Science.gov

Sample records for cysteine capping motif

  1. LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage

    PubMed Central

    Park, Hosil; Huxley-Jones, Julie; Boot-Handford, Ray P; Bishop, Paul N; Attwood, Teresa K; Bella, Jordi

    2008-01-01

    Background The small leucine-rich repeat proteins and proteoglycans (SLRPs) form an important family of regulatory molecules that participate in many essential functions. They typically control the correct assembly of collagen fibrils, regulate mineral deposition in bone, and modulate the activity of potent cellular growth factors through many signalling cascades. SLRPs belong to the group of extracellular leucine-rich repeat proteins that are flanked at both ends by disulphide-bonded caps that protect the hydrophobic core of the terminal repeats. A capping motif specific to SLRPs has been recently described in the crystal structures of the core proteins of decorin and biglycan. This motif, designated as LRRCE, differs in both sequence and structure from other, more widespread leucine-rich capping motifs. To investigate if the LRRCE motif is a common structural feature found in other leucine-rich repeat proteins, we have defined characteristic sequence patterns and used them in genome-wide searches. Results The LRRCE motif is a structural element exclusive to the main group of SLRPs. It appears to have evolved during early chordate evolution and is not found in protein sequences from non-chordate genomes. Our search has expanded the family of SLRPs to include new predicted protein sequences, mainly in fishes but with intriguing putative orthologs in mammals. The chromosomal locations of the newly predicted SLRP genes would support the large-scale genome or gene duplications that are thought to have occurred during vertebrate evolution. From this expanded list we describe a new class of SLRP sequences that could be representative of an ancestral SLRP gene. Conclusion Given its exclusivity the LRRCE motif is a useful annotation tool for the identification and classification of new SLRP sequences in genome databases. The expanded list of members of the SLRP family offers interesting insights into early vertebrate evolution and suggests an early chordate evolutionary

  2. Zinc-binding cysteines: diverse functions and structural motifs.

    PubMed

    Pace, Nicholas J; Weerapana, Eranthie

    2014-01-01

    Cysteine residues are known to perform essential functions within proteins, including binding to various metal ions. In particular, cysteine residues can display high affinity toward zinc ions (Zn2+), and these resulting Zn2+-cysteine complexes are critical mediators of protein structure, catalysis and regulation. Recent advances in both experimental and theoretical platforms have accelerated the identification and functional characterization of Zn2+-bound cysteines. Zn2+-cysteine complexes have been observed across diverse protein classes and are known to facilitate a variety of cellular processes. Here, we highlight the structural characteristics and diverse functional roles of Zn2+-cysteine complexes in proteins and describe structural, computational and chemical proteomic technologies that have enabled the global discovery of novel Zn2+-binding cysteines.

  3. Specific Prenylation of Tomato Rab Proteins by Geranylgeranyl Type-II Transferase Requires a Conserved Cysteine-Cysteine Motif.

    PubMed

    Yalovsky, S.; Loraine, A. E.; Gruissem, W.

    1996-04-01

    Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity.

  4. The cysteine-cluster motif of c-Yes, Lyn and FAK as a suppressive module for the kinases.

    PubMed

    Rahman, Mohammad Aminur; Senga, Takeshi; Oo, Myat Lin; Hasegawa, Hitoki; Biswas, Md Helal Uddin; Mon, Naing Naing; Huang, Pengyu; Ito, Satoko; Yamamoto, Tadashi; Hamaguchi, Michinari

    2008-04-01

    The Src family of non-receptor protein tyrosine kinases plays a critical role in the progression of human cancers so that the development of its specific inhibitors is important as a therapeutic tool. We previously reported that cysteine residues in the cysteine-cluster (CC) motif of v-Src were critical for the kinase inactivation by the SH-alkylating agents such as N-(9-acridinyl) maleimide (NAM), whereas other cysteine residues were dispensable. We found similar CC-motifs in other Src-family kinases and a non-Src-family kinase, FAK. In this study, we explored the function of the CC-motif in Yes, Lyn and FAK. While Src has four cysteines in the CC-motif, c-Yes and Lyn have three and two of the four cysteines, respectively. Two conserved cysteines of the Src family kinases, corresponding to Cys487 and Cys498 of Src, were essential for the resistance to the inactivation of the kinase activity by NAM, whereas the first cysteine of c-Yes, which is absent in Lyn, was less important. FAK has similar CC-motifs with two cysteines and both cysteines were again essential for the resistance to the inactivation of the kinase activity by NAM. Taken together, modification of cysteine residues of the CC-motif causes a repressor effect on the catalytic activity of the Src family kinases and FAK.

  5. Capping motifs stabilize the leucine-rich repeat protein PP32 and rigidify adjacent repeats.

    PubMed

    Dao, Thuy P; Majumdar, Ananya; Barrick, Doug

    2014-06-01

    Capping motifs are found to flank most β-strand-containing repeat proteins. To better understand the roles of these capping motifs in organizing structure and stability, we carried out folding and solution NMR studies on the leucine-rich repeat (LRR) domain of PP32, which is composed of five tandem LRR, capped by α-helical and β-hairpin motifs on the N- and C-termini. We were able to purify PP32 constructs lacking either cap and containing destabilizing substitutions. Removing the C-cap results in complete unfolding of PP32. Removing the N-cap has a much less severe effect, decreasing stability but retaining much of its secondary structure. In contrast, the dynamics and tertiary structure of the first two repeats are significantly perturbed, based on (1)H-(15)N relaxation studies, chemical shift perturbations, and residual dipolar couplings. However, more distal repeats (3 to C-cap) retain their native tertiary structure. In this regard, the N-cap drives the folding of adjacent repeats from what appears to be a molten-globule-like state. This interpretation is supported by extensive analysis using core packing substitutions in the full-length and N-cap-truncated PP32. This work highlights the importance of caps to the stability and structural integrity of β-strand-containing LRR proteins, and emphasizes the different contributions of the N- and C-terminal caps. PMID:24659532

  6. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    SciTech Connect

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  7. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    NASA Astrophysics Data System (ADS)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-01

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  8. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  9. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators

    PubMed Central

    Hernandez-Valladares, Maria; Kim, Taekyung; Kannan, Balakrishnan; Tung, Alvin; Aguda, Adeleke H; Larsson, Mårten; Cooper, John A; Robinson, Robert C

    2011-01-01

    Capping protein (CP) regulates actin dynamics by binding the barbed ends of actin filaments. Removal of CP may be one means to harness actin polymerization for processes such as cell movement and endocytosis. Here we structurally and biochemically investigated a CP interaction (CPI) motif present in the otherwise unrelated proteins CARMIL and CD2AP. The CPI motif wraps around the stalk of the mushroom-shaped CP at a site distant from the actin-binding interface, which lies on the top of the mushroom cap. We propose that the CPI motif may act as an allosteric modulator, restricting CP to a low-affinity, filament-binding conformation. Structure-based sequence alignments extend the CPI motif–containing family to include CIN85, CKIP-1, CapZIP and a relatively uncharacterized protein, WASHCAP (FAM21). Peptides comprising these CPI motifs are able to inhibit CP and to uncap CP-bound actin filaments. PMID:20357771

  10. Alanine substitutions of noncysteine residues in the cysteine-stabilized αβ motif

    PubMed Central

    Yang, Ying-Fang; Cheng, Kuo-Chang; Tsai, Ping-Hsing; Liu, Chung-Cheng; Lee, Tian-Ren; Ping-Chiang Lyu

    2009-01-01

    The protein scaffold is a peptide framework with a high tolerance of residue modifications. The cysteine-stabilized αβ motif (CSαβ) consists of an α-helix and an antiparallel triple-stranded β-sheet connected by two disulfide bridges. Proteins containing this motif share low sequence identity but high structural similarity and has been suggested as a good scaffold for protein engineering. The Vigna radiate defensin 1 (VrD1), a plant defensin, serves here as a model protein to probe the amino acid tolerance of CSαβ motif. A systematic alanine substitution is performed on the VrD1. The key residues governing the inhibitory function and structure stability are monitored. Thirty-two of 46 residue positions of VrD1 are altered by site-directed mutagenesis techniques. The circular dichroism spectrum, intrinsic fluorescence spectrum, and chemical denaturation are used to analyze the conformation and structural stability of proteins. The secondary structures were highly tolerant to the amino acid substitutions; however, the protein stabilities were varied for each mutant. Many mutants, although they maintained their conformations, altered their inhibitory function significantly. In this study, we reported the first alanine scan on the plant defensin containing the CSαβ motif. The information is valuable to the scaffold with the CSαβ motif and protein engineering. PMID:19533758

  11. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, E A; Odintsova, T I; Khadeeva, N V; Grishin, E V; Egorov, Ts A

    2012-08-01

    Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.

  12. Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs.

    PubMed

    Campion, S R; Ameen, A S; Lai, L; King, J M; Munzenmaier, T N

    2001-08-15

    This report describes the application of a simple computational tool, AAPAIR.TAB, for the systematic analysis of the cysteine-rich EGF, Sushi, and Laminin motif/sequence families at the two-amino acid level. Automated dipeptide frequency/bias analysis detects preferences in the distribution of amino acids in established protein families, by determining which "ordered dipeptides" occur most frequently in comprehensive motif-specific sequence data sets. Graphic display of the dipeptide frequency/bias data revealed family-specific preferences for certain dipeptides, but more importantly detected a shared preference for employment of the ordered dipeptides Gly-Tyr (GY) and Gly-Phe (GF) in all three protein families. The dipeptide Asn-Gly (NG) also exhibited high-frequency and bias in the EGF and Sushi motif families, whereas Asn-Thr (NT) was distinguished in the Laminin family. Evaluation of the distribution of dipeptides identified by frequency/bias analysis subsequently revealed the highly restricted localization of the G(F/Y) and N(G/T) sequence elements at two separate sites of extreme conservation in the consensus sequence of all three sequence families. The similar employment of the high-frequency/bias dipeptides in three distinct protein sequence families was further correlated with the concurrence of these shared molecular determinants at similar positions within the distinctive scaffolds of three structurally divergent, but similarly employed, motif modules.

  13. Copper(I) stabilization by cysteine/tryptophan motif in the extracellular domain of Ctr4.

    PubMed

    Okada, Mariko; Miura, Takashi

    2016-06-01

    Copper transporter Ctr4 of fission yeast has a quasi-palindromic sequence rich in cysteine and aromatic amino acid residues, CX4YWNWYX4C (where X represents any amino acid), in the N-terminal extracellular domain. A 24-mer peptide comprising this sequence is bound to Cu(I) through the cysteine thiolate coordination. Luminescence, UV absorption and resonance Raman spectra of the Cu(I)-peptide complex show that at least one of the two tryptophan side chains is located in close proximity to the thiolate-Cu(I) center and interacts with the Cu(I) ion via π-electrons of the indole ring. Although the thiolates and Cu(I) are oxidized to disulfide and Cu(II), respectively, only very slowly in air-saturated solutions, replacements of the tryptophan residues to phenylalanine significantly accelerate the oxidation reactions. The results obtained indicate that the interaction between Cu(I) and tryptophan via π-electrons plays a significant role in protecting the thiolate-Cu(I) center against the oxidation. The cysteine- and tryptophan-rich quasi-palindromic sequence may be a metal binding motif that stabilizes Cu(I) in the oxidizing extracellular environment. PMID:26908286

  14. The cold and menthol receptor TRPM8 contains a functionally important double cysteine motif.

    PubMed

    Dragoni, Ilaria; Guida, Elizabeth; McIntyre, Peter

    2006-12-01

    We have investigated the glycosylation, disulfide bonding, and subunit structure of mouse TRPM8. To do this, amino-terminal c-myc or hemagglutinin epitope-tagged proteins were incorporated and expressed in Chinese hamster ovary cells. These modifications had no obvious effects on channel function in intracellular calcium imaging assays upon application of agonists, icilin or menthol, and cold temperatures. Unmodified TRPM8 migrates with an apparent mass of 129 kDa and can be glycosylated in Chinese hamster ovary cells to give glycoproteins with apparent masses of 136 and 147 kDa. We identified two potential N-linked glycosylation sites in TRPM8 (Asn-821 and Asn-934) and mutated them to show that only the site in the putative pore region at position 934 is modified and that glycosylation of this site is not absolutely necessary for cell surface expression or responsiveness to icilin, menthol, and cool temperatures. Enzymatic cleavage of the carbohydrate chains indicated that they are complex carbohydrate. The glycosylation site is flanked in the pore by two cysteine residues that we mutated, to prove that they are involved in a conserved double cysteine motif, which is essential for channel function. Mutation of either of these cysteines abolishes function and forces the formation of a non-functional complex of the size of a homodimer. The double cysteine mutant is also non-functional. Finally, we showed in Perfluoro-octanoic acid-polyacrylamide gels that TRPM8 can form a tetramer (in addition to dimer and trimer forms), consistent with current thinking that functional TRP ion channels are tetrameric.

  15. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups

    PubMed Central

    Soeda, Yoshiyuki; Yoshikawa, Misato; Almeida, Osborne F. X.; Sumioka, Akio; Maeda, Sumihiro; Osada, Hiroyuki; Kondoh, Yasumitsu; Saito, Akiko; Miyasaka, Tomohiro; Kimura, Tetsuya; Suzuki, Masaaki; Koyama, Hiroko; Yoshiike, Yuji; Sugimoto, Hachiro; Ihara, Yasuo; Takashima, Akihiko

    2015-01-01

    Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies. PMID:26671725

  16. The disulfide oxidoreductase SdbA is active in Streptococcus gordonii using a single C-terminal cysteine of the CXXC motif.

    PubMed

    Davey, Lauren; Cohen, Alejandro; LeBlanc, Jason; Halperin, Scott A; Lee, Song F

    2016-01-01

    Recently, we identified a novel disulfide oxidoreductase, SdbA, in the oral bacterium Streptococcus gordonii. Disulfide oxidoreductases form disulfide bonds in nascent proteins using a CXXC catalytic motif. Typically, the N-terminal cysteine interacts with substrates, whereas the C-terminal cysteine is buried and only reacts with the first cysteine of the motif. In this study, we investigated the SdbA C(86) P(87) D(88) C(89) catalytic motif. In vitro, SdbA single cysteine variants at the N or C-terminal position (SdbAC86P and SdbAC89A ) were active but displayed different susceptibility to oxidation, and N-terminal cysteine was prone to sulfenylation. In S. gordonii, mutants with a single N-terminal cysteine were inactive and formed unstable disulfide adducts with other proteins. Activity was partially restored by inactivation of pyruvate oxidase, a hydrogen peroxide generator. Presence of the C-terminal cysteine alone (in the SdbAC86P variant) could complement the ΔsdbA mutant and restore disulfide bond formation in recombinant and natural protein substrates. These results provide evidence that certain disulfide oxidoreductases can catalyze disulfide bond formation using a single cysteine of the CXXC motif, including the buried C-terminal cysteine.

  17. Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2

    PubMed Central

    Wallace, Heather A.; Klebba, Joseph E.; Kusch, Thomas; Rogers, Gregory C.; Bosco, Giovanni

    2015-01-01

    The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization. PMID:25758823

  18. A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations.

    PubMed

    Cui, Yingqi; Lou, Zhaoyang; Wang, Xinqin; Yu, Shengping; Yang, Mingli

    2015-04-14

    Understanding the size-dependent structures and properties of ligand-capped nanoclusters in solvent is of particular interest for the design, synthesis and application of II-VI colloidal QDs. Using DFT and TDDFT calculations, we studied the structure and optical property evolution of the cysteine-capped (CdSe)N clusters of N = 1-10, 13, 16 and 19 in gas, toluene, water and alkaline aqueous solution, and made a comparison with their corresponding bare clusters. The cysteine binds with (CdSe)Nvia several patterns depending on the medium they exist in, affecting the cluster structures and in consequence their optical absorption. In general, the absorption bands of (CdSe)N blueshift when cysteine is added, and the shift varies with the interaction strength between the cluster and the ligand, and the dielectric constant of the solvent. However, bare clusters retain their size sensitivity, in particular the redshift trend with increasing cluster size, and some similarity was noted for the optical absorption of the bare and ligated clusters regardless of the gas or solvent media. Population analysis reveals that the excitations are mainly from orbitals distributing on the (CdSe)N part, while the ligand is negligibly involved in the excitations. This is an important feature for the II-VI QDs as biosensors with which the information of biomolecules is detected from the size dependent optical absorption or emission of the QDs other than the biomolecules. PMID:25761258

  19. The reaction of a platinated methionine motif of CTR1 with cysteine and histidine is dependent upon the type of precursor platinum complex.

    PubMed

    Ma, Guolin; Wu, Qin; Wu, Xuelei; Arnesano, Fabio; Natile, Giovanni; Sletten, Einar; Liu, Yangzhong

    2015-12-01

    The human copper protein (hCTR1) is believed to facilitate the cellular uptake of cisplatin. Cisplatin likely binds to the methionine (Met)-rich motifs located in the N-terminus of hCTR1, and ligand exchange would be essential if cisplatin has to pass through the hCTR1 channel. In this work, we investigated the reaction between platinated adducts of a methionine-rich motif of yeast CTR1 (Mets7) and N-acetyl-cysteine (AcCys) or N-acetyl-histidine (AcHis), mimicking metal-binding residues downstream the CTR1 channel. Platination involved two cis-compounds, cisplatin and oxaliplatin, and one monofunctional complex, cis-diammine(pyridine)chloridoplatinum(II) (cDPCP). The reactions were monitored by HPLC and the products were characterized by ESI-MS. The results indicate different reactivities depending upon the platinum complex. The cisplatin/Mets7 adduct reacts readily with both cysteine and histidine (t1/2<2min). In contrast, the oxaliplatin/Mets7 adduct reacts with cysteine but not with histidine, whereas cDPCP/Mets7 adduct reacts with histidine but not with cysteine. Hence, Mets7 adducts of these platinum complexes exhibit different reactivities towards downstream coordinating amino acids. These results suggest that each platinum complex possesses different reactivities and consequently may lead to differences in their cellular distribution and bioactivity.

  20. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus

    PubMed Central

    Zhang, Yuanwei; Zheng, Qingqing; Sun, Congcong; Song, Jinxing; Gao, Lina; Zhang, Shizhu; Muñoz, Alberto; Read, Nick D.; Lu, Ling

    2016-01-01

    Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress. PMID:27058039

  1. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment.

    PubMed

    Schmid, M; Simpson, D; Kalousek, F; Gietl, C

    1998-10-01

    A papain-type cysteine endopeptidase with a molecular mass of 35 kDa for the mature enzyme, was purified from germinating castor bean (Ricinus communis L.) endosperm by virtue of its capacity to process the glyoxysomal malate dehydrogenase precursor protein to the mature subunit in vitro (C. Gietl et al., 1997, Plant Physiol 113: 863-871). The cDNA clones from endosperm of germinating seedlings and from developing seeds were isolated and sequence analysis revealed that a very similar or identical peptidase is synthesised in both tissues. Sequencing established a presequence for co-translational targeting into the endoplasmic reticulum, an N-terminal propeptide and a C-terminal KDEL motif for the castor bean cysteine endopeptidase precursor. The 45-kDa pro-enzyme stably present in isolated organelles was enzymatically active. Immunocytochemistry with antibodies raised against the purified cysteine endopeptidase revealed highly specific labelling of ricinosomes, organelles which co-purify with glyoxysomes from germinating Ricinus endosperm. The cysteine endopeptidase from castor bean endosperm, which represents a senescing tissue, is homologous to cysteine endopeptidases from other senescing tissues such as the cotyledons of germinating mung bean (Vigna mungo) and vetch (Vicia sativa), the seed pods of maturing French bean (Phaseolus vulgaris) and the flowers of daylily (Hemerocallis sp.). PMID:9763713

  2. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment.

    PubMed

    Schmid, M; Simpson, D; Kalousek, F; Gietl, C

    1998-10-01

    A papain-type cysteine endopeptidase with a molecular mass of 35 kDa for the mature enzyme, was purified from germinating castor bean (Ricinus communis L.) endosperm by virtue of its capacity to process the glyoxysomal malate dehydrogenase precursor protein to the mature subunit in vitro (C. Gietl et al., 1997, Plant Physiol 113: 863-871). The cDNA clones from endosperm of germinating seedlings and from developing seeds were isolated and sequence analysis revealed that a very similar or identical peptidase is synthesised in both tissues. Sequencing established a presequence for co-translational targeting into the endoplasmic reticulum, an N-terminal propeptide and a C-terminal KDEL motif for the castor bean cysteine endopeptidase precursor. The 45-kDa pro-enzyme stably present in isolated organelles was enzymatically active. Immunocytochemistry with antibodies raised against the purified cysteine endopeptidase revealed highly specific labelling of ricinosomes, organelles which co-purify with glyoxysomes from germinating Ricinus endosperm. The cysteine endopeptidase from castor bean endosperm, which represents a senescing tissue, is homologous to cysteine endopeptidases from other senescing tissues such as the cotyledons of germinating mung bean (Vigna mungo) and vetch (Vicia sativa), the seed pods of maturing French bean (Phaseolus vulgaris) and the flowers of daylily (Hemerocallis sp.).

  3. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    NASA Astrophysics Data System (ADS)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  4. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  5. A circular dichroism sensor for Ni(2+) and Co(2+) based on L-cysteine capped cadmium sulfide quantum dots.

    PubMed

    Tedsana, Wimonsiri; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2015-03-31

    A new circular dichroism sensor for detecting Ni(2+) and Co(2+) was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni(2+) or Co(2+). L-Cysteine capped cadmium sulfide quantum dots (L-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of L-Cyst-CdS QDs was significantly changed in the presence of Ni(2+) and Co(2+). On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni(2+) or Co(2+), the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10-60 μM and 4-80 μM with low detection limits of 7.33 μМ and 1.13 μM for the detection of Ni(2+) and Co(2+), respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni(2+) and Co(2+) in real water samples, and the results agreed well with the analysis using the standard ICP-OES.

  6. A circular dichroism sensor for Ni(2+) and Co(2+) based on L-cysteine capped cadmium sulfide quantum dots.

    PubMed

    Tedsana, Wimonsiri; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2015-03-31

    A new circular dichroism sensor for detecting Ni(2+) and Co(2+) was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni(2+) or Co(2+). L-Cysteine capped cadmium sulfide quantum dots (L-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of L-Cyst-CdS QDs was significantly changed in the presence of Ni(2+) and Co(2+). On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni(2+) or Co(2+), the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10-60 μM and 4-80 μM with low detection limits of 7.33 μМ and 1.13 μM for the detection of Ni(2+) and Co(2+), respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni(2+) and Co(2+) in real water samples, and the results agreed well with the analysis using the standard ICP-OES. PMID:25813022

  7. Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme-pRNA intermediate formation.

    PubMed

    Neubauer, Julie; Ogino, Minako; Green, Todd J; Ogino, Tomoaki

    2016-01-01

    The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase; block V) domain in RNA polymerase L proteins of non-segmented negative strand (NNS) RNA viruses (e.g. rabies, measles, Ebola) contains five collinear sequence elements, Rx(3)Wx(3-8)ΦxGxζx(P/A) (motif A; Φ, hydrophobic; ζ, hydrophilic), (Y/W)ΦGSxT (motif B), W (motif C), HR (motif D) and ζxxΦx(F/Y)QxxΦ (motif E). We performed site-directed mutagenesis of the L protein of vesicular stomatitis virus (VSV, a prototypic NNS RNA virus) to examine participation of these motifs in mRNA capping. Similar to the catalytic residues in motif D, G1100 in motif A, T1157 in motif B, W1188 in motif C, and F1269 and Q1270 in motif E were found to be essential or important for the PRNTase activity in the step of the covalent L-pRNA intermediate formation, but not for the GTPase activity that generates GDP (pRNA acceptor). Cap defective mutations in these residues induced termination of mRNA synthesis at position +40 followed by aberrant stop-start transcription, and abolished virus gene expression in host cells. These results suggest that the conserved motifs constitute the active site of the PRNTase domain and the L-pRNA intermediate formation followed by the cap formation is essential for successful synthesis of full-length mRNAs.

  8. Substitution of a conserved cysteine-996 in a cysteine-rich motif of the laminin {alpha}2-chain in congenital muscular dystrophy with partial deficiency of the protein

    SciTech Connect

    Nissinen, M.; Xu Zhang; Tryggvason, K.

    1996-06-01

    Congenital muscular dystrophies (CMDs) are autosomal recessive muscle disorders of early onset. Approximately half of CMD patients present laminin {alpha}2-chain (merosin) deficiency in muscle biopsies, and the disease locus has been mapped to the region of the LAMA2 gene (6q22-23) in several families. Recently, two nonsense mutations in the laminin {alpha}2-chain gene were identified in CMD patients exhibiting complete deficiency of the laminin {alpha}2-chain in muscle biopsies. However, a subset of CMD patients with linkage to LAMA2 show only partial absence of the laminin {alpha}2-chain around muscle fibers, by immunocytochemical analysis. In the present study we have identified a homozygous missense mutation in the {alpha}2-chain gene of a consanguineous Turkish family with partial laminin {alpha}2-chain deficiency. The T{r_arrow}C transition at position 3035 in the cDNA sequence results in a Cys996{r_arrow}Arg substitution. The mutation that affects one of the conserved cysteine-rich repeats in the short arm of the laminin {alpha}2-chain should result in normal synthesis of the chain and in formation and secretion of a heterotrimeric laminin molecule. Muscular dysfunction is possibly caused either by abnormal disulfide cross-links and folding of the laminin repeat, leading to the disturbance of an as yet unknown binding function of the laminin {alpha}2-chain and to shorter half-life of the muscle-specific laminin-2 and laminin-4 isoforms, or by increased proteolytic sensitivity, leading to truncation of the short arm. 42 refs., 7 figs.

  9. Synthesis of ultra-small cysteine-capped gold nanoparticles by pH switching of the Au(I)-cysteine polymer.

    PubMed

    Cappellari, Paula S; Buceta, David; Morales, Gustavo M; Barbero, Cesar A; Sergio Moreno, M; Giovanetti, Lisandro J; Ramallo-López, José Martín; Requejo, Felix G; Craievich, Aldo F; Planes, Gabriel A

    2015-03-01

    We report a synthetic approach for the production of ultra-small (0.6 nm) gold nanoparticles soluble in water with a precise control of the nanoparticle size. Our synthetic approach utilizes a pH-depending Au-cysteine polymer as a quencher for the AuNPs grown. The method extends the synthetic capabilities of nanoparticles with sizes down to 1 nm. In addition to the strict pH control, the existence of free -SH groups present in the mixture of reaction has been observed as a key requirement for the synthesis of small nanoparticles in mild conditions. UV-Vis, SAXS, XANES, EXAFS and HR-TEM, has been used to determinate the particle size, characterization of the gold precursor and gold-cysteine interaction.

  10. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases

    PubMed Central

    Liu, Nian; Zhou, Bin; Zhu, Guangxun

    2016-01-01

    Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs. PMID:27272560

  11. The 4-Cysteine Zinc-Finger Motif of the RNA Polymerase Regulator DksA serves as a Thiol Switch for Sensing Oxidative and Nitrosative Stress

    PubMed Central

    Henard, Calvin A.; Tapscott, Timothy; Crawford, Matthew A.; Husain, Maroof; Doulias, Paschalis-Thomas; Porwollik, Steffen; Liu, Lin; McClelland, Michael; Ischiropoulos, Harry; Vázquez-Torres, Andrés

    2014-01-01

    We show that thiols in the 4-cysteine zinc-finger motif of DksA, an RNA polymerase accessory protein known to regulate the stringent response, sense oxidative and nitrosative stress. Hydrogen peroxide- or nitric oxide (NO)-mediated modifications of thiols in the DksA 4-cysteine zinc-finger motif release the metal cofactor and drive reversible changes in the α-helicity of the protein. Wild-type and relA spoT mutant Salmonella, but not isogenic dksA-deficient bacteria, experience the downregulation of r-protein and amino acid transport expression after NO treatment, suggesting that DksA can regulate gene expression in response to NO congeners independently of the ppGpp alarmone. Oxidative stress enhances the DksA-dependent repression of rpsM, while preventing the activation of livJ and hisG gene transcription that is supported by reduced, zinc-bound DksA. The inhibitory effects of oxidized DksA on transcription are reversible with dithiothreitol. Our investigations indicate that sensing of reactive species by DksA redox active thiols fine-tunes the expression of translational machinery and amino acid assimilation and biosynthesis in accord with the metabolic stress imposed by oxidative and nitrosative stress. Given the conservation of Cys114, and neighboring hydrophobic and charged amino acids in DksA orthologues, phylogenetically diverse microorganisms may use the DksA thiol switch to regulate transcriptional responses to oxidative and nitrosative stress. PMID:24354846

  12. Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells.

    PubMed

    Coughlin, Kathleen M; Nevins, Jeremy S; Watson, David F

    2013-09-11

    We have synthesized water-dispersible cysteinate(2-)-capped CdSe nanocrystals and attached them to TiO2 using one-step linker-assisted assembly. Room-temperature syntheses yielded CdSe magic-sized clusters (MSCs) exhibiting a narrow and intense first excitonic absorption band centered at 422 nm. Syntheses at 80 °C yielded regular CdSe quantum dots (RQDs) with broader and red-shifted first excitonic absorption bands. Cysteinate(2-)-capped CdSe MSCs and RQDs adsorbed to bare nanocrystalline TiO2 films from aqueous dispersions. CdSe-functionalized TiO2 films were incorporated into working electrodes of quantum dot-sensitized solar cells (QDSSCs). Short-circuit photocurrent action spectra of QDSSCs corresponded closely to absorptance spectra of CdSe-functionalized TiO2 films. Power-conversion efficiencies were (0.43±0.04)% for MSC-functionalized TiO2 and (0.83±0.11)% for RQD-functionalized TiO2. Absorbed photon-to-current efficiencies under white-light illumination were approximately 0.3 for both MSC- and RQD-based QDSSCs, despite the significant differences in the electronic properties of MSCs and RQDs. Cysteinate(2-) is an attractive capping group and ligand, as it engenders water-dispersibility of CdSe nanocrystals with a range of photophysical properties, enables facile all-aqueous linker-assisted attachment of nanocrystals to TiO2, and promotes efficient interfacial charge transfer.

  13. Role of the Chemical Environment beyond the Coordination Site: Structural Insight into Fe(III) Protoporphyrin Binding to Cysteine-Based Heme-Regulatory Protein Motifs.

    PubMed

    Brewitz, Hans Henning; Kühl, Toni; Goradia, Nishit; Galler, Kerstin; Popp, Jürgen; Neugebauer, Ute; Ohlenschläger, Oliver; Imhof, Diana

    2015-10-12

    The importance of heme as a transient regulatory molecule has become a major focus in biochemical research. However, detailed information about the molecular basis of transient heme-protein interactions is still missing. We report an in-depth structural analysis of Fe(III) heme-peptide complexes by a combination of UV/Vis, resonance Raman, and 2D-NMR spectroscopic methods. The experiments reveal insights both into the coordination to the central iron ion and into the spatial arrangement of the amino acid sequences interacting with protoporphyrin IX. Cysteine-based peptides display different heme-binding behavior as a result of the existence of ordered, partially ordered, and disordered conformations in the heme-unbound state. Thus, the heme-binding mode is clearly the consequence of the nature and flexibility of the residues surrounding the iron ion coordinating cysteine. Our analysis reveals scenarios for transient binding of heme to heme-regulatory motifs in proteins and demonstrates that a thorough structural analysis is required to unravel how heme alters the structure and function of a particular protein. PMID:26260099

  14. Role of the Chemical Environment beyond the Coordination Site: Structural Insight into Fe(III) Protoporphyrin Binding to Cysteine-Based Heme-Regulatory Protein Motifs.

    PubMed

    Brewitz, Hans Henning; Kühl, Toni; Goradia, Nishit; Galler, Kerstin; Popp, Jürgen; Neugebauer, Ute; Ohlenschläger, Oliver; Imhof, Diana

    2015-10-12

    The importance of heme as a transient regulatory molecule has become a major focus in biochemical research. However, detailed information about the molecular basis of transient heme-protein interactions is still missing. We report an in-depth structural analysis of Fe(III) heme-peptide complexes by a combination of UV/Vis, resonance Raman, and 2D-NMR spectroscopic methods. The experiments reveal insights both into the coordination to the central iron ion and into the spatial arrangement of the amino acid sequences interacting with protoporphyrin IX. Cysteine-based peptides display different heme-binding behavior as a result of the existence of ordered, partially ordered, and disordered conformations in the heme-unbound state. Thus, the heme-binding mode is clearly the consequence of the nature and flexibility of the residues surrounding the iron ion coordinating cysteine. Our analysis reveals scenarios for transient binding of heme to heme-regulatory motifs in proteins and demonstrates that a thorough structural analysis is required to unravel how heme alters the structure and function of a particular protein.

  15. A Secreted Protein with Plant-Specific Cysteine-Rich Motif Functions as a Mannose-Binding Lectin That Exhibits Antifungal Activity1[W

    PubMed Central

    Miyakawa, Takuya; Hatano, Ken-ichi; Miyauchi, Yumiko; Suwa, You-ichi; Sawano, Yoriko; Tanokura, Masaru

    2014-01-01

    Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family. PMID:25139159

  16. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs.

    PubMed

    Gromadzka, Agnieszka M; Steckelberg, Anna-Lena; Singh, Kusum K; Hofmann, Kay; Gehring, Niels H

    2016-03-18

    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs. PMID:26773052

  17. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs

    PubMed Central

    Gromadzka, Agnieszka M.; Steckelberg, Anna-Lena; Singh, Kusum K.; Hofmann, Kay; Gehring, Niels H.

    2016-01-01

    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs. PMID:26773052

  18. Effects of N-acetyl-L-cysteine-capped CdTe quantum dots on bovine serum albumin and bovine hemoglobin: isothermal titration calorimetry and spectroscopic investigations.

    PubMed

    Sun, Haoyu; Cui, Erqian; Tan, Zhigang; Liu, Rutao

    2014-12-01

    The interactions of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs) with bovine serum albumin (BSA) and bovine hemoglobin (BHb) were investigated by isothermal titration calorimetry (ITC), fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible absorption, and circular dichroism techniques. Fluorescence data of BSA-QDs and BHb-QDs revealed that the quenching was static in every system. While CdTe QDs changed the microenvironment of tryptophan in BHb, the microenvironment of BSA kept unchanged. Adding CdTe QDs affected the skeleton and secondary structure of the protein (BSA and BHb). The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs-612 was spontaneous and the predominant force was hydrophobic interaction. In addition, the binding constants were determined to be 1.19 × 10(5) L mol(-1) (BSA-QDs) and 2.19 × 10(5) L mol(-1) (BHb-QDs) at 298 K. From these results, we conclude that CdTe QDs have a larger impact on the structure of BHb than BSA.

  19. An ultrasensitive and selective method for the determination of Ceftriaxone using cysteine capped cadmium sulfide fluorescence quenched quantum dots as fluorescence probes

    NASA Astrophysics Data System (ADS)

    Samadi, Naser; Narimani, Saeedeh

    2016-06-01

    In this paper, L-cysteine (Cys) coated CdS quantum dots (QDs) have been prepared, which have excellent water-solubility and are highly stable in aqueous solution. These QDs is proposed as sensitizers for the determination of Ceftriaxone. The quantum dot nanoparticles were structurally and optically characterized by Ultra Violet-Visible absorption Spectroscopy (UV-vis absorption spectroscopy), Fourier transform infrared spectroscopy (FT-IR spectra) and photoluminescence (PL) emission spectroscopy. High resolution transmission electron microscopy (HRTEM) confirms that the Cys-CdS QDs have a spherical structure with good crystallinity. Therefore, a new simple and selective PL analysis system was developed for the determination of Ceftriaxone (CFX). Under the optimum conditions, The response of L-Cys capped CdS QDs as the probe was linearly proportional to the concentration of Ceftriaxone ions in the range of 1.6 × 10- 9-1.1 × 10- 3 M with a correlation coefficient (R2) of 0.9902. The limit of detection of this system was found to be 1.3 nM. This method is simple, sensitive and low cost.

  20. An extra cysteine in one of the non-calcium-binding epidermal growth factor-like motifs of the FBN1 polypeptide is connected to a novel variant of Marfan syndrome.

    PubMed Central

    Ståhl-Hallengren, C; Ukkonen, T; Kainulainen, K; Kristofersson, U; Saxne, T; Tornqvist, K; Peltonen, L

    1994-01-01

    We present here a family with a clinical phenotype resembling Marfan syndrome (MFS), and displaying joint contracture and episodes of knee joint effusions, but lacking the cardiovascular features of the syndrome. The phenotype of this family represents a unique mixture of connective tissue symptoms, some of which are found in classical MFS and some of which are typical of dominant ectopia lentis. Linkage analyses suggested a linkage (LOD score 2.4; theta = 0) between the phenotype of the family and a polymorphic marker in the vicinity of the fibrillin locus on chromosome 15 (FBN1). Furthermore, a novel transition mutation was identified in the FBN1 gene in all the affected members of the family. In contrast to the majority of fibrillin mutations reported so far, this mutation substitutes a cysteine for arginine, producing an extra cysteine in one of the non-calcium-binding EGF-like motifs of the fibrillin polypeptide, most probably disturbing the formation of one of the three disulfide bridges known to be essential for the normal conformation of this motif. Images PMID:8040326

  1. Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry.

    PubMed

    Protesescu, Loredana; Nachtegaal, Maarten; Voznyy, Oleksandr; Borovinskaya, Olga; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Günther, Detlef; Sargent, Edward H; Kovalenko, Maksym V

    2015-02-11

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution (1)H NMR spectroscopy, solution and solid-state (119)Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S7(6-) ligand as an example). Thiostannates SnS4(4-) and Sn2S7(6-) retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S6(4-) (and SnS3(2-)) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings.

  2. Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry

    PubMed Central

    2016-01-01

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution 1H NMR spectroscopy, solution and solid-state 119Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S76– ligand as an example). Thiostannates SnS44– and Sn2S76– retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S64– (and SnS32–) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings. PMID:25597625

  3. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27–61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72–93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  4. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots.

    PubMed

    Adegoke, Oluwasesan; Park, Enoch Y

    2016-01-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying. PMID:27250067

  5. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    PubMed Central

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-01-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27–61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72–93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying. PMID:27250067

  6. A Minimal Cysteine Motif Required to Activate the SKOR K+ Channel of Arabidopsis by the Reactive Oxygen Species H2O2*

    PubMed Central

    Garcia-Mata, Carlos; Wang, Jianwen; Gajdanowicz, Pawel; Gonzalez, Wendy; Hills, Adrian; Donald, Naomi; Riedelsberger, Janin; Amtmann, Anna; Dreyer, Ingo; Blatt, Michael R.

    2010-01-01

    Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys168 located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant. PMID:20605786

  7. Ovodefensins, an Oviduct-Specific Antimicrobial Gene Family, Have Evolved in Birds and Reptiles to Protect the Egg by Both Sequence and Intra-Six-Cysteine Sequence Motif Spacing.

    PubMed

    Whenham, Natasha; Lu, Tian Chee; Maidin, Maisarah B M; Wilson, Peter W; Bain, Maureen M; Stevenson, M Lynn; Stevens, Mark P; Bedford, Michael R; Dunn, Ian C

    2015-06-01

    Ovodefensins are a novel beta defensin-related family of antimicrobial peptides containing conserved glycine and six cysteine residues. Originally thought to be restricted to the albumen-producing region of the avian oviduct, expression was found in chicken, turkey, duck, and zebra finch in large quantities in many parts of the oviduct, but this varied between species and between gene forms in the same species. Using new search strategies, the ovodefensin family now has 35 members, including reptiles, but no representatives outside birds and reptiles have been found. Analysis of their evolution shows that ovodefensins divide into six groups based on the intra-cysteine amino acid spacing, representing a unique mechanism alongside traditional evolution of sequence. The groups have been used to base a nomenclature for the family. Antimicrobial activity for three ovodefensins from chicken and duck was confirmed against Escherichia coli and a pathogenic E. coli strain as well as a Gram-positive organism, Staphylococcus aureus, for the first time. However, activity varied greatly between peptides, with Gallus gallus OvoDA1 being the most potent, suggesting a link with the different structures. Expression of Gallus gallus OvoDA1 (gallin) in the oviduct was increased by estrogen and progesterone and in the reproductive state. Overall, the results support the hypothesis that ovodefensins evolved to protect the egg, but they are not necessarily restricted to the egg white. Therefore, divergent motif structure and sequence present an interesting area of research for antimicrobial peptide design and understanding protection of the cleidoic egg.

  8. A Cysteine-Rich CCG Domain Contains a Novel [4Fe-4S] Cluster Binding Motif As Deduced From Studies With Subunit B of Heterodisulfide Reductase From Methanothermobacter Marburgensis

    SciTech Connect

    Hamann, N.; Mander, G.J.; Shokes, J.E.; Scott, R.A.; Bennati, M.; Hedderich, R.

    2009-06-01

    Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]{sup 3+} cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX{sub 31-39}CCX{sub 35-36}CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (g{sub zyx} = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. {sup 57}Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with {sup 57}Fe hyperfine couplings very similar to that of CoM-HDR. CoM-{sup 33}SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S{sub 3}(O/N){sub 1} geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn

  9. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs.

    PubMed

    Kelleher, Alan; Darwiche, Rabih; Rezende, Wanderson C; Farias, Leonardo P; Leite, Luciana C C; Schneiter, Roger; Asojo, Oluwatoyin A

    2014-08-01

    Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn(2+) in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.

  10. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs

    SciTech Connect

    Kelleher, Alan; Darwiche, Rabih; Rezende, Wanderson C.; Farias, Leonardo P.; Leite, Luciana C. C.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2014-08-01

    The first structure of an S. mansoni venom allergen-like protein is presented. Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn{sup 2+} in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.

  11. Cu²⁺ functionalized N-acetyl-L-cysteine capped CdTe quantum dots as a novel resonance Rayleigh scattering probe for the recognition of phenylalanine enantiomers.

    PubMed

    Yang, Jidong; Tan, Xuanping; Zhang, Xiaoning; Yang, Qiong; Shen, Yizhong

    2015-01-01

    A simple protocol that can be used to simultaneously determinate enantiomers is extremely intriguing and useful. In this study, we proposed a low-cost, facile, sensitive method for simultaneous determination. The molecular recognition of Cu(2+) functionalized N-acetyl-l-cysteine capped CdTe quantum dots (Cu(2+)-NALC/CdTe QDs) with phenylalanine (PA) enantiomers was investigated based on the resonance Rayleigh scattering (RRS) spectral technique. The RRS intensity of NALC/CdTe QDs is very weak, but Cu(2+) functionalized NALC/CdTe QDs have extremely high RRS intensity, the most important observations are that PA could quench the RRS intensity of Cu(2+)-NALC/CdTe QDs, and that l-PA and d-PA have different degree of influence. In addition, those experimental factors such as acidity, concentration of Cu(2+) and reaction time were investigated in regards to their effects on enantioselective interaction. Finally, the applicability of the chiral recognized sensor for the analysis of chiral mixtures on enantiomers has been demonstrated, and the results that were obtained high precision (<4.63%) and low error (<3.06%).

  12. Cysteine-capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis.

    PubMed

    Shastri, Lokesh A; Kailasa, Suresh Kumar; Wu, Hui-Fen

    2009-08-01

    Fluorescent semiconductor quantum dots (QDs) exhibit great potential and capability for many biological and biochemical applications. We report a simple strategy for the synthesis of aqueous stable ZnSe QDs by using cysteine as the capping agent (ZnSe-Cys QDs). The ZnSe QDs can act as affinity probes to enrich peptides and proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. This nanoprobe could significantly enhance protein signals (insulin, ubiquitin, cytochrome c, myoglobin and lysozyme) in MALDI-TOFMS by 2.5-12 times compared with the traditional method. Additionally, the ZnSe-Cys QDs can be applied as heat absorbers (as accelerating probes) to speed up microwave-assisted enzymatic digestion reactions and also as affinity probes to enrich lysozyme-digested products in MALDI-TOFMS. Furthermore, after the enrichment experiments, the solutions of ZnSe-Cys QDs mixed with proteins can be directly deposited onto the MALDI plates for rapid analysis. This approach shows a simple, rapid, efficient and straightforward method for direct analysis of proteins or peptides by MALDI-TOFMS without the requirement for further time-consuming separation processes, tedious washing steps or laborious purification procedures. The present study has demonstrated that ZnSe-Cys QDs are reliable and potential materials for rapid, selective separation and enrichment of proteins as well as accelerating probes for microwave-digested reactions for proteins than the regular MALDI-MS tools. Additionally, we also believe that this work may also inspire investigations for applications of QDs in the field of MALDI-MS for proteomics.

  13. Identification of the Candida albicans Cap1p Regulon ▿ †

    PubMed Central

    Znaidi, Sadri; Barker, Katherine S.; Weber, Sandra; Alarco, Anne-Marie; Liu, Teresa T.; Boucher, Geneviève; Rogers, P. David; Raymond, Martine

    2009-01-01

    Cap1p, a transcription factor of the basic region leucine zipper family, regulates the oxidative stress response (OSR) in Candida albicans. Alteration of its C-terminal cysteine-rich domain (CRD) results in Cap1p nuclear retention and transcriptional activation. To better understand the function of Cap1p in C. albicans, we used genome-wide location profiling (chromatin immunoprecipitation-on-chip) to identify its transcriptional targets in vivo. A triple-hemagglutinin (HA3) epitope was introduced at the C terminus of wild-type Cap1p (Cap1p-HA3) or hyperactive Cap1p with an altered CRD (Cap1p-CSE-HA3). Location profiling using whole-genome oligonucleotide tiling microarrays identified 89 targets bound by Cap1p-HA3 or Cap1p-CSE-HA3 (the binding ratio was at least twofold; P ≤ 0.01). Strikingly, Cap1p binding was detected not only at the promoter region of its target genes but also at their 3′ ends and within their open reading frames, suggesting that Cap1p may associate with the transcriptional or chromatin remodeling machinery to exert its activity. Overrepresented functional groups of the Cap1p targets (P ≤ 0.02) included 11 genes involved in the OSR (CAP1, GLR1, TRX1, SOD1, CAT1, and others), 13 genes involved in response to drugs (PDR16, MDR1, FLU1, YCF1, FCR1, and others), 4 genes involved in phospholipid transport (PDR16, GIT1, RTA2, and orf19.932), and 3 genes involved in the regulation of nitrogen utilization (GST3, orf19.2693, and orf19.3121), suggesting that Cap1p has other cellular functions in addition to the OSR. Bioinformatic analyses of the bound sequences suggest that Cap1p recognizes the DNA motif 5′-MTKASTMA. Finally, transcriptome analyses showed that increased expression generally accompanies Cap1p binding at its targets, indicating that Cap1p functions as a transcriptional activator. PMID:19395663

  14. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  15. Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway

    PubMed Central

    Yamamoto, Katsuyoshi

    2015-01-01

    To adapt to environmental high osmolarity, the budding yeast Saccharomyces cerevisiae activates the Hog1 mitogen-activated protein kinase, which regulates diverse osmoadaptive responses. Hog1 is activated through the high-osmolarity glycerol (HOG) pathway, which consists of independent upstream signaling routes termed the SLN1 branch and the SHO1 branch. Here, we report that the extracellular cysteine-rich (CR) domain of the transmembrane-anchor protein Opy2 binds to the Hkr1-Msb2 homology (HMH) domain of the putative osmosensor Msb2 and that formation of the Opy2-Msb2 complex is essential for osmotic activation of Hog1 through the MSB2 subbranch of the SHO1 branch. By analyzing the phenotypes of mutants with Opy2 cysteine-to-alanine mutations, we deduced that the CR domain forms four intramolecular disulfide bonds. To probe for the potential induction of conformational changes in the Opy2-Msb2 complex by osmostress, we constructed mutants with a site-specific Cys-to-Ala mutation of the Opy2 CR domain and mutants with a Cys substitution of the Msb2 HMH domain. Each of these mutants had a reduced cysteine. These mutants were then combinatorially cross-linked using chemical cross-linkers of different lengths. Cross-linking between Opy2 Cys48 and Msb2 Cys1023 was sensitive to osmotic changes, suggesting that osmostress induced a conformational change. We therefore propose that the Opy2-Msb2 complex might serve as an osmosensor. PMID:26598606

  16. Cervical Cap

    MedlinePlus

    ... and remove the cap. How Much Does It Cost? A cervical cap costs about $70 and should be replaced every year. In addition, there is also the cost of the doctor's visit. Many health insurance plans ...

  17. Evolution of cysteine patterns in the large extracellular loop of tetraspanins from animals, fungi, plants and single-celled eukaryotes.

    PubMed

    DeSalle, Rob; Mares, Roso; Garcia-España, Antonio

    2010-07-01

    By analyzing the evolution of cysteine patterns in the large extracellular loop (LEL) of tetraspanins across all eukaryotes, we report the following: (1) the origin of the cysteine-cysteine-glycine (CCG) motif in the common ancestor of unikonts (Animalia, fungi and amoebozoa); (2) tracing cysteine motifs on an eukaryotic phylogeny which includes protists, animals and plants match organismal evolution; (3) using this evolutionary approach we have determined some of the cysteines in these proteins that are involved in specific bonds in the LEL. Our study provides a framework to better understand tetraspanin formation, diversification and the evolutionary history of these important proteins. PMID:20171294

  18. Evolution of cysteine patterns in the large extracellular loop of tetraspanins from animals, fungi, plants and single-celled eukaryotes.

    PubMed

    DeSalle, Rob; Mares, Roso; Garcia-España, Antonio

    2010-07-01

    By analyzing the evolution of cysteine patterns in the large extracellular loop (LEL) of tetraspanins across all eukaryotes, we report the following: (1) the origin of the cysteine-cysteine-glycine (CCG) motif in the common ancestor of unikonts (Animalia, fungi and amoebozoa); (2) tracing cysteine motifs on an eukaryotic phylogeny which includes protists, animals and plants match organismal evolution; (3) using this evolutionary approach we have determined some of the cysteines in these proteins that are involved in specific bonds in the LEL. Our study provides a framework to better understand tetraspanin formation, diversification and the evolutionary history of these important proteins.

  19. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  20. Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-L-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase.

    PubMed

    Xiao, Qi; Huang, Shan; Su, Wei; Chan, W H; Liu, Yi

    2012-12-14

    The synthesis of water-soluble quantum dots (QDs) in aqueous phase has received much attention recently. To date various kinds of QDs such as CdTe, CdSe, CdTe/CdS and CdSe/ZnS have been synthesized by aqueous methods. However, generally poor-quality QDs (photoluminescent quantum yield (PLQY) lower than 30%) are obtained via this method and the 3-mercaptopropionic acid stabilizer is notorious for its toxicity and awful odor. Here we introduce a novel thiol ligand, N-acetyl-L-cysteine, as an ideal stabilizer that is successfully employed to synthesize high-quality CdTe/CdS/ZnS QDs via a simple aqueous phase. The core/shell/shell structures of the CdTe/CdS/ZnS QDs were verified by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, x-ray powder diffraction and transmission electron microscopy. These QDs not only possess a high PLQY but also have excellent photostability and favorable biocompatibility, which is vital for many biological applications. This type of water-dispersed QD is a promising candidate for fluorescent probes in biological and medical fields.

  1. Cradle cap

    MedlinePlus

    ... be prescribed. These may include medicated creams or shampoos. Most cases of cradle cap can be managed ... improve scalp circulation. Give your child daily, gentle shampoos with a mild shampoo as long as there ...

  2. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  3. Structural and functional characterization of Cys4 zinc finger motif in the recombination mediator protein RecR.

    PubMed

    Tang, Qun; Liu, Yan-Ping; Yan, Xiao-Xue; Liang, Dong-Cai

    2014-12-01

    Zinc finger motif widely exists in protein structure, which can play different roles in different proteins. RecR is an important recombination mediator protein (RMP) in the RecFOR pathway and zinc finger motif is the most conserved domain in RecR protein. However, the function of this zinc finger motif in RecR is unclear. Here, we have studied the structures of the single cysteine and double cysteines mutation within the zinc finger motif in Thermoanaerobacter tengcongensis RecR (TTERecR). We have also studied the DNA binding ability as well as TTERecO protein binding ability of single, double and even triple cysteines mutation of the zinc finger motif, and the mutants do not alter DNA binding by RecR nor the interaction between RecR and RecO. The function of TTERecR zinc finger motif is to maintain the stability of the three-dimensional structure. PMID:25460918

  4. Motifs in brain networks.

    PubMed

    Sporns, Olaf; Kötter, Rolf

    2004-11-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.

  5. Motifs in Brain Networks

    PubMed Central

    2004-01-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information. PMID:15510229

  6. Helix Capping in RNA Structure

    PubMed Central

    Lee, Jung C.; Gutell, Robin R.

    2014-01-01

    Helices are an essential element in defining the three-dimensional architecture of structured RNAs. While internal basepairs in a canonical helix stack on both sides, the ends of the helix stack on only one side and are exposed to the loop side, thus susceptible to fraying unless they are protected. While coaxial stacking has long been known to stabilize helix ends by directly stacking two canonical helices coaxially, based on analysis of helix-loop junctions in RNA crystal structures, herein we describe helix capping, topological stacking of a helix end with a basepair or an unpaired nucleotide from the loop side, which in turn protects helix ends. Beyond the topological protection of helix ends against fraying, helix capping should confer greater stability onto the resulting composite helices. Our analysis also reveals that this general motif is associated with the formation of tertiary structure interactions. Greater knowledge about the dynamics at the helix-junctions in the secondary structure should enhance the prediction of RNA secondary structure with a richer set of energetic rules and help better understand the folding of a secondary structure into its three-dimensional structure. These together suggest that helix capping likely play a fundamental role in driving RNA folding. PMID:24691270

  7. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    PubMed Central

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  8. Synthetic peptides used to locate the. cap alpha. -bungarotoxin binding site and immunogenic regions on. cap alpha. subunits of the nicotinic acetylcholine receptor

    SciTech Connect

    Ralston, S.; Sarin, V.; Thanh, H.L.; Rivier, J.; Fox, J.L.; Lindstrom, J.

    1987-06-16

    Synthetic peptides corresponding to 57% of the sequence of ..cap alpha.. subunits of acetylcholine receptors from Torpedo californica electric organ and extending from the NH/sub 2/ to the COOCH terminus have been synthesized. The ..cap alpha..-bungarotoxin binding site on denatured ..cap alpha.. subunits was mapped within the sequence ..cap alpha..185-199 by assaying binding of /sup 125/I-..cap alpha..-bungarotoxin to slot blots of synthetic peptides. Further studies showed that residues in the sequence ..cap alpha..190-194, especially cysteines-..cap alpha..192,193, were critical for binding ..cap alpha..-bungarotoxin. Reduction and alkylation studies suggested that these cysteines must be disulfide linked for ..cap alpha..-bungarotoxin to bind. Binding sites for serum antibodies to native receptors or ..cap alpha.. subunits were mapped by indirect immunoprecipitation of /sup 125/I-peptides. Several antigenic sequences were identified, but a synthetic peptide corresponding to the main immunogenic region (which is highly conformation dependent) was not identified.

  9. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  10. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  11. Biomolecularly capped uniformly sized nanocrystalline materials: glutathione-capped ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Torres-Martínez, Claudia L.; Nguyen, Liem; Kho, Richard; Bae, Weon; Bozhilov, Krassimir; Klimov, Victor; Mehra, Rajesh K.

    1999-09-01

    Micro-organisms such as bacteria and yeasts form CdS to detoxify toxic cadmium ions. Frequently, CdS particles formed in yeasts and bacteria were found to be associated with specific biomolecules. It was later determined that these biomolecules were present at the surface of CdS. This coating caused a restriction in the growth of CdS particles and resulted in the formation of nanometre-sized semiconductors (NCs) that exhibited typical quantum confinement properties. Glutathione and related phytochelatin peptides were shown to be the biomolecules that capped CdS nanocrystallites synthesized by yeasts Candida glabrata and Schizosaccharomyces pombe. Although early studies showed the existence of specific biochemical pathways for the synthesis of biomolecularly capped CdS NCs, these NCs could be formed in vitro under appropriate conditions. We have recently shown that cysteine and cysteine-containing peptides such as glutathione and phytochelatins can be used in vitro to dictate the formation of discrete sizes of CdS and ZnS nanocrystals. We have evolved protocols for the synthesis of ZnS or CdS nanocrystals within a narrow size distribution range. These procedures involve three steps: (1) formation of metallo-complexes of cysteine or cysteine-containing peptides, (2) introduction of stoichiometric amounts of inorganic sulfide into the metallo-complexes to initiate the formation of nanocrystallites and finally (3) size-selective precipitation of NCs with ethanol in the presence of Na+. The resulting NCs were characterized by optical spectroscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction and electron diffraction. HRTEM showed that the diameter of the ZnS-glutathione nanocrystals was 3.45+/-0.5 nm. X-ray diffraction and electron diffraction analyses indicated ZnS-glutathione to be hexagonal. Photocatalytic studies suggest that glutathione-capped ZnS nanocrystals prepared by our procedure are highly efficient in degrading a test model

  12. Oxidation Protection in Metal-Binding Peptide Motif and Its Application to Antibody for Site-Selective Conjugation

    PubMed Central

    Chung, Hye-Shin; Lee, Sunbae; Park, Soon Jae

    2016-01-01

    Here, we demonstrate that a metal ion binding motif could serve as an efficient and robust tool for site-specific conjugation strategy. Cysteine-containing metal binding motifs were constructed as single repeat or tandem repeat peptides and their metal binding characteristics were investigated. The tandem repeats of the Cysteine-Glycine-Histidine (CGH) metal ion binding motif exhibited concerted binding to Co(II) ions, suggesting that conformational transition of peptide was triggered by the sequential metal ion binding. Evaluation of the free thiol content after reduction by reducing reagent showed that metal-ion binding elicited strong retardation of cysteine oxidation in the order of Zn(II)>Ni(II)>Co(II). The CGH metal ion binding motif was then introduced to the C-terminus of antibody heavy chain and the metal ion-dependent characteristics of oxidation kinetics were investigated. As in the case of peptides, CGH-motif-introduced antibody exhibited strong dependence on metal ion binding to protect against oxidation. Zn(II)-saturated antibody with tandem repeat of CGH motif retains the cysteine reactivity as long as 22 hour even with saturating O2 condition. Metal-ion dependent fluorophore labeling clearly indicated that metal binding motifs could be employed as an efficient tool for site-specific conjugation. Whereas Trastuzumab without a metal ion binding site exhibited site-nonspecific dye conjugation, Zn(II) ion binding to antibody with a tandem repeat of CGH motif showed that fluorophores were site-specifically conjugated to the heavy chain of antibody. We believe that this strong metal ion dependence on oxidation protection and the resulting site-selective conjugation could be exploited further to develop a highly site-specific conjugation strategy for proteins that contain multiple intrinsic cysteine residues, including monoclonal antibodies. PMID:27420328

  13. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.

    PubMed

    Romero, Luis C; Aroca, M Ángeles; Laureano-Marín, Ana M; Moreno, Inmaculada; García, Irene; Gotor, Cecilia

    2014-02-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.

  14. The Cysteine Proteome

    PubMed Central

    Go, Young-Mi; Chandler, Joshua D.; Jones, Dean P.

    2015-01-01

    The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metallation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to discriminate network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome. PMID:25843657

  15. The small Tim proteins and the twin Cx3C motif.

    PubMed

    Koehler, Carla M

    2004-01-01

    The mitochondrial intermembrane space contains the 'small' Tim (translocase of inner membrane) proteins that are marked by their conserved 'twin Cx(3)C' motif separated by 11-16 residues. Together with the Tim22 complex at the inner membrane, the small Tim proteins form the TIM22 import machinery that mediates the biogenesis of polytopic inner membrane proteins. Upon first investigation, the conserved motif resembles a zinc-finger-like domain, but the spacing between the cysteine residues differs from that a canonical zinc finger. Recent publications present different views about the function of the conserved cysteines: the cysteines form a zinc-finger-like structure to coordinate zinc or, alternatively, they form juxtapositioned disulfide bonds.

  16. Hierarchical effect behind the supramolecular chirality of silver(I)-cysteine coordination polymers.

    PubMed

    Randazzo, Rosalba; Di Mauro, Alessandro; D'Urso, Alessandro; Messina, Gabriele C; Compagnini, Giuseppe; Villari, Valentina; Micali, Norberto; Purrello, Roberto; Fragalà, Maria Elena

    2015-04-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. Recently, chiroptical activity of Ag(+)/cysteine coordination polymers has been widely studied, while, on the other hand, the appearance of a plasmon-enhanced circular dichroic signal (PECD) at the plasmonic spectral region (λ > 400 nm) has been observed for AgNPs capped with chiral sulfur-containing amino acids. These two events are both potentially exploited for sensing applications. However, the presence of Ag(+) ions in AgNP colloidal solution deals with the competition of cysteine grafting at the metal NP surface and/or metal ion coordination. Herein we demonstrate that the chiroptical activity observed by adding cysteine to AgNP colloids prepared by pulsed laser ablation in liquids (PLAL) is mainly related to the formation of CD-active Ag(+)/cysteine supramolecular polymers. The strict correlation between supramolecular chirality and hierarchical effects, driven by different chemical environments experienced by cysteine when different titration modalities are used, is pivotal to validate cysteine as a fast and reliable probe to characterize the surface oxidation of AgNPs prepared by pulsed laser ablation in liquids by varying the laser wavelengths.

  17. Hierarchical effect behind the supramolecular chirality of silver(I)-cysteine coordination polymers.

    PubMed

    Randazzo, Rosalba; Di Mauro, Alessandro; D'Urso, Alessandro; Messina, Gabriele C; Compagnini, Giuseppe; Villari, Valentina; Micali, Norberto; Purrello, Roberto; Fragalà, Maria Elena

    2015-04-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. Recently, chiroptical activity of Ag(+)/cysteine coordination polymers has been widely studied, while, on the other hand, the appearance of a plasmon-enhanced circular dichroic signal (PECD) at the plasmonic spectral region (λ > 400 nm) has been observed for AgNPs capped with chiral sulfur-containing amino acids. These two events are both potentially exploited for sensing applications. However, the presence of Ag(+) ions in AgNP colloidal solution deals with the competition of cysteine grafting at the metal NP surface and/or metal ion coordination. Herein we demonstrate that the chiroptical activity observed by adding cysteine to AgNP colloids prepared by pulsed laser ablation in liquids (PLAL) is mainly related to the formation of CD-active Ag(+)/cysteine supramolecular polymers. The strict correlation between supramolecular chirality and hierarchical effects, driven by different chemical environments experienced by cysteine when different titration modalities are used, is pivotal to validate cysteine as a fast and reliable probe to characterize the surface oxidation of AgNPs prepared by pulsed laser ablation in liquids by varying the laser wavelengths. PMID:25781213

  18. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  19. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    SciTech Connect

    Asojo, Oluwatoyin A.

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  20. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  1. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.

  2. Mars ice caps.

    PubMed

    Leovy, C

    1966-12-01

    Minimum atmospheric temperatures required to prevent CO(2) condensatio in the Mars polar caps are higher than those obtained in a computer experiment to simulate the general circulation of the Mars atmosphere. This observation supports the view that the polar caps are predominantly solid CO(2). However, thin clouds of H(2)0 ice could substantially reduce the surface condensation rate.

  3. Stable proline box motif at the N-terminal end of alpha-helices.

    PubMed Central

    Viguera, A. R.; Serrano, L.

    1999-01-01

    We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position. PMID:10493574

  4. The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc.

    PubMed

    Gottlieb, Colin D; Zhang, Sheng; Linder, Maurine E

    2015-12-01

    DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins.

  5. Functional mutagenesis screens reveal the 'cap structure' formation in disulfide-bridge free TASK channels.

    PubMed

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K; Ramírez, David; Netter, Michael F; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-22

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels.

  6. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... § 582.5271 Cysteine. (a) Product. Cysteine (L-forms). (b) Conditions of use. This substance is...

  7. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from bufo melanostictus.

    PubMed

    Liu, Wa; Ji, Senlin; Zhang, A-Mei; Han, Qinqin; Feng, Yue; Song, Yuzhu

    2013-01-01

    Cystatins are efficient inhibitors of papain-like cysteine proteinases, and they serve various important physiological functions. In this study, a novel cystatin, Cystatin-X, was cloned from a cDNA library of the skin of Bufo melanostictus. The single nonglycosylated polypeptide chain of Cystatin-X consisted of 102 amino acid residues, including seven cysteines. Evolutionary analysis indicated that Cystatin-X can be grouped with family 1 cystatins. It contains cystatin-conserved motifs known to interact with the active site of cysteine proteinases. Recombinant Cystatin-X expressed and purified from Escherichia coli exhibited obvious inhibitory activity against cathepsin B. rCystatin-X at a concentration of 8 µM inhibited nearly 80% of cathepsin B activity within 15 s, and about 90% of cathepsin B activity within 15 min. The Cystatin-X identified in this study can play an important role in host immunity and in the medical effect of B. melanostictus.

  8. Structural role of the conserved cysteines in the dimerization of the viral transmembrane oncoprotein E5.

    PubMed

    Windisch, Dirk; Hoffmann, Silke; Afonin, Sergii; Vollmer, Stefanie; Benamira, Soraya; Langer, Birgid; Bürck, Jochen; Muhle-Goll, Claudia; Ulrich, Anne S

    2010-09-22

    The E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. This 44-residue transmembrane protein can interact with the platelet-derived growth factor receptor β, leading to ligand-independent activation and cell transformation. For productive interaction, E5 needs to dimerize via a C-terminal pair of cysteines, though a recent study suggested that its truncated transmembrane segment can dimerize on its own. To analyze the structure of the full protein in a membrane environment and elucidate the role of the Cys-Ser-Cys motif, we produced recombinantly the wild-type protein and four cysteine mutants. Comparison by circular dichroism in detergent micelles and lipid vesicular dispersion and by NMR in trifluoroethanol demonstrates that the absence of one or both cysteines does not influence the highly α-helical secondary structure, nor does it impair the ability of E5 to dimerize, observations that are further supported by sodium dodecylsulfate polyacrylamide gel electrophoresis. We also observed assemblies of higher order. Oriented circular dichroism in lipid bilayers shows that E5 is aligned as a transmembrane helix with a slight tilt angle, and that this membrane alignment is also independent of any cysteines. We conclude that the Cys-containing motif represents a disordered region of the protein that serves as an extra covalent connection for stabilization.

  9. CCiCap: Boeing

    NASA Video Gallery

    NASA announced today its plans to partner with The Boeing Company for the next phase of the agency's Commercial Crew Program (CCP). Called Commercial Crew integrated Capability (CCiCap), the initia...

  10. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  11. ROTOR END CAP

    DOEpatents

    Rushing, F.C.

    1959-02-01

    An improved end cap is described for the cylindrical rotor or bowl of a high-speed centrifugal separator adapted to permit free and efficient continuous counter current flow of gas therethrough for isotope separation. The end cap design provides for securely mounting the same to the hollow central shaft and external wall of the centrifuge. Passageways are incorporated and so arranged as to provide for continuous counter current flow of the light and heavy portions of the gas fed to the centrifuge.

  12. The antihypertensive effect of cysteine

    PubMed Central

    Vasdev, Sudesh; Singal, Pawan; Gill, Vicki

    2009-01-01

    Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease and kidney failure. Essential hypertension results from a combination of genetic and lifestyle factors. One such lifestyle factor is diet, and its role in the control of blood pressure has come under much scrutiny. Just as increased salt and sugar are known to elevate blood pressure, other dietary factors may have antihypertensive effects. Studies including the Optimal Macronutrient Intake to Prevent Heart Disease (OmniHeart) study, Multiple Risk Factor Intervention Trial (MRFIT), International Study of Salt and Blood Pressure (INTERSALT) and Dietary Approaches to Stop Hypertension (DASH) study have demonstrated an inverse relationship between dietary protein and blood pressure. One component of dietary protein that may partially account for its antihypertensive effect is the nonessential amino acid cysteine. Studies in hypertensive humans and animal models of hypertension have shown that N-acetylcysteine, a stable cysteine analogue, lowers blood pressure, which substantiates this idea. Cysteine may exert its antihypertensive effects directly or through its storage form, glutathione, by decreasing oxidative stress, improving insulin resistance and glucose metabolism, lowering advanced glycation end products, and modulating levels of nitric oxide and other vasoactive molecules. Therefore, adopting a balanced diet containing cysteine-rich proteins may be a beneficial lifestyle choice for individuals with hypertension. An example of such a diet is the DASH diet, which is low in salt and saturated fat; includes whole grains, poultry, fish and nuts; and is rich in vegetables, fruits and low-fat dairy products. PMID:22477470

  13. rlk/TXK Encodes Two Forms of a Novel Cysteine String Tyrosine Kinase Activated by Src Family Kinases

    PubMed Central

    Debnath, Jayantha; Chamorro, Mario; Czar, Michael J.; Schaeffer, Edward M.; Lenardo, Michael J.; Varmus, Harold E.; Schwartzberg, Pamela L.

    1999-01-01

    Rlk/Txk is a member of the BTK/Tec family of tyrosine kinases and is primarily expressed in T lymphocytes. Unlike other members of this kinase family, Rlk lacks a pleckstrin homology (PH) domain near the amino terminus and instead contains a distinctive cysteine string motif. We demonstrate here that Rlk protein consists of two isoforms that arise by alternative initiation of translation from the same cDNA. The shorter, internally initiated protein species lacks the cysteine string motif and is located in the nucleus when expressed in the absence of the larger form. In contrast, the larger form is cytoplasmic. We show that the larger form is palmitoylated and that mutation of its cysteine string motif both abolishes palmitoylation and allows the protein to migrate to the nucleus. The cysteine string, therefore, is a critical determinant of both fatty acid modification and protein localization for the larger isoform of Rlk, suggesting that Rlk regulation is distinct from the other Btk family kinases. We further show that Rlk is phosphorylated and changes localization in response to T-cell-receptor (TCR) activation and, like the other Btk family kinases, can be phosphorylated and activated by Src family kinases. However, unlike the other Btk family members, Rlk is activated independently of the activity of phosphatidylinositol 3-kinase, consistent with its lack of a PH domain. Thus, Rlk has two distinct isoforms, each of which may have unique properties in signaling downstream from the TCR. PMID:9891083

  14. Mechanistic study for immobilization of cysteine-labeled oligopeptides on UV-activated surfaces.

    PubMed

    Ong, Lian Hao; Ding, Xiaokang; Yang, Kun-Lin

    2014-10-01

    In this study, we report immobilization of cysteine-labeled oligopeptides on UV activated surfaces decorated with N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP). Our result shows that cysteine group, regardless of its position in the oligopeptide, is essential for successful immobilization of oligopeptide on the UV-activated surface. A possible reaction mechanism is nucleophilic addition of thiolates to surface aldehyde groups generated during UV activation. By using this technique, we are able to incorporate anchoring points into oligopeptides through cysteine residues. Furthermore, immobilized oligopeptides on the UV-activated surface is very stable even under harsh washing conditions. Finally, we show that an HPQ-containing oligopeptide can be immobilized on the UV-activated surface, but the final surface density and its ability to bind streptavidin are affected by the position of cysteine and HPQ. An oligopeptide with a cysteine at the N-terminus and a HPQ motif at the C-terminus gives the highest binding signal in the streptavidin-binding assay. This result is potentially useful for the development of functional oligopeptide microarrays for detecting target protein molecules.

  15. Do Porins Pass CAPs?

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Pink, D. A.; Gill, T. A.; Beveridge, T. J.; Quinn, B. E.; Durrant, J. J.; Jericho, M. H.

    2008-03-01

    The cationic antimicrobial peptide (CAP) protamine is known to inhibit bacterial survival (Pink et al., Langmuir 19, 8852 (2003), and references therein), but the mechanism of attack is as yet undetermined. For Gram-negative bacteria, two pathways have been proposed: (a) self-promoted uptake, and (b) passage through porins. Here, we study the latter possibility, and model part of the outer membrane of a Gram-negative bacterium in an aqueous solution containing multivalent ions and CAPs. The intent is to determine whether CAPs could pass through porins and, if so, what aspects of external (e.g., ionic concentration) and internal (e.g., porin and O-sidechain characteristics) parameters affect their passage. This study is accomplished via Monte Carlo computer simulations of a ``minimal model'' of the outer membrane of a Gram-negative bacterium with an embedded porin.

  16. Magnetospheric polar cap

    NASA Astrophysics Data System (ADS)

    Akasofu, S. I.; Kan, J. R.

    Mount Denali (McKinley), the Alaska Range, and countless glaciers welcomed all 86 participants of the Chapman Conference on the Magnetospheric Polar Cap, which was held on the University of Alaska, Fairbanks campus (UAF), on August 6-9, 1984. The magnetospheric polar cap is the highest latitude region of the earth which is surrounded by the ring of auroras (the auroral oval). This particular region of the earth has become a focus of magnetospheric physicists during the last several years. This is because a number of upper atmospheric phenomena in the polar cap are found to be crucial in understanding the solar wind—magnetosphere interaction. The conference was opened by J. G. Roederer, who was followed by the UAF Chancellor, P. J. O'Rourke, who officially welcomed the participants.

  17. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.4 m/pixel (5 ft/pixel) view of a typical martian north polar ice cap texture. The surface is pitted and rough at the scale of several meters. The north polar residual cap of Mars consists mainly of water ice, while the south polar residual cap is mostly carbon dioxide. This picture is located near 85.2oN, 283.2oW. The image covers an area approximately 1 km wide by 1.4 km high (0.62 by 0.87 miles). Sunlight illuminates this scene from the lower left.

  18. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses. PMID:26524912

  19. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus.

    PubMed

    Stewart-Jones, Guillaume B E; Thomas, Paul V; Chen, Man; Druz, Aliaksandr; Joyce, M Gordon; Kong, Wing-Pui; Sastry, Mallika; Soto, Cinque; Yang, Yongping; Zhang, Baoshan; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S; McLellan, Jason S; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Graham, Barney S; Kwong, Peter D

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen. PMID:26098893

  20. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus.

    PubMed

    Stewart-Jones, Guillaume B E; Thomas, Paul V; Chen, Man; Druz, Aliaksandr; Joyce, M Gordon; Kong, Wing-Pui; Sastry, Mallika; Soto, Cinque; Yang, Yongping; Zhang, Baoshan; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S; McLellan, Jason S; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Graham, Barney S; Kwong, Peter D

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen.

  1. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus

    PubMed Central

    Stewart-Jones, Guillaume B. E.; Thomas, Paul V.; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S.; McLellan, Jason S.; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R.; Graham, Barney S.; Kwong, Peter D.

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by “DS-Cav1” mutations and by an appended C-terminal trimerization motif or “foldon” from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide “rings”, with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen. PMID:26098893

  2. Commercialization Assistance Program (CAP)

    SciTech Connect

    Jenny C. Servo, Ph.D.

    2004-07-12

    In order to fulfill the objective of Small Business Innovation Research Program (SBIR), the Department of Energy funds an initiative referred to as the Commercialization Assistance Program (CAP). The over-arching purpose of the CAP is to facilitate transition of the SBIR-funded technology to Phase III defined as private sector investment or receipt of non-sbir dollars to further the commercialization of the technology. Phase III also includes increased sales. This report summarizes the stages involved in the implementation of the Commercialization Assistance Program, a program which has been most successful in fulfilling its objectives.

  3. Ice caps on venus?

    PubMed

    Libby, W F

    1968-03-01

    The data on Venus obtained by Mariner V and Venera 4 are interpreted as evidence of giant polar ice caps holding the water that must have come out of the volcanoes with the observed carbon dioxide, on the assumption that Earth and Venus are of similar composition and volcanic history. The measurements by Venera 4 of the equatorial surface temperature indicate that the microwave readings were high, so that the polar ice caps may be allowed to exist in the face of the 10-centimeter readings of polar temperature. Life seems to be distinctly possible at the edges of the ice sheets.

  4. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows landforms created by sublimation processes on the south polar residual cap of Mars. The bulk of the ice in the south polar residual cap is frozen carbon dioxide.

    Location near: 86.6oS, 342.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  5. [Capping strategies in RNA viruses].

    PubMed

    Bouvet, Mickaël; Ferron, François; Imbert, Isabelle; Gluais, Laure; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; Decroly, Etienne

    2012-04-01

    Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential. PMID:22549871

  6. Enzyme structure captures four cysteines aligned for disulfide relay

    PubMed Central

    Gat, Yair; Vardi-Kilshtain, Alexandra; Grossman, Iris; Major, Dan Thomas; Fass, Deborah

    2014-01-01

    Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild-type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox-active di-cysteine motifs in the enzyme, presenting the entire electron-transfer pathway and proton-transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X-ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur. PMID:24888638

  7. Biologically inspired stealth peptide-capped gold nanoparticles.

    PubMed

    Nowinski, Ann K; White, Andrew D; Keefe, Andrew J; Jiang, Shaoyi

    2014-02-25

    Introduction into the human body makes most nanoparticle systems susceptible to aggregation via nonspecific protein binding. Here, we developed a peptide-capped gold nanoparticle platform that withstands aggregation in undiluted human serum at 37 °C for 24 h. This biocompatible and natural system is based on mimicking human proteins which are enriched in negatively charged glutamic acid and positively charged lysine residues on their surface. The multifunctional EKEKEKE-PPPPC-Am peptide sequence consists of a stealth glutamic acid/lysine portion combined with a surface anchoring linker containing four prolines and a cysteine. Particle stability was measured via optical spectroscopy and dynamic light scattering in single protein, high salt, and undiluted human serum solutions. In vitro cell experiments demonstrate EKEKEKE-PPPPC-Am capped gold nanoparticles effectively minimize nonspecific cell uptake by nonphagocytic bovine aortic endothelial cells and phagocytic murine macrophage RAW 264.7 cells. Cytotoxicity studies show that peptide-capped gold nanoparticles do not affect cell viability. Finally, the peptide EKEKEKE-PPPPC-Am was extended with cyclic RGD to demonstrate specific cell targeting and stealth without using poly(ethylene glycol). Adding the functional peptide via peptide sequence extension avoids complex conjugation chemistries that are used for connection to synthetic materials. Inductively coupled plasma mass spectroscopy results indicate high aortic bovine endothelial cell uptake of c[RGDfE(SGG-KEKEKE-PPPPC-Am)] capped gold nanoparticles and low uptake of the control scrambled sequence c[RDGfE(SGG-KEKEKE-PPPPC-Am)] capped gold nanoparticles.

  8. 3. CAP; CONICAL CAP HAS BOWED RAFTERS MORTISED INTO A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CAP; CONICAL CAP HAS BOWED RAFTERS MORTISED INTO A BOSS; ALSO SEEN ARE THE BRAKE WHEEL, WINDSHAFT AND TOP BEARING OF THE UPRIGHT SHAFT - Hayground Windmill, Windmill Lane, East Hampton, Suffolk County, NY

  9. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  10. Unravelling daily human mobility motifs.

    PubMed

    Schneider, Christian M; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C

    2013-07-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient.

  11. Advising. CAP Job Function.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This Job Function Book (Advising) is one of the 14 components (see note) of the Career Alert Planning (CAP) program, a set of individualized materials designed to help participants find out about themselves and about the kind of work for which they are suited. In this program, participants become acquainted with occupations that are representative…

  12. Guard For Fuse Caps

    NASA Technical Reports Server (NTRS)

    Atwell, D. C.

    1985-01-01

    L-shaped guard attached to fuse holder. Guard prevents casual tampering with fuses in electrical junction box or fuse block. Protects fuses from being damaged by handling or by rope or string used to secure them. With fuse-cap guard, only responsible people have access to fuses.

  13. Arranging. CAP Job Function.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This Job Function Booklet (Arranging) is one of the 14 components (see note) of the Career Alert Planning (CAP) program, a set of individualized materials designed to help participants find out about themselves and about the kind of work for which they are suited. In this program, participants become acquainted with occupations that are…

  14. Cysteine metabolism and metal toxicity.

    PubMed

    Quig, D

    1998-08-01

    Chronic, low level exposure to toxic metals is an increasing global problem. The symptoms associated with the slow accumulation of toxic metals are multiple and rather nondescript, and overt expression of toxic effects may not appear until later in life. The sulfhydryl-reactive metals (mercury, cadmium, lead, arsenic) are particularly insidious and can affect a vast array of biochemical and nutritional processes. The primary mechanisms by which the sulfhydryl-reactive metals elicit their toxic effects are summarized. The pro-oxidative effects of the metals are compounded by the fact that the metals also inhibit antioxidative enzymes and deplete intracellular glutathione. The metals also have the potential to disrupt the metabolism and biological activities of many proteins due to their high affinity for free sulfhydryl groups. Cysteine has a pivotal role in inducible, endogenous detoxication mechanisms in the body, and metal exposure taxes cysteine status. The protective effects of glutathione and the metallothioneins are discussed in detail. Basic research pertaining to the transport of toxic metals into the brain is summarized, and a case is made for the use of hydrolyzed whey protein to support metal detoxification and neurological function. Metal exposure also affects essential element status, which can further decrease antioxidation and detoxification processes. Early detection and treatment of metal burden is important for successful detoxification, and optimization of nutritional status is paramount to the prevention and treatment of metal toxicity.

  15. Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds.

    PubMed

    Martínez-Andújar, Cristina; Pluskota, Wioletta E; Bassel, George W; Asahina, Masashi; Pupel, Piotr; Nguyen, Theresa T; Takeda-Kamiya, Noriko; Toubiana, David; Bai, Bing; Górecki, Ryszard J; Fait, Aaron; Yamaguchi, Shinjiro; Nonogaki, Hiroyuki

    2012-08-01

    The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-β-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-β-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.

  16. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development. PMID:22718265

  17. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.

  18. Cap protects aircraft nose cone

    NASA Technical Reports Server (NTRS)

    Bryan, C. F., Jr.; Bryan, D. C.

    1981-01-01

    Inexpensive, easily fabricated cap protects aircraft nose cone from erosion. Made of molded polycarbonate, cap has been flight tested at both subsonic and supesonic speeds. Its strength and erosion characteristics are superior to those of fiberglass cones.

  19. Functional mutagenesis screens reveal the ‘cap structure’ formation in disulfide-bridge free TASK channels

    PubMed Central

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K.; Ramírez, David; Netter, Michael F.; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-01

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels. PMID:26794006

  20. Neural Circuits: Male Mating Motifs.

    PubMed

    Benton, Richard

    2015-09-01

    Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.

  1. Designing Smart Charter School Caps

    ERIC Educational Resources Information Center

    Dillon, Erin

    2010-01-01

    In 2007, Andrew J. Rotherham proposed a new approach to the contentious issue of charter school caps, the statutory limits on charter school growth in place in several states. Rotherham's proposal, termed "smart charter school caps," called for quality sensitive caps that allow the expansion of high-performing charter schools while also…

  2. Cysteine sensing by plasmons of silver nanocubes

    NASA Astrophysics Data System (ADS)

    Elfassy, Eitan; Mastai, Yitzhak; Salomon, Adi

    2016-09-01

    Noble metal nanoparticles are considered to be valuable nanostructures in the field of sensors due to their spectral response sensitivity to small changes in the surrounding refractive index which enables them to detect a small amount of molecules. In this research, we use silver nanocubes of about 50 nm length to detect low concentrations of cysteine, a semi-essential amino acid. Following cysteine adsorption onto the nanocubes, a redshift in the plasmonic modes was observed, enabling the detection of cysteine down to 10 μM and high sensitivity of about 125 nm/RIU (refractive index units). Furthermore, we found that multilayer adsorption of cysteine leads to the stabilization of the silver nanocubes. The cysteine growth onto the nanocubes was also characterized by high-resolution transmission electron microscopy (HR-TEM).

  3. Redox active motifs in selenoproteins

    PubMed Central

    Li, Fei; Lutz, Patricia B.; Pepelyayeva, Yuliya; Arnér, Elias S. J.; Bayse, Craig A.; Rozovsky, Sharon

    2014-01-01

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used 77Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of 77Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs’ reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20–25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs’ flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  4. Summer South Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 April 2004 The martian south polar residual ice cap is composed mainly of frozen carbon dioxide. Each summer, a little bit of this carbon dioxide sublimes away. Pits grow larger, and mesas get smaller, as this process continues from year to year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of a small portion of the south polar cap as it appeared in mid-summer in January 2004. The dark areas may be places where the frozen carbon dioxide contains impurities, such as dust, or places where sublimation of ice has roughened the surface so that it appears darker because of small shadows cast by irregularities in the roughened surface. The image is located near 86.9oS, 7.6oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  5. Performance of blasting caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Schimmel, Morry L. (Inventor); Perry, Ronnie B. (Inventor)

    1993-01-01

    Common blasting caps are made from an aluminum shell in the form of a tube which is closed at both ends. One end, which is called the output end, terminates in a principal side or face, and contains a detonating agent which communicates with a means for igniting the detonating agent. The improvement of the present invention is a flat, steel foil bonded to the face in a position which is aligned perpendicularly to the longitudinal axis of the tube.

  6. North Polar Ice Cap

    NASA Technical Reports Server (NTRS)

    1997-01-01

    North polar ice cap of Mars, as seen during mid summer in the northern hemisphere. The reddish areas consist of eolian dust, bright white areas consist of a mixture of water ice and dust, and the dark blue areas consist of sand dunes forming a huge 'collar' around the polar ice cap. (The colors have been enhanced with a decorrelation stretch to better show the color variability.) Shown here is an oblique view of the polar region, as seen with the Viking 1 spacecraft orbiting Mars over latitude 39 degrees north. The spiral bands consist of valleys which form by a combination of the Coriolis forces, wind erosion, and differential sublimation and condensation. In high-resolution images the polar caps are seen to consist of thick sequences of layered deposits, suggesting that cyclical climate changes have occurred on Mars. Cyclical climate changes are readily explained by quasi-periodic changes in the amount and distribution of solar heating resulting from perturbations in orbital and axial elements. Variations in the Earth's orbit have also been linked to the terrestrial climate changes during the ice ages.

  7. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

    PubMed

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-06-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1.

  8. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

    PubMed

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-06-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. PMID:24625320

  9. Saltstone Clean Cap Formulation

    SciTech Connect

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  10. Observability of Neuronal Network Motifs

    PubMed Central

    Whalen, Andrew J.; Brennan, Sean N.; Sauer, Timothy D.; Schiff, Steven J.

    2014-01-01

    We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work. PMID:25909092

  11. Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites

    PubMed Central

    Sojka, Daniel; Francischetti, Ivo M. B.; Calvo, Eric; Kotsyfakis, Michalis

    2012-01-01

    Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion, and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells. PMID:21660665

  12. Blends of cysteine-containing proteins

    NASA Astrophysics Data System (ADS)

    Barone, Justin

    2005-03-01

    Many agricultural wastes are made of proteins such as keratin, lactalbumin, gluten, and albumin. These proteins contain the amino acid cysteine. Cysteine allows for the formation of inter-and intra-molecular sulfur-sulfur bonds. Correlations are made between the properties of films made from the proteins and the amino acid sequence. Blends of cysteine-containing proteins show possible synergies in physical properties at intermediate concentrations. FT-IR spectroscopy shows increased hydrogen bonding at intermediate concentrations suggesting that this contributes to increased physical properties. DSC shows limited miscibility and the formation of new crystalline phases in the blends suggesting that this too contributes.

  13. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  14. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  15. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks.

    PubMed

    Lavergne, Vincent; Harliwong, Ivon; Jones, Alun; Miller, David; Taft, Ryan J; Alewood, Paul F

    2015-07-21

    Cone snails are predatory marine gastropods characterized by a sophisticated venom apparatus responsible for the biosynthesis and delivery of complex mixtures of cysteine-rich toxin peptides. These conotoxins fold into small highly structured frameworks, allowing them to potently and selectively interact with heterologous ion channels and receptors. Approximately 2,000 toxins from an estimated number of >70,000 bioactive peptides have been identified in the genus Conus to date. Here, we describe a high-resolution interrogation of the transcriptomes (available at www.ddbj.nig.ac.jp) and proteomes of the diverse compartments of the Conus episcopatus venom apparatus. Using biochemical and bioinformatic tools, we found the highest number of conopeptides yet discovered in a single Conus specimen, with 3,305 novel precursor toxin sequences classified into 9 known superfamilies (A, I1, I2, M, O1, O2, S, T, Z), and identified 16 new superfamilies showing unique signal peptide signatures. We were also able to depict the largest population of venom peptides containing the pharmacologically active C-C-CC-C-C inhibitor cystine knot and CC-C-C motifs (168 and 44 toxins, respectively), as well as 208 new conotoxins displaying odd numbers of cysteine residues derived from known conotoxin motifs. Importantly, six novel cysteine-rich frameworks were revealed which may have novel pharmacology. Finally, analyses of codon usage bias and RNA-editing processes of the conotoxin transcripts demonstrate a specific conservation of the cysteine skeleton at the nucleic acid level and provide new insights about the origin of sequence hypervariablity in mature toxin regions.

  16. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks

    PubMed Central

    Lavergne, Vincent; Harliwong, Ivon; Jones, Alun; Miller, David; Taft, Ryan J.; Alewood, Paul F.

    2015-01-01

    Cone snails are predatory marine gastropods characterized by a sophisticated venom apparatus responsible for the biosynthesis and delivery of complex mixtures of cysteine-rich toxin peptides. These conotoxins fold into small highly structured frameworks, allowing them to potently and selectively interact with heterologous ion channels and receptors. Approximately 2,000 toxins from an estimated number of >70,000 bioactive peptides have been identified in the genus Conus to date. Here, we describe a high-resolution interrogation of the transcriptomes (available at www.ddbj.nig.ac.jp) and proteomes of the diverse compartments of the Conus episcopatus venom apparatus. Using biochemical and bioinformatic tools, we found the highest number of conopeptides yet discovered in a single Conus specimen, with 3,305 novel precursor toxin sequences classified into 9 known superfamilies (A, I1, I2, M, O1, O2, S, T, Z), and identified 16 new superfamilies showing unique signal peptide signatures. We were also able to depict the largest population of venom peptides containing the pharmacologically active C-C-CC-C-C inhibitor cystine knot and CC-C-C motifs (168 and 44 toxins, respectively), as well as 208 new conotoxins displaying odd numbers of cysteine residues derived from known conotoxin motifs. Importantly, six novel cysteine-rich frameworks were revealed which may have novel pharmacology. Finally, analyses of codon usage bias and RNA-editing processes of the conotoxin transcripts demonstrate a specific conservation of the cysteine skeleton at the nucleic acid level and provide new insights about the origin of sequence hypervariablity in mature toxin regions. PMID:26150494

  17. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family.

    PubMed

    Costa, Tatiana F R; Lima, Ana Paula C A

    2016-03-01

    Chagasin-type inhibitors comprise natural inhibitors of papain-like cysteine proteases that are distributed among Protist, Bacteria and Archaea. Chagasin was identified in the pathogenic protozoa Trypanosoma cruzi as an approximately 11 kDa protein that is a tight-binding and highly thermostable inhibitor of papain, cysteine cathepsins and endogenous parasite cysteine proteases. It displays an Imunoglobulin-like fold with three exposed loops to one side of the molecule, where amino acid residues present in conserved motifs at the tips of each loop contact target proteases. Differently from cystatins, the loop 2 of chagasin enters the active-site cleft, making direct contact with the catalytic residues, while loops 4 and 6 embrace the enzyme from the sides. Orthologues of chagasin are named Inhibitors of Cysteine Peptidases (ICP), and share conserved overall tri-dimensional structure and mode of binding to proteases. ICPs are tentatively distributed in three families: in family I42 are grouped chagasin-type inhibitors that share conserved residues at the exposed loops; family I71 contains Plasmodium ICPs, which are large proteins having a chagasin-like domain at the C-terminus, with lower similarity to chagasin in the conserved motif at loop 2; family I81 contains Toxoplasma ICP. Recombinant ICPs tested so far can inactivate protozoa cathepsin-like proteases and their mammalian counterparts. Studies on their biological roles were carried out in a few species, mainly using transgenic protozoa, and the conclusions vary. However, in all cases, alterations in the levels of expression of chagasin/ICPs led to substantial changes in one or more steps of parasite biology, with higher incidence in influencing their interaction with the hosts. We will cover most of the findings on chagasin/ICP structural and functional properties and overview the current knowledge on their roles in protozoa.

  18. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1990-01-01

    Polyimide resins having improved thermo-oxidative stability are provided having aromatic vinyl end-caps. The polyimides are prepared by the reaction of a mixture of monomers comprising (1) a diamine, (2) an ester of tetracarboxylic acid and (3) an aromatic vinyl compound in a molar ratio of 1:2:3 of n: (n + 1):2 when the aromatic vinyl compound contains nitrogen and in a ratio of (n + 1):n:2 when the aromatic vinyl compound does not contain nitrogen, wherein n ranges from about 5 to about 20.

  19. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    PubMed

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples. PMID:26695236

  20. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    PubMed

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples.

  1. Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti.

    PubMed

    Chauhan, Nikhil; Hoti, S L

    2016-01-01

    Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2. PMID:26432350

  2. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  3. Visualization of conformational distribution of short to medium size segments in globular proteins and identification of local structural motifs.

    PubMed

    Ikeda, Kazuyoshi; Tomii, Kentaro; Yokomizo, Tsuyoshi; Mitomo, Daisuke; Maruyama, Keiichiro; Suzuki, Shinya; Higo, Junichi

    2005-05-01

    Analysis of the conformational distribution of polypeptide segments in a conformational space is the first step for understanding a principle of structural diversity of proteins. Here, we present a statistical analysis of protein local structures based on interatomic C(alpha) distances. Using principal component analysis (PCA) on the intrasegment C(alpha)-C(alpha) atomic distances, the conformational space of protein segments, which we call the protein segment universe, has been visualized, and three essential coordinate axes, suitable for describing the universe, have been identified. Three essential axes specified radius of gyration, structural symmetry, and separation of hairpin structures from other structures. Among the segments of arbitrary length, 6-22 residues long, the conservation of those axes was uncovered. Further application of PCA to the two largest clusters in the universe revealed local structural motifs. Although some of motifs have already been reported, we identified a possibly novel strand motif. We also showed that a capping box, which is one of the helix capping motifs, was separated into independent subclusters based on the C(alpha) geometry. Implications of the strand motif, which may play a role for protein-protein interaction, are discussed. The currently proposed method is useful for not only mapping the immense universe of protein structures but also identification of structural motifs. PMID:15802651

  4. Visualization of conformational distribution of short to medium size segments in globular proteins and identification of local structural motifs.

    PubMed

    Ikeda, Kazuyoshi; Tomii, Kentaro; Yokomizo, Tsuyoshi; Mitomo, Daisuke; Maruyama, Keiichiro; Suzuki, Shinya; Higo, Junichi

    2005-05-01

    Analysis of the conformational distribution of polypeptide segments in a conformational space is the first step for understanding a principle of structural diversity of proteins. Here, we present a statistical analysis of protein local structures based on interatomic C(alpha) distances. Using principal component analysis (PCA) on the intrasegment C(alpha)-C(alpha) atomic distances, the conformational space of protein segments, which we call the protein segment universe, has been visualized, and three essential coordinate axes, suitable for describing the universe, have been identified. Three essential axes specified radius of gyration, structural symmetry, and separation of hairpin structures from other structures. Among the segments of arbitrary length, 6-22 residues long, the conservation of those axes was uncovered. Further application of PCA to the two largest clusters in the universe revealed local structural motifs. Although some of motifs have already been reported, we identified a possibly novel strand motif. We also showed that a capping box, which is one of the helix capping motifs, was separated into independent subclusters based on the C(alpha) geometry. Implications of the strand motif, which may play a role for protein-protein interaction, are discussed. The currently proposed method is useful for not only mapping the immense universe of protein structures but also identification of structural motifs.

  5. Enzymatic preparation of. cap alpha. - and. beta. -deuterated or tritiated amino acids with l-methionine. gamma. -lyase

    SciTech Connect

    Esaki, N.; Sawada, S.; Tanaka, H.; Soda, K.

    1982-01-15

    L-Methionine ..gamma..-lyase catalyzes the exchange of ..cap alpha..- and ..beta..-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium or tritium of solvents. The rate of ..cap alpha..-hydrogen exchange with deuterium was about 40 times faster than that of the elimination reactions. The deuterium and tritium were exchanged also with the ..cap alpha..- and ..beta..-hydrogens of the straight-chain amino acids which do not undergo the elimination: L-alanine, L-..cap alpha..-aminobutyrate, L-norvaline, and L-norleucine. No exchange occurs for the D-isomers, acidic L-amino acids, basic L-amino acids, and branched-chain L-amino acids, although ..cap alpha..-hydrogen of glycine, L-trypotophan, and L-phenylalanine is exchanged slowly. These enzymatic hydrogen-exchange reactions facilitate specific labeling of the L-amino acids with deuterium and tritium.

  6. Regulatory motifs in Chk1

    PubMed Central

    Caparelli, Michael L.; O’Connell, Matthew J.

    2013-01-01

    Chk1 is the effector kinase of the G2 DNA damage checkpoint. Chk1 homologs possess a highly conserved N-terminal kinase domain and a less conserved C-terminal regulatory domain. In response to DNA damage, Chk1 is recruited to mediator proteins assembled at lesions on replication protein A (RPA)-coated single-stranded DNA (ssDNA). Chk1 is then activated by phosphorylation on S345 in the C-terminal regulatory domain by the PI3 kinase-related kinases ATM and ATR to enforce a G2 cell cycle arrest to allow time for DNA repair. Models have emerged in which this C-terminal phosphorylation relieves auto-inhibitory regulation of the kinase domain by the regulatory domain. However, experiments in fission yeast have shown that deletion of this putative auto-inhibitory domain actually inactivates Chk1 function. We show here that Chk1 homologs possess a kinase-associated 1 (KA1) domain that possesses residues previously implicated in Chk1 auto-inhibition. In addition, all Chk1 homologs have a small and highly conserved C-terminal extension (CTE domain). In fission yeast, both of these motifs are essential for Chk1 activation through interaction with the mediator protein Crb2, the homolog of human 53BP1. Thus, through different intra- and intermolecular interactions, these motifs explain why the regulatory domain exerts both positive and negative control over Chk1 activation. Such motifs may provide alternative targets to the ATP-binding pocket on which to dock Chk1 inhibitors as anticancer therapeutics. PMID:23422000

  7. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall

    2016-03-01

    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.

  8. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils.

    PubMed

    Hasan, Md Ashraful; Ahn, Won-Gyun; Song, Dong-Keun

    2016-09-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca(2+) signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca(2+)]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca(2+)]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca(2+)]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca(2+)]i in human neutrophils was observed. In Ca(2+)-free buffer, NAC- and cysteine-induced [Ca(2+)]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca(2+)]i in human neutrophils occur through Ca(2+) influx. NAC- and cysteine-induced [Ca(2+)]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na(+)-free HEPES, both NAC and cysteine induced a marked increase in [Ca(2+)]i in human neutrophils, arguing against the possibility that Na(+)-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca(2+)]i increasing activity. Our results show that NAC and cysteine induce [Ca(2+)]i increase through Ca(2+) influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  9. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

    PubMed Central

    Hasan, Md. Ashraful; Ahn, Won-Gyun

    2016-01-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  10. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

    PubMed Central

    Hasan, Md. Ashraful; Ahn, Won-Gyun

    2016-01-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.

  11. Structural Motifs of Gold Nanoparticles.

    NASA Astrophysics Data System (ADS)

    Cleveland, C. L.; Luedtke, W. D.; Landman, Uzi

    1996-03-01

    Through an extensive search, involving energy minimization using embedded atom potentials, we found(R.L. Whetten et al./), submitted to Nature (1995). that the energetically optimal sequence for AuN clusters (30 <= N <= 3000 atoms) consists of fcc crystallites, with a truncated-octahedral (TO) morphological motif, and variants thereof. These predictions for bare gold particles, and for particles coated by sef-assembled thiol monolayers, are discussed in light of recent experiments on the preparation and characterization (including mass spectrometry, electron microscopy, and X-ray diffraction) of nanocrystalline gold molecules (see Ref. 2).

  12. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines.

    PubMed

    Repnik, Urska; Starr, Amanda E; Overall, Christopher M; Turk, Boris

    2015-05-29

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.

  13. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines*

    PubMed Central

    Repnik, Urska; Starr, Amanda E.; Overall, Christopher M.; Turk, Boris

    2015-01-01

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation. PMID:25833952

  14. Polar Cap Pits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows kidney bean-shaped pits, and other pits, formed by erosion in a landscape of frozen carbon dioxide. This images shows one of about a dozen different patterns that are common in various locations across the martian south polar residual cap, an area that has been receiving intense scrutiny by the MGS MOC this year, because it is visible on every orbit and in daylight for most of 2005.

    Location near: 86.9oS, 6.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  15. South Polar Ice Cap

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-337, 21 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 'swiss cheese' pattern of frozen carbon dioxide on the south polar residual cap. Observation of these materials over two Mars years has revealed that the scarps that bound the mesas and small buttes are retreating-the carbon dioxide ice is subliming away-at a rate of about 3 meters (3 yards) per Mars year in some places. The picture covers an area about 900 m (about 900 yards) wide near 87.1oS, 93.7oW. Sunlight illuminates the scene from the upper left.

  16. An Algorithm for Motif Discovery with Iteration on Lengths of Motifs.

    PubMed

    Fan, Yetian; Wu, Wei; Yang, Jie; Yang, Wenyu; Liu, Rongrong

    2015-01-01

    Analysis of DNA sequence motifs is becoming increasingly important in the study of gene regulation, and the identification of motif in DNA sequences is a complex problem in computational biology. Motif discovery has attracted the attention of more and more researchers, and varieties of algorithms have been proposed. Most existing motif discovery algorithms fix the motif's length as one of the input parameters. In this paper, a novel method is proposed to identify the optimal length of the motif and the optimal motif with that length, through an iteration process on increasing length numbers. For each fixed length, a modified genetic algorithm (GA) is used for finding the optimal motif with that length. Three operators are used in the modified GA: Mutation that is similar to the one used in usual GA but is modified to avoid local optimum in our case, and Addition and Deletion that are proposed by us for the problem. A criterion is given for singling out the optimal length in the increasing motif's lengths. We call this method AMDILM (an algorithm for motif discovery with iteration on lengths of motifs). The experiments on simulated data and real biological data show that AMDILM can accurately identify the optimal motif length. Meanwhile, the optimal motifs discovered by AMDILM are consistent with the real ones and are similar with the motifs obtained by the three well-known methods: Gibbs Sampler, MEME and Weeder. PMID:26357084

  17. Circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    2016-11-01

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. In this paper, we develop several statistical analyzes of X motifs in 138 available complete genomes of eukaryotes in which genes as well as non-gene regions are examined. Large X motifs (with lengths of at least 15 consecutive trinucleotides of X and compositions of at least 10 different trinucleotides of X among 20) have the highest occurrence in genomes of eukaryotes compared to its 23 large bijective motifs, its two large permuted motifs and large random motifs. The largest X motifs identified in eukaryotic genomes are presented, e.g. an X motif in a non-gene region of the genome Solanum pennellii with a length of 155 trinucleotides (465 nucleotides) and an expectation E=10(-71). In the human genome, the largest X motif occurs in a non-gene region of the chromosome 13 with a length of 36 trinucleotides and an expectation E=10(-11). X motifs in non-gene regions of genomes could be evolutionary relics of primitive genes using the circular code for translation. However, the proportion of X motifs (with lengths of at least 10 consecutive trinucleotides of X and compositions of at least 5 different trinucleotides of X among 20) in genes/non-genes of the 138 complete eukaryotic genomes is about 8. Thus, the X motifs occur preferentially in genes, as expected from the previous works of 20 years.

  18. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    NASA Technical Reports Server (NTRS)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  19. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    SciTech Connect

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  20. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  1. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  2. Motif3D: Relating protein sequence motifs to 3D structure.

    PubMed

    Gaulton, Anna; Attwood, Teresa K

    2003-07-01

    Motif3D is a web-based protein structure viewer designed to allow sequence motifs, and in particular those contained in the fingerprints of the PRINTS database, to be visualised on three-dimensional (3D) structures. Additional functionality is provided for the rhodopsin-like G protein-coupled receptors, enabling fingerprint motifs of any of the receptors in this family to be mapped onto the single structure available, that of bovine rhodopsin. Motif3D can be used via the web interface available at: http://www.bioinf.man.ac.uk/dbbrowser/motif3d/motif3d.html.

  3. Biological network motif detection: principles and practice.

    PubMed

    Wong, Elisabeth; Baur, Brittany; Quader, Saad; Huang, Chun-Hsi

    2012-03-01

    Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recognized as 'the simple building blocks of complex networks'. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topologically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research directions. PMID:22396487

  4. Π-Clamp-mediated cysteine conjugation.

    PubMed

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J; Santos, Michael S; Van Voorhis, Troy; Pentelute, Bradley L

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  5. π-Clamp-mediated cysteine conjugation

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  6. Π-Clamp-mediated cysteine conjugation.

    PubMed

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J; Santos, Michael S; Van Voorhis, Troy; Pentelute, Bradley L

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics. PMID:26791894

  7. π-Clamp Mediated Cysteine Conjugation

    PubMed Central

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; Van Voorhis, Troy; Pentelute, Bradley L.

    2016-01-01

    Site-selective functionalization of complex molecules is a grand challenge in chemistry. Protecting groups or catalysts must be used to selectively modify one site among many that are similarly reactive. General strategies are rare such the local chemical environment around the target site is tuned for selective transformation. Here we show a four amino acid sequence (Phe-Cys-Pro-Phe), which we call the “π-clamp”, tunes the reactivity of its cysteine thiol for the site-selective conjugation with perfluoroaromatic reagents. We used the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues (e.g. antibodies and cysteine-based enzymes), which was impossible with prior cysteine modification methods. The modified π-clamp antibodies retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates (ADCs) for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach for site-selective chemistry and provides opportunities to modify biomolecules for research and therapeutics. PMID:26791894

  8. Discriminative motif optimization based on perceptron training

    PubMed Central

    Patel, Ronak Y.; Stormo, Gary D.

    2014-01-01

    Motivation: Generating accurate transcription factor (TF) binding site motifs from data generated using the next-generation sequencing, especially ChIP-seq, is challenging. The challenge arises because a typical experiment reports a large number of sequences bound by a TF, and the length of each sequence is relatively long. Most traditional motif finders are slow in handling such enormous amount of data. To overcome this limitation, tools have been developed that compromise accuracy with speed by using heuristic discrete search strategies or limited optimization of identified seed motifs. However, such strategies may not fully use the information in input sequences to generate motifs. Such motifs often form good seeds and can be further improved with appropriate scoring functions and rapid optimization. Results: We report a tool named discriminative motif optimizer (DiMO). DiMO takes a seed motif along with a positive and a negative database and improves the motif based on a discriminative strategy. We use area under receiver-operating characteristic curve (AUC) as a measure of discriminating power of motifs and a strategy based on perceptron training that maximizes AUC rapidly in a discriminative manner. Using DiMO, on a large test set of 87 TFs from human, drosophila and yeast, we show that it is possible to significantly improve motifs identified by nine motif finders. The motifs are generated/optimized using training sets and evaluated on test sets. The AUC is improved for almost 90% of the TFs on test sets and the magnitude of increase is up to 39%. Availability and implementation: DiMO is available at http://stormo.wustl.edu/DiMO Contact: rpatel@genetics.wustl.edu, ronakypatel@gmail.com PMID:24369152

  9. Fluorescent labeling of specific cysteine residues using CyMPL

    PubMed Central

    Puljung, Michael C.

    2012-01-01

    The unique reactivity and relative scarcity of cysteine among amino acids makes it a convenient target for the site-specific chemical modification of proteins. Commercially available fluorophores and modifiers react with cysteine through a variety of electrophilic functional groups. However, it can be difficult to obtain specific labeling of a desired cysteine residue in a protein with multiple cysteines, in a mixture of proteins, or in a protein's native environment. CyMPL (Cysteine Metal Protection and Labeling) enables specific labeling by incorporating a cysteine of interest into a minimal binding site for group 12 metal ions (e.g. Cd2+ and Zn2+). These sites can be inserted into any region of known secondary structure in virtually any protein and cause minimal structural perturbation. Bound metal ions protect the cysteine from reaction while background cysteines are blocked with non-fluorescent modifiers. The metal ions are subsequently removed and the deprotected cysteine is labeled specifically. PMID:23151742

  10. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    PubMed

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices. PMID:27336320

  11. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 8 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected March 5, 2002 during the southern summer season. Layering in the South polar cap interior is readily visible and may indicate yearly ice/dust deposition.

    Image information: VIS instrument. Latitude -86.6, Longitude 156.8 East (203.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the

  12. The cysteine proteinases of the pineapple plant.

    PubMed Central

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-01-01

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. Images Fig. 4. Fig. 5. PMID:2327970

  13. The cysteine proteinases of the pineapple plant.

    PubMed

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct.

  14. Effects of additional cysteine in fish diet on mercury concentration.

    PubMed

    Mok, W J; Hatanaka, Y; Seoka, M; Itoh, T; Tsukamasa, Y; Ando, M

    2014-03-15

    Mercury contamination, especially of seafood, continues to attract public concern. Cysteine, NH2CH(CH2SH)COOH, is a naturally occurring hydrophobic amino acid that contains a thiol group. The purpose of our study was to investigate the use of the additive cysteine in fish diets to reduce mercury concentration in fish, and to observe the effectiveness of dietary cysteine in fish livers. Diets containing 1% and 10% cysteine successfully decreased mercury concentrations in fish compared with the 0% cysteine diet. The liver may have formed excessive lipid droplets or was unable to mobilize lipid stores during exposure to mercury; additional cysteine could help to mobilize excessive lipids in it.

  15. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.

    PubMed

    Blewett, Megan M; Xie, Jiji; Zaro, Balyn W; Backus, Keriann M; Altman, Amnon; Teijaro, John R; Cravatt, Benjamin F

    2016-01-01

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology. PMID:27625306

  16. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport.

    PubMed Central

    Hempe, J M; Cousins, R J

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. We have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPLC and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein [Birkenmeier, E. H. & Gordon, J. I. (1986) Proc. Natl. Acad. Sci. USA 83, 2516-2520]. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient. Images PMID:1946385

  17. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.

    PubMed

    Blewett, Megan M; Xie, Jiji; Zaro, Balyn W; Backus, Keriann M; Altman, Amnon; Teijaro, John R; Cravatt, Benjamin F

    2016-09-13

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.

  18. Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells

    PubMed Central

    Blewett, Megan M.; Xie, Jiji; Zaro, Balyn W.; Backus, Keriann M.; Altman, Amnon; Teijaro, John R.; Cravatt, Benjamin F.

    2016-01-01

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear, but may involve the covalent modification of proteins or DMF serving as a pro-drug that is converted to monomethyl fumarate (MMF). Here, we found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF-sensitivity of > 2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase C θ (PKCθ). Furthermore, DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology. PMID:27625306

  19. Cd2+ and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes.

    PubMed Central

    Bal, Nathalie; Wu, Chen Chou; Catty, Patrice; Guillain, Florent; Mintz, Elisabeth

    2003-01-01

    CadA, the Cd(2+)-ATPase of Listeria monocytogenes, contains four cysteine residues: two in the CTNC (Cys-Thr-Asn-Cys) sequence in the cytoplasmic metal-binding domain (MBD), and two in the CPC (Cys-Pro-Cys) sequence in the membrane domain. Taking advantage of DeltaMBD, a truncated version of CadA that lacks the MBD but which still acts as a functional Cd(2+)-ATPase [Bal, Mintz, Guillain and Catty (2001) FEBS Lett. 506, 249-252], we analysed the role of the membrane cysteine residues (studied using DeltaMBD) separately from that of the cysteine residues of the MBD, which were studied using full-length CadA. The role of the cysteines was assessed by reacting DeltaMBD and CadA with N -ethylmaleimide (NEM), an SH-specific reagent, in the presence or absence of Cd(2+). We show here that (i) in both DeltaMBD and CadA, the cysteine residues in the CPC motif are essential for phosphorylation; (ii) in both proteins, Cd(2+) protects against alkylation by NEM; and (iii) in the absence of Cd(2+), the MBD of CadA also protects against alkylation by NEM. Our results suggest that the CPC motif is present in the membrane Cd(2+) transport site(s) and that the MBD protects these site(s). PMID:12383056

  20. Probing why trypanosomes assemble atypical cytochrome c with an AxxCH haem-binding motif instead of CxxCH.

    PubMed

    Ginger, Michael L; Sam, Katharine A; Allen, James W A

    2012-12-01

    Mitochondrial cytochromes c and c1 are core components of the respiratory chain of all oxygen-respiring eukaryotes. These proteins contain haem, covalently bound to the polypeptide in a catalysed post-translational modification. In all eukaryotes, except members of the protist phylum Euglenozoa, haem attachment is to the cysteine residues of a CxxCH haem-binding motif. In the Euglenozoa, which include medically relevant trypanosomatid parasites, haem attachment is to a single cysteine residue in an AxxCH haem-binding motif. Moreover, genes encoding known c-type cytochrome biogenesis machineries are all absent from trypanosomatid genomes, indicating the presence of a novel biosynthetic apparatus. In the present study, we investigate expression and maturation of cytochrome c with a typical CxxCH haem-binding motif in the trypanosomatids Crithidia fasciculata and Trypanosoma brucei. Haem became attached to both cysteine residues of the haem-binding motif, indicating that, in contrast with previous hypotheses, nothing prevents formation of a CxxCH cytochrome c in euglenozoan mitochondria. The cytochrome variant was also able to replace the function of wild-type cytochrome c in T. brucei. However, the haem attachment to protein was not via the stereospecifically conserved linkage universally observed in natural c-type cytochromes, suggesting that the trypanosome cytochrome c biogenesis machinery recognized and processed only the wild-type single-cysteine haem-binding motif. Moreover, the presence of the CxxCH cytochrome c resulted in a fitness cost in respiration. The level of cytochrome c biogenesis in trypanosomatids was also found to be limited, with the cells operating at close to maximum capacity. PMID:22928879

  1. Probing why trypanosomes assemble atypical cytochrome c with an AxxCH haem-binding motif instead of CxxCH.

    PubMed

    Ginger, Michael L; Sam, Katharine A; Allen, James W A

    2012-12-01

    Mitochondrial cytochromes c and c1 are core components of the respiratory chain of all oxygen-respiring eukaryotes. These proteins contain haem, covalently bound to the polypeptide in a catalysed post-translational modification. In all eukaryotes, except members of the protist phylum Euglenozoa, haem attachment is to the cysteine residues of a CxxCH haem-binding motif. In the Euglenozoa, which include medically relevant trypanosomatid parasites, haem attachment is to a single cysteine residue in an AxxCH haem-binding motif. Moreover, genes encoding known c-type cytochrome biogenesis machineries are all absent from trypanosomatid genomes, indicating the presence of a novel biosynthetic apparatus. In the present study, we investigate expression and maturation of cytochrome c with a typical CxxCH haem-binding motif in the trypanosomatids Crithidia fasciculata and Trypanosoma brucei. Haem became attached to both cysteine residues of the haem-binding motif, indicating that, in contrast with previous hypotheses, nothing prevents formation of a CxxCH cytochrome c in euglenozoan mitochondria. The cytochrome variant was also able to replace the function of wild-type cytochrome c in T. brucei. However, the haem attachment to protein was not via the stereospecifically conserved linkage universally observed in natural c-type cytochromes, suggesting that the trypanosome cytochrome c biogenesis machinery recognized and processed only the wild-type single-cysteine haem-binding motif. Moreover, the presence of the CxxCH cytochrome c resulted in a fitness cost in respiration. The level of cytochrome c biogenesis in trypanosomatids was also found to be limited, with the cells operating at close to maximum capacity.

  2. Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines.

    PubMed Central

    Sanford, J C; Pan, Y; Wessling-Resnick, M

    1995-01-01

    Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue. Images PMID:7749197

  3. Mining, compressing and classifying with extensible motifs

    PubMed Central

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2006-01-01

    Background Motif patterns of maximal saturation emerged originally in contexts of pattern discovery in biomolecular sequences and have recently proven a valuable notion also in the design of data compression schemes. Informally, a motif is a string of intermittently solid and wild characters that recurs more or less frequently in an input sequence or family of sequences. Motif discovery techniques and tools tend to be computationally imposing, however, special classes of "rigid" motifs have been identified of which the discovery is affordable in low polynomial time. Results In the present work, "extensible" motifs are considered such that each sequence of gaps comes endowed with some elasticity, whereby the same pattern may be stretched to fit segments of the source that match all the solid characters but are otherwise of different lengths. A few applications of this notion are then described. In applications of data compression by textual substitution, extensible motifs are seen to bring savings on the size of the codebook, and hence to improve compression. In germane contexts, in which compressibility is used in its dual role as a basis for structural inference and classification, extensible motifs are seen to support unsupervised classification and phylogeny reconstruction. Conclusion Off-line compression based on extensible motifs can be used advantageously to compress and classify biological sequences. PMID:16722593

  4. Genetics Home Reference: cap myopathy

    MedlinePlus

    ... Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, Wallgren-Pettersson C. Cap disease caused ... E, Wallefeld W, Memo M, Donner K, Laing NG, Marston S, Grönholm M, Wallgren-Pettersson C. Abnormal actin ...

  5. Stuck fuel rod capping sleeve

    DOEpatents

    Gorscak, Donald A.; Maringo, John J.; Nilsen, Roy J.

    1988-01-01

    A stuck fuel rod capping sleeve to be used during derodding of spent fuel assemblies if a fuel rod becomes stuck in a partially withdrawn position and, thus, has to be severed. The capping sleeve has an inner sleeve made of a lower work hardening highly ductile material (e.g., Inconel 600) and an outer sleeve made of a moderately ductile material (e.g., 304 stainless steel). The inner sleeve may be made of an epoxy filler. The capping sleeve is placed on a fuel rod which is then severed by using a bolt cutter device. Upon cutting, the capping sleeve deforms in such a manner as to prevent the gross release of radioactive fuel material

  6. Sampling Motif-Constrained Ensembles of Networks

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  7. Structural characterization and expression analysis of a novel cysteine protease inhibitor from Haliotis discus hannai Ino.

    PubMed

    Ding, Jianfeng; Li, Li; Zhang, Guofan

    2015-02-01

    The sequence of the cysteine protease inhibitor gene of Haliotis discus hannai (designated HdCpi) was determined using the RACE method. The full-length HdCpi cDNA is 1049 bp long, and contains an open reading frame of 813 bp, encoding a 271-amino-acid protein with a calculated molecular mass of 29.83 kDa and an isoelectric point of 8.57. The deduced amino acid sequence of HdCpi contains two cystatin-like domains, and each has the structural features of the cystatin family, including three evolutionarily conserved motifs known to interact with the active sites of cysteine peptidases: the Gly residue at the N-terminus (Gly(65) and Gly(160)), the Gln-X-Val-X-Gly motif (Q(106)IVSG(110) and Q(202)VVAG(206)), and the less conserved motif at the C-terminus (S(136)W(137) and A(254)W(255)). Many putative transcription-factor-binding sites involved in the immune system and cancer occur in the promoter region of HdCpi. Quantitative real-time RT-PCR detected HdCpi expression in all the tissues examined and in the gills of abalone challenged with the bacterium Vibrio anguillarum. HdCpi transcripts were expressed in the mantle, gill, digestive tract, hemocytes, and muscle, and increased HdCpi expression was observed after bacterial stimulation. These results suggest that HdCpi is a biologically active protease inhibitor that is likely to be involved in the antibacterial response of the abalone. PMID:25463299

  8. Structural characterization and expression analysis of a novel cysteine protease inhibitor from Haliotis discus hannai Ino.

    PubMed

    Ding, Jianfeng; Li, Li; Zhang, Guofan

    2015-02-01

    The sequence of the cysteine protease inhibitor gene of Haliotis discus hannai (designated HdCpi) was determined using the RACE method. The full-length HdCpi cDNA is 1049 bp long, and contains an open reading frame of 813 bp, encoding a 271-amino-acid protein with a calculated molecular mass of 29.83 kDa and an isoelectric point of 8.57. The deduced amino acid sequence of HdCpi contains two cystatin-like domains, and each has the structural features of the cystatin family, including three evolutionarily conserved motifs known to interact with the active sites of cysteine peptidases: the Gly residue at the N-terminus (Gly(65) and Gly(160)), the Gln-X-Val-X-Gly motif (Q(106)IVSG(110) and Q(202)VVAG(206)), and the less conserved motif at the C-terminus (S(136)W(137) and A(254)W(255)). Many putative transcription-factor-binding sites involved in the immune system and cancer occur in the promoter region of HdCpi. Quantitative real-time RT-PCR detected HdCpi expression in all the tissues examined and in the gills of abalone challenged with the bacterium Vibrio anguillarum. HdCpi transcripts were expressed in the mantle, gill, digestive tract, hemocytes, and muscle, and increased HdCpi expression was observed after bacterial stimulation. These results suggest that HdCpi is a biologically active protease inhibitor that is likely to be involved in the antibacterial response of the abalone.

  9. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  10. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  11. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. 21 CFR 582.5271 - Cysteine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cysteine. 582.5271 Section 582.5271 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  13. Cysteine Prevents Menopausal Syndromes in Ovariectomized Mouse.

    PubMed

    Han, Na-Ra; Kim, Na-Rae; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-05-01

    Cysteine (Cys) is well known to be involved in oxidation-reduction reactions, serving as a source of sulfides in the body. Amino acids are known to improve menopausal symptoms and significantly reduce morbidity. This study aims to find an unrevealed effect of Cys with estrogenic and osteogenic actions. Ovariectomized (OVX) mice were treated with Cys daily for 8 weeks. Estrogen-related and osteoporosis-related factors were analyzed in the vagina, serum, and tibia. Cys was treated in estrogen receptor (ER)-positive human osteoblast-like MG-63 cells and ER-positive human breast cancer Michigan Cancer Foundation-7 (MCF-7) cells. Cysteine administration ameliorated overweightness of the body and vaginal atrophy in the OVX mice. Cysteine increased the levels of alkaline phosphatase (ALP) and 17β-estradiol in the serum of the OVX mice and improved the bone mineral density in the OVX mice. In MG-63 cells, Cys increased the proliferation, ERβ messenger RNA (mRNA) expression, and estrogen response element (ERE) activity. Cysteine increased the ALP activity and the phosphorylation of extracellular signal-regulated kinase. In MCF-7 cells, Cys also increased the proliferation, ERβ mRNA expression, and ERE activity. Taken together, these results demonstrated that Cys has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. The novel insights gained here strongly imply the potential use of Cys as a new agent for postmenopausal women. PMID:26494699

  14. Structure and mechanism of mouse cysteine dioxygenase

    PubMed Central

    McCoy, Jason G.; Bailey, Lucas J.; Bitto, Eduard; Bingman, Craig A.; Aceti, David J.; Fox, Brian G.; Phillips, George N.

    2006-01-01

    Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Å. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical β-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme. PMID:16492780

  15. Characterization of the Cysteine Content in Proteins Utilizing Cysteine Selenylation with 266 nm Ultraviolet Photodissociation (UVPD)

    NASA Astrophysics Data System (ADS)

    Parker, W. Ryan; Brodbelt, Jennifer S.

    2016-08-01

    Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se-S bond upon 266 UVPD. The number of Se-S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein.

  16. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine... ingredient is used to supply up to 0.009 part of total L-cysteine per 100 parts of flour in dough as a...

  17. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine. 184.1271 Section 184.1271 Food and... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3... of total L-cysteine per 100 parts of flour in dough as a dough strengthener as defined in §...

  18. Redox-Active Sensing by Bacterial DksA Transcription Factors Is Determined by Cysteine and Zinc Content

    PubMed Central

    Crawford, Matthew A.; Tapscott, Timothy; Fitzsimmons, Liam F.; Liu, Lin; Reyes, Aníbal M.; Libby, Stephen J.; Trujillo, Madia; Fang, Ferric C.; Radi, Rafael

    2016-01-01

    ABSTRACT The four-cysteine zinc finger motif of the bacterial RNA polymerase regulator DksA is essential for protein structure, canonical control of the stringent response to nutritional limitation, and thiol-based sensing of oxidative and nitrosative stress. This interdependent relationship has limited our understanding of DksA-mediated functions in bacterial pathogenesis. Here, we have addressed this challenge by complementing ΔdksA Salmonella with Pseudomonas aeruginosa dksA paralogues that encode proteins differing in cysteine and zinc content. We find that four-cysteine, zinc-bound (C4) and two-cysteine, zinc-free (C2) DksA proteins are able to mediate appropriate stringent control in Salmonella and that thiol-based sensing of reactive species is conserved among C2 and C4 orthologues. However, variations in cysteine and zinc content determine the threshold at which individual DksA proteins sense and respond to reactive species. In particular, zinc acts as an antioxidant, dampening cysteine reactivity and raising the threshold of posttranslational thiol modification with reactive species. Consequently, C2 DksA triggers transcriptional responses in Salmonella at levels of oxidative or nitrosative stress normally tolerated by Salmonella expressing C4 orthologues. Inappropriate transcriptional regulation by C2 DksA increases the susceptibility of Salmonella to the antimicrobial effects of hydrogen peroxide and nitric oxide, and attenuates virulence in macrophages and mice. Our findings suggest that the redox-active sensory function of DksA proteins is finely tuned to optimize bacterial fitness according to the levels of oxidative and nitrosative stress encountered by bacterial species in their natural and host environments. PMID:27094335

  19. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  20. [Psychopathological study of lie motif in schizophrenia].

    PubMed

    Otsuka, Koichiro; Kato, Satoshi

    2006-01-01

    The theme of a statement is called "lie motif" by the authors when schizophrenic patients say "I have lied to anybody". We tried to analyse of the psychopathological characteristics and anthropological meanings of the lie motifs in schizophrenia, which has not been thematically examined until now, based on 4 cases, and contrasting with the lie motif (Lügenmotiv) in depression taken up by A. Kraus (1989). We classified the lie motifs in schizophrenia into the following two types: a) the past directive lie motif: the patients speak about their real lie regarding it as a 'petty fault' in their distant past with self-guilty feeling, b) the present directive lie motif: the patients say repeatedly 'I have lied' (about their present speech and behavior), retreating from their previous commitments. The observed false confessions of innocent fault by the patients seem to belong to the present directed lie motif. In comparison with the lie motif in depression, it is characteristic for the lie motif in schizophrenia that the patients feel themselves to already have been caught out by others before they confess the lie. The lie motif in schizophrenia seems to come into being through the attribution process of taking the others' blame on ones' own shoulders, which has been pointed out to be common in the guilt experience in schizophrenia. The others' blame on this occasion is due to "the others' gaze" in the experience of the initial self-centralization (i.e. non delusional self-referential experience) in the early stage of schizophrenia (S. Kato 1999). The others' gaze is supposed to bring about the feeling of amorphous self-revelation which could also be regarded as the guilt feeling without content, to the patients. When the guilt feeling is bound with a past concrete fault, the patients tell the past directive lie motif. On the other hand, when the patients cannot find a past fixed content, and feel their present actions as uncertain and experience them as lies, the

  1. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  2. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  3. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl...

  4. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  5. Automated Motif Discovery from Glycan Array Data

    PubMed Central

    Cholleti, Sharath R.; Agravat, Sanjay; Morris, Tim; Saltz, Joel H.; Song, Xuezheng

    2012-01-01

    Abstract Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface (http://glycanmotifminer.emory.edu). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  6. Automated motif discovery from glycan array data.

    PubMed

    Cholleti, Sharath R; Agravat, Sanjay; Morris, Tim; Saltz, Joel H; Song, Xuezheng; Cummings, Richard D; Smith, David F

    2012-10-01

    Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface ( http://glycanmotifminer.emory.edu ). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  7. Networks of motifs from sequences of symbols.

    PubMed

    Sinatra, Roberta; Condorelli, Daniele; Latora, Vito

    2010-10-22

    We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find other useful applications to process large amounts of data in various fields.

  8. Networks of Motifs from Sequences of Symbols

    NASA Astrophysics Data System (ADS)

    Sinatra, Roberta; Condorelli, Daniele; Latora, Vito

    2010-10-01

    We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find other useful applications to process large amounts of data in various fields.

  9. Structural and Immunological Characteristics of a 28-Kilodalton Cruzipain-Like Cysteine Protease of Paragonimus westermani Expressed in the Definitive Host Stage

    PubMed Central

    Yun, Doo-Hee; Chung, Joon-Yong; Chung, Young-Bae; Bahk, Young-Yil; Kang, Shin-Yong; Kong, Yoon; Cho, Seung-Yull

    2000-01-01

    A complete cDNA sequence encoding a 28-kDa cruzipain-like cysteine protease of adult Paragonimus westermani, termed Pw28CCP, was isolated from an adult cDNA library. The cDNA contained a single open reading frame of 975 bp encoding 325 amino acids, which exhibited the structural motif and domain organization characteristic of cysteine proteases of non-cathepsin Bs including a hydrophobic signal sequence, an ERFNIN motif, and essential cysteine residues as well as active sites in the mature catalytic region. Analysis of its phylogenetic position revealed that this novel enzyme belonged to the cruzipain-like cysteine proteases. The sequence of the first 13 amino acids predicted from the mature domain of Pw28CCP was in accord with that determined from the native 28-kDa enzyme purified from the adult worm. Expression of Pw28CCP was observed specifically in juvenile and adult worms, with a location in the intestinal epithelium, suggesting that this enzyme could be secreted and involved in nutrient uptake and immune modulation. The recombinant protein expressed in Escherichia coli was used to assess antigenicity by immunoblotting with sera from patients with active paragonimiasis and from those with other parasitic infections. The resulting sensitivity of 86.2% (56 of 65 samples) and specificity of 98% (147 of 150 samples) suggest its potential as an antigen for use in immunodiagnosis. PMID:11063501

  10. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    PubMed

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  11. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  12. [Growth-inhibitory activity of Cladosporium cladosporioides by cysteine].

    PubMed

    Watanabe, Toshihiko; Ueno, Yukihiro; Ogasawara, Ayako; Mikami, Takeshi; Matsumoto, Tatsuji

    2007-07-01

    When Cladosporium cladosporioides was cultured with cysteine, its growth was completely inhibited statically. The growth of C. cladosporioides cultured on potato-dextrose agar plates was also inhibited by the addition of cysteine. The production of ATP in C. cladosporioides was inhibited by cysteine. When a silicone block was incubated with C. cladosporioides, the surface of the block was coated with the biofilm of C. cladosporioides. However, the block containing cysteine was not covered with biofilm. These results indicate that cysteine is useful as a material to prevent the growth of C. cladosporioides.

  13. Mathematical modeling of cold cap

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2012-10-13

    The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.

  14. Polar Cap Plasma and Convection

    NASA Technical Reports Server (NTRS)

    Elliott, Heather A.; Craven, Paul D.; Comfort, Richard H.; Chandler, Michael O.; Moore, Thomas E.; Ruohoniemi, J. M.

    1998-01-01

    This presentation will describe the character of the polar cap plasma in 10% AGU Spring 1998 particular the convection velocities at the perigee (about 1.8 Re) and apogee( about 8.9 Re) of Polar in relationship to Interplanetary Magnetic Field (IMF) and solar wind parameters. This plasma is thought to be due to several sources; the polar wind, cleft ion fountain, and auroral outflow. The plasma in the polar cap tends to be mostly field-aligned. At any given point in the polar cap, this plasma could be from a different regions since convection of magnetic field lines can transport this material. it is quite difficult to study such a phenomena with single point measurements. Current knowledge of the polar cap plasma obtained by in situ measurements will be presented along with recent results from the Polar mission. This study also examines the direct electrical coupling between the magnetosphere and ionosphere by comparing convection velocities measured by the Thermal Ion Dynamics Experiment (TIDE) and Magnetic Field Experiment (MFE) instruments in magnetosphere and measurements of the ionosphere by ground-based radars. At times such a comparison is difficult because the Polar satellite at apogee spends a large amount of time in the polar cap which is a region that is not coverage well by the current SuperDam coherent radars. This is impart due to the lack of irregularities that returns the radar signal.

  15. South Polar Residual Ice Cap

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This mosaic is composed of 18 Viking Orbiter images (6 each in red, green, and violet filters), acquired on September 28, 1977, during revolution 407 of Viking Orbiter 2. The south pole is located just off the lower left edge of the polar cap, and the 0 degree longitude meridian extends toward the top of the mosaic. The large crater near the right edge (named 'South') is about 100 km in diameter. These images were acquired during southern summer on Mars (Ls = 341 degrees); the sub-solar declination was 8 degrees S., and the south polar cap was nearing its final stage of retreat just prior to vernal equinox. The south residual cap is approximately 400 km across, and the exposed surface is thought to consist dominantly of carbon-dioxide frost. This is in contrast to the water-ice surface of the north polar residual cap. It is likely that water ice is present in layers that underlie the south polar cap and that comprise the surrounding layered terrains. Near the top of this image, irregular pits with sharp-rimmed cliffs appear 'etched', presumably by wind. A series of rugged mountains (extending toward the upper right corner of the image) are of unknown origin.

  16. Primary hepatocytes from mice lacking cysteine dioxygenase show increased cysteine concentrations and higher rates of metabolism of cysteine to hydrogen sulfide and thiosulfate.

    PubMed

    Jurkowska, Halina; Roman, Heather B; Hirschberger, Lawrence L; Sasakura, Kiyoshi; Nagano, Tetsuo; Hanaoka, Kenjiro; Krijt, Jakub; Stipanuk, Martha H

    2014-05-01

    The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.

  17. Cysteine-Based Redox Switches in Enzymes

    PubMed Central

    Klomsiri, Chananat; Karplus, P. Andrew

    2011-01-01

    Abstract The enzymes involved in metabolism and signaling are regulated by posttranslational modifications that influence their catalytic activity, rates of turnover, and targeting to subcellular locations. Most prominent among these has been phosphorylation/dephosphorylation, but now a distinct class of modification coming to the fore is a set of versatile redox modifications of key cysteine residues. Here we review the chemical, structural, and regulatory aspects of such redox regulation of enzymes and discuss examples of how these regulatory modifications often work in concert with phosphorylation/dephosphorylation events, making redox dependence an integral part of many cell signaling processes. Included are the emerging roles played by peroxiredoxins, a family of cysteine-based peroxidases that now appear to be major players in both antioxidant defense and cell signaling. Antioxid. Redox Signal. 14, 1065–1077. PMID:20799881

  18. Cysteine cathepsin activity regulation by glycosaminoglycans.

    PubMed

    Novinec, Marko; Lenarčič, Brigita; Turk, Boris

    2014-01-01

    Cysteine cathepsins are a group of enzymes normally found in the endolysosomes where they are primarily involved in intracellular protein turnover but also have a critical role in MHC II-mediated antigen processing and presentation. However, in a number of pathologies cysteine cathepsins were found to be heavily upregulated and secreted into extracellular milieu, where they were found to degrade a number of extracellular proteins. A major role in modulating cathepsin activities play glycosaminoglycans, which were found not only to facilitate their autocatalytic activation including at neutral pH, but also to critically modulate their activities such as in the case of the collagenolytic activity of cathepsin K. The interaction between cathepsins and glycosaminoglycans will be discussed in more detail.

  19. Polar Cap Formation on Ganymede

    NASA Technical Reports Server (NTRS)

    Pilcher, C. B.; Shaya, E. J.

    1985-01-01

    Since thermal migration is not an effective mechanism for water transport in the polar regions at the Galilean satellites, some other process must be responsible for the formation of Ganymede's polar caps. It is proposed that Ganymede's polar caps are the optical manifestation of a process that began with the distribution of an ice sheet over the surface of Ganymede. The combined processes of impact gardening and thermal migration led, in regions at latitudes less than 40 to 45 deg., to the burial of some fraction of this ice, the migration of some to the polar caps margins, and a depletion of free ice in the optical surface. At higher latitudes, no process was effective in removing ice from the optical surface, so the remanants of the sheet are visible today.

  20. MotifMiner: A Table Driven Greedy Algorithm for DNA Motif Mining

    NASA Astrophysics Data System (ADS)

    Seeja, K. R.; Alam, M. A.; Jain, S. K.

    DNA motif discovery is a much explored problem in functional genomics. This paper describes a table driven greedy algorithm for discovering regulatory motifs in the promoter sequences of co-expressed genes. The proposed algorithm searches both DNA strands for the common patterns or motifs. The inputs to the algorithm are set of promoter sequences, the motif length and minimum Information Content. The algorithm generates subsequences of given length from the shortest input promoter sequence. It stores these subsequences and their reverse complements in a table. Then it searches the remaining sequences for good matches of these subsequences. The Information Content score is used to measure the goodness of the motifs. The algorithm has been tested with synthetic data and real data. The results are found promising. The algorithm could discover meaningful motifs from the muscle specific regulatory sequences.

  1. Polar cap formation on Ganymede

    NASA Technical Reports Server (NTRS)

    Shaya, E. J.; Pilcher, C. B.

    1984-01-01

    It is argued that Ganymede's polar caps are the remnants of a more extensive covering of water ice that formed during a period in which the satellite was geologically active. It is inferred that the initial thickness of this covering was a significant fraction of the gardening depth since the covering formed. This suggests an initial thickness of at least a few meters over heavily cratered regions such as the south polar grooved terrain. The absence of similar polar caps on Callisto apparently reflects the absence of comparable geologic activity in the history of this satellite.

  2. The Enigmatic Martian Polar Caps

    SciTech Connect

    James, Philip

    2005-08-17

    The Martian polar caps have puzzled astronomers for over a century. Extensive study by many instruments on various spacecraft has resolved many questions but has at the same time created a new generation of puzzles. The polar caps are intimately coupled to the current Martian climate and volatile cycles. They also hold clues to climate variations on a variety of longer time scales. The results of recent missions will be reviewed, and the potential outlook for resolution of the outstanding questions will be examined.

  3. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity

    PubMed Central

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-01-01

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5′-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5′-triphosphorylated but not 5′-diphosphorylated RABV mRNA-start sequences, 5′-AACA(C/U), with GDP to generate the 5′-terminal cap structure G(5′)ppp(5′)A. The 5′-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents. PMID:27213429

  4. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-01-01

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  5. Chaotic motifs in gene regulatory networks.

    PubMed

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  6. Basic OSF/Motif programming and applications

    SciTech Connect

    Brooks, D. ); Novak, B. )

    1992-09-15

    When users refer to Motif, they are usually talking about mwm, the window manager. However, when programmers mention Motif they are usually discussing the programming toolkit. This toolkit is used to develop new or modify existing applications. In this presentation, the term Motif will refer to the toolkit. Motif comes with a number of features that help users effectively use the applications built with it. The term look and feel may be overused; nonetheless, a consistent and well designed look and feel assists the user in Teaming and using new applications. The term point and click generally refers to using a mouse to select program commands. While Motif supports point and click, the toolkit also supports using the keyboard as a substitute for many operations. This gives a good typist a distinct advantage when using a familiar application. We will give an overview of the toolkit, touching on the user interface features and general programming considerations. Since the source code for many useful Motif programs is readily available, we will explain how to get these sources and touch on derived benefits. We win also point to other sources of on-line help and documentation. Finally, we will present some practical experiences developing applications.

  7. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd motifs whose structural features can be understood in terms of simple principles of helix-helix packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  8. iMotifs: an integrated sequence motif visualization and analysis environment

    PubMed Central

    Piipari, Matias; Down, Thomas A.; Saini, Harpreet; Enright, Anton; Hubbard, Tim J.P.

    2010-01-01

    Motivation: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro and consequently high-quality binding site motif data are becoming available for increasing number of organisms and regulatory factors. Development of intuitive tools for the study of sequence motifs is therefore important. iMotifs is a graphical motif analysis environment that allows visualization of annotated sequence motifs and scored motif hits in sequences. It also offers motif inference with the sensitive NestedMICA algorithm, as well as overrepresentation and pairwise motif matching capabilities. All of the analysis functionality is provided without the need to convert between file formats or learn different command line interfaces. The application includes a bundled and graphically integrated version of the NestedMICA motif inference suite that has no outside dependencies. Problems associated with local deployment of software are therefore avoided. Availability: iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL 2.0). The software and its source is available at http://wiki.github.com/mz2/imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). We also provide a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for the Perl, Ruby, R and Objective-C programming languages for input and output of XMS formatted annotated sequence motif set files. Contact: matias.piipari@gmail.com; imotifs@googlegroups.com PMID:20106815

  9. Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose.

    PubMed

    Cerny, Christoph; Guntz-Dubini, Renée

    2013-11-15

    Cysteine-S-conjugates (CS-conjugates) occur in foods derived from plant sources like grape, passion fruit, onion, garlic, bell pepper and hops. During eating CS-conjugates are degraded into aroma-active thiols by β-lyases that originate from oral microflora. The present study provides evidence for the formation of the CS-conjugates S-furfuryl-l-cysteine (FFT-S-Cys) and S-(2-methyl-3-furyl)-l-cysteine (MFT-S-Cys) in the Maillard reaction of xylose with cysteine at 100°C for 2h. The CS-conjugates were isolated using cationic exchange and reversed-phase chromatography and identified by (1)H NMR, (13)C NMR and LC-MS(2). Spectra and LC retention times matched those of authentic standards. To the best of our knowledge, this is the first time that CS-conjugates are described as Maillard reaction products. Furfuryl alcohol (FFA) is proposed as an intermediate which undergoes a nucleophilic substitution with cysteine. Both FFT-S-Cys and MFT-S-Cys are odourless but produce strong aroma when tasted in aqueous solutions, supposedly induced by β -lyases from the oral microflora. The perceived aromas resemble those of the corresponding aroma-active thiols 2-furfurylthiol (FFT) and 2-methyl-3-furanthiol (MFT) which smell coffee-like and meaty, respectively.

  10. Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose.

    PubMed

    Cerny, Christoph; Guntz-Dubini, Renée

    2013-11-15

    Cysteine-S-conjugates (CS-conjugates) occur in foods derived from plant sources like grape, passion fruit, onion, garlic, bell pepper and hops. During eating CS-conjugates are degraded into aroma-active thiols by β-lyases that originate from oral microflora. The present study provides evidence for the formation of the CS-conjugates S-furfuryl-l-cysteine (FFT-S-Cys) and S-(2-methyl-3-furyl)-l-cysteine (MFT-S-Cys) in the Maillard reaction of xylose with cysteine at 100°C for 2h. The CS-conjugates were isolated using cationic exchange and reversed-phase chromatography and identified by (1)H NMR, (13)C NMR and LC-MS(2). Spectra and LC retention times matched those of authentic standards. To the best of our knowledge, this is the first time that CS-conjugates are described as Maillard reaction products. Furfuryl alcohol (FFA) is proposed as an intermediate which undergoes a nucleophilic substitution with cysteine. Both FFT-S-Cys and MFT-S-Cys are odourless but produce strong aroma when tasted in aqueous solutions, supposedly induced by β -lyases from the oral microflora. The perceived aromas resemble those of the corresponding aroma-active thiols 2-furfurylthiol (FFT) and 2-methyl-3-furanthiol (MFT) which smell coffee-like and meaty, respectively. PMID:23790889

  11. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays.

    PubMed

    Uncu, Ali Tevfik; Frary, Anne; Doganlar, Sami

    2015-03-01

    The aim of this study was to establish a DNA-based identification key to ascertain the cultivar origin of Turkish monovarietal olive oils. To reach this aim, we sequenced short fragments from five olive genes for SNP (single nucleotide polymorphism) identification and developed CAPS (cleaved amplified polymorphic DNA) assays for SNPs that alter restriction enzyme recognition motifs. When applied on the oils of 17 olive cultivars, a maximum of five CAPS assays were necessary to discriminate the varietal origin of the samples. We also tested the efficiency and limit of our approach for detecting olive oil admixtures. As a result of the analysis, we were able to detect admixing down to a limit of 20%. The SNP-based CAPS assays developed in this work can be used for testing and verification of the authenticity of Turkish monovarietal olive oils, for olive tree certification, and in germplasm characterization and preservation studies.

  12. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    SciTech Connect

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  13. Indirect pulp capping: a survey.

    PubMed

    Kaplowitz, G J

    1992-01-01

    This study addresses the acceptance of the clinical practice of indirect pulp capping. State and regional dental boards and postgraduate dental education programs throughout the United States were surveyed. Results indicate that no clear consensus exists for the acceptance of this clinical procedure.

  14. From Blogs to Bottle Caps

    ERIC Educational Resources Information Center

    Edinger, Ted

    2012-01-01

    There is a wonderful community of art educators connecting a once-isolated profession through blogging. Art educators around the world are sharing ideas and communicating with their peers through this amazing resource. In this article, the author describes the bottle cap mural at Tulip Grove Elementary School which was inspired by this exchange of…

  15. Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain.

    PubMed

    McShan, Danielle; Kathman, Stefan; Lowe, Brittiney; Xu, Ziyang; Zhan, Jennifer; Statsyuk, Alexander; Ogungbe, Ifedayo Victor

    2015-10-15

    Rhodesain, the major cathepsin L-like cysteine protease in the protozoan Trypanosoma brucei rhodesiense, the causative agent of African sleeping sickness, is a well-validated drug target. In this work, we used a fragment-based approach to identify inhibitors of this cysteine protease, and identified inhibitors of T. brucei. To discover inhibitors active against rhodesain and T. brucei, we screened a library of covalent fragments against rhodesain and conducted preliminary SAR studies. We envision that in vitro enzymatic assays will further expand the use of the covalent tethering method, a simple fragment-based drug discovery technique to discover covalent drug leads.

  16. Structural basis for the immunomodulatory function of cysteine protease inhibitor from human roundworm Ascaris lumbricoides.

    PubMed

    Mei, Guoqiang; Dong, Jianmei; Li, Zhaotao; Liu, Sanling; Liu, Yunfeng; Sun, Mingze; Liu, Guiyun; Su, Zhong; Liu, Jinsong

    2014-01-01

    Immunosuppression associated with infections of nematode parasites has been documented. Cysteine protease inhibitor (CPI) released by the nematode parasites is identified as one of the major modulators of host immune response. In this report, we demonstrated that the recombinant CPI protein of Ascaris lumbricoides (Al-CPI) strongly inhibited the activities of cathepsin L, C, S, and showed weaker effect to cathepsin B. Crystal structure of Al-CPI was determined to 2.1 Å resolution. Two segments of Al-CPI, loop 1 and loop 2, were proposed as the key structure motifs responsible for Al-CPI binding with proteases and its inhibitory activity. Mutations at loop 1 and loop 2 abrogated the protease inhibition activity to various extents. These results provide the molecular insight into the interaction between the nematode parasite and its host and will facilitate the development of anthelmintic agents or design of anti-autoimmune disease drugs.

  17. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    PubMed

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  18. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  19. Differential expression of cysteine desulfurases in soybean

    PubMed Central

    2011-01-01

    Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069

  20. Factors supporting cysteine tolerance and sulfite production in Candida albicans.

    PubMed

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian; Staib, Peter

    2013-04-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.

  1. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  2. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K.

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  3. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand.

    PubMed

    Choi, Jung Kyu; Haynie, Benjamin E; Tohgha, Urice; Pap, Levente; Elliott, K Wade; Leonard, Brian M; Dzyuba, Sergei V; Varga, Krisztina; Kubelka, Jan; Balaz, Milan

    2016-03-22

    L-cysteine derivatives induce and modulate the optical activity of achiral cadmium selenide (CdSe) and cadmium sulfide (CdS) quantum dots (QDs). Remarkably, N-acetyl-L-cysteine-CdSe and L-homocysteine-CdSe as well as N-acetyl-L-cysteine-CdS and L-cysteine-CdS showed "mirror-image" circular dichroism (CD) spectra regardless of the diameter of the QDs. This is an example of the inversion of the CD signal of QDs by alteration of the ligand's structure, rather than inversion of the ligand's absolute configuration. Non-empirical quantum chemical simulations of the CD spectra were able to reproduce the experimentally observed sign patterns and demonstrate that the inversion of chirality originated from different binding arrangements of N-acetyl-L-cysteine and L-homocysteine-CdSe to the QD surface. These efforts may allow the prediction of the ligand-induced chiroptical activity of QDs by calculating the specific binding modes of the chiral capping ligands. Combined with the large pool of available chiral ligands, our work opens a robust approach to the rational design of chiral semiconducting nanomaterials.

  4. Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia.

    PubMed

    Huang, Chun-Jen; Chu, Sz-Hau; Li, Chien-Hung; Lee, T Randall

    2016-09-01

    Nanoparticles decorated with biocompatible coatings have received considerable attention in recent years for their potential biomedical applications. However, the desirable properties of nanoparticles for in vivo uses, such as colloidal stability, biodistribution, and pharmacokinetics, require further research. In this work, we report a bio-derived zwitterionic surface ligand, cysteine betaine (Cys-b) for the modification of hollow gold-silver nanoshells, giving rise to hyperthermia applications. Cys-b coatings on planar substrates and nanoshells were compared to conventional (11-mercaptoundecyl)tri(ethylene glycol) (OEG-thiol) to investigate their effects on the fouling resistance, colloidal stability, environmental tolerance, and photothermal properties. The results found that Cys-b and OEG-thiol coatings exhibited comparable antifouling properties against bacteria of gram-negative Pseudomonas aeruginosa (P. aeruginosa) and gram-positive Staphylococcus epidermidis (S. epidermidis), NIH-3T3 fibroblasts, and bovine serum albumin. However, when the modified nanoshells were suspended at a temperature of 50°C in aqueous 3M NaCl solutions, shifts in the extinction maximum of the OEG-capped nanoshells with time were observed, while the corresponding spectra of nanoshells capped with Cys-b generally remained unchanged. In addition, when the nanoshells were continuously exposed to NIR irradiation, the temperature of the solution containing nanoshells capped with Cys-b increased to a plateau of 54°C, while that of the OEG-capped nanoshells gradually decreased after reaching a peak temperature. Accordingly, the Cys-b nanoshells were conjugated with anti-HER2 antibodies for targeted delivery to HER2-positive MDA-MB-453 breast cancer cells for hyperthermia treatment. The results showed the selective delivery and effective photothermal cell ablation with the antibody-conjugated Cys-b nanoshells. Therefore, this work demonstrated the promise of bio-derived zwitterionic Cys

  5. Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia.

    PubMed

    Huang, Chun-Jen; Chu, Sz-Hau; Li, Chien-Hung; Lee, T Randall

    2016-09-01

    Nanoparticles decorated with biocompatible coatings have received considerable attention in recent years for their potential biomedical applications. However, the desirable properties of nanoparticles for in vivo uses, such as colloidal stability, biodistribution, and pharmacokinetics, require further research. In this work, we report a bio-derived zwitterionic surface ligand, cysteine betaine (Cys-b) for the modification of hollow gold-silver nanoshells, giving rise to hyperthermia applications. Cys-b coatings on planar substrates and nanoshells were compared to conventional (11-mercaptoundecyl)tri(ethylene glycol) (OEG-thiol) to investigate their effects on the fouling resistance, colloidal stability, environmental tolerance, and photothermal properties. The results found that Cys-b and OEG-thiol coatings exhibited comparable antifouling properties against bacteria of gram-negative Pseudomonas aeruginosa (P. aeruginosa) and gram-positive Staphylococcus epidermidis (S. epidermidis), NIH-3T3 fibroblasts, and bovine serum albumin. However, when the modified nanoshells were suspended at a temperature of 50°C in aqueous 3M NaCl solutions, shifts in the extinction maximum of the OEG-capped nanoshells with time were observed, while the corresponding spectra of nanoshells capped with Cys-b generally remained unchanged. In addition, when the nanoshells were continuously exposed to NIR irradiation, the temperature of the solution containing nanoshells capped with Cys-b increased to a plateau of 54°C, while that of the OEG-capped nanoshells gradually decreased after reaching a peak temperature. Accordingly, the Cys-b nanoshells were conjugated with anti-HER2 antibodies for targeted delivery to HER2-positive MDA-MB-453 breast cancer cells for hyperthermia treatment. The results showed the selective delivery and effective photothermal cell ablation with the antibody-conjugated Cys-b nanoshells. Therefore, this work demonstrated the promise of bio-derived zwitterionic Cys

  6. 47 CFR 54.507 - Cap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Universal Service Support for Schools and Libraries § 54.507 Cap. (a) Amount of the annual cap. The annual funding cap on federal universal service support for schools and libraries shall be $2.25 billion per... into subsequent funding years for use in the schools and libraries support mechanism in accordance...

  7. Dynamic Modeling of an Evapotranspiration Cap

    SciTech Connect

    Jacob J. Jacobson; Steven Piet; Rafael Soto; Gerald Sehlke; Harold Heydt; John Visser

    2005-10-01

    The U.S. Department of Energy is scheduled to design and install hundreds of landfill caps/barriers over the next several decades and these caps will have a design life expectancy of up to 1,000 years. Other landfill caps with 30 year design lifetimes are reaching the end of their original design life; the changes to these caps need to be understood to provide a basis for lifetime extension. Defining the attributes that make a successful cap (one that isolates the waste from the environment) is crucial to these efforts. Because cap systems such as landfill caps are dynamic in nature, it is impossible to understand, monitor, and update lifetime predictions without understanding the dynamics of cap degradation, which is most often due to multiple interdependent factors rather than isolated independent events. In an attempt to understand the dynamics of cap degradation, a computer model using system dynamics is being developed to capture the complex behavior of an evapotranspiration cap. The specific objectives of this project are to capture the dynamic, nonlinear feedback loop structures underlying an evapotranspiration cap and, through computer simulation, gain a better understanding of long-term behavior, influencing factors, and, ultimately, long-term cap performance.

  8. Indoleacetic acid movement in the root cap.

    PubMed

    Pernet, J J; Pilet, P E

    1976-01-01

    When applied on the root cap of Zea mays L., indol-3yl-acetic acid (IAA) may enter the root tip and move basipetally inside the cap. From the cap to the apex (quiescent centre and meristem) the IAA transport is very slow. Polarity of IAA movement, in relation to growth, is discussed.

  9. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a...

  10. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a...

  11. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a...

  12. 47 CFR 54.507 - Cap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... schools and libraries support mechanism in accordance with the public interest and notwithstanding the... schools and libraries mechanism in accordance with the public interest and notwithstanding the annual cap... Universal Service Support for Schools and Libraries § 54.507 Cap. (a) Amount of the annual cap. In...

  13. 47 CFR 54.507 - Cap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... schools and libraries support mechanism in accordance with the public interest and notwithstanding the... schools and libraries mechanism in accordance with the public interest and notwithstanding the annual cap... Universal Service Support for Schools and Libraries § 54.507 Cap. (a) Amount of the annual cap. In...

  14. 21 CFR 888.3000 - Bone cap.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a...

  15. 21 CFR 884.5250 - Cervical cap.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and... OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic Devices § 884.5250 Cervical cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix...

  16. 21 CFR 884.5250 - Cervical cap.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and... OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic Devices § 884.5250 Cervical cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix...

  17. 21 CFR 884.5250 - Cervical cap.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and... OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic Devices § 884.5250 Cervical cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix...

  18. 21 CFR 884.5250 - Cervical cap.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and... OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Therapeutic Devices § 884.5250 Cervical cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix...

  19. A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests.

    PubMed

    Pernas, M; Sánchez-Monge, R; Gómez, L; Salcedo, G

    1998-12-01

    Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11,275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.

  20. Marfan phenotype variability in a family segregating a missense mutation in the epidermal growth factor-like motif of the fibrillin gene.

    PubMed Central

    Dietz, H C; Pyeritz, R E; Puffenberger, E G; Kendzior, R J; Corson, G M; Maslen, C L; Sakai, L Y; Francomano, C A; Cutting, G R

    1992-01-01

    To examine the associations among fibrillin gene mutations, protein function, and Marfan syndrome phenotype, we screened for alterations in the fibrillin coding sequence in patients with a range of manifestations and clinical severity. A cysteine to serine substitution at codon 1409 (C1409S) was identified in an epidermal growth factor (EGF)-like motif from one fibrillin allele which segregates with the disease phenotype through three generations of a family affected with the Marfan syndrome. This alteration was not observed in 60 probands from other families or in 88 unrelated normal individuals. The altered cysteine is completely conserved in all EGF-like motifs identified in fibrillin, and in all proteins that contain this motif. These observations strongly indicate that C1409S is the disease-producing mutation in this family. The phenotype of individuals carrying C1409S varied widely with respect to onset of disease, organ-system involvement, and clinical severity; certain affected adults were unaware of their status before being diagnosed through this investigation. We conclude that fibrillin gene defects cause familial Marfan syndrome, that mutations in the EGF-like motif of the fibrillin gene are not uniformly associated with severe disease, and that fibrillin genotype is not the sole determinant of Marfan phenotype. Images PMID:1569206

  1. Defect Motifs for Constant Mean Curvature Surfaces

    NASA Astrophysics Data System (ADS)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  2. Armadillo motifs involved in vesicular transport.

    PubMed

    Striegl, Harald; Andrade-Navarro, Miguel A; Heinemann, Udo

    2010-02-01

    Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  3. Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis.

    PubMed

    Wawrzyńska, Anna; Kurzyk, Agata; Mierzwińska, Monika; Płochocka, Danuta; Wieczorek, Grzegorz; Sirko, Agnieszka

    2013-06-01

    Biosynthesis of cysteine is one of the fundamental processes in plants providing the reduced sulfur for cell metabolism. It is accomplished by the sequential action of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they constitute the hetero-oligomeric cysteine synthase (CS) complex through specific protein-protein interactions influencing the rate of cysteine production. The aim of our studies was to deregulate the CS complex formation in order to investigate its function in the control of sulfur homeostasis and optimize cysteine synthesis. Computational modeling was used to build a model of the Arabidopsis thaliana mitochondrial CS complex. Several polypeptides based on OAS-TL C amino-acid sequence found at SAT-OASTL interaction sites were designed as probable competitors for SAT3 binding. After verification of the binding in a yeast two-hybrid assay, the most strongly interacting polypeptide was introduced to different cellular compartments of Arabidopsis cell via genetic transformation. Moderate increase in total SAT and OAS-TL activities, but not thiols content, was observed dependent on the transgenic line and sulfur availability in the hydroponic medium. Though our studies demonstrate the proof of principle, they also suggest more complex interaction of both enzymes underlying the mechanism of their reciprocal regulation. PMID:23602110

  4. Cysteine-reactive covalent capture tags for enrichment of cysteine-containing peptides.

    PubMed

    Giron, Priscille; Dayon, Loïc; Mihala, Nikolett; Sanchez, Jean-Charles; Rose, Keith

    2009-11-01

    Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so-called cysteine-reactive covalent capture tags (C3T), for the isolation of Cys-containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine-containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. PMID:19813279

  5. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  6. Polyrhythmic synchronization in bursting networking motifs

    NASA Astrophysics Data System (ADS)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors.

  7. Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers

    NASA Astrophysics Data System (ADS)

    Ma, Xinfu; Guo, Qingquan; Xie, Yu; Ma, Haixiang

    2016-05-01

    The preparation of size- and shape-controlled metallic nanostructures in an eco-friendly manner has been regarded as one of the key issues in nanoscience research today. In this paper, biosynthesis of silver nanoflowers (AgNFs) using L-cysteine as reducing and capping agent in alkaline solution via 70 °C water bath for 4 h has been demonstrated. The formation of L-cys-AgNPs was observed visually by color change of the samples. The prepared samples were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). These results indicate that single-crystalline of AgNFs have been successfully synthesized.

  8. Phytoremediation -- a practical capping alternative

    SciTech Connect

    Beath, J.M.; Peak, M.J.

    1997-12-31

    Much literature has been devoted recently to the use of various plant species for the uptake of heavy metals and organic contaminants. Other uses for plants as part of the remediation process are growing in perceived effectiveness. Consequently, this paper deals with two other equally important potential uses of plants to address environmental problems that are just now evolving to the field trial stage: the use of plants to remediate organic pollutants; and the use of plants to control the rainfall-driven leaching of contaminants and the subsequent delivery to underlying groundwater. The traditional Resource Conservation and Recovery Act (RCRA) approach to capping landfills will be contrasted with the potential benefits of using plants that can balance incoming rainfall with evapotranspiration, as well as plants which can act on organic constituents in soil or sludge by either uptake or by promoting microbial activity in soil. This paper compares traditional RCRA capping costs to those for a phytoremediation capping alternative, whose benefits include significantly lower implementation cost and continued remediation. This paper discusses important elements of a successful approach to phytoremediation including: species selection, implementation techniques, cost-efficient monitoring, regulatory aspects, project timing, and realistic expectations.

  9. Metabolism of cysteine by cyteinesulfinate-independent pathway(s) in rat hepatocytes

    SciTech Connect

    Stipanuk, M.H.; De La Rosa, J.; Drake, M.R.

    1986-05-01

    The metabolism of cysteine (CYS) and that of cysteinesulfinate (CSA) were studied in freshly isolated hepatocytes from fed rats. In incubations of rat hepatocytes with either 1 or 25 mM CSA, over 90% of the /sup 14/CO/sub 2/ formed from (1-/sup 14/C)CSA could be accounted for by production of hypotaurine plus taurine. In similar incubations with 1 or 25 mM CYS, only 4% of /sup 14/CO/sub 2/ evolution from (1-/sup 14/C)CYS could be accounted for by production of hypotaurine plus taurine. Addition of unlabeled CSA inhibited recovery of label from (1-/sup 14/C)CYS as /sup 14/CO/sub 2/ by 33%. Metabolism of CYS and of CSA were affected differently by addition of ..cap alpha..-ketoglutarate, a cosubstrate for transamination, or of propargylglycine, an inhibitor of cystathionase activity. These data suggest that a substantial proportion of CYS is catabolized by CSA-independent pathways in the rat hepatocyte. Although addition of ..cap alpha..-ketoglutarate to incubations of hepatocytes with CSA resulted in a marked increase in CSA catabolism via the transamination pathway, addition of keto acids to incubation systems had little or no effect on production of any metabolite from CYS. Thus, CYS transamination does not appear to be a major pathway of CYS metabolism in the hepatocyte. Inhibition of cystathionase with propargylglycine reduced both /sup 14/CO/sub 2/ production from (1-/sup 14/C)CYS and ammonia plus urea nitrogen production from CYS by about 50%; CSA catabolism was not affected. Thus, cleavage of cyst(e)ine by cystathionase may be an important physiological pathway for CYS catabolism in the liver.

  10. Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes.

    PubMed Central

    Warner, A; Clements, D K; Parikh, S; Evans, W H; DeHaan, R L

    1995-01-01

    1. Gap junction formation was compared in the absence and presence of small peptides containing extracellular loop sequences of gap junction (connexin) proteins by measuring the time taken for pairs of spontaneously beating embryonic chick heart myoballs to synchronize beat rates. Test peptides were derived from connexin 32. Non-homologous peptides were used as controls. Control pairs took 42 +/- 0.5 min (mean +/- S.E.M.; n = 1088) to synchronize. 2. Connexins 32 and 43, but not 26, were detected in gap junction plaques. The density and distribution of connexin immunolabelling varied between myoballs. 3. Peptides containing conserved motifs from extracellular loops 1 and 2 delayed gap junction formation. The steep portion of the dose-response relation lay between 30 and 300 microM peptide. 4. In loop 1, the conserved motifs QPG and SHVR were identified as being involved in junction formation. In loop 2, the conserved SRPTEK motif was important. The ability of peptides containing the SRPTEK motif to interfere with the formation of gap junctions was enhanced by amino acids from the putative membrane-spanning region. 5. Peptides from loop 1 and loop 2 were equivalently effective; there was no synergism between them. 6. The inclusion of conserved cysteines in test peptides did not make them more effective in the competition assay. Images Figure 1 PMID:8576861

  11. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    PubMed

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River.

  12. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  13. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    PubMed Central

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-01-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1. PMID:27344972

  14. Motifs and structural blocks retrieval by GHT

    NASA Astrophysics Data System (ADS)

    Cantoni, Virginio; Ferone, Alessio; Petrosino, Alfredo; Polat, Ozlem

    2014-06-01

    The structure of a protein gives more insight on the protein function than its amino acid sequence. Protein structure analysis and comparison are important for understanding the evolutionary relationships among proteins, predicting protein functions, and predicting protein folding. Proteins are formed by two basic regular 3D structural patterns, called Secondary Structures (SSs): helices and sheets. A structural motif is a compact 3D protein block referring to a small specific combination of secondary structural elements, which appears in a variety of molecules. In this paper we compare a few approaches for motif retrieval based on the Generalized Hough Transform (GHT). A primary technique is to adopt the single SS as structural primitives; alternatives are to adopt a SSs pair as primitive structural element, or a SSs triplet, and so on up-to an entire motif. The richer the primitive, the higher the time for pre-analysis and search, and the simpler the inspection process on the parameter space for analyzing the peaks. Performance comparisons, in terms of precision and computation time, are here presented considering the retrieval of motifs composed by three to five SSs for more than 15 million searches. The approach can be easily applied to the retrieval of greater blocks, up to protein domains, or even entire proteins.

  15. The Motif of Meeting in Digital Education

    ERIC Educational Resources Information Center

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  16. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.

    PubMed

    Devarkar, Swapnil C; Wang, Chen; Miller, Matthew T; Ramanathan, Anand; Jiang, Fuguo; Khan, Abdul G; Patel, Smita S; Marcotrigiano, Joseph

    2016-01-19

    RNAs with 5'-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5'ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2'-O-methyl (2'-OMe) group to the 5'-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2'-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5'ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I's ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5'ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5'OH, 5'ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2'-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2'-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution. PMID:26733676

  17. Designing a nine cysteine-less DNA packaging motor from bacteriophage T4 reveals new insights into ATPase structure and function

    PubMed Central

    Kondabagil, Kiran; Dai, Li; Vafabakhsh, Reza; Ha, Taekjip; Draper, Bonnie; Rao, Venigalla B.

    2015-01-01

    The packaging motor of bacteriophage T4 translocates DNA into the capsid at a rate of up to 2000 bp/s. Such a high rate would require coordination of motor movements at millisecond timescale. Designing a cysteine-less gp17 is essential to generate fluorescently labeled motors and measure distance changes between motor domains by FRET analyses. Here, by using sequence alignments, structural modeling, combinatorial mutagenesis, and recombinational rescue, we replaced all nine cysteines of gp17 and introduced single cysteines at defined positions. These mutant motors retained in vitro DNA packaging activity. Single mutant motors translocated DNA molecules in real time as imaged by total internal reflection fluorescence microscopy. We discovered, unexpectedly, that a hydrophobic or nonpolar amino acid next to Walker B motif is essential for motor function, probably for efficient generation of OH− nucleophile. The ATPase Walker B motif, thus, may be redefined as “β-strand (4–6 hydrophobic-rich amino acids)–DE-hydrophobic/nonpolar amino acid”. PMID:25443668

  18. Cysteine Mutational Studies Provide Insight into a Thiol-Based Redox Switch Mechanism of Metal and DNA Binding in FurA from Anabaena sp. PCC 7120

    PubMed Central

    Botello-Morte, Laura; Pellicer, Silvia; Sein-Echaluce, Violeta C.; Contreras, Lellys M.; Neira, José Luis; Abián, Olga; Velázquez-Campoy, Adrián; Peleato, María Luisa; Fillat, María F.

    2016-01-01

    Abstract Aims: The ferric uptake regulator (Fur) is the main transcriptional regulator of genes involved in iron homeostasis in most prokaryotes. FurA from Anabaena sp. PCC 7120 contains five cysteine residues, four of them arranged in two redox-active CXXC motifs. The protein needs not only metal but also reducing conditions to remain fully active in vitro. Through a mutational study of the cysteine residues present in FurA, we have investigated their involvement in metal and DNA binding. Results: Residue C101 that belongs to a conserved CXXC motif plays an essential role in both metal and DNA binding activities in vitro. Substitution of C101 by serine impairs DNA and metal binding abilities of FurA. Isothermal titration calorimetry measurements show that the redox state of C101 is responsible for the protein ability to coordinate the metal corepressor. Moreover, the redox state of C101 varies with the presence or absence of C104 or C133, suggesting that the environments of these cysteines are mutually interdependent. Innovation: We propose that C101 is part of a thiol/disulfide redox switch that determines FurA ability to bind the metal corepressor. Conclusion: This mechanism supports a novel feature of a Fur protein that emerges as a regulator, which connects the response to changes in the intracellular redox state and iron management in cyanobacteria. Antioxid. Redox Signal. 24, 173–185. PMID:26414804

  19. Subgraphs and network motifs in geometric networks

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Alon, Uri

    2005-02-01

    Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic data sets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand the origin of the network motifs in these networks, it is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with a probability that decays with the distance between nodes. We present analytical solutions for the numbers of all three- and four-node subgraphs, in both directed and nondirected geometric networks. We also analyze geometric networks with arbitrary degree sequences and models with a bias for directed edges in one direction. Scaling rules for scaling of subgraph numbers with system size, lattice dimension, and interaction range are given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do not depend on system size, dimension, or connectivity function. We find that network motifs in many real-world networks, including social networks and neuronal networks, are not captured solely by these geometric models. This is in line with recent evidence that biological network motifs were selected as basic circuit elements with defined information-processing functions.

  20. DNA motif elucidation using belief propagation.

    PubMed

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM. PMID:23814189

  1. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes

    PubMed Central

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A.; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes. PMID:26054293

  2. Role of cysteines in mammalian VDAC isoforms' function.

    PubMed

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26947058

  3. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  4. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  5. Electrons initiate efficient formation of hydroperoxides from cysteine.

    PubMed

    Gebicki, Janusz M

    2016-09-01

    Amino acid and protein hydroperoxides can constitute a significant hazard if formed in vivo. It has been suggested that cysteine can form hydroperoxides after intramolecular hydrogen transfer to the commonly produced cysteine sulfur-centered radical. The resultant cysteine-derived carbon-centered radicals can react with oxygen at almost diffusion-controlled rate, forming peroxyl radicals which can oxidize other molecules and be reduced to hydroperoxides in the process. No cysteine hydroperoxides have been found so far. In this study, dilute air-saturated cysteine solutions were exposed to radicals generated by ionizing radiation and the hydroperoxides measured by an iodide assay. Of the three primary radicals present, the hydroxyl, hydrogen atoms and hydrated electrons, the first two were ineffective. However, electrons did initiate the generation of hydroperoxides by removing the -SH group and forming cysteine-derived carbon radicals. Under optimal conditions, 100% of the electrons reacting with cysteine produced the hydroperoxides with a 1:1 stoichiometry. Maximum hydroperoxide yields were at pH 5.5, with fairly rapid decline under more acid or alkaline conditions. The hydroperoxides were stable between pH 3 and 7.5, and decomposed in alkaline solutions. The results suggest that formation of cysteine hydroperoxides initiated by electrons is an unlikely event under physiological conditions.

  6. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes.

    PubMed

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes.

  7. 21 CFR 184.1271 - L-Cysteine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3-mercaptopropanoic acid (C3H7O2NS). (b) The ingredient meets the appropriate part of the specification set forth...

  8. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  9. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA Capping Apparatus

    SciTech Connect

    Gu, Meigang; Rajashankar, Kanagalaghatta R.; Lima, Christopher D.

    2010-05-04

    The 5{prime} guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP IIo), primarily via contacts between RNAP IIo and Ceg1. A 3.0 {angstrom} crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP IIo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure.

  10. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  11. Cysteine sulfoxide derivatives in Petiveria alliacea.

    PubMed

    Kubec, R; Musah, R A

    2001-11-01

    Two diastereomers of S-benzyl-L-cysteine sulfoxide have been isolated from fresh roots of Petiveria alliacea. Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy and confirmed by comparison with authentic compounds. Both the R(S) and S(S) diastereomers of the sulfoxide are present in all parts of the plant (root, stem, and leaves) with the latter diastereomer being predominant. Their total content greatly varied in different parts of the plant between 0.07 and 2.97 mg g(-1) fr. wt, being by far the highest in the root. S-Benzylcysteine has also been detected in trace amounts (<10 microg g(-1) fr. wt) in all parts of the plant. This represents the first report of the presence of S-benzylcysteine derivatives in nature.

  12. Vanadium inhibition of serine and cysteine proteases.

    PubMed

    Guerrieri, N; Cerletti, P; De Vincentiis, M; Salvati, A; Scippa, S

    1999-03-01

    A study was made on the effect of vanadium, in both the tetravalent state in vanadyl sulphate and in the pentavalent state in sodium meta-vanadate, and ortho-vanadate, on the proteolysis of azocasein by two serine proteases, trypsin and subtilisin and two cysteine proteases bromelain and papain. Also the proteolysis of bovine azoalbumin by serine proteases was considered. An inhibitory effect was present in all cases, except meta-vanadate with subtilisin. The oxidation level of vanadium by itself did not determine the inhibition kinetics, which also depended on the type and composition of the vanadium containing molecule and on the enzyme assayed. The pattern of inhibition was similar for proteases belonging to the same class. The highest inhibition was obtained with meta-vanadate on papain and with vanadyl sulphate on bromelain.

  13. Cysteine analogues potentiate glucose-induced insulin release in vitro

    SciTech Connect

    Ammon, H.P.; Hehl, K.H.; Enz, G.; Setiadi-Ranti, A.; Verspohl, E.J.

    1986-12-01

    In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhance insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.

  14. Cysteine Modification: Probing Channel Structure, Function and Conformational Change.

    PubMed

    Akabas, Myles H

    2015-01-01

    Cysteine substitution has been a powerful tool to investigate the structure and function of proteins. It has been particularly useful for studies of membrane proteins in their native environment, embedded in phospholipid membranes. Among the 20 amino acids, cysteine is uniquely reactive. This reactivity has motivated the synthesis of a wide array of sulfhydryl reactive chemicals. The commercially available array of sulfhydryl reactive reagents has allowed investigators to probe the local steric and electrostatic environment around engineered cysteines and to position fluorescent, paramagnetic and mass probes at specific sites within proteins and for distance measurements between pairs of sites. Probing the reactivity and accessibility of engineered cysteines has been extensively used in Substituted Cysteine Accessibility Method (SCAM) investigations of ion channels, membrane transporters and receptors. These studies have successfully identified the residues lining ion channels, agonist/antagonist and allosteric modulator binding sites, and regions whose conformation changes as proteins transition between different functional states. The thousands of cysteine-substitution mutants reported in the literature demonstrate that, in general, mutation to cysteine is well tolerated. This has allowed systematic studies of residues in transmembrane segments and in other parts of membrane proteins. Finally, by inserting pairs of cysteines and assaying their ability to form disulfide bonds, changes in proximity and mobility relationships between specific positions within a protein can be inferred. Thus, cysteine mutagenesis has provided a wealth of data on the structure of membrane proteins in their functional environment. This data can complement the structural insights obtained from the burgeoning number of crystal structures of detergent solubilized membrane proteins whose functional state is often uncertain. This article will review the use of cysteine mutagenesis to probe

  15. CHARACTERIZATION OF DANSYLATED CYSTEINE, GLUTATHIONE DISULFIDE, CYSTEINE AND CYSTINE BY NARROW BORE LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometric (RP-LC/ESI-MS) method has been developed to confirm the identity of dansylated derivatives of cysteine and glutathione, and their respective dimers. Cysteine, GSH, CSSC...

  16. Relationship between cap structure and energy gap in capped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ono, Shota; Tanikawa, Kousei; Kuwahara, Riichi; Ohno, Kaoru

    2016-07-01

    Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understand the cap states.

  17. Relationship between cap structure and energy gap in capped carbon nanotubes.

    PubMed

    Ono, Shota; Tanikawa, Kousei; Kuwahara, Riichi; Ohno, Kaoru

    2016-07-14

    Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understand the cap states. PMID:27421422

  18. Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography*

    PubMed Central

    Huang, Honggang; Haar Petersen, Martin; Ibañez-Vea, Maria; Lassen, Pernille S.; Larsen, Martin R.; Palmisano, Giuseppe

    2016-01-01

    Cysteine is a rare and conserved amino acid involved in most cellular functions. The thiol group of cysteine can be subjected to diverse oxidative modifications that regulate many physio-pathological states. In the present work, a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) was synthesized to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO2) and subsequent mass spectrometric analysis. The CysPAT strategy was developed using a synthetic peptide, a standard protein and subsequently the strategy was applied to protein lysates from Hela cells, achieving high specificity and enrichment efficiency. In particular, for Cys proteome analysis, the method led to the identification of 7509 unique Cys peptides from 500 μg of HeLa cell lysate starting material. Furthermore, the method was developed to simultaneously enrich Cys peptides and phosphorylated peptides. This strategy was applied to SILAC labeled Hela cells subjected to 5 min epidermal growth factor (EGF) stimulation. In total, 10440 unique reversibly modified Cys peptides (3855 proteins) and 7339 unique phosphopeptides (2234 proteins) were simultaneously identified from 250 μg starting material. Significant regulation was observed in both phosphorylation and reversible Cys modification of proteins involved in EGFR signaling. Our data indicates that EGF stimulation can activate the well-known phosphorylation of EGFR and downstream signaling molecules, such as mitogen-activated protein kinases (MAPK1 and MAPK3), however, it also leads to substantial modulation of reversible cysteine modifications in numerous proteins. Several protein tyrosine phosphatases (PTPs) showed a reduction of the catalytic Cys site in the conserved putative phosphatase HC(X)5R motif indicating an activation and subsequent de-phosphorylation of proteins involved in the EGF signaling pathway. Overall, the CysPAT strategy is a straight forward, easy and promising

  19. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    PubMed

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  20. Metabolism of cysteine and cysteinesulfinate in rat kidney tubules

    SciTech Connect

    De La Rosa, J.; Stipanuk, M.H.

    1986-05-01

    In studies with rat hepatocytes, hypotaurine plus taurine production accounted for less than 5% of the total amount of cysteine (CYS) catabolized, whereas more than 90% of the metabolized cysteinesulfinate (CSA) was converted to taurine plus hypotaurine. Similar studies have been carried out with kidney tubules isolated from fed rats and incubated with 2 mM (1-/sup 14/C)CYS or 25 mM (1-/sup 14/C)CSA at 37/sup 0/C for up to 40 min. The production of /sup 14/CO/sub 2/ from CSA (3.1 +/- 1.3 nmol/sup ./ min/sup -1//sup ./ mg dry wt/sup -1/) was equivalent to the accumulation of N in NH/sub 4//sup +/ plus glutamate. Substantial oxidation of CYS was observed (16 +/- 11 nmol CO/sub 2/ x min/sup -1/ x mg dry wt/sup -1/), but only 12% of the expected amount of N was recovered as NH/sub 4//sup +/ plus glutamate. Accumulation of hypotaurine plus taurine was equivalent to 20% of the observed rate of /sup 14/CO/sub 2/ production from CSA but accounted for only 2% of the observed rate of /sup 14/CO/sub 2/ production from CYS. Addition of unlabeled CSA to incubations with varying levels of CYS had no effect on production of /sup 14/CO/sub 2/. Addition of 2 mM ..cap alpha..-ketoglutarate to the incubation mixtures resulted in an increased in /sup 14/CO/sub 2/ production from CSA to 290% of the control level but had no effect on CYS oxidation. In agreement with the authors findings for rat hepatocytes, these data suggest that most metabolism of CYS by the rat kidney tubule occurs by a CSA-independent pathway. However, in contrast to the metabolism of CSA almost entirely to taurine in the hepatocyte, kidney tubules appeared to metabolize CSA primarily by the transamination pathway.

  1. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  2. Functional Motifs in Biochemical Reaction Networks

    PubMed Central

    Tyson, John J.; Novák, Béla

    2013-01-01

    The signal-response characteristics of a living cell are determined by complex networks of interacting genes, proteins, and metabolites. Understanding how cells respond to specific challenges, how these responses are contravened in diseased cells, and how to intervene pharmacologically in the decision-making processes of cells requires an accurate theory of the information-processing capabilities of macromolecular regulatory networks. Adopting an engineer’s approach to control systems, we ask whether realistic cellular control networks can be decomposed into simple regulatory motifs that carry out specific functions in a cell. We show that such functional motifs exist and review the experimental evidence that they control cellular responses as expected. PMID:20055671

  3. Anticipated synchronization in neuronal network motifs

    NASA Astrophysics Data System (ADS)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  4. Application of bioactive molecules in pulp-capping situations.

    PubMed

    Goldberg, M; Six, N; Decup, F; Buch, D; Soheili Majd, E; Lasfargues, J J; Salih, E; Stanislawski, L

    2001-08-01

    To evaluate the effects of bioactive molecules in pulpal wound healing, we carried out experiments using the rat upper molars as an in vivo model. Cavities were prepared on the mesial aspect, and pulp perforation was accomplished by the application of pressure with the tip of a steel probe. After the pulp-capping procedure, the cavities were filled with a glass-ionomer cement. Comparison was made between and among: (1) sham-operated controls with dentin and predentin fragments implanted in the pulp during perforation after 8, 14, and 28 days; (2) carrier without bioactive substance; (3) calcium hydroxide; (4) Bone Sialoprotein (BSP); (5) different concentrations of Bone Morphogenetic Protein-7 (BMP-7), also termed Osteogenic Protein-1 (OP-1); and (6) N-Acetyl Cysteine (NAC), an anti-oxidant agent preventing glutathione depletion. Histologic and morphometric comparison, carried out among the first 4 groups on demineralized tissue sections, indicated that, at 28 days after implantation, BSP was the most efficient bioactive molecule, inducing homogeneous and well-mineralized reparative dentin. BMP-7 gave reparative dentin of the osteodentin type in the coronal part of the pulp, and generated the formation of a homogeneous mineralized structure in the root canal. These findings indicate that the crown and radicular parts of the pulp bear their own specificity. Both BSP and BMP-7 were superior to calcium hydroxide in their mineralization-inducing properties, and displayed larger areas of mineralization containing fewer pulp tissue inclusions. The overall mineralization process to these molecules appeared to proceed by mechanisms that involved the recruitment of cells which differentiate into osteoblast-like cells, producing a mineralizing extracellular matrix. We also provide preliminary evidence that NAC induces reparative dentin formation in the rat molar model. Pulp-capping with bioactive molecules provides new prospects for dental therapy. PMID:12640750

  5. Analyzing network reliability using structural motifs

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Yasamin; Youssef, Mina; Eubank, Stephen; Mowlaei, Shahir

    2015-04-01

    This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about the effect of a network's structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.

  6. Acidic/IQ Motif Regulator of Calmodulin*

    PubMed Central

    Putkey, John A.; Waxham, M. Neal; Gaertner, Tara R.; Brewer, Kari J.; Goldsmith, Michael; Kubota, Yoshihisa; Kleerekoper, Quinn K.

    2013-01-01

    The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca2+ binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca2+ binding to sites III and IV, and we present a model showing that this could increase Ca2+ binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39–62), and an adjacent acidic cluster of amino acids (amino acids 28–40). A synthetic peptide spanning residues 28–62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca2+ association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca2+ binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca2+ binding to the C-domain of CaM. PMID:17991744

  7. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif.

    PubMed

    Daly, Norelle L; Clark, Richard J; Plan, Manuel R; Craik, David J

    2006-02-01

    The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Möbius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Furthermore, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide. PMID:16207177

  8. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif.

    PubMed

    Daly, Norelle L; Clark, Richard J; Plan, Manuel R; Craik, David J

    2006-02-01

    The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Möbius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Furthermore, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide.

  9. Probes of the Catalytic Site of Cysteine Dioxygenase

    SciTech Connect

    Chai,S.; Bruyere, J.; Maroney, M.

    2006-01-01

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the a-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ a-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by {alpha}-ketoglutarate.

  10. L-Cysteine metabolism and its nutritional implications.

    PubMed

    Yin, Jie; Ren, Wenkai; Yang, Guan; Duan, Jielin; Huang, Xingguo; Fang, Rejun; Li, Chongyong; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Kim, Sung Woo; Wu, Guoyao

    2016-01-01

    L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans.

  11. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  12. L-Cysteine metabolism and its nutritional implications.

    PubMed

    Yin, Jie; Ren, Wenkai; Yang, Guan; Duan, Jielin; Huang, Xingguo; Fang, Rejun; Li, Chongyong; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Kim, Sung Woo; Wu, Guoyao

    2016-01-01

    L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans. PMID:25929483

  13. Dynamic motifs in socio-economic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  14. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  15. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    PubMed

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound. PMID:27152692

  16. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations. PMID:12614545

  17. A New Family of Giardial Cysteine-Rich Non-VSP Protein Genes and a Novel Cyst Protein

    PubMed Central

    Birkeland, Shanda R.; Preheim, Sarah P.; Cipriano, Michael J.; McArthur, Andrew G.; Gillin, Frances D.

    2006-01-01

    Since the Giardia lamblia cyst wall is necessary for survival in the environment and host infection, we tested the hypothesis that it contains proteins other than the three known cyst wall proteins. Serial analysis of gene expression during growth and encystation revealed a gene, “HCNCp” (High Cysteine Non-variant Cyst protein), that was upregulated late in encystation, and that resembled the classic Giardia variable surface proteins (VSPs) that cover the trophozoite plasmalemma. HCNCp is 13.9% cysteine, with many “CxxC” tetrapeptide motifs and a transmembrane sequence near the C-terminus. However, HCNCp has multiple “CxC” motifs rarely found in VSPs, and does not localize to the trophozoite plasmalemma. Moreover, the HCNCp C-terminus differed from the canonical VSP signature. Full-length epitope-tagged HCNCp expressed under its own promoter was upregulated during encystation with highest expression in cysts, including 42 and 21 kDa C-terminal fragments. Tagged HCNCp targeted to the nuclear envelope in trophozoites, and co-localized with cyst proteins to encystation-specific secretory vesicles during encystation. HCNCp defined a novel trafficking pathway as it localized to the wall and body of cysts, while the cyst proteins were exclusively in the wall. Unlike VSPs, HCNCp is expressed in at least five giardial strains and four WB subclones expressing different VSPs. Bioinformatics identified 60 additional large high cysteine membrane proteins (HCMp) containing ≥20 CxxC/CxC's lacking the VSP-specific C-terminal CRGKA. HCMp were absent or rare in other model or parasite genomes, except for Tetrahymena thermophila with 30. MEME analysis classified the 61 gHCMp genes into nine groups with similar internal motifs. Our data suggest that HCNCp is a novel invariant cyst protein belonging to a new HCMp family that is abundant in the Giardia genome. HCNCp and the other HCMp provide a rich source for developing parasite-specific diagnostic reagents, vaccine

  18. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    PubMed

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  19. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    PubMed

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html.

  20. No tradeoff between versatility and robustness in gene circuit motifs

    NASA Astrophysics Data System (ADS)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  1. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design

    PubMed Central

    Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  2. Organometallic palladium reagents for cysteine bioconjugation.

    PubMed

    Vinogradova, Ekaterina V; Zhang, Chi; Spokoyny, Alexander M; Pentelute, Bradley L; Buchwald, Stephen L

    2015-10-29

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  3. Developing novel anthelmintics from plant cysteine proteinases

    PubMed Central

    Behnke, Jerzy M; Buttle, David J; Stepek, Gillian; Lowe, Ann; Duce, Ian R

    2008-01-01

    Intestinal helminth infections of livestock and humans are predominantly controlled by treatment with three classes of synthetic drugs, but some livestock nematodes have now developed resistance to all three classes and there are signs that human hookworms are becoming less responsive to the two classes (benzimidazoles and the nicotinic acetylcholine agonists) that are licensed for treatment of humans. New anthelmintics are urgently needed, and whilst development of new synthetic drugs is ongoing, it is slow and there are no signs yet that novel compounds operating through different modes of action, will be available on the market in the current decade. The development of naturally-occurring compounds as medicines for human use and for treatment of animals is fraught with problems. In this paper we review the current status of cysteine proteinases from fruits and protective plant latices as novel anthelmintics, we consider some of the problems inherent in taking laboratory findings and those derived from folk-medicine to the market and we suggest that there is a wealth of new compounds still to be discovered that could be harvested to benefit humans and livestock. PMID:18761736

  4. MISAE: a new approach for regulatory motif extraction.

    PubMed

    Sun, Zhaohui; Yang, Jingyi; Deogun, Jitender S

    2004-01-01

    The recognition of regulatory motifs of co-regulated genes is essential for understanding the regulatory mechanisms. However, the automatic extraction of regulatory motifs from a given data set of the upstream non-coding DNA sequences of a family of co-regulated genes is difficult because regulatory motifs are often subtle and inexact. This problem is further complicated by the corruption of the data sets. In this paper, a new approach called Mismatch-allowed Probabilistic Suffix Tree Motif Extraction (MISAE) is proposed. It combines the mismatch-allowed probabilistic suffix tree that is a probabilistic model and local prediction for the extraction of regulatory motifs. The proposed approach is tested on 15 co-regulated gene families and compares favorably with other state-of-the-art approaches. Moreover, MISAE performs well on "corrupted" data sets. It is able to extract the motif from a "corrupted" data set with less than one fourth of the sequences containing the real motif.

  5. RNA structural motif recognition based on least-squares distance.

    PubMed

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  6. CAPS Capsule. Volume 5, Number 1.

    ERIC Educational Resources Information Center

    Walz, Garry, Ed.; And Others

    Published 3 times yearly by the ERIC Clearinghouse on Counseling and Personnel Services, CAPS Capsule acquaints the reader with recent projects, meetings, publications and materials which are of interest to those in the helping professions. This issue introduces several new publications offered by CAPS under the name, "The Counselor's S x-Pack."…

  7. 31 CFR 50.15 - Cap disclosure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Cap disclosure. 50.15 Section 50.15 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.15 Cap disclosure. (a) General. Under section 103(e)(2)...

  8. 31 CFR 50.15 - Cap disclosure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Cap disclosure. 50.15 Section 50.15 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.15 Cap disclosure. (a) General. Under section 103(e)(2)...

  9. 31 CFR 50.15 - Cap disclosure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Cap disclosure. 50.15 Section 50.15 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.15 Cap disclosure. (a) General. Under section 103(e)(2)...

  10. 31 CFR 50.15 - Cap disclosure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Cap disclosure. 50.15 Section 50.15 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.15 Cap disclosure. (a) General. Under section 103(e)(2)...

  11. 31 CFR 50.15 - Cap disclosure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Cap disclosure. 50.15 Section 50.15 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.15 Cap disclosure. (a) General. Under section 103(e)(2)...

  12. Chaotic motif sampler: detecting motifs from biological sequences by using chaotic neurodynamics

    NASA Astrophysics Data System (ADS)

    Matsuura, Takafumi; Ikeguchi, Tohru

    Identification of a region in biological sequences, motif extraction problem (MEP) is solved in bioinformatics. However, the MEP is an NP-hard problem. Therefore, it is almost impossible to obtain an optimal solution within a reasonable time frame. To find near optimal solutions for NP-hard combinatorial optimization problems such as traveling salesman problems, quadratic assignment problems, and vehicle routing problems, chaotic search, which is one of the deterministic approaches, has been proposed and exhibits better performance than stochastic approaches. In this paper, we propose a new alignment method that employs chaotic dynamics to solve the MEPs. It is called the Chaotic Motif Sampler. We show that the performance of the Chaotic Motif Sampler is considerably better than that of the conventional methods such as the Gibbs Site Sampler and the Neighborhood Optimization for Multiple Alignment Discovery.

  13. The maize cystatin CC9 interacts with apoplastic cysteine proteases.

    PubMed

    van der Linde, Karina; Mueller, André N; Hemetsberger, Christoph; Kashani, Farnusch; van der Hoorn, Renier A L; Doehlemann, Gunther

    2012-11-01

    In a recent study we identified corn cystain9 (CC9) as a novel compatibility factor for the interaction of the biotrophic smut fungus Ustilago maydis with its host plant maize. CC9 is transcriptionally induced during the compatible interaction with U. maydis and localizes in the maize apoplast where it inhibits apoplastic papain-like cysteine proteases. The proteases are activated during incompatible interaction and salicylic acid (SA) treatment and, in turn, are sufficient to induce SA signaling including PR-gene expression. Therefore the inhibition of apoplastic papain-like cysteine proteases by CC9 is essential to suppress host immunity during U. maydis infection. Here were present new experimental data on the cysteine protease-cystatin interaction and provide an in silco analysis of plant cystatins and the identified apoplastic cysteine proteases.

  14. The metabolism of S-methyl-l-cysteine

    PubMed Central

    Sklan, Naomi M.; Barnsley, E. A.

    1968-01-01

    1. Methylsulphinylacetic acid, 2-hydroxy-3-methylsulphinylpropionic acid and methylmercapturic acid sulphoxide (N-acetyl-S-methyl-l-cysteine S-oxide) were isolated as their dicyclohexylammonium salts from the urine of rats after they had been dosed with S-methyl-l-cysteine. 2. A fourth sulphoxide was isolated but not identified. 3. The excretion of sulphate in the urine of rats dosed with S-methyl-l-cysteine was measured. 4. The metabolism of S-methyl-l-cysteine by the hamster and guinea pig was examined chromatographically. 5. The preparation of the following compounds is reported: (−)-dicyclohexylammonium methyl-mercapturate sulphoxide; the dicyclohexylammonium salts of the optically inactive forms of 2-hydroxy-3-methylthiopropionic acid, 2-hydroxy-3-methyl-sulphinylpropionic acid and methylsulphinylacetic acid. PMID:5641877

  15. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  16. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface. PMID:23580642

  17. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  18. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins

    PubMed Central

    Pei, Jimin; Grishin, Nick V

    2012-01-01

    Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159

  19. Molecular characterization and expression analysis of cathepsin L1 cysteine protease from pearl oyster Pinctada fucata.

    PubMed

    Ma, Jianjun; Zhang, Dianchang; Jiang, Jingjing; Cui, Shuge; Pu, Hanlin; Jiang, Shigui

    2010-09-01

    Cathepsin L is one of the crucial enzyme superfamilies and involved in the immune responses. In this study, a cDNA encoding cathepsin L cysteine protease was identified and characterized from pearl oyster Pinctada fucata (designated as poCL1). The poCL1 cDNA was 1160 bp long and consisted of a 5'-untranslated region (UTR) of 15 bp, a 3'-UTR of 149 bp with a polyadenylation signal (AATAAA) at 11 nucleotides upstream of the poly(A) tail, and an open reading frame (ORF) of 996 bp encoding a polypeptide of 331 amino acids, which contained a typical signal peptide sequence (Met(1)-Ala(16)), a prodomain (Thr(17)-Asp(113)), and a mature domain (Leu(114)-Val(331)). The preproprotein contained the oxyanion hole (Gln), the active triad formed by Cys, His and Asn, and the conserved ERFNIN, GNFD motifs, which is characteristic for cathepsin L proteases. Homology analysis revealed that the poCL1 shared 62.5-72.5% similarity and 42.9-56.0% identity to other known cathepsin L sequences. The phylogenetic tree showed that the poCL1 clustered with the invertebrate cathepsin L cysteine proteases and was closely related to Stichopus japonicus CL, Strongylocentrotus salar CL1 and Radix peregra CL. The mRNA expression of the poCL1 in blank group and bacterial challenge group could be detected in all studied tissues with the higher level in digestive gland. The expression level of poCL1 mRNA was significantly up-regulated at 4 h and 8 h, and then significantly down-regulated at 12 h and 24 h in digestive gland after Vibrio alginolyticus stimulation. These results provided important information for further exploring the roles of pearl oyster cathepsin L in the immune responses.

  20. Cysteine homeostasis plays an essential role in plant immunity.

    PubMed

    Álvarez, Consolación; Bermúdez, M Ángeles; Romero, Luis C; Gotor, Cecilia; García, Irene

    2012-01-01

    Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response.

  1. MINER: software for phylogenetic motif identification.

    PubMed

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  2. Use of Metallopeptide Based Mimics Demonstrates That the Metalloprotein Nitrile Hydratase Requires Two Oxidized Cysteinates for Catalytic Activity

    SciTech Connect

    Shearer, J.; Callan, P; Amie, J

    2010-01-01

    Nitrile hydratases (NHases) are non-heme Fe{sup III} or non-corrin Co{sup III} containing metalloenzymes that possess an N{sub 2}S{sub 3} ligand environment with nitrogen donors derived from amidates and sulfur donors derived from cysteinates. A closely related enzyme is thiocyanate hydrolase (SCNase), which possesses a nearly identical active-site coordination environment as CoNHase. These enzymes are redox inactive and perform hydrolytic reactions; SCNase hydrolyzes thiocyanate anions while NHase converts nitriles into amides. Herein an active CoNHase metallopeptide mimic, [Co{sup III}NHase-m1] (NHase-m1 = AcNH-CCDLP-CGVYD-PA-COOH), that contains Co{sup III} in a similar N{sub 2}S{sub 3} coordination environment as CoNHase is reported. [Co{sup III}NHase-m1] was characterized by electrospray ionization-mass spectrometry (ESI-MS), gel-permeation chromatography (GPC), Co K-edge X-ray absorption spectroscopy (Co-S: 2.21 {angstrom}; Co-N: 1.93 {angstrom}), vibrational, and optical spectroscopies. We find that [Co{sup III}NHase-m1] will perform the catalytic conversion of acrylonitrile into acrylamide with up to 58 turnovers observed after 18 h at 25 C (pH 8.0). FTIR data used in concert with calculated vibrational data (mPWPW91/aug-cc-TZVPP) demonstrates that the active form of [Co{sup III}NHase-m1] has a ligated SO{sub 2} (? = 1091 cm{sup -1}) moiety and a ligated protonated SO(H) (? = 928 cm{sup -1}) moiety; when only one oxygenated cysteinate ligand (i.e., a mono-SO{sub 2} coordination motif) or the bis-SO{sub 2} coordination motif are found within [Co{sup III}NHase-m1] no catalytic activity is observed. Calculations of the thermodynamics of ligand exchange (B3LYP/aug-cc-TZVPP) suggest that the reason for this is that the SO{sub 2}/SO(H) equatorial ligand motif promotes both water dissociation from the Co{sup III}-center and nitrile coordination to the Co{sup III}-center. In contrast, the under- or overoxidized motifs will either strongly favor a five coordinate Co

  3. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  4. Conversion of a helix-turn-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent.

    PubMed Central

    Ebright, R H; Ebright, Y W; Pendergrast, P S; Gunasekera, A

    1990-01-01

    Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein [de Crombrugghe, B., Busby, S. & Buc, H. (1984) Science 224, 831-838; and Pabo, C. & Sauer, R. (1984) Annu. Rev. Biochem. 53, 293-321]. In this work, CAP has been converted into a site-specific DNA cleavage agent by incorporation of the chelator 1,10-phenanthroline at amino acid 10 of the helix-turn-helix motif. [(N-Acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP binds to a 22-base-pair DNA recognition site with Kobs = 1 x 10(8) M-1. In the presence of Cu(II) and reducing agent, [(N-acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP cleaves DNA at four adjacent nucleotides on each DNA strand within the DNA recognition site. The DNA cleavage reaction has been demonstrated using 40-base-pair and 7164-base-pair DNA substrates. The DNA cleavage reaction is not inhibited by dam methylation of the DNA substrate. Such semisynthetic site-specific DNA cleavage agents have potential applications in chromosome mapping, cloning, and sequencing. Images PMID:2158096

  5. Topogenesis and cell surface trafficking of GPR34 are facilitated by positive-inside rule that effects through a tri-basic motif in the first intracellular loop.

    PubMed

    Hasegawa, Haruki; Patel, Neha; Ettehadieh, Elham; Li, Peng; Lim, Ai Ching

    2016-07-01

    Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34. PMID:27086875

  6. RNA motif discovery: a computational overview.

    PubMed

    Achar, Avinash; Sætrom, Pål

    2015-01-01

    Genomic studies have greatly expanded our knowledge of structural non-coding RNAs (ncRNAs). These RNAs fold into characteristic secondary structures and perform specific-structure dependent biological functions. Hence RNA secondary structure prediction is one of the most well studied problems in computational RNA biology. Comparative sequence analysis is one of the more reliable RNA structure prediction approaches as it exploits information of multiple related sequences to infer the consensus secondary structure. This class of methods essentially learns a global secondary structure from the input sequences. In this paper, we consider the more general problem of unearthing common local secondary structure based patterns from a set of related sequences. The input sequences for example could correspond to 3(') or 5(') untranslated regions of a set of orthologous genes and the unearthed local patterns could correspond to regulatory motifs found in these regions. These sequences could also correspond to in vitro selected RNA, genomic segments housing ncRNA genes from the same family and so on. Here, we give a detailed review of the various computational techniques proposed in literature attempting to solve this general motif discovery problem. We also give empirical comparisons of some of the current state of the art methods and point out future directions of research.

  7. Annotating RNA motifs in sequences and alignments

    PubMed Central

    Gardner, Paul P.; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure–function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs—RMfam—and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. PMID:25520192

  8. The network motif architecture of dominance hierarchies.

    PubMed

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies. PMID:25762649

  9. The network motif architecture of dominance hierarchies.

    PubMed

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies.

  10. Structural motifs and the stability of fullerenes

    SciTech Connect

    Austin, S.J.; Fowler, P.W.; Manolopoulos, D.E.; Orlandi, G.; Zerbetto, F.

    1995-05-18

    Full geometry optimization has been performed within the semiempirical QCFF/PI model for the 1812 fullerene structural isomers of C{sub 60} formed by 12 pentagons and 20 hexagons. All are local minima on the potential energy hypersurface. Correlations of total energy with many structural motifs yield highly scattered diagrams, but some exhibit linear trends. Penalty and merit functions can be assigned to certain motifs: inclusion of a fused pentagon pair entails an average penalty of 111 kJ mol{sup -1}; a generic hexagon triple costs 23 kJ mol{sup -1}; a triple (open or fused) comprising a pentagon between two hexagonal neighbors gives a stabilization of 19 kJ mol{sup -1}. These results can be understood in terms of the curved nature of fullerene molecules: pentagons should be isolated to avoid sharp local curvature, hexagon triples are costly because they enforce local planarity and hence imply high curvature in another part of the fullerene surface, but hexagon-pentagon-hexagon triples allow the surface to distribute steric strain by warping. The best linear fit is found for H, the second moment of the hexagon-neighbor-index signature, which fits the total energies with a standard deviation of only 53 kJ mol{sup -1} and must be minimized for stability; this index too can be interpreted in terms of curvature. 26 refs., 5 figs.

  11. CAPS and INMS Major Accomplishments

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter

    2014-05-01

    The Cassini-Huygens Ion Neutral Mass Spectrometer (Cassini INMS) and the Cassini Plasma Spectrometer (CAPS) have provided "discovery" science at Titan, Enceladus, Rhea/Dione, and throughout the magnetosphere of Saturn during the course of the mission. In this talk we will review some of the major scientific achievements: 1) the discovery of an extremely complex ion neutral organic chemistry in Titan's upper atmosphere that forms the building blocks for aerosol processes below, 2) the discovery of gases and grains emanating from Enceladus' cryo-geysers that tell us about chemical processes in an interior sea, 3) the first direct compositional measurements of sputtered icy moon surfaces, 4) the clearest example to date of the complex plasma interchange processes that occur in rapidly rotating magnetospheres of gas giants, initiating global dynamic processes that enable Saturn to shed the plasma from Enceladus' plume, and complete with a myriad of longitudinal and solar local-time variations, and 5) the dominance of Enceladus water outgassing as a source of magnetospheric plasma that stretches out to Titan and provides oxygen that can convert Titan's rich nitrile populations into amino acids.

  12. Edge of polar cap patches

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  13. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center.

    PubMed Central

    Henehan, C. J.; Pountney, D. L.; Zerbe, O.; Vasák, M.

    1993-01-01

    Optical and NMR methods are presented for the identification of cysteine ligands in Cd-substituted metalloproteins, in particular those containing zinc-fingerlike motifs, using Cd-substituted Desulfovibrio gigas rubredoxin (Cd-Rd) as a model [Cd(CysS)4]2- complex. The 113Cd NMR spectrum of Cd-Rd contains a single 113Cd resonance with a chemical shift position (723.6 ppm) consistent with tetrathiolate metal coordination. The proton chemical shifts of the four cysteine ligands were obtained from one-dimensional heteronuclear (1H-113Cd) multiple quantum coherence (HMQC) and total coherence spectroscopy (TOCSY)-relayed HMQC experiments. In addition, sequential assignments were made for two short cysteine-containing stretches of the polypeptide chain using a combination of homonuclear proton correlated spectroscopy, TOCSY, and nuclear Overhauser effect spectroscopy experiments, enabling sequence-specific heteronuclear 3J(1H beta-113Cd) coupling constants for each cysteine to be determined. The magnitude of these couplings (0-38 Hz) follows a Karplus-like dependence with respect to the H beta-C beta-S gamma-Cd dihedral angles, inferred from the crystal structure of the native protein. The difference absorption envelope (Cd-Rd vs. apo-Rd) reveals three distinct transitions with Gaussian-resolved maxima located at 213, 229, and 245 nm, which are paralleled by dichroic features in the corresponding difference CD and magnetic CD spectra. Based on the optical electronegativity theory of Jørgensen, the lowest energy transition has been attributed to a CysS-Cd(II) charge-transfer excitation (epsilon 245, 26,000 M-1 cm-1) with a molar extinction coefficient per cysteine of 6,500 M-1 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8251947

  14. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed

    Jung, Woongsic; Campbell, Robert L; Gwak, Yunho; Kim, Jong Im; Davies, Peter L; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP's biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP. PMID:27097164

  15. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed

    Jung, Woongsic; Campbell, Robert L; Gwak, Yunho; Kim, Jong Im; Davies, Peter L; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP's biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP.

  16. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed Central

    Jung, Woongsic; Gwak, Yunho; Kim, Jong Im; Davies, Peter L.; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP’s biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP. PMID:27097164

  17. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process.

  18. Network motifs: simple building blocks of complex networks.

    PubMed

    Milo, R; Shen-Orr, S; Itzkovitz, S; Kashtan, N; Chklovskii, D; Alon, U

    2002-10-25

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined "network motifs," patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks. PMID:12399590

  19. A Gibbs sampler for motif detection in phylogenetically close sequences

    NASA Astrophysics Data System (ADS)

    Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric

    2004-03-01

    Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.

  20. Network Motifs: Simple Building Blocks of Complex Networks

    NASA Astrophysics Data System (ADS)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  1. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  2. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  3. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    SciTech Connect

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  4. STEME: a robust, accurate motif finder for large data sets.

    PubMed

    Reid, John E; Wernisch, Lorenz

    2014-01-01

    Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME) to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface. PMID:24625410

  5. Motif content comparison between monocot and dicot species

    PubMed Central

    Cserhati, Matyas

    2015-01-01

    While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome) is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice. PMID:26484161

  6. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  7. Tip cap for a turbine rotor blade

    DOEpatents

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  8. The ATLAS TRT end-cap detectors

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dobos, D.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; hne, O. Rø; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-10-01

    The ATLAS TRT end-cap is a tracking drift chamber using 245,760 individual tubular drift tubes. It is a part of the TRT tracker which consist of the barrel and two end-caps. The TRT end-caps cover the forward and backward pseudo-rapidity region 1.0 < |η| < 2.0, while the TRT barrel central η region |η| < 1.0. The TRT system provides a combination of continuous tracking with many measurements in individual drift tubes (or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. Along with other two sub-system, namely the Pixel detector and Semi Conductor Tracker (SCT), the TRT constitutes the ATLAS Inner Detector. This paper describes the recently completed and installed TRT end-cap detectors, their design, assembly, integration and the acceptance tests applied during the construction.

  9. Commercial Crew Program CCiCap Partners

    NASA Video Gallery

    NASA's Commercial Crew Program and its newest Commercial Crew Integrated Capability (CCiCap) partners are embracing the American spirit as they advance their integrated rocket and spacecraft design...

  10. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  11. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  12. Textures in south polar ice cap #1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 30 x 29 km area image (frame 7709) is centered near 87 degrees south, 77 degrees west.

    Figure caption from Science Magazine

  13. Textures in south polar ice cap #2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 15 x 14 km area image (frame 7306) is centered near 87 degrees south, 341 degrees west.

    Figure caption from Science Magazine

  14. CCiCap: Sierra Nevada Corporation

    NASA Video Gallery

    NASA announced today its plans to partner with Sierra Nevada Corp. (SNC) for the next phase of the agency's Commercial Crew Program (CCP). Called Commercial Crew integrated Capability (CCiCap), the...

  15. Perfluorocarbon vapor tagging of blasting cap detonators

    DOEpatents

    Dietz, R.N.; Senum, G.I.

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  16. Amelioration of selenium toxicity by arsenicals and cysteine.

    PubMed

    Lowry, K R; Baker, D H

    1989-04-01

    Young chicks exhibited a 61% reduction in weight gain when a corn-soybean meal diet was supplemented with 15 mg/kg Se provided as Na selenite. The same level of Se provided as selenomethionine depressed weight gain by 32%. Supplementing the high selenite diet with isoarsenous (14 mg/kg As) additions of As2O5, As2O3, phenylarsonic acid, phenylarsine oxide and roxarsone ameliorated the Se-induced growth depression: As2O5 almost totally restored growth rate; As2O3, phenylarsonic acid and phenylarsine oxide gave intermediate responses; and roxarsone gave only a small ameliorative growth response. Arsanilic acid was without effect in stimulating growth rate of selenite-intoxicated chicks. Dietary addition of .4% L-cysteine produced a growth response in selenite intoxicated chicks that was somewhat greater than that obtained with roxarsone; administering both roxarsone and cysteine corrected growth better than either compound given singly. Both roxarsone and As2O5 also effectively ameliorated the Se-toxicity growth depression caused by selenomethionine (15 mg Se/kg) supplementation, but cysteine showed no efficacy against morbidity caused by this form of Se. Liver Se concentration was elevated 10-fold by selenite and 25-fold by selenomethionine supplementation. The arsenic compounds had varying effects on liver Se, whereas cysteine tended to increase Se concentration. These findings suggest that both inorganic and organic arsenicals as well as cysteine ameliorate selenium toxicity by different mechanisms.

  17. THE ROLE OF CYSTEINE PROTEASE IN ALZHEIMER DISEASE

    PubMed Central

    Hasanbasic, Samra; Jahic, Alma; Karahmet, Emina; Sejranic, Asja; Prnjavorac, Besim

    2016-01-01

    Introduction: Cysteine protease are biological catalysts which play a pivotal role in numerous biological reactions in organism. Much of the literature is inscribed to their biochemical significance, distribution and mechanism of action. Many diseases, e.g. Alzheimer’s disease, develop due to enzyme balance disruption. Understanding of cysteine protease’s disbalance is therefor a key to unravel the new possibilities of treatment. Cysteine protease are one of the most important enzymes for protein disruption during programmed cell death. Whether protein disruption is part of cell deaths is not enough clear in any cases. Thereafter, any tissue disruption, including proteolysis, generate more or less inflammation appearance. Review: This review briefly summarizes the current knowledge about pathological mechanism’s that results in AD, with significant reference to the role of cysteine protease in it. Based on the summary, new pharmacological approach and development of novel potent drugs with selective toxicity targeting cysteine protease will be a major challenge in years to come. PMID:27482169

  18. Secondary capping beams for offshore drilling platforms

    SciTech Connect

    Albaugh, E. K.

    1985-08-13

    A pair of I-shaped elongated girders secured to, and extending outwardly from, the capping beams of a four pile platform, to form cantilever secondary capping beams which support modified self-contained drilling rigs of a size and weight normally installed on eight pile platforms. Rig modifications comprise separation of pump and engine packages, a pipe rack extension, and a novel skidding system.

  19. Truncated Dual-Cap Nucleation Site Development

    NASA Technical Reports Server (NTRS)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  20. A helix-turn motif in the C-terminal domain of histone H1.

    PubMed Central

    Vila, R.; Ponte, I.; Jiménez, M. A.; Rico, M.; Suau, P.

    2000-01-01

    The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs. PMID:10794405

  1. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  2. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  3. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease.

    PubMed

    Hu, Xin; Compton, Jaimee R; Leary, Dagmar H; Olson, Mark A; Lee, Michael S; Cheung, Jonah; Ye, Wenjuan; Ferrer, Mark; Southall, Noel; Jadhav, Ajit; Morazzani, Elaine M; Glass, Pamela J; Marugan, Juan; Legler, Patricia M

    2016-05-31

    The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a β-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 μM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9

  4. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid.

    PubMed

    Byrne, Cillian; Houlihan, Kate M; Devi, Prarthana; Jensen, Paul; Rutledge, Peter J

    2014-01-01

    Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.

  5. Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins

    PubMed Central

    Sun, Zhen-Yu J.; Bhanu, Meera K.; Allan, Martin G.; Arthanari, Haribabu; Wagner, Gerhard; Hanna, John

    2016-01-01

    Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF proteins in the yeast S. cerevisiae, and is a stress-inducible protein that functions in protein degradation through direct interaction with the proteasome and Cdc48. Here we report the solution structure of the Cuz1 AN1 ZnF which reveals a compact C6H2 zinc-coordinating domain that resembles a two-finger hand holding a tri-helical clamp. A central phenylalanine residue sits between the two zinc-coordinating centers. The position of this phenylalanine, just before the penultimate zinc-chelating cysteine, is strongly conserved from yeast to man. This phenylalanine shows an exceptionally slow ring-flipping rate which likely contributes to the high rigidity and stability of the AN1 domain. In addition to the zinc-chelating residues, sequence analysis of Cuz1 indicates a second highly evolutionarily conserved motif. This LDFLP motif is shared with three human proteins—Zfand1, AIRAP, and AIRAP-L—the latter two of which share similar cellular functions with Cuz1. The LDFLP motif, while embedded within the zinc finger domain, is surface exposed, largely uninvolved in zinc chelation, and not required for the overall fold of the domain. The LDFLP motif was dispensable for Cuz1's major known functions, proteasome- and Cdc48-binding. These results provide the first structural characterization of the AN1 zinc finger domain, and suggest that the LDFLP motif may define a sub-family of evolutionarily conserved AN1 zinc finger proteins. PMID:27662200

  6. Encoded expansion: an efficient algorithm to discover identical string motifs.

    PubMed

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms. PMID:24871320

  7. Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs

    PubMed Central

    Azmi, Aqil M.; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952–7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes in theoretical time complexity of and a space complexity of where is the length of the input sequence and is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes that occur at least times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of and a space complexity of Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms. PMID:24871320

  8. Encoded expansion: an efficient algorithm to discover identical string motifs.

    PubMed

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  9. The barber's pole worm CAP protein superfamily--A basis for fundamental discovery and biotechnology advances.

    PubMed

    Mohandas, Namitha; Young, Neil D; Jabbar, Abdul; Korhonen, Pasi K; Koehler, Anson V; Amani, Parisa; Hall, Ross S; Sternberg, Paul W; Jex, Aaron R; Hofmann, Andreas; Gasser, Robin B

    2015-12-01

    Parasitic worm proteins that belong to the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are proposed to play key roles in the infection process and the modulation of immune responses in host animals. However, there is limited information on these proteins for most socio-economically important worms. Here, we review the CAP protein superfamily of Haemonchus contortus (barber's pole worm), a highly significant parasitic roundworm (order Strongylida) of small ruminants. To do this, we mined genome and transcriptomic datasets, predicted and curated full-length amino acid sequences (n=45), undertook systematic phylogenetic analyses of these data and investigated transcription throughout the life cycle of H. contortus. We inferred functions for selected Caenorhabditis elegans orthologs (including vap-1, vap-2, scl-5 and lon-1) based on genetic networking and by integrating data and published information, and were able to infer that a subset of orthologs and their interaction partners play pivotal roles in growth and development via the insulin-like and/or the TGF-beta signalling pathways. The identification of the important and conserved growth regulator LON-1 led us to appraise the three-dimensional structure of this CAP protein by comparative modelling. This model revealed the presence of different topological moieties on the canonical fold of the CAP domain, which coincide with an overall charge separation as indicated by the electrostatic surface potential map. These observations suggest the existence of separate sites for effector binding and receptor interactions, and thus support the proposal that these worm molecules act in similar ways as venoms act as ligands for chemokine receptors or G protein-coupled receptor effectors. In conclusion, this review should guide future molecular studies of these molecules, and could support the development of novel interventions against haemonchosis.

  10. Orchestrating Redox Signaling Networks Through Regulatory Cysteine Switches

    PubMed Central

    Paulsen, Candice E.; Carroll, Kate S.

    2015-01-01

    Hydrogen peroxide (H2O2) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H2O2 production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H2O2 can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies. PMID:19957967

  11. The spectrum character of photoreaction of Hypocrellin A and cysteine

    NASA Astrophysics Data System (ADS)

    Zhang, Jucheng; Liu, Wei; Li, Ying; Zhang, Pei; Yi, Zhongzhou; Min, Yong; Huang, Zhaolong; Yao, Lihua; Lu, Haiju

    2008-12-01

    In the current work, Hypocrellin A (HA) is one of the nature photosensitizer was recognized by researchers, and it used as a probe to research the molecular recognition and interaction with protein, the work suggested the HA can as the medicine to treat some disease. This paper study the spectrum character of photoreaction of Hypocrellin A and cysteine in different pH value, the spectrum show an isosbestic point at 495nm, and the absorption peak at 478nm was red-shifted to about 500nm. The result suggested the HA can react with cysteine in this condition, and farther illuminated the cysteine residue may is one of the target of the interaction of HA or HB with protein.

  12. Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology.

    PubMed

    Zhu, Quansheng; Casey, Joseph R

    2007-04-01

    Integral membrane proteins of the plasma membrane span from the inside to the outside of the cell. The primary structural element of integral membrane proteins is their topology: the pattern in which the protein traverses the membrane. A full description of topology, defining which parts of the protein face outside versus inside, goes a long way toward understanding the folding of these proteins. Many approaches have been established to define membrane protein topology. Here, we present the technique of scanning cysteine accessibility mutagenesis (SCAM). This approach uses the unique chemical reactivity of the cysteine sulfhydryl to probe membrane protein structure. Individual cysteine residues are introduced into the target protein by mutagenesis. The ability to chemically react these residues using sulfhydryl-directed reagents (either membrane permeant or impermeant) defines each site as either extracellular or intracellular, thus establishing topology of a location. This analysis performed on many sites in the protein will define the protein's topology. PMID:17367716

  13. Development of nitrile-based peptidic inhibitors of cysteine cathepsins.

    PubMed

    Frizler, Maxim; Stirnberg, Marit; Sisay, Mihiret Tekeste; Gütschow, Michael

    2010-01-01

    It is now becoming clear that several papain-like cysteine cathepsins are involved in the pathophysiology of diseases such as osteoporosis, autoimmune disorders, and cancer. Therefore, the development of potent and selective cathepsin inhibitors is an attractive subject for medicinal chemists. New advances have been made for nitrile-based inhibitors, leading to the identification of the cathepsin K inhibitor odanacatib and other candidates with potential for therapeutic use. This review summarizes the development of peptidic and peptidomimetic compounds with an electrophilic nitrile 'warhead' as inhibitors of the cysteine cathepsins B, S, L, C, and K. Peptide nitriles have been shown to reversibly react with the active site cysteine under formation of a covalent thioimidate adduct. The structural optimization with respect to the positions P3, P2, P1, P1', and P2' resulted in the identification of potent and selective inhibitors of the corresponding cathepsins. The underlying structure-activity relationships are discussed herein. PMID:20166952

  14. Orchestrating redox signaling networks through regulatory cysteine switches.

    PubMed

    Paulsen, Candice E; Carroll, Kate S

    2010-01-15

    Hydrogen peroxide (H(2)O(2)) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H(2)O(2) production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H(2)O(2) can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies.

  15. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products.

    PubMed

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2015-06-01

    The titled compounds were examined as PPO inhibitors and antibrowning agents; their various mechanisms were investigated and discussed. All compounds reduced significantly both the browning process and PPO activity. Browning index gave strong correlation with PPO activity (r(2) = 0.96, n = 19) indicating that the browning process is mainly enzymatic. Ascorbic acid could reduce the formed quinone instantly to the original substrate (catechol) at high concentration (>1.5 %) while at lower concentrations acted as competitive inhibitor (KI = 0.256 ± 0.067 mM). Cysteine, at higher concentrations (≥1.0 %), reacted with the resulted quinone to give a colorless products while at the low concentrations, cysteine worked as competitive inhibitor (KI = 1.113 ± 0.176 mM). Citric acid acted only as PPO non-competitive inhibitor with KI = 2.074 ± 0.363 mM. The products of PPO-catechole-cysteine reaction could be separation and identification by LC-ESI-MS. Results indicated that the product of the enzymatic oxidation of catechol, quinone, undergoes two successive nucleophilic attacks by cysteine thiol group. Cysteine was condensed with the resulted mono and dithiocatechols to form peptide side chains.

  16. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins.

    PubMed

    Zhao, Kai-Hong; Su, Ping; Tu, Jun-Ming; Wang, Xing; Liu, Hui; Plöscher, Matthias; Eichacker, Lutz; Yang, Bei; Zhou, Ming; Scheer, Hugo

    2007-09-01

    Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, contain two to four types of chromophores that are attached covalently to seven or more members of a family of homologous proteins, each carrying one to four binding sites. Chromophore binding to apoproteins is catalyzed by lyases, of which only few have been characterized in detail. The situation is complicated by nonenzymatic background binding to some apoproteins. Using a modular multiplasmidic expression-reconstitution assay in Escherichia coli with low background binding, phycobilin:cystein-84 biliprotein lyase (CpeS1) from Anabaena PCC7120, has been characterized as a nearly universal lyase for the cysteine-84-binding site that is conserved in all biliproteins. It catalyzes covalent attachment of phycocyanobilin to all allophycocyanin subunits and to cysteine-84 in the beta-subunits of C-phycocyanin and phycoerythrocyanin. Together with the known lyases, it can thereby account for chromophore binding to all binding sites of the phycobiliproteins of Anabaena PCC7120. Moreover, it catalyzes the attachment of phycoerythrobilin to cysteine-84 of both subunits of C-phycoerythrin. The only exceptions not served by CpeS1 among the cysteine-84 sites are the alpha-subunits from phycocyanin and phycoerythrocyanin, which, by sequence analyses, have been defined as members of a subclass that is served by the more specialized E/F type lyases.

  17. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products.

    PubMed

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2015-06-01

    The titled compounds were examined as PPO inhibitors and antibrowning agents; their various mechanisms were investigated and discussed. All compounds reduced significantly both the browning process and PPO activity. Browning index gave strong correlation with PPO activity (r(2) = 0.96, n = 19) indicating that the browning process is mainly enzymatic. Ascorbic acid could reduce the formed quinone instantly to the original substrate (catechol) at high concentration (>1.5 %) while at lower concentrations acted as competitive inhibitor (KI = 0.256 ± 0.067 mM). Cysteine, at higher concentrations (≥1.0 %), reacted with the resulted quinone to give a colorless products while at the low concentrations, cysteine worked as competitive inhibitor (KI = 1.113 ± 0.176 mM). Citric acid acted only as PPO non-competitive inhibitor with KI = 2.074 ± 0.363 mM. The products of PPO-catechole-cysteine reaction could be separation and identification by LC-ESI-MS. Results indicated that the product of the enzymatic oxidation of catechol, quinone, undergoes two successive nucleophilic attacks by cysteine thiol group. Cysteine was condensed with the resulted mono and dithiocatechols to form peptide side chains. PMID:26028748

  18. Different cysteine proteinases involved in bone resorption and osteoclast formation.

    PubMed

    Brage, M; Abrahamson, M; Lindström, V; Grubb, A; Lerner, U H

    2005-06-01

    Cysteine proteinases, especially cathepsin K, play an important role in osteoclastic degradation of bone matrix proteins and the process can, consequently, be significantly inhibited by cysteine proteinase inhibitors. We have recently reported that cystatin C and other cysteine proteinase inhibitors also reduce osteoclast formation. However, it is not known which cysteine proteinase(s) are involved in osteoclast differentiation. In the present study, we compared the relative potencies of cystatins C and D as inhibitors of bone resorption in cultured mouse calvariae, osteoclastogenesis in mouse bone marrow cultures, and cathepsin K activity. Inhibition of cathepsin K activity was assessed by determining equilibrium constants for inhibitor complexes in fluorogenic substrate assays. The data demonstrate that whereas human cystatins C and D are equipotent as inhibitors of bone resorption, cystatin D is 10-fold less potent as an inhibitor of osteoclastogenesis and 200-fold less potent as an inhibitor of cathepsin K activity. A recombinant human cystatin C variant with Gly substitutions for residues Arg8, Leu9, Val10, and Trp106 did not inhibit bone resorption, had 1,000-fold decreased inhibitory effect on cathepsin K activity compared to wildtype cystatin C, but was equipotent with wildtype cystatin C as an inhibitor of osteoclastogenesis. It is concluded that (i) different cysteine proteinases are likely to be involved in bone resorption and osteoclast formation, (ii) cathepsin K may not be an exclusive target enzyme in any of the two systems, and (iii) the enzyme(s) involved in osteoclastogenesis might not be a typical papain-like cysteine proteinase.

  19. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.

    PubMed

    Mueller, André N; Ziemann, Sebastian; Treitschke, Steffi; Aßmann, Daniela; Doehlemann, Gunther

    2013-02-01

    The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi.

  20. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals.

    PubMed

    Khoshgoo, Naghmeh; Zahedifard, Farnaz; Azizi, Hiva; Taslimi, Yasaman; Alonso, Maribel Jiménez; Rafati, Sima

    2008-10-29

    Visceral leishmaniasis is the most acute form of leishmaniasis and vaccination is the best approach to control it. One of the major groups of virulence factors in Leishmania belongs to cysteine proteinase family. In this study, for the first time, the protective potential of Leishmania infantum cysteine proteinase type III (CPC) by using a prime-boost strategy is evaluated in BALB/c mice. The experiment was carried out in three groups of mice. Vaccinated group was primed with pcDNA-cpc and boosted with rCPC-DHFR in combination with CpG motif and Montanide 720 as adjuvant. Control groups received pcDNA and rDHFR or PBS. The ratio of IgG2a/IgG1, nitric oxide concentration and IFN-gamma induction in vaccinated group is significantly higher than controls. Furthermore, the parasite load of vaccinated group is significantly lower than controls. In addition, sera reactivity of visceral leishmaniasis individuals was examined and showed considerable reactivities toward rCPC in comparison with cutaneous leishmaniasis. The achieved result is highly encouraging the use of cysteine proteinases types I, II and III as vaccine candidate against visceral leishmaniasis.

  1. ELM: the status of the 2010 eukaryotic linear motif resource.

    PubMed

    Gould, Cathryn M; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E; Haslam, Niall; Weatheritt, Robert J; Budd, Aidan; Hughes, Tim; Pas, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  2. DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, WHICH REFERS TO THE QUICK PASSAGE OF TIME AND THE SHORTNESS OF HUMAN LIFE. USE OF THIS MOTIF WAS A CARRYOVER FROM THE MCARTHUR GATES. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  3. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    PubMed

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  4. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    ERIC Educational Resources Information Center

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  5. The phenomenon of astral motifs on late mediaeval tombstones

    NASA Astrophysics Data System (ADS)

    Mijatović, V.; Ninković, S.; Vemić, D.

    2003-10-01

    The authors study astral motifs present on some mediaeval tombstones found in present-day Serbia and Montenegro and in the neighbouring countries (especially in Bosnia and Herzegovina). The authors discern some important astral motifs, explain them and present a short review concerning their frequency.

  6. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  7. Spectroscopic and electrochemical study of CdTe nanocrystals capped with thiol mixtures

    NASA Astrophysics Data System (ADS)

    Matos, Charlene R. S.; Souza, Helio O., Jr.; Candido, Luan P. M.; Costa, Luiz P.; Santos, Francisco A.; Alencar, Marcio A. R. C.; Abegao, Luis M. G.; Rodrigues, Jose J., Jr.; Midori Sussuchi, Eliana; Gimenez, Iara F.

    2016-06-01

    Here we report the aqueous synthesis of CdTe nanocrystals capped with 3-mercaptopropionic acid (MPA) and the evaluation of the effect of mixing different thiols with MPA on the spectroscopic and electrochemical properties. Additional ligands were cysteine (CYS) and glutathione (GSH). CYS and GSH produce opposite effects on the photoluminescence quantum yield (QY) with a decrease and increase in QY in comparison to MPA, respectively. All samples exhibited monoexponential photoluminescence decays indicating the presence of high-quality nanocrystals. Electrochemical measurements evidenced the presence of several redox peaks and allowed the calculation of the electrochemical band gaps, which were in agreement with the values estimated from absorption spectra and reflected differences in nanocrystal size.

  8. Automated discovery of active motifs in multiple RNA secondary structures

    SciTech Connect

    Wang, J.T.L.; Chang, Chia-Yo; Shapiro, B.A.

    1996-12-31

    In this paper we present a method for discovering approximately common motifs (also known as active motifs) in multiple RNA secondary structures. The secondary structures can be represented as ordered trees (i.e., the order among siblings matters). Motifs in these trees are connected subgraphs that can differ in both substitutions and deletions/insertions. The proposed method consists of two steps: (1) find candidate motifs in a small sample of the secondary structures; (2) search all of the secondary structures to determine how frequently these motifs occur (within the allowed approximation) in the secondary structures. To reduce the running time, we develop two optimization heuristics based on sampling and pattern matching techniques. Experimental results obtained by running these algorithms on both generated data and RNA secondary structures show the good performance of the algorithms. To demonstrate the utility of our algorithms, we discuss their applications to conducting the phylogenetic study of RNA sequences obtained from GenBank.

  9. Protein cysteine modifications: (2) reactivity specificity and topics of medicinal chemistry and protein engineering.

    PubMed

    Nagahara, Noriyuki; Matsumura, Tomohiro; Okamoto, Ryo; Kajihara, Yasuhiro

    2009-01-01

    Cysteine (cysteinyl residue) modifications in proteins result in diversity in protein functions. The reaction specificity of a protein with a modified cysteine residue is determined by the overall conditions of the protein, including the spatial position of the cysteine residue, electrostatic interactions between cysteine residue and other charged residues, spatial interactions between the cysteine residue and a chemical compound, electrophilicity of the chemical compound, and the pH of the solution. In cysteine-dependant enzymes, each specific type of cysteine modification characterizes the catalytic mechanism of the enzyme. Recently, the catalytic mechanisms of peroxiredoxins and cysteine proteases, which contain a cysteine residue(s) in their catalytic sites, have been elucidated. In the catalytic process of peroxiredoxins, a sulfenyl intermediate is formed by oxidation of the catalytic cysteine residue. On the other hand, in cysteine proteases, the catalytic cysteine residue reacts with the carboxyl carbon of a peptide substrate to form an intermediate complex via S-alkylation. In this review, we introduce the most current information on the applications of cysteine thiol chemistry for in vitro glycoprotein synthesis. Recently, a glycoprotein (monocyte chemotactic protein-3), containing an intact human complex-type sialyloligosaccharide has been chemically synthesized. The procedure used for this could have applications in the development of new protein-based drugs, including antineoplastic drugs and antibiotics. It can also potentially be applied for improving the half-life and reducing the toxicity of these drugs, and for preventing the development of multidrug resistance.

  10. 75 FR 49527 - Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Employment and Training Administration Caps Visual Communications, LLC; Black Dot Group; Formerly Known as... Adjustment Assistance on June 24, 2010, applicable to workers of Caps Visual Communications, LLC, Black Dot..., Caps Visual Communications, LLC, Black Dot Group, formerly known as Caps Group Acquisition,...

  11. Actin capping proteins, CapZ (β-actinin) and tropomodulin in amphioxus striated muscle.

    PubMed

    Bao, Yulong; Kake, Takei; Hanashima, Akira; Nomiya, Yui; Kubokawa, Kaoru; Kimura, Sumiko

    2012-11-15

    CapZ (β-actinin) and tropomodulin (Tmod) are capping proteins involved in the maintenance of thin filaments in vertebrate skeletal muscles. In this study, we focused on amphioxus, the most primitive chordate. We searched for CapZ and Tmod genes in the amphioxus genome and determined their primary structures. Amphioxus possess one CapZα gene (CAPZA) and one CapZβ gene (CAPZB), and the transcripts of these genes were found to be 67%-85% identical to those of human CapZ genes. On the other hand, amphioxus contain one Tmod gene (TMOD), and the product of this gene has an identity of approximately 50% with human Tmod genes 1-4. However, helix 2 of amphioxus Tmod, which is involved in protein-binding to tropomyosin, was highly conserved with approximately 74% identity to human Tmod genes. Western blotting indicated the presence of CapZ and Tmod in the striated muscle of amphioxus. These results suggest that unlike most of vertebrates, such as fish, amphibian, bird, and mammal, CapZ from amphioxus striated muscle is derived from two genes CAPZA and CAPZB, and Tmod is derived from one TMOD gene.

  12. CAP - JET PROPULSION LABORATORY CONTAMINATION ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Millard, J. M.

    1994-01-01

    The Jet Propulsion Laboratory Contamination Analysis Program (CAP) is a generalized transient executive analysis computer code which solves realistic mass transport problems in the free molecular flow environment. These transport problems involve mass flux from surface source emission and re-emission, venting, and engine emission. CAP solution capability allows for one-bounce mass reflections if required. CAP was developed to solve thin-film contamination problems in the free molecular flow environment, the intent being to provide a powerful analytic tool for evaluating spacecraft contamination problems. The solution procedure uses an enclosure method based on a lumped-parameter multinodal approach with mass exchange between nodes. Transient solutions are computed by the finite difference Euler method. First-order rate theory is used to represent surface emission and reemission (user care must be taken to insure the problem is appropriate for such behavior), and all surface emission and reflections are assumed diffuse. CAP does not include the effects of post-deposition chemistry or interaction with the ambient atmosphere. CAP reads in a model represented by a multiple-block data stream. CAP allows the user to edit the input data stream and stack sequential editing operations (or cases) in order to make complex changes in behavior (surface temperatures, engine start-up and shut-down, etc.) in a single run if desired. The eight data blocks which make up the input data stream consist of problem control parameters, nodal data (area, temperature, mass, etc.), engine or vent distribution factors (based upon plume definitions), geometric configuration factors (diffuse surface emission), surface capture coefficient tables, source emission rate constant tables, reemission rate constant tables, and partial node to body collapse capability (for deposition rates only). The user must generate this data stream, since neither the problem-specific geometric relationships, the

  13. Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase].

    PubMed

    Saito, K; Kurosawa, M; Tatsuguchi, K; Takagi, Y; Murakoshi, I

    1994-11-01

    Cysteine synthase [O-acetyl-L-serine(thiol)-lyase, EC 4.2.99.8] (CSase), which is responsible for the terminal step of cysteine biosynthesis, catalyzes the formation of L-cysteine from O-acetyl-L-serine (OAS) and hydrogen sulfide. Three T-DNA vectors carrying a spinach (Spinacia oleracea) cytoplasmic CSase A cDNA (K. Saito, N. Miura, M. Yamazaki, H. Horano, I. Murakoshi [1992] Proc Natl Acad Sci USA 89: 8078-8082) were constructed as follows: pCSK3F, cDNA driven by the cauliflower mosaic virus (CaMV) 35S RNA promoter with a sense orientation; pCSK3R, cDNA driven by the CaMV 355 promoter with an antisense orientation; pCSK4F, cDNA fused with the sequence for chloroplast-targeting transit peptide of pea ribulose-1,5-biphosphate carboxylase small subunit driven by the CaMV 35S promoter with a sense orientation. These chimeric genes were transferred into tobacco (Nicotiana tabacum) with Agrobacterium-mediated transformation, and self-fertilized progeny were obtained. CSase activities in cell-free extracts of pCSK3F and pCSK4F transformants were 2- to 3-fold higher than those of control and pCSK3R plants. CSase activities in chloroplasts of pCSK4F transformants were severalfold higher than those of control and pCSK3F plants, indicating that the foreign CSase protein is transported and accumulated in a functionally active form in chloroplasts of pCSK4F plants. Isolated chloroplasts of a pCSK4F transformant had a more pronounced ability to form cysteine in response to addition of OAS and sulfur compounds than those of a control plant. In particular, feeding of OAS and sulfite resulted in enhanced cysteine formation, which required photoreduction of sulfite in chloroplasts. The enhanced cysteine formation in a pCSK4F plant responding to sulfite was also observed in leaf discs. In addition, these leaf discs were partially resistant to sulfite toxicity, possibly due to metabolic detoxification of sulfite by fixing into cysteine. These results suggested that overaccumulated

  14. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes

    PubMed Central

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved. PMID:26114291

  15. Transmission Through Carbon Nanotubes with Polyhedral Caps

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Govindan, T. R.

    1999-01-01

    We study electron transport between capped carbon nanotubes and a substrate, and relate this transport to the local density of states in the cap. Our results show that that the transmission probability mimics the behavior of the density of states at all energies except those that correspond to localized states. For a capped carbon nanotube that is not connected to a substrate, the localized states do not couple to the coexisting continuum states. However, close proximity of a substrate causes hybridization between these states. As a result, new transmission paths open from substrate states to nanotube continuum states via the localized states in the cap. We show that the interference between various paths gives rise to transmission antiresonances with the minimum equal to zero at the energy of the localized state. The presence of defects in the tube places close to the cap transforms antiresonances into resonances. Depending on the spatial position of defects, these resonant states are capable of carrying a large current. The results of this paper are of relevance to carbon nanotube based studies on molecular electronics and probe tip applications.

  16. Eddy intrustion of hot plasma into the polar cap and formation of polar-cap arcs

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.

    1983-01-01

    Under the simple postulate that multiple large scale detachable magnetospheric convection eddies can exist in the vicinity of the convection reversal boundary and in the polar cap, by Kelvin-Helmholtz instability or otherwise, it is shown that a number of seemingly disconnected plasma and electric field observations in the polar cap can be organized into a theory of magnetosheath and plasmasheet plasma intrusion into the polar cap. Current theory of inverted V structures then predicts existence of similar, but weaker, structures at the eddy convection reversal boundaries in the polar cap. A possible consequence is that the polar cap auroras are natural offshoots from discrete oval arcs and evidently are formed by similar processes. The two arc systems can occassionally produce an optical image in the form of the theta aurora.

  17. Tripartite motif 32 prevents pathological cardiac hypertrophy

    PubMed Central

    Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan

    2016-01-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. PMID:26884348

  18. A motif for infinite metal atom wires.

    PubMed

    Yin, Xi; Warren, Steven A; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L; Bertke, Jeffery; Yang, Hong

    2014-12-15

    A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and μ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition.

  19. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    PubMed

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  20. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  1. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry.

    PubMed

    Mason, Alexander F; Thordarson, Pall

    2016-01-01

    The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation. We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine - maleimide coupling of proteins to other proteins, dyes, drugs or polymers. PMID:27501061

  2. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184.1272 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1272...

  3. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  4. DNA cleavage by oxymyoglobin and cysteine-introduced metmyoglobin.

    PubMed

    Deshpande, Megha Subhash; Junedi, Sendy; Prakash, Halan; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2014-12-11

    Double stranded DNA was cleaved oxidatively by incubation with oxygenated myoglobin, and Lys96Cys sperm whale myoglobin in its stable ferric form functioned as an artificial nuclease under air by formation of an oxygenated species, owing to electron transfer from the SH group of the introduced cysteine to the heme. PMID:25327831

  5. Unfolding the fold of cyclic cysteine-rich peptides

    PubMed Central

    Shehu, Amarda; Kavraki, Lydia E.; Clementi, Cecilia

    2008-01-01

    We propose a method to extensively characterize the native state ensemble of cyclic cysteine-rich peptides. The method uses minimal information, namely, amino acid sequence and cyclization, as a topological feature that characterizes the native state. The method does not assume a specific disulfide bond pairing for cysteines and allows the possibility of unpaired cysteines. A detailed view of the conformational space relevant for the native state is obtained through a hierarchic multi-resolution exploration. A crucial feature of the exploration is a geometric approach that efficiently generates a large number of distinct cyclic conformations independently of one another. A spatial and energetic analysis of the generated conformations associates a free-energy landscape to the explored conformational space. Application to three long cyclic peptides of different folds shows that the conformational ensembles and cysteine arrangements associated with free energy minima are fully consistent with available experimental data. The results provide a detailed analysis of the native state features of cyclic peptides that can be further tested in experiment. PMID:18287281

  6. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  7. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server

    PubMed Central

    Ceroni, Alessio; Passerini, Andrea; Vullo, Alessandro; Frasconi, Paolo

    2006-01-01

    DISULFIND is a server for predicting the disulfide bonding state of cysteines and their disulfide connectivity starting from sequence alone. Optionally, disulfide connectivity can be predicted from sequence and a bonding state assignment given as input. The output is a simple visualization of the assigned bonding state (with confidence degrees) and the most likely connectivity patterns. The server is available at . PMID:16844986

  8. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  9. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine

    PubMed Central

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C.

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  10. Redox factor-1 activates endothelial SIRTUIN1 through reduction of conserved cysteine sulfhydryls in its deacetylase domain.

    PubMed

    Jung, Saet-Byel; Kim, Cuk-Seong; Kim, Young-Rae; Naqvi, Asma; Yamamori, Tohru; Kumar, Santosh; Kumar, Ajay; Irani, Kaikobad

    2013-01-01

    Apurinic/Apyrmidinic Endonuclease 1/Redox Factor-1 (APE1/Ref-1) is a reductant which is important for vascular homeostasis. SIRTUIN1 (SIRT1) is a lysine deacetylase that also promotes endothelium-dependent vasorelaxation. We asked if APE1/Ref-1 governs the redox state and activity of SIRT1, and whether SIRT1 mediates the effect of APE1/Ref-1 on endothelium-dependent vascular function. APE1/Ref-1 maintains sulfhydryl (thiol) groups of cysteine residues in SIRT1 in the reduced form and promotes endothelial SIRT1 activity. APE1/Ref-1 stimulates SIRT1 activity by targeting highly conserved vicinal thiols 371 and 374 which form a zinc tetra-thiolate motif in the deacetylase domain of SIRT1. Cysteine residues in the N-terminal redox domain of APE1/Ref-1 are essential for reducing SIRT1 and stimulating its activity. APE1/Ref-1 protects endothelial SIRT1 from hydrogen peroxide-induced oxidation of sulfhydryls and from inactivation. APE1/Ref-1 also promotes lysine deacetylation of the SIRT1 target endothelial nitric oxide synthase (eNOS). SIRT1 mutated at cysteines 371 and 374, which renders it non-reducible by APE1/Ref-1, prevents lysine deacetylation of eNOS by APE1/Ref-1. SIRT1 free thiol (reduced sulfhydryl) content and deacetylase activity are diminished in all examined tissues of APE1/Ref-1(+/-) mice, including the vasculature. Overexpression of SIRT1 in aortas of APE1/Ref-1(+/-) mice restores endothelium-dependent vasorelaxation and bioavailable nitric oxide (NO) to levels similar to those observed in wild-type mice. Thus, APE1/Ref-1, by maintaining functionally important cysteine sulfhydryls in SIRT1 in the reduced form, promotes endothelial SIRT1 activity. This reductive activation of endothelial SIRT1 by APE1/Ref-1 mediates the effect of APE1/Ref-1 on eNOS acetylation, promoting endothelium-derived NO and endothelium-dependent vasorelaxation.

  11. Martian north polar cap summer water cycle

    NASA Astrophysics Data System (ADS)

    Brown, Adrian J.; Calvin, Wendy M.; Becerra, Patricio; Byrne, Shane

    2016-10-01

    A key outstanding question in Martian science is "are the polar caps gaining or losing mass and what are the implications for past, current and future climate?" To address this question, we use observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of the north polar cap during late summer for multiple Martian years, to monitor the summertime water cycle in order to place quantitative limits on the amount of water ice deposited and sublimed in late summer. We establish here for the first time the summer cycle of water ice absorption band signatures on the north polar cap. We show that in a key region in the interior of the north polar cap, the absorption band depths grow until Ls = 120, when they begin to shrink, until they are obscured at the end of summer by the north polar hood. This behavior is transferable over the entire north polar cap, where in late summer regions 'flip' from being net sublimating into net condensation mode. This transition or 'mode flip' happens earlier for regions closer to the pole, and later for regions close to the periphery of the cap. The observations and calculations presented herein estimate that on average a water ice layer ∼70 microns thick is deposited during the Ls = 135-164 period. This is far larger than the results of deposition on the south pole during summer, where an average layer 0.6-6 microns deep has been estimated by Brown et al. (2014) Earth Planet. Sci. Lett., 406, 102-109.

  12. Photoactivable caps for reactive metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  13. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  14. Triadic motifs in the dependence networks of virtual societies

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  15. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  16. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.

    PubMed

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash

    2014-02-01

    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  17. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus.

    PubMed

    Kim, Eunseong; Kim, Yonggyun

    2016-01-01

    Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF. PMID:27598941

  18. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus

    PubMed Central

    Kim, Eunseong; Kim, Yonggyun

    2016-01-01

    Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF. PMID:27598941

  19. Landfill capping: The Croton Point Landfill experience

    SciTech Connect

    Srinivasaraghaven, R.; Gavin, J.M.; Landi, A.M.; Ritchie, M.D.

    1996-12-31

    The Croton Point Landfill Capping involved the installation of an impermeable, geosynthetic cap and the attendant geotechnical cover soils over a 113 acre hazardous waste landfill in Croton-On-Hudson, New York. The remediation process - Remedial Investigation, Feasibility Study (RI/FS) Remedial Design and Remedial Construction lasted six years. This paper sets forth some of the insights and experiences gained during that process and provides some practical recommendations. In particular, the paper evaluates the Croton Landfill experience in regard to Health and Safety; Stormwater Control; erosion and sediment control; QA/QC; leachate treatment and disposal; and wildlife control.

  20. Valve Cap For An Electric Storage Cell

    DOEpatents

    Verhoog, Roelof; Genton, Alain

    2000-04-18

    The valve cap for an electric storage cell includes a central annular valve seat (23) and a membrane (5) fixed by its peripheral edge and urged against the seat by a piston (10) bearing thereagainst by means of a spring (12), the rear end of said spring (12) bearing on the endwall (8) of a chamber (20) formed in the cap and containing the piston (10) and the spring. A vent (19) puts the chamber (20) into communication with the atmosphere. A central orifice (26, 28) through the piston (10) and the membrane (5), enables gas from within the cell to escape via the top vent (19) when the valve opens.

  1. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  2. Pharmacy benefit caps and the chronically ill.

    PubMed

    Joyce, Geoffrey F; Goldman, Dana P; Karaca-Mandic, Pinar; Zheng, Yuhui

    2007-01-01

    In this paper we examine medication use among retirees with employer-sponsored drug coverage both with and without annual benefit limits. We find that pharmacy benefit caps are associated with higher rates of medication discontinuation across the most common therapeutic classes and that only a minority of those who discontinue use reinitiate therapy once coverage resumes. Plan members who reach their cap are more likely than others to switch plans and increase their rate of generic use; however, in most cases, the shift is temporary. Given the similarities between these plans and Part D, we make some inferences about reforms for Medicare.

  3. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model.

    PubMed

    Sallmann, Madleen; Kumar, Suresh; Chernev, Petko; Nehrkorn, Joscha; Schnegg, Alexander; Kumar, Devesh; Dau, Holger; Limberg, Christian; de Visser, Sam P

    2015-05-11

    Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up. However, little is known on the conversion mechanism and, so far, not even the structure of the actual product complex had been characterised, which is also unknown in case of the enzyme. In a multidisciplinary approach including density functional theory calculations and X-ray absorption spectroscopy, we have now determined the structure of the actual sulfinato complex for the first time. The Cys-SO2 (-) functional group was found to be bound in an η(2) -O,O-coordination mode, which, based on the excellent resemblance between model and enzyme, also provides the first support for a corresponding binding mode within the enzymatic product complex. Indeed, this is again confirmed by theory, which had predicted a η(2) -O,O-binding mode for synthetic as well as the natural enzyme.

  4. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I

    PubMed Central

    Devarkar, Swapnil C.; Wang, Chen; Miller, Matthew T.; Ramanathan, Anand; Jiang, Fuguo; Khan, Abdul G.; Patel, Smita S.; Marcotrigiano, Joseph

    2016-01-01

    RNAs with 5′-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5′ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2′-O-methyl (2′-OMe) group to the 5′-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2′-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5′ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I’s ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5′ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5′OH, 5′ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2′-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2′-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution. PMID:26733676

  5. Early illness recognition using frequent motif discovery.

    PubMed

    Hajihashemi, Zahra; Popescu, Mihail

    2015-08-01

    Living alone in their own residence, older adults are at risk for late assessment of physical or cognitive changes due to many factors such as their impression that such changes are simply a normal part of aging or their reluctance to admit to a problem. This paper describes an early illness recognition framework using sensor network technology to identify the health trajectory of older adults reflected in patterns of day-today activities. Describing the behavior of older adults could help clinicians to identify those at the greatest risk for functional decline and adverse events. The proposed framework, denoted as Abnormal Frequent Activity Pattern (AFAP), is based on the identification of known past abnormal frequent activities in current sensor data. More specifically, AFAP declares a day abnormal when past frequent abnormal behavior patterns, not found during normal days, are discovered in the current activity data. While AFAP requires the labeling of past days as normal/abnormal, it doesn't need specific activity identification. Frequent activity patterns (FAP) are found using MEME, a bioinformatics motif detection algorithm. To validate our approach, we used data obtained from TigerPlace, an aging in place community situated in Columbia, MO, where apartments are equipped with sensor networks (motion, bed and depth sensors). A retrospective multiple case study (N=3) design was used to quantify the in-home older adult's daily routines, over a period of two weeks. Within-person variability of routine activities may be used as a new predictor in the study of health trajectories of older adults. PMID:26737096

  6. Targeting functional motifs of a protein family

    NASA Astrophysics Data System (ADS)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  7. Peptide sequences identified by phage display are immunodominant functional motifs of Pet and Pic serine proteases secreted by Escherichia coli and Shigella flexneri.

    PubMed

    Ulises, Hernández-Chiñas; Tatiana, Gazarian; Karlen, Gazarian; Guillermo, Mendoza-Hernández; Juan, Xicohtencatl-Cortes; Carlos, Eslava

    2009-12-01

    Plasmid-encoded toxin (Pet) and protein involved in colonization (Pic), are serine protease autotransporters of Enterobacteriaceae (SPATEs) secreted by enteroaggregative Escherichia coli (EAEC), which display the GDSGSG sequence or the serine motif. Our research was directed to localize functional sites in both proteins using the phage display method. From a 12mer linear and a 7mer cysteine-constrained (C7C) libraries displayed on the M13 phage pIII protein we selected different mimotopes using IgG purified from sera of children naturally infected with EAEC producing Pet and Pic proteins, and anti-Pet and anti-Pic IgG purified from rabbits immunized with each one of these proteins. Children IgG selected a homologous group of sequences forming the consensus sequence, motif, PQPxK, and the motifs PGxI/LN and CxPDDSSxC were selected by the rabbit anti-Pet and anti-Pic IgGs, respectively. Analysis of the amino terminal region of a panel of SPATEs showed the presence in all of them of sequences matching the PGxI/LN or CxPDDSSxC motifs, and in a three-dimensional model (Modeller 9v2) designed for Pet, both these motifs were found in the globular portion of the protein, close to the protease active site GDSGSG. Antibodies induced in mice by mimotopes carrying the three aforementioned motifs were reactive with Pet, Pic, and with synthetic peptides carrying the immunogenic mimotope sequences TYPGYINHSKA and LLPQPPKLLLP, thus confirming that the peptide moiety of the selected phages induced the antibodies specific for the toxins. The antibodies induced in mice to the PGxI/LN and CxPDDSSxC mimotopes inhibited fodrin proteolysis and macrophage chemotaxis biological activities of Pet. Our results showed that we were able to generate, by a phage display procedure, mimotopes with sequence motifs PGxI/LN and CxPDDSSxC, and to identify them as functional motifs of the Pet, Pic and other SPATEs involved in their biological activities.

  8. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs.

    PubMed

    Pan, Zhu; Zhu, Jinwei; Shang, Yuan; Wei, Zhiyi; Jia, Min; Xia, Caihao; Wen, Wenyu; Wang, Wenning; Zhang, Mingjie

    2013-06-01

    LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.

  9. Role of a cysteine residue in the active site of ERK and the MAPKK family

    SciTech Connect

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori . E-mail: hidenori.nakajima@jp.astellas.com; Miyake, Hiroshi

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.

  10. Bioactivation of cysteine conjugates of 1-nitropyrene oxides by cysteine conjugate beta-lyase purified from Peptostreptococcus magnus.

    PubMed Central

    Kataoka, K; Kinouchi, T; Akimoto, S; Ohnishi, Y

    1995-01-01

    To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since P. magnus is one of the constituents of the intestinal microflora and exhibits high levels of degrading activity with cysteine conjugates of 1-nitropyrene oxides (1-NP oxide-Cys). The activity of purified beta-lyase was optimal at pH 7.5 to 8.0, was completely inhibited by aminooxyacetic acid and hydroxylamine, and was eliminated by heating the enzyme at 55 degrees C for 5 min. The molecular weight of beta-lyase was 150,000, as determined by fast protein liquid chromatography. S-Arylcysteine conjugates were good substrates for this enzyme. As determined by the Salmonella mutagenicity test, 5 ng of beta-lyase protein increased the mutagenicity of the cysteine conjugate of 1-NP 9,10-oxide (10 nmol per plate) 4.5-fold in Salmonella typhimurium TA98 and 4.1-fold in strain TA100. However, beta-lyase had little effect on the cysteine conjugate of 1-NP 4,5-oxide (10 nmol per plate). Both conjugates exhibited only low levels of mutagenicity with nitroreductase-deficient strain TA98NR. In vitro binding of 1-NP oxide-Cys to calf thymus DNA was increased by adding purified beta-lyase or xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8526486

  11. Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1

    SciTech Connect

    Finsterbusch, T. . E-mail: finsterbuscht@rki.de; Steinfeldt, T.; Caliskan, R.; Mankertz, A.

    2005-12-05

    Porcine circovirus type 1 (PCV1) encodes two major ORFs. The cap gene comprises the major structural protein of PCV, the rep gene specifies Rep and Rep', which are both essential for initiating the replication of the viral DNA. Rep corresponds to the full-length protein, whereas Rep' is a truncated splice product that is frame-shifted in its C-terminal sequence. In this study, the cellular localization of PCV1-encoded proteins was investigated by immune fluorescence techniques using antibodies against Rep, Rep' and Cap and by expression of viral proteins fused to green and red fluorescence proteins. Rep and Rep' protein co-localized in the nucleus of infected cells as well as in cells transfected with plasmids expressing Rep and Rep' fused to fluorescence proteins, but no signal was seen in the nucleoli. Rep and Rep' carry three potential nuclear localization signals in their identical N-termini, and the contribution of these motifs to nuclear import was experimentally dissected. In contrast to the rep gene products, the localization of the Cap protein varied. While the Cap protein was restricted to the nucleoli in plasmid-transfected cells and was also localized in the nucleoli at an early stage of PCV1 infection, it was seen in the nucleoplasm and the cytoplasm later in infection, suggesting that a shuttling between distinct cellular compartments occurs.

  12. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II

    PubMed Central

    Bharati, Akhilendra Pratap; Singh, Neha; Kumar, Vikash; Kashif, Md.; Singh, Amit Kumar; Singh, Priyanka; Singh, Sudhir Kumar; Siddiqi, Mohammad Imran; Tripathi, Timir; Akhtar, Md. Sohail

    2016-01-01

    RNA Polymerase II (RNAPII) uniquely possesses an extended carboxy terminal domain (CTD) on its largest subunit, Rpb1, comprising a repetitive Tyr1Ser2Pro3Thr4 Ser5Pro6Ser7 motif with potential phosphorylation sites. The phosphorylation of the CTD serves as a signal for the binding of various transcription regulators for mRNA biogenesis including the mRNA capping complex. In eukaryotes, the 5 prime capping of the nascent transcript is the first detectable mRNA processing event, and is crucial for the productive transcript elongation. The binding of capping enzyme, RNA guanylyltransferases to the transcribing RNAPII is known to be primarily facilitated by the CTD, phosphorylated at Ser5 (Ser5P). Here we report that the Saccharomyces cerevesiae RNA guanylyltransferase (Ceg1) has dual specificity and interacts not only with Ser5P but also with Ser7P of the CTD. The Ser7 of CTD is essential for the unconditional growth and efficient priming of the mRNA capping complex. The Arg159 and Arg185 of Ceg1 are the key residues that interact with the Ser5P, while the Lys175 with Ser7P of CTD. These interactions appear to be in a specific pattern of Ser5PSer7PSer5P in a tri-heptad CTD (YSPTSPPS YSPTSPSP YSPTSPPS) and provide molecular insights into the Ceg1-CTD interaction for mRNA transcription. PMID:27503426

  13. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis. PMID:27514009

  14. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis.

  15. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    SciTech Connect

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; Ivanov, Ilia N.; Meyer, III, Harry M.; Kidder, Michelle; Joshi, Pooran C.; Jellison, Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E.; Moon, Ji Won

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicated well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.

  16. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE PAGESBeta

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; Ivanov, Ilia N.; Meyer, III, Harry M.; Kidder, Michelle; Joshi, Pooran C.; Jellison, Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E.; et al

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  17. Thiazole orange as a fluorescent probe: Label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH.

    PubMed

    Kang, Bei Hua; Gao, Zhong Feng; Li, Na; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-08-15

    Silver ions have been widely applied to many fields and have harmful effects on environments and human health. Herein, a label-free optical sensor for Ag(+) detection is constructed based on thiazole orange (TO) as a fluorescent probe for the recognition of i-motif DNA structure change at neutral pH. Ag(+) can fold a C-rich single stranded DNA sequence into i-motif DNA structure at neutral pH and that folding is reversible by chelation with cysteine (Cys). The DNA folding process can be indicated by the fluorescence change of TO, which is non-fluorescent in free molecule state and emits strong fluorescence after the incorporation with i-motif DNA. Thus, a rapid, sensitive, and selective method for the detection of Ag(+) and Cys is developed with a detection limit of 17 and 280nM, respectively. It is worth noting that the mechanism underlying the increase of the fluorescence of thiazole orange in the presence of i-motif structure is explained. Moreover, a fluorescent DNA logic gate is successfully designed based on the Ag(+)/Cys-mediated reversible fluorescence changes. The proposed detection strategy is label-free and economical. In addition, this system shows a great promise for i-motif/TO complex to analyze Ag(+) in the real samples.

  18. Survey of Enabling Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  19. Plasma structuring in the polar cap

    SciTech Connect

    Basu, S.; Basu, S.; Weber, E.J.; Bishop, G.J.

    1990-01-01

    Propagation experiments providing scintillation, total electron content and drift data in the field of view of an all-sky imager near the magnetic polar in Greenland are utilized to investigate the manner in which ionospheric plasma becomes structured within the polar cap. It is found that under IMF Bz southward conditions, large scale ionization patches which are convected through the dayside cusp into the polar cap get continually structured. The structuring occurs through the ExB gradient drift instability process which operates through an interaction between the antisunward plasma convection in the neutral rest frame and large scale plasma density gradients that exist at the edges of the ionization patches. It is shown that with the increase of solar activity the strength of the irregularities integrated through the ionosphere is greatly increased. Under the IMF Bz northward conditions, the plasma structuring occurs around the polar cap arcs in the presence of inhomogeneous electric field or disordered plasma convection. In that case, the irregularity generation is caused by the competing processes of non-linear Kelvin-Helmholtz instability driven by sheared plasma flows and the gradient drift instability process which operates in the presence of dawn-dusk motion of arc structures. The integrated strength of this class of irregularities also exhibits marked increase with increasing solar activity presumably because the ambient plasma density over the polar cap is enhanced.

  20. 47 CFR 54.675 - Cap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Cap. 54.675 Section 54.675 Telecommunication..., the Administrator shall implement a filing window period that treats all eligible health care providers filing within the window period as if their applications were simultaneously received. (3) (4)...

  1. H. cap alpha. in RS CVn binaries

    SciTech Connect

    Bopp, B.W.; Talcott, J.C.

    1980-01-01

    The 1976--78 results of a spectroscopic program to monitor H..cap alpha.. in several RS CVn-type binaries are reported. For six objects well observed over orbital phase, four (HR 4665, HR 5110, sigma Gem, Z Her) show H..cap alpha.. as an absorption feature having a constant ( +- 15%) equivalent width (EW). AR Lac exhibits an absorption profile also, but the EW varies by a factor of three due to partial filling by emission. This variation is sporadic and not phase dependent. The H..cap alpha.. feature in HK Lac shows the most extreme variation: normally seen as an absorption feature with variable EW, it has been observed as a pure emission feature on three spectrograms, showing a blueshift with respect to the photosphere of approx.50--100 km sec/sup -1/. On a single occasion HK Lac showed double H..cap alpha.. emission with a separation of the peaks of approx.300 km sec/sup -1/. These high velocity features are interpreted in terms of prominence-like structure in the atmosphere of the active star.

  2. Capping blowouts from Iran's 8-year war

    SciTech Connect

    Sayers, B. )

    1991-07-01

    Control well blown up by the Iraqi military were a 2 1/2 year legacy left the National Iranian Oil Co. at the end of this long conflict. This final installment of a 2-part series describes capping of the largest wind oil well.

  3. 21 CFR 884.5250 - Cervical cap.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... collect menstrual flow or to aid artificial insemination. This generic type of device is not...

  4. Natural attenuation processes during in situ capping.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2007-08-01

    Chlorinated solvents are common groundwater contaminants that threaten surface water quality and benthic health when present in groundwater seeps. Aquatic sediments can act as natural biobarriers to detoxify chlorinated solvent plumes via reductive dechlorination. In situ sediment capping, a remedial technique in which clean material is placed at the sediment-water interface, may alter sedimentary natural attenuation processes. This research explores the potential of Anacostia River sediment to naturally attenuate chlorinated solvents under simulated capping conditions. Results of microcosm studies demonstrated that intrinsic dechlorination of dissolved-phase PCE to ethene was possible, with electron donor availability controlling microbial activity. A diverse microbial community was present in the sediment, including multiple Dehalococcoides strains indicated by the amplification of the reductive dehalogenases tceA, vcrA, and bvcA. An upflow column simulating a capped sediment bed subject to PCE-contaminated groundwater seepage lost dechlorination activity with time and only achieved complete dechlorination when microorganisms present in the sediment were provided electron donor. Increases in effluent chloroethene concentrations during the period of biostimulation were attributed to biologically enhanced desorption and the formation of less sorptive dechlorination products. These findings suggest that in situ caps should be designed to account for reductions in natural biobarrier reactivity and for the potential breakthrough of groundwater contaminants. PMID:17822095

  5. Shrinking ice caps in the spotlight.

    PubMed

    Gross, Michael

    2014-10-01

    From the disappearing sea ice of the Arctic to the thriving microbial communities in subglacial lakes of Antarctica, the Earth's ice caps have often made the news in recent months and years, and polar science has emerged as being crucial to our understanding of our planet's biology and climate. Michael Gross reports.

  6. 47 CFR 54.507 - Cap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... yearly average GDP-CPI is determined, the Wireline Competition Bureau shall publish a public notice in... category one services, the Administrator, at the direction of the Wireline Competition Bureau, shall direct... notwithstanding the annual cap. The Chief, Wireline Competition Bureau, is delegated authority to determine...

  7. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  8. Natural attenuation processes during in situ capping.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2007-08-01

    Chlorinated solvents are common groundwater contaminants that threaten surface water quality and benthic health when present in groundwater seeps. Aquatic sediments can act as natural biobarriers to detoxify chlorinated solvent plumes via reductive dechlorination. In situ sediment capping, a remedial technique in which clean material is placed at the sediment-water interface, may alter sedimentary natural attenuation processes. This research explores the potential of Anacostia River sediment to naturally attenuate chlorinated solvents under simulated capping conditions. Results of microcosm studies demonstrated that intrinsic dechlorination of dissolved-phase PCE to ethene was possible, with electron donor availability controlling microbial activity. A diverse microbial community was present in the sediment, including multiple Dehalococcoides strains indicated by the amplification of the reductive dehalogenases tceA, vcrA, and bvcA. An upflow column simulating a capped sediment bed subject to PCE-contaminated groundwater seepage lost dechlorination activity with time and only achieved complete dechlorination when microorganisms present in the sediment were provided electron donor. Increases in effluent chloroethene concentrations during the period of biostimulation were attributed to biologically enhanced desorption and the formation of less sorptive dechlorination products. These findings suggest that in situ caps should be designed to account for reductions in natural biobarrier reactivity and for the potential breakthrough of groundwater contaminants.

  9. Interplay between parasite cysteine proteases and the host kinin system modulates microvascular leakage and macrophage infection by promastigotes of the Leishmania donovani complex.

    PubMed

    Svensjö, Erik; Batista, Paulo R; Brodskyn, Claudia I; Silva, Robson; Lima, Ana Paula C A; Schmitz, Verônica; Saraiva, Elvira; Pesquero, João B; Mori, Marcelo A S; Müller-Esterl, Werner; Scharfstein, Julio

    2006-01-01

    Kinins, the vasoactive peptides proteolytically liberated from kininogens, were recently recognized as signals alerting the innate immune system. Here we demonstrate that Leishmania donovani and Leishmania chagasi, two etiological agents of visceral leishmaniasis (VL), activate the kinin system. Intravital microscopy in the hamster cheek pouch showed that topically applied promastigotes induced macromolecular leakage (FITC-dextran) through postcapillary venules. Peaking at 15 min, the parasite-induced leakage was drastically enhanced by captopril (Cap), an inhibitor of angiotensin-converting enzyme (ACE), a kinin-degrading metallopeptidase. The enhanced microvascular responses were cancelled by HOE-140, an antagonist of the B2 bradykinin receptor (B2R), or by pre-treatment of promastigotes with the irreversible cysteine proteinase inhibitor N-methylpiperazine-urea-Phe-homoPhe-vinylsulfone-benzene (N-Pip-hF-VSPh). In agreement with the above-mentioned data, the promastigotes vigorously induced edema in the paw of Cap-treated J129 mice, but not Cap-B2R-/- mice. Analysis of parasite-induced breakdown of high molecular weight kininogens (HK), combined with active site-affinity-labeling with biotin-N-Pip-hF-VSPh, identified 35-40 kDa proteins as kinin-releasing cysteine peptidases. We then checked if macrophage infectivity was influenced by interplay between these kinin-releasing parasite proteases, kininogens, and kinin-degrading peptidases (i.e. ACE). Our studies revealed that full-fledged B2R engagement resulted in vigorous increase of L. chagasi uptake by resident macrophages. Evidence that inflammatory macrophages treated with HOE-140 became highly susceptible to amastigote outgrowth, assessed 72 h after initial macrophage interaction, further suggests that the kinin/B2R activation pathway may critically modulate inflammation and innate immunity in visceral leishmaniasis. PMID:16203170

  10. The endocytosis and signaling of the γδ T cell coreceptor WC1 are regulated by a dileucine motif.

    PubMed

    Hsu, Haoting; Baldwin, Cynthia L; Telfer, Janice C

    2015-03-01

    WC1 proteins, which are specifically expressed by bovine γδ T cells from a gene array containing 13 members, are part of the scavenger receptor cysteine-rich family. WC1 cytoplasmic domains contains multiple tyrosines, one of which is required to be phosphorylated for TCR coreceptor activity, and a dileucine endocytosis motif. Like the TCR coreceptor CD4, WC1 is endocytosed in response to PMA. Because WC1 endocytosis may play a role in the activation of γδ T cells, we examined WC1 endocytosis in the adherent cell 293T and Jurkat T cell lines using a fusion protein of extracellular CD4 and the transmembrane and cytoplasmic domain of WC1. Individual mutation of the two leucine residues of the endocytic dileucine motif in the WC1 cytoplasmic domain significantly reduced PMA-induced endocytosis in both cell types and enhanced IL-2 production stimulated by cocross-linking of CD3/TCR and CD4/WC1 in Jurkat cells, suggesting that the sustained membrane coligation of CD3/TCR with WC1 caused by a decrease in endocytosis increases T cell activation. Mutation of two serines upstream of the endocytic dileucine motif affected endocytosis only in adherent 293T cells. Although the two upstream serines were not required for WC1 endocytosis in Jurkat cells, the pan-protein kinase C inhibitor Gö6983 blocked endocytosis of CD4/WC1, and mutation of the upstream serines in WC1 inhibited IL-2 production stimulated by cocross-linking of CD3/TCR and CD4/WC1. These studies provide insights into the signaling of WC1 gene arrays that are present in most mammals and play critical roles in γδ T cell responses to bacterial pathogens.

  11. Local control of cis-peptidyl-prolyl bonds mediated by CH···π interactions: the Xaa-Pro-Tyr motif.

    PubMed

    Ganguly, Himal K; Kaur, Hundeep; Basu, Gautam

    2013-09-17

    Compared to generic peptide bonds, the peptidyl-prolyl bond shows a strong propensity for the cis conformer. The presence of a sequence-contiguous aromatic (Aro) residue can further stabilize the cis conformer, as observed for the Aro-Pro motif. The cis propensity of the reverse sequence motif, Pro-Aro, is not so well understood, especially the effect of N-capping the Pro-Aro motif with different amino acid residues. From a comparative nuclear magnetic resonance study of two peptide series with the general sequences Ac-Xaa-Pro-Tyr-NH2 and Ac-Xaa-Pro-Ala-NH2, we present a relative thermodynamic scale that reflects how the nature of the Xaa side chain influences the cis propensity of the Xaa-Pro-Tyr motif, with Gly, Pro, and Ala at position Xaa giving the greatest enhancement of the cis-peptidyl-prolyl population. We also show that CH···π interaction between Xaa and Tyr is responsible for the enhanced cis population. However, the mere presence of the CH···π interaction does not guarantee that the peptidyl-prolyl bond will have a higher cis content in Xaa-Pro-Tyr than in Xaa-Pro-Ala. Xaa-dependent intramolecular interactions present in Xaa-trans-Pro-Tyr can nullify favorable CH···π interactions in Xaa-cis-Pro-Tyr. The relative cis-peptidyl-prolyl stabilizing propensities of Xaa (Xaa-Pro-Tyr) in proteins and in our peptide series show strong linear correlation except when Xaa is aromatic. We also explore the Xaa-Pro-Gly-Tyr sequence motif and show that mediated by a Pro-Tyr CH···π interaction, the cis-peptidyl-prolyl bond in the motif is stabilized when Xaa is Pro.

  12. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  13. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  14. A million peptide motifs for the molecular biologist.

    PubMed

    Tompa, Peter; Davey, Norman E; Gibson, Toby J; Babu, M Madan

    2014-07-17

    A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries. PMID:25038412

  15. Local graph alignment and motif search in biological networks

    NASA Astrophysics Data System (ADS)

    Berg, Johannes; Lässig, Michael

    2004-10-01

    Interaction networks are of central importance in postgenomic molecular biology, with increasing amounts of data becoming available by high-throughput methods. Examples are gene regulatory networks or protein interaction maps. The main challenge in the analysis of these data is to read off biological functions from the topology of the network. Topological motifs, i.e., patterns occurring repeatedly at different positions in the network, have recently been identified as basic modules of molecular information processing. In this article, we discuss motifs derived from families of mutually similar but not necessarily identical patterns. We establish a statistical model for the occurrence of such motifs, from which we derive a scoring function for their statistical significance. Based on this scoring function, we develop a search algorithm for topological motifs called graph alignment, a procedure with some analogies to sequence alignment. The algorithm is applied to the gene regulation network of Escherichia coli.

  16. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES. - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  17. 10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  18. Transmembrane helix dimerization: beyond the search for sequence motifs.

    PubMed

    Li, Edwin; Wimley, William C; Hristova, Kalina

    2012-02-01

    Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.

  19. Macrocyclization of the ATCUN Motif Controls Metal Binding and Catalysis

    PubMed Central

    Neupane, Kosh P.; Aldous, Amanda R.; Kritzer, Joshua A.

    2013-01-01

    We report the design, synthesis and characterization of macrocyclic analogs of the amino-terminal copper and nickel binding (ATCUN) motif. These macrocycles have altered pH transitions for metal binding, and unlike linear ATCUN motifs, the optimal cyclic peptide 1 binds Cu(II) selectively over Ni(II) at physiological pH. UV-vis and EPR spectroscopy showed that cyclic peptide 1 can coordinate Cu(II) or Ni(II) in a square planar geometry. Metal binding titration and ESI-MS data revealed a 1:1 binding stoichiometry. Macrocyclization allows for coordination of Cu(II) or Ni(II) as in linear ATCUN motifs, but with enhanced DNA cleavage by the Cu(II)-1 complex relative to linear analogs. The Cu(II)-1 complex was also capable of producing diffusible hydroxyl radicals, which is unique among ATCUN motifs and most other common copper(II) chelators. PMID:23421754

  20. Direct vs 2-stage approaches to structured motif finding

    PubMed Central

    2012-01-01

    Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs) that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple) motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct approaches. Some of these

  1. High-pressure jet cutters improve capping operations

    SciTech Connect

    Abel, L.W.; Campbell, P.J.; Bowden, J.R. Sr.

    1995-05-08

    Advances in abrasive cutting technology have improved the methods for removing damaged equipment and preparing wellheads for capping. This technology, much of which was refined during well control operations in Kuwait in 1991, can improve the safety and efficiency of capping jobs by cutting wellheads or casing quickly and cleanly. The majority of well control jobs involve one of three types of capping operations: capping to a flange, capping by installing a wellhead, or capping to a casing stub. Capping operations are often the first major step in regaining control of the well during blowout intervention. Proper planning of a capping operation must take into account the mass flow rate, combustible nature of the flow, well bore geometry, and operations in the post-capping phase of the project. The paper discusses capping vehicles, tree removal, jet cutters, capping to a flange, capping to a stub, swallowing the stub, spin-on technique, capping on fire, stinging, offshore blowouts, firefighting, pollution control, intervention equipment, and rig removal.

  2. Network motif-based method for identifying coronary artery disease

    PubMed Central

    LI, YIN; CONG, YAN; ZHAO, YUN

    2016-01-01

    The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs. PMID:27347046

  3. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology. PMID:26886735

  4. An experimental test of a fundamental food web motif.

    PubMed

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-01

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities. PMID:20129988

  5. An experimental test of a fundamental food web motif

    PubMed Central

    Rip, Jason M. K.; McCann, Kevin S.; Lynn, Denis H.; Fawcett, Sonia

    2010-01-01

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure—the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities. PMID:20129988

  6. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  7. Survey on the PABC recognition motif PAM2.

    PubMed

    Albrecht, Mario; Lengauer, Thomas

    2004-03-26

    The PABP-interacting motif PAM2 has been identified in various eukaryotic proteins as an important binding site for the PABC domain. This domain is contained in homologs of the poly(A)-binding protein PABP and the ubiquitin-protein ligase HYD. Despite the importance of the PAM2 motif, a comprehensive analysis of its occurrence in different proteins has been missing. Using iterated sequence profile searches, we obtained an extensive list of proteins carrying the PAM2 motif. We discuss their functional context and domain architecture, which often consists of RNA-binding domains. Our list of PAM2 motif proteins includes eukaryotic homologs of eRF3/GSPT1/2, PAIP1/2, Tob1/2, Ataxin-2, RBP37, RBP1, Blackjack, HELZ, TPRD, USP10, ERD15, C1D4.14, and the viral protease P29. The identification of the PAM2 motif in as yet uncharacterized proteins can give valuable hints with respect to their cellular function and potential interaction partners and suggests further experimentation. It is also striking that the PAM2 motif appears to occur solely outside globular protein domains.

  8. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  9. PRINTS--a database of protein motif fingerprints.

    PubMed

    Attwood, T K; Beck, M E; Bleasby, A J; Parry-Smith, D J

    1994-09-01

    PRINTS is a compendium of protein motif 'fingerprints'. A fingerprint is defined as a group of motifs excised from conserved regions of a sequence alignment, whose diagnostic power or potency is refined by iterative databasescanning (in this case the OWL composite sequence database). Generally, the motifs do not overlap, but are separated along a sequence, though they may be contiguous in 3D-space. The use of groups of independent, linearly- or spatially-distinct motifs allows protein folds and functionalities to be characterised more flexibly and powerfully than conventional single-component patterns or regular expressions. The current version of the database contains 200 entries (encoding 950 motifs), covering a wide range of globular and membrane proteins, modular polypeptides, and so on. The growth of the databaseis influenced by a number of factors; e.g. the use of multiple motifs; the maximisation of sequence information through iterative database scanning; and the fact that the database searched is a large composite. The information contained within PRINTS is distinct from, but complementary to the consensus expressions stored in the widely-used PROSITE dictionary of patterns.

  10. Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model

    PubMed Central

    Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.

    2013-01-01

    One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874

  11. Chemical Biology Approaches to Study Protein Cysteine Sulfenylation1

    PubMed Central

    Pan, Jia; Carroll, Kate S.

    2014-01-01

    The oxidation of cysteine thiol side chains by hydrogen peroxide to afford protein sulfenyl modifications is an important mechanism in signal transduction. In addition, aberrant protein sulfenylation contributes to a range of human pathologies, including cancer. Efforts to elucidate the roles of protein sulfenylation in physiology and disease have been hampered by the lack of techniques to probe these modifications in native environments with molecular specificity. In this review, we trace the history of chemical and biological methods that have been developed to detect protein sulfenylation and illustrate how a recent cell-permeable chemical reporter, DYn-2, has been used to detect identify intracellular targets of endogenous H2O2 during growth factor signaling, including the EGF receptor. The array of new tools and methods discussed herein enables the discovery of new biological roles for cysteine sulfenylation in human health and disease. PMID:23576224

  12. Discovering mechanisms of signaling-mediated cysteine oxidation.

    PubMed

    Poole, Leslie B; Nelson, Kimberly J

    2008-02-01

    Accumulating evidence reveals hydrogen peroxide as a key player both as a damaging agent and, from emerging evidence over the past decade, as a second messenger in intracellular signaling. This rather mild oxidant acts upon downstream targets within signaling cascades to modulate the activity of a host of enzymes (e.g. phosphatases and kinases) and transcriptional regulators through chemoselective oxidation of cysteine residues. With the recent development of specific detection reagents for hydrogen peroxide and new chemical tools to detect the generation of the initial oxidation product, sulfenic acid, on reactive cysteines within target proteins, the scene is set to gain a better understanding of the mechanisms through which hydrogen peroxide acts as a second messenger in cell signaling.

  13. Low flammability cap-sensitive flexible explosive composition

    DOEpatents

    Wagner, Martin G.

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  14. Development of an unbonded capping system for clay masonry prisms

    SciTech Connect

    Crouch, L.K.; Henderson, R.C.; Sneed, W.A. Jr.

    1999-07-01

    To ascertain if an unbonded capping system was feasible for clay masonry prisms, the compressive strengths of thirty clay masonry prisms capped with an unbonded capping system modeled after ASTM C 1231 were compared with those of thirty masonry prisms capped with ASTM C 67 approved high-strength gypsum cement at the ages of 7 and 28 days. All prisms were constructed by a professional mason using Grade SW, Type FBS cored face brick from the same lot and ASTM C 270 Type S PC-lime mortar. There was no significant difference in mean compressive strength for the two capping methods at either age. In addition, capping with the unbonded capping system was faster and easier. Further, 28-day results obtained using the unbonded capping system had a lower coefficient of variation and higher mean compressive strength than those obtained with high-strength gypsum.

  15. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Verhaert, Peter D E M; Lopes, Adriana R

    2015-05-01

    Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles. PMID:25818482

  16. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Verhaert, Peter D E M; Lopes, Adriana R

    2015-05-01

    Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles.

  17. Structural Basis for Dimerization and Catalysis of a Novel Esterase from the GTSAG Motif Subfamily of the Bacterial Hormone-sensitive Lipase Family*

    PubMed Central

    Li, Ping-Yi; Ji, Peng; Li, Chun-Yang; Zhang, Yi; Wang, Guang-Long; Zhang, Xi-Ying; Xie, Bin-Bin; Qin, Qi-Long; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-01-01

    Hormone-sensitive lipases (HSLs) are widely distributed in microorganisms, plants, and animals. Microbial HSLs are classified into two subfamilies, an unnamed new subfamily and the GDSAG motif subfamily. Due to the lack of structural information, the detailed catalytic mechanism of the new subfamily is not yet clarified. Based on sequence analysis, we propose to name the new subfamily as the GTSAG motif subfamily. We identified a novel HSL esterase E25, a member of the GTSAG motif subfamily, by functional metagenomic screening, and resolved its structure at 2.05 Å. E25 is mesophilic (optimum temperature at 50 °C), salt-tolerant, slightly alkaline (optimum pH at 8.5) for its activity, and capable of hydrolyzing short chain monoesters (C2–C10). E25 tends to form dimers both in the crystal and in solution. An E25 monomer contains an N-terminal CAP domain, and a classical α/β hydrolase-fold domain. Residues Ser186, Asp282, and His312 comprise the catalytic triad. Structural and mutational analyses indicated that E25 adopts a dimerization pattern distinct from other HSLs. E25 dimer is mainly stabilized by an N-terminal loop intersection from the CAP domains and hydrogen bonds and salt bridges involving seven highly conserved hydrophilic residues from the catalytic domains. Further analysis indicated that E25 also has some catalytic profiles different from other HSLs. Dimerization is essential for E25 to exert its catalytic activity by keeping the accurate orientation of the catalytic Asp282 within the catalytic triad. Our results reveal the structural basis for dimerization and catalysis of an esterase from the GTSAG motif subfamily of the HSL family. PMID:24867954

  18. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  19. Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation*

    PubMed Central

    Crowe, Alex; James, Michael J.; Lee, Virginia M.-Y.; Smith, Amos B.; Trojanowski, John Q.; Ballatore, Carlo; Brunden, Kurt R.

    2013-01-01

    Alzheimer disease and several other neurodegenerative disorders are characterized by the accumulation of intraneuronal fibrils comprised of the protein Tau. Tau is normally a soluble protein that stabilizes microtubules, with splice isoforms that contain either three (3-R) or four (4-R) microtubule binding repeats. The formation of Tau fibrils is thought to result in neuronal damage, and inhibitors of Tau fibrillization may hold promise as therapeutic agents. The process of Tau fibrillization can be replicated in vitro, and a number of small molecules have been identified that inhibit Tau fibril formation. However, little is known about how these molecules affect Tau fibrillization. Here, we examined the mechanism by which the previously described aminothieno pyridazine (ATPZ) series of compounds inhibit Tau fibrillization. Active ATPZs were found to promote the oxidation of the two cysteine residues within 4-R Tau by a redox cycling mechanism, resulting in the formation of a disulfide-containing compact monomer that was refractory to fibrillization. Moreover, the ATPZs facilitated intermolecular disulfide formation between 3-R Tau monomers, leading to dimers that were capable of fibrillization. The ATPZs also caused cysteine oxidation in molecules unrelated to Tau. Interestingly, methylene blue, an inhibitor of Tau fibrillization under evaluation in Alzheimer disease clinical trials, caused a similar oxidation of cysteines in Tau and other molecules. These findings reveal that the ATPZs and methylene blue act by a mechanism that may affect their viability as potential therapeutic agents. PMID:23443659

  20. Plant collagenase: unique collagenolytic activity of cysteine proteases from ginger.

    PubMed

    Kim, Misook; Hamilton, Susan E; Guddat, Luke W; Overall, Christopher M

    2007-12-01

    Two cysteine proteases, GP2 and GP3, have been isolated from ginger rhizomes (Zingiber officinale). GP2 is virtually identical to a previously identified ginger protease GPII [K.H. Choi, and R.A. Laursen, Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale, Eur. J. Biochem. 267 (2000) 1516-1526.], and cleaves native type I collagen at multiple discrete sites, which are in the interior of the triple helical region of this molecule. In reaction with proline-containing peptides GP2 shows preference for Pro in the P2 position, and at least 10-fold higher efficiency of hydrolysis than papain. Comparison of models of GP2 and GP3 with the crystal structure of papain shows that the three enzymes have different S2 pocket structures. The S2 pocket in GP2 and GP3 is half the size of that of papain. GP2 is the only reported plant cysteine protease with a demonstrated ability to hydrolyse native collagen. The results support a role for ginger proteases as an alternative to papain, in commercial applications such as meat tenderization, where collagen is the target substrate. PMID:17920199