Flexible Adult tracheostomy tube with TaperGuard™ cuff, when compared to the Shiley™ Disposable Inner Cannula Tracheostomy tube with cylindrical cuff, exerted a lower average lateral wall pressure and a more evenly distributed pressure. In addition, it provided more effective fluid and air seals and required less force to insert. PMID:25960679

  14. Explosives screening on a vehicle surface

    DOEpatents

    Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.

    2005-02-01

    A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.

  15. Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces

    DOEpatents

    Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.

    1997-12-02

    Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.

  16. Simplified Calculation Of Solar Fluxes In Solar Receivers

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1990-01-01

    Simplified Calculation of Solar Flux Distribution on Side Wall of Cylindrical Cavity Solar Receivers computer program employs simple solar-flux-calculation algorithm for cylindrical-cavity-type solar receiver. Results compare favorably with those of more complicated programs. Applications include study of solar energy and transfer of heat, and space power/solar-dynamics engineering. Written in FORTRAN 77.

  17. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  18. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility.

    PubMed

    Izumi, N; Meezan, N B; Divol, L; Hall, G N; Barrios, M A; Jones, O; Landen, O L; Kroll, J J; Vonhof, S A; Nikroo, A; Jaquez, J; Bailey, C G; Hardy, C M; Ehrlich, R B; Town, R P J; Bradley, D K; Hinkel, D E; Moody, J D

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  19. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cylindrical in shape, with a water capacity of 1,000 pounds or less and a service pressure of at least 225 and... inch. In any case the minimum wall thickness must be such that the calculated wall stress at the...; (iii) 35,000 psi; or (iv) Further provided that wall stress for cylinders having copper brazed...

  20. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cylindrical in shape, with a water capacity of 1,000 pounds or less and a service pressure of at least 225 and... inch. In any case the minimum wall thickness must be such that the calculated wall stress at the...; (iii) 35,000 psi; or (iv) Further provided that wall stress for cylinders having copper brazed...

  1. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  2. RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS

    PubMed Central

    Ray, Peter M.

    1967-01-01

    Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369

  3. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

    1987-01-01

    Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

  4. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  5. Analytical and experimental investigation of stator endwall contouring in a small axial-flow turbine. 1: Stator performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.

    1982-01-01

    Three stator configurations were studied to determine the effect of stator outer endwall contouring on stator performance. One configuration was a cylindrical stator design. One contoured stator configuration had an S-shaped outer endwall, the other had a conical-convergent outer endwall. The experimental investigation consisted of annular surveys of stator exit total pressure and flow angle for each stator configuration over a range of stator pressure ratio. Radial variations in stator loss and aftermixed flow conditions were obtained when these data were compared with the analytical results to assess the validity of the analysis, good agreement was found.

  6. Turbine blade with contoured chamfered squealer tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axiallymore » extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.« less

  7. Lubrication and Cooling Studies of Cylindrical-Roller Bearings at High Speeds

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1952-01-01

    The results of an experimental investigation of the effect of oil inlet distribution and oil inlet temperature on the inner and outer-race temperatures of 75-millimeter-bore (size 215) cylindrical-roller inner-race-riding cage-type bearings are reported. A radial-load test rig was used over a range of dn values (product of the bearing bore in mm and the shaft speed in r.p.m) from 0.3 x 10(5) to 1.2 x 10(6) and static radial loads from 7 to 1113 pounds.

  8. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE PAGES

    Short, Mark; Jackson, Scott I.

    2015-01-23

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  9. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Jackson, Scott I.

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  10. Calculation of load distribution in stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Ebner, H; Koller, H

    1938-01-01

    Thin-walled shells with strong longitudinal and transverse stiffening (for example, stressed-skin fuselages and wings) may, under certain simplifying assumptions, be treated as static systems with finite redundancies. In this report the underlying basis for this method of treatment of the problem is presented and a computation procedure for stiffened cylindrical shells with curved sheet panels indicated. A detailed discussion of the force distribution due to applied concentrated forces is given, and the discussion illustrated by numerical examples which refer to an experimentally determined circular cylindrical shell.

  11. Note: Device for obtaining volumetric, three-component velocity fields inside cylindrical cavities.

    PubMed

    Ramírez, G; Núñez, J; Hernández, G N; Hernández-Cruz, G; Ramos, E

    2015-11-01

    We describe a device designed and built to obtain the three-component, steady state velocity field in the whole volume occupied by a fluid in motion contained in a cavity with cylindrical walls. The prototype comprises a two-camera stereoscopic particle image velocimetry system mounted on a platform that rotates around the volume under analysis and a slip ring arrangement that transmits data from the rotating sensors to the data storage elements. Sample observations are presented for natural convection in a cylindrical container but other flows can be analyzed.

  12. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    PubMed

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  13. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    DOEpatents

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  14. Radiation and phase change of lithium fluoride in an annulus

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1993-01-01

    A one-dimensional thermal model is developed to evaluate the effect of radiation on the phase change of lithium-fluoride (LiF) in an annular canister under gravitational and microgravitational conditions. Specified heat flux at the outer wall of the canister models focused solar flux; adiabatic and convective conditions are considered for the inner wall. A two-band radiation model is used for the combined-mode heat transfer within the canister, and LiF optical properties relate metal surface properties in vacuum to those in LiF. For axial gravitational conditions, the liquid LiF remains in contact with the two bounding walls, whereas a void gap is used at the outer wall to model possible microgravitational conditions. For the adiabatic cases, exact integrals are obtained for the time required for complete melting of the LiF. Melting was found to occur primarily from the outer wall in the 1-g model, whereas it occurred primarily from the inner wall in the mu-g model. For the convective cases, partially melted steady-state conditions and fully melted conditions are determined to depend on the source flux level, with radiation extending the melting times.

  15. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less

  16. Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model

    NASA Astrophysics Data System (ADS)

    Zhua, Ningning; Jiaa, Yonghong; Luo, Lun

    2016-06-01

    The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  17. Rotating Reverse-Osmosis for Water Purification

    NASA Technical Reports Server (NTRS)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  18. The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls.

    PubMed

    Chan, Jordi; Crowell, Elizabeth; Eder, Magdalena; Calder, Grant; Bunnewell, Susan; Findlay, Kim; Vernhettes, Samantha; Höfte, Herman; Lloyd, Clive

    2010-10-15

    Plant shoots have thick, polylamellate outer epidermal walls based on crossed layers of cellulose microfibrils, but the involvement of microtubules in such wall lamellation is unclear. Recently, using a long-term movie system in which Arabidopsis seedlings were grown in a biochamber, the tracks along which cortical microtubules move were shown to undergo slow rotary movements over the outer surface of hypocotyl epidermal cells. Because microtubules are known to guide cellulose synthases over the short term, we hypothesised that this previously unsuspected microtubule rotation could, over the longer term, help explain the cross-ply structure of the outer epidermal wall. Here, we test that hypothesis using Arabidopsis plants expressing the cellulose synthase GFP-CESA3 and show that cellulose synthase trajectories do rotate over several hours. Neither microtubule-stabilising taxol nor microtubule-depolymerising oryzalin affected the linear rate of GFP-CESA3 movement, but both stopped the rotation of cellulose synthase tracks. Transmission electron microscopy revealed that drug-induced suppression of rotation alters the lamellation pattern, resulting in a thick monotonous wall layer. We conclude that microtubule rotation, rather than any hypothetical mechanism for wall self-assembly, has an essential role in developing cross-ply wall texture.

  19. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  20. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE PAGES

    Izumi, N.; Meezan, N. B.; Divol, L.; ...

    2016-08-12

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  1. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the techniquemore » of spectrally selective x-ray imaging are discussed.« less

  2. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N.; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  3. Relationship Between Packing Structure and Porosity in Fixed Beds of Equilateral Cylindrical Particles

    DTIC Science & Technology

    2006-09-23

    Roblee et al., 1958). Kubie (1988) derived a theoretical wall density function and compared it to experimental results. Reyes and Iglesia (1991) and...Engineering Chemistry Process Design and Development 7, 250-252. Kubie . J., 1988. Influence of containing walls on the distribution of voidage in

  4. Ideal light concentrators with reflector gaps

    DOEpatents

    Winston, Roland

    1980-01-01

    A cylindrical or trough-like radiant energy concentration and collection device is provided. The device includes an energy absorber, a glazing enveloping the absorber and a reflective wall. The ideal contour of the reflective wall is determined with reference to a virtual absorber and not the actual absorber cross section.

  5. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  6. Studies on the response of resistive-wall modes to applied magnetic perturbations in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Gregoratto, D.; Drake, J. R.; Yadikin, D.; Liu, Y. Q.; Paccagnella, R.; Brunsell, P. R.; Bolzonella, T.; Marchiori, G.; Cecconello, M.

    2005-09-01

    Arrays of magnetic coils and sensors in the EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43 1457 (2001)] reversed-field pinch have been used to investigate the plasma response to an applied resonant magnetic perturbation in the range of the resistive-wall modes (RWMs). Measured RWM growth rates agree with predictions of a cylindrical ideal-plasma model. The linear growth of low-n marginally stable RWMs is related to the so-called resonant-field amplification due to a dominant ∣n∣=2 machine error field of about 2 G. The dynamics of the m =1 RWMs interacting with the applied field produced by the coils can be accurately described by a two-pole system. Estimated poles and residues are given with sufficient accuracy by the cylindrical model with a thin continuous wall.

  7. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  8. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Astrophysics Data System (ADS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  9. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    NASA Technical Reports Server (NTRS)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    1993-01-01

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  10. Gas turbine engine combustor can with trapped vortex cavity

    DOEpatents

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  11. Two stage serial impingement cooling for isogrid structures

    DOEpatents

    Lee, Ching-Pang; Morrison, Jay A.

    2014-09-09

    A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

  12. Apparatus for observing a hostile environment

    DOEpatents

    Nance, Thomas A.; Boylston, Micah L.; Robinson, Casandra W.; Sexton, William C.; Heckendorn, Frank M.

    2000-01-01

    An apparatus is provided for observing a hostile environment, comprising a housing and a camera capable of insertion within the housing. The housing is a double wall assembly with an inner and outer wall with an hermetically sealed chamber therebetween. A housing for an optical system used to observe a hostile environment is provided, comprising a transparent, double wall assembly. The double wall assembly has an inner wall and an outer wall with an hermetically sealed chamber therebetween. The double wall assembly has an opening and a void area in communication with the opening. The void area of the housing is adapted to accommodate the optical system within said void area. An apparatus for protecting an optical system used to observe a hostile environment is provided comprising a housing; a tube positioned within the housing; and a base for supporting the housing and the tube. The housing comprises a double wall assembly having an inner wall and an outerwall with an hermetically sealed chamber therebetween. The tube is adapted to house the optical system therein.

  13. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  14. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOEpatents

    Wanlass, Mark

    1987-01-01

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  15. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  16. Magnetic mirror effect in a cylindrical Hall thruster

    NASA Astrophysics Data System (ADS)

    Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin

    2018-01-01

    For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0-5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.

  17. Experimental fatigue life investigation of cylindrical thrust chambers

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1977-01-01

    Twenty-two cylindrical test sections of a cylindrical rocket thrust chamber were fabricated and 21 of them were cycled to failure to explore the failure mechanisms, determine the effects of wall temperature on cyclic life, and to rank the material life characteristics for comparison with results from isothermal tests of 12 alloys at 538 C. Cylinder liners were fabricated from OFHC copper, Amzirc, and NAR1loy-Z. Tests were conducted at a chamber pressure of 4.14 MW/sq m using hydrogen-oxygen propellants at an oxidant-fuel ratio of 6.0, which resulted in an average throat heat flux of 54 MW/sq m. The cylinders were cooled with liquid hydrogen at an average rate of 0.91 Kg/sec. All failures were characterized by a thinning of the cooling channel wall at the centerline and eventual failure by tensile rupture. Cyclic life rankings of the materials based on temperature do not agree with published rankings based on uniaxial, isothermal strain tests.

  18. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  19. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.

    PubMed

    Guervilly, Céline; Brummell, Nicholas H

    2012-10-01

    We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.

  20. Mechanical thermal motor

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1976-01-01

    An apparatus is described for converting thermal energy such as solar energy into mechanical motion for driving fluid pumps and similar equipment. The thermal motor comprises an inner concentric cylinder carried by a stationary core member. The core member has a cylindrical disc plate fixed adjacent to a lower portion and extending radially from it. An outer concentric cylinder rotatably carried on the disc plate defining a space between the inner and outer concentric cylinders. A spiral tubular member encircles the inner concentric cylinder and is contained within the space between the inner and outer cylinders. One portion is connected to the inner concentric cylinder and a second portion connected to the outer concentric cylinder. A heated fluid is conveyed through the tubular member and is periodically cooled causing the tubular member to expand and contract. This causes the outer concentric cylinder to reciprocally rotate on the base plate accordingly. The reciprocating motion of the outer concentric cylinder is then utilized to drive a pump member in a pump chamber.

  1. Optical monitoring system for a turbine engine

    DOEpatents

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  2. Tornado type wind turbines

    DOEpatents

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  3. Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall

    NASA Astrophysics Data System (ADS)

    Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru

    2018-07-01

    We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.

  4. Note: A contraction channel design for planar shock wave enhancement

    NASA Astrophysics Data System (ADS)

    Zhan, Dongwen; Li, Zhufei; Yang, Jianting; Zhu, Yujian; Yang, Jiming

    2018-05-01

    A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again "bent" back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.

  5. Instantons for vacuum decay at finite temperature in the thin wall limit

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume

    1994-05-01

    In N+1 dimensions, false vacuum decay at zero temperature is dominated by the O(N+1)-symmetric instanton, a sphere of radius R0, whereas at temperatures T>>R-10, the decay is dominated by a ``cylindrical'' (static) O(N)-symmetric instanton. We study the transition between these two regimes in the thin wall approximation. Taking an O(N)-symmetric ansatz for the instantons, we show that for N=2 and N=3 new periodic solutions exist in a finite temperature range in the neighborhood of T~R-10. However, these solutions have a higher action than the spherical or the cylindrical one. This suggests that there is a sudden change (a first order transition) in the derivative of the nucleation rate at a certain temperature T*, when the static instanton starts dominating. For N=1, on the other hand, the new solutions are dominant and they smoothly interpolate between the zero temperature instanton and the high temperature one, so the transition is of second order. The determinantal prefactors corresponding to the ``cylindrical'' instantons are discussed, and it is pointed out that the entropic contributions from massless excitations corresponding to deformations of the domain wall give rise to an exponential enhancement of the nucleation rate for T>>R-10.

  6. Lamb-type waves generated by a cylindrical bubble oscillating between two planar elastic walls

    PubMed Central

    Mekki-Berrada, F.; Thibault, P.; Marmottant, P.

    2016-01-01

    The volume oscillation of a cylindrical bubble in a microfluidic channel with planar elastic walls is studied. Analytical solutions are found for the bulk scattered wave propagating in the fluid gap and the surface waves of Lamb-type propagating at the fluid–solid interfaces. This type of surface wave has not yet been described theoretically. A dispersion equation for the Lamb-type waves is derived, which allows one to evaluate the wave speed for different values of the channel height h. It is shown that for h<λt, where λt is the wavelength of the transverse wave in the walls, the speed of the Lamb-type waves decreases with decreasing h, while for h on the order of or greater than λt, their speed tends to the Scholte wave speed. The solutions for the wave fields in the elastic walls and in the fluid are derived using the Hankel transforms. Numerical simulations are carried out to study the effect of the surface waves on the dynamics of a bubble confined between two elastic walls. It is shown that its resonance frequency can be up to 50% higher than the resonance frequency of a similar bubble confined between two rigid walls. PMID:27274695

  7. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  8. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium

    PubMed Central

    Beveridge, T. J.; Murray, R. G. E.

    1974-01-01

    Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219

  10. The affection of the disturbance of the hydrodynamics of blood in case of stress on pathological increase of level of low density lipoproteins in blood. The formation of cylindrical plaques, and their participation in the development of acute ischemic disorders of heart and brain.

    PubMed

    Rusanov, S E

    2017-09-01

    In this article is given the new insight about the affection of stress on the increase of level of low density lipoproteins (LDL) in the blood, which is connected with the disturbance of hydrodynamics in the bloodstream, the attention was paid to the cylindrical cholesterol plaque, and it's classification. The disturbance of hydrodynamics of blood under the stress leads to the formation of a cylindrical cholesterol plaque, which repeats the contour of the vessel, and leads to the ischemic disorders of the heart and brain. The cylindrical cholesterol plaque goes through several stages of development: friable, yielding, dense, old. In the case of destruction of friable, fresh cholesterol plaque, releases a big quantity of low-density lipoproteins. This leads to the pathological increase of level of LDL in the blood. In the case of long disturbance of hydrodynamics, occurs the formation of strong links between low-density lipoproteins. Yielding cholesterol plaque is formed. Further maturation of cylindrical cholesterol plaque, leads to it's densifying and damage. We may emphasize, that short periods of strong contraction and expansion of vessels lead to the increase of level of LDL in the blood. Self-dependent restoration of normal level of LDL in blood occurs in the case of restoration of pressure in the limits of numbers, which are specific for particular person, and which don't exceed the physiological standard. Among patients with long duration of stress, the duration of vasospasm increases. LDL, without having a possibility to crumble, begin to stick together and form the yielding cylindrical plaque. It is characterized by having of not so strong connection with the vascular wall, and maintains only at the expanse of iteration of the vascular wall, it has cylindrical shape, is elastic and yellow. The thickness and length of walls depends on the degree of cross-clamping during the time of formation of yielding cylindrical plaque. In the case of stopping of spasm, yielding cylindrical plaque can resolve slowly. Among hypotensive and individuals, which have normal pressure, the increase of level of LDL isn't noted. There aren't such investigations, where such link was noted. The increasing of level of LDL among these people (especially under the stress) can say about cases of short-term increase of pressure, which could be unnoticed. These patients require pressure monitoring and, accordingly, the adjustment of the state of stress and anger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  12. Development of wind operated passive evaporative cooling structures for storage of tomatoes

    USDA-ARS?s Scientific Manuscript database

    A wind operated passive evaporative cooler was developed. Two cooling chambers were made with clay containers (cylindrical and square shapes). These two containers were separately inserted inside bigger clay pot inter- spaced with clay soil of 7 cm (to form pot-in-pot and wall-in wall) with the outs...

  13. Analytical Proof That There is no Effect of Confinement or Curvature on the Maxwell-Boltzmann Collision Frequency

    NASA Astrophysics Data System (ADS)

    Carnio, Brett N.; Elliott, Janet A. W.

    2014-08-01

    The number of Maxwell-Boltzmann particles that hit a flat wall in infinite space per unit area per unit time is a well-known result. As new applications are arising in micro and nanotechnologies there are a number of situations in which a rarefied gas interacts with either a flat or curved surface in a small confined geometry. Thus, it is necessary to prove that the Maxwell-Boltzmann collision frequency result holds even if a container's dimensions are on the order of nanometers and also that this result is valid for both a finite container with flat walls (a rectangular container) and a finite container with a curved wall (a cylindrical container). An analytical proof confirms that the Maxwell-Boltzmann collision frequencies for either a finite rectangular container or a finite cylindrical container are both equal to the well-known result obtained for a flat wall in infinite space. A major aspect of this paper is the introduction of a mathematical technique to solve the arising infinite sum of integrals whose integrands depend on the Maxwell-Boltzmann velocity distribution.

  14. Wall-layer eruptions in turbulent flows

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1989-01-01

    The near-wall region of a turbulent flow is investigated in the limit of large Reynolds numbers. When low-speed streaks are present, the governing equations are shown to be of the boundary-layer type. Physical processes leading to local breakdown and a strong interaction with the outer region are considered. It is argued that convected vortices, predominantly of the hairpin type, will provoke eruptions and regenerative interactions with the outer region.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.C.; Reiss, R.J.; Rica, A.F.

    There is disclosed an aseptic flexible walled container having a rigid fitment member cooperative with an aseptic filling apparatus and including a neck, outer flanges surrounding the neck, a frangible membrane and an outer end rim receptive of an hermetically sealed lid. The neck is formed with an internal chamferred seating shoulder for fluid-tight engagement with a fill tube. One outer flange cooperates with clamping jaws of the aseptic filling apparatus for detachably sealing the fitment to a sterilizing chamber and placing it in position for insertion of the filling tube which ruptures the membrane and permits the aseptic introductionmore » of product to the container's interior. The other outer flange is secured to an opening in a wall of the flexible container. The joined fitment and container are presterilized prior to filling. Selected materials for the multi-ply container walls and the fitment permit the container to withstand gamma ray and other sterilization treatment, heat and pressure while maintaining required strength. After the container is aseptically filled, such as with flowable food product, the fill tube is withdrawn and a lid is hermetically sealed onto the rim of the fitment. A heat shield adjacent a container wall surrounds the fitment to protect the container from excessive heat generated by the associated filling apparatus during filling.« less

  16. Combined centrifugal force/gravity gas/liquid separator system

    NASA Astrophysics Data System (ADS)

    Lema, Luis E.

    1993-04-01

    A gas/liquid separator system has an outer enclosing tank filled with a demisting packing material. The tank has a gas outlet port and a liquid outlet port located at its top and bottom, respectively. At least one cylindrical, centrifugal force gas/liquid separator is vertically aligned and centrally located within the tank and is surrounded by the packing material. The cylindrical separator receives a gas/liquid mixture, separates the mixture into respective substantially gas and substantially liquid components, and allows the substantially gas components to exit its gas escape port. It also allows the substantially liquid components to exit its liquid escape port. The packing material in the tank further separates the substantially gas and liquid components as they rise and fall, respectively, through the packing material. An inflow line introduces the mixture into the cylindrical separator. The inflow line is upwardly inclined in a direction of flow of the mixture at a point where the inflow line communicates with the cylindrical separator.

  17. Research on soundproof properties of cylindrical shells of generalized phononic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Ru; Shu, Haisheng; Wang, Xingguo

    2017-04-01

    Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.

  18. Analysis of the processes occurring in a submicrosecond discharge with a linear current density of up to 3 MA/cm through a thick-wall stainless-steel electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branitsky, A. V.; Grabovski, E. V.; Dzhangobegov, V. V.

    The state of conductors carrying a megampere current from the generator to the load is studied experimentally. It is found that the plasma produced from cylindrical stainless-steel tubes during the passage of a submicrosecond current pulse with a linear density of 3 MA/cm expands with a velocity of 5.5 km/s. Numerical results on the diffusion of the magnetic field induced by a current with a linear density of 1–3MA/cm into metal electrodes agree with the experimental data on the penetration time of the magnetic field. For a linear current density of 3.1 MA/cm, the experimentally determined electric field strength onmore » the inner surface of the tube is 4 kV/cm. The calculated electric field strength on the inner surface of the tube turns out to be two times higher, which can be explained by plasma production on the outer and inner surfaces of the electrode.« less

  19. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  20. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.

    PubMed

    Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A

    2016-08-01

    Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.

  1. Wall turbulence control

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.

    1986-01-01

    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.

  2. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    PubMed

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  3. Transient heat transfer in viscous rarefied gas between concentric cylinders. Effect of curvature

    NASA Astrophysics Data System (ADS)

    Gospodinov, P.; Roussinov, V.; Dankov, D.

    2015-10-01

    The thermoacoustic waves arising in cylindrical or planar Couette rarefied gas flow between rotating cylinders is studied in the cases of suddenly cylinder (active) wall velocity direction turn on. An unlimited increase in the radius of the inner cylinder flow can be interpreted as Couette flow between the two flat plates. Based on the developed in previous publications Navier-Stockes-Fourier (NSF) model and Direct Simulation Monte Carlo (DSMC) method and their numerical solutions, are considered transient processes in the gas phase. Macroscopic flow characteristics (velocity, density, temperature) are received. The cylindrical flow cases for fixed velocity and temperature of the both walls are considered. The curvature effects over the wave's distribution and attenuation are studied numerically.

  4. Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles

    DOEpatents

    Burdgick, Steven Sebastian; Burns, James Lee

    2002-01-01

    A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

  5. Experimental Tests of Nonlocal Rheology in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Tang, Zhu; Brzinski, Ted; Shearer, Michael; Daniels, Karen

    Several nonlocal granular rheology models have been proposed to address shortcomings in local rheology models. One such model, developed by Kamrin & Koval, is based on extending a local Bagnold-type granular flow law by including a Laplacian term that accounts for the grain size and cooperative effects. We perform experiments to test this model in a quasi-2D annular shear geometry with a fixed outer wall and a rotating inner wall. We obtain the speed profile by particle tracking. We measure the inner wall torque, and calculate the pressure and shear stress on the outer wall using deformable laser-cut leaf springs. This allows us to calculate the relationship between the stress ratio μ and the inertial number I at different inner wall rotation speeds and packing fractions. The results are compared with nonlocal models.

  6. Plasma confinement system and methods for use

    DOEpatents

    Jarboe, Thomas R.; Sutherland, Derek

    2017-09-05

    A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.

  7. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...

  8. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...

  9. Permanent-Magnet Meissner Bearing

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  10. Annular vortex combustor

    DOEpatents

    Nieh, Sen; Fu, Tim T.

    1992-01-01

    An apparatus for burning coal water fuel, dry ultrafine coal, pulverized l and other liquid and gaseous fuels including a vertically extending outer wall and an inner, vertically extending cylinder located concentrically within the outer wall, the annnular space between the outer wall and the inner cylinder defining a combustion chamber and the all space within the inner cylinder defining an exhaust chamber. Fuel and atomizing air are injected tangentially near the bottom of the combustion chamber and secondary air is introduced at selected points along the length of the combustion chamber. Combustion occurs along the spiral flow path in the combustion chamber and the combined effects of centrifugal, gravitational and aerodynamic forces cause particles of masses or sizes greater than the threshold to be trapped in a stratified manner until completely burned out. Remaining ash particles are then small enough to be entrained by the flue gas and exit the system via the exhaust chamber in the opposite direction.

  11. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Xuebo; Wang, Youshan

    2018-02-01

    Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.

  12. Airfoil for a gas turbine engine

    DOEpatents

    Liang, George [Palm City, FL

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  13. Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans

    2011-09-01

    Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with pinning centers, which may be engineered, for example, through modulations in the nanowire geometry (such as notches or extrusions) or in the magnetic properties of the material. In this paper we study the motion and depinning of transverse domain walls through pinning centers in ferromagnetic cylindrical nanowires. We use (i) magnetic fields and (ii) spin-polarized currents to drive the domain walls along the wire. The pinning centers are modelled as a section of the nanowire which exhibits a uniaxial crystal anisotropy where the anisotropy easy axis and the wire axis enclose a variable angle θP. Using (i) magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the pinning center differ by 30%. On the contrary, using (ii) spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density (observed for θP=0∘, i.e., anisotropy axis pointing parallel to the wire axis) and the maximum value (for θP=90∘, i.e., anisotropy axis perpendicular to the wire axis). We study the depinning current density as a function of the height of the energy barrier of the pinning center using numerical and analytical methods. We find that for an industry standard energy barrier of 40kBT, a depinning current of about 5μA (corresponding to a current density of 6×1010A/m2 in a nanowire of 10nm diameter) is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design, the spin torque transfer term is acting exactly against the damping in the micromagnetic system, and thus the low current density is sufficient to accumulate enough energy quickly. These key insights may be crucial in furthering the development of novel memory technologies, such as the racetrack memory, that can be controlled through low current densities.

  14. Solar heating and cooling diode module

    DOEpatents

    Maloney, Timothy J.

    1986-01-01

    A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

  15. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  16. A new approach to the internal thermal management of cylindrical battery cells for automotive applications

    NASA Astrophysics Data System (ADS)

    Worwood, Daniel; Kellner, Quirin; Wojtala, Malgorzata; Widanage, W. D.; McGlen, Ryan; Greenwood, David; Marco, James

    2017-04-01

    Conventional cooling approaches that target either a singular tab or outer surface of common format cylindrical lithium-ion battery cells suffer from a high cell thermal resistance. Under an aggressive duty cycle, this resistance can result in the formation of large in-cell temperature gradients and high hot spot temperatures, which are known to accelerate ageing and further reduce performance. In this paper, a novel approach to internal thermal management of cylindrical battery cells to lower the thermal resistance for heat transport through the inside of the cell is investigated. The effectiveness of the proposed method is analysed for two common cylindrical formats when subject to highly aggressive electrical loading conditions representative of a high performance electric vehicle (EV) and hybrid electric vehicle (HEV). A mathematical model that captures the dominant thermal properties of the cylindrical cell is created and validated using experimental data. Results from the extensive simulation study indicate that the internal cooling strategy can reduce the cell thermal resistance by up to 67.8 ± 1.4% relative to single tab cooling, and can emulate the performance of a more complex pack-level double tab cooling approach whilst targeting cooling at a single tab.

  17. Pole-phase modulated toroidal winding for an induction machine

    DOEpatents

    Miller, John Michael; Ostovic, Vlado

    1999-11-02

    A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.

  18. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... impounding system is prohibited except for concrete wall designed tanks where the concrete wall is an outer...

  19. Controlled motion of domain walls in submicron amorphous wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less

  20. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  1. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  2. Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain

    NASA Astrophysics Data System (ADS)

    Brennan, D. P.; Finn, J. M.

    2014-10-01

    Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw < βrp,iw < βip,rw < βip,iw (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below βrp,iw because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above βrp,iw because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain Gi to optimize in the presence of rotation in this regime with β > βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw.

  3. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  4. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  5. Thermocryogenic buckling and stress analyses of a partially filled cryogenic tank subjected to cylindrical strip heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.

  6. Analysis of close-contact melting with inner wall temperature variation in a horizontal cylindrical capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, T.S.; Hoshi, Akira

    1997-12-31

    Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. In recent years, close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). However, there is no theoreticalmore » solution considering the inner wall temperature variation within cylindrical or spherical capsules. In this report close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations are presented, which facilitates designing of the practical capsule bed LHTES systems. The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition, the effects of variable inner wall temperature on molten mass fraction were investigated.« less

  7. Heat pump water heater and method of making the same

    DOEpatents

    Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  8. Study on the new technology of removing gangue and retaining roadway in complicated roof condition

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Jiang, Cong

    2018-04-01

    This article in view of the complex roof conditions was carried on study about the new technology of removing gangue and retaining roadway, and tells a method of progressive reinforced concrete wall segment with gangue to keep the roadway, the roadway beside the support system is mainly composed of the lining, waste rock wall and the outer wall, the wall and the outer wall of concrete material width to build the strength of the progressive type filling body, waste rock wall with woven bag with waste rock assembled, paragraphs geological survey on the actual distance should be based on working face. This method relies on the interior of the gangue wall to make the pressure control and allow the roof to sink. In this paper, the finite deformation control of the roof is realized by the gangue wall and the high strength filling body. This method has the characteristics of low entry cost, good forming of roadway, high security and good stability, and can be applied to complex geological conditions such as hard roof.

  9. The growing outer epidermal wall: design and physiological role of a composite structure.

    PubMed

    Kutschera, U

    2008-04-01

    The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a 'tensile skin'. The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These 'plywood laminates' contain crystalline 'cables' orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic 'OEW-like' herringbone patterns. Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design 'without an intelligent designer' evolved independently in the protective 'skin' of plants, animals and many other organisms.

  10. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  11. Redundant Bearing Assembly

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    1995-01-01

    Proposed redundant bearing assembly consists of two modified ball or roller bearings, one held by other. Outer race of inner bearing press-fit into inner race of outer bearing. Within each bearing, side walls of inner and outer races extended radially toward each other leaving only small gap. In assembly, one bearing continues to allow free rotation when other fails. Bearing wear monitored by examination of gaps between races. In alternative design, inner race of outer bearing and outer race of inner bearing manufactured as single piece.

  12. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

  13. Turbine airfoil with controlled area cooling arrangement

    DOEpatents

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  14. Trap seal for open circuit liquid cooled turbines

    DOEpatents

    Grondahl, Clayton M.; Germain, Malcolm R.

    1980-01-01

    An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.

  15. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  16. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  17. Heat transfer in a rotating cavity with a stationary stepped casing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaee, I.; Quinn, P.; Wilson, M.

    1999-04-01

    In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less

  18. The assessment of accuracy of inner shapes manufactured by FDM

    NASA Astrophysics Data System (ADS)

    Gapiński, Bartosz; Wieczorowski, Michał; Båk, Agata; Domínguez, Alejandro Pereira; Mathia, Thomas

    2018-05-01

    3D printing created a totally new manufacturing possibilities. It is possible e.g. to produce closed inner shapes with different geometrical features. Unfortunately traditional methods are not suitable to verify the manufacturing accuracy, because it would be necessary to cut workpieces. In the paper the possibilities of computed tomography (x-ray micro-CT) application for accuracy assessment of inner shapes are presented. This was already reported in some papers. For research works hollow cylindrical samples with 20mm diameter and 300mm length were manufactured by means of FDM. A sphere, cone and cube were put inside these elements. All measurements were made with the application of CT. The measurement results enable us to obtain a full geometrical image of both inner and outer surfaces of a cylinder as well as shapes of inner elements. Additionally, it is possible to inspect the structure of a printed element - size and location of supporting net and all the other supporting elements necessary to hold up the walls created over empty spaces. The results obtained with this method were compared with CAD models which were a source of data for 3D printing. This in turn made it possible to assess the manufacturing accuracy of particular figures inserted into the cylinders. The influence of location of the inner supporting walls on a shape deformation was also investigated. The results obtained with this way show us how important CT can be during the assessment of 3D printing of objects.

  19. The dynamics of domain walls and strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Haws, David; Garfinkle, David

    1989-01-01

    The leading order finite-width corrections to the equation of motion describing the motion of a domain wall are derived. The regime in which this equation of motion is invalid is discussed. Spherically and cylindrically symmetric solutions to this equation of motion are found. A misconception that has arisen in recent years regarding the rigidity (or otherwise) of cosmic strings is also clarified.

  20. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  1. Vacuum vapor deposition gun assembly

    DOEpatents

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  2. Torsional Oscillations of the Earths's Core

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.

    1997-01-01

    Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.

  3. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study.

    PubMed

    Krutyeva, M; Pasini, S; Monkenbusch, M; Allgaier, J; Maiz, J; Mijangos, C; Hartmann-Azanza, B; Steinhart, M; Jalarvo, N; Richter, D

    2017-05-28

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  4. A type of cylindrical Hall thruster with a magnetically insulated anode

    NASA Astrophysics Data System (ADS)

    Yongjie, Ding; Yu, Xu; Wuji, Peng; Liqiu, Wei; Hongbo, Su; Hezhi, Sun; Peng, Li; Hong, Li; Daren, Yu

    2017-04-01

    In this paper, a type of magnetically insulated anode structure is proposed for the design of a low-power cylindrical Hall thruster. The magnetic field distribution in the channel is guided by the magnetically insulated anode, altering the intersection status of the magnetic field line passing through the anode and wall. Experimental and simulation results show that a high potential is formed near the wall by the magnetically insulated anode. As the ionization moves towards the outlet, the energy and flux of the ions bombarding the channel wall can be reduced effectively. Due to the reduction in the bombardment of the wall from high-energy ions, the thrust and specific impulse greatly increase compared with those of the non-magnetically insulated anode. For anode mass flow rates of 0.3 and 0.35 mg s-1 and discharge voltages in the 100-200 V range, the thrust can be increased by more than 33% and the anode efficiency can be improved by more than 7%. Meanwhile, the length of the sputtering area is clearly reduced. The starting position of the sputtering area is in front of the magnetic pole, which can effectively prolong the service life of the thruster.

  5. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D.

    2017-05-01

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  6. Contamination control device

    DOEpatents

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  7. Sound Transmission through Cylindrical Shell Structures Excited by Boundary Layer Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.

  8. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  9. Wall charging of a helicon antenna wrapped plasma filled dielectric tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K., E-mail: kbarada@physics.ucla.edu; Chattopadhyay, P. K., E-mail: pkchatto@ipr.res.in; Ghosh, J.

    2015-01-15

    Dielectric wall charging of a cylindrical glass wall surrounded by a helicon antenna of 18 cm length is measured in a linear helicon plasma device with a diverging magnetic field. The ions because of their lesser mobility do not respond to the high frequency electric field and the electrons charge the wall to a negative DC potential also known as the DC self-bias. The wall potential in this device is characterized for different neutral pressure, magnetic field, and radio frequency (RF) power. Axial variation of wall potential shows higher self-bias potentials near the antenna rings. Ion magnetization in the source chambermore » increases both wall charging and plasma potential of the source due to confinement.« less

  10. Specificities of Acoustic Streaming in Cylindrical Cavity with Increasing Nonlinearity of the Process

    NASA Astrophysics Data System (ADS)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2018-01-01

    This paper presents a numerical study of a gas acoustic streaming in a cylindrical cavity under a vibratory action. The walls of the cavity are considered impermeable and maintained at a constant temperature. The test gas is air. Variations in acoustic streaming and period-average temperature of the gas in the cavity with increasing nonlinearity of the process are shown. The increase in the nonlinearity is caused by an increase in the vibration amplitude.

  11. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  12. Blade for a gas turbine

    DOEpatents

    Liang, George

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  13. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.

  14. Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane

    NASA Astrophysics Data System (ADS)

    Straube, Ronny; Ward, Michael J.; Falcke, Martin

    2007-10-01

    Biomembranes consist of a lipid bi-layer into which proteins are embedded to fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach these regions by simple diffusion. Motivated by the observation that IP3 receptor channels (IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the tubular ER is explicitly taken into account. The problem can be reduced to the solution of the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The solution is constructed by matching appropriate `inner' and `outer' asymptotic expansions. The asymptotic results are compared with those from numerical simulations and excellent agreement is obtained. For realistic parameter sets, we find reaction rates in the range of experimentally measured clustering rates of IP3R. This supports the idea that clusters are formed by a purely diffusion limited process.

  15. Calibrating pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J. (Inventor)

    1968-01-01

    A pressure switch assembly comprising a body portion and a switch mechanism having a contact element operable between opposite limit positions is described. A diaphragm chamber is provided in the body portion which mounts therein a system diaphragm and a calibration diaphragm which are of generally the same configuration and having outer faces conforming to the inner and outer walls of the diaphragm chamber. The space between the inner faces of the diaphragms defines a first chamber section and the space between the outer face of one of the diaphragms and the outer wall of the diaphragm chamber defines a second chamber section. The body portion includes a system pressure port communicating with one of the chamber sections and a calibration pressure port communicating with the other chamber section. An actuator connected to one of the diaphragms and the contact element of the switch operates upon pressure change in the diaphragm sections to move said contact element between limit positions.

  16. Nozzle cavity impingement/area reduction insert

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane

    2002-01-01

    A turbine vane segment is provided that has inner and outer walls spaced from one another, a vane extending between the inner and outer walls and having leading and trailing edges and pressure and suction sides, the vane including discrete leading edge, intermediate, aft and trailing edge cavities between the leading and trailing edges and extending lengthwise of the vane for flowing a cooling medium; and an insert sleeve within at least one of the cavities and spaced from interior wall surfaces thereof. The insert sleeve has an inlet for flowing the cooling medium into the insert sleeve and has impingement holes defined in first and second walls thereof that respectively face the pressure and suction sides of the vane. The impingement holes of at least one of those first and second walls are defined along substantially only a first, upstream portion thereof, whereby the cooling flow is predominantly impingement cooling along a first region of the insert wall corresponding to the first, upstream portion and the cooling flow is predominantly convective cooling along a second region corresponding to a second, downstream portion of the at least one wall of the insert sleeve.

  17. The Effect of Surface Topography on the Nonlinear Dynamics of Rossby Waves

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Desjardins, O.; Pitsch, H.

    2003-01-01

    Boussinesq convection in rotating systems attracts a sustained attention of the fluid dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg 1993) and plays an important role in geophysical and astrophysical applications, such as the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and astrophysical problems and the idealized laboratory studies is that natural systems are inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The effect of modulations on pattern formation and transition to turbulence in Boussinesq convection is far from being completely understood (Cross & Hohenberg 1993; Aranson & Kramer 2002). It is generally accepted that in the liquid outer core of the Earth the transport of the angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al. 2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang & Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or 1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or & Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the core might be influenced significantly by so-called bumps, which are heterogeneities on the mantle-core boundary. To model the effect of surface topography on the transport of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996), Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated height.

  18. The DarkSide-50 outer detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Aldo, Ianni; Andrea, Ianni; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; DSkorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-05-01

    DarkSide-50 is a dark matter detection experiment searching for Weakly Interacting Massive Particles (WIMPs), in Gran Sasso National Laboratory. For experiments like DarkSide-50, neutrons are one of the primary backgrounds that can mimic WIMP signals. The experiment consists of three nested detectors: a liquid argon time projection chamber surrounded by two outer detectors. The outermost detector is a 10 m by 11 m cylindrical water Cherenkov detector with 80 PMTs, designed to provide shielding and muon vetoing. Inside the water Cherenkov detector is the 4 m diameter spherical boron-loaded liquid scintillator veto, with a cocktail of pseudocumene, trimethyl borate, and PPO wavelength shifter, designed to provide shielding, neutron vetoing, and in situ measurements of the TPC backgrounds. We present design and performance details of the DarkSide-50 outer detectors.

  19. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  20. OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment.

    PubMed

    Samsudin, Firdaus; Ortiz-Suarez, Maite L; Piggot, Thomas J; Bond, Peter J; Khalid, Syma

    2016-12-06

    The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form. Comparative analysis of dynamics of OmpA CTD from different bacteria helped to identify a conserved PGN-binding mode. The dynamics of full-length OmpA, embedded within a realistic representation of the outer membrane containing full-rough (Ra) lipopolysaccharide, phospholipids, and cardiolipin, suggested how the protein may provide flexible mechanical support to the cell wall. An accurate model of the heterogeneous bacterial cell envelope should facilitate future efforts to develop antibacterial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Explosion containment device

    DOEpatents

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  2. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  3. Hairpin vortices in the outer and near wall regions of the canonical turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wallace, James; Wu, Xiaohua; Moin, Parviz

    2016-11-01

    While the dominance of hairpin vortices and their significance for transport processes in the transitional and early turbulent regions of the canonical turbulent boundary layer has been widely accepted, opinion is divided about the developed flow downstream. Here we investigate the representative vortical structures in the outer and near wall regions for the momentum thickness Reynolds number, Reθ , of up to 3000 using the DNS database described in. This boundary layer grows spatially from a laminar state at Reθ = 80 beneath a freestream of continuous and nearly isotropic turbulence decaying from an intensity of 3 to 0.8%. The vortical structures are visualized with the swirling strength, λci. In the outer region hairpin vortices appear and are advected over distances corresponding to about 300 - 400 in Reθ within the fully turbulent region, demonstrating that they are not remnants of transitional structures. The near wall vortical structures are more difficult to visualize and require careful tuning of the swirling strength and making invisible the flow above the near wall region of the flow. The hairpins in this region occur in intermittent clusters that have features remarkably similar to transitional turbulent spots.

  4. Turbulent Boundary Layer on a Cylinder in Axial Flow

    DTIC Science & Technology

    1988-09-29

    finding the wall shea stress. Finally, ft ;hould be noted that the wall shear stress can be found from the streamwrwise gradient of the mornsntum...somewhat butter collapse than inner scaling, suggesting that the outer flow affects events at the wall. By comparison, the burst frequency in a planar

  5. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE PAGES

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...

    2017-05-08

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  6. Premixing direct injector

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Stevenson, Christian Xavier [Inman, SC; York, William David [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2012-04-17

    A fuel injection nozzle comprises a body member having an upstream wall opposing a downstream wall, a baffle member having an upstream surface and a downstream surface, a first chamber, a second chamber, a fuel inlet communicative with the first chamber operative to emit a first gas into the first chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a second gas, a second inlet communicative with the tube outer surface and the tube inner surface operative to translate the first gas into the mixing tube, a mixing portion operative to mix the first gas and the second gas, and an outlet communicative with an aperture in the downstream wall operative to emit the mixed first and second gasses.

  7. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.

    2017-05-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  8. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  9. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  10. Defining the Hook Region Anatomy of the Guinea Pig Cochlea for Modeling of Inner Ear Surgery.

    PubMed

    Lo, Jonathon; Sale, Phillip; Wijewickrema, Sudanthi; Campbell, Luke; Eastwood, Hayden; O'leary, Stephen John

    2017-07-01

    The aim of this study was to describe the hook region anatomy of the guinea pig cochlea to identify the optimal surgical approach for cochlear implantation and to determine what anatomical structures are at risk. Animal studies investigating hearing loss after cochlear implantation surgery are currently constrained by the lack of a reproducible implantation model. Guinea pig cochleae were imaged using thin-sheet laser imaging microscopy. Images were stitched, reconstructed, and segmented for analysis. Insertion vectors were determined by tracing their paths to the outer wall and converting to Cartesian coordinates. Spherical surface and multiplane views were generated to analyze outer wall and radial forces of the insertion vector. Thin-sheet laser imaging microscopy enabled quantitative, whole specimen analysis of the soft and bony tissue relationships of the complex cochlear hook region in any desired plane without loss of image quality. Round window or cochleostomy approaches in the anteroinferior plane avoided direct damage to cochlear structures. Cochleostomy approach had large interindividual variability of angular depth and outer wall forces but predictable radial force. The guinea pig hook region and lower basal turn have similar structural relationships to humans. Careful cochleostomy placement is essentially for minimizing cochlear trauma and for ensuring a straight insertion vector that successfully advances around the outer wall. Experiments with guinea pigs that control for the surgical approach are likely to provide useful insights into the aetiology and the development of therapies directed at postimplantation hearing loss.

  11. Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)

    2009-01-01

    For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.

  12. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  13. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Graham, J.

    1993-01-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  14. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  15. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  16. Simplified calculation of solar flux distribution on the side wall of cylindrical cavity solar receivers

    NASA Technical Reports Server (NTRS)

    Bhandari, P.; Wu, Y. C.; Roschke, E. J.

    1989-01-01

    A simple solar flux calculation algorithm for a cylindrical cavity type solar receiver has been developed and implemented on an IBM PC-AT. Using cone optics, the contour error method is utilized to handle the slope error of a paraboloidal concentrator. The flux distribution on the side wall is calculated by integration of the energy incident from cones emanating from all the differential elements on the concentrator. The calculations are done for any set of dimensions and properties of the receiver and the concentrator, and account for any spillover on the aperture plate. The results of this algorithm compared excellently with those predicted by more complicated programs. Because of the utilization of axial symmetry and overall simplification, it is extremely fast. It can be esily extended to other axisymmetric receiver geometries.

  17. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  18. Ultrasonic probe for inspecting double-wall tube

    DOEpatents

    Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  19. Ion penetration depth in the plant cell wall

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.

    2003-05-01

    This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.

  20. PLASMA GENERATOR

    DOEpatents

    Wilcox, J.M.; Baker, W.R.

    1963-09-17

    This invention is a magnetohydrodynamic device for generating a highly ionized ion-electron plasma at a region remote from electrodes and structural members, thus avoiding contamination of the plasma. The apparatus utilizes a closed, gas-filled, cylindrical housing in which an axially directed magnetic field is provided. At one end of the housing, a short cylindrical electrode is disposed coaxially around a short axial inner electrode. A radial electrical discharge is caused to occur between the inner and outer electrodes, creating a rotating hydromagnetic ionization wave that propagates aiong the magnetic field lines toward the opposite end of the housing. A shorting switch connected between the electrodes prevents the wave from striking the opposite end of the housing. (AEC)

  1. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günay, E.

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values.more » In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.« less

  2. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.

    The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. Themore » results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.« less

  3. Graphite Composite Booms with Integral Hinges

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James

    2006-01-01

    A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.

  4. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxialmore » semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.« less

  5. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  6. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  7. Freeze-tolerant condenser for a closed-loop heat-transfer system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J. (Inventor); Elkouh, Nabil A. (Inventor)

    2002-01-01

    A freeze tolerant condenser (106) for a two-phase heat transfer system is disclosed. The condenser includes an enclosure (110) and a porous artery (112) located within and extending along the length of the enclosure. A vapor space (116) is defined between the enclosure and the artery, and a liquid space (114) is defined by a central passageway within the artery. The artery includes a plurality of laser-micromachined capillaries (130) extending from the outer surface of the artery to its inner surface such that the vapor space is in fluid communication with the liquid space. In one embodiment of the invention, the capillaries (130) are cylindrical holes having a diameter of no greater than 50 microns. In another embodiment, the capillaries (130') are slots having widths of no greater than 50 microns. A method of making an artery in accordance with the present invention is also disclosed. The method includes providing a solid-walled tube and laser-micromachining a plurality of capillaries into the tube along a longitudinal axis, wherein each capillary has at least one cross-sectional dimension transverse to the longitudinal axis of less than 50 microns.

  8. Nonlinear External Kink Computing with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, K. J.; Sovinec, C. R.

    2016-10-01

    Vertical displacement events (VDEs) during disruptions often include non-axisymmetric activity, including external kink modes, which are driven unstable as contact with the wall eats into the q-profile. The NIMROD code is being applied to study external-kink-unstable tokamak profiles in toroidal and cylindrical geometries. Simulations with external kinks show the plasma swallowing a vacuum bubble, similar to. NIMROD reproduces external kinks in both geometries, using an outer vacuum region (modeled as a plasma with a large resistivity), but as the boundary between the vacuum and plasma regions becomes more 3D, the resistivity becomes a 3D function, and it becomes more difficult for algebraic solves to converge. To help allow non-axisymmetric, nonlinear VDE calculations to proceed without restrictively small time-steps, several computational algorithms have been tested. Flexible GMRES, using a Fourier and real space representation for the toroidal angle has shown improvements. Off-diagonal preconditioning and a multigrid approach were tested and showed little improvement. A least squares finite element method (LSQFEM) has also helped improve the algebraic solve. This effort is supported by the U.S. Dept. of Energy, Award Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  9. Airfoil shape for a turbine nozzle

    DOEpatents

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  10. Radiant energy collector

    DOEpatents

    McIntire, William R.

    1983-01-01

    A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses. The reflector includes a plurality of adjacent facets of V shaped segments sloped so as to reflect all energy entering between said absorber and said reflector onto said absorber. The outer arms of each facet are sloped to reflect one type of extremal ray in a line substantially tangent to the lowermost extremity of the energy absorber. The inner arms of the facets are sloped to reflect onto the absorber all rays either falling directly thereon or as a result of reflection from an outer arm.

  11. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  12. Reducing heat loss from the energy absorber of a solar collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  13. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    PubMed

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.

  14. Near wall turbulence: An experimental view

    NASA Astrophysics Data System (ADS)

    Stanislas, Michel

    2017-10-01

    The present paper draws upon the experience of the author to illustrate the potential of advanced optical metrology for understanding near-wall-turbulence physics. First the canonical flat plate boundary layer problem is addressed, initially very near to the wall and then in the outer region when the Reynolds number is high enough to generate an outer turbulence peak. The coherent structure organization is examined in detail with the help of stereoscopic particle image velocimetry (PIV). Then the case of a turbulent boundary layer subjected to a mild adverse pressure gradient is considered. The results obtained show the great potential of a joint experimental-numerical approach. The conclusion is that the insight provided by today's optical metrology opens the way for significant improvements in turbulence modeling in upcoming years.

  15. 7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END AT HEADGATES, WITH WEST INTAKE CHANNEL WALL BEYOND - Dundee Canal, Headgates, Guardlock & Uppermost Section, 250 feet northeast of Randolph Avenue, opposite & in line with East Clifton Avenue, Clifton, Passaic County, NJ

  16. In-line quincke tube muffler

    NASA Astrophysics Data System (ADS)

    Patrick, William P.; Bryant, Rebecca S.; Greenwald, Larry E.

    2002-05-01

    A unique low-pressure-drop muffler is described which has been designed to attenuate low frequency tonal noise in ducts. Flow through the muffler is divided into two noncommunicating paths in the cylindrical configuration which was designed, built, and tested. Half of the flow is ducted through a straight central annulus and the other half is ducted through a partitioned outer annulus which directs the flow in a spiral flow pattern around the inner annulus. Thus the outer flow has a longer path length and the sound within the outer annulus is phase-delayed relative to the inner flow causing destructive interference between the inner and outer waves with resulting strong attenuation at the tuned frequencies. A procedure will be described for designing a muffler (with flow) to produce high attenuation at the fundamental noise tone and all harmonics (up to the first cross mode). Results will be presented which show that the muffler achieved over 20 dB attenuation for the first five harmonics of the incident noise in a flowing duct.

  17. Explosively separable casing

    DOEpatents

    Jacobson, A.K.; Rychnovsky, R.E.; Visbeck, C.N.

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a picket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  18. Explosively separable casing

    DOEpatents

    Jacobson, Albin K.; Rychnovsky, Raymond E.; Visbeck, Cornelius N.

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  19. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    DOE PAGES

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; ...

    2017-02-02

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, we measured the corresponding polymer melt under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where themore » segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Moreover, the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.« less

  20. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  1. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1991-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

  2. Method and device for frictional welding

    DOEpatents

    Peacock, Harold B.

    1992-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

  3. Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, D. P.; Finn, J. M.

    2014-10-15

    Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reducedmore » resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.« less

  4. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  5. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  6. Extremely high wall-shear stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  7. Explosion Welding for Hermetic Containerization

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin; Sanok, Joseph

    2003-01-01

    A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface. The process stages are shown. In its initial double-wall form, the volume between the walls is isolated from the environment; in other words, the outer wall (which is later sacrificed) initially serves to protect the inner container from contamination. The sample is placed inside the container through an opening at one end, then the container is placed into a transfer dock/lid. The surfaces that will be welded together under the explosive have been coated with a soft metallic sacrificial layer. During the explosion, the sacrificial layer is ejected, and the container walls are welded together, creating a strong metallic seal. The inner container is released during the same event and enters the clean environment.

  8. Automatic plaque characterization and vessel wall segmentation in magnetic resonance images of atherosclerotic carotid arteries

    NASA Astrophysics Data System (ADS)

    Adame, Isabel M.; van der Geest, Rob J.; Wasserman, Bruce A.; Mohamed, Mona; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.

    2004-05-01

    Composition and structure of atherosclerotic plaque is a primary focus of cardiovascular research. In vivo MRI provides a meanse to non-invasively image and assess the morphological features of athersclerotic and normal human carotid arteries. To quantitatively assess the vulnerability and the type of plaque, the contours of the lumen, outer boundary of the vessel wall and plaque components, need to be traced. To achieve this goal, we have developed an automated contou detection technique, which consists of three consecutive steps: firstly, the outer boundary of the vessel wall is detected by means of an ellipse-fitting procedure in order to obtain smoothed shapes; secondly, the lumen is segnented using fuzzy clustering. Thre region to be classified is that within the outer vessel wall boundary obtained from the previous step; finally, for plaque detection we follow the same approach as for lumen segmentation: fuzzy clustering. However, plaque is more difficult to segment, as the pixel gray value can differ considerably from one region to another, even when it corresponds to the same type of tissue. That makes further processing necessary. All these three steps might be carried out combining information from different sequences (PD-, T2-, T1-weighted images, pre- and post-contrast), to improve the contour detection. The algorithm has been validated in vivo on 58 high-resolution PD and T1 weighted MR images (19 patients). The results demonstrate excellent correspondence between automatic and manual area measurements: lumen (r=0.94), outer (r=0.92), and acceptable for fibrous cap thickness (r=0.76).

  9. Cylindrical Organic Solar Cells with Carbon Nanotube Charge Collectors

    NASA Astrophysics Data System (ADS)

    Zakhidov, Dante; Lou, Raymond; Ravi, Nav; Mielczarek, Kamil; Cook, Alexander

    2009-10-01

    Traditional organic photovoltaic devices (OPV) are built on a flat glass substrates coated by ITO. The maximum area covered by the solar cells is limited to a two dimensional plane. Moreover the light absorption is not maximized for a very thin photoactive layer. We suggest here a cylindrical design which has a vertical structure of optical fiber coated by OPV, with light incident from the side and from edge. The sunlight, entering via a smaller area is captured into optical fiber, which allows more sunlight to be absorbed by a cylindrical OPV overcoating with multiple reflections inside the optical fiber. Instead of using brittle ITO as a hole collecting layer in the cylindrical OPV, transparent sheets of multi-walled carbon nanotubes are applied. Their highly conductive nature and 3-D collection of carriers from the P3HT/PCBM photoactive layer allows for increased efficiency over a planar geometry while keeping the device transparent. Aluminum is used as the electron collecting layer and as a cylindrical mirror. [4pt] [1] Ulbricht, et.al, phys. stat. sol. (b) 243, No. 13, 3528 - 3532 (2006) / DOI 10.1002/pssb.200669181

  10. Buckling of thin walled composite cylindrical shell filled with solid propellant

    NASA Astrophysics Data System (ADS)

    Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.

    2017-12-01

    This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.

  11. On sound transmission through double-walled cylindrical shells lined with poroelastic material: Comparison with Zhou's results and further effect of external mean flow

    NASA Astrophysics Data System (ADS)

    Liu, Yu; He, Chuanbo

    2015-12-01

    In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.

  12. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  13. Cylindrical Asymmetrical Capacitors for Use in Outer Space

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.

    2007-01-01

    A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated - most likely as a result of ionization of air molecules and acceleration of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outerspace operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.

  14. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  15. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  16. Ultrasonic probe for inspecting double-wall tube. [Patent application

    DOEpatents

    Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.

    1981-05-29

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  17. High speed cylindrical roller bearing analysis. SKF computer program CYBEAN. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Dyba, G. J.; Kleckner, R. J.

    1981-01-01

    CYBEAN (CYlindrical BEaring ANalysis) was created to detail radially loaded, aligned and misaligned cylindrical roller bearing performance under a variety of operating conditions. Emphasis was placed on detailing the effects of high speed, preload and system thermal coupling. Roller tilt, skew, radial, circumferential and axial displacement as well as flange contact were considered. Variable housing and flexible out-of-round outer ring geometries, and both steady state and time transient temperature calculations were enabled. The complete range of elastohydrodynamic contact considerations, employing full and partial film conditions were treated in the computation of raceway and flange contacts. The practical and correct implementation of CYBEAN is discussed. The capability to execute the program at four different levels of complexity was included. In addition, the program was updated to properly direct roller-to-raceway contact load vectors automatically in those cases where roller or ring profiles have small radii of curvature. Input and output architectures containing guidelines for use and two sample executions are detailed.

  18. Development of a collapsible reinforced cylindrical space observation window

    NASA Technical Reports Server (NTRS)

    Khan, A. Q.

    1971-01-01

    Existing material technology was applied to the development of a collapsible transparent window suitable for manned spacecraft structures. The effort reported encompasses the evaluation of flame retardants intended for use in the window matrix polymer, evaluation of reinforcement angle which would allow for a twisting pantographing motion as the cylindrical window is mechanically collapsed upon itself, and evaluation of several reinforcement embedment methods. A fabrication technique was developed to produce a reinforced cylindrical space window of 45.7 cm diameter and 61.0 cm length. The basic technique involved the application of a clear film on a male-section mold; winding axial and girth reinforcements and vacuum casting the outer layer. The high-strength transparent window composite consisted of a polyether urethane matrix reinforced with an orthogonal pattern of black-coated carbon steel wire cable. A thin film of RTV silicone rubber was applied to both surfaces of the urethane. The flexibility, retraction system, and installation system are described.

  19. Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma

    DOE PAGES

    Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...

    2015-10-08

    The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less

  20. Analytical and numerical solutions for mass diffusion in a composite cylindrical body

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    1980-12-01

    The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.

  1. Vibrations of a thin cylindrical shell stiffened by rings with various stiffness

    NASA Astrophysics Data System (ADS)

    Nesterchuk, G. A.

    2018-05-01

    The problem of vibrations of a thin-walled elastic cylindrical shell reinforced by frames of different rigidity is investigated. The solution for the case of the clamped shell edges was obtained by asymptotic methods and refined by the finite element method. Rings with zero eccentricity and stiffness varying along the generatrix of the shell cylinder are considered. Varying the optimal coefficients of the distribution functions of the rigidity of the frames and finding more precise parameters makes it possible to find correction factors for analytical formulas of approximate calculation.

  2. Understanding Mircrobial Sensing in Inflammatory Bowel Disease Using Click Chemistry

    DTIC Science & Technology

    2016-10-01

    limitation, we have developed an expanded metabolic labeling approach that chemically tags lipopolysaccharide, capsular polysaccharide , and peptidoglycan...click-chemistry, bacterial cell wall, bacterial outer membrane, peptidoglycan, lipopolysaccharide, endotoxin, capsular polysaccharide , inflammatory...bacterial outer membrane, peptidoglycan, lipopolysaccharide, endotoxin, capsular polysaccharide , inflammatory bowel disease, microbiome, microbiota

  3. SIMPLIFIED CALCULATION OF SOLAR FLUX ON THE SIDE WALL OF CYLINDRICAL CAVITY SOLAR RECEIVERS

    NASA Technical Reports Server (NTRS)

    Bhandari, P.

    1994-01-01

    The Simplified Calculation of Solar Flux Distribution on the Side Wall of Cylindrical Cavity Solar Receivers program employs a simple solar flux calculation algorithm for a cylindrical cavity type solar receiver. Applications of this program include the study of solar energy, heat transfer, and space power-solar dynamics engineering. The aperture plate of the receiver is assumed to be located in the focal plane of a paraboloidal concentrator, and the geometry is assumed to be axisymmetric. The concentrator slope error is assumed to be the only surface error; it is assumed that there are no pointing or misalignment errors. Using cone optics, the contour error method is utilized to handle the slope error of the concentrator. The flux distribution on the side wall is calculated by integration of the energy incident from cones emanating from all the differential elements on the concentrator. The calculations are done for any set of dimensions and properties of the receiver and the concentrator, and account for any spillover on the aperture plate. The results of this algorithm compared excellently with those predicted by more complicated programs. Because of the utilization of axial symmetry and overall simplification, it is extremely fast. It can be easily extended to other axi-symmetric receiver geometries. The program was written in Fortran 77, compiled using a Ryan McFarland compiler, and run on an IBM PC-AT with a math coprocessor. It requires 60K of memory and has been implemented under MS-DOS 3.2.1. The program was developed in 1988.

  4. Directional moisture transfer through a wild silkworm cocoon wall.

    PubMed

    Jin, Xing; Zhang, Jin; Gao, Weimin; Du, Shan; Li, Jingliang; Wang, Xungai

    2016-06-25

    A silkworm cocoon is a porous biological structure with multiple protective functions. In the current work, the authors have used both experimental and numerical methods to reveal the unique moisture transfer characteristics through a wild Antheraea pernyi silkworm cocoon wall, in comparison with the long-domesticated Bombyx mori silkworm cocoon walls. The water vapor transmission and water vapor permeability (WVP) properties show that the A. pernyi cocoons exhibit directional moisture transfer behavior, with easier moisture transfer from inside out than outside in [e.g., the average WVP is 0.057 g/(h m bar) from inside out and is 0.034 g/(h m bar) from outside in]. Numerical analysis shows that the cubic mineral crystals in the outer section of the A. pernyi cocoon wall create a rough surface that facilitates air turbulence and promotes disturbance amplitude of the flow field, leading to lengthened water vapor transfer path and increased tortuosity of the moist air. It also indicates the vortex of water vapor can be generated in the outer section of cocoon wall, which increases the diffusion distance of water vapor and enhances the turbulence kinetic energy and turbulence eddy dissipation, signifying higher moisture resistance in the outer section. The difference in moisture resistance of the multiple A. pernyi cocoon layers is largely responsible for the unique directional moisture transfer behavior of this wild silkworm cocoon. These findings may inspire a biomimicry approach to develop novel lightweight moisture management materials and structures.

  5. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-10-29

    ISS018-E-006051 (29 Oct. 2008) --- Deriba Caldera in Sudan is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Deriba Caldera is a geologically young volcanic structure located at the top of the Marra Mountains of western Sudan. The Marra Mountains are part of a large geologic feature known as the Darfur Dome -- this structure is thought to be the result of a mantle plume heating the crust from below, leading to uplift of the crust and providing a magma source for the extensive volcanism observed in the region. According to scientists, the five-kilometers-wide Deriba Caldera was formed by explosive eruption of the Jebel Marra volcano approximately 3,500 years ago. The volcano is considered dormant, as hot springs and fumaroles (gas and steam vents) are still present. The caldera presents a classic crater morphology, formed as overlying rock and soil collapsed into the magma chamber after it was emptied by powerful eruptions -- shadows in this image throw the steep southern wall of the outer crater into sharp relief. Following the formation of the main outer crater a second inner crater (center) formed, most likely due to later uplift and eruption of fresh magma moving towards the surface. This inner crater is filled with water -- however, as its outer walls are higher than the adjacent caldera floor, precipitation flowing inwards from the outer crater walls do not enter the inner crater lake. White stream bed sediments (center) show the water pathway around the inner crater to a second lake located along the northeast wall of the outer crater. While Jebel Marra is high enough (3,042 meters) to have a temperate climate and high precipitation, these lakes may also be fed by hot springs. The inner crater lake has a mottled appearance caused by sunglint.

  6. Experimental investigation of internal short circuits in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Poramapojana, Poowanart

    With outstanding performance of Lithium-ion batteries, they have been widely used in many applications. For hybrid electric vehicles and electric vehicles, customer concerns of battery safety have been raised as a number of car accidents were reported. To evaluate safety performance of these batteries, a nail penetration test is used to simulate and induce internal short circuits instantaneously. Efforts to explain failure mechanisms of the penetration using electrochemical-thermal coupled models have been proposed. However, there is no experimental validation because researchers lack of a diagnostic tool to acquire important cell characteristics at a shorting location, such as shorting current and temperature. In this present work, diagnostic nails have been developed to acquire nail center temperatures and shorting current flow through the nails during nail penetration tests. Two types of cylindrical wall structures are used to construct the nails: a double-layered stainless steel wall and a composite cylindrical wall. An inner hollow cylinder functions as a sensor holder where two wires and one thermocouple are installed. To study experimental reproducibility and repeatability of experimental results, two nail penetration tests are conducted using two diagnostic nails with the double-layered wall. Experimental data shows that the shorting resistance at the initial stage is a critical parameter to obtain repeatable results. The average shorting current for both tests is approximately 40 C-rate. The fluctuation of the shorting current is due to random sparks and fire caused loose contacts between the nail and the cell components. Moreover, comparative experimental results between the two wall structures reveal that the wall structure does not affect the cell characteristics and Ohmic heat generation of the nail. The wall structure effects to current measurements inside the nail. With the composite wall, the actual current redistribution into the inner wall is found to be a sinusoidal waveform.

  7. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.

    1989-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  8. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  9. Thermal analysis of a reactive generalized Couette flow of power law fluids between concentric cylindrical pipes

    NASA Astrophysics Data System (ADS)

    Makinde, O. D.

    2014-12-01

    In this paper, the steady generalized axial Couette flow of Ostwald-de Waele power law reactive fluids between concentric cylindrical pipes is investigated. It is assumed that the outer cylinder is stationary and exchanges heat with the ambient surrounding following Newton's law of cooling, while the inner cylinder with isothermal surface is set in motion in the axial direction. The model nonlinear differential equations for the momentum and energy balance are obtained and tackled numerically using the shooting method coupled with the Runge-Kutta-Fehlberg integration technique. The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal criticality conditions are presented graphically and discussed quantitatively.

  10. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  11. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  12. Double bowl piston

    DOEpatents

    Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold

    2007-03-06

    A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.

  13. Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ci, Lijie; Zhou, Zhenping; Yan, Xiaoqin; Liu, Dongfang; Yuan, Huajun; Song, Li; Gao, Yan; Wang, Jianxiong; Liu, Lifeng; Zhou, Weiya; Wang, Gang; Xie, Sishen; Tan, Pingheng

    2003-11-01

    Resonant Raman spectra of double wall carbon nanotubes (DWCNTs), with diameters from 0.4 to 3.0 nm, were investigated with several laser excitations. The peak position and line shape of Raman bands were shown to be strongly dependent on the laser energies. With different excitations, the diameter and chirality of the DWCNTs can be discussed in detail. We show that tubes (the inner or outer layers of DWCNTs) with all kinds of chiralities could be synthesized, and a DWCNT can have any combination of chiralities of the inner and outer tubes.

  14. Systems and methods for determining strength of cylindrical structures by internal pressure loading

    DOEpatents

    DeTeresa, Steven John; Groves, Scott Eric; Sanchez, Roberto Joseph; Andrade, William Andrew

    2015-08-04

    In one embodiment, an apparatus, includes: a mandrel; an expansion cylinder, comprising: opposite first and second ends; an inner circumferential surface extending between the ends and characterized by an inner diameter, the inner circumferential surface defining a hollow cavity; an outer circumferential surface extending between the ends and characterized by an outer diameter that is greater than the inner diameter; and a plurality of slots extending from the inner circumferential surface to the outer circumferential surface and latitudinally oriented between the ends; and one or more base plates configured to engage one of the ends of the expansion cylinder. In another embodiment, a method includes: arranging an expansion cylinder inside a test cylinder; arranging a mandrel inside the expansion cylinder; applying a force to the mandrel for exerting a radial force on the expansion cylinder; and detecting one or more indicia of structural failure of the test cylinder.

  15. Electrostatic lens to focus an ion beam to uniform density

    DOEpatents

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  16. Cytologic appearance of retinal cells included in a fine-needle aspirate of a meningioma around the optic nerve of a dog.

    PubMed

    Tvedten, Harold; Hillström, Anna

    2013-06-01

    A 6-year-old Wirehair Dachshund had a meningioma around the optic nerve that caused exophthalmos. A benign mesenchymal tumor was suspected based on the cytologic pattern of a fine-needle aspirate, and a meningioma was diagnosed by histopathologic examination. In addition to the meningioma cells, the cytologic smears included groups of cells from apparently 4 layers of normal retina. In particular, uniform rod-shaped structures in the cytologic sample could suggest rod-shaped bacteria, but these structures were identified as cylindrical outer segments of photoreceptor rod cells. Other retinal structures recognized included pigmented epithelial layer cells with their uniquely formed pigment granules, the characteristic bi-lobed, cleaved nuclei from the outer nuclear layer, and nerve tissue likely from the outer plexiform layer of the retina. © 2013 American Society for Veterinary Clinical Pathology.

  17. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of perspective within the scene contained on only one wall has integrity. Unfortunately, parallel lines that lie on adjacent walls do not necessarily remain parallel. This results in inaccuracies in the scene that can distract the viewer and subtract from the immersive experience of the CAVE.

  18. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1992-10-13

    A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

  19. Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds

    DOE PAGES

    Li, Tingwen

    2015-09-25

    The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solidmore » velocity prediction in the column wall region.« less

  20. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  1. Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls.

    PubMed

    Nick, P; Bergfeld, R; Schafer, E; Schopfer, P

    1990-05-01

    Auxin (indole-3-acetic acid) controls the orientation of cortical microtubes (MT) at the outer wall of the outer epidermis of growing maize coleoptiles (Bergfeld, R., Speth, V., Schopfer, P., 1988, Bot. Acta 101, 57-67). A detailed time course of MT reorientation, determined by labeling MT with fluorescent antibodies, revealed that the auxin-mediated movement of MT from the longitudinal to the transverse direction starts after less than 15 min and is completed after 60 min. This response was used for a critical test of the functional involvement of auxin in tropic curvature. It was found that phototropic (first phototropic curvature) as well as gravitropic bending are correlated with a change of MT orientation from transverse to longitudinal at the slower-growing organ flank whereas the transverse MT orientation is maintained (or even augmented) at the faster-growing organ flank. These directional changes are confined to the MT subjacent to the outer epidermal wall. The same basic results were obtained with sunflower hypocotyls subjected to phototropic or gravitropic stimulation. It is concluded that auxin is, in fact, involved in asymmetric growth leading to tropic curvature. However, our results do not allow us to discriminate between an uneven distribution of endogenous auxin or an even distribution of auxin, the activity of which is modulated by an unevenly distributed inhibitor of auxin action.

  2. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  3. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  4. The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.

    PubMed

    Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi

    2010-07-01

    In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.

  5. Confined polar mixtures within cylindrical nanocavities.

    PubMed

    Rodriguez, Javier; Elola, M Dolores; Laria, Daniel

    2010-06-17

    Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius R(cnt) = 0.55 nm, and (16,16) ones, with R(cnt) = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches approximately 1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius approximately 1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall retardations are more dramatic for solvent species lying at the vicinity of trimethylsilyl groups.

  6. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    NASA Astrophysics Data System (ADS)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  7. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.

    PubMed

    Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H

    2013-11-01

    We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.

  8. Dynamically Movable Exhausting Emc Sealing System

    DOEpatents

    Barringer, Dennis R.; Seminaro, Edward J.; Toffler, Harold M.

    2003-12-09

    A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit card and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a housing bezel, disposed relative to the cassette housing so as to be associated with the cable opening, the housing bezel includes an outer bezel having a first plurality of openings and an inner bezel having a second plurality of apertures, the inner bezel in electrical communication with the printed circuit card, wherein said housing bezel is removable, and an EMC gasket disposed between the outer and inner bezels of said housing bezel, the EMC gasket configured to provide a removable EMC seal proximate the cable opening while still allowing airflow through the first and second plurality of apertures having the EMC gasket therebetween. A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit card and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a housing bezel, disposed relative to the cassette housing so as to be associated with the cable opening, the housing bezel includes an outer bezel having a first plurality of openings and an inner bezel having a second plurality of apertures, the inner bezel in electrical communication with the printed circuit card, wherein said housing bezel is removable, and an EMC gasket disposed between the outer and inner bezels of said housing bezel, the EMC gasket configured to provide a removable EMC seal proximate the cable opening while still allowing airflow through the first and second plurality of apertures having the EMC gasket therebetween.

  9. Structural analysis of cylindrical thrust chambers, volume 1

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.

    1979-01-01

    Life predictions of regeneratively cooled rocket thrust chambers are normally derived from classical material fatigue principles. The failures observed in experimental thrust chambers do not appear to be due entirely to material fatigue. The chamber coolant walls in the failed areas exhibit progressive bulging and thinning during cyclic firings until the wall stress finally exceeds the material rupture stress and failure occurs. A preliminary analysis of an oxygen free high conductivity (OFHC) copper cylindrical thrust chamber demonstrated that the inclusion of cumulative cyclic plastic effects enables the observed coolant wall thinout to be predicted. The thinout curve constructed from the referent analysis of 10 firing cycles was extrapolated from the tenth cycle to the 200th cycle. The preliminary OFHC copper chamber 10-cycle analysis was extended so that the extrapolated thinout curve could be established by performing cyclic analysis of deformed configurations at 100 and 200 cycles. Thus the original range of extrapolation was reduced and the thinout curve was adjusted by using calculated thinout rates at 100 and 100 cycles. An analysis of the same underformed chamber model constructed of half-hard Amzirc to study the effect of material properties on the thinout curve is included.

  10. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy

    NASA Astrophysics Data System (ADS)

    Kuncser, A.; Antohe, S.; Kuncser, V.

    2017-02-01

    Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio.

  11. A study of methods of prediction and measurement of the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Forssen, B.; Wang, Y. S.; Raju, P. K.; Crocker, M. J.

    1981-01-01

    The acoustic intensity technique was applied to the sound transmission loss of panel structures (single, composite, and stiffened). A theoretical model of sound transmission through a cylindrical shell is presented.

  12. A study of methods of prediction and measurement of the transmission of sound through the walls of light aircraft

    NASA Astrophysics Data System (ADS)

    Forssen, B.; Wang, Y. S.; Raju, P. K.; Crocker, M. J.

    1981-08-01

    The acoustic intensity technique was applied to the sound transmission loss of panel structures (single, composite, and stiffened). A theoretical model of sound transmission through a cylindrical shell is presented.

  13. The plant cell wall in the feeding sites of cyst nematodes.

    PubMed

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  14. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    NASA Technical Reports Server (NTRS)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  15. Mechanical excitation of rodlike particles by a vibrating plate.

    PubMed

    Trittel, Torsten; Harth, Kirsten; Stannarius, Ralf

    2017-06-01

    The experimental realization and investigation of granular gases usually require an initial or permanent excitation of ensembles of particles, either mechanically or electromagnetically. One typical method is the energy supply by a vibrating plate or container wall. We study the efficiency of such an excitation of cylindrical particles by a sinusoidally oscillating wall and characterize the distribution of kinetic energies of excited particles over their degrees of freedom. The influences of excitation frequency and amplitude are analyzed.

  16. Use of yeast spores for microencapsulation of enzymes.

    PubMed

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  17. Rotational actuator of motor based on carbon nanotubes

    DOEpatents

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  18. Rotational actuator or motor based on carbon nanotubes

    DOEpatents

    Zetti, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2006-05-30

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  19. Combined effects of suction/injection and wall surface curvature on natural convection flow in a vertical micro-porous annulus

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Aina, B.; Muhammad, S. A.

    2015-03-01

    This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.

  20. A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.

    1982-01-01

    The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.

  1. Ultrastructural studies on the boundary tissue of the seminiferous tubules of different mammals.

    PubMed

    Cieciura, L; Jaszczuk-Jarosz, B; Pietrzkowska, K

    1988-01-01

    The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.

  2. Rapid-quench axially staged combustor

    DOEpatents

    Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George

    1999-01-01

    A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.

  3. Inner shell radial pin geometry and mounting arrangement

    DOEpatents

    Leach, David; Bergendahl, Peter Allen

    2002-01-01

    Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.

  4. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Covered systems. 193.2167 Section 193.2167...: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2167 Covered systems. A covered impounding system is prohibited except for concrete wall designed tanks where the concrete wall is an outer...

  5. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Covered systems. 193.2167 Section 193.2167...: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2167 Covered systems. A covered impounding system is prohibited except for concrete wall designed tanks where the concrete wall is an outer...

  6. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Covered systems. 193.2167 Section 193.2167...: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2167 Covered systems. A covered impounding system is prohibited except for concrete wall designed tanks where the concrete wall is an outer...

  7. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.

    PubMed

    Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J

    2016-01-01

    We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Leaf seal for gas turbine stator shrouds and a nozzle band

    DOEpatents

    Burdgick, Steven Sebastian; Sexton, Brendan Francis

    2002-01-01

    A leaf seal assembly is secured to the trailing edge of a shroud segment for sealing between the shroud segment and the leading edge side wall of a nozzle outer band. The leaf seal includes a circumferentially elongated seal plate biased by a pair of spring clips disposed in a groove along the trailing edge of the shroud segment to maintain the seal plate in engagement with the flange on the leading edge side wall of the nozzle outer band. The leaf seal plate and spring clips receive pins tack-welded to the shroud segment to secure the leaf seal assembly in place.

  9. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

  10. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  11. Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Park, Chanwoo

    2017-05-01

    Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.

  12. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  13. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  14. Variable resistance constant tension and lubrication device. [using oil-saturated leather wiper

    NASA Technical Reports Server (NTRS)

    Smith, H. J. (Inventor)

    1974-01-01

    A variable resistance device is described which includes a cylindrical housing having elongated resistance wires. A movable arm having a supporting block carried on the outer end is rotatably carried by the cylindrical housing. An arcuate steel spring member is pivotally supported by the movable arm. A leather wiper member is carried adjacent to one end of the spring steel member, and an electrically conductive surface is carried adjacent to the other end. The supporting block maintains the spring steel member in compression so that a constant pressure is applied to the conductive end of the spring steel member and the leather wiper. The leather wiper is saturated with a lubricating oil for maintaining the resistance wire clean as the movable arm is manipulated.

  15. Vibro-acoustics for Space Station applications

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Bofilios, D. A.

    1986-01-01

    An analytical procedure has been developed to study noise generation in a double wall and single wall cylindrical shell due to mechanical point loads. The objective of this study is to develop theoretical procedures for parametetric evaluation of noise generation andd noise transmission for the habitability modules of the proposed Space Station operation. The solutions of the governing acoustic-structural equations are obtained utilizing modal decomposition. The numerical results include modal frequencies, deflection response spectral densities and interior noise sound pressure levels.

  16. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    PubMed

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  17. Ideal and resistive plasma resistive wall modes and control: linear and nonlinear

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2004-11-01

    Our recent work* on control of linear and nonlinear resistive wall modes (RWM) showed that if there is an ideal plasma mode and a resistive plasma mode, and if the beta limit for the latter is lower (as is typical), then nonlinear resistive wall modes behave basically as nonlinear tearing-like modes locked to the wall. We investigate here the effect of plasma rotation sufficient to stabilize the resistive-plasma RWM but not the ideal plasma RWM. We also review results** showing the effect of normal and poloidal magnetic field sensing, and describe a simple model which is amenable to analytic solution, and which makes previously obtained simulation results transparent. *J. Finn and L. Chacon, 'Control of linear and nonlinear resistive wall modes', Phys. Plas 11, 1866 (2004). **J. Finn, 'Control of resistive wall modes in a cylindrical tokamak with radial and poloidal magnetic field sensors', to appear in Phys. Plasmas, 2004.

  18. Correlation between the outer flow and the turbulent production in a boundary layer

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Sandborn, V. A.

    1975-01-01

    Space-time velocity correlation measurements between fluctuations occurring in the convoluting outer edge of a flat boundary layer with fluctuations occurring near the viscous subregion were made. The correlations indicate that information is propagated from the outer region to the inner region. The migration of turbulence away from the wall was previously studied in the open literature. The results presented here along with the migration results lend support to the limit cycle model for turbulence production.

  19. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  20. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  1. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  2. Propagation of Sound at Moderate and High Intensities in Absorbent and Hard-Walled Cylindrical Ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Oliver Herbert

    1975-01-01

    The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.

  3. Magnetic properties of cylindrical diameter modulated Ni80Fe20 nanowires: interaction and coercive fields

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed Shaker; Sergelius, Philip; Corona, Rosa M.; Escrig, Juan; Görlitz, Detlef; Nielsch, Kornelius

    2013-04-01

    Magnetic properties of cylindrical Ni80Fe20 nanowires with modulated diameters are investigated theoretically as a function of their geometrical parameters and compared with those produced inside the pores of anodic alumina membranes by pulsed electrodeposition. We observe that the Ni80Fe20 nanowires with modulated diameters reverse their magnetization via the nucleation and propagation of a vortex domain wall. The system begins generating vortex domains in the nanowire ends and in the transition region between the two segments to minimize magnetostatic energy generated by surfaces perpendicular to the initial magnetization of the sample. Besides, we observed an increase of the coercivity for the sample with equal volumes in relation to the sample with equal lengths. Finally, the interaction field is stronger in the case of constant volume segments. These structures could be used to control the motions of magnetic domain walls. In this way, these nanowires with modulated diameters can be an alternative to store information or even perform logic functions.

  4. Polarization dependant in vivo second harmonic generation imaging of Caenorhabditis elegans vulval, pharynx, and body wall muscles

    NASA Astrophysics Data System (ADS)

    Psilodimitrakopoulos, Sotiris; Santos, Susana; Amat-Roldan, Ivan; Mathew, Manoj; Thayil K. N., Anisha; Artigas, David; Loza-Alvarez, Pablo

    2008-02-01

    Second harmonic generation (SHG) imaging has emerged in recent years as an important laboratory imaging technique since it can provide unique structural information with submicron resolution. It enjoys the benefits of non-invasive interaction establishing this imaging modality as ideal for in vivo investigation of tissue architectures. In this study we present, polarization dependant high resolution SHG images of Caenorhabditis elegans muscles in vivo. We imaged a variety of muscular structures such as body walls, pharynx and vulva. By fitting the experimental data into a cylindrical symmetry spatial model we mapped the corresponding signal distribution of the χ (2) tensor and identified its main axis orientation for different sarcomeres of the earth worm. The cylindrical symmetry was considered to arise from the thick filaments architecture of the inside active volume. Moreover, our theoretical analysis allowed calculating the mean orientation of harmonophores (myosin helical pitch). Ultimately, we recorded and analysed vulvae muscle dynamics, where SHG signal decreased during in vivo contraction.

  5. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  6. Downhole steam generator with improved preheating/cooling features

    DOEpatents

    Donaldson, A. Burl; Hoke, Donald E.; Mulac, Anthony J.

    1983-01-01

    An apparatus for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  7. Downhole steam generator with improved preheating/cooling features. [Patent application

    DOEpatents

    Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

    1980-10-10

    An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  8. New age estimations for the western outer city wall of ancient Tayma (NW Saudi Arabia) based on OSL and radiocarbon data and geomorphologic evidence

    NASA Astrophysics Data System (ADS)

    Engel, M.; Klasen, N.; Brückner, H.; Eichmann, R.; Hausleiter, A.; Al-Najem, M. H.; Al-Said, S. F.; Schneider, P. I.

    2009-04-01

    Since 2004 tremendous progress has been achieved in deciphering the cultural genesis of the Tayma oasis (NW Saudi Arabia), due to the joint investigations of the German Archaeological Institute Berlin (DAI), the General Commission for Tourism and Antiquities, Kingdom of Saudi Arabia, and the Department of Archaeology and Epigraphy, King Saud University Riyadh. Nevertheless, archaeological research is still suffering from a lacking locally-based absolute chronology of buildings. The pattern of ancient constructions at Tayma is dominated by a prominent city wall system surrounding the ancient town center (Qraya) and stretching 15 km around the oasis. Its internal structure indicates several building periods, i.e. phases of wall modification or extension of the entire system. So far, according to silex and carnelian fragments included in the mud bricks and a previous 14C age of charcoal remains from the central excavation district (wall section at Area A), an initial construction date of the wall between the late 3rd and the early 2nd millennium BC seemed likely. At the excavated western outer city wall a new systematic dating approach - combining the optically stimulated luminescence (OSL) and 14C methods - has been applied to generate a reliable age for the oldest branch of the wall system which nowadays is covered by aeolian sand. The dune deposit is genetically related to the existence of the wall and, therefore, dating its accumulation provides termini ante quem for the construction of the wall. Five OSL dates were generated from the dune deposit providing ages between 4,900 and 3,500 yrs. Two radiocarbon ages support the dating sequence and also contribute to its consistency. By combining the results with geomorphologic evidence we draw the following conclusions: Initial settlement activities at Qraya were accompanied by a regulation of wadi dynamics and the construction of the outer city wall, indicated by the abrupt boundary between the pre-settlement alluvial silt and the overlying wall-related dune deposit. According to the OSL and 14C dating results from this deposit, the wall section at C1 (western part of the ancient settlement, north of Area A) dates back to the middle of the 3rd millennium BC or even earlier. Furthermore, the burying of the still existing remains of the city wall at C1 by sand was already completed at the beginning of the 2nd millennium BC.

  9. System for injecting fuel in a gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jonathan Dwight

    A combustion system uses a fuel nozzle with an inner wall having a fuel inlet in fluid communication with a fuel outlet in a fuel cartridge. The inner wall defines a mounting location for inserting the fuel cartridge. A pair of annular lip seals around the cartridge outer wall on both sides of the fuel outlet seals the fuel passage between the fuel inlet and the fuel outlet.

  10. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  11. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  12. Expansible apparatus for removing the surface layer from a concrete object

    DOEpatents

    Allen, Charles H.

    1979-01-01

    A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.

  13. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  14. Mechanical seal with textured sidewall

    DOEpatents

    Khonsari, Michael M.; Xiao, Nian

    2017-02-14

    The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.

  15. View Factor and Radiation-Hydrodynamic Simulations of Gas-Filled Outer-Quad-Only Hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Meezan, Nathan; Landen, Otto

    2017-10-01

    A cylindrical National Ignition Facility hohlraum irradiated exclusively by NOVA-like outer quads (44 .5° and 50° beams) is proposed to minimize laser plasma interaction (LPI) losses and avoid problems with propagating the inner (23 .5° and 30°) beams. Symmetry and drive are controlled by shortening the hohlraum, using a smaller laser entrance hole (LEH), beam phasing the 44 .5° and 50° beams, and correcting the remaining P4 asymmetry with a capsule shim. Ensembles of time-resolved view factor simulations help narrow the design space of the new configuration, with fine tuning provided by the radiation-hydrodynamic code HYDRA. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters

    NASA Astrophysics Data System (ADS)

    Su, Jinghong; Chen, Xiaodong; Hu, Guoqing

    2018-03-01

    Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.

  17. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines

    PubMed Central

    He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-01-01

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636

  18. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines.

    PubMed

    Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-03-02

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

  19. Ceramic turbine stator vane and shroud support

    DOEpatents

    Glenn, Robert G.

    1981-01-01

    A support system for supporting the stationary ceramic vanes and ceramic outer shrouds which define the motive fluid gas path in a gas turbine engine is shown. Each individual segment of the ceramic component whether a vane or shroud segment has an integral radially outwardly projecting stem portion. The stem is enclosed in a split collet member of a high-temperature alloy material having a cavity configured to interlock with the stem portion. The generally cylindrical external surface of the collet engages a mating internal cylindrical surface of an aperture through a supporting arcuate ring segment with mating camming surfaces on the two facing cylindrical surfaces such that radially outward movement of the collet relative to the ring causes the internal cavity of the collet to be reduced in diameter to tightly engage the ceramic stem disposed therein. A portion of the collet extends outwardly through the ring segment opposite the ceramic piece and is threaded for receiving a nut and a compression washer for retaining the collet in the ring segment under a continuous biasing force urging the collet radially outwardly.

  20. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

Top