Nonplanar dust-ion acoustic shock waves with transverse perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue Jukui
2005-01-01
The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.
Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Wieting, Allan R.
1987-01-01
An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.
CYLINDRICAL WAVES OF FINITE AMPLITUDE IN DISSIPATIVE MEDIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naugol'nykh, K.A.; Soluyan, S.I.; Khokhlov, R.V.
1962-07-01
Propagation of diverging and converging cylindrical waves in a nonlinear, viscous, heat conducting medium is analyzed using approximation methods. The KrylovBogolyubov method was used for small Raynold's numbers, and the method of S. I. Soluyan et al. (Vest. Mosk. Univ. ser. phys. and astronomy 3, 52-81, 1981), was used for large Raynold's numbers. The formation and dissipation of shock fronts and spatial dimensions of shock phenomena were analyzed. It is shown that the problem of finiteamplitude cylindrical wave propagation is identical to the problem of plane wave propagations in a medium with variable viscosity. (tr-auth)
Note: A contraction channel design for planar shock wave enhancement
NASA Astrophysics Data System (ADS)
Zhan, Dongwen; Li, Zhufei; Yang, Jianting; Zhu, Yujian; Yang, Jiming
2018-05-01
A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again "bent" back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.
Biological effects of two successive shock waves focused on liver tissues and melanoma cells.
Benes, J; Sunka, P; Králová, J; Kaspar, J; Poucková, P
2007-01-01
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.
Shock interaction behind a pair of cylindrical obstacles
NASA Astrophysics Data System (ADS)
Liu, Heng; Mazumdar, Raoul; Eliasson, Veronica
2014-11-01
The body of work focuses on two-dimensional numerical simulations of shock interaction with a pair of cylindrical obstacles, varying the obstacle separation and incident shock strength. With the shock waves propagating parallel to the center-line between the two cylindrical obstacles, the shock strengths simulated vary from a Mach of 1.4 to a Mach of 2.4, against a wide range of obstacle separation distance to their diameters. These cases are simulated via a software package called Overture, which is used to solve the inviscid Euler equations of gas dynamics on overlapping grids with adaptive mesh refinement. The goal of these cases is to find a so-called ``safe'' region for obstacle spacing and varying shock Mach numbers, such that the pressure in the ``safe'' region is reduced downstream of the obstacles. The benefits apply to both building and armor design for the purpose of shock wave mitigation to keep humans and equipment safe. The results obtained from the simulations confirm that the length of the ``safe'' region and the degree of shock wave attenuation depend on the ratio of obstacle separation distance to obstacle diameter. The influence of various Mach number is also discussed.
NASA Astrophysics Data System (ADS)
Treanor, C. E.; Hall, J. G.
1982-10-01
The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1989-01-01
The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti-Lopez, L.; Ocana, R.; Porro, J. A.
2009-07-01
We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.
Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses
NASA Astrophysics Data System (ADS)
Penyazkov, O.; Skilandz, A.
2018-03-01
To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.
Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors
NASA Astrophysics Data System (ADS)
Gestrin, S. G.; Shchukina, E. V.
2018-05-01
The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.
On the dynamics of a shock-bubble interaction
NASA Technical Reports Server (NTRS)
Quirk, James J.; Karni, Smadar
1994-01-01
We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, I.; Quevedo, H. J.; Feldman, S.
2013-12-15
Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less
Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves
NASA Astrophysics Data System (ADS)
Si, T.; Zhai, Z.; Luo, X.; Yang, J.
2014-01-01
The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.
Initial decay of flow properties of planar, cylindrical and spherical blast waves
NASA Astrophysics Data System (ADS)
Sadek, H. S. I.; Gottlieb, J. J.
1983-10-01
Analytical expressions are presented for the initial decay of all major flow properties just behind planar, cylindrical, and spherical shock wave fronts whose trajectories are known as a function of either distance versus time or shock overpressure versus distance. These expressions give the time and/or distance derivatives of the flow properties not only along constant time and distance lines but also along positive and negative characteristic lines and a fluid-particle path. Conventional continuity, momentum and energy equations for the nonstationary motion of an inviscid, non-heat conducting, compressible gas are used in their derivation, along with the equation of state of a perfect gas. All analytical expressions are validated by comparing the results to those obtained indirectly from known self-similar solutions for planar, cylindrical and spherical shock-wave flows generated both by a sudden energy release and by a moving piston. Futhermore, time derivatives of pressure and flow velocity are compared to experimental data from trinitrotoluene (TNT), pentolite, ammonium nitrate-fuel oil (ANFO) and propane-oxygen explosions, and good agreement is obtained.
Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry
NASA Astrophysics Data System (ADS)
Toque, Nathalie
1996-12-01
This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.
The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. Themore » results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.« less
Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves
NASA Astrophysics Data System (ADS)
Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.
2018-05-01
In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.
Verification Test of the SURF and SURFplus Models in xRage: Part III Affect of Mesh Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
The previous studies used an underdriven detonation wave in 1-dimension (steady ZND reaction zone profile followed by a scale-invariant rarefaction wave) for PBX 9502 as a verification test of the implementation of the SURF and SURFplus models in the xRage code. Since the SURF rate is a function of the lead shock pressure, the question arises as to the effect on accuracy of variations in the detected shock pressure due to the alignment of the shock front with the mesh. To study the effect of mesh alignment we simulate a cylindrically diverging detonation wave using a planar 2-D mesh. Themore » leading issue is the magnitude of azimuthal asymmetries in the numerical solution. The 2-D test case does not have an exact analytic solution. To quantify the accuracy, the 2-D solution along rays through the origin are compared to a highly resolved 1-D simulation in cylindrical geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai Shiva, S.; Leela, Ch.; Prem Kiran, P., E-mail: premkiranuoh@gmail.com, E-mail: prem@uohyd.ac.in
2016-05-15
The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (V{sub sw}) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 10{sup 10} to 1.4 × 10{sup 11 }W/cm{sup 2}. It is observed that the numerically obtained V{sub sw} is significantly influenced by the thermal radiation effects which are foundmore » to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.« less
Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong
2017-12-01
A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.
NASA Astrophysics Data System (ADS)
Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong
2017-12-01
A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.
NASA Astrophysics Data System (ADS)
Vignati, F.; Guardone, A.
2017-11-01
An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.
Behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves
NASA Astrophysics Data System (ADS)
Gangwar, P. K.
2018-05-01
In this paper, CCW method has been used to study the behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves. The strength of overtaking waves is estimated under the assumption that both C+ and C- disturbances propagate in non-uniform region of same density distribution. It is assumed that the dusty gas is the mixture of a real gas and a large number of small spherical solid particles of uniform size. The solid particles are uniformly distributed in the medium. Maintaining equilibrium flow conditions, the expressions for shock strength has been derived both for freely propagation as well as under the effect of overtaking disturbances. The variation of all flow variables with propagation distance, mass concentration of solid particles in the mixture and the ratio of solid particles to the initial density of gas have been computed and discussed through graphs. It is found that the presence of dust particles in the gases medium has significant effects on the variation of flow variables and the shock is strengthened under the influence of overtaking disturbances. The results accomplished here been compared with those for ideal gas.
A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1995-01-01
The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.
A Study of Fundamental Shock Noise Mechanisms
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1997-01-01
This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.
Explosive shock damage potential in space structures
NASA Technical Reports Server (NTRS)
Mortimer, R. W.
1972-01-01
The effects of a pulse shape on the transient response of a cylindrical shell are presented. Uniaxial, membrane, and bending theories for isotropic shells were used in this study. In addition to the results of the analytical study, the preliminary results of an experimental study into the generation and measurement of shear waves in a cylindrical shell are included.
NASA Astrophysics Data System (ADS)
Babanov, A. V.; Barinov, M. A.; Barinov, S. P.; Garanin, R. V.; Zhidkov, N. V.; Kalmykov, N. A.; Kovalenko, V. P.; Kokorin, S. N.; Pinegin, A. V.; Solomatina, E. Yu.; Solomatin, I. I.; Suslov, N. A.
2017-03-01
The hydrodynamics of the flow formation due to the interaction of a shock wave with two-dimensional density perturbations is experimentally investigated on the Iskra-5 laser facility. Shadow images of a jet arising as a result of the impact of a shock wave (formed by a soft X-ray pulse from a target-illuminator) on a flat aluminium target with a blind cylindrical cavity are recorded in experiments with point-like X-ray backlighting having a photon energy of ~4.5 keV. The sizes and mass of the jet ejected from the aluminium cavity by this shock wave are estimated. The experimental data are compared with the results of numerical simulation of the jet formation and dynamics according to the two-dimensional MID-ND2D code.
Nitromethane ignition observed with embedded PDV optical fibers
NASA Astrophysics Data System (ADS)
Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.
For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.
Interaction of a weak shock wave with a discontinuous heavy-gas cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang
2015-06-15
The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less
Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization
NASA Astrophysics Data System (ADS)
Adhikari, Sam
2007-11-01
Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.
Background-Oriented Schlieren for Large-Scale and High-Speed Aerodynamic Phenomena
NASA Technical Reports Server (NTRS)
Mizukaki, Toshiharu; Borg, Stephen; Danehy, Paul M.; Murman, Scott M.; Matsumura, Tomoharu; Wakabayashi, Kunihiko; Nakayama, Yoshio
2015-01-01
Visualization of the flow field around a generic re-entry capsule in subsonic flow and shock wave visualization with cylindrical explosives have been conducted to demonstrate sensitivity and applicability of background-oriented schlieren (BOS) for field experiments. The wind tunnel experiment suggests that BOS with a fine-pixel imaging device has a density change detection sensitivity on the order of 10(sup -5) in subsonic flow. In a laboratory setup, the structure of the shock waves generated by explosives have been successfully reconstructed by a computed tomography method combined with BOS.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Astrophysics Data System (ADS)
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Calculated shock pressures in the aquarium test
NASA Astrophysics Data System (ADS)
Johnson, J. N.
1982-04-01
A new method of analysis has been developed for determintion of shock pressures in aquarium tests on commercial explosives. This test consists of photographing the expanding cylindrical tube wall (which contains the detonation products) and the shock wave in water surrounding the explosive charge. By making a least-squares fit to the shock-front data, it is possible to determine the peak shock-front pressure as a function of distance from the cylinder wall. This has been done for 10-cm and 20-cm-diam ANFO (ammonium nitrate/fuel oil) and aluminized ANFO (7.5 wt% Al) aquarium test data.
Detecting Fragmentation of Kidney Stones in Lithotripsy by Means of Shock Wave Scattering
NASA Astrophysics Data System (ADS)
Sapozhnikov, Oleg A.; Trusov, Leonid A.; Owen, Neil R.; Bailey, Michael R.; Cleveland, Robin O.
2006-05-01
Although extracorporeal shock wave lithotripsy (a procedure of kidney stone comminution using focused shock waves) has been used clinically for many years, a proper monitoring of the stone fragmentation is still undeveloped. A method considered here is based on recording shock wave scattering signals with a focused receiver placed far from the stone, outside the patient body. When a fracture occurs in the stone or the stone becomes smaller, the elastic waves in the stone will propagate differently (e.g. shear waves will not cross a fracture) which, in turn, will change the scattered acoustic wave in the surrounding medium. Theoretical studies of the scattering phenomenon are based on a linear elastic model to predict shock wave scattering by a stone, with and without crack present in it. The elastic waves in the stone and the nearby liquid were modeled using a finite difference time domain approach. The subsequent acoustic propagation of the scattered waves into the far-field was calculated using the Helmholtz-Kirchhoff integral. Experimental studies were conducted using a research electrohydraulic lithotripter that produced the same acoustic output as an unmodified Dornier HM3 clinical lithotripter. Artificial stones, made from Ultracal-30 gypsum and acrylic, were used as targets. The stones had cylindrical shape and were positioned co-axially with the lithotripter axis. The scattered wave was measured by focused broadband PVDF hydrophone. It was shown that the size of the stone noticeably changed the signature of the reflected wave.
NASA Technical Reports Server (NTRS)
Sun, C. C.; Childs, M. E.
1977-01-01
Tabulated data from a series of experimental studies of the interaction of a shock wave with a turbulent boundary layer in axisymmetric flow configurations is presented. The studies were conducted at the walls of circular wind tunnels and on the cylindrical centerbody of an annular flow channel. Detailed pitot pressure profiles and wall static pressure profiles upstream of, within and downstream of the interaction region are given. Results are presented for flows at nominal freestream Mach Numbers of 2, 3 and 4. For studies at the tunnel sidewalls, the shock waves were produced by conical shock generators mounted on the centerline of the wind tunnel at zero angle of attack. The annular ring generator was used to produce the shock wave at the centerbody of the annular flow channel. The effects of boundary layer bleed were examined in the investigation. Both bleed rate and bleed location were studied. Most of the bleed studies were conducted with bleed holes drilled normal to the wall surface but the effects of slot suction were also examined. A summary of the principal results and conclusions is given.
Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy
Zhang, Ying; Nault, Isaac; Mitran, Sorin; Iversen, Edwin S.; Zhong, Pei
2016-01-01
The effects of stone size on the process and comminution efficiency in shock wave lithotripsy (SWL) are investigated by experiments, numerical simulations, and scale analysis. Cylindrical BegoStone phantoms with approximately equal height and diameter of either 4-, or 7- or 10-mm, in a total aggregated mass of about 1.5 g, were treated in an electromagnetic shock wave lithotripter field. The resultant stone comminution (SC) was found to correlate closely with the average peak pressure, P+(avg), incident on the stones. The P+(avg) threshold to initiate stone fragmentation in water increased from 7.9 to 8.8 to 12.7 MPa, respectively, when the stone size decreased from 10 to 7 to 4 mm. Similar changes in the P+(avg) threshold were observed for the 7- and 10-mm stones treated in 1,3-butanediol where cavitation is suppressed, suggesting that the observed size dependency is due to changes in stress distribution within different size stones. Moreover, the slope of the correlation curve between SC and ln(P‒+(avg)) in water increased with decreasing stone size, while the opposite trend was observed in 1,3-butanediol. The progression of stone comminution in SWL showed a size-dependency with the 7- and 10-mm stones fragmented into progressively smaller pieces while a significant portion (> 30%) of the 4-mm stones were stalemated within the size range of 2.8 ~ 4 mm even after 1,000 shocks. Analytical scaling considerations suggest size-dependent fragmentation behaviour, a hypothesis further supported by numerical model calculations that exhibit changing patterns of constructive and destructive wave interference, and thus variations in the maximum tensile stress or stress integral produced in cylindrical and spherical stone of different sizes. PMID:27515177
NASA Astrophysics Data System (ADS)
Nath, G.; Sinha, A. K.
2017-01-01
The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.
The analytical solution of the problem of a shock focusing in a gas for one-dimensional case
NASA Astrophysics Data System (ADS)
Shestakovskaya, E. S.; Magazov, F. G.
2018-03-01
The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.
Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, M.; Gurovich, V. Tz.; Krasik, Ya. E.
2013-11-15
The results of two-dimensional hydrodynamic simulations of the dynamics and stability of azimuthal non-uniformities in converging shock waves generated by an underwater explosion of a cylindrical wire array and their effect on the cumulation of energy in the vicinity of the converging axis are presented. It has been shown that in spite of the fact that such non-uniformities are always weakly unstable, for a broad range of experimentally relevant regimes these non-uniformities remain small and do not significantly affect the cumulation of energy. Only the non-uniformities with wavelengths comparable to the distance from the axis of convergence exhibit substantial growthmore » that considerably attenuates the energy cumulation.« less
Deformation of compound shells under action of internal shock wave loading
NASA Astrophysics Data System (ADS)
Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin
2015-09-01
The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.
Strong shock implosion, approximate solution
NASA Astrophysics Data System (ADS)
Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.
1983-01-01
The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.
Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.
2009-08-05
A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed.more » Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.« less
Nonlinear Propagation of Planet-Generated Tidal Waves
NASA Technical Reports Server (NTRS)
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters
Krimmel, Jeff; Colonius, Tim; Tanguay, Michel
2011-01-01
We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counter-productive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue. PMID:21063697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, S V; Dolgoleva, G V; Novikova, E A
The dynamics of laser and X-ray radiation fields in experiments with cylindrical converter boxes (illuminators), which had earlier been carried out on the Iskra-5 laser facility (the second harmonic of iodine laser radiation, {lambda} = 0.66 {mu}m) was investigated in a sector approximation using the SND-LIRA numerical technique. In these experiments, the X-ray radiation temperature in the box was determined by measuring the velocity of the shock wave generated in the sample under investigation, which was located at the end of the cylindrical illuminator. Through simulations were made using the SND-LIRA code, which took into account the absorption of lasermore » driver radiation at the box walls, the production of quasithermal radiation, as well as the formation and propagation of the shock wave in the sample under investigation. An analysis of the experiments permits determining the electron thermal flux limiter f: for f = 0.03 it is possible to match the experimental scaling data for X-ray in-box radiation temperature to the data of our simulations. The shock velocities obtained from the simulations are also consistent with experimental data. In particular, in the experiment with six laser beams (and a laser energy E{sub L} = 1380 J introduced into the box) the velocity of the shock front (determined from the position of a laser mark) after passage through a 50-{mu}m thick base aluminium layer was equal to 35{+-}1.6 km s{sup -1}, and in simulations to 36 km s{sup -1}. In the experiment with four laser beams (for E{sub L} = 850 J) the shock velocity (measured from the difference of transit times through the base aluminium layer and an additional thin aluminium platelet) was equal to 30{+-}3.6 km s{sup -1}, and in simulations to 30 km s{sup -1}. (interaction of laser radiation with matter)« less
NASA Astrophysics Data System (ADS)
Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Gan, Yan-Biao; Cheng, Tao; Li, Ying-Jun
2009-10-01
We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the von Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.
Innovations in shock wave lithotripsy technology: updates in experimental studies.
Zhou, Yufeng; Cocks, Franklin H; Preminger, Glenn M; Zhong, Pei
2004-11-01
We developed innovations in shock wave lithotripsy (SWL) technology. Two technical upgrades were implemented in an original unmodified HM-3 lithotriptor (Dornier Medical Systems, Inc., Kennesaw, Georgia). First, a single unit ellipsoidal reflector insert was used to modify the profile of lithotriptor shock wave (LSW) to decrease the propensity of tissue injury in SWL. Second, a piezoelectric annular array (PEAA) generator (f = 230 kHz and F = 150 mm) was used to produce an auxiliary shock wave of approximately 13 MPa in peak pressure (at 4 kV output voltage) to intensify the collapse of LSW induced bubbles near the target stone for improved comminution efficiency. Consistent rupture of a vessel phantom made of single cellulose hollow fiber (i.d. = 0.2 mm) was produced after 30 shocks by the original HM-3 reflector at 20 kV. In comparison no vessel rupture could be produced after 200 shocks using the upgraded reflector at 22 kV or the PEAA generator at 4 kV. Using cylindrical BegoStone phantoms (Bego USA, Smithfield, Rhode Island) stone comminution efficiencies (mean +/- sd) after 1,500 shocks produced by the original and upgraded HM-3 reflectors, and the combined PEAA/upgraded HM-3 system, were 81.3% +/- 3.5%, 90.1% +/- 4.3% and 95.2% +/- 3.3%, respectively (p<0.05). Optimization of the pulse profile and sequence of LSW can significantly improve stone comminution while simultaneously decreasing the propensity of tissue injury during in vitro SWL. This novel concept and associated technologies may be used to upgrade other existing lithotriptors and to design new shock wave lithotriptors for improved performance and safety.
Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; ...
2015-06-13
We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less
Scale-Up Method for the Shock Compaction of Powders
NASA Astrophysics Data System (ADS)
Carton, E. P.; Stuivinga, M.
2004-07-01
Shock wave compaction in the cylindrical configuration lends itself to be scaled-up for small-scale industrial applications. While scaling up in the axial direction is easy, scaling up in the lateral direction is less straightforward and may lead to cracks in the center. A different scale up method is presented here; aluminum tubes are filled with the powder to be compacted and placed in a circle inside a large metal tube, with a metal shock wave reflector in the center. The space in between is filled with an inert powder medium: alumina, salt or sand. It is found that salt is the best medium for the integrity of the aluminum tube and for the ease of removal of the aluminum tube out of the (densified) powder medium. Experimental results of (slightly ellipsoidal) shock compacted tubes that are produced this way are shown as an example. In the case of B4C, after infiltration with the aluminum of the tube, fully dense cermet compacts without any cracks are thus produced, batch by batch.
NASA Astrophysics Data System (ADS)
Nath, Gorakh
2016-07-01
Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.
Gas density field imaging in shock dominated flows using planar laser scattering
NASA Astrophysics Data System (ADS)
Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran
2018-07-01
Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.
Negative pressures and spallation in water drops subjected to nanosecond shock waves
Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...
2016-05-16
Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less
The Shock and Vibration Digest. Volume 12, Number 3.
1980-03-01
this problem by Mallik to design the fuselage so that it acts as a band pass and M-d [211. Two :.ipes of support were con- filter, filtering out the...370-373 (1975). 237-245 (1975). 11. Harari, A., "Wave Propagation in Cylindrical 21. Mallik , A.K. and Mead, D.J., "Free Vibration Shells with Finite...1183 (1973). 29 _ _ 23. Singh, K. and Mallik , A.K., "Wave Propagation sure Fields," J. Sound Vib., 28 (2), pp 247- and Vibration Response of a
Optical elements formed by compressed gases: Analysis and potential applications
NASA Technical Reports Server (NTRS)
Howes, W. L.
1986-01-01
Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.
Temperature and Pressure from Collapsing Pores in HMX
NASA Astrophysics Data System (ADS)
Hardin, D. Barrett
2017-06-01
The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).
Laser Light Scattering by Shock Waves
NASA Technical Reports Server (NTRS)
Panda, J.; Adamovsky, G.
1995-01-01
Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.
Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Demirci, Ali; Ma, Yi-Ping
2016-10-01
Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and two dimensional Benjamin-Ono (2DBO) equation are considered using step like initial data along a parabolic front. Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg-de Vries (cKdV) and cylindrical Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which describe DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the cKdV and cBO equations, again with good agreement. It is concluded that the (2 + 1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.
Modeling and simulation of pressure waves generated by nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; (Yuki) Horie, Yasuyuki
2012-11-01
This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories.
Stability of stagnation via an expanding accretion shock wave
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.
2016-05-01
Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.
Stability of stagnation via an expanding accretion shock wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Giuliani, J. L.; Murakami, M.
Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never beenmore » studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.« less
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.
1998-01-01
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.
External front instabilities induced by a shocked particle ring.
Rodriguez, V; Saurel, R; Jourdan, G; Houas, L
2014-10-01
The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.
Analytic model for the dynamic Z-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.
2015-06-15
A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting casesmore » of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.« less
Swept Impinging Oblique Shock/Boundary-Layer Interactions
NASA Astrophysics Data System (ADS)
Little, Jesse; Threadgill, James; Stab, Ilona
2016-11-01
Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.
NASA Astrophysics Data System (ADS)
Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy
2018-01-01
Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.
Monloubou, Martin; Bruning, Myrthe A; Saint-Jalmes, Arnaud; Dollet, Benjamin; Cantat, Isabelle
2016-09-28
Liquid foams are excellent systems to mitigate pressure waves such as acoustic or blast waves. The understanding of the underlying dissipation mechanisms however still remains an active matter of debate. In this paper, we investigate the attenuation of a weak blast wave by a liquid foam. The wave is produced with a shock tube and impacts a foam, with a cylindrical geometry. We measure the wave attenuation and velocity in the foam as a function of bubble size, liquid fraction, and the nature of the gas. We show that the attenuation depends on the nature of the gas and we experimentally evidence a maximum of dissipation for a given bubble size. All features are qualitatively captured by a model based on thermal dissipation in the gas.
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
NASA Astrophysics Data System (ADS)
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
Numerical Solutions for a Cylindrical Laser Diffuser Flowfield
1990-06-01
exhaust conditions with minimum losses to optimize performance of the system. Thus, the handling of the system of shock waves to decelerate the flow...requirement for exhaustive experimental work will result in significant savings of both time and resources. As more advanced computers are developed, the...Mach number (ɚ.5) flows. Recent interest in hypersonic engine inlet performance has resulted in an extension of the methodology to high Mach number
NASA Astrophysics Data System (ADS)
Grachev, Gennadii N.; Tishchenko, V. N.; Apollonov, V. V.; Gulidov, A. I.; Smirnov, A. L.; Sobolev, A. V.; Zimin, M. I.
2007-07-01
An optical pulsating discharge produced by repetitively pulses laser radiation (with a pulse repetition rate of up to 100 kHz) is studied in a cylindrical tube simulating the reflector of a laser engine. The pressure of shock waves and the propulsion produced by them are measured. The discharge produced the stationary propulsion ~1 N kW-1.
Planar blast scaling with condensed-phase explosives in a shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott L
2011-01-25
Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less
Uniformity of cylindrical imploding underwater shockwaves at very small radii
NASA Astrophysics Data System (ADS)
Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.
2017-11-01
We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.
Nonlinear hyperbolic theory of thermal waves in metals
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Choi, S. H.
1975-01-01
A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.
EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE
NASA Technical Reports Server (NTRS)
Glass, C. E.
1994-01-01
New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow-field information for the various shock-wave interference patterns and their associated maximum surface pressure and heat flux predictions. EASI is written in FORTRAN 77 for a DEC VAX 8500 series computer using the VAX/VMS operating system, and requires 75K of memory. The program is available on a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. EASI was developed in 1989. DEC, VAX, and VMS are registered trademarks of the Digital Equipment Corporation.
Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.
Nowakowski, A F; Ballil, A; Nicolleau, F C G A
2015-08-01
The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.
Gas and particle motions in a rapidly decompressed flow
NASA Astrophysics Data System (ADS)
Johnson, Blair; Zunino, Heather; Adrian, Ronald; Clarke, Amanda
2017-11-01
To understand the behavior of a rapidly decompressed particle bed in response to a shock, an experimental study is performed in a cylindrical (D = 4.1 cm) glass vertical shock tube of a densely packed (ρ = 61%) particle bed. The bed is comprised of spherical glass particles, ranging from D50 = 44-297 μm between experiments. High-speed pressure sensors are incorporated to capture shock speeds and strengths. High-speed video and particle image velocimetry (PIV) measurements are collected to examine vertical and radial velocities of both the particles and gas to elucidate features of the shock wave and resultant expansion wave in the lateral center of the tube, away from boundaries. In addition to optically analyzing the front velocity of the rising particle bed, interaction between the particle and gas phases are investigated as the flow accelerates and the particle front becomes more dilute. Particle and gas interactions are also considered in exploring mechanisms through which turbulence develops in the flow. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.
Dynamics of vapor emissions at wire explosion thresholda)
NASA Astrophysics Data System (ADS)
Belony, Paul A.; Kim, Yong W.
2010-10-01
X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.
NASA Astrophysics Data System (ADS)
Lindstrom, Michael
2017-06-01
Fluid instabilities arise in a variety of contexts and are often unwanted results of engineering imperfections. In one particular model for a magnetized target fusion reactor, a pressure wave is propagated in a cylindrical annulus comprised of a dense fluid before impinging upon a plasma and imploding it. Part of the success of the apparatus is a function of how axially-symmetric the final pressure pulse is upon impacting the plasma. We study a simple model for the implosion of the system to study how imperfections in the pressure imparted on the outer circumference grow due to geometric focusing. Our methodology entails linearizing the compressible Euler equations for mass and momentum conservation about a cylindrically symmetric problem and analysing the perturbed profiles at different mode numbers. The linearized system gives rise to singular shocks and through analysing the perturbation profiles at various times, we infer that high mode numbers are dampened through the propagation. We also study the Linear Klein-Gordon equation in the context of stability of linear cylindrical wave formation whereby highly oscillatory, bounded behaviour is observed in a far field solution.
Buzz-saw noise : propagation of shock waves in aero-engine inlet ducts
NASA Astrophysics Data System (ADS)
Fernando, Rasika; Marchiano, Régis; Coulouvrat, François; Druon, Yann
2008-06-01
For supersonic flows relative to turbo-engine fan blades, measured acoustic spectra near the inlet present tones at fan blade passing frequency (BPF), engine shaft rotation frequency, or Engine Order (EO), and their respective harmonics. The latter are responsible for the Buzz-saw noise and are thus referred to as "Buzz-saw" or "multiple pure" tones. This work first attempts to reformulate McAlpine and Fisher's frequency domain model (2001) for the propagation of a unidimensional sawtooth waveform spiralling inside a hard-walled cylindrical duct in the presence of a uniform flow. The non-dissipative Burgers equation is solved using a shock fitting method, and modal attenuation and dispersion are added using a split-step computational method. In practice, shocks do not only occur at blade tips but on a significant portion of the blade span. The plane wave hypothesis being no longer valid, a new three dimensional model is required. This model is based on the computation of the axially varying amplitudes of the modal solutions, in order to take into account the nonlinear modal interactions.
NASA Technical Reports Server (NTRS)
VanHise, Vernon
1961-01-01
Pressure distributions and shock shapes for a series of cylindrical afterbodies having nose fineness ratios from 0.4 to 4 have been calculated by using the method of characteristics for a perfect gas. The fluid mediums investigated were air and helium and the Mach number range was from 5 to 40. Flow parameters obtained from blast-wave analogy gave good correlations of blunt-nose induced pressures and shock shapes. Experimental results are found to be in good agreement with the characteristic calculations. The concept of hypersonic similitude enables good correlation of the results with respect to body shape, Mach number, and ratio of specific heats.
Simulating energy cascade of shock wave formation process in a resonator by gas kinetic scheme
NASA Astrophysics Data System (ADS)
Qu, Chengwu; Zhang, Xiaoqing; Feng, Heying
2017-12-01
The temporal-spatial evolution of gas oscillation was simulated by gas kinetic scheme (GKS) in a cylindrical resonator, driven by a piston at one end and rigidly closed at the other end. Periodic shock waves propagating back and forth were observed in the resonator under finite amplitude of gas oscillation. The studied results demonstrated that the acoustic pressure is a saw-tooth waveform and the oscillatory velocity is a square waveform at the central position of the resonant tube. Moreover, it was found by harmonic analysis that there was no presence of obvious feature for pressure node in such a typical standing wave resonator, and the distribution of acoustic fields displayed a one-dimensional feature for the acoustic pressure while a quasi-one-dimensional form for oscillatory velocity, which demonstrated the nonlinear effects. The simulation results for axial distribution of acoustic intensity showed a good consistency with the published experimental data in the open literature domain, which provides a verification for the effectiveness of the GKS model proposed. The influence of displacement amplitude of the driving piston on the formation of shock wave was numerically investigated, and the simulated results revealed the cascade process of harmonic wave energy from the fundamental wave to higher harmonics. In addition, this study found that the acoustic intensity at the driving end of the resonant tube would increase linearly with the displacement amplitude of the piston due to nonlinear effects, rather than the exponential variation by linear theory. This research demonstrates that the GKS model is strongly capable of simulating nonlinear acoustic problems.
Impact of Inner Surface Perturbations on the Stability of Cylindrical Liner Implosion
NASA Astrophysics Data System (ADS)
Weis, Matthew; Peterson, Kyle; Hess, Mark; Lau, Y. Y.; Zhang, Peng; Gilgenbach, Ronald
2015-11-01
This paper studies the effects of initial perturbations on the inner liner surface (ILS) of an imploding cylindrical liner. In MagLIF, nonuniform preheat of the fuel could provide an additional source of spatial nonuniformity on the ILS. A blast wave generated by the laser preheat might trigger the Richtmyer-Meshkov instability (RM) on the ILS which then serves as another seed to the Rayleigh-Taylor instability (RT) during the stagnation (deceleration) phase of the implosion. Another scenario is that the shock initiated from the outer liner surface, during current rise, propagates inward and is reflected at the ILS. This reflected shock would carry the initial ILS perturbations which then serve as an additional seed for the magneto-RT (MRT) during the acceleration phase of the implosion. These potentially dangerous interactions are analyzed using the 2D HYDRA code. The effects of axial magnetic fields, of the initial surface roughness spectrum, and of gas fill or water fill (to examine deceleration phase RT) are studied. M. R. Weis was supported by the Sandia National Laboratories. This work was also supported by DoE Grant DE-SC0012328.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vignati, F.; Guardone, A., E-mail: alberto.guardone@polimi.it
Cylindrical converging shock waves interacting with an array of aerodynamic obstacles are investigated numerically for diverse shock strengths and for different obstacle configurations in air in standard conditions. The considered number of obstacles N is 4, 6, 8, 16, and 24. Obstacles are lenticular airfoils with thickness-to-chord ratios t/c of 0.07, 0.14, and 0.21. The distances of the airfoil leading edge from the shock focus point (r{sub LE})/(r{sub LE}{sup ref}) are 1, 2, and 2.5, where r{sub LE}{sup ref}=7 is the dimensionless reference distance from the origin. Considered impinging shock Mach numbers M{sub s} are 2.2, 2.7, and 3.2 atmore » the reference distance from the origin. The reference experimental configuration (N=8,t/c =0.14,r{sub LE}=7,M{sub s}=2.7) was proposed by Kjellander et al. [“Thermal radiation from a converging shock implosion,” Phys. Fluids 22, 046102 (2010)]. Numerical results compare fairly well to available one-dimensional models for shock propagation and to available experimental results in the reference configuration. Local reflection types are in good agreement with the classical criteria for planar shock waves. The main shock reshaping patterns are identified and their dependence on the shock strength and obstacle configuration is exposed. In particular, different shock patterns are observed after the leading edge reflection, which results in polygonal shock wave with N, 2N, 3N, and 4N sides. The largest temperature peak at the origin is obtained for the 8- and the 16-obstacle configurations and for the smallest thickness to length ratio, 0.07, located at distance from the origin of 2r{sub LE}{sup ref}. In terms of compression efficiency at the origin, the 16-obstacle configuration is found to perform slightly better than the reference 8-obstacle configuration—with an efficiency increase of about 2%-3%, which is well within the model accuracy—thus confirming the goodness of the obstacle arrangement proposed by Kjellander and collaborators.« less
Gasdynamics of explosions today.
NASA Technical Reports Server (NTRS)
Brode, H. L.; Glass, I. I.; Oppenheim, A. K.
1971-01-01
A brief review is given of blast and detonation wave phenomena and some of their uses in war and peace. It is concluded that great strides have been made over the last three decades toward the physical understanding, the analytical-numerical solution, and the measurement of dynamic and thermodynamic quantities, also taking into consideration severe environments and extremely short durations. Questions of internal ballistics are discussed together with hypervelocity launchers and shock tubes, collapsing cylindrical drivers, spherical implosions, explosive weapons, dynamic response, and equation of state data.
Interaction of a liquid jet with an oncoming gas stream
NASA Astrophysics Data System (ADS)
Koval', M. A.; Shvets, A. I.
1987-06-01
Wind-tunnel tests were carried out to study the interaction between water jets issuing from various types of nozzles (including cylindrical) and subsonic and supersonic air streams with Mach numbers from 0.3 to 3 and Reynolds numbers from 1 x 10 to the 6th to 3 x 10 to the 7th. The following interaction structure was observed: (1) at moderate outflow velocities, the liquid jet has an extended region, which subsequently expands abruptly as a spherical or mushroom-shaped drop; (2) this drop is atomized in the peripheral region and is carried away as a gas-liquid mixture; (3) a shock wave is formed in front of the jet in the oncoming supersonic stream; and (4) a separated flow region is present in the vicinity of the cylindrical nozzle section.
NASA Astrophysics Data System (ADS)
Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.
2018-05-01
The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.
NASA Astrophysics Data System (ADS)
Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias
2002-02-01
The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.
Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets
NASA Astrophysics Data System (ADS)
Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.
2018-03-01
The main purpose of presented work is to obtain W-Cu & W-Y cylindrical bulk nanostructured billets by explosive consolidation technology (ECT) in hot condition, with low porosity near to theoretical densities and improved physical / mechanical properties. Nanocomposites were subjected to densification into cylindrical steel tube containers using hot explosive consolidation (HEC) technology to fabricate high dense cylindrical billets. The first stage : Preliminary explosive densification of the precursor powder blend is carried out at room temperature with a loading intensity up to 10GPa to increase the initial density and to activate the particle surfaces in the blend. The second stage investigation were carried out for the same already predensified billets, but consolidation were conducted in hot conditions, after heating of samples in between 940-11000C, the intensity of loading was equal to 10GPa. Consolidated different type of W-Cu composition containing 10-40% of nanoscale W, during investigation showed that the combination of high temperatures (above 940°C) and two-stage shock wave compression was beneficial to the consolidation of the incompatible pair W-Cu composites, resulting in high densities, good integrity and good electronic properties. The structure and property of the samples obtained, depended on the sizes of tungsten particles. It was established that in comparison with W-Cu composites with coarse tungsten the application of nanoscale W precursors and depending of content of W gives different result. Tungsten is a prime material candidate for the first wall of a future fusion reactor. In this study, the microstructure and microhardness of tungsten-yttrium (W-Y) composites were investigated as a function of Y doping content (0.5÷2 wt. %). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W-Y alloys when the Y content was higher than 0.5 wt. %. Investigation revealed that the Y rich phases were complex (W-Y) oxides formed during the sintering process. Also very interesting to use doping chromium with yttrium-containing alloys. e.g. (W - 10÷12 Cr -0.5÷2 Y) wt. %. The extent up to which yttrium acts as an active element improving the adherence and stability of the protective Cr 2 O 3 layer formed during oxidation is assessed. The structure and characteristics of the obtained samples depends on the phase content, distribution of phases and processing parameters during explosive synthesis and consolidation. Cu – (10-30%) W powder mixtures were formed into cylindrical rods using a hot shock wave consolidation (HSWC) process. Different type of Cu - W precursor composition containing 10, 20 and 30% of nanoscale W were consolidated near theoretical density under 900°C The loading intensity was under 10 GPa. The investigation showed that the combination of high temperatures (above 800°C) and two stage shock wave compression was beneficial to the consolidation of the W-Cu & W-Y composites, resulting in high densities, good integrity and good electronic properties.
NASA Astrophysics Data System (ADS)
Howard, Danny Dwayne
Part I - Shock waves are focused in extracorporeal shock wave lithotripsy (ESWL) machines to strengths sufficient to fracture kidney stones. Substantial side effects-most of them acute-have resulted from this procedure, including injury to soft tissue. The focusing of shock waves through various layers of tissue is a complex process which stimulates many bio-mechano-chemical responses.This thesis presents results of an in vitro study of the initial mechanical stimulus. Planar nitrocellulose membranes of order 10 um thick were used as models of thin tissue structures. Two modes of failure were recorded: Failure due to cavitation collapsing on or near the membranes, and failure induced by altering the structure of shock waves. Tests were done in water at and around F2 to characterize the extent of cavitation damage, and was found to be confined within the focal region, 1.2 cm along the axis of focus.Scattering media were used to simulate the effects of acoustic nonuniformity of tissue and to alter the structure of focusing shock waves. 40 um diameter (average) hollow glass spheres were added to ethylene glycol, glycerine and castor oil to vary the properties of the scattering media. Multiple layer samples of various types of phantom tissue were tested in degassed castor oil to gauge the validity of the scattering media. The scattering media and tissue samples increased the rise time decreased strain rate in a similar fashion. Membranes were damaged by the decreased strain rate and accumulated effects of the altered structure: After about 20 or so shocks immersed in the scattering media and after about 100 shocks behind the tissue samples. The mode of failure was tearing with multiple tears in some cases from about .1 cm to about 3 cm depending of the number of shocks and membrane thickness.Part II - This work examines the exsolution of volatiles-carbon dioxide from water-in a cylindrical test cell under different pressure conditions. Water was supersaturated with carbon dioxide under various pressures (620 to 1062 kPa), and depressurized rapidly to investigate how carbon dioxide is undissolved, exsolution, and its effects on the surrounding environment. Cavities grow as a result of convective diffusion: They move before depleting carbon dioxide in a given region. The radius of a cavity in this environment grows at a faster rate [...] than that of a cavity at rest [...]. Bubble growth rates were inferred by measuring the bulk liquid using high speed motion pictures. Water in the test-cell is accelerated as a result of buoyancy induced by cavity growth. Cavities are elliptical in shape and grow until mutual interaction causes them to fragment. Accelerations range from 10 to 100 g were measured with velocities ranging from 7 to 13 m/s.
Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock
NASA Astrophysics Data System (ADS)
Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.
2018-06-01
Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.
NASA Astrophysics Data System (ADS)
Chao, Gabriel; Smeulders, D. M. J.; van Dongen, M. E. H.
2006-05-01
Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-dependent phase velocities and attenuation coefficients were measured using this technique. The results for a Berea sandstone material show a clear excitation of the fundamental surface mode, the pseudo-Stoneley wave. The comparison of the experimental results with numerical predictions based on Biot's theory of poromechanics [J. Acoust. Soc. Am. 28, 168 (1956)], shows that the oscillating fluid flow at the borehole wall is the dominant loss mechanism governing the pseudo-Stoneley wave and it is properly described by the Biot's model at frequencies below 40 kHz. At higher frequencies, a systematic underestimation of the theoretical predictions is found, which can be attributed to the existence of other losses mechanisms neglected in the Biot formulation. Higher-order guided modes associated with the compressional wave in the porous formation and the cylindrical geometry of the shock tube were excited, and detailed information was obtained on the frequency-dependent phase velocity and attenuation in highly porous and permeable materials. The measured attenuation of the guided wave associated with the compressional wave reveals the presence of regular oscillatory patterns that can be attributed to radial resonances. This oscillatory behavior is also numerically predicted, although the measured attenuation values are one order of magnitude higher than the corresponding theoretical values. The phase velocities of the higher-order modes are generally well predicted by theory.
Radiative precursors driven by converging blast waves in noble gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.
2014-03-15
A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicularmore » to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.« less
Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushtaq, A.
2007-11-15
The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.
Plasma instability in fast spherical discharge induced by a preionization
NASA Astrophysics Data System (ADS)
Antsiferov, P. S.; Dorokhin, L. A.
2015-04-01
As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.
Effect of stratification and geometrical spreading on sonic boom rise time
NASA Technical Reports Server (NTRS)
Cleveland, Robin O.; Hamilton, Mark F.; Blackstock, David T.
1994-01-01
The purpose of our investigation is to determine the effect of unsteadiness (not associated with turbulence) on rise time. The unsteadiness considered here is due to (1) geometrical spreading, (2) stratification, which includes variation in density, temperature, and relative humidity, and (3) N shaped waveform. A very general Burgers equation, which includes all these effects, is the propagation model for our study. The equation is solved by a new computational algorithm in which all the calculations are done in the time domain. The present paper is a progress report in which some of the factors contributing to unsteadiness are studied, namely geometrical spreading and variation in relative humidity. The work of Pierce and Kang, which motivated our study, is first reviewed. We proceed with a discussion of the Burgers equation model and the algorithm for solving the equation. Some comparison tests to establish the validity of the algorithm are presented. The algorithm is then used to determine the distance required for a steady-state shock, on encountering an abrupt change in relative humidity, to reach a new steady state based on the new humidity. It is found that the transition distance for plane shocks of amplitude 70 Pa is about 4 km when the change in relative humidity is 10 percent. Shocks of amplitude 140 Pa require less distance. The effect of spherical and cylindrical spreading is also considered. We demonstrate that a spreading shock wave never reaches steady state and that its rise time will be less than the equivalent steady state shock. Finally we show that an N wave has a slightly shorter rise time than a step shock of the same amplitude.
Lin, Chun-I; Lee, Yung-Chun
2014-08-01
Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Takayama, Kazuyoshi
Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.
The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2016-05-15
The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less
Simulations of Converging Shock Collisions for Shock Ignition
NASA Astrophysics Data System (ADS)
Sauppe, Joshua; Dodd, Evan; Loomis, Eric
2016-10-01
Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.
NASA Astrophysics Data System (ADS)
Andrei, B. Utkin
2011-10-01
A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.
Two dimensional cylindrical fast magnetoacoustic solitary waves in a dust plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Haifeng; Wang Shiqing; Engineering and Technical College of Chengdu University of Technology, Leshan 614000
2011-04-15
The nonlinear fast magnetoacoustic solitary waves in a dust plasma with the combined effects of bounded cylindrical geometry and transverse perturbation are investigated in a new equation. In this regard, cylindrical Kadomtsev-Petviashvili (CKP) equation is derived using the small amplitude perturbation expansion method. Under a suitable coordinate transformation, the CKP equation can be solved analytically. It is shown that the dust cylindrical fast magnetoacoustic solitary waves can exist in the CKP equation. The present investigation may have relevance in the study of nonlinear electromagnetic soliton waves both in laboratory and astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.
2016-08-01
In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.
Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less
Analytical and experimental study of axisymmetric truncated plug nozzle flow fields
NASA Technical Reports Server (NTRS)
Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.
1972-01-01
Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.
NASA Astrophysics Data System (ADS)
Lopez Ortega, Alejandro
This thesis presents a numerical and analytical study of two problems of interest involving shock waves propagating through elastic-plastic media: the motion of converging (imploding) shocks and the Richtmyer-Meshkov (RM) instability. Since the stress conditions encountered in these cases normally produce large deformations in the materials, an Eulerian description, in which the spatial coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and differences between the present study of phenomena driven by shock-loading in elastic-plastic solids, and in fluids, where they have been studied extensively. In the first application, Whitham's shock dynamics (WSD) theory is employed for obtaining an approximate description of the motion of an elastic-plastic material processed by a cylindrically/spherically converging shock. Comparison with numerical simulations of the full set of equations of motion reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all stages. The study of the Richtmyer-Meshkov flow (i.e., interaction between the interface separating two materials of different density and a shock wave incoming at an angle) in solids is performed by means of analytical models for purely elastic solids and numerical simulations when plasticity is included in the material model. To this effect, an updated version of a previously developed multi-material, level-set-based, Eulerian framework for solid mechanics is employed. The revised code includes the use of a multi-material HLLD Riemann problem for imposing material boundary conditions, and a new formulation of the equations of motion that makes use of the stretch tensor while avoiding the degeneracy of the stress tensor under rotation. Results reveal that the interface separating two elastic solids always behaves in a stable oscillatory or decaying oscillatory manner due to the existence of shear waves, which are able to transport the initial vorticity away from the interface. In the case of elastic-plastic materials, the interface behaves at first in an unstable manner similar to a fluid. Ejecta formation is appreciated under certain initial conditions while in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-term behavior due to stress relaxation. The effect of secondary shock-interface interactions (re-shocks) in converging geometries is also studied. A turbulent mixing zone, similar to what is observed in gas--gas interfaces, is created, especially when materials with low strength driven by moderate to strong shocks are considered.
Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan
2009-02-01
Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.
Ion-acoustic solitons do not exist in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2017-09-01
We investigate the time evolution of one-dimensional, compressive, ion acoustic solitary waves for planar, cylindrical, and spherical geometries in a plasma of cold fluid ions and Boltzmann electrons. For cylindrical and spherical geometries, we show that inward (outward) going solitary waves cannot be localized (i.e., always have a tail) since the effect of a unipolar velocity perturbation is to shift ions inward (outward) to smaller (larger) radii, thereby increasing (decreasing) the local ion density. That is, there are no quasi-particle soliton states in the cylindrical and spherical cases. These results are confirmed and expanded using a plasma simulation for the cylindrical case. We initialize the system with an inward propagating planar soliton. We find supersonic solitary waves which increase in speed as they near the origin, while the wave amplitude increases as r-1/2. All solitary waves develop the predicted tail, but for larger amplitudes, the tail is unstable and evolves into an acoustic wave train.
NASA Astrophysics Data System (ADS)
Groenig, Hans
Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.
Nonplanar KdV and KP equations for quantum electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Dutta, Debjit
2015-12-01
Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Lei; Feng, Li; Liu, Siming
We present a detailed study of an Earth-directed coronal mass ejection (full-halo CME) event that happened on 2011 February 15, making use of white-light observations by three coronagraphs and radio observations by Wind /WAVES. We applied three different methods to reconstruct the propagation direction and traveling distance of the CME and its driven shock. We measured the kinematics of the CME leading edge from white-light images observed by Solar Terrestrial Relations Observatory ( STEREO ) A and B , tracked the CME-driven shock using the frequency drift observed by Wind /WAVES together with an interplanetary density model, and obtained themore » equivalent scattering centers of the CME by the polarization ratio (PR) method. For the first time, we applied the PR method to different features distinguished from LASCO/C2 polarimetric observations and calculated their projections onto white-light images observed by STEREO-A and STEREO-B . By combining the graduated cylindrical shell (GCS) forward modeling with the PR method, we proposed a new GCS-PR method to derive 3D parameters of a CME observed from a single perspective at Earth. Comparisons between different methods show a good degree of consistence in the derived 3D results.« less
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Technical Reports Server (NTRS)
Flanagan, Michael J.
1992-01-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
Time dependent heat transfer rates in high Reynolds number hypersonic flowfields
NASA Astrophysics Data System (ADS)
Flanagan, Michael J.
1992-09-01
Time dependent heat transfer rates have been calculated from time dependent temperature measurements in the vicinity of shock-wave boundary-layer interactions due to conical compression ramps on an axisymmetric body. The basic model is a cylindrical body with a 10 degree conical nose. Four conical ramps, 20, 25, 30, and 35 degrees serve as shock wave generators. Flowfield surveys have been made in the vicinity of the conical ramp vertex, the separation point, and the reattachment point. A significant effort was made to characterize the natural frequencies and relative powers of the resulting fluctuations in heat transfer rates. This research effort, sponsored jointly by NASA and the Air Force, was conducted in the Air Force Flight Dynamics Directorate High Reynolds Facility. The nominal freestream Mach number was 6, and the freestream Reynolds numbers ranged from 2.2 million/ft to 30.0 million/ft. Experimental results quantify temperature response and the resulting heat transfer rates as a function of ramp angle and Reynolds number. The temperature response within the flowfield appears to be steady-state for all compression ramp angles and all Reynolds numbers, and hence, the heat transfer rates appear to be steady-state.
The acoustic environment of a sonoluminescing bubble
NASA Astrophysics Data System (ADS)
Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn
2000-07-01
A bubble is levitated in water in a cylindrical resonator which is driven by ultrasound. It has been shown that in a certain region of parameter space the bubble is emitting light pulses (sonoluminescence). One of the properties observed is the enormous spatial stability leaving the bubble "pinned" in space allowing it to emit light with a timing of picosecond accuracy. We argue that the observed stability is due to interactions of the bubble with the resonator. A shock wave emitted at collapse time together with a self generated complex sound field, which is experimentally mapped with high resolution, is responsible for the observed effects.
Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Jae; Hyung, Siek; Chattopadhyay, Indranil
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as inmore » the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.« less
Shock wave treatment in medicine.
Shrivastava, S K; Kailash
2005-03-01
Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones.
Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun
2007-07-01
We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.
Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.
2016-08-01
In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.
In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
PALS laser-driven radiative jets for astrophysical and ICF applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisarczyk, T.; Kasperczuk, A.; Stenz, Ch.
2008-03-19
High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System--PALS) using the third harmonic beam (0.438 {mu}m) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x10{sup 7} cm/s, the internal Mach number greater than 10 and themore » electron density above 10{sup 19} cm{sup -3}. The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm.« less
21 CFR 876.5990 - Extracorporeal shock wave lithotripter.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...
21 CFR 876.5990 - Extracorporeal shock wave lithotripter.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...
21 CFR 876.5990 - Extracorporeal shock wave lithotripter.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...
3D Printed Shock Mitigating Structures
NASA Astrophysics Data System (ADS)
Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit
Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2016-03-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less
Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection
NASA Astrophysics Data System (ADS)
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.
2000-07-01
A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.
Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Tanaka, K.; Watanabe, T.; Nagata, K.; Sasoh, A.; Sakai, Y.; Hayase, T.
2018-03-01
We study the pressure increase across a planar shock wave with shock Mach numbers Ms of 1.1, 1.3, and 1.5 propagating through homogeneous isotropic turbulence at a low turbulent Mach number (Mt ˜ 10-4) based on direct numerical simulations (DNSs). Fluctuation in the pressure increase, Δp', on a given shock ray is induced by turbulence around the ray. A local amplification of the shock wave strength, measured with the pressure increase, is caused by the velocity fluctuation opposed to the shock wave propagating direction with a time delay, while the velocity in the opposite direction attenuates the shock wave strength. The turbulence effects on the shock wave are explained based on shock wave deformation due to turbulent shearing motions. The spatial distribution of Δp' on the shock wave has a characteristic length of the order of the integral scale of turbulence. The influence of turbulent velocity fluctuation at a given location on Δp' becomes most significant after the shock wave propagates from the location for a distance close to the integral length scale for all shock Mach numbers, demonstrating that the shock wave properties possess strong memory even during the propagation in turbulence. A lower shock Mach number Ms results in a smaller rms value of Δp', stronger influences on Δp' by turbulence far away from the shock ray, and a larger length scale in the spatial profile of Δp' on the shock wave. Relative intensity of Δp' increases with [Mt/(Ms-1 ) ] α, where DNS and experimental results yield α ≈ 0.73.
Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes
NASA Astrophysics Data System (ADS)
Bershader, Daniel; Hanson, Ronald
1986-09-01
One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.
Ionization assisted self-guiding of femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Morozov, A.; Goltsov, A.; Chen, Q.; Scully, M.; Suckewer, S.
2018-05-01
We propose a new mechanism for the self-guiding of ultra-intense sub-picosecond laser pulses in gaseous media. It can be realized via optical field ionization by a laser pulse as it propagates inside an expanding cylindrical shock wave launched into ambient gas by a decayed plasma filament. In experiments, the filament was created in a hydrogen jet by a low energy femtosecond laser pre-pulse line focused with axicon lens. We demonstrated ionization-assisted guiding in structures with diameter as small as 14 μm and up to 3.5 mm long. The intensity reached 5 × 1017 W/cm2 in a single mode propagating for more than 100 Rayleigh lengths.
Potential applications of low-energy shock waves in functional urology.
Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi
2017-08-01
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.
On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.
Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O
2013-03-01
There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.
Shock wave attenuation by grids and orifice plates
NASA Astrophysics Data System (ADS)
Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.
2006-11-01
The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.
Jet formation of SF6 bubble induced by incident and reflected shock waves
NASA Astrophysics Data System (ADS)
Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang
2017-12-01
The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.
CAFE: A New Relativistic MHD Code
NASA Astrophysics Data System (ADS)
Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.
2015-06-01
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
Freund, Jonathan B.
2008-01-01
Estimates are made of the effect of tissue confinement on the response of small bubbles subjected to lithotriptor shock pressures. To do this the Rayleigh–Plesset equation, which governs the dynamics of spherical bubbles, is generalized to treat a bubble in a liquid region (blood), which is in turn encased within an elastic membrane (like a vessel’s basement membrane), beyond which a Voigt viscoelastic material models the exterior tissue. Material properties are estimated from a range of measurements available for kidneys and similar soft tissues. Special attention is given to the constitutive modeling of the basement membranes because of their expected importance due to their proximity to the bubble and their toughness. It is found that the highest expected values for the elasticity of the membrane and surrounding tissue are insufficient to suppress bubble growth. The reduced confinement of a cylindrical vessel should not alter this conclusion. Tissue viscosities taken from ultrasound measurements suppress bubble growth somewhat, though not to a degree expected to resist injury. However, the higher reported viscosities measured by other means, which are arguably more relevant to the deformations caused by growing bubbles, do indeed significantly suppress bubble expansion. PMID:18529202
Freund, Jonathan B
2008-05-01
Estimates are made of the effect of tissue confinement on the response of small bubbles subjected to lithotriptor shock pressures. To do this the Rayleigh-Plesset equation, which governs the dynamics of spherical bubbles, is generalized to treat a bubble in a liquid region (blood), which is in turn encased within an elastic membrane (like a vessel's basement membrane), beyond which a Voigt viscoelastic material models the exterior tissue. Material properties are estimated from a range of measurements available for kidneys and similar soft tissues. Special attention is given to the constitutive modeling of the basement membranes because of their expected importance due to their proximity to the bubble and their toughness. It is found that the highest expected values for the elasticity of the membrane and surrounding tissue are insufficient to suppress bubble growth. The reduced confinement of a cylindrical vessel should not alter this conclusion. Tissue viscosities taken from ultrasound measurements suppress bubble growth somewhat, though not to a degree expected to resist injury. However, the higher reported viscosities measured by other means, which are arguably more relevant to the deformations caused by growing bubbles, do indeed significantly suppress bubble expansion.
Shock and Laser Induced Non-Equilibrium Chemistry in Molecular Energetics
NASA Astrophysics Data System (ADS)
Wood, Mitchell; Cherukara, Mathew; Kober, Edward; Strachan, Alejandro
2015-06-01
In this study, we have used large scale reactive molecular dynamics (MD) simulations to study how contrasting initiation mechanisms from either shock or electromagnetic insults compare to traditional thermal initiation. We will show how insults of equal strength but different character can yield vastly different reaction profiles and thus the evolution of hot-spots. For shocked RDX (Up = 2km/s), we find that the collapse of a cylindrical 40 nm diameter pore leads to a significant amount of non-equilibrium reactions followed by the formation of a sustained deflagration wave. In contrast, a hot spot that is seeded into a statically compressed crystal with matching size and temperature will quench over the same timescale, highlighting the importance of insult type. Furthermore, MD simulations of electromagnetic insults coupled to intramolecular vibrations have shown, in some cases, mode specific initial chemistry and altered kinetics of the subsequent decomposition. By leveraging spectroscopic and chemical information gathered in our MD simulations, we have been able to identify and track non-equilibrium vibrational states of these materials and correlate them to these observed changes. Implications of insult dependent reactivity and non-equilibrium chemistry will be discussed.
Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas
2016-01-01
The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017
Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas
2016-01-01
The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.
Effects of shock strength on shock turbulence interaction
NASA Technical Reports Server (NTRS)
Lee, Sangsan
1993-01-01
Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.
NASA Astrophysics Data System (ADS)
Kim, Yong W.
Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.
NASA Astrophysics Data System (ADS)
Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin
2018-05-01
The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.
Furia, John P
2008-03-01
High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P < .001), 6.5 and 2.9 (P < .001), and 5.6 and 2.2 (P < .001), respectively. At final follow-up, the number of excellent, good, fair, and poor results for the shock wave therapy and control groups were 12 and 0 (P < .001), 17 and 9 (P < .001), 5 and 17 (P < .001), and 0 and 8 (P < .001), respectively. A chi(2) analysis revealed that the percentage of patients with excellent ("1") or good ("2") Roles and Maudsley scores, that is, successful results, 12 months after treatment was statistically greater in the shock wave therapy group than in the control group (P < .001). Shock wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.
Seismic excitation by space shuttles
Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.
1992-01-01
Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were simultaneously hit by the space shuttle shock waves. The proximity of the natural periods of the high rise buildings and the modal periods of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave. ?? 1992 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Dean, Cleon E.; Braselton, James P.
2004-05-01
Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.
On the local time dependence of the bow shock wave structure
NASA Technical Reports Server (NTRS)
Olson, J. V.; Holzer, R. E.
1974-01-01
In the first 6 months after its launch, Ogo 3 crossed the earth's bow shock over 500 times. From this group, a set of 494 shock crossings were chosen for analysis. These crossings, as they were recorded by the UCLA/JPL search coil magnetometer, were scanned and classified according to the nature of the plasma waves detected near the shock. More than 85% of the shocks detected fell into a single category showing the predominance of two independent wave trains near the shock, the higher frequency appearing upstream and the lower downstream. The other 15%, which constitute an upper limit, appear to be composed of shocks dominated by a single wave pattern and of chaotic shocks showing no orderly progression of wave frequencies as the shock was penetrated. This division of wave pattern was found to occur at all local times, that is, in all regions where the satellite penetrated the shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W. H.; He, X. T.; LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088
2012-07-15
When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit ofmore » the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.« less
NASA Astrophysics Data System (ADS)
Wang, Qingquan; Yu, Yingjie; Mou, Kebing
2017-10-01
This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error.
Shock waves in weakly compressed granular media.
van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin
2013-11-22
We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.
Alfven waves associated with long cylindrical satellites
NASA Technical Reports Server (NTRS)
Venkataraman, N. S.; Gustafson, W. A.
1973-01-01
The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.
NASA Astrophysics Data System (ADS)
Ren, Zhaoxin; Wang, Bing; Zheng, Longxi
2018-03-01
The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.
On the interplay between cosmological shock waves and their environment
NASA Astrophysics Data System (ADS)
Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent
2017-05-01
Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.
Interaction of rippled shock wave with flat fast-slow interface
NASA Astrophysics Data System (ADS)
Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong
2018-04-01
The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.
Shock Wave Technology and Application: An Update☆
Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian
2012-01-01
Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696
Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong
2017-10-01
Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.
Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.
Wang, Lin; Qin, Ling; Lu, Hong-bin; Cheung, Wing-hoi; Yang, Hu; Wong, Wan-nar; Chan, Kai-ming; Leung, Kwok-sui
2008-02-01
Extracorporeal shock wave therapy is indicated for treatment of chronic injuries of soft tissues and delayed fracture healing and nonunion. No investigation has been conducted to study the effect of shock wave on delayed healing at the bone-tendon junction. Shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling of healing tissue in delayed healing of bone-tendon junction surgical repair. Controlled laboratory study. Twenty-eight mature rabbits were used for establishing a delayed healing model at the patella-patellar tendon complex after partial patellectomy and then divided into control and shock wave groups. In the shock wave group, a single shock wave treatment was given at week 6 postoperatively to the patella-patellar tendon healing complex. Seven samples were harvested at week 8 and 7 samples at week 12 for radiologic, densitometric, histologic, and mechanical evaluations. Radiographic measurements showed 293.4% and 185.8% more new bone formation at the patella-patellar tendon healing junction in the shock wave group at weeks 8 and 12, respectively. Significantly better bone mineral status was found in the week 12 shock wave group. Histologically, the shock wave group showed more advanced remodeling in terms of better alignment of collagen fibers and thicker and more mature regenerated fibrocartilage zone at both weeks 8 and 12. Mechanical testing showed 167.7% and 145.1% higher tensile load and strength in the shock wave group at week 8 and week 12, respectively, compared with controls. Extracorporeal shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling in the delayed bone-to-tendon healing junction in rabbits. These results provide a foundation for future clinical studies toward establishment of clinical indication for treatment of delayed bone-to-tendon junction healing.
An electromagnetic railgun accelerator: a generator of strong shock waves in channels
NASA Astrophysics Data System (ADS)
Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.
2014-11-01
Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.
Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek
2003-03-01
In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.
Synchro-ballistic recording of detonation phenomena
NASA Astrophysics Data System (ADS)
Critchfield, Robert R.; Asay, Blaine W.; Bdzil, John B.; Davis, William C.; Ferm, Eric N.; Idar, Deanne J.
1997-12-01
Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic detonation shock dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film's spatial dimension and the phase velocity is adjusted to provide synchronization at the camera's maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to- diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric denotation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.
Synchro-ballistic recording of detonation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.
1997-09-01
Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of themore » events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.« less
Tread drum for animals. [having an electrical shock station
NASA Technical Reports Server (NTRS)
Howard, W. H. (Inventor)
1978-01-01
A device for exercising animals such as primates is described, which includes a cylindrical housing mounted for rotation about a horizontal axis of revolution and has a cylindrical treadway portion on which the animal treads while the drum is rotated by means of a motorized drive. The treadway portion of the drum includes an electrode structure with sectors being independently energizable by means of a commutator and source of potential so that an electrical shock station is created behind a running-in-place station on the moving treadway. In this manner, if the animal should fall behind its running-in-place station, it may be shocked by treading on the energized electrode structure. One end of the tread drum comprises a transparent wall for unobstructed viewing of the animal being exercised.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Whistler Waves Associated with Weak Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.
2012-01-01
We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.
Suspended liquid particle disturbance on laser-induced blast wave and low density distribution
NASA Astrophysics Data System (ADS)
Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos
2017-12-01
The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.
Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil
NASA Technical Reports Server (NTRS)
Davis, Sanford S.; Malcolm, Gerald N.
1980-01-01
Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.
Optical distortion in the field of a lithotripter shock wave
NASA Astrophysics Data System (ADS)
Carnell, M. T.; Emmony, D. C.
1995-10-01
The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.
Wave and particle evolution downstream of quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.
1995-01-01
Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-07
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-01
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
Numerical Simulations of Shock Wave Refraction at Inclined Gas Contact Discontinuity
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
When a shock wave interacts with a contact discontinuity, there may appear a reflected rarefaction wave, a deflected contact discontinuity and a refracted supersonic shock. The numerical simulation of shock wave refraction at a plane contact discontinuity separating gases with different densities is performed. Euler equations describing inviscid…
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical schemes. The results show that the tool is able to adequately replicate water depth and depth-averaged velocity of a dam-break wave, as well as velocity and displacement of floating cylindrical elements, thus validating its shock capturing capabilities and the coupling technique applied for this simple test case. Future development of the tool will incorporate a 2D hydrodynamic scheme and a 3D discrete element scheme in order to model the more complex processes associated with debris transport.
Real-time wideband cylindrical holographic surveillance system
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.
1999-01-01
A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.
NASA Astrophysics Data System (ADS)
Crittenden, P. E.; Balachandar, S.
2018-07-01
The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.
NASA Astrophysics Data System (ADS)
Crittenden, P. E.; Balachandar, S.
2018-03-01
The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.
NASA Astrophysics Data System (ADS)
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Analytical model for vibration prediction of two parallel tunnels in a full-space
NASA Astrophysics Data System (ADS)
He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui
2018-06-01
This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.
1992-01-01
We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.
Photoacoustic shock wave emission and cavitation from structured optical fiber tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg
Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less
Extracorporeal shock waves in the treatment of nonunions.
Biedermann, Rainer; Martin, Arho; Handle, Gerhart; Auckenthaler, Thomas; Bach, Christian; Krismer, Martin
2003-05-01
Nonunion remains a major complication after skeletal trauma. In the last decade, extracorporeal shock wave therapy has become a common tool for the treatment of nonunions. To date, no prospective, randomized trial has been conducted to show the efficacy of this form of treatment. This study was performed to determine the value of extracorporeal shock wave therapy for nonunions. Previous published results in the literature and our own clinical results were analyzed and related to the natural history of bony union. No study has proven that extracorporeal shock wave therapy improves bone healing. Clinical studies reporting the acceleration of union after application of shock waves instead seem to misinterpret the natural history of bony union. No evidence supports the treatment of pseudarthroses with extracorporeal shock waves. A randomized, prospective, clinical trial with a control group has to be performed before a final decision can be made regarding this indication for extracorporeal shock wave therapy.
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
In vitro study of the mechanical effects of shock-wave lithotripsy.
Howard, D; Sturtevant, B
1997-01-01
Impulsive stress in repeated shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) causes injury to kidney tissue. In a study of the mechanical input of ESWL, the effects of focused shock waves on thin planar polymeric membranes immersed in a variety of tissue-mimicking fluids have been examined. A direct mechanism of failure by shock compression and an indirect mechanism by bubble collapse have been observed. Thin membranes are easily damaged by bubble collapse. After propagating through cavitation-free acoustically heterogeneous media (liquids mixed with hollow glass spheres, and tissue) shock waves cause membranes to fail in fatigue by a shearing mechanism. As is characteristic of dynamic fatigue, the failure stress increases with strain rate, determined by the amplitude and rise time of the attenuated shock wave. Shocks with large amplitude and short rise time (i.e., in uniform media) cause no damage. Thus the inhomogeneity of tissue is likely to contribute to injury in ESWL. A definition of dose is proposed which yields a criterion for damage based on measurable shock wave properties.
Myocardial effects of local shock wave therapy in a Langendorff model.
Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M
2014-01-01
Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.
Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, Parvin; Mottaghizadeh, Marzieh
2012-06-15
By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less
Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes.
López-Marín, Luz M; Millán-Chiu, Blanca E; Castaño-González, Karen; Aceves, Carmen; Fernández, Francisco; Varela-Echavarría, Alfredo; Loske, Achim M
2017-02-01
Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.
Cytoplasmic molecular delivery with shock waves: importance of impulse.
Kodama, T; Hamblin, M R; Doukas, A G
2000-01-01
Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus. PMID:11023888
Effect of Shock Waves on Dielectric Properties of KDP Crystal
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.
2018-05-01
An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.
2015-08-06
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
Interaction of strong converging shock wave with SF6 gas bubble
NASA Astrophysics Data System (ADS)
Liang, Yu; Zhai, ZhiGang; Luo, XiSheng
2018-06-01
Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.
A numerical study of shock wave reflections on low density foam
NASA Astrophysics Data System (ADS)
Baer, M. R.
1992-06-01
A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.
Shock Waves in a Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
Seismic excitation by the space shuttle Columbia
Kanamori, H.; Mori, J.; Anderson, D.L.; Heaton, T.H.
1991-01-01
SEISMIC stations in southern California recorded the atmospheric shock waves generated by the space shuttle Columbia on its return to the Edwards Air Force base on 13 August 1989 (Fig. 1). In addition to the shock wave, the broad-band IRIS-TERRAscope station at Pasadena recorded a distinct pulse with a period of ???2-3 seconds, which arrived 12.5 seconds before the shock wave (Fig. 2). This pulse was also recorded at the University of Southern California, near downtown Los Angeles, where it arrived 3 seconds after the shock wave. The origin of this pulse could not be readily identified. We show here that it was a seismic P wave excited by the motion of high-rise buildings in downtown Los Angeles, which were hit by the shock wave. The proximity of the natural period of the high-rise buildings to that of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave.
Shock wave interaction with L-shaped structures
NASA Astrophysics Data System (ADS)
Miller, Richard C.
1993-12-01
This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.
New generalized Noh solutions for HEDP hydrocode verification
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.; Tangri, V.
2017-10-01
The classic Noh solution describing stagnation of a cold ideal gas in a strong accretion shock wave has been the workhorse of compressible hydrocode verification for over three decades. We describe a number of its generalizations available for HEDP code verification. First, for an ideal gas, we have obtained self-similar solutions that describe adiabatic convergence either of a finite-pressure gas into an empty cavity or of a finite-amplitude sound wave into a uniform resting gas surrounding the center or axis of symmetry. At the moment of collapse such a flow produces a uniform gas whose velocity at each point is constant and directed towards the axis or the center, i. e. the initial condition similar to the classic solution but with a finite pressure of the converging gas. After that, a constant-velocity accretion shock propagates into the incident gas whose pressure and velocity profiles are not flat, in contrast with the classic solution. Second, for an arbitrary equation of state, we demonstrate the existence of self-similar solutions of the Noh problem in cylindrical and spherical geometry. Examples of such solutions with a three-term equation of state that includes cold, thermal ion/lattice, and thermal electron contributions are presented for aluminum and copper. These analytic solutions are compared to our numerical simulation results as an example of their use for code verification. Work supported by the US DOE/NNSA.
Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Turner, T. N.
1979-01-01
Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.
Multipoint study of interplanetary shocks
NASA Astrophysics Data System (ADS)
Blanco-Cano, Xochitl; Kajdic, Primoz; Russell, Christopher T.; Aguilar-Rodriguez, Ernesto; Jian, Lan K.; Luhmann, Janet G.
2016-04-01
Interplanetary (IP) shocks are driven in the heliosphere by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). These shocks perturb the solar wind plasma, and play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the ambient solar wind (magnetic field orientation, flow velocity), shocks rippling, and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multipoint observations from STEREO, WIND, and MESSENGER missions to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. We find that the ion foreshock can extend up to 0.2 AU ahead of the shock, and that the upstream region with modified solar wind/waves can be very asymmetric.
Detonation onset following shock wave focusing
NASA Astrophysics Data System (ADS)
Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.
2017-06-01
The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.
Shock wave attenuation in a micro-channel
NASA Astrophysics Data System (ADS)
Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.
2018-05-01
This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.
Wave and ion evolution downstream of quasi-perpendicular bow shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.
1995-01-01
Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.
A new shock wave assisted sandalwood oil extraction technique
NASA Astrophysics Data System (ADS)
Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.
A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.
NASA Technical Reports Server (NTRS)
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
NASA Astrophysics Data System (ADS)
Bershader, D.; Hanson, R.
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
Intense plasma waves at and near the solar wind termination shock.
Gurnett, D A; Kurth, W S
2008-07-03
Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.
NASA Technical Reports Server (NTRS)
Kleinstein, G. G.; Gunzburger, M. D.
1977-01-01
The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.
The Observational Consequences of Proton-Generated Waves at Shocks
NASA Technical Reports Server (NTRS)
Reames, Donald V.
2000-01-01
In the largest solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast coronal mass ejections. Protons streaming away from strong shocks generate Alfven waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Early in the events, with the shock still near the Sun, intensities at 1 AU are bounded and spectra are flattened at low energies. Elements with different charge-to-mass ratios, Q/A, differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. An initial rise in He/H, while Fe/O declines, is a typical symptom of the non-Kolmogorov wave spectra in the largest events. Strong wave generation can cause cross-field scattering near the shock and unusually rapid reduction in anisotropies even far from the shock. At the highest energies, shock spectra steepen to form a "knee." For protons, this spectral knee can vary from approx. 10 MeV to approx. 1 GeV depending on shock conditions for wave growth. In one case, the location of the knee scales approximately as Q/A in the energy/nucleon spectra of other species.
Real-time wideband cylindrical holographic surveillance system
Sheen, D.M.; McMakin, D.L.; Hall, T.E.; Severtsen, R.H.
1999-01-12
A wideband holographic cylindrical surveillance system is disclosed including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image. 13 figs.
NASA Astrophysics Data System (ADS)
Werdiger, M.; Arad, B.; Moshe, E.; Eliezer, S.
1995-02-01
A simple optical method for measurements of high-irradiance (3×1013 W cm-2) laser-induced shock waves is described. The shock wave velocity (~13 km s-1) was measured with an error not exceeding 5%. The laser-induced one-to-two-dimensional (1D-to-2D) shock wave transition was studied.
Extracorporeal shock wave therapy in orthopedics, basic research, and clinical implications
NASA Astrophysics Data System (ADS)
Hausdorf, Joerg; Jansson, Volkmar; Maier, Markus; Delius, Michael
2005-04-01
The molecular events following shock wave treatment of bone are widely unknown. Nevertheless patients with osteonecrosis and non unions are already treated partly successful with shock waves. Concerning the first indication, the question of the permeation of the shock wave into the bone was addressed. Therefore shockwaves were applied to porcine femoral heads and the intraosseous pressure was measured. A linear correlation of the pressure to the intraosseous distance was found. Approximately 50% of the pressure are still measurable 10 mm inside the femoral head. These findings should encourage continued shock wave research on this indication. Concerning the second indication (non union), osteoblasts were subjected to 250 or 500 shock waves at 25 kV. After 24, 48, and 72 h the levels of the bone and vascular growth factors bFGF, TGFbeta1, and VEGF were examined. After 24 h there was a significant increase in bFGF levels (p<0.05) with significant correlation (p<0.05) to the number of impulses. TGFbeta1, and VEGF showed no significant changes. This may be one piece in the cascade of new bone formation following shock wave treatment and may lead to a more specific application of shock waves in orthopedic surgery.
Overview of shock waves in medicine
NASA Astrophysics Data System (ADS)
Cleveland, Robin O.
2003-10-01
A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.
Shock wave and flame front induced detonation in a rapid compression machine
NASA Astrophysics Data System (ADS)
Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.
2018-05-01
The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.
Focusing of noncircular self-similar shock waves.
Betelu, S I; Aronson, D G
2001-08-13
We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.
Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Mikaelian, Karnig O.
2016-07-01
In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.
The variety of MHD shock waves interactions in the solar wind flow
NASA Technical Reports Server (NTRS)
Grib, S. A.
1995-01-01
Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.
Dry and wet granular shock waves.
Zaburdaev, V Yu; Herminghaus, S
2007-03-01
The formation of a shock wave in one-dimensional granular gases is considered, for both the dry and the wet cases, and the results are compared with the analytical shock wave solution in a sticky gas. Numerical simulations show that the behavior of the shock wave in both cases tends asymptotically to the sticky limit. In the inelastic gas (dry case) there is a very close correspondence to the sticky gas, with one big cluster growing in the center of the shock wave, and a step-like stationary velocity profile. In the wet case, the shock wave has a nonzero width which is marked by two symmetric heavy clusters performing breathing oscillations with slowly increasing amplitude. All three models have the same asymptotic energy dissipation law, which is important in the context of the free cooling scenario. For the early stage of the shock formation and asymptotic oscillations we provide analytical results as well.
Königsberger, R; Feyh, J; Goetz, A; Kastenbauer, E
1993-02-01
Twenty-nine patients with salivary stones were treated with the endoscopically-controlled electrohydraulic shock wave lithotripsy (EISL). This new minimally invasive treatment of sialolithiasis is performed under local anesthesia on an outpatient basis with little inconvenience to the patient. For endoscopy, a flexible fibroscope with an additional probe to generate shock waves is placed into the submandibular duct and advanced until the stone is identified. For shock wave-induced stone disintegration, the probe electrode must be placed 1 mm in front of the concrement. The shock waves are generated by a sparkover at the tip of the probe. By means of the endoscopically-controlled shock wave lithotripsy it was possible to achieve complete stone fragmentation in 20 out of 29 patients without serious side effects. In three patients, only partial stone fragmentation could be achieved due to the stone quality. Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy represents a novel minimally invasive therapy for endoscopically accessible salivary gland stones. The advantage in comparison to the endoscopically-controlled laser lithotripsy will be discussed.
NASA Technical Reports Server (NTRS)
Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.
1999-01-01
The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.
Spherical shock waves in general relativity
NASA Astrophysics Data System (ADS)
Nutku, Y.
1991-11-01
We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.
Observation of dust acoustic shock wave in a strongly coupled dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.
2016-05-15
Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less
Various continuum approaches for studying shock wave structure in carbon dioxide
NASA Astrophysics Data System (ADS)
Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.
2018-05-01
Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.
The History of the APS Topical Group on Shock Compression of Condensed Matter
NASA Astrophysics Data System (ADS)
Forbes, Jerry W.
2002-07-01
In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.
Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space
NASA Technical Reports Server (NTRS)
Russell, C. T.; Hoppe, M. M.
1983-01-01
The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.
Davie, C J; Evans, R G
2013-05-03
We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy.
Turbulence Evolution and Shock Acceleration of Solar Energetic Particles
NASA Technical Reports Server (NTRS)
Chee, Ng K.
2007-01-01
We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.
NASA Technical Reports Server (NTRS)
Ahlborn, B. (Editor); Hertzberg, A.; Russell, D.
1978-01-01
Papers are presented on the applications of shock-wave technology to the study of hydrodynamics, the use of the pressure-wave machine for charging diesel engines, and measurements of the heat-transfer rate in gas-turbine components. Consideration is given to shock propagation along 90-degree bends, the explosive dissemination of liquids, and rotational and vibrational relaxation behind weak shock waves in water vapor. Shock phenomena associated with expansion flows are described and stratospheric-related research using the shock tube is outlined. Attention is given to shock-wave ignition of magnesium powders, Mach reflection and boundary layers, and transition in the shock-induced unsteady boundary layer on a flat plate. Shock-tube measurements of induction and post-induction rates for low-Btu gas mixtures are presented and shock-initiated ignition in COS-N2O-Ar mixtures is described. Cluster growth rates in supersaturated lead vapor are presented and a study of laser-induced plasma motion in a solenoidal magnetic field is reviewed.
Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions
NASA Astrophysics Data System (ADS)
Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin
2016-10-01
After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.
Wake-shock interaction at a Mach number of 6
NASA Technical Reports Server (NTRS)
Walsh, M. J.
1978-01-01
Measurements of mean pitot pressure, static pressure, and total temperature were made in the two dimensional turbulent mixing region of a wake downstream of an interaction with a shock-expansion wave system. The results indicated that: (1) the shock increased the mixing, and (2) the expansion field that followed the shock decreased the turbulent mixing. The overall effect of the shock-expansion wave interaction was dependent on the orientation of the expansion wave with respect to the intersecting shock wave. These data could be used to validate nonequilibrium turbulence modeling and numerical solution of the time averaged Navier-Stokes equations.
Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Abdikian, A.
2018-02-01
The nonlinear properties of fast magnetosonic solitary waves in a quantum degenerate electron-positron (e-p) plasma in the presence of stationary ions for neutralizing the plasma background of bounded cylindrical geometry were studied. By employing the standard reductive perturbation technique and the quantum hydrodynamic model for the e-p fluid, the cylindrical Kadomtsev-Petviashvili (CKP) equation was derived for small, but finite, amplitude waves and was given the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars. By a suitable coordinate transformation, the CKP equation can be solved analytically. An analytical solution for magnetosonic solitons and periodic waves is presented. The numerical results reveal that the Bohm potential has a main effect on the periodic and solitary wave structures. By increasing the values of the plasma parameters, the amplitude of the solitary wave will be increased. The present study may be helpful in the understanding of nonlinear electromagnetic soliton waves propagating in both laboratory and astrophysical plasmas, and can help in providing good agreement between theoretical results and laboratory plasma experiments.
21 CFR 876.5990 - Extracorporeal shock wave lithotripter.
Code of Federal Regulations, 2011 CFR
2011-04-01
... focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney... Notifications (510(k)'s) for Extracorporeal Shock Wave Lithotripters Indicated for the Fragmentation of Kidney...
21 CFR 876.5990 - Extracorporeal shock wave lithotripter.
Code of Federal Regulations, 2010 CFR
2010-04-01
... focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney... Notifications (510(k)'s) for Extracorporeal Shock Wave Lithotripters Indicated for the Fragmentation of Kidney...
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin
2016-01-01
Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway.
Weihs, Anna M.; Fuchs, Christiane; Teuschl, Andreas H.; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G.; Sitte, Harald H.; Rünzler, Dominik
2014-01-01
Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. PMID:25118288
Weihs, Anna M; Fuchs, Christiane; Teuschl, Andreas H; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G; Sitte, Harald H; Rünzler, Dominik
2014-09-26
Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
A mechanism of wave drag reduction in the thermal energy deposition experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markhotok, A., E-mail: amarhotk@phys.washington.edu
2015-06-15
Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressuremore » and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.« less
Spherical shock waves in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.
1991-11-15
We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less
Shock wave treatment improves nerve regeneration in the rat.
Mense, Siegfried; Hoheisel, Ulrich
2013-05-01
The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.
Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability
Mikaelian, Karnig O.
2016-07-13
In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio R critical, in terms of the adiabatic indices of the two fluids, andmore » a critical Mach number M critical s of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than R critical then a standing shock wave is possible at M s=M critical s. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less
Expansion shock waves in regularized shallow-water theory
NASA Astrophysics Data System (ADS)
El, Gennady A.; Hoefer, Mark A.; Shearer, Michael
2016-05-01
We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.
Reduction of high-energy shock-wave-induced renal tubular injury by selenium.
Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H
1999-10-01
In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.
Microgravity Experiment: The Fate of Confined Shock Waves
NASA Astrophysics Data System (ADS)
Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.
2007-11-01
Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.
On the interaction between the shock wave attached to a wedge and freestream disturbances
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.
1993-01-01
A study of the interaction of small amplitude, unsteady, freestream disturbances with a shock wave induced by a wedge in supersonic flow is presented. These disturbances may be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three). Their interactions then generate behind the shock disturbances of all three classes, an aspect that is investigated in some detail, our motivation being to investigate possible mechanisms for boundary-layer receptivity, caused through the amplification and modification of freestream turbulence through the shock-body coupling. Also, the possibility of enhanced mixing owing to additional vorticity produced by the shock-body coupling is investigated.
Role of helmet in the mechanics of shock wave propagation under blast loading conditions.
Ganpule, S; Gu, L; Alai, A; Chandra, N
2012-01-01
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.
Biodamage via shock waves initiated by irradiation with ions.
Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V
2013-01-01
Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.
On the formation of Friedlander waves in a compressed-gas-driven shock tube
Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.
2016-01-01
Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888
25 Years of ESWL — From the Past to the Future
NASA Astrophysics Data System (ADS)
Forssmann, Bernd
2006-05-01
It was a revolution in the treatment of urolithiasis 25 years ago, when the first extracorporeal shock wave lithotripsy (ESWL) was carried out on the prototype HM1 equipped with an electrohydraulic shock wave source. Further developments led to the HM3, the legendary bath tub that is used with high success to this day. The history of investigations to disintegrate urinary stone with one shock wave pulse by means of high power is described. Break trough for clinical application was achieved when the shock waves were applied in a sequence of pulses with low energy. In the late eighties the effectiveness of second generation lithotripters wase only judged by means of peak pressure and focal extension so that effectiveness was often misinterpreted. Despite standardization of shock wave parameters the assessment of lithotripters remains unsatisfactory. The concept of effective energy considers the whole temporal and spatial field of the shock wave and allows to determine the energy dose of stone disintegration. Thus, clinical energy dose is expected to reveal additional information to evaluate the success of shock wave lithotripsy in terms of fragmentation and side effects.
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
DOE Office of Scientific and Technical Information (OSTI.GOV)
EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com
A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less
Shock wave lithotripsy: advances in technology and technique
Lingeman, James E.; McAteer, James A.; Gnessin, Ehud; Evan, Andrew P.
2010-01-01
Shock wave lithotripsy (SWL) is the only noninvasive method for stone removal. Once considered as a primary option for the treatment of virtually all stones, SWL is now recognized to have important limitations that restrict its use. In particular, the effectiveness of SWL is severely limited by stone burden, and treatment with shock waves carries the risk of acute injury with the potential for long-term adverse effects. Research aiming to characterize the renal response to shock waves and to determine the mechanisms of shock wave action in stone breakage and renal injury has begun to suggest new treatment strategies to improve success rates and safety. Urologists can achieve better outcomes by treating at slower shock wave rate using a step-wise protocol. The aim is to achieve stone comminution using as few shock waves and at as low a power level as possible. Important challenges remain, including the need to improve acoustic coupling, enhance stone targeting, better determine when stone breakage is complete, and minimize the occurrence of residual stone fragments. New technologies have begun to address many of these issues, and hold considerable promise for the future. PMID:19956196
NASA Astrophysics Data System (ADS)
Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang
2017-11-01
A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.
Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon
NASA Technical Reports Server (NTRS)
Yoshinaga, T.
1973-01-01
Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.
NASA Astrophysics Data System (ADS)
Hooseria, S. J.; Skews, B. W.
2017-01-01
A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.
NASA Astrophysics Data System (ADS)
Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.
2011-11-01
We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.
Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella
2016-01-01
To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.
NASA Astrophysics Data System (ADS)
Igra, Dan; Igra, Ozer
2018-05-01
The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects
NASA Astrophysics Data System (ADS)
Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.
Body and Surface Wave Modeling of Observed Seismic Events. Part 2.
1987-05-12
is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical S coordinates in an asymptotic form which...using line source (2-D) theory. It is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical...generating synthetic point-source seismograms for shear dislocation sources using line source (2-D) theory. It is based on expanding the complete three
The pattern space factor and quality factor of cylindrical source antennas
NASA Astrophysics Data System (ADS)
Jarem, John M.
1982-09-01
For the first time the quality factor of cylindrical source antennas is derived by a plane wave expansion. The evanescent energy (and therefore the quality factor) as defined by a plane wave expansion is shown to be different from Collin and Rothschild's [IEEE Trans. Antennas Propagation AP-12, 23 (1964)] quality factor.
NASA Astrophysics Data System (ADS)
Tripathi, B. B.; Espíndola, D.; Pinton, G. F.
2017-11-01
The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.
NASA Technical Reports Server (NTRS)
Pinter, S.; Dryer, M.
1985-01-01
The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.
A midsummer-night's shock wave
NASA Astrophysics Data System (ADS)
Hargather, Michael; Liebner, Thomas; Settles, Gary
2007-11-01
The aerial pyrotechnic shells used in professional display fireworks explode a bursting charge at altitude in order to disperse the ``stars'' of the display. The shock wave from the bursting charge is heard on the ground as a loud report, though it has by then typically decayed to a mere sound wave. However, viewers seated near the standard safety borders can still be subjected to weak shock waves. These have been visualized using a large, portable, retro-reflective ``Edgerton'' shadowgraph technique and a high-speed digital video camera. Images recorded at 10,000 frames per second show essentially-planar shock waves from 10- and 15-cm firework shells impinging on viewers during the 2007 Central Pennsylvania July 4th Festival. The shock speed is not measurably above Mach 1, but we nonetheless conclude that, if one can sense a shock-like overpressure, then the wave motion is strong enough to be observed by density-sensitive optics.
Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.
van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P
2012-12-20
A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.
Propagation and dispersion of shock waves in magnetoelastic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, R. S.; Domann, J. P.; Carman, G. P.
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Propagation and dispersion of shock waves in magnetoelastic materials
NASA Astrophysics Data System (ADS)
Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.
2017-12-01
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.
Propagation and dispersion of shock waves in magnetoelastic materials
Crum, R. S.; Domann, J. P.; Carman, G. P.; ...
2017-11-15
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.
Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan
2016-01-01
Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca
Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensionalmore » motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.« less
Magnetosonic shock wave in collisional pair-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com; Sikdar, Arnab, E-mail: arnabs.ju@gmail.com
2016-06-15
Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wavemore » exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less
[Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].
Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong
2015-04-01
Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.
NASA Astrophysics Data System (ADS)
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.
Expansion shock waves in regularized shallow-water theory
El, Gennady A.; Shearer, Michael
2016-01-01
We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Johnson, Mary L.
1994-01-01
Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.
Evolution of scalar and velocity dynamics in planar shock-turbulence interaction
NASA Astrophysics Data System (ADS)
Boukharfane, R.; Bouali, Z.; Mura, A.
2018-01-01
Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.
Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu
2004-06-01
A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.
On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2013-12-01
Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.
Pseudo-shock waves and their interactions in high-speed intakes
NASA Astrophysics Data System (ADS)
Gnani, F.; Zare-Behtash, H.; Kontis, K.
2016-04-01
In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.
Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub
2017-03-01
[Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.
Ha, Chang Hoon; Kim, Sunghyen; Chung, Jihwa; An, Shung Hyen; Kwon, Kihwan
2013-10-09
Extracorporeal shock wave has been used in the noninvasive treatment of various diseases including musculoskeletal disorders. In particular, shock wave with low energy level showed anti-inflammatory effect and increased angiogenesis in ischemic tissues. However, the detailed cellular pathway in endothelial signaling is not fully understood. We investigate the role of shock wave with low energy level in angiogenic gene expression and underlying molecular mechanism by comparing the laminar and oscillatory fluid shear stresses in endothelial cells. We show that shock wave with low energy level (0.012-0.045 mJ/mm(2)) stimulated phosphorylation of Akt, eNOS and Erk 1/2 in a time-dependent manner which is similar to the effect of laminar fluid shear stress. The transfection of endothelial cells with siRNA encoding VEGFR2, VE-cadherin and PECAM-1 inhibited shock wave-induced phosphorylation of Akt, eNOS and Erk 1/2 and angiogenic gene expressions, including Akt, eNOS, KLF2/4, and Nur77. Moreover, mechanical stimulation through extracorporeal shock wave induced endothelial cell migration and tube formation. Our results demonstrate that shock wave-induced Akt/eNOS phosphorylation and angiogenic gene expression were mediated through the mechanosensory complex formation involving VEGFR-2, VE-cadherin and PECAM-1 which was similar to the effect of laminar shear stress. © 2013.
Explosively Driven Shock Induced Damage in OFHC Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, D. D.; Hixson, R. S.; Gray, G. T. III
OFHC Cu samples were subjected to shock loading using plane wave HE lenses to produce a uniaxial Taylor wave profile (shock followed by immediate release). Upon arrival of the shock wave at the free surface of the sample, the wave is reflected and propagates back into the sample as a release wave. It is the interaction of initial and reflected release waves that place the material in a localized state of tension which can ultimately result in damage and possibly complete failure of the material. The peak tensile stress and its location in the material are determined by the wavemore » shape. Damage evolution processes and localized behavior are discussed based on results from time-resolved free surface velocity (VISAR) interferometry and post shock metallurgical analysis of the soft recovered samples.« less
Head-on collision of normal shock waves with rigid porous materials
NASA Astrophysics Data System (ADS)
Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.
1993-08-01
The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.
STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.
Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine
2016-09-01
Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
Self-referenced interferometer for cylindrical surfaces.
Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef
2015-11-20
We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less
Giammarinaro, B.; Coulouvrat, F.; Pinton, G.
2016-01-01
Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m, 0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries. PMID:26833489
Rigid polyurethane foam as an efficient material for shock wave attenuation
NASA Astrophysics Data System (ADS)
Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.
2016-09-01
A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.
A technique for generating shear waves in cylindrical shells under radial impact
NASA Technical Reports Server (NTRS)
Blum, A.; Mortimer, R. W.; Rose, J. L.
1974-01-01
Experimental techniques are developed to study and measure the shear-wave velocity in an aluminum cylindrical shell subjected to a radial impact. The radial impact is obtained by exploding an electrical detonator inserted in plastic plugs mounted on the end of the shell. Strain gages, mounted on the outside surface of the shell at various axial locations, are used to obtain oscilloscope traces from which the shear-wave velocity can be calculated.
Yan, Wenguang; Sun, Shaodan; Li, Xuhong
2014-12-01
To observe the therapeutic effect of extracorporeal shock wave combined with orthopaedic insole on plantar fasciitis. A total of 153 plantar with plantar fasciitis were randomly divided into a combined group (n=51), an extracorporeal shock wave group (n=53) and an orthopaedic group (n=49). The combined group received treatment of both extracorporeal shock wave and orthopaedic insole while the extracorporeal shock wave or the orthopaedic group only received the treatment of extracorporeal shock wave or orthopaedic insole. The therapeutic parameters such as visual analogue scale (VAS) scores, continued walking time and thickness of the plantar fascia were monitored before and aft er the treatment for 2 weeks, 1 month and 3 months, respectively. The VAS scores in the 3 groups were all reduced after the treatment compared with the corresponding scores before the therapy (P< 0.05). The VAS score in the extracorporeal shock wave group was greater than that in the orthopedic group after the treatment for 2 weeks. The VAS score in the combined group was smaller than that in the orthopedic group after the treatment for 2 weeks and 3 months (P< 0.05). The VAS scores in the orthopedic group and the combined group were smaller than those in the extracorporeal shock wave group after the treatment for 1 month or 3 months (P< 0.05). The continued walking time and thickness of the plantar fascia was improved after the treatment (P< 0.05). The cure rate and total effective rate in the combination group were obviously greater than those in the two other groups. The cure rate in the orthopedic group was greater than that in the extracorporeal shock wave group (P< 0.05). Extracorporeal shock wave combined with orthopaedic insole therapy is an effective method to treat plantar fasciitis. It is recommended to spread in clinic.
Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael
2016-12-01
Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p < 0.001) and control (41 ± 4%, p = 0.012) groups. LVEF markedly improved in shock-wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
The relationship between elastic constants and structure of shock waves in a zinc single crystal
NASA Astrophysics Data System (ADS)
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.
2010-01-01
We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
NASA Technical Reports Server (NTRS)
Woo, Myeung-Jouh; Greber, Isaac
1995-01-01
Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.
Characteristics of coronal shock waves and solar type 2 radio bursts
NASA Technical Reports Server (NTRS)
Mann, G.; Classen, H.-T.
1995-01-01
In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.
Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella
2016-01-01
To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459
Liquid-surface entrainment induced by shocked air stream
NASA Astrophysics Data System (ADS)
Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.
2018-02-01
Recently, we experimentally studied, in a shock tube environment, shock waves propagating over horizontal free water layers having depths of 10, 20, and 30 mm for shock wave Mach numbers M_is equal to 1.1 and 1.4. The qualitative interaction process was observed by means of high-speed visualizations, and the pressures arising in the air and in the water layer were measured and interpreted in terms of the various incident and refracted shock waves in air and water; in particular, it was concluded that the compression wave in the water is driven by the planar shock wave in the air. Additional experiments have been conducted and the novel contributions of the present technical note are quantitative results regarding the liquid-surface entrainment. At low Mach number (M_is=1.1 ), we show that the velocity of the droplets ejected into the air is independent of the water depth, unlike the wavelength of initial ripples and the angle of ejection. When the shock wave strength increases (M_is=1.4 ), the dispersion of a very thin droplet mist and a single large wave take place. We show that the thickening of the water mist and the velocity of the subsequent large wave decreases with the water-layer depth.
In vivo effect of shock-waves on the healing of fractured bone.
Augat, P; Claes, L; Suger, G
1995-10-01
In a controlled animal experiment we attempted to clarify the question of whether there is a stimulating effect of extracorporeal shock-waves on the repair process of fractured long bones. As a fracture model we used an osteotomy in the diaphysis of the ovine tibia and an external fixation device. Shock-wave treatment at two levels of intensity and with four different numbers of applied shocks was performed with an electromagnetic acoustic source. Healing of the osteotomized bone was evaluated by biomechanical and radiological investigations on the whole bone as well as on bone sections from areas of the fracture gap and the periosteal fracture callus. We found a non-significant tendency to deterioration of the fracture healing with increasing shock-wave intensities. The study of treatment parameters led neither to significantly different biomechanical outcomes nor to altered radiological results in comparison to the untreated control group. RELEVANCE:--While we cannot comment upon the effectiveness of extracorporeal shock-waves in the delayed treatment of fractures or pseudarthrosis, our results suggest that shock-waves have no beneficial effect in acute fracture repair.
Development of relativistic shock waves in viscous gluon matter
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2009-11-01
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.
Understanding Effects of Traumatic Insults on Brain Structure and Function
2016-08-01
42 Fig. 33 The supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The...For instance, although the pressure front of a shock wave travels at supersonic speeds (the speed of sound in water is 1,497 m/s), the shock wave... supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The Mach number is 1.49. b) The pressure profile at t
Current-induced instability of domain walls in cylindrical nanowires
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans
2018-01-01
We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.
Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries
NASA Astrophysics Data System (ADS)
López Ortega, A.; Lombardini, M.; Barton, P. T.; Pullin, D. I.; Meiron, D. I.
2015-03-01
We present a detailed study of the interface instability that develops at the boundary between a shell of elastic-plastic material and a cylindrical core of confined gas during the inbound implosive motion generated by a shock-wave. The main instability in this configuration is the so-called Richtmyer-Meshkov instability that arises when the shock wave crosses the material interface. Secondary instabilities, such as Rayleigh-Taylor, due to the acceleration of the interface, and Kelvin-Helmholtz, due to slip between solid and fluid, arise as the motion progresses. The reflection of the shock wave at the axis and its second interaction with the material interface as the shock moves outbound, commonly known as re-shock, results in a second Richtmyer-Meshkov instability that potentially increases the growth rate of interface perturbations, resulting in the formation of a mixing zone typical of fluid-fluid configurations and the loss of the initial perturbation length scales. The study of this problem is of interest for achieving stable inertial confinement fusion reactions but its complexity and the material conditions produced by the implosion close to the axis prove to be challenging for both experimental and numerical approaches. In this paper, we attempt to circumvent some of the difficulties associated with a classical numerical treatment of this problem, such as element inversion in Lagrangian methods or failure to maintain the relationship between the determinant of the deformation tensor and the density in Eulerian approaches, and to provide a description of the different events that occur during the motion of the interface. For this purpose, a multi-material numerical solver for evolving in time the equations of motion for solid and fluid media in an Eulerian formalism has been implemented in a Cartesian grid. Equations of state are derived using thermodynamically consistent hyperelastic relations between internal energy and stresses. The resolution required for capturing the state of solid and fluid materials close to the origin is achieved by making use of adaptive mesh refinement techniques. Rigid-body rotations contained in the deformation tensor have been shown to have a negative effect on the accuracy of the method in extreme compression conditions and are removed by transforming the deformation tensor into a stretch tensor at each time step. With this methodology, the evolution of the interface can be tracked up to a point at which numerical convergence cannot be achieved due to the inception of numerical Kelvin-Helmholtz instabilities caused by slip between materials. From that point, only qualitative conclusions can be extracted from this analysis. The influence of different geometrical parameters, initial conditions, and material properties on the motion of the interface are investigated. Some major differences are found with respect to the better understood fluid-fluid case. For example, increasing the wave number of the interface perturbations leads to a second phase reversal of the interface (i.e., the first phase reversal of the interface naturally occurs due to the initial negative growth-rate of the instability as the shock wave transitions from the high-density material to the low-density one). This phenomenon is caused by the compressive effect of the converging geometry and the low density of the gas with respect to the solid, which allows for the formation of an incipient spike in the center of an already existing bubble. Multiple solid-gas density ratios are also considered. Results show that the motion of the interface asymptotically converges to the solid-vacuum case. When a higher initial density for the gas is considered, the growth rate of interface perturbations decreases and, in some situations, its sign may reverse, as the fluid becomes more dense than the solid due to having higher compressibility. Finally, the influence of the Mach number of the driving shock and the yield stress on the mixing-zone is examined. We find that the width of the mixing zone produced after the re-shock increases in proportion to the strength of the incident shock. An increased yield stress in the solid material makes the interface less unstable due to vorticity being carried away from the interface by shear waves and limits the generation of smaller length scales after the re-shock.
Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Liu, XiQiang
2013-08-01
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.
Focusing of shock waves induced by optical breakdown in water
Sankin, Georgy N.; Zhou, Yufeng; Zhong, Pei
2008-01-01
The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F1) and second foci (F2) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F1, which generates a spherically diverging shock wave with a peak pressure of 2.1–5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36–65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F2, has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 μs, followed by a trailing tensile wave of −3.3 MPa peak pressure and 0.2 μs pulse duration. The −6 dB beam size of the focused shock wave field is 1.6×0.2 mm2 along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F2. General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model. PMID:18537359
Observation of interaction of shock wave with gas bubble by image converter camera
NASA Astrophysics Data System (ADS)
Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji
1995-05-01
When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.
Laser measurements of bacterial endospore destruction from shock waves
NASA Astrophysics Data System (ADS)
Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.
2013-12-01
The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.
Intractable bone marrow edema syndrome of the hip.
Gao, Fuqiang; Sun, Wei; Li, Zirong; Guo, Wanshou; Kush, Nepali; Ozaki, Koji
2015-04-01
There is a need for an effective and noninvasive treatment for intractable bone marrow edema syndrome of the hip. Forty-six patients with intractable bone marrow edema syndrome of the hip were retrospectively studied to compare the short-term clinical effects of treatment with high-energy extracorporeal shock wave therapy vs femoral head core decompression. The postoperative visual analog scale score decreased significantly more in the extracorporeal shock wave therapy group compared with the femoral head core decompression group (P<.05). For unilateral lesions, postoperative Harris Hip Scores for all hips in the extracorporeal shock wave therapy group were more significantly improved than Harris Hip Scores for all hips in the femoral head core decompression group (P<.05). Patients who underwent extracorporeal shock wave therapy also resumed daily activities significantly earlier. Average overall operative time was similar in both groups. Symptoms disappeared significantly sooner in the extracorporeal shock wave therapy group in patients with both unilateral (P<.01) and bilateral lesions (P<.05). Hospital costs were significantly lower with extracorporeal shock wave therapy compared with femoral head core decompression. The intraoperative fluoroscopy radiation dose was lower in extracorporeal shock wave therapy than in femoral head core decompression for both unilateral (P<.05) and bilateral lesions (P<.01). On magnetic resonance imaging (MRI), bone marrow edema improved in all patients during the follow-up period. After extracorporeal shock wave therapy, all patients remained pain-free and had normal findings on posttreatment radiographs and MRI scans. Extracorporeal shock wave therapy appears to be a valid, reliable, and noninvasive tool for rapidly resolving intractable bone marrow edema syndrome of the hip, and it has a low complication rate and relatively low cost compared with other conservative and surgical treatment approaches. Copyright 2015, SLACK Incorporated.
Does extracorporeal shock wave lithotripsy cause hearing impairment in children?
Tuncer, Murat; Sahin, Cahit; Yazici, Ozgur; Kafkasli, Alper; Turk, Akif; Erdogan, Banu A; Faydaci, Gokhan; Sarica, Kemal
2015-03-01
We evaluated the possible effects of noise created by high energy shock waves on the hearing function of children treated with extracorporeal shock wave lithotripsy. A total of 65 children with normal hearing function were included in the study. Patients were divided into 3 groups, ie those becoming stone-free after 1 session of shock wave lithotripsy (group 1, 22 children), those requiring 3 sessions to achieve stone-free status (group 2, 21) and healthy children/controls (group 3, 22). Extracorporeal shock wave lithotripsy was applied with patients in the supine position with a 90-minute frequency and a total of 2,000 shock waves in each session (Compact Sigma, Dornier MedTech, Wessling, Germany). Second energy level was used with a maximum energy value of 58 joules per session in all patients. Hearing function and possible cochlear impairment were evaluated by transient evoked otoacoustic emissions test at 1.0, 1.4, 2.0, 2.8 and 4.0 kHz frequencies before the procedure, 2 hours later, and 1 month after completion of the first shock wave lithotripsy session in groups 1 and 2. In controls the same evaluation procedures were performed at the beginning of the study and 7 weeks later. Regarding transient evoked otoacoustic emissions data, in groups 1 and 2 there was no significant alteration in values obtained after shock wave lithotripsy compared to values obtained at the beginning of the study, similar to controls. A well planned shock wave lithotripsy procedure is a safe and effective treatment in children with urinary stones and causes no detectable harmful effect on hearing function. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.
1989-01-01
Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
Normal shock wave reflection on porous compressible material
NASA Astrophysics Data System (ADS)
Gvozdeva, L. G.; Faresov, Iu. M.; Brossard, J.; Charpentier, N.
The present experimental investigation of the interaction of plane shock waves in air and a rigid wall coated with flat layers of expanded polymers was conducted in a standard shock tube and a diaphragm with an initial test section pressure of 100,000 Pa. The Mach number of the incident shock wave was varied from 1.1 to 2.7; the peak pressures measured on the wall behind polyurethane at various incident wave Mach numbers are compared with calculated values, with the ideal model of propagation, and with the reflection of shock waves in a porous material that is understood as a homogeneous mixture. The effect of elasticity and permeability of the porous material structure on the rigid wall's pressure pulse parameters is qualitatively studied.
Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes
NASA Technical Reports Server (NTRS)
Cuntz, M.; Suess, S. T.
2003-01-01
We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.
Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya
2018-04-01
The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.
Atypical Particle Heating at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, Lynn B., III
2010-01-01
We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2018-03-01
Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.
A high-resolution Godunov method for compressible multi-material flow on overlapping grids
NASA Astrophysics Data System (ADS)
Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.
2007-04-01
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
Shock Waves for Possible Application in Regenerative Medicine
NASA Astrophysics Data System (ADS)
Hosseini, S. H. R.; Nejad, S. Moosavi; Akiyama, H.
The paper reports experimental study of underwater shock waves effects in modification and possible control of embryonic stem cell differentiation and proliferation. The study is motivated by its application in regenerativemedicine. Underwater shock waves have been of interest for various scientific, industrial, and medical applications.
Shock waves: The Maxwell-Cattaneo case.
Uribe, F J
2016-03-01
Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.
Shock wave-droplet interaction
NASA Astrophysics Data System (ADS)
Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan
2016-11-01
Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.
The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks
Yue, Chao; Chen, Lunjin; Bortnik, Jacob; ...
2017-09-29
Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less
The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Chen, Lunjin; Bortnik, Jacob
Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less
Huo, Xiu-Lin; Wang, Ke-Tao; Zhang, Xiao-Ying; Yang, Yi-Tian; Cao, Fu-Yang; Yang, Jing; Yuan, Wei-Xiu; Mi, Wei-Dong
2018-02-20
To compare the medium- and long-term effect of pneumatic ballistic extracorporeal shock wave versus ultrasound-guided hormone injection in the treatment of plantar fasciitis. The clinical data were collected from patients with plantar fasciitis admitted to PLA General Hospital pain department from September, 2015 to February, 2017. The patients were randomly divided into ultrasound-guided drug injection group and shock wave group. The therapeutic parameters including the numerical rating scale (NRS) scores in the first step pain in the morning, American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Scale, and thickness of the plantar fascia were monitored before and at 1 week, 1 month, 3 months, and 6 months after the treatment. The recurrence rate, effectiveness, and patient satisfaction were compared between the two groups at 6 months after the treatment. Thirty-nine patients were enrolled in shock wave group and 38 patients in ultrasound group. The NRS scores in the first step pain in the morning were lowered after treatment in both groups (P<0.05), and the scores were significantly lower in ultrasound group than in shock wave group at 1 week and 1 month (P<0.01), but significantly higher in ultrasound group than in shock wave group at 3 and 6 months after treatment (P<0.05). The AOFAS functional scores were increased in both groups (P<0.05) at 6 months after treatment, was significantly lower in ultrasound group than in shock wave group than group B (90.44∓13.27 vs 75.76∓21.40; P<0.05). The effective rates in shock wave group and ultrasound group were 92.31% and 76.32%, respectively (P<0.05). Recurrence was found in 1 patient (2.56%) in shock wave group and in 8 (21.05%) in ultrasound group (P<0.05). The patient satisfaction scores were significantly higher in shock wave group than in ultrasound group (8.13∓2.67 vs 6.63∓3.75, P=0.048). Pneumatic ballistic extracorporeal shock achieves better medium- and long-term outcomes than ultrasound-guided hormone injection in the treatment of plantar fasciitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less
Subcritical collisionless shock waves. [in earth space plasma
NASA Technical Reports Server (NTRS)
Mellott, M. M.
1985-01-01
The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society
The anatomy of floating shock fitting. [shock waves computation for flow field
NASA Technical Reports Server (NTRS)
Salas, M. D.
1975-01-01
The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
Visualization of interaction of Mach waves with a bow shock
NASA Astrophysics Data System (ADS)
Pavlov, Al.; Golubev, M.; Kosinov, A.; Pavlov, A.
2017-10-01
The work presents results of investigation of couple weak waves with a bow shock at Mach number M = 2. The waves produced by a small 2D roughness installed on the nozzle inset or side wall of working section. Hot-wire measurements revealed profile of the waves to be similar to N-wave. The visualization was done by means of schlieren technique and interferential AVT SA method. The inclination angle change of the Mach waves at free-stream section and bow shock section was found.
Observations on the normal reflection of gaseous detonations
NASA Astrophysics Data System (ADS)
Damazo, J.; Shepherd, J. E.
2017-09-01
Experimental results are presented examining the behavior of the shock wave created when a gaseous detonation wave normally impinges upon a planar wall. Gaseous detonations are created in a 7.67-m-long, 280-mm-internal-diameter detonation tube instrumented with a test section of rectangular cross section enabling visualization of the region at the tube-end farthest from the point of detonation initiation. Dynamic pressure measurements and high-speed schlieren photography in the region of detonation reflection are used to examine the characteristics of the inbound detonation wave and outbound reflected shock wave. Data from a range of detonable fuel/oxidizer/diluent/initial pressure combinations are presented to examine the effect of cell-size and detonation regularity on detonation reflection. The reflected shock does not bifurcate in any case examined and instead remains nominally planar when interacting with the boundary layer that is created behind the incident wave. The trajectory of the reflected shock wave is examined in detail, and the wave speed is found to rapidly change close to the end-wall, an effect we attribute to the interaction of the reflected shock with the reaction zone behind the incident detonation wave. Far from the end-wall, the reflected shock wave speed is in reasonable agreement with the ideal model of reflection which neglects the presence of a finite-length reaction zone. The net far-field effect of the reaction zone is to displace the reflected shock trajectory from the predictions of the ideal model, explaining the apparent disagreement of the ideal reflection model with experimental reflected shock observations of previous studies.
Note: A table-top blast driven shock tube
NASA Astrophysics Data System (ADS)
Courtney, Michael W.; Courtney, Amy C.
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Note: A table-top blast driven shock tube.
Courtney, Michael W; Courtney, Amy C
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
NASA Astrophysics Data System (ADS)
Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar
2018-02-01
Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.
Lobenwein, Daniela; Tepeköylü, Can; Kozaryn, Radoslaw; Pechriggl, Elisabeth J; Bitsche, Mario; Graber, Michael; Fritsch, Helga; Semsroth, Severin; Stefanova, Nadia; Paulus, Patrick; Czerny, Martin; Grimm, Michael; Holfeld, Johannes
2015-10-27
Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1998-01-01
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.
Molecular dynamics simulation of shock-wave loading of copper and titanium
NASA Astrophysics Data System (ADS)
Bolesta, A. V.; Fomin, V. M.
2017-10-01
At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
NASA Astrophysics Data System (ADS)
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Der Agobian, R.
1964-10-31
The shock waves Droduced by condenser discharge in a gas tube were investigated. The study was limited to wave velocities less than five times the speed of sound, propagated in gas at low pressure (several mm Hg). A method was designed and perfected for the detection of the shock waves that are insufficiently rapid to produce gas ionization. This method consisted of the creation of an autonomous plasma, before the arrival of the wave, which was then modified by the wave passage. two methods were used for the detection of phenomena accompanying the passage of the shock waves, an opticalmore » method and a radioelectric method. The qualitative study of the modifications produced on the wave passage showed the remarkable correlation existing between the results obtained by the two methods. The experimental results on the propagation laws for shock waves in a low-diameter tube agreed with theory. The variations of the coefficient oi recombination were determined as a iunction of the electron temperature, and the results were in good agreement with the Bates theory. It was shown that the electron gas of the plasma had the same increase of density as a neutral gas during the passage of a shock wave. The variations of the frequency of electron collisions on passage of the shock wave could be explained by considering the electron--ion collisions with respect to electron-- atom collisions. (J.S.R.)« less
Numerical simulation of long-duration blast wave evolution in confined facilities
NASA Astrophysics Data System (ADS)
Togashi, F.; Baum, J. D.; Mestreau, E.; Löhner, R.; Sunshine, D.
2010-10-01
The objective of this research effort was to investigate the quasi-steady flow field produced by explosives in confined facilities. In this effort we modeled tests in which a high explosive (HE) cylindrical charge was hung in the center of a room and detonated. The HEs used for the tests were C-4 and AFX 757. While C-4 is just slightly under-oxidized and is typically modeled as an ideal explosive, AFX 757 includes a significant percentage of aluminum particles, so long-time afterburning and energy release must be considered. The Lawrence Livermore National Laboratory (LLNL)-produced thermo-chemical equilibrium algorithm, “Cheetah”, was used to estimate the remaining burnable detonation products. From these remaining species, the afterburning energy was computed and added to the flow field. Computations of the detonation and afterburn of two HEs in the confined multi-room facility were performed. The results demonstrate excellent agreement with available experimental data in terms of blast wave time of arrival, peak shock amplitude, reverberation, and total impulse (and hence, total energy release, via either the detonation or afterburn processes.
NASA Astrophysics Data System (ADS)
Faug, Thierry
2017-04-01
The Rankine-Hugoniot jump conditions traditionally describe the theoretical relationship between the equilibrium state on both sides of a shock-wave. They are based on the crucial assumption that the length-scale needed to adjust the equilibrium state upstream of the shock to downstream of it is too small to be of significance to the problem. They are often used with success to describe the shock-waves in a number of applications found in both fluid and solid mechanics. However, the relations based on jump conditions at singular surfaces may fail to capture some features of the shock-waves formed in complex materials, such as granular matter. This study addresses the particular problem of compressible shock-waves formed in flows of dry granular materials down a slope. This problem is for instance relevant to full-scale geophysical granular flows in interaction with natural obstacles or man-made structures, such as topographical obstacles or mitigation dams respectively. Steady-state jumps formed in granular flows and travelling shock-waves produced at the impact of a granular avalanche-flow with a rigid wall are considered. For both situations, new analytical relations which do not consider that the granular shock-wave shrinks into a singular surface are derived, by using balance equations in their depth-averaged forms for mass and momentum. However, these relations need additional inputs that are closure relations for the size and the shape of the shock-wave, and a relevant constitutive friction law. Small-scale laboratory tests and numerical simulations based on the discrete element method are shortly presented and used to infer crucial information needed for the closure relations. This allows testing some predictive aspects of the simple analytical approach proposed for both steady-state and travelling shock-waves formed in free-surface flows of dry granular materials down a slope.
Experimental Study of Shock Generated Compressible Vortex Ring
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu
2000-11-01
Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590
The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less
Determination of JWL Parameters for Non-Ideal Explosive
NASA Astrophysics Data System (ADS)
Hamashima, H.; Kato, Y.; Itoh, S.
2004-07-01
JWL equation of state is widely used in numerical simulation of detonation phenomena. JWL parameters are determined by cylinder test. Detonation characteristics of non-ideal explosive depend strongly on confinement, and JWL parameters determined by cylinder test do not represent the state of detonation products in many applications. We developed a method to determine JWL parameters from the underwater explosion test. JWL parameters were determined through a method of characteristics applied to the configuration of the underwater shock waves of cylindrical explosives. The numerical results obtained using JWL parameters determined by the underwater explosion test and those obtained using JWL parameters determined by cylinder test were compared with experimental results for typical non-ideal explosive; emulsion explosive. Good agreement was confirmed between the results obtained using JWL parameters determined by the underwater explosion test and experimental results.
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.
Hydraulic shock waves in an inclined chute contraction
NASA Astrophysics Data System (ADS)
Jan, C.-D.; Chang, C.-J.
2009-04-01
A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.
The Shock and Vibration Digest. Volume 12, Number 11,
1980-11-01
AD-A092 384 NAVAL RESEARCH LAB WASHINGTON DC SHOCK AND VIBRATION--ETC F/S 20/11 THE SHOCK AND VIBRATIO DIG 1 EST . VOLUME 12 . NUMBER I1.IU) NOV B0 J1...sections. he compared his results with ones obtained previously [ 12 , 14]. A significant number of studies 110, 15, 21-41] have involved the vibrations of...frequencies and mode shapes of the first 12 modes numerical results [4, 12 , 16] and beam results. Ro- of a cantilevered cylindrical shell having a/b
The Accuracy of Shock Capturing in Two Spatial Dimensions
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Casper, Jay H.
1997-01-01
An assessment of the accuracy of shock capturing schemes is made for two-dimensional steady flow around a cylindrical projectile. Both a linear fourth-order method and a nonlinear third-order method are used in this study. It is shown, contrary to conventional wisdom, that captured two-dimensional shocks are asymptotically first-order, regardless of the design accuracy of the numerical method. The practical implications of this finding are discussed in the context of the efficacy of high-order numerical methods for discontinuous flows.
NASA Astrophysics Data System (ADS)
Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro
2018-03-01
We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.
Experimental Investigations on Microshock Waves and Contact Surfaces
NASA Astrophysics Data System (ADS)
Kai, Yun; Garen, Walter; Teubner, Ulrich
2018-02-01
The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.
Structural changes in a heterogeneous solid (granite) under shock wave action
NASA Astrophysics Data System (ADS)
Vettegren, V. I.; Shcherbakov, I. P.; Mamalimov, R. I.; Kulik, V. B.
2016-04-01
The structure of two granite types (plagiogranite and alaskite) before and after shock wave action has been studied by infrared, Raman, and photoluminescence spectroscopy methods. It has been found that the shock wave caused transformation of quartz and feldspar crystals composing these granites into diaplectic glasses.
Biological Effects of Shock Waves on Infection
NASA Astrophysics Data System (ADS)
Gnanadhas, Divya Prakash; Janardhanraj, S.; Chakravortty, Dipshikha; Gopalan, Jagadeesh
Shock waves have been successfully used for disintegrating kidney stones[1], noninvasive angiogenic approach[2] and for the treatment of osteoporosis[3]. Recently shock waves have been used to treat different medical conditions including intestinal anastomosis[4], wound healing[5], Kienböck's disease[6] and articular cartilage defects[7].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, D.; Toker, G. R.; Gurovich, V. Tz.
2013-05-15
Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm
2010-01-01
vivo. Circulation 110(19): 3055-3061 19. Stojadinovic A, Elster EA, Anam K et al (2008) Angiogenic response to extracorporeal shock wave treatment in...healing in diabetic mice: effects of extracorporeal shock wave therapy Stephen R. Zins • Mihret F. A mare • Douglas K. Tadaki • Eric. A. Elster... extracorporeal shock wave therapy (ESWT), which has been demonstrated to improve wound healing. Full-thick- ness skin from the dorsal surface of "nonnal" (BALB
Calibration of a shock wave position sensor using artificial neural networks
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
1993-01-01
This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.
Planar Reflection of Detonations Waves
NASA Astrophysics Data System (ADS)
Damazo, Jason; Shepherd, Joseph
2012-11-01
An experimental study examining normally reflected gaseous detonation waves is undertaken so that the physics of reflected detonations may be understood. Focused schlieren visualization is used to describe the boundary layer development behind the incident detonation wave and the nature of the reflected shock wave. Reflected shock wave bifurcation-which has received extensive study as it pertains to shock tube performance-is predicted by classical bifurcation theory, but is not observed in the present study for undiluted hydrogen-oxygen and ethylene-oxygen detonation waves. Pressure and thermocouple gauges are installed in the floor of the detonation tube so as to examine both the wall pressure and heat flux. From the pressure results, we observe an inconsistency between the measured reflected shock speed and the measured reflected shock strength with one dimensional flow predictions confirming earlier experiments performed in our laboratory. This research is sponsored by the DHS through the University of Rhode Island, Center of Excellence for Explosives Detection.
NASA Astrophysics Data System (ADS)
Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid
2018-06-01
Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.
Shock Wave Dynamics in Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Augmented shock wave fracture/severance of materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)
1995-01-01
The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
The structure of steady shock waves in porous metals
NASA Astrophysics Data System (ADS)
Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien
2017-10-01
The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.
Modeling deflagration waves out of hot spots
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2017-01-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.
Computation of shock wave/target interaction
NASA Technical Reports Server (NTRS)
Mark, A.; Kutler, P.
1983-01-01
Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.
Shock wave propagation in a magnetic flux tube
NASA Astrophysics Data System (ADS)
Ferriz-Mas, A.; Moreno-Insertis, F.
1992-12-01
The propagation of a shock wave in a magnetic flux tube is studied within the framework of the Brinkley-Kirkwood theory adapted to a radiating gas. Simplified thermodynamic paths along which the compressed plasma returns to its initial state are considered. It is assumed that the undisturbed medium is uniform and that the flux tube is optically thin. The shock waves investigated, which are described with the aid of the thin flux-tube approximation, are essentially slow magnetohydrodynamic shocks modified by the constraint of lateral pressure balance between the flux tube and the surrounding field-free fluid; the confining external pressure must be balanced by the internal gas plus magnetic pressures. Exact analytical solutions giving the evolution of the shock wave are obtained for the case of weak shocks.
Chu, Henry S; Langhorst, Benjamin R; Bakas, Michael P; Thinnes, Gary L
2013-02-26
The disclosure provides a shock absorbing layer comprised of one or more shock absorbing cells, where a shock absorbing cell is comprised of a cell interior volume containing a plurality of hydrogel particles and a free volume, and where the cell interior volume is surrounded by a containing layer. The containing layer has a permeability such that the hydrogel particles when swollen remain at least partially within the cell interior volume when subjected to a design shock pressure wave, allowing for force relaxation through hydrogel compression response. Additionally, the permeability allows for the flow of exuded free water, further dissipating wave energy. In an embodiment, a plurality of shock absorbing cells is combined with a penetration resistant material to mitigate the transmitted shock wave generated by an elastic precursor wave in the penetration resistant material.
Sonic boom interaction with turbulence
NASA Technical Reports Server (NTRS)
Rusak, Zvi; Giddings, Thomas E.
1994-01-01
A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.
NASA Technical Reports Server (NTRS)
Mandt, M. E.; Lee, L. C.
1991-01-01
The high correlation of Pc 1 events with magnetospheric compressions is known. A mechanism is proposed which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse with the earth's bow shock leads to the formation of a weak fast-mode shock propagating into the magnetoshealth. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasiperpendicular geometry, the shock wave exhibits anisotropic heating. This anisotropy drives unstable ion-cyclotron waves which can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain the peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker-spiral magnetic-field configuration.
Reintjes, Moritz; Temple, Blake
2015-05-08
We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C 0,1 to C 1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C 1,1 , cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein-Euler equations remains open.
Reintjes, Moritz; Temple, Blake
2015-01-01
We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C0,1 to C1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C1,1, cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein–Euler equations remains open. PMID:27547092
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates
NASA Astrophysics Data System (ADS)
Kuropatenko, V. F.; Shestakovskaya, E. S.
2016-10-01
It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Lawrence Mark; Miller, Phillip Isaac; Moro, Erik Allan
In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.
Separation control by vortex generator devices in a transonic channel flow
NASA Astrophysics Data System (ADS)
Bur, Reynald; Coponet, Didier; Carpels, Yves
2009-12-01
An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.
NASA Astrophysics Data System (ADS)
Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo
2018-01-01
Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.
Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianhong, E-mail: zhou-qianhong@iapcm.ac.cn; Dong, Zhiwei; Yang, Wei
2016-07-15
Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance betweenmore » the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu
2013-06-10
A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However,more » recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.« less
Alay, Eren; Zheng, James Q.; Chandra, Namas
2018-01-01
We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521
Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations
NASA Astrophysics Data System (ADS)
Murphy, Michael J.; Adrian, Ronald J.
2007-08-01
Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.
Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Shechter, Arik; Massarwa, Omar; Vardi, Yoram
2016-05-01
We performed sham controlled evaluation of penile low intensity shock wave treatment effect in patients unable to achieve sexual intercourse using PDE5i (phosphodiesterase type 5 inhibitor). This prospective, randomized, double-blind, sham controlled study was done in patients with vasculogenic erectile dysfunction who stopped using PDE5i due to no efficacy. All patients had an erection hardness score of 2 or less with PDE5i. A total of 58 patients were randomized, including 37 treated with low intensity shock waves (12 sessions of 1,500 pulses of 0.09 mJ/mm(2) at 120 shock waves per minute) and 18 treated with a sham probe. In the sham group 16 patients underwent low intensity shock wave treatment 1 month after sham treatment. All patients were evaluated at baseline and 1 month after the end of treatment using validated erectile dysfunction questionnaires and the flow mediated dilatation technique for penile endothelial function. Erectile function was evaluated while patients were receiving PDE5i. In the low intensity shock wave treatment group and the sham group 54.1% and 0% of patients, respectively, achieved erection hard enough for vaginal penetration, that is an EHS (Erection Hardness Score) of 3 (p <0.0001). According to changes in the IIEF-EF (International Index of Erectile Function-Erectile Function) score treatment was effective in 40.5% of men who received low intensity shock wave treatment but in none in the sham group (p = 0.001). Of patients treated with shock waves after sham treatment 56.3% achieved erection hard enough for penetration (p <0.005). Low intensity shock wave treatment is effective even in patients with severe erectile dysfunction who are PDE5i nonresponders. After treatment about half of them were able to achieve erection hard enough for penetration with PDE5i. Longer followup is needed to establish the place of low intensity shock wave treatment in these challenging cases. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Chuang, Yao-Chi; Huang, Tung-Liang; Tyagi, Pradeep; Huang, Chao-Cheng
2016-08-01
We investigated the feasibility of using low energy shock waves for intravesical botulinum toxin A delivery. We also evaluated its efficacy for acetic acid induced bladder hyperactivity in rats. In study 1 magnetic resonance imaging with intravesical administration of Gd-DTPA (Gd-diethylenetriamine pentaacetic acid) contrast medium was performed to visualize increased bladder urothelial permeability after low energy shock waves. In study 2 saline (1 ml) or botulinum toxin A (20 U/1 ml saline) was administered in the bladder with or without low energy shock waves (300 pulses at 0.12 mJ/mm(2)) and retained for 1 hour on day 1. Continuous cystometrograms were performed on day 8 by filling the bladder with saline followed by 0.3% acetic acid. The bladder was harvested for histology, and SNAP-25, SNAP-23 and COX-2 expression by Western blot or immunostaining. Magnetic resonance imaging established bladder urothelial leakage of Gd-DTPA after low energy shock waves, which was not seen in controls. The intercontraction interval was decreased 71.9%, 72.6% and 70.6% after intravesical instillation of acetic acid in saline, saline plus low energy shock wave and botulinum toxin A pretreated rats, respectively. However, rats that received botulinum toxin A plus low energy shock waves showed a significantly reduced response (48.6% decreased intercontraction interval) to acetic acid instillation without compromising voiding function. Rats pretreated with botulinum toxin A plus low energy shock waves showed a decreased inflammatory reaction (p <0.05), and decreased expression of SNAP-23 (p <0.05), SNAP-25 (p = 0.061) and COX-2 (p <0.05) compared with the control group. Low energy shock waves increased urothelial permeability, facilitated intravesical botulinum toxin A delivery and blocked acetic acid induced hyperactive bladder. These results support low energy shock waves as a promising method to deliver botulinum toxin A without the need for injection. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Cren(ulation)-1,2 Preshot Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2015-12-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the RichtmyerMeshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
Cigar-shaped quarkonia under strong magnetic field
NASA Astrophysics Data System (ADS)
Suzuki, Kei; Yoshida, Tetsuya
2016-03-01
Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.
The preplasma effect on the properties of the shock wave driven by a fast electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.
2016-08-15
Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.
Implications of pressure diffusion for shock waves
NASA Technical Reports Server (NTRS)
Ram, Ram Bachan
1989-01-01
The report deals with the possible implications of pressure diffusion for shocks in one dimensional traveling waves in an ideal gas. From this new hypothesis all aspects of such shocks can be calculated except shock thickness. Unlike conventional shock theory, the concept of entropy is not needed or used. Our analysis shows that temperature rises near a shock, which is of course an experimental fact; however, it also predicts that very close to a shock, density increases faster than pressure. In other words, a shock itself is cold.
Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A
2014-11-01
In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Calibration of PCB-132 Sensors in a Shock Tube
NASA Technical Reports Server (NTRS)
Berridge, Dennis C.; Schneider, Steven P.
2012-01-01
While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.
Strong imploding shock - The representative curve
NASA Astrophysics Data System (ADS)
Mishkin, E. A.; Alejaldre, C.
1981-02-01
The representative curve of the ideal gas behind the front of a spherically or cylindrically asymmetric strong imploding shock is derived. The partial differential equations of mass, momentum and energy conservation are reduced to a set of ordinary differential equations by the method of quasi-separation of variables, following which the reduced pressure and density as functions of the radius with respect to the shock front are explicit functions of coordinates defining the phase plane of the self-similar solution. The curve in phase space representing the state of the imploded gas behind the shock front is shown to pass through the point where the reduced pressure is maximum, which is located somewhat behind the shock front and ahead of the tail of the shock.
NASA Astrophysics Data System (ADS)
Heller, R. A.; Thangjitham, S.; Wang, X.
1992-04-01
The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.
Shock wave oscillation driven by turbulent boundary layer fluctuations
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1972-01-01
Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Shao, Zhiqiang
2018-04-01
The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.
NASA Astrophysics Data System (ADS)
Biss, Matthew; Murphy, Michael; Lieber, Mark
2017-06-01
Experiments were conducted in an effort to qualify a multi-diagnostic characterization procedure for the performance output of a detonator when fired into a poly(methyl methacrylate) (PMMA) witness block. A suite of optical diagnostics were utilized in combination to both bound the shock wave interaction state at the detonator/PMMA interface and characterize the nature of the shock wave decay in PMMA. The diagnostics included the Shock Wave Image Framing Technique (SWIFT), a photocathode tube streak camera, and photonic Doppler velocimetry (PDV). High-precision, optically clear witness blocks permitted dynamic flow visualization of the shock wave in PMMA via focused shadowgraphy. SWIFT- and streak-imaging diagnostics captured the spatiotemporally evolving shock wave, providing a two-dimensional temporally discrete image set and a one-dimensional temporally continuous image, respectively. PDV provided the temporal velocity history of the detonator output along the detonator axis. Through combination of the results obtained, a bound was able to be placed on the interface condition and a more-physical profile representing the shock wave decay in PMMA for an exploding-bridgewire detonator was achieved.
In situ measurement of plasma and shock wave properties inside laser-drilled metal holes
NASA Astrophysics Data System (ADS)
Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar
2008-10-01
High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2016-08-01
The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.
Influence of Flow Gradients on Mach Stem Initiation of PBX-9502
NASA Astrophysics Data System (ADS)
Hull, Lawrence; Miller, Phillip; Mas, Eric; Focused Experiments Team
2017-06-01
Recent experiments and theory explore the effect of flow gradients on reaction acceleration and stability in the pressure-enhanced region between colliding sub-detonative shock waves in PBX-9502. The experiments are designed to produce divergent curved incident shock waves that interact in a convergent irregular reflection, or ``Mach stem'', configuration. Although this flow is fundamentally unsteady, such a configuration does feature particle paths having a single shock wave that increases the pressure from zero to the wave-reflected enhanced pressure. Thus, the possibility of pre-shock desensitization is precluded in this interaction region. Diagnostics record arrival wave velocity, shape, and material velocity along the angled free surface face of a large wedge. The wedge is large enough to allow observation of the wave structure for distances much larger than the run-to-detonation derived from classical ``Pop plot'' data. The explosive driver system produces the incident shocks and allows some control of the flow gradients in the collision region. Further, the incident shocks are very weak and do not transition to detonation. The experiments discussed feature incident shock waves that would be expected to cause initiation in the Mach stem, based on the Pop plot. Results show that the introduction of pressure/velocity gradients in the reaction zone strongly influences the ability of the flow to build to a steady ``CJ'' detonation. As expected, the ability of the Mach stem to stabilize or accelerate is strongly influenced by the incident shock pressure.
Malaspina, David M.; Claudepierre, Seth G.; Takahashi, Kazue; ...
2015-11-14
On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. Furthermore, the Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event then suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portionsmore » of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.« less
Wave combustors for trans-atmospheric vehicles
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.
1989-01-01
The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.
Helicons in uniform fields. I. Wave diagnostics with hodograms
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2018-03-01
The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.
Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin
2015-09-15
We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less
Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Veltri, P.; Mangeney, A.; Scudder, J. D.
1992-01-01
The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.
NASA Technical Reports Server (NTRS)
Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.
2016-01-01
Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.
Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong
2018-05-01
We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.
Tracking kidney stones with sound during shock wave lithotripsy
NASA Astrophysics Data System (ADS)
Kracht, Jonathan M.
The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.
Su, Xiangzheng; Li, Zhongli; Liu, Zhengsheng; Shi, Teng; Xue, Chao
2017-06-09
The aim of this study was to investigate the efficacy of high- and low-energy radial shock waves combined with physiotherapy for rotator cuff tendinopathy patients. Data from rotator cuff tendinopathy patients received high- or low-energy radial shock waves combined with physiotherapy or physiotherapy alone were collected. The Constant and Murley score and visual analog scale score were collected to assess the effectiveness of treatment in three groups at 4, 8, 12, and 24 weeks. In total, 94 patients were involved for our retrospective study. All groups showed remarkable improvement in the visual analog scale and Constant and Murley score compared to baseline at 24 weeks. The high-energy radial shock waves group had more marked improvement in the Constant and Murley score compared to the physiotherapy group at 4 and 8 weeks and at 4 weeks when compared with low-energy group. Furthermore, high-energy radial shock waves group had superior results on the visual analog scale at 4, 8, and 12 weeks compared to low-energy and physiotherapy groups. This retrospective study supported the usage of high-energy radial shock waves as a supplementary therapy over physiotherapy alone for rotator cuff tendinopathy by relieving the symptoms rapidly and maintaining symptoms at a satisfactory level for 24 weeks. Implications for Rehabilitation High-energy radial shock waves can be a supplemental therapy to physiotherapy for rotator cuff tendinopathy. We recommend the usage of high-energy radial shock waves during the first 5 weeks, at an interval of 7 days, of physiotherapy treatment. High-energy radial shock waves treatment combined with physiotherapy can benefit rotator cuff tendinopathy by relieving symptoms rapidly and maintain these improvements at a satisfactory level for quite a long time.
Qi, Baochang; Yu, Tiecheng; Wang, Chengxue; Wang, Tiejun; Yao, Jihang; Zhang, Xiaomeng; Deng, Pengfei; Xia, Yongning; Junger, Wolfgang G; Sun, Dahui
2016-10-03
Osteosarcoma is the most prevalent primary malignant bone tumor, but treatment is difficult and prognosis remains poor. Recently, large-dose chemotherapy has been shown to improve outcome but this approach can cause many side effects. Minimizing the dose of chemotherapeutic drugs and optimizing their curative effects is a current goal in the management of osteosarcoma patients. In our study, trypan blue dye exclusion assay was performed to investigate the optimal conditions for the sensitization of osteosarcoma U2OS cells. Cellular uptake of the fluorophores Lucifer Yellow CH dilithium salt and Calcein was measured by qualitative and quantitative methods. Human MTX ELISA Kit and MTT assay were used to assess the outcome for osteosarcoma U2OS cells in the present of shock wave and methotrexate. To explore the mechanism, P2X7 receptor in U2OS cells was detected by immunofluorescence and the extracellular ATP levels was detected by ATP assay kit. All data were analyzed using SPSS17.0 statistical software. Comparisons were made with t test between two groups. Treatment of human osteosarcoma U2OS cells with up to 450 shock wave pulses at 7 kV or up to 200 shock wave pulses at 14 kV had little effect on cell viability. However, this shock wave treatment significantly promoted the uptake of Calcein and Lucifer Yellow CH by osteosarcoma U2OS cells. Importantly, shock wave treatment also significantly enhanced the uptake of the chemotherapy drug methotrexate and increased the rate of methotrexate-induced apoptosis. We found that shock wave treatment increased the extracellular concentration of ATP and that KN62, an inhibitor of P2X7 receptor reduced the capacity methotrexate-induced apoptosis. Our results suggest that shock wave treatment promotes methotrexate-induced apoptosis by altering cell membrane permeability in a P2X7 receptor-dependent manner. Shock wave treatment may thus represent a possible adjuvant therapy for osteosarcoma.
Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials
NASA Astrophysics Data System (ADS)
Missonnier, Marc; Heuzé, Olivier
2006-07-01
When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.
2011-05-01
The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less
Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock
NASA Astrophysics Data System (ADS)
Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2017-12-01
We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.
Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles
NASA Astrophysics Data System (ADS)
Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.
2009-12-01
The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.
Performance predictions for an SSME configuration with an enlarged throat
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dang, L. D.
1985-01-01
The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.
Effect of target-fixture geometry on shock-wave compacted copper powders
NASA Astrophysics Data System (ADS)
Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop
2018-01-01
In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.
Experimental research on crossing shock wave boundary layer interactions
NASA Astrophysics Data System (ADS)
Settles, G. S.; Garrison, T. J.
1994-10-01
An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.
Dynamics of Laser-Driven Shock Waves in Solid Targets
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.
2009-11-01
Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.
RCS measurements, transformations, and comparisons under cylindrical and plane wave illumination
NASA Astrophysics Data System (ADS)
Vokura, V. J.; Balanis, Constantine A.; Birtcher, Craig R.
1994-03-01
Monostatic RCS measurements of a long bar (at X-band) and of a scale model aircraft (at C-band) were performed under the quasi-plane wave illumination produced by a dual parabolic-cylinder CATR. At Arizona State University's ElectroMagnetic Anechoic Chamber (EMAC) facility, these measurements were repeated under the cylindrical wave illumination produced by a March Microwave Single-Plane Collimating Range (SPCR). The SPRC measurements were corrected using corrected using the 'reference target method.' The corrected SPCR measurements are in good agreement with the CATR measurements.
NASA Astrophysics Data System (ADS)
Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.
2016-01-01
This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.
On the fundamental unsteady fluid dynamics of shock-induced flows through ducts
NASA Astrophysics Data System (ADS)
Mendoza, Nicole Renee
Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers). A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1 D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and VISCOUS. The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave pattems and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 20, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining the evolution of the unsteady shear layer, its instability, and their effects on the flow field. The instability always appeared after the reflected shock interaction, and was exacerbated in the laminar cases and damped out in the turbulent cases. This research provided new understanding of the long-term evolution of these confined flows. Lastly, the turbulent work is one of the few turbulent studies on these flows.
Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers
NASA Astrophysics Data System (ADS)
Banlusan, Kiettipong; Strachan, Alejandro
2017-06-01
Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.
Interaction of a shock wave with multiple spheres suspended in different arrangements
NASA Astrophysics Data System (ADS)
Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui
2018-03-01
In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
Piezoresistive method for a laser induced shock wave detection on solids
NASA Astrophysics Data System (ADS)
Gonzalez-Romero, R.; Garcia-Torales, G.; Gomez Rosas, G.; Strojnik, M.
2017-08-01
A laser shock wave is a mechanical high-pressure impulse with a duration of a few nanoseconds induced by a high power laser pulse. We performed wave pressure measurements in order to build and check mathematical models. They are used for wave applications in material science, health, and defense, to list a few. Piezoresistive methods have been shown to be highly sensitive, linear, and highly appropriate for practical implementation, compared with piezoelectric methods employed in shock wave pressure measurements. In this work, we develop a novel method to obtain the sensitivity of a piezoresistive measurement system. The results shows that it is possible to use a mechanical method to measure pressure of a laser induced shock wave in nanosecond range. Experimental pressure measurements are presented.
A new facility for studying shock-wave passage over dust layers
NASA Astrophysics Data System (ADS)
Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.
2016-03-01
Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.
Jet oscillations caused by vorticity interactions with shock waves
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Harstad, K.; Massier, P. F.
1981-01-01
A linear theory is developed for the amplification of disturbances along a jet containing shock waves. The theory indicates that near grazing angles (i.e., wave angles near 90 deg) horizontal vorticity is greatly amplified after passing through the two shock waves that exist in a shock cell. The cumulative amplification and the mode that is amplified most can be obtained if the changes in shock parameters from cell to cell are known. Rapid rates of growth of disturbances are exhibited by shadowgraphs and rates of angular displacement of about 10 are observed. The linear two-dimensional theory also indicates that such rates of amplification occur, and that the behavior of a two-dimensional jet is qualitatively similar to that of a round jet.
Shock Acceleration of Solar Energetic Protons: The First 10 Minutes
NASA Technical Reports Server (NTRS)
Ng, Chee K.; Reames, Donald V.
2008-01-01
Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.
1D GAS-DYNAMIC SIMULATION OF SHOCK-WAVE PROCESSES VIA INTERNET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.
2009-12-28
We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainlessmore » steel plates are presented in comparison with experimental data from Shakhray et al.(2005).« less
The big bang as a higher-dimensional shock wave
NASA Astrophysics Data System (ADS)
Wesson, P. S.; Liu, H.; Seahra, S. S.
2000-06-01
We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-01-11
SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.
A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J W; Schwendeman, D W; Kapila, A K
2006-02-13
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less
Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.
1984-01-01
ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.
Shock wave equation of state of muscovite
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Rubin, Allan M.; Ahrens, Thomas J.
1991-01-01
Shock wave data were obtained between 20 and 140 GPa for natural muscovite obtained from Methuen Township (Ontario), in order to provide a shock-wave equation of state for this crustal hydrous mineral. The shock equation of state data could be fit by a linear shock velocity (Us) versus particle velocity (Up) relation Us = 4.62 + 1.27 Up (km/s). Third-order Birch-Murnaghan equation of state parameters were found to be K(OS) = 52 +/-4 GPa and K-prime(OS) = 3.2 +/-0.3 GPa. These parameters are comparable to those of other hydrous minerals such as brucite, serpentine, and tremolite.
Converging shock wave focusing and interaction with a target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitishinskiy, M.; Efimov, S.; Antonov, O.
2016-04-15
Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less
Basiri, Abbas; Zare, Samad; Tabibi, Ali; Sharifiaghdas, Farzaneh; Aminsharifi, Alireza; Mousavi-Bahar, Seyed Habibollah; Ahmadnia, Hassan
2010-09-01
Since there is insufficient evidence to determine the best treatment modality in children with distal ureteral calculi, we designed a multicenter, randomized, controlled trial to evaluate the efficacy and complications of transureteral and shock wave lithotripsy in these patients. A total of 100 children with distal ureteral calculi were included in the study. Of the patients 50 were randomized consecutively to undergo shock wave lithotripsy using a Compact Delta II lithotriptor (Dornier MedTech, Kennesaw, Georgia), and 50 were randomized to undergo transureteral lithotripsy with holmium laser and pneumatic lithotriptor between February 2007 and October 2009. Stone-free, complication and efficiency quotient rates were assessed in each group. Mean +/- SD patient age was 6.5 +/- 3.7 years (range 1 to 13). Mean stone surface was 35 mm(2) in the transureteral group and 37 mm(2) in the shock wave lithotripsy group. Stone-free rates at 2 weeks after transureteral lithotripsy and single session shock wave lithotripsy differed significantly, at 78% and 56%, respectively (p = 0.004). With 2 sessions of shock wave lithotripsy the stone-free rate increased to 72%. Efficiency quotient was significantly higher for transureteral vs shock wave lithotripsy (81% vs 62%, p = 0.001). Minor complications were comparable and negligible between the groups. Two patients (4%) who underwent transureteral lithotripsy sustained a ureteral perforation. In the short term it seems that transureteral and shock wave lithotripsy are acceptable modalities for the treatment of distal ureteral calculi in children. However, transureteral lithotripsy has a higher efficacy rate when performed meticulously by experienced hands using appropriate instruments. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian
2016-06-01
This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.
Hisasue, Shin-ichi; China, Toshiyuki; Horiuchi, Akira; Kimura, Masaki; Saito, Keisuke; Isotani, Shuji; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Horie, Shigeo
2016-01-01
To evaluate the efficacy of low-intensity shock wave therapy and to identify the predictive factors of its efficacy in Japanese patients with erectile dysfunction. The present study included 57 patients with erectile dysfunction who satisfied all the following conditions: more than 6-months history of erectile dysfunction, sexual health inventory for men score of ≤ 12 without phosphodiesterase type-5 inhibitor, erection hardness score grade 1 or 2, mean penile circumferential change by erectometer assessing sleep related erection of < 25 mm and non-neurological pathology. Patients were treated by a low-energy shock waves generator (ED1000; Medispec, Gaithersburg, MD, USA). A total of 12 shock wave treatments were applied. Sexual health inventory for men score, erection hardness score with or without phosphodiesterase type-5 inhibitor, and mean penile circumferential change were assessed at baseline, 1, 3 and 6 months after the termination of low-intensity shock wave therapy. Of 57 patients who were assigned for the low-intensity shock wave therapy trial, 56 patients were analyzed. Patients had a median age of 64 years. The sexual health inventory for men and erection hardness score (with and without phosphodiesterase type-5 inhibitor) were significantly increased (P < 0.001) at each time-point. The mean penile circumferential change was also increased from 13.1 to 20.2 mm after low-intensity shock wave therapy (P < 0.001). In the multivariate analysis, age and the number of concomitant comorbidities were statistically significant predictors for the efficacy. Low-intensity shock wave therapy seems to be an effective physical therapy for erectile dysfunction. Age and comorbidities are negative predictive factors of therapeutic response. © 2015 The Japanese Urological Association.
Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho
2004-01-01
Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.
Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs.
Wang, Ching-Jen; Huang, Hsuan-Ying; Pai, Chun-Hwan
2002-01-01
The purpose of the research was to study the phenomenon of neovascularization at the Achilles tendon-bone junction after low-energy shock wave application. The study was performed on eight mongrel dogs. The control specimens were obtained from the medial one-third of the right Achilles tendon-bone unit before shock wave application. Low-energy shock waves of 1000 impulses at 14 kV (equivalent to 0.18 mJ/mm2 energy flux density) were applied to the right Achilles bone-tendon junction. Biopsies were taken from the middle one-third of the Achilles tendon-bone junction at 4 weeks and from the lateral one-third at 8 weeks, respectively, after shock wave application. The features of microscopic examination included the number of new capillaries and muscularized vessels, the presence and arrangements of myofibroblasts, and the changes in bone. New capillary and muscularized vessels were seen in the study specimens which were obtained in 4 weeks and in 8 weeks after shock wave application, but none were seen in the control specimens before shock wave application. There was a considerable geographic variation in the number of new vessels within the same specimen. Myofibroblasts were not seen in the control specimens. Myofibroblasts with haphazard appearance and intermediate orientation fibers were seen in all study specimens obtained at 4 weeks and predominantly intermediate orientation myofibroblast fibers at 8 weeks. There were no changes in bone matrix, osteocyte activity, and vascularization within the bone. Two pathologists reviewed each specimen and concurrence was achieved in all cases. The results of the study suggested that low-energy shock wave enhanced the phenomenon of neovascularization at the bone-tendon junction in dogs.
NASA Astrophysics Data System (ADS)
Demiray, Hilmi; El-Zahar, Essam R.
2018-04-01
We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.
Calibration, reconstruction, and rendering of cylindrical millimeter-wave image data
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.
2011-05-01
Cylindrical millimeter-wave imaging systems and technology have been under development at the Pacific Northwest National Laboratory (PNNL) for several years. This technology has been commercialized, and systems are currently being deployed widely across the United States and internationally. These systems are effective at screening for concealed items of all types; however, new sensor designs, image reconstruction techniques, and image rendering algorithms could potentially improve performance. At PNNL, a number of specific techniques have been developed recently to improve cylindrical imaging methods including wideband techniques, combining data from full 360-degree scans, polarimetric imaging techniques, calibration methods, and 3-D data visualization techniques. Many of these techniques exploit the three-dimensionality of the cylindrical imaging technique by optimizing the depth resolution of the system and using this information to enhance detection. Other techniques, such as polarimetric methods, exploit scattering physics of the millimeter-wave interaction with concealed targets on the body. In this paper, calibration, reconstruction, and three-dimensional rendering techniques will be described that optimize the depth information in these images and the display of the images to the operator.
NASA Technical Reports Server (NTRS)
Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc
2011-01-01
We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.
Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P
2015-05-01
When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.
NASA Astrophysics Data System (ADS)
Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.
2007-12-01
It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.
NASA Astrophysics Data System (ADS)
Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru
2007-06-01
It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.
Shock Waves in the Treatment of Muscle Hypertonia and Dystonia
Mori, Laura; Currà, Antonio; Molfetta, Luigi; Abbruzzese, Giovanni
2014-01-01
Since 1997, focused shock waves therapy (FSWT) has been reported to be useful in the treatment of muscle hypertonia and dystonia. More recently, also radial shock wave therapy (RSWT) has been successfully used to treat muscle hypertonia. The studies where FSWT and RSWT have been used to treat muscle hypertonia and dystonia are reviewed in this paper. The more consistent and long lasting results were obtained in the lower limb muscles of patients affected by cerebral palsy with both FSWT and RSWT and in the distal upper limb muscles of adult stroke patients using FSWT. The most probable mechanism of action is a direct effect of shock waves on muscle fibrosis and other nonreflex components of muscle hypertonia. However, we believe that up to now the biological effects of shock waves on muscle hypertonia and dystonia cannot be clearly separated from a placebo effect. PMID:25309915
Ion-impact-induced multifragmentation of liquid droplets★
NASA Astrophysics Data System (ADS)
Surdutovich, Eugene; Verkhovtsev, Alexey; Solov'yov, Andrey V.
2017-11-01
An instability of a liquid droplet traversed by an energetic ion is explored theoretically. This instability is brought about by the predicted shock wave induced by the ion. An observation of multifragmentation of small droplets traversed by ions with high linear energy transfer is suggested to demonstrate the existence of shock waves. A number of effects are analysed in effort to find the conditions for such an experiment to be signifying. The presence of shock waves crucially affects the scenario of radiation damage with ions since the shock waves significantly contribute to the thermomechanical damage of biomolecules as well as the transport of reactive species. While the scenario has been upheld by analyses of biological experiments, the shock waves have not yet been observed directly, regardless of a number of ideas of experiments to detect them were exchanged at conferences. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
NASA Astrophysics Data System (ADS)
Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.
2018-03-01
Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.
Fluid dynamic modeling of nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki
2014-03-01
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Fluid dynamic modeling of nano-thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less
Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading
NASA Astrophysics Data System (ADS)
Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.
2011-03-01
Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.
Interaction of Impulsive Pressures of Cavitation Bubbles with Cell Membranes during Sonoporation
NASA Astrophysics Data System (ADS)
Kodama, Tetsuya; Koshiyama, Ken-ichiro; Tomita, Yukio; Suzuki, Maiko; Yano, Takeru; Fujikawa, Shigeo
2006-05-01
Ultrasound contrast agents (UCAs), are capable of enhancing non-invasive cytoplasmic molecular delivery in the presence of ultrasound. Collapse of UCAs may generate nano-scale cavitation bubbles, resulting in the transient permeabilization of the cell membrane. In the present study, we investigated the interaction of a cavitation bubble-induced shock wave with a cell membrane using acoustic theory and molecular dynamics (MD) simulation. From the theory, we obtained the shock wave propagation distance from the center of a cavitation bubble that would induce membrane damage. The MD simulation determined the relationship between the uptake of water molecules into the lipid bilayer and the shock wave. The interaction of the shock wave induced a structural change of the bilayer and subsequently increased the fluidity of each molecule. These changes in the bilayer due to shock waves may be an important factor in the use of UCAs to produce the transient membrane permeability during sonoporation.
The structure of cosmic ray shocks
NASA Astrophysics Data System (ADS)
Axford, W. I.; Leer, E.; McKenzie, J. F.
1982-07-01
The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).
Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops
NASA Astrophysics Data System (ADS)
Merrell, Tyler; Saylor, J. R.
2015-11-01
A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.
Analysis of the Giacobini-Zinner bow wave
NASA Technical Reports Server (NTRS)
Smith, E. J.; Slavin, J. A.; Bame, S. J.; Thomsen, M. F.; Cowley, S. W. H.; Richardson, I. G.; Hovestadt, D.; Ipavich, F. M.; Ogilvie, K. W.; Coplan, M. A.
1986-01-01
The cometary bow wave of P/Giacobini-Zinner has been analyzed using the complete set of ICE field and particle observations to determine if it is a shock. Changes in the magnetic field and plasma flow velocities from upstream to downstream have been analyzed to determine the direction of the normal and the propagation velocity of the bow wave. The velocity has then been compared with the fast magnetosonic wave speed upstream to derive the Mach number and establish whether it is supersonic, i.e., a shock, or subsonic, i.e., a large amplitude wave. The various measurements have also been compared with values derived from a Rankine-Hugoniot analysis. The results indicate that, inbound, the bow wave is a shock with M = 1.5. Outbound, a subsonic Mach number is obtained, however, arguments are presented that the bow wave is also likely to be a shock at this location.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Using the results of Scudder et al. (1986) on the bow shock wave observed by ISEE satellites, a quantitative description is presented of the electrodynamics of ion and electron fluids, and phase-standing wave interaction which manifests itself as a supercritical MHD shock. The cross-shock electrical profile was determined in both the normal incidence frame and in the deHoffman-Teller frame by two different methods, and the results were compared with dc electric field measurements.
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves
NASA Astrophysics Data System (ADS)
Qiu, Shi; Liu, Kuang; Eliasson, Veronica
2016-10-01
Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.
NASA Astrophysics Data System (ADS)
Kenamond, Mack; Bement, Matthew; Shashkov, Mikhail
2014-07-01
We present a new discretization for 2D arbitrary Lagrangian-Eulerian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, total energy conserving and symmetry preserving. In the first part of the paper, we describe the discretization of the basic Lagrangian hydrodynamics equations in axisymmetric 2D rz geometry on general polygonal meshes. It exactly preserves planar, cylindrical and spherical symmetry of the flow on meshes aligned with the flow. In particular, spherical symmetry is preserved on polar equiangular meshes. The discretization conserves total energy exactly up to machine round-off on any mesh. It has a consistent definition of kinetic energy in the zone that is exact for a velocity field with constant magnitude. The method for discretization of the Lagrangian equations is based on ideas presented in [2,3,7], where the authors use a special procedure to distribute zonal mass to corners of the zone (subzonal masses). The momentum equation is discretized in its “Cartesian” form with a special definition of “planar” masses (area-weighted). The principal contributions of this part of the paper are as follows: a definition of “planar” subzonal mass for nodes on the z axis (r=0) that does not require a special procedure for movement of these nodes; proof of conservation of the total energy; formulated for general polygonal meshes. We present numerical examples that demonstrate the robustness of the new method for Lagrangian equations on a variety of grids and test problems including polygonal meshes. In particular, we demonstrate the importance of conservation of total energy for correctly modeling shock waves. In the second part of the paper we describe the remapping stage of the arbitrary Lagrangian-Eulerian algorithm. The general idea is based on the following papers [25-28], where it was described for Cartesian coordinates. We describe a distribution-based algorithm for the definition of remapped subzonal densities and a local constrained-optimization-based approach for each zone to find the subzonal mass fluxes. In this paper we give a systematic and complete description of the algorithm for the axisymmetric case and provide justification for our approach. The ALE algorithm conserves total energy on arbitrary meshes and preserves symmetry when remapping from one equiangular polar mesh to another. The principal contributions of this part of the paper are the extension of this algorithm to general polygonal meshes and 2D rz geometry with requirement of symmetry preservation on special meshes. We present numerical examples that demonstrate the robustness of the new ALE method on a variety of grids and test problems including polygonal meshes and some realistic experiments. We confirm the importance of conservation of total energy for correctly modeling shock waves.
Room temperature impact deposition of ceramic by laser shock wave
NASA Astrophysics Data System (ADS)
Jinno, Kengo; Tsumori, Fujio
2018-06-01
In this paper, a direct fine patterning of ceramics at room temperature combining 2 kinds of laser microfabrication methods is proposed. The first method is called laser-induced forward transfer and the other is called laser shock imprinting. In the proposed method, a powder material is deposited by a laser shock wave; therefore, the process is applicable to a low-melting-point material, such as a polymer substrate. In the process, a carbon layer plays an important role in the ablation by laser irradiation to generate a shock wave. This shock wave gives high shock energy to the ceramic particles, and the particles would be deposited and solidified by high-speed collision with the substrate. In this study, we performed deposition experiments by changing the thickness of the carbon layer, laser energy, thickness of the alumina layer, and gap substrates. We compared the ceramic deposits after each experiment.
NASA Technical Reports Server (NTRS)
Om, Deepak; Childs, Morris E.
1987-01-01
An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.
The shock sensitivity of nitromethane/methanol mixtures
NASA Astrophysics Data System (ADS)
Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee
2013-06-01
The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.
Shock wave polarizations and optical metrics in the Born and the Born–Infeld electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minz, Christoph, E-mail: christoph.minz@alumni.tu-berlin.de; Borzeszkowski, Horst-Heino von, E-mail: borzeszk@mailbox.tu-berlin.de; Chrobok, Thoralf, E-mail: tchrobok@mailbox.tu-berlin.de
We analyze the behavior of shock waves in nonlinear theories of electrodynamics. For this, by use of generalized Hadamard step functions of increasing order, the electromagnetic potential is developed in a series expansion near the shock wave front. This brings about a corresponding expansion of the respective electromagnetic field equations which allows for deriving relations that determine the jump coefficients in the expansion series of the potential. We compute the components of a suitable gauge-normalized version of the jump coefficients given for a prescribed tetrad compatible with the shock front foliation. The solution of the first-order jump relations shows that,more » in contrast to linear Maxwell’s electrodynamics, in general the propagation of shock waves in nonlinear theories is governed by optical metrics and polarization conditions describing the propagation of two differently polarized waves (leading to a possible appearance of birefringence). In detail, shock waves are analyzed in the Born and Born–Infeld theories verifying that the Born–Infeld model exhibits no birefringence and the Born model does. The obtained results are compared to those ones found in literature. New results for the polarization of the two different waves are derived for Born-type electrodynamics.« less
Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.
Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B
2005-11-01
A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.
The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere
1991-01-31
of right-hand-polarized waves in instabilities, we follow the examples discussed by Wong interplanetary shocks and in the terrestrial foreshock and... foreshock , (Received January 14, 1988;J. Geophys. Res., 90, 1429, 1985. Spangler, S.R., and J.P. Sheerin, Alfv6.n wave revised April 15, 1988;collapse...bow shocks,2 and in the interplanetary shocks and the a four-wave parametric coupling process is a.alyzed for the terrestrial foreshock .3 .4 Moreover
Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Siddiq, M.; Karim, S.
2009-04-15
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less
Calculation of hypersonic shock structure using flux-split algorithms
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1991-01-01
There exists an altitude regime in the atmosphere that is within the continuum domain, but wherein the conventional Navier-Stokes equations cease to be accurate. The altitude limits for this so called continuum transition regime depend on vehicle size and speed. Within this regime the thickness of the bow shock wave is no longer negligible when compared to the shock stand-off distance and the peak radiation intensity occurs within the shock wave structure itself. For this reason it is no longer valid to treat the shock wave as a discontinuous jump and it becomes necessary to compute through the shock wave itself. To accurately calculate hypersonic flowfields, the governing equations must be capable of yielding realistic profiles of flow variables throughout the structure of a hypersonic shock wave. The conventional form of the Navier-Stokes equations is restricted to flows with only small departures from translational equilibrium; it is for this reason they do not provide the capability to accurately predict hypersonic shock structure. Calculations in the continuum transition regime, therefore, require the use of governing equations other than Navier-Stokes. Several alternatives to Navier-Stokes are discussed; first for the case of a monatomic gas and then for the case of a diatomic gas where rotational energy must be included. Results are presented for normal shock calculations with argon and nitrogen.
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-01
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-18
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.
Multiscale modeling of shock wave localization in porous energetic material
NASA Astrophysics Data System (ADS)
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.
2018-01-01
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.
Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim
2016-05-01
It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.; Bishop, A. R.
1978-01-01
The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.
Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
NASA Astrophysics Data System (ADS)
Grava, T.; Klein, C.; Pitton, G.
2018-02-01
A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.
Optodynamic characterization of shock waves after laser-induced breakdown in water.
Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa
2005-05-30
Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.
First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves.
Chaussy, Christian; Schmiedt, Egbert; Jocham, Dieter; Brendel, Walter; Forssmann, Bernd; Walther, Volker
2017-02-01
We performed extracorporeally induced destruction of kidney stones on 72 patients. No complications have resulted from the tissue exposure to high energy shock waves. Clearance studies before and after the shock wave treatment indicate no changes in renal function. The method was used successfully in all patients with stones in the renal pelvis. In none of these patients was an open operation required. Two patients with ureteral stones also were treated with shock waves but had to be operated upon because of insufficient destruction of the stone. Copyright © 2002 American Urological Association, Inc.®. Published by Elsevier Inc. All rights reserved.
Gambihler, S; Delius, M; Ellwart, J W
1994-09-01
Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900-2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000. Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.
NASA Astrophysics Data System (ADS)
Grib, S. A.; Leora, S. N.
2017-12-01
Macroscopic discontinuous structures observed in the solar wind are considered in the framework of magnetic hydrodynamics. The interaction of strong discontinuities is studied based on the solution of the generalized Riemann-Kochin problem. The appearance of discontinuities inside the magnetosheath after the collision of the solar wind shock wave with the bow shock front is taken into account. The propagation of secondary waves appearing in the magnetosheath is considered in the approximation of one-dimensional ideal magnetohydrodynamics. The appearance of a compression wave reflected from the magnetopause is indicated. The wave can nonlinearly break with the formation of a backward shock wave and cause the motion of the bow shock towards the Sun. The interaction between shock waves is considered with the well-known trial calculation method. It is assumed that the velocity of discontinuities in the magnetosheath in the first approximation is constant on the average. All reasonings and calculations correspond to consideration of a flow region with a velocity less than the magnetosonic speed near the Earth-Sun line. It is indicated that the results agree with the data from observations carried out on the WIND and Cluster spacecrafts.
NASA Astrophysics Data System (ADS)
Wess, Othmar
2005-04-01
Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.
Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola
2015-12-01
Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2018-04-01
Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirshekari, Gholamreza
This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 mum long and it has a 2000 mum wide and 17 mum high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. Keywords. Shock wave, Shock tube, MEMS, Microfluidic, Piezoelectric sensor, Microchannel, Transport phenomena.
On the Generation of Hydrodynamic Shocks by Mixed Beams and Occurrence of Sunquakes in Flares
NASA Astrophysics Data System (ADS)
Zharkova, Valentina; Zharkov, Sergei
2015-11-01
Observations of solar flares with sunquakes by space- and ground-based instruments reveal essentially different dynamics of seismic events in different flares. Some sunquakes are found to be closely associated with the locations of hard X-ray (HXR) and white-light (WL) emission, while others are located outside either of them. In this article we investigate possible sources causing a seismic response in a form of hydrodynamic shocks produced by the injection of mixed (electron plus proton) beams, discuss the velocities of these shocks, and the depths where they deposit the bulk of their energy and momentum. The simulation of hydrodynamic shocks in flaring atmospheres induced by electron-rich and proton-rich beams reveals that the linear depth of the shock termination is shifted beneath the level of the quiet solar photosphere on a distance from 200 to 5000 km. The parameters of these atmospheric hydrodynamic shocks are used as initial condition for another hydrodynamic model developed for acoustic-wave propagation in the solar interior (Zharkov, Mon. Not. Roy. Astron. Soc. 431, 3414, 2013). The model reveals that the depth of energy and momentum deposition by the atmospheric shocks strongly affects the propagation velocity of the acoustic-wave packet in the interior. The locations of the first bounces from the photosphere of acoustic waves generated in the vicinity of a flare are seen as ripples on the solar surface, or sunquakes. Mixed proton-dominated beams are found to produce a strong supersonic shock at depths 200 - 300 km under the level of the quiet-Sun photosphere and in this way produce well-observable acoustic waves, while electron-dominated beams create a slightly supersonic shock propagating down to 5000 km under the photosphere. This shock can only generate acoustic waves at the top layers beneath the photosphere since the shock velocity very quickly drops below the local sound speed. The distance Δ of the first bounce of the generated acoustic waves is discussed in relation to the minimal phase velocities of wave packets defined by the acoustic cutoff frequency and the parameters of atmospheric shock termination beneath the photosphere.
NASA Astrophysics Data System (ADS)
Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.
2016-09-01
Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.
Numerical study of heterogeneous mean temperature and shock wave in a resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Takeru
2015-10-28
When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises.more » Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.« less
Impact of shock waves on the conductive properties and structure of MgB2 tapes
NASA Astrophysics Data System (ADS)
Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.
2017-10-01
This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.
Laser-driven shock compression of gold foam in the terapascal pressure range
NASA Astrophysics Data System (ADS)
Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo
2018-06-01
Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.
Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading
NASA Astrophysics Data System (ADS)
Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.
2017-02-01
To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.
Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight
NASA Technical Reports Server (NTRS)
OFarrell, J. M.; Rieckhoff, T. J.
2011-01-01
Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.
T-wave loop area from a pre-implant 12-lead ECG is associated with appropriate ICD shocks
Hnatkova, Katerina; Friede, Tim; Malik, Marek; Zabel, Markus
2017-01-01
Aims In implantable cardioverter-defibrillator (ICD) patients, predictors of ICD shocks and mortality are needed to improve patient selection. Electrocardiographic (ECG) markers are simple to obtain and have been demonstrated to predict mortality. We aimed to assess the association of T-wave loop area and circularity with ICD shocks. Methods The study investigated patients with ICDs implanted between 1998 and 2010 for whom digital 12-lead ECGs (Schiller CS200 ECG-Network) of sufficient quality were obtained within 1 month prior to the implantation. T-wave loop area and circularity were calculated. Follow-up data of appropriate shocks were obtained during ICD clinic visits that included reviews of device stored electrograms. Results A total of 605 patients (82% males) were included; 68% had ischemic cardiomyopathy and 72% were treated for primary prevention. Over 3.8±1.4 years of follow-up, 114 patients (19%) experienced appropriate shock(s). Those with smaller T-wave loop area received fewer shocks (TLA, hazard ratio, HR, per increase of 1 technical unit, 0.71; [95% confidence interval, 0.53–0.94]; P = 0.02) and those with larger T-wave loop circularity (TLC) representing rounder T wave loop received more shocks (HR per 1% TLC increase 2.96; [0.85–10.36]; P = 0.09). When the quartile containing the largest TLA and TLC values, respectively, were compared to the remaining cases, TLA remained significantly associated with fewer and TLC with more frequent shocks also after multivariate adjustment for clinical variables (HR, 0.59 [0.35–0.99], P = 0.044; and 1.64 [1.08–2.49], P = 0.021, respectively). Conclusions The size and shape of the T-wave loop calculated from pre-implantation 12-lead ECGs are associated with appropriate ICD shocks. PMID:28291831
Magneto-hydrodynamic modeling of gas discharge switches
NASA Astrophysics Data System (ADS)
Doiphode, P.; Sakthivel, N.; Sarkar, P.; Chaturvedi, S.
2002-12-01
We have performed one-dimensional, time-dependent magneto-hydrodynamic modeling of fast gas-discharge switches. The model has been applied to both high- and low-pressure switches, involving a cylindrical argon-filled cavity. It is assumed that the discharge is initiated in a small channel near the axis of the cylinder. Joule heating in this channel rapidly raises its temperature and pressure. This drives a radial shock wave that heats and ionizes the surrounding low-temperature region, resulting in progressive expansion of the current channel. Our model is able to reproduce this expansion. However, significant difference of detail is observed, as compared with a simple model reported in the literature. In this paper, we present details of our simulations, a comparison with results from the simple model, and a physical interpretation for these differences. This is a first step towards development of a detailed 2-D model for such switches.
Shock Waves Mitigation at Blunt Bodies Using Needles and Shells Against a Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.; Sakharov, V. I.; Shvets, A. I.
2004-01-01
The paper contains some experimental and numerical simulation test results on cylindrical blunt body drag reduction using thin spikes or shell mounted in front of a body against a supersonic flow. Experimental tests were conducted using the Aeromechanics and Gas Dynamics Laboratory facilities at the Institute of Mechanics of Moscow State University (IMMSU). Numerical simulations utilizing NASA and IM/MSU codes were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory. The main purpose of this research is to examine the efficiency of application of multiple spikes for drag reduction and flow stability at the front of a blunt body in different flight conditions, i.e. Mach number, angle of attack, etc. The principal conclusions of these test results are: multiple spike/needle application leads to decrease of drag reduction benefits by comparison with the case of one central mounted needle at the front of a blunt body, but increase lift benefits.
Weil, Lowell Scott; Roukis, Thomas S; Weil, Lowell Scott; Borrelli, Anthony H
2002-01-01
A review of the history, mechanism of action, and application of extracorporeal shock wave therapy for chronic plantar fasciitis is presented. The results of 40 feet treated with this modality are reviewed after a mean follow-up time of 8.4 months. All procedures were performed under intravenous sedation and local infiltrative anesthesia. An electrohydraulic shock wave with a mean of 20.6 kV combined with a mean of 2,506 pulses was used. The results of a similar demographic class of patients having undergone a percutaneous plantar fasciotomy at our institution were compared to the results of this cohort of shock wave patients. Eighty-two percent of the patients treated with extracorporeal shock wave therapy were successfully treated as compared to 83% with a percutaneous plantar fasciotomy. The mean score on the 11-point visual analog scale for satisfied patients was 7.9 preoperatively and 2.95 within 7 days postoperatively. After 3 months, the mean visual analog score was 4.2 or 50% of the preoperative value after a mean of 8.4 months following treatment. Eighty-three percent of the patients treated stated that shock wave therapy improved their symptoms. There were no complications encountered in any patient in this study. Extracorporeal shock wave therapy is an effective treatment, which significantly reduces the symptoms associated with chronic plantar fasciitis and compares favorably to the results achieved with surgical intervention in the form of a percutaneous plantar fasciotomy.
Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J
2015-07-01
Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hofmann, A.; Ritz, U.; Rompe, J.-D.; Tresch, A.; Rommens, P. M.
2015-01-01
Shock wave therapy has been increasingly evaluated as a non-invasive alternative for the treatment of delayed fracture healing and non-unions. Although several clinical studies showed a beneficial effect especially for the hypertrophic type of non-union, little is known about the biological mechanism of its osteogenic effect. To identify the molecular background for the positive effect of shock waves on healing of fracture non-unions, we have analyzed the changes of the global gene expression in human osteoblasts after exposure to shock waves of different energy flux densities. Human osteoblasts were isolated from five patients at non-union sites, treated with 500 impulses of energy flux densities of 0.06 and , and cultured for 96 h. HG-U133A microarrays were used for the analysis of the shock wave-regulated mRNA-transcripts. Differential gene expression was verified by reverse transcriptase polymerase chain reactions. We identified 47 transcripts that showed differential expression after and 45 transcripts after energy treatment. Most intriguing was the up-regulation of neprilysin, calmegin, osteoglycin, asporin, and interleukin-13 receptor-. Eighteen identified genes were previously described to fulfill an important function in bone growth and metabolism. Our study provides the first molecular profile of shock wave-induced gene expression changes in human osteoblasts from patients with hypertrophic fracture non-unions, and it offers a possible molecular explanation for the positive effects of shock waves in patients ridden with this disease.
Harvey, E. Newton; McMillen, J. Howard
1947-01-01
The spark shadowgram method of studying shock waves is described. It has been used to investigate the properties of such waves produced by the impact of a high velocity missile on the surface of water. The method can be adapted for study of behavior of shock waves in tissue by placing the tissue on a water surface or immersing it in water. Spark shadowgrams then reveal waves passing from tissue to water or reflected from tissue surfaces. Reflection and transmission of shock waves from muscle, liver, stomach, and intestinal wall are compared with reflection from non-living surfaces such as gelatin gel, steel, plexiglas, cork, and air. Because of its heterogeneous structure, waves transmitted by tissue are dispersed and appear as a series of wavelets. When the accoustical impedance (density x wave velocity) of a medium is less than that in which the wave is moving, reflection will occur with inversion of the wave; i.e., a high pressure wave will become a low pressure wave. This inversion occurs at an air surface and is illustrated by shadowgrams of reflection from stomach wall, from a segment of colon filled with gas, and from air-filled rubber balloons. Bone (human skull and beef ribs) shows good reflection and some transmission of shock waves. When steel is directly hit by a missile, clearly visible elastic waves pass from metal to water, but a similar direct hit on bone does not result in elastic waves strong enough to be detected by a spark shadowgram. PMID:19871617
Well-defined EUV wave associated with a CME-driven shock
NASA Astrophysics Data System (ADS)
Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.
2018-05-01
Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.
Fundamental structure of steady plastic shock waves in metals
NASA Astrophysics Data System (ADS)
Molinari, A.; Ravichandran, G.
2004-02-01
The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of materials subjected to very high strain rates from shock wave experiments is discussed.
NASA Technical Reports Server (NTRS)
Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi
2003-01-01
In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gasdynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results may be used to empirically establish the equation of states of water, gelatin or agar cells which will work as alternatives of human tissues.
NASA Astrophysics Data System (ADS)
Ershov, A. P.; Klishin, S. V.; Kuzovnikov, S. V.; Ponomareva, S. E.; Pyt'ev, Iu. P.
1990-12-01
The reduction method is applied to the microwave interferometry of shock waves in a weakly ionized plasma, making it possible to improve the spatial resolution of the instrument. It is shown experimentally that the structure of the shock wave electron component in a high-frequency discharge plasma in atomic and molecular gases is characterized by the presence of a precursor in the form of a rarefaction wave. The origin of the precursor is examined.
Experimental investigation of shock wave diffraction over a single- or double-sphere model
NASA Astrophysics Data System (ADS)
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.